A Framework for Unrestricted Whole-Program Optimization [abstract] (ACM DL, PDF)
Spyridon Triantafyllis, Matthew J. Bridges, Easwaran Raman, Guilherme Ottoni, and David I. August
Proceedings of the 2006 ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI), June 2006.

Procedures have long been the basic units of compilation in conventional optimization frameworks. However, procedures are typically formed to serve software engineering rather than optimization goals, arbitrarily constraining code transformations. Techniques, such as aggressive inlining and interprocedural optimization, have been developed to alleviate this problem, but, due to code growth and compile time issues, these can be applied only sparingly.

This paper introduces the Procedure Boundary Elimination (PBE) compilation framework, which allows unrestricted whole-program optimization. PBE allows all intra-procedural optimizations and analyses to operate on arbitrary subgraphs of the program, regardless of the original procedure boundaries and without resorting to inlining. In order to control compilation time, PBE also introduces novel extensions of region formation and encapsulation. PBE enables targeted code specialization, which recovers the specialization benefits of inlining while keeping code growth in check. This paper shows that PBE attains better performance than inlining with half the code growth.