
What the processor manual does not tell you…
Matthew J. Bridges Neil Vachharajani Guilherme Ottoni David I. August

{mbridges,nvachhar,ottoni,august}@princeton.edu

The Liberty Research Group http://www.liberty-research.org

Why is this needed? First, machine information needed for
compiler development is not always available or, when available,
accurate. Second, evaluation with a tuned optimizing compiler is
important during the design space exploration of a computer
system, where it is necessary to rapidly explore several candidate
designs. Since the quality of the system depends on the number of
candidate designs that can be explored, the ability to rapidly
retarget an instruction scheduler is critical. However, retargeting
the compiler's instruction scheduler to a new candidate design is
particularly tedious and time-consuming due to the many complex
interactions between instructions and the tight coupling to specific
design implementation details.

More Information:

The speedup versus scheduling without
knowledge of structural hazards for three
machines. The speedup obtained by our
technique is shown in color and the speedup
obtained by perfect resource maps is shown in
black.

The accuracy (measured as speedup) over time
for our technique for the TI TMS320C3x, SPARC
Viking 8, and Itanium 2. The horizontal line
represents maximum speedup for each machine.

http://www.liberty-research.org/Research/DSE or contact the Liberty Design Space Exploration Team at the addresses above.

1

1.1

1.2

1.3

S
p
e
e
d
u
p

16
4.
gz

ip

17
5.
vp

r

17
6.
gc

c

18
1.
m
cf

18
6.
cr
af
ty

19
7.
pa

rs
er

25
2.
eo

n

25
3.
pe

rl
bm

k

25
4.
ga

p

25
5.
vo

rt
ex

25
6.
bz

ip
2

30
0.
tw

ol
f

G
eo

.M
ea

n

1

1.1

1.2

1.3

S
p
e
e
d
u
p

16
4.
gz

ip

17
5.
vp

r

17
6.
gc

c

18
1.
m
cf

18
6.
cr
af
ty

19
7.
pa

rs
er

25
2.
eo

n

25
3.
pe

rl
bm

k

25
4.
ga

p

25
5.
vo

rt
ex

25
6.
bz

ip
2

30
0.
tw

ol
f

G
eo

.M
ea

n

1

1.1

1.2

1.3
S
p
e
e
d
u
p

16
4.
gz

ip

17
5.
vp

r

17
6.
gc

c

18
1.
m
cf

18
6.
cr
af
ty

19
7.
pa

rs
er

25
2.
eo

n

25
3.
pe

rl
bm

k

25
4.
ga

p

25
5.
vo

rt
ex

25
6.
bz

ip
2

30
0.
tw

ol
f

G
eo

.M
ea

n

1

1.05

1.1

1.15

1.2

S
p
e
e
d
u
p

1 2 5 10 20 50 100 200 500 1000

Time (Minutes)

TI TMS320C3x

SPARC Viking 8

Itanium 2

Contributing to Princeton University’s rich heritage of computer science research since 1999.

Generation of high quality code for modern and
embedded processors requires a compiler to
maximize utilization of available resources. An
essential step in this is the aggressive scheduling of
instructions while avoiding stalls from structural
hazards. To do this, an optimizing compiler must be
aware of the processor's available resources and how
these resources are utilized by each instruction. The
typical process of manually discovering and
specifying this information is both tedious and error-
prone. Formal models can be used to automatically
generate this information, however, there are
situations where these are not used or available.
Ideally, structural hazards would be determined
automatically, without the need for a formal model.

D
is

co
ve

rin
g

S
tru

ct
ur

al
 H

az
ar

ds
 fo

r S
ch

ed
ul

in
g

How well does it work? The technique was used to build a
conflict database, containing known and inferred structural hazards,
which was then used for hazard detection during scheduling. As the
graphs to the right show, the structural hazards we discover and infer
are sufficient to obtain 80-100% of the performance of perfect
resource maps when scheduling. Additionally, the bottom right
graph shows the speedup of the technique over time. Almost all of
the speedup is achieved within 3 hours, with almost all of the
performance obtained in under 15 minutes.

Isn’t reverse-engineering a processor impossible?
Yes!
Formal models, such as used by ADLs, can allow a processor
model to be reverse-engineered. However, it is impossible to
automatically discover all structural hazards without such formal
models. Our technique automatically reverse-engineers the most
important structural hazards. This technique uses observations
about the properties of processors to identify a subset of instruction
schedules to explore. Structural azards found during exploration
are used to infer the existence of other hazards. The subset of
instruction schedules formed is based on three observations:

•A processor’s functional units tend to be pipelined, allowing the
depth of instruction schedules considered to be limited.

•Instructions tend to belong to categories defined by resource
usage, allowing a representative to be chosen for exploration.

•Use of resources tends to be independent of an instruction’s
position within a cycle, allowing combinations, rather than
permutations, of instructions to be explored.

http://www.liberty-research.org/Research/DSE

