
8

Performance Scalability of Decoupled
Software Pipelining

RAM RANGAN

IBM Austin Research Laboratory

and

NEIL VACHHARAJANI, GUILHERME OTTONI, and DAVID I. AUGUST

Princeton University

Any successful solution to using multicore processors to scale general-purpose program

performance will have to contend with rising intercore communication costs while exposing coarse-

grained parallelism. Recently proposed pipelined multithreading (PMT) techniques have been

demonstrated to have general-purpose applicability and are also able to effectively tolerate inter-

core latencies through pipelined interthread communication. These desirable properties make PMT

techniques strong candidates for program parallelization on current and future multicore proces-

sors and understanding their performance characteristics is critical to their deployment. To that

end, this paper evaluates the performance scalability of a general-purpose PMT technique called

decoupled software pipelining (DSWP) and presents a thorough analysis of the communication

bottlenecks that must be overcome for optimal DSWP scalability.

Categories and Subject Descriptors: C.4 [Performance of Systems]: Design Studies, Performance

Attributes; D.1.2 [Automatic Programming]: Program Transformation; D.1.3 [Concurrent Pro-
gramming]: Parallel Programming; C.1.4 [Parallel Architectures]

General Terms: Experimentation, Performance

Additional Key Words and Phrases: Decoupled software pipelining, performance analysis

ACM Reference Format:

Rangan, R., Vachharajani, N., Ottoni, G., and August, D. I. 2008. Performance scalability of de-

coupled software pipelining. ACM. Trans. Architec. Code Optim. 5, 2, Article 8 (August 2008), 25

pages. DOI = 10.1145/1400112.1400113 http://doi.acm.org/10.1145/1400112.1400113

This work has been graciously supported by Intel Corporation. Opinions, findings, conclusions,

and recommendations expressed throughout this work are not necessarily the views of Intel

Corporation.

This work done when Ram Rangan was a graduate student at Princeton University.

Authors’ addresses: Ram Rangan, IBM Austin Research Laboratory, 11501 Burnet Road, Austin

TX 78758; email: rrangan@us.ibm.com; Neil Vachharajani, Guilherme Ottoni, and David I. August,

Department of Computer Science, 35 Olden Street, Princeton, NJ 08540; email: {nvachhar, ottoni,

august}@princeton.edu.

Permission to make digital or hard copies part or all of this work for personal or classroom use is

granted without fee provided that copies are not made or distributed for profit or direct commercial

advantage and that copies show this notice on the first page or initial screen of a display along

with the full citation. Copyrights for components of this work owned by others than ACM must be

honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, to

redistribute to lists, or to use any component of this work in other works requires prior specific per-

mission and/or a fee. Permissions may be requested from the Publications Dept., ACM, Inc., 2 Penn

Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2008 ACM 1544-3566/2008/08-ART8 $5.00 DOI 10.1145/1400112.1400113 http://doi.acm.org/

10.1145/1400112.1400113

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 2, Article 8, Publication date: August 2008.

8:2 • R. Rangan et al.

1. INTRODUCTION

Multicore processors or chip multiprocessors (CMPs) have become the predom-
inant organization for current microprocessors. Besides greatly simplifying
design and verification tasks, such designs overcome the clock speed, power,
thermal, and scalability problems plaguing aggressive uniprocessor designs
while continuing to provide additional computing power using additional tran-
sistors provided by technology scaling. While additional processors on the chip
improve the throughput of many independent tasks, they, by themselves, do
nothing to improve the performance of individual tasks. Worse still for task
performance, processor manufacturers are considering using simpler cores in
CMPs to improve performance/power. This trend implies that single task perfor-
mance will not improve and may actually degrade. Thus, performance improve-
ment on a CMP requires programmers or compilers to parallelize individual
tasks into multiple threads and expose thread-level parallelism (TLP).

The major challenge in extracting multiple threads from sequential code is
handling dependences between threads. Parallelization techniques must insert
synchronization between threads to communicate these dependences. Unfortu-
nately, if not handled carefully, synchronization for interthread dependences
can eliminate parallelism by serializing execution across threads.

Depending on how they handle interthread dependences, TLP techniques
can be categorized into three principle paradigms: independent multithread-
ing (IMT), cyclic multithreading (CMT), and pipelined multithreading (PMT).
IMT techniques like DOALL loop parallelization [Lundstorm and Barnes 1980]
attempt to parallelize programs into fully independent threads. While they
work very well for scientific codes, which do not have difficult-to-break recur-
rences, they have poor applicability in general-purpose codes. CMT techniques
like DOACROSS parallelization [Cytron 1986], on the other hand, can han-
dle codes with recurrences. However, these techniques map recurrences as in-
terthread dependences, thereby exposing them to intercore delays at runtime.
As more and more cores are integrated on the same die, increased wire delays
and contention in the shared memory subsystem may cause intercore operand
communication latencies to vary from few tens of cycles to even few hundreds
of cycles, leading to poor CMT performance.

It is in this context that the relatively unheard of DOPIPE parallelization
technique [Padua 1979]1 or more generally, PMT, assumes significance. PMT,
like CMT, handles codes with recurrences, but differs in that the resulting in-
terthread dependences do not form a cycle, but rather a pipeline (more precisely
an arbitrary directed-acyclic graph). By parallelizing codes with recurrences,
PMT achieves the wide applicability of CMT, and by avoiding cyclic cross-thread

1DOPIPE was originally proposed as a multithreading technique alongside DOACROSS to handle

scientific codes with recurrences. Since the loop body of threads produced by DOACROSS remained

identical across all threads, it enabled DOACROSS’ed codes to spawn enough threads to match the

available processor count. DOPIPE, on the other hand, split the original loop’s body among multiple

threads and, as a result, the number of threads was essentially fixed at compile time. The runtime

scalability requirements of the scientific computing community resulted in DOACROSS becoming

the preferred parallelization strategy.

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 2, Article 8, Publication date: August 2008.

Performance Scalability of Decoupled Software Pipelining • 8:3

dependences, PMT-parallelized codes can tolerate long interthread communi-
cation latencies. Communication latency in PMT programs only affects the
pipeline “fill time,” which is only a one-time cost.

The recent years have seen a revival of PMT techniques. For example,
StreamIt [Thies et al. 2002; Gordon et al. 2002], a language-level technique,
provides first-class streaming constructs to enable programmers to write
PMT programs. Our early work on a nonspeculative PMT transformation
called decoupled software pipelining (DSWP) showed that PMT techniques
are very effective in tolerating variable latency stalls [Rangan et al. 2004].
This was demonstrated on hand-parallelized recursive data structure codes.
Subsequently, we presented a generic algorithm to automatically apply
DSWP to general-purpose codes [Ottoni et al. 2005]. Dai et al. [2005] showed
that pipelined threaded execution can greatly improve packet processing
performance.

The promise shown by the above techniques and the compelling advantages
of PMT make it a strong candidate for use in program parallelization for cur-
rent and future multicore architectures. Therefore, an understanding of the
performance characteristics of PMT programs is crucial to their deployment.

In this paper, we shall focus on DSWP, a nonspeculative automatic PMT
transformation. While prior work on DSWP provided insights into understand-
ing its ability to effectively tolerate variable latency stalls [Rangan et al. 2004]
and the importance of thread balance to achieving optimal speedup [Ottoni
et al. 2005], they restricted their evaluation to only two threads and did not
delve into the performance scalability aspects of DSWP. In the current paper,
we present a thorough analysis of the performance scalability of automatically
generated DSWP codes.

Based on our analysis, we identify interesting communication bottlenecks
that prevent DSWP from yielding theoretically predicted performance with in-
creasing thread count. We observe that thread pipelines are of two types: linear
and nonlinear. Linear pipelines are a chain of threads. They are characterized
by strict pairwise interactions among threads, i.e., each thread in the pipeline
consumes from, at most, one upstream thread and produces to, at most, one
downstream thread. Nonlinear thread pipelines, on the other hand, are directed
acyclic graphs (DAG). Even though, in principle, there are no cyclic interthread
dependences in a PMT transformation, such as DSWP, the use of finite-sized
queues creates cyclic interthread dependences called synchronization cycles.
Synchronization cycles require a producer of a queue item to block until the
queue is nonempty. For reasonably sized queues (for example, eight entries and
above) and linear pipelines, synchronization cycles never lead to performance
bottlenecks, since the slack provided by the queue sizing is sufficient to tolerate
them. However, it will be shown that, for similarly sized queues, the synchro-
nization cycles for nonlinear pipelines have such high latencies that the slack
provided by queue sizing is not sufficient to tolerate the long delays.

The paper shows that while good thread balance is important for optimal
DSWP performance, superpartitioning of an application loop among multi-
ple threads can create complex communication patterns, which can interact
pathologically with the underlying communication substrate. Consequently, it

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 2, Article 8, Publication date: August 2008.

8:4 • R. Rangan et al.

Fig. 1. Splitting RDS loops.

is important for the compiler’s partitioning heuristic to be aware of and avoid
such communication pathologies. This paper shows how to gauge the minimum
communication buffering requirements for a given partitioning, which can then
be used by a compiler’s partitioning heuristic to generate code so as to avoid
any runtime communication bottlenecks.

The remainder of the paper is organized as follows. Section 2 presents back-
ground information on DSWP, including a brief description of the automatic
DSWP algorithm [Ottoni et al. 2005], and compares the scalability issues of
DSWP with other multithreading techniques. Information about the evalua-
tion infrastructure, the benchmarks used, analysis, and performance measure-
ment methodology is provided in Section 3. The performance scalability study
of DSWP is presented in Section 4. Section 5 summarizes key results from this
work and provides pointers to future research directions.

2. DECOUPLED SOFTWARE PIPELINING

This section presents background material on decoupled software pipelin-
ing (DSWP) and briefly describes the automatic DSWP algorithm to paral-
lelize generic application loops. It discusses how DSWP differs from other
multicore/multithreading strategies aimed at improving single program per-
formance.

2.1 Background

DSWP, a nonspeculative PMT transformation, started as a mechanism to ef-
fectively tolerate variable latency stalls imposed by delinquent memory loads,
without resorting to complex speculative issue processors [Rangan et al. 2004].
DSWP was used to parallelize recursive data structure (RDS) loops to execute
as two concurrent nonspeculative threads: a critical path (CP) thread compris-
ing the traversal slice and an off-critical path (off-CP) thread comprising the
computation slice. For example, consider the loop shown in Figure 1(a). The
traversal slice consists of the critical path code, ptr=ptr->next, and the com-
putation slice consists of ptr->val=ptr->val+1. A DSWP parallelization of this
loop yields a traversal and computation thread as shown in Figures 1(b) and
(c), respectively. In the figure, the produce function enqueues the pointer onto
a queue and the consume function dequeues the pointer. If the queue is full, the
produce function will block waiting for a slot in the queue. The consume func-
tion will block waiting for data, if the queue is empty. In this way, the traversal

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 2, Article 8, Publication date: August 2008.

Performance Scalability of Decoupled Software Pipelining • 8:5

and computation threads behave as a traditional decoupled producer–consumer
pair.

The above parallelization effectively decouples the execution of the two
code slices and allows useful code to be overlapped with long variable-latency
instructions without resorting to speculation or extremely large instruction
windows. Unidirectional interthread communication enables the use of a de-
coupling buffer. The decoupling buffer insulates each thread from stalls in the
other thread. Further, the reduced size loop of the individual threads allows the
program to take better advantage of traversal cache hits to initiate traversal
cache misses early. From an ILP standpoint, this allows for an overlap be-
tween traversal and computation instructions from distant iterations. Simula-
tion studies have shown that DSWP-parallelized recursive data structure codes
running on a dual-core processor achieve latency tolerance not just through a
prefetching effect, but also due to DSWP’s ability to expose useful nonspecula-
tive parallelism to take advantage of the extra functional units provided by an
additional processing core [Rangan et al. 2004].

In its general form, DSWP tolerates variable latency resulting from not only
memory loads, but also variable trip count inner loops, imbalanced if-then-else
hammocks, and floating-point operations. It is also an effective means to paral-
lelize resource-constrained applications loops with recurrences across multiple
cores. The next subsection describes an automatic DSWP technique to paral-
lelize generic program loops across two or more threads.

2.2 Automatic DSWP

While the above technique based on identifying critical and off-critical path
threads can only yield two threads (for example, traversal and computation
threads for RDS codes), Ottoni et al.’s [2005] general-purpose algorithm de-
parts from the notion of identifying critical and off-critical paths of the regions
targeted for DSWP. Instead, it focuses on identifying more generic program
recurrences and achieves acyclic dependence flow among threads by ensuring
that no single recurrence crosses thread boundaries. This approach enables
the automatic DSWP algorithm to be a truly general-purpose multithreading
technique.

The automatic DSWP technique (autoDSWP for short) takes a loop’s depen-
dence graph, which contains all register, memory, and control dependences, as
input. In order to create an acyclic thread dependence graph for pipelined par-
allelism, it first identifies strongly connected components (SCCs) in the input
dependence graph. The graph formed by these SCCs, by definition, will be a di-
rected acyclic graph (DAGSCC). The algorithm then partitions the DAGSCC into
the requisite number of threads while making sure that no cyclic interthread
dependences are created. The original loop body is now partitioned among the
DSWP threads. In this manner, autoDSWP parallelizes program loops into
pipelined threads. For this paper, we use a load-balancing heuristic in our
autoDSWP compiler to appropriately schedule the SCCs among the requisite
number of threads.

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 2, Article 8, Publication date: August 2008.

8:6 • R. Rangan et al.

DSWP delivers improved performance through coarse-grained overlap
among pipelined threads and improved variable latency tolerance. The amount
of overlap is limited by the performance of the slowest thread. Since the gran-
ularity of scheduling in autoDSWP is a single SCC, the maximum theoret-
ical speedup attainable is 1/Normalized weight of heaviest (slowest) SCC.
Thus, there is an upper bound to the performance obtainable from merely
scheduling and balancing the SCCs across available threads. A discussion
of other optimizations that may be needed to further break or parallelize
the individual SCCs to expose more parallelism is beyond the scope of this
paper.

The current thread model for DSWP is as follows. Execution begins as a single
thread, called primary thread. It spawns all necessary auxiliary threads at the
beginning of a program. When the primary thread reaches a DSWPed loop,
auxiliary threads are set up with necessary loop live-in values. Similarly, upon
loop termination, loop live-outs from auxiliary threads have to be communicated
back to the primary thread. While this creates a cycle in the thread dependence
graph, any dynamic cost because of this once-per-loop-invocation event, will
be rendered negligible by long-running pipelined multithreaded loop bodies.
However, this cycle can become a significant overhead for short-running loops,
which are not good candidates for DSWP in the first place.

The interthread decoupling queues can be implemented with any of the
designs presented in Rangan et al. [2006]. However, all performance eval-
uation in this paper is done with the high-performance synchronization
array (SA) communication support [Rangan et al. 2004] to achieve fast
low-overhead interthread communication. The software interface of the SA
comprises of blocking produce and consume instructions, which enqueue and
dequeue 64-bit operands, respectively.

The next section discusses the scalability potential and limitations of DSWP
in relation to other nonspeculative as well as speculative multithreading
techniques.

2.3 Related Work

In contrast to DSWP, which partitions a given loop body across threads so as
to keep all recurrences local to a thread, DOACROSS parallelization [Cytron
1986] keeps the original loop body unchanged and communicates recurrences
across threads. Figure 2 illustrates the space–time behavior of DSWP and
DOACROSS parallelization techniques. The dependence graph of a single-
threaded loop body is shown in Figure 2(a). This is also the DAGSCC for DSWP.
The single-threaded DOACROSS and DSWP schedules of this loop are given
in Figures 2(b), (c), and (d), respectively. The y axis represents time and the
x axis represents the threads across which the original loop is parallelized.
The dashed dark box in the DOACROSS and DSWP schedules highlights how
one loop iteration executes in each case. Notice that even though the loop
bodies of the individual DSWP threads are different from the original single-
threaded loop body, both the DSWP and DOACROSS parallelizations provide
identical performance improvement (i.e., 4X) over single-threaded execution.

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 2, Article 8, Publication date: August 2008.

Performance Scalability of Decoupled Software Pipelining • 8:7

Fig. 2. Comparison of space-time behavior of DSWP and DOACROSS parallelization.

Therefore, theoretically speaking, the scalability potential is similar in both
DSWP and DOACROSS; their speedup being bound by the performance of the
slowest SCC or recurrence, respectively. However, their dynamic communica-
tion behavior is vastly different, leading to unique performance scalability is-
sues in these techniques. The difference arises from the nature of interthread
dependences in the two techniques. Since recurrences are communicated across
DOACROSS threads, they are exposed to communication latencies and, hence,
are very sensitive to communication costs. For the same reason, DOACROSS
is also not effective in dealing with variable latency stalls, since there is no op-
portunity to build sufficient decoupling between communicating DOACROSS
threads. Communication of recurrences between threads in DOACROSS re-
sults in lock-step behavior. Consequently, efficient synchronization is critical
to scalable DOACROSS performance. On the other hand, DSWP does not suf-
fer from the lock-step synchronization problem because of acyclic interthread
dependences. However, it has to contend with performance bottlenecks arising
from inefficient interthread operand queueing, as will be shown in Section 4,
in order to achieve optimal scalability.

Unlike DSWP and DOACROSS, the applicability of DOALL paralleliza-
tion [Lundstorm and Barnes 1980] is limited to loops without recurrences. In

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 2, Article 8, Publication date: August 2008.

8:8 • R. Rangan et al.

DOALL parallelized programs, each thread executes one or more loop iterations
independent of other threads. No interthread dependences need to be commu-
nicated in this style of parallelization. Consequently, its performance potential
is limited only by the available processor count and the number of iterations
in a given loop. Thus, given a loop that does not have any recurrences, DOALL
is the most preferred parallelization strategy. If, however, the loop has recur-
rences, then depending on performance or flexibility requirements, one may use
DSWP or DOACROSS parallelization, respectively.

Decoupled access-execute (DAX) architectures [Smith 1982] statically parti-
tion the code into a memory-access stream and an execute stream comprising
ALU operations. Dynamically, the two streams execute in separate processing
cores decoupled by FIFOs. This setup proved useful for tolerating memory la-
tencies in applications with high memory-level parallelism (MLP) (i.e., many
memory loads can be initiated before any of their results are used). However,
the cyclic dependence of the execute stream on the access stream causes the per-
formance of DAX architectures to degenerate to or become worse than the per-
formance of traditional processing cores when handling codes with poor MLP,
such as RDS loops, with rising intercore communication costs. DSWP avoids
this problem by enforcing acyclic communication among its threads. Since DAX
partitions instructions based on their type, it cannot scale to more than two
streams with an optional prefetch stream to improve access stream perfor-
mance [Ro et al. 2006]. DSWP, on the other hand, exposes inherent pipelined
parallelism available in program loops by partitioning based on program re-
currences and can scale to as many threads as there are SCCs in a given
loop.

Techniques like flea-flicker [Barnes et al. 2003, 2005] and dual-core execu-
tion [Zhou 2005] tolerate load miss latencies by holding missed loads and their
dependent instructions in intra- or intercore queues for deferred processing by
a second core. When the load miss is resolved, all instructions are committed
in sequential order by the second core. This deferred handling enables the first
core to continue execution past a load miss. The similarity of these techniques
with DSWP is limited to the use of a decoupling queue between cores. These
techniques are microarchitectural optimizations to improve load miss handling
in single-threaded programs and can complement DSWP.

In addition to the aforementioned techniques, the literature abounds in sev-
eral speculative multithreading techniques aimed at improving single-threaded
performance. While some of these techniques seek to extract more ILP by in-
creasing the effective logical instruction window size, others improve perfor-
mance by using helper threads to warm up microarchitectural structures of the
main program thread. Thread-level speculation [Hammond et al. 2000; Steffan
et al. 2005], multiscalar processors [Sohi et al. 1995], superthreading [Tsai
et al. 1999], and trace processors [Vajapeyam and Mitra 1997] are representa-
tive techniques of the first kind that speculate input dependences of dynam-
ically far-apart regions and spawn them as speculative threads on available
cores. The threads are all committed in program order upon validation of their
speculative inputs. Subordinate microthreading [Chappel et al. 1999] spawns
microcoded threads at strategic points from the main program thread to warm

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 2, Article 8, Publication date: August 2008.

Performance Scalability of Decoupled Software Pipelining • 8:9

up caches and branch predictors. Speculative pre-computation [Collins et al.
2001; Roth and Sohi 2001] and helper-thread prefetching [Wang et al. 2002]
spawn execution-driven speculative threads to warm up cache structures. In-
stead of throwing away all the work of speculative threads, some techniques
optionally register-integrate the computation results of the speculative threads
with the main thread.

A main characteristic of these speculative multithreading techniques is that
they were evolved to operate under the constraints of the traditional single-
threaded execution model. Instruction fetch and commit are still serialized.
In order to overcome the fundamental restrictions imposed by the execution
model, architects have gone to great lengths to build copious amounts of buffer-
ing in the processing core to hold unissued or uncommitted instructions or to
hold speculative architectural state updates of executed-but-uncommitted in-
structions. Scalability of these speculative techniques depends not only on the
inherent parallelism available, but also on the accuracy of speculation as well
as the execution efficiency (performance per watt, performance per transistor,
etc.) of these techniques.

In contrast, DSWP avoids heavy hardware usage by attacking the funda-
mental problem of working within a single-threaded execution model and mov-
ing to a concurrent multithreaded execution model. Since DSWP is an entirely
nonspeculative technique, each DSWP thread performs useful work toward pro-
gram completion. DSWP threads are typically long-running and do not require
frequent thread spawns. Individual, concurrent threads commit register and
memory state independently of other threads. Consequently, the amount of
storage required to communicate true interthread dependences is insignificant
compared to the speculative storage in techniques like TLS and other single-
threaded multicore techniques. These characteristics argue well for DSWP’s
execution efficiency and scalability.

Next, in Section 3, we discuss details of our evaluation methodology. We
present experimental results in Section 4.

3. EVALUATION METHODOLOGY

This section provides details about the benchmark applications, compiler, sim-
ulator, and sampling methodology used in this paper.

3.1 Benchmarks and Tools

All quantitative evaluation presented in this paper uses code produced by the
VELOCITY compiler framework [Triantafyllis et al. 2006]. An autoDSWP im-
plementation in the VELOCITY framework produced DSWPed codes. A diverse
set of applications drawn from several publicly available benchmark suites is
used for evaluation. The benchmarks studied include art, mcf, equake, ammp,
and bzip2 from the SPEC-CPU2000 benchmark suite, epicdec and adpcmdec
from the MediaBench [Lee et al. 1997] suite, mst, treeadd, em3d, perimeter,
and bh from the Olden suite, ks from the Pointer-Intensive benchmark suite,
and the Unix utility wc. A key loop in each of these applications is targeted

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 2, Article 8, Publication date: August 2008.

8:10 • R. Rangan et al.

Table I. Loop Information

Exec.

Benchmark Function Time (%) Benchmark Description

mst BlueRule 100 Minimal spanning tree

treeadd TreeAdd 100 Binary tree addition

perimeter perimeter 100 Quad tree addition

bh walksub 100 Barnes-Hut N-body simulation

em3d traverse nodes 100 3D electromagnetic problem solver

wc cnt 100 Word count utility

ks FindMaxGpAndSwap 99 Kernighan-Lin graph partitioning

adpcmdec adpcm decoder 98 Adaptive differential PCM sound

decoder

equake smvp 68 Earthquake simulation

ammp mm fv update nonbon 57 Molecular mechanics simulation

mcf refresh potential 30 Combinatorial optimization

epicdec read and huffman decode 21 Image decoder using wavelet

transforms and Huffman tree based

compression

art match 20 Neural networks based image

recognition

bzip2 getAndMoveToFrontDecode 17 Burrows-Wheeler compression

for DSWP. A short description of each application and details about the loop
chosen from each benchmark are provided in Table I. All the Olden bench-
marks, except for em3d, which were originally recursive implementations, were
rewritten to be iterative procedures, since the DSWP compiler can handle
only regular loops at this time. The different code versions for all benchmarks
were generated with all the classic optimizations turned on. In all cases, in-
struction scheduling for control blocks was done both before and after register
allocation.

The generated codes were then run on a multicore performance simula-
tor constructed with the liberty simulation environment [Vachharajani et al.
2002, 2004]. The multicore simulator was derived from a validated core model,
which was shown to be within 6% of the performance of native Itanium 2 hard-
ware [Penry et al. 2005]. This framework does not model a hardware or a soft-
ware thread scheduler. Therefore, an N -core configuration can run, at most, N
threads.

Details of the baseline in-order model are given in Table II. The synchro-
nization array [Rangan et al. 2004] was integrated into this model such that
produce instructions stalled at the REG stage of the Itanium 2 pipeline [Intel
Corporation 2002] on queue full conditions and consume instructions stalled in
the EXE stage on queue empty conditions. Each core can initiate, at most, four
produce or consume operations. We model a centralized synchronization array
to which cores connect via a dedicated interconnect. The compiler ensures that
each pair of communicating threads uses a globally unique queue identifier
to send and receive operands. The effective instructions per cycle (IPC) of the
baseline single-threaded code for the above benchmark loops on the baseline in-
order simulator model is given in Figure 3. Note, the effective IPC calculation
excludes no-ops and predicated-off instructions.

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 2, Article 8, Publication date: August 2008.

Performance Scalability of Decoupled Software Pipelining • 8:11

Table II. Baseline Simulator

Core Functional Units - 6-issue, 6 ALU, 4 Memory, 2 FP, 3 Branch

Misprediction pipeline - 7 stages

L1I Cache - 1 cycle, 16 KB, 4-way, 64-B lines

L1D Cache - 1 cycle, 16 KB, 4-way, 64-B lines, Write-through

L2 Cache - 5,7,9 cycles, 256KB, 8-way, 128-B lines, Write-back

Maximum Outstanding Loads - 16

Shared L3 Cache >12 cycles, 1.5 MB, 12-way, 128-B lines, Write-back

Main Memory latency 141 cycles

Coherence Snoop-based, write-invalidate protocol

L3 Bus 16-byte, 1-cycle, 3-stage pipelined, split-transaction bus with round

robin arbitration

Synchronization Array

(SA)

Single centralized 4-ported structure, 1-cycle access, 32-entry

queues

SA interconnect 4 independent 1-cycle, 8-byte buses connect the cores to the 4 SA

ports, Arbiter always favors upstream threads

Fig. 3. Raw performance of single-threaded code on baseline model.

3.2 Performance Measurement

Since the number of instructions executed is not constant across different code
versions (single-threaded, two-thread DSWP, four-thread DSWP, etc.), aggre-
gate statistics like instructions per cycle (IPC) or clocks per instruction (CPI)
will not suffice to capture performance improvements across code changes. In-
stead, execution time has to be used to compare performance over different
configurations (across code and microarchitecture changes). However, pure ex-
ecution time does not yield any insight into the run-time behavior of codes and
analysis becomes difficult. Therefore, we use a cycle accounting methodology to
breakdown overall execution time to aid in performance bottleneck analysis.

3.3 Sampling Methodology

Application of DSWP to a program loop leaves the pre- and postloop code almost2

untouched. As a result, their performance is the same across all single- and
multithreaded executions for a given hardware configuration (modulo minor

2There are minor changes to propagate loop live-ins and outs from and to the primary thread,

respectively.

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 2, Article 8, Publication date: August 2008.

8:12 • R. Rangan et al.

differences because of cache state differences). Therefore, detailed simulation
and performance measurement is done only for DSWPed loops across various
threading versions. However, the highly detailed modeling of core, as well as
memory architectures, and the large input set sizes of benchmarks preclude the
possibility of simulating all iterations of each and every invocation of a given
loop in a reasonable time.

In order to drive down simulation time, we collect TurboSMARTS-
style [Wenisch et al. 2004] checkpoints of architectural and microarchitectural
state at the beginning of randomly chosen loop invocations. Loop iteration gran-
ular SMARTS [Wunderlich et al. 2003] sampling is initiated from these check-
points. We simulate 10,000 loop iterations for all benchmarks, except 188.ammp
and ks, whose outer loops are parallelized resulting in smaller sample sets.
The 10,000 figure is not large enough to estimate the performance of an indi-
vidual code-model configuration (for example, single-thread execution on base-
line machine model) to a desired confidence level with a narrow enough confi-
dence interval. However, performance comparison metrics (e.g., speedup of one
technique relative to another) for a given application across code/architecture
changes tend to demonstrate strong correlation during various phases of pro-
gram execution and have been shown to require far fewer samples to yield
tight confidence intervals [Luo and John 2004]. The performance comparisons
in this paper are given at a 95% confidence level and the accompanying error
bars are shown in all speedup graphs. The accompanying error bars confirm
that the sample set size chosen is sufficient to yield narrow enough confidence
intervals.

The next section presents DSWP performance scalability results.

4. PERFORMANCE SCALABILITY OF DSWP

Experimental results from simulating two-, four-, six-, and eight-thread DSWP
codes are presented in this section and their performance analyzed in detail. For
each benchmark, the compiler created the requested number of threads, N , only
if it could heuristically determine that it was profitable to partition the loop’s
SCCs among N threads, taking into account the relative balance of computation
and communication costs. These experiments used N -way multicore simulator
models with in-order Itanium 2-like cores, where N equaled the number of
application threads.

Figure 4 shows the speedup provided by automatically generated DSWP
threads relative to single-threaded in-order execution, when moving from two
threads to four, six, and eight threads. This performance graph will be referred
to as DSWPQ32

. Note that the graph shows two geometric means: a plain ge-
ometric mean (denoted “GeoMean” in the graph) and a best geometric mean
(denoted “Best-GeoMean” in the graph). When calculating the plain geomet-
ric mean for N -thread code versions, if a certain benchmark did not have an
N -thread code version (for example, equake does not have 6- and 8-thread ver-
sions), then for that benchmark, the speedup of the version with the next high-
est number of threads is used. For example, when calculating the plain geo-
metric mean across all eight-thread versions, the speedup of equake from the

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 2, Article 8, Publication date: August 2008.

Performance Scalability of Decoupled Software Pipelining • 8:13

Fig. 4. DSWPQ32
: DSWP performance when moving from two to four, six, and eight threads with

32-entry interthread queues and a bus interconnect. Note, a missing bar for a particular number

of threads for a benchmark means the compiler was not able to partition the chosen loop for that

benchmark into that many number of threads.

four-thread version is used, since it does not have a code version with more
than four threads. On the other hand, the best geometric mean for an N -thread
version represents the mean of the best speedups across all benchmarks for all
code versions with number of threads fewer than or equal to N . It represents
the speedup that can be achieved with code generated by an intelligent com-
piler that will generate the best multithreaded version for each benchmark for
a given number of cores, even if it means generating fewer threads than avail-
able cores. The analysis presented here primarily uses the plain geometric mean
to compare DSWP’s performance in the presence and absence of bottlenecks.
The best geometric mean is also provided to highlight the maximum speedup
achievable through careful selection of multithreaded code versions.

To understand the performance of DSWPQ32
, recall that the autoDSWP tech-

nique partitions the DAGSCC such that there are no backward dependences
among partitions. Since the performance of pipelined multithreading is limited
by the performance of the slowest running thread, optimal DSWP performance
can be achieved by placing the “heaviest” SCC in a partition of its own and
by making sure that no other partition is heavier than the partition with the
heaviest SCC. This can be done by either load-balancing the remaining parti-
tions in such a way so as to not exceed the weight of the heaviest SCC or, if that
is not possible, then, each SCC can be placed in its own thread. The heaviest
thread is called the bottleneck thread. Ofttimes, application loops contain a few
large SCCs and many small, mostly single-instruction, SCCs. Once the heavi-
est SCC has been placed in a thread of its own and no other partition is heavier
(including ones with more than one SCC), the heaviest SCC thread becomes the
bottleneck thread and it is no longer possible to obtain any more performance
improvement by partitioning the remaining SCCs among more threads. This
trend is clearly seen in Figure 4, which shows that even for benchmarks that
yield more than two threads, no performance improvement is seen beyond six
threads.

On the contrary, a performance slowdown is seen for some application
loops when moving to more threads, which is somewhat counterintuitive. The

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 2, Article 8, Publication date: August 2008.

8:14 • R. Rangan et al.

Fig. 5. Normalized execution time breakdown of wc and ammp when moving to more threads with

32-entry queues and bus interconnect.

theoretical performance improvement expected when moving to more threads
no longer holds. Since autoDSWP virtually does no code duplication, the above
slowdown, when moving to more threads, cannot be because of differences in the
amount of computation. While the total computation remains constant across
the four different multithreaded partitionings, the amount of communication
varies. Figure 5 provides the normalized execution time breakdown of each
thread for the different multithreaded partitionings for two representative
benchmarks, wc and ammp. The figure shows how the execution time of each
benchmark for each thread configuration is spent in different stages of the pro-
cessor pipeline. We use our detailed cycle accounting methodology to break down
the total time spent into six aggregate stall groups: PreEXP (comprises stalls
in the instruction fetch stages of the pipeline), EXP (stalls in the decode stage),
REN (stalls in the register renaming stage), REG (stalls in the scoreboarding
and register access stage and synchronization array renamer), EXE (stalls in
the execution stage, which accounts for all execution time, including memory
access and synchronization array access), and PostEXE (cycles spent by the
leading critical instruction in the exception-detection and write-back stages of
the Itanium 2 pipeline). The x axis of each graph in Figure 5 represents the var-
ious code partitionings: bench-1T, bench-2T, bench-4T, bench-6T and bench-8T,
of each benchmark bench. Within a cluster, for example, bench-6T, the normal-
ized execution time breakdown of each thread of that configuration is shown.
Within a cluster, the bars corresponding to “upstream” threads appear to the
left and the bars corresponding to “downstream” threads appear to the right.

The breakdowns show that when moving to more threads, the EXE com-
ponent increases dramatically compared to the one or two thread configura-
tions. A fine-grained breakdown of the stalls on a per instruction basis revealed
that consume instructions were the main reason that led to the increased EXE

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 2, Article 8, Publication date: August 2008.

Performance Scalability of Decoupled Software Pipelining • 8:15

component. For example, in the graph for wc, note that while the first thread has
a large REG component, because of frequent stalls by produce instructions on
queue full conditions, the second and third threads have large EXE components,
as a result of frequent stalls by consume instructions on queue empty conditions.
Given the classical notion of pipelined execution, this is very counterintuitive.
To explain this performance anomaly when moving to more threads, it is im-
portant to understand the actual communication pattern among threads and
their runtime behavior.

4.1 Linear and Nonlinear Thread Pipelines

Given a linear chain of producer-consumer threads (i.e., thread 2 consuming
from thread 1, thread 3 consuming from thread 2, and so on), the communica-
tion rate in the chain will be determined by the slowest thread and all threads
will produce and consume at the exact same rate as the slowest thread. Such
thread pipelines will be called linear pipelines. As mentioned before, the max-
imum performance attainable by such thread pipelines is S/DH , where S is
the single-threaded execution time, Di is the execution time of thread i of the
pipeline, and H is the slowest thread in the pipeline. This expression does not
say anything about the communication requirements of such pipelines. In par-
ticular, if a linear pipeline had insufficient queue buffering, then the factor DH
will increase to include the time the slowest thread spends waiting for data
arrival, thereby adding intercore communication delays to the overall thread
execution time. However, such a situation can be avoided if interthread queues
are sized appropriately. In particular, if the time taken to communicate a data
item or a synchronization token from one thread to another is C cycles, it takes
a total of 2 × C cycles for a producer thread to communicate a value to a con-
sumer thread and for the consumer to communicate its acknowledgment to the
producer. This round-trip communication will be called a synchronization cycle.
Since all threads in the pipeline need only communicate at the same rate as
the slowest thread H, i.e., once every DH cycles, all interthread queues need
only be as big as the queues leading into and out of thread H. If the synchro-
nization cycle delay, 2 × C, is less than DH , then DH is the limiting factor and
only one entry is needed in all interthread queues (no buffering is needed if
communication happens instantaneously, i.e., C equals 0). On the other hand,
if the round-trip time is greater than DH , then the number of loop iterations
the slowest thread can execute in that time is (2 × C)/DH . Consequently, there
needs to be at least these many queue slots to keep the slowest thread con-
tinuously busy. Thus, the minimum3 queue size necessary to prevent intercore
communication delays from being added to thread execution times is given by
�(2 × C)/DH�.4

As long as the intercore communication latency is less than or equal to the
computation time, queue sizes of 1 or 2 will suffice to provide peak throughput.

3This is the minimum queue size without accounting for variability in data production and con-

sumption rates.
4This can be easily augmented to account for different communication costs between different pairs

of threads.

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 2, Article 8, Publication date: August 2008.

8:16 • R. Rangan et al.

Fig. 6. Thread dependence graphs for loop from wc.

Increase in computation time will only reduce the demand for more queue en-
tries. This is a very desirable property of linear pipelines as it helps place rea-
sonable bounds on interthread queue sizes, enabling optimal communication
support design.

However, in practice, general-purpose applications often do not yield linear
pipelines. As SCCs are partitioned among more threads, more interthread de-
pendences are created among threads, since previously local (inter-SCC, but
intrathread) dependences may now need to be communicated between threads.
The communication pattern among constituent threads is quite varied and the
partitioner ends up creating dependences between almost every pair of up- and
downstream threads. Such thread pipelines will be referred to as nonlinear
pipelines. Consider the example of wc shown in Figure 6. The figure shows the

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 2, Article 8, Publication date: August 2008.

Performance Scalability of Decoupled Software Pipelining • 8:17

thread dependence graphs of different partitionings of the wc loop. It also shows
the number of operations (compiler intermediate representation operations,
not machine operations) in each thread and the label on each edge indicates
the number of queues running between a pair of threads. Except for the two-
threads case (Figure 6a), the dependence graphs for the other cases (four-, six-
and eight-thread cases in Figure 6(b), (c), and (d), respectively) do not turn out
to be linear pipelines. Such nonlinear thread pipelines, while still providing
PMT parallelism, experience certain communication bottlenecks that lead to
below par performance.

To understand the communication bottlenecks in such pipelines, consider the
thread dependence graphs and the execution schedules of a four-thread linear
pipeline, ABCD, and a four-thread nonlinear pipeline, A′B′C′D′, in Figures 7(a)
and (b), respectively.

The dashed arcs in the backward direction in the thread dependence graphs
represent synchronization dependences from consumer threads back to their
producers. These arcs indicate to the producer when it is permissible to write
to a particular queue location. When a consumer thread is slower than the cor-
responding producer thread, the latter has to block after filling up the queue,
until the consumer thread frees up a queue slot, to produce the next data item.
These arcs become relevant when interthread queue buffering is not sufficient
to tolerate intercore communication delays and the difference in data produc-
tion and consumption rates.

For illustration purposes, suppose one iteration of the original single-
threaded loop takes 120 cycles and the individual threads each take 40 cycles, in
both ABCD, as well as A′B′C′D′, for executing one iteration of the loop in ques-
tion. Let the interthread communication latency be ten cycles. Even though,
in practice, the compiler is free to schedule the communication instructions
anywhere in a thread, for this example, assume that all produce instructions
are executed at the end of thread’s loop iteration and all consume instructions,
at the beginning. Finally, for simplicity, all produce instructions in a thread
will be blocked if any one produce blocks. A similar all-or-none behavior will
be assumed for consume instructions as well. In the execution schedules shown
in the above figure, a solid interthread arrow means a data value communica-
tion from the producer thread to its consumer. A dashed interthread arrow in
the reverse direction denotes an acknowledgment signal from a consumer to a
producer, indicating a queue entry is free to be reused. Dotted straight lines in
a thread’s schedule indicate periods of no activity in the thread, because it is
blocked on a produce or a consume operation.

As the execution schedule in Figure 7(a) shows, the linear pipeline ABCD is
able to finish a loop iteration once every 40 cycles. Notice that because the per-
iteration time is 40 cycles and the synchronization cycle delay (round-trip time)
is only 20 cycles, the acknowledgment for a queue entry arrives well before a pro-
ducer thread is ready to produce the next data item. Therefore, a producer will
never block on a queue full condition and the performance of the linear pipeline
attains the theoretical maximum speedup of S(120cycles)/DH (40cycles) i.e., 3X.
The important point to note here is that the linearity of the pipeline enables it
to achieve this speedup with just 1 entry per interthread queue.

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 2, Article 8, Publication date: August 2008.

8:18 • R. Rangan et al.

Fig. 7. Linear and nonlinear thread pipeline execution with intercore delay of 10 and per-thread

iteration computation time of 40 cycles.

Now, consider the nonlinear pipeline A′B′C′D′’s execution schedule in
Figure 7 (b). This schedule has been drawn assuming one-entry interthread
queues to contrast its performance with the linear pipeline from above. Notice
that A′B′C′D′ is able to complete only 1 loop iteration every 120 cycles (the first
iteration of thread D′ completes in cycle 190 and the second iteration in cycle
310) resulting in no speedup at all over single-threaded execution. The reason
for this abysmal performance is because of inadequate queue sizing that leads
to prolonged stalls, as can be seen by the long dotted lines in all threads in
Figure 7(b). So, why do single-entry queues, which were adequate to deliver
peak throughput in the linear pipeline above, create performance bottlenecks
here?

To answer the question, observe that in Figure 7(b), thread A′ sends values
to both threads B′ and D′. Consequently, in any given iteration, before produc-
ing a data item, thread A′ has to ensure that it can produce into the queues

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 2, Article 8, Publication date: August 2008.

Performance Scalability of Decoupled Software Pipelining • 8:19

leading into both thread B′ and thread D′ before initiating both data sends (per
assumptions stated above). In other words, whenever it is blocked on queue full
condition, thread A′ has to wait for acknowledgments from both threads. This
requirement leads to communication bottlenecks, thereby slowing down mul-
tithreaded performance. In the execution schedule, notice that even though
thread A′ is ready to produce data after its second iteration as early as cycle 80,
it has, by that point in time, received acknowledgment only from thread B′. It
has to wait a further 80 cycles before it receives acknowledgment from thread
D′, at which point, it proceeds to produce the data to both threads B′ and D′.
Since thread A′ is at the head of the pipeline, the rest of the pipeline also stalls,
waiting for data from upstream threads. The fundamental problem here is that
queue sizes for executing such nonlinear pipelines cannot be determined solely
from the interthread communication delay and the per-iteration computation
time of the slowest thread.

For nonlinear pipelines, the synchronization cycle expands to include the
computation time of all intermediate threads, as well as the one-way com-
munication delays between the intermediate threads. For example, for thread
A′ above, the synchronization cycle comprises the communication delay from
thread A′ to B′, the computation time in thread B′, the communication delay
from thread B′ to C′, the computation time of thread C′, the communication
delay from thread C′ to D′, and, finally, the delay for the acknowledgment to go
from thread D′ to A′. More generically, the round-trip delay of the new longer
synchronization cycle can be expressed as 2×C+∑Ns

i=1(Di +C), where Ns is the
number of threads in the synchronization cycle s. By a similar reasoning as from
before, the queues should be large enough to tolerate this round-trip delay, but
only to the point of sustaining the maximum throughput. Thus, for nonlinear
pipelines, the minimum queue size needed to provide peak PMT performance is⌈

2 × C + maxs,∀s∈S
(∑Ns

i=1(Di + C)
)

DH

⌉

where S is the set of all synchronization cycles in a given thread dependence
graph. The second term in the numerator causes nonlinear pipelines to require
longer queues to deliver peak throughput. This term also makes nonlinear
pipelines unwieldy for communication support design, since it is impossible to
place an upper bound on the size of the interthread queues. Synchronization
cycles can be made arbitrarily long because of the computation costs of interme-
diate threads, making it very difficult to design bottleneck-free communication
support. This explains the anomaly in Figure 5, wherein threads experienced
increased EXE stalls, as a result of the creation of nonlinear thread pipelines,
when moving to more threads.

4.2 Relaxing Queue-Size Constraints

The 32-entry queue sizing was insufficient to tolerate longer synchronization
cycles created by nonlinear thread pipelines. This phenomenon is particularly
acute when moving to eight threads. To remedy the situation and evaluate the
performance scalability potential of DSWP when moving to more threads, a

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 2, Article 8, Publication date: August 2008.

8:20 • R. Rangan et al.

Fig. 8. DSWPQ∞ : Performance of DSWP with two, four, six, and eight threads with infinitely long

queues and a bus interconnect relative to single-threaded in-order execution.

Fig. 9. Normalized execution time breakdown of wc and ammp when moving to more threads with

infinitely long queues and bus interconnect.

second set of simulations (labeled DSWPQ∞) were run, once again on different
multicore configurations, with enough cores to match the number of applica-
tion threads. The only difference was that the queue sizes were set to infinity.5

Figure 8 presents the speedup obtained from the different multithreaded con-
figurations relative to single-threaded in-order execution. Figure 9 shows the
execution time breakdown of each thread in the different multithreaded code
versions with infinite queue sizes normalized to single-threaded in-order exe-
cution for benchmarks wc and ammp. Notice that the EXE component of down-
stream threads has reduced significantly in Figure 9 compared to the break-
down presented in Figure 5.

5A size of 10000 was sufficient to ensure that no queue full/empty stalls occurred.

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 2, Article 8, Publication date: August 2008.

Performance Scalability of Decoupled Software Pipelining • 8:21

Fig. 10. DSWPQ∞+BW∞ : Performance of DSWP with two, four, six, and eight threads with in-

finitely long queues and an infinite communication bandwidth relative to single-threaded in-order

execution.

Several observations are in order. As expected, easing the queue-size lim-
itation does alleviate the communication bottleneck imposed by nonlinear
pipelines and improves DSWP performance for most benchmarks when moving
to more threads. The geometric mean speedups of DSWPQ∞ with two, four, six,
and eight threads are 1.25X, 1.36X, 1.41X, and 1.39X, respectively, whereas
the geometric mean speedups of DSWPQ32

with two, four, six, and eight threads
from Figure 4 were 1.20X, 1.29X, 1.31X, and 1.29X, respectively.

Despite the overall improvement, there are several notable exceptions.
Benchmarks wc, mcf, ammp, perimeter, and ks continue to see a performance
degradation when moving to more threads. A closer look at the execution re-
vealed that the arbitration policy of the bus interconnect carrying synchroniza-
tion array traffic, always favored earlier threads. This caused threads later in
the pipeline to suffer arbitration stalls in six- and eight-thread scenarios. The
removal of the bottleneck because of pipeline nonlinearity with infinitely long
queues resulted in producer threads earlier in the pipeline being greatly sped
up, causing instructions from threads later in the pipeline to suffer intercon-
nect contention stalls. In particular, when these stalls hit consume instructions,
which were at the head of dependence chains, of downstream threads, perfor-
mance slowdown was inevitable.

4.3 Relaxing Queue-Size and Bandwidth Constraints

In order to alleviate the finite bandwidth limitations to the synchronization
array, the bus interconnect was replaced with a crossbar interconnect and the
synchronization array was allowed to have as many ports as required to cater to
requests from all cores every cycle. This configuration with infinite queue sizes
and infinite communication bandwidth is labeled as DSWPQ∞+BW ∞ . This ideal-
ization made the eight-thread versions of benchmarks wc, mcf and ks perform no
worse than the six-thread versions. From Figure 10, which presents the overall
speedup obtained by DSWPQ∞+BW ∞ relative to single-threaded in-order exe-
cution, the geometric mean speedups of DSWPQ∞+BW ∞ across two-, four-, six-,
and eight-thread versions can be seen to be 1.25X, 1.37X, 1.42X, and 1.43X,
respectively. The infinite interthread communication bandwidth remedies the

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 2, Article 8, Publication date: August 2008.

8:22 • R. Rangan et al.

Fig. 11. Relative performance of DSWP with two, four, six, and eight threads under different

communication scenarios.

performance degradation for wc seen in Figure 9 and causes wc to fall in line
with theoretical expectations. Similar improvements can also be seen for bench-
marks mcf, mst, and ks.

Figure 11 presents the relative speedup graphs for all three communication
scenarios—DSWPQ32

, DSWPQ∞ , and DSWPQ∞+BW ∞ . It highlights the incremen-
tal improvement obtained by easing just the queue size bottleneck relative to
DSWPQ32

(Figure 11b) and by easing both the queue size, as well as the inter-
connect contention bottlenecks (Figure 11a) relative to DSWPQ∞ .

Notice that ammp and perimeter continue to experience performance degra-
dation even after elimination of interconnect contention stalls. Detailed analy-
sis revealed that in perimeter, the best balance is achieved with two threads,
with thread 1 being the bottleneck thread. Since thread 1 contained only 1
SCC, further parallelization is made possible by only by spreading thin the re-
maining SCCs among more threads. However, this leads to loss of locality in
data accesses leading to increased coherence activity, thereby increasing the
number of coherence-induced misses in the L2 caches. False sharing occurs due

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 2, Article 8, Publication date: August 2008.

Performance Scalability of Decoupled Software Pipelining • 8:23

to different threads accessing different fields of the same structure. A similar
problem is observed in ammp as well when moving from six to eight threads.
The best balance is obtained with six threads. Moving to eight threads only re-
sults in the creation of more coherence traffic leading to performance slowdown.
Performance loss resulting from false sharing can be avoided by using clever,
DSWP-aware data layout schemes. We leave such optimizations for future
work.

Finally, note that the best geometric mean speedup, which represents the
maximum speedup possible with N cores (with number of threads fewer
than or equal to N), for two, four, six, and eight threads improves from
1.20X, 1.30X, 1.32X, and 1.33X in the DSWPQ32

configuration to 1.25X, 1.37X,
1.43X, and 1.43X, respectively, in the DSWPQ∞+BW ∞ scenario. The overall
improvement from elimination of communication bottlenecks clearly demon-
strates that it is not enough for the compiler to be intelligent enough to pick
the best multithreaded code version, but that it must also strive to elim-
inate nonlinear pipelines during partitioning, in order to achieve optimal
performance.

5. CONCLUSIONS AND FUTURE WORK

This paper analyzed the performance scalability of automatically generated
DSWP codes. It demonstrated that superpartitioning of application loops leads
to complex inter-thread communication DAGs and that such DAGs interact
pathologically with the underlying communication substrate, adversely affect-
ing performance. Analytical expressions derived in this paper can be incor-
porated into an autoDSWP compiler’s partitioning heuristic to statically de-
termine whether a given DSWP partition would lead to these communication
pathologies and repartition the code, if needed. Without any communication
bottlenecks, DSWP delivers a geometric mean speedup of 1.25X to 1.43X when
going from two to eight threads across a variety of benchmarks.

While the speedup achieved by DSWP in innermost and second innermost
loops were presented in this paper, initial results from work in progress indicate
that there is good potential for pipelined parallelism at outer loop nest levels.
Future work will focus on evaluating DSWP’s scalability at coarser granular-
ities and improving our autoDSWP compiler’s partitioning heuristic based on
results from this paper.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their valuable feedback. Their critical
comments helped improve the focus and the quality of the presentation. Special
thanks to Matthew Bridges for help with the Velocity compiler infrastructure.

REFERENCES

BARNES, R. D., NYSTROM, E. M., SIAS, J. W., PATEL, S. J., NAVARRO, N., AND HWU, W. W. 2003. Beating

in-order stalls with “Flea-Flicker” two-pass pipelining. In Proceedings of the 36th International
Symposium on Microarchitecture.

BARNES, R. D., RYOO, S., AND HWU, W. W. 2005. “Flea-Flicker” multipass pipelining: An alternative

to the high-powered out-of-order offense. In Proceedings of the 38th International Symposium on
Microarchitecture. 319–330.

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 2, Article 8, Publication date: August 2008.

8:24 • R. Rangan et al.

CHAPPEL, R. S., STARK, J., KIM, S. P., .REINHARDT, S. K., AND PATT, Y. N. 1999. Simultaneous subor-

dinate microthreading. In Proceedings of the 26th International Symposium on Computer Archi-
tecture. 186–195.

COLLINS, J. D., WANG, H., TULLSEN, D. M., HUGHES, C., LEE, Y.-F., LAVERY, D., AND SHEN, J. P. 2001.

Speculative precomputation: Long-range prefetching of delinquent loads. In Proceedings of the
28th International Symposium on Computer Architecture.

CYTRON, R. 1986. DOACROSS: Beyond vectorization for multiprocessors. In Proceedings of the
International Conference on Parallel Processing. 836–884.

DAI, J., HUANG, B., LI, L., AND HARRISON, L. 2005. Automatically partitioning packet processing

applications for pipelined architectures. In Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation. 237–248.

GORDON, M. I., THIES, W., KARCZMAREK, M., LIN, J., MELI, A. S., LAMB, A. A., LEGER, C., WONG, J., HOFF-

MANN, H., MAZE, D., AND AMARASINGHE, S. 2002. A stream compiler for communication-exposed

architectures. In Proceedings of the 10th International Conference on Architectural Support for
Programming Languages and Operating Systems. 291–303.

HAMMOND, L., HUBBERT, B. A., SIU, M., PRABHU, M. K., CHEN, M., AND OLUKOTUN, K. 2000. The

Stanford Hydra CMP. IEEE Micro 20, 2, 71–84.

INTEL CORPORATION. 2002. Intel Itanium 2 Processor Reference Manual: For Software Development
and Optimization. Santa Clara, CA.

LEE, C., POTKONJAK, M., AND MANGIONE-SMITH, W. 1997. Mediabench: A tool for evaluating and

synthesizing multimedia and communications systems. In Proceedings of the 30th Annual Inter-
national Symposium on Microarchitecture. 330–335.

LUNDSTORM, S. F. AND BARNES, G. H. 1980. A controllable MIMD architecture. In Proceedings of
the International Conference on Parallel Processing. 19–27.

LUO, Y. AND JOHN, L. K. 2004. Efficiently evaluating speedup using sampled processor simulation.

Comput. Architect. Lett.
OTTONI, G., RANGAN, R., STOLER, A., AND AUGUST, D. I. 2005. Automatic thread extraction with

decoupled software pipelining. In Proceedings of the 38th IEEE/ACM International Symposium
on Microarchitecture.

PADUA, D. A. 1979. Multiprocessors: Discussion of some theoretical and practical problems.

Tech. Rep. UIUCDCS-R-79-990 (Nov.). Department of Computer Science, University of Illinois,

Urbana, IL.

PENRY, D. A., VACHHARAJANI, M., AND AUGUST, D. I. 2005. Rapid development of a flexible vali-

dated processor model. In Proceedings of the 2005 Workshop on Modeling, Benchmarking, and
Simulation.

RANGAN, R., VACHHARAJANI, N., VACHHARAJANI, M., AND AUGUST, D. I. 2004. Decoupled software

pipelining with the synchronization array. In Proceedings of the 13th International Conference
on Parallel Architectures and Compilation Techniques. 177–188.

RANGAN, R., VACHHARAJANI, N., STOLER, A., OTTONI, G., AUGUST, D. I., AND CAI, G. Z. N. 2006. Support

for high-frequency streaming in CMPs. In Proceedings of the 39th International Symposium on
Microarchitecture. 259–269.

RO, W. W., CRAGO, S. P., DESPAIN, A. M., AND GAUDIOT, J.-L. 2006. Design and evaluation of a

hierarchical decoupled architecture. J. Supercomput. 38, 3 (Dec.), 237–259.

ROTH, A. AND SOHI, G. S. 2001. Speculative data-driven multithreading. In Proceedings of the 7th
International Symposium on High Performance Computer Achitecture.

SMITH, J. E. 1982. Decoupled access/execute computer architectures. In Proceedings of the 9th
International Symposium on Computer Architecture. 112–119.

SOHI, G. S., BREACH, S., AND VIJAYKUMAR, T. N. 1995. Multiscalar processors. In Proceedings of the
22th International Symposium on Computer Architecture.

STEFFAN, J. G., COLOHAN, C., ZHAI, A., AND MOWRY, T. C. 2005. The stampede approach to thread-

level speculation. ACM Trans. Comput. Syst. 23, 3, 253–300.

THIES, W., KARCZMAREK, M., AND AMARASINGHE, S. 2002. StreamIt: A language for streaming appli-

cations. In Proceedings of the 12th International Conference on Compiler Construction.

TRIANTAFYLLIS, S., BRIDGES, M. J., RAMAN, E., OTTONI, G., AND AUGUST, D. I. 2006. A framework for

unrestricted whole-program optimization. In ACM SIGPLAN 2006 Conference on Programming
Language Design and Implementation. 61–71.

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 2, Article 8, Publication date: August 2008.

Performance Scalability of Decoupled Software Pipelining • 8:25

TSAI, J.-Y., HUANG, J., AMLO, C., LILJA, D. J., AND YEW, P.-C. 1999. The superthreaded processor

architecture. IEEE Trans. Comput. 48, 9, 881–902.

VACHHARAJANI, M., VACHHARAJANI, N., PENRY, D. A., BLOME, J. A., AND AUGUST, D. I. 2002. Microar-

chitectural exploration with Liberty. In Proceedings of the 35th International Symposium on
Microarchitecture. 271–282.

VACHHARAJANI, M., VACHHARAJANI, N., AND AUGUST, D. I. 2004. The Liberty Structural Specification

Language: A high-level modeling language for component reuse. In Proceedings of the ACM
SIGPLAN 2004 Conference on Programming Language Design and Implementation (PLDI). 195–

206.

VAJAPEYAM, S. AND MITRA, T. 1997. Improving superscalar instruction dispatch and issue by ex-

ploiting dynamic code sequences. In Proceedings of the 24th Annual International Symposium
on Computer Architecture. ACM Press, New York. 1–12.

WANG, P. H., WANG, H., COLLINS, J. D., GROCHOWSKI, E., KLING, R. M., AND SHEN, J. P. 2002. Memory

latency-tolerance approaches for Itanium processors: Out-of-order execution vs speculative pre-

computation. In Proceedings of the 8th International Symposium on High-Performance Computer
Architecture. 187–196.

WENISCH, T. F., WUNDERLICH, R. E., FALSAFI, B., AND HOE, J. C. 2004. TurboSMARTS: Accurate

microarchitecture simulation sampling in minutes. Tech. Rep. 2004-003 (Nov.). Computer Archi-

tecture Lab at Carnegie Mellon.

WUNDERLICH, R. E., WENISCH, T. F., FALSAFI, B., AND HOE, J. C. 2003. SMARTS: Accelerating mi-

croarchitecture simulation via rigorous statistical sampling. In Proceedings of the 30th Annual
International Symposium on Computer Architecture (ISCA). 84–97.

ZHOU, H. 2005. Dual-core execution: Building a highly scalable single-thread instruction window.

In Proceedings of the 14th International Conference on Parallel Architectures and Compilation
Techniques.

Received March 2007; revised August 2007; accepted January 2008

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 2, Article 8, Publication date: August 2008.

