
Transpilation Utilizing

Language-agnostic IR and Interactivity

for Parallelization

Zujun Tan

A Dissertation

Presented to the Faculty

of Princeton University

in Candidacy for the Degree

of Doctor of Philosophy

Recommended for Acceptance

by the Department of

Computer Science

Adviser: David I. August

September 2024

© Copyright by Zujun Tan, 2024.

All Rights Reserved

Abstract

Migrating codes between architectures is difficult because different execution models

require different types of parallelism for optimal performance. Previous approaches,

like libraries or source-level tools, generate correct and natural-looking syntax for the

new parallel model with limited optimization and largely leave performance engineer-

ing to the programmer. Recent approaches, such as transpilation at the compiler

intermediate representation (IR) level, can automate performance engineering, but

profitability can be limited by not having facts known only to the programmer. De-

compiling the optimized program could leverage the strength of existing compilers

to provide programmers with a natural compiler-parallelized starting point for fur-

ther parallelization or refinement. Despite this potential, existing decompilers fail to

do this because they do not generate portable parallel source code compatible with

arbitrary compilers of the source language.

This thesis provides a method for migrating code such that the compiler and pro-

grammer work together to generate code with optimal performance. To achieve this,

it introduces Tulip , a source-to-source code generation framework that operates

via IR-level transpilation. Transpilation at the IR level enables Tulip to generalize

the transformations applied to retarget parallelism. Furthermore, Tulip integrates the

state-of-the-art automatic parallelization framework to explore additional parallelism

expressible only in the target parallel programming model. It then generates natural

source code through a novel decompiler, SPLENDID, in a high-level parallel pro-

gramming language (OpenMP), which can be interactively optimized and tuned with

programmer intervention. For 19 Polybench benchmarks, Tulip-generated OpenMP

offloading programs perform 14% faster than the original CUDA sources on NVIDIA

GPUs. Moreover, transpilation to the CPU leads to a 2.9x speedup over the best

state-of-the-art transpiler. Tulip-generated portable parallel code is also more natu-

ral than what existing decompilers produce, resulting in a 39x higher average BLEU

iii

score.

This thesis includes contributions from Yebin Chon, Ziyang Xu, Sophia Zhang,

and David I. August from Princeton Liberty Research Group, Brian Homerding, Yian

Su, and Simone Campanoni from Northwestern Arcana Lab, Michael Kruse (AMD),

Johannes Doerfert (LLNL), William S. Moses (UIUC), and Ivan R. Ivanov (Tokyo

Tech).

iv

Acknowledgements

First, I would like to thank my advisor Prof. David I. August for his support and

guidance over the years. I am grateful for his faith in me more than what I have in my-

self and his constant encouragement during challenging times. Especially at the end

of the second year of graduate school, high pressure and the feeling of incompetance

made me want to quit the program. It was David’s encouragement and help with

exploring alternatives in research directions that helped me go through the difficult

time. I am grateful for his high standard in paper submission, which trained me to

strive for excellence. I am also grateful for the grace simultaneously he displays, when

I cannot meet the standard, he will also accept the imperfections and being a strong

advocate for my papers. I also appreciate his advice on writing and presentation by

showing me how to frame my research clearly and convincingly. Finally, the culture

of collaboration and solidarity he has cultivated in the Liberty Research Group and

with Northwestern Arcana Lab and Argonne National Lab made my research much

more enjoyable and rewarding. I thank the rest of my dissertation committee: Prof.

Aarti Gupta, Prof. Zachary Kincaid, and Prof. Amit Levy. I want to additionally

thank Michael and Johannes for taking the time to serve as readers on my committee.

Their feedback helped improve the quality of this dissertation as well as my research

overall.

I thank each member of the Liberty Research Group for all their support and

friendship throughout the years. I especially thank Sotiris Apostolaskis, my mentor,

friend, and model. He has never been absent from helping and mentoring me, even

after his graduation. I thank Greg and Ziyang who went beyond their way to help

me in difficult times. I thank Barghav, Ishita, Yebin, Yucan, and Sophia, who have

been amazing lab mates and friends.

I would like to thank all my external collaborators, most of whom had no duty but

graciously offered help beyond what I could have asked for. I thank all members of

v

Arcana Lab from Northwestern University, especially Prof. Simone Campanoni, Brian

Homerding, Yian Su, and Federico Sossai. I thank all colleagues I met from Argonne

National Lab, Johannes Doerfert, William Moses, and Ivan Ivanov. Lastly, I would

like to thank my Microsoft internship mentor and supervisor, Dimitrios Prountzos

and Aaron Smith. Though the internship did not directly contribute to this thesis,

the experience working at Microsoft with them made a hugely positive turn in my

PhD journey, as I grew a lot personally and professionally under their supervision.

Without your help, this dissertation would not have been possible.

I want to thank all Hope Presbyterian Church members, especially Pastor David

Rowe, Pastor Stephen O’Neil, Chris Mills, Felix Yiu, Jess Sauer, Yui Morishima,

Emily Lobb, Lucas Ophoff, the Keddies, the Seungs, the Kims, Handa Chun, Chip

Lem, Nina Rathbun, Jen and Quinn Peacock, Brian Kook, and Stella Choi. Thank

you for your faith and encouragement, for our many theological discussions which

greatly deepened my Reformed faith. I want to thank Elizabeth Christianos, Mi-

nako Wilkinson, Carrie Louer, Louise Jennewine, Madhu Gammon, Jessica Zakhari,

Hitomi Kim, Jiwon Seung, Beth Hastings, and all the church ladies whose unwaver-

ing love and support have sustained me throughout the PhD journey. I also want to

thank all my friends from the larger Princeton Christian circle, especially Laura Lam,

Bob Louer, Allison Huang, Joseph So, Pastor Ken Smith, Pastor Tracy Troxel, Pas-

tor Andrew Zakhari, Pastor Lane Tipton, Joao Castanha, Fady Girgis, Jessica Jin,

Yutaka Morishima, Naomi Vaida, the Ramslands, Evelyn Dziedzic, Jasmine Hao, Abi-

gail Sargent, James Loy, Carol and Tom Smith, David and Debbie Monn, Rebecca

Petruccelli, Sabrina Sequeira, Chukuemeka Chukuemeka, and Jihye Jeon.

I thank all my peers and cohorts, Themis Melissaris, August Ning, Grigory Chirkov,

Marcelo OV, Julian Knodt, Jianan Lu, Nanqingqing Li, and Yushan Su, for many

discussions, drinks, and laughter. I want to thank the Demschacks, Maggie Xu, Am-

ber Hokama, Jacob Knight, John Chen, Ben Whelan, Brian Madina, Shirley Liu,

vi

Jim Wall, Chenyang Ye, and Kexin Sun for our friendship for close to or more than

a decade. I want to thank my dear fluffy son, bunny Kuromame, who has served as

a squeeze ball for stress relief and a great listener to my many troubles. I also would

like to thank the theologians and writers who strengthened me through their writ-

ings, especially D. Martyn Lloyd-Jones, John Bunyan, John Owen, Ed Welch, and

Elisabeth Elliot. I would like to give special thanks to the great French Theologian

John Calvin, whose clear and robust theology has clarified many of my questions and

wonders and from whom the title of the thesis is inspired (T.U.L.I.P.).

Lastly, my ability to complete this thesis is not my own but wholly the work of

the Spirit of Christ. By His grace and for His glory, despite many weaknesses and

imperfections, I confidently present this thesis to Him as a thanksgiving to the triune

God of the Christian faith for His omnipotent presence and unchanging love.

Soli Deo Gloria1.

1To God alone be the glory - the summarizing doctrine of Reformation.

vii

https://reformedforum.org/five-solas-soli-deo-gloria/

To the immortal, invisible, only wise God.

viii

Contents

Abstract . iii

Acknowledgements . v

1 Introduction 1

1.1 Dissertation Contributions . 4

1.1.1 New Vision for Programmer and Compiler Interactive Paral-

lelization . 5

1.1.2 Compiler Enhanced Source-to-Source Transpilation

Framework . 6

1.1.3 Parallelism-aware Natural Decompiler 7

1.2 Summary . 8

2 Motivation 11

2.1 Partial Performance Enablers . 11

2.1.1 Source-level Tools . 13

2.1.2 Language-agnostic Optimizations 13

2.1.3 Programmer Interactivity . 14

2.2 Transpilation Across Execution Models 18

2.3 Limited Extensibility . 19

3 Tulip 22

3.1 Tulip Overview . 22

ix

3.1.1 Performance Enablers In Action 24

3.2 Design and Implementation . 27

3.2.1 Source PPM Compilation . 27

3.2.2 Interaction with a Parallelizing Compiler 32

3.2.3 Source Code Generation . 35

4 SPLENDID 37

4.1 SPLENDID Overview . 37

4.1.1 Explicit Parallel Translation using OpenMP 40

4.1.2 Enhanced Natural Control Flow Translation 41

4.1.3 Natural Variable Reconstruction 41

4.1.4 SPLENDID in Action . 42

4.1.5 Case Studies . 44

4.2 Design and Implementation . 50

4.2.1 Parallel Source Code Generation 50

4.2.2 Natural Control-Flow Generation 53

4.2.3 Variable Generation . 53

5 Evaluation 58

5.1 Experiment Setup . 59

5.1.1 Benchmarks . 59

5.1.2 Hardware Systems . 61

5.1.3 Baselines . 61

5.1.4 Tools Selection . 62

5.1.5 Metrics . 62

5.2 Translation Pipelines . 63

5.3 Migrated Code Performance . 66

5.3.1 Freedom of Choosing the Tools 68

x

5.3.2 Programmer Interactivity . 68

5.3.3 Better Speedups on AMD than on NVIDIA 71

5.4 Naturalness . 72

5.4.1 Naturalness Overview . 72

5.4.2 Naturalness by Effective Interaction 75

5.4.3 Portability . 76

5.4.4 Variable Renaming . 77

6 Related Work 83

6.1 Parallel Programming Models . 83

6.2 Source Level Rewrite . 84

6.3 Direct Transpilation . 85

6.4 OpenMP Offloading . 87

6.5 Automatic Parallelization . 87

6.6 Decompilation . 88

7 Conclusion 91

7.1 Conclusion . 91

7.2 Future Work . 92

7.2.1 Source Representation of Advanced Parallelization Schemes . 93

7.2.2 Effect of CUDA Programming Across Platforms 97

7.2.3 Natural Decompilation Enhanced by LLM 99

A Implementation Details 101

A.1 BLEU For Formal Languages . 101

Bibliography 105

xi

Chapter 1

Introduction

An increase in hardware specialization has led to the birth of numerous distinct

parallel execution models. These parallelism models are increasingly specialized to the

unique structure of parallelism available in their corresponding hardware target, lest

they prevent programmers from leveraging the peak performance of their hardware.

This increasing specialization of the parallel programming model (PPM) comes at

the cost of generality. As a result, high-performance programs that would merit the

use of new hardware cannot effectively run on other architectures.

Numerous strategies have been proposed to address the complexities of this issue.

One approach involves writing a kernel for each target platform using highly explicit

parallel languages such as Fortran, CUDA, HIP, and SYCL [57]. Although these

languages are powerful, they place a significant burden on programmers to effectively

harness parallelism. Alternatively, performance portability libraries like RAJA [49]

and Kokkos [122] offer backends for various parallel programming models, but they

may sacrifice peak performance due to the limited control they provide programmers

for performance engineering on each platform. Another option is for programmers

to use hardware-agnostic domain-specific languages (DSLs)[20, 103], or sequential

languages enhanced with parallel directives that target multiple platforms, such as

1

OpenMP[93], OpenACC [94], and OpenCL [58]. Given the diversity of parallel pro-

gramming models (PPMs), substantial legacy code bases always exist, each tailored

for specific hardware targets. Porting code from one platform to another often in-

volves manual rewriting. However, this process is labor-intensive, error-prone, and

heavily dependent on the programmer’s expertise in achieving optimal performance.

Recent tools have been developed to automatically perform performance-aware

retargeting by optimizing parallel programs before generating executables in a new

model [112, 81]. Compiler-based tools like Polygeist [80, 81, 53] enhance the speed of

transpiled code by optimizing both serial and parallel constructs within the compiler

itself. Initially, the source code is compiled to an intermediate representation (IR),

which is then aggressively optimized and finally compiled to produce executables for

various targets. If the selected compiler IR is both language- and hardware-agnostic,

this approach not only enhances reusability across different programming models

and hardware platforms but also reduces the time required to reimplement these

optimizations. Notably, recent breakthroughs in parallelizing compilers [76, 6, 7] can

potentially extract additional parallelism beyond what is originally expressed in the

parallel program.

However, a significant drawback of this approach is that the generated programs

often remain incomprehensible to end-users, particularly when tools directly generate

executables or low-level assembly code. Thus, this method necessitates total reliance

on the compiler for the entire parallel transpilation process. However, programmers

can always play a role in enhancing parallelism by easing constraints on the output, al-

lowing for a broader range of potential optimizations, especially on non-deterministic

programs, which can then be optimized more rigorously [30]. This is because, unlike

a programmer, the compiler cannot expand the set of valid outputs of a program,

even if such additional outputs would produce much better performance and be ac-

cepted as valid by the programmer [99, 11, 104]. Additionally, while the programmer

2

may find the out-of-order printing of diagnostic messages acceptable for some level

of performance, the compiler does not know this and cannot unilaterally make this

change [99]. Moreover, the programmer may find lower precision for floating-point

operations acceptable. The compiler, however, cannot relax the precision of output

without the programmer playing a role. Besides this fundamental reason, current

parallelizing compilers face many practical challenges, such as limited profitability in

the presence of dependences (e.g., the DSWP thread partitioning problem). Thus,

additional performance in code migration can always be gained by the programmer

and compiler working together, despite recent great advancements in transpilation

and automatic parallelization.

As large and legacy applications cannot afford the performance cost associated

with manual rewrites into portability libraries or DSLs or the economical cost of

developing the most powerful transpiling compilers with all optimizations necessary

for all targets, our focus shifts to approaches that aim to deliver “abstraction without

regret“ — namely, direct and optimized transpilation from one parallel programming

model (PPM) to another. The earliest source-to-source transpilers operated at the

source code level, directly generating parallel programs in a new model that preserved

the semantics and parallelism of the original model [128, 4, 12, 8, 88, 108, 3, 71,

56, 87, 9]). Tools like ROSE [66] maintain parallelism and structure at the source

level while allowing for limited optimization at the abstract syntax tree (AST) level.

Source-level transpilers that generate high-level source code unlock the use of the

full software and tooling ecosystem around the target model, potentially addressing

the software fragmentation issue, as many libraries and applications target various

parallel programming frameworks. Moreover, the source code generated through this

method is natural, enabling programmers to further parallelize the code with the

parallelism expressible in the target PPM.

However, this flexibility comes at a cost. Directly translating source code often

3

results in programs that perform suboptimally on the target hardware. Even devices

manufactured by the same company can exhibit significant differences in the number

of threads, memory bandwidth, dependency structures, and other characteristics, as

commonly seen in new accelerators like Tensor Cores [74]. Consequently, programs

generated by such tools cannot be efficiently or directly utilized; they necessitate ex-

tensive re-tuning by the programmer. For instance, a programmer with knowledge

of the target model could introduce additional parallelism that had been previously

reduced in the source model to enhance performance. Although it is theoretically

possible for application developers to achieve optimal performance with sufficient

rewriting, in practice, this is rarely achieved. For example, [81] observed that many

expert-written CUDA benchmarks contained unnecessary parallel synchronize com-

mands and shared memory loads, likely due to the complexity of the programming

model. Ideally, transpilation should benefit from both compiler and programmer

intervention. This thesis demonstrates that transpilation is best done with a collab-

oration between a compiler and a programmer1.

1.1 Dissertation Contributions

This dissertation takes a different approach to code migration, from purely manual

and purely automatic to a combined approach that does not compromise either. Tak-

ing inspiration from the best practices of prior approaches and practically enabling

robust translations between PPMs, we Tulip: a transpilation framework that gen-

erates robust and natural code targeting mainstream GPU and CPU heterogeneous

systems by transpiling CUDA to primarily CPU-focused PPMs, OpenMP and Ope-

nACC. Tulip proposes a new vision for programmer-compiler interaction, realized via

an extensible approach to transpilation that allows easy additions of source and target
1Major edits and intellectual contribution credits go to William S. Moses and other coauthors of

Tulip and SPLENDID.

4

PPMs and a parallelism-aware decompiler that generates natural code.

1.1.1 New Vision for Programmer and Compiler Interactive

Parallelization

The demand for performance and efficiency drives research to find better program

parallelization methods. Most parallelizations are, to some degree, a collaboration

between the programmer and a compiler. First, the programmer can parallelize the

program using a parallel programming language [89, 119, 15], parallel extensions

to sequential languages [86, 93, 42], or by expressing code properties that enable

inherent parallelism (i.e., implicit parallel programming [51, 127, 47, 14, 11, 99]).

Then, the compiler maps this programmer-expressed parallelism to utilize parallel

hardware resources. However, the degree of collaboration is limited in this way, either

because the compiler performs only a translation of programmer-expressed parallelism

or because the compiler disregards the work of the programmer and parallelizes the

code itself (e.g., Polly [45]). In either case, only the programmer or the compiler is

ultimately responsible for the parallelization choices.

This thesis introduces a collaborative approach to parallelization, leveraging a

combination of compilation techniques—specifically, translating parallelism from the

source code to an Intermediate Representation (IR), followed by compiler paralleliza-

tion, and finally, decompilation. Initially, we translate source-level parallelism into

an IR and then conduct aggressive transpilation and parallelization. Given that our

selected IR (LLVM-IR) is language-agnostic, it seamlessly integrates multiple sources

of parallelism, including those derived from the original parallel source code, robust

transpilation processes, and automatic parallelization strategies. Decompiling paral-

lelism from the IR back to the source code provides programmers with an optimized

synthesis of parallelization By understanding parallelism at the source level within

the target parallel programming model (PPM), programmers can bypass the need to

5

grasp the intricacies of the original PPM or compiler yet still operate within a famil-

iar framework provided by the target PPM. Moreover, as each programming model

may express different levels of parallelism, programmers always have the opportu-

nity to enhance or refine the expression of parallelism using the target PPM. This

workflow facilitates a collaboration where programmers of both the source and target

PPMs, along with parallelizing compilers, can effectively express parallelism without

requiring extensive knowledge in all areas.

1.1.2 Compiler Enhanced Source-to-Source Transpilation

Framework

Taking inspiration from the best practices of prior approaches and practically en-

abling robust translations between PPMs, this thesis proposes Tulip2. Tulip does

so by performing transpilation at the IR level to fully leverage the state-of-the-art

parallelizing compiler and generate natural source code through decompilation to

enable source-level toolings and programmer knowledge. Transpilation occurs after

standard LLVM frontends. Tulip transforms parallelism expressed in runtime calls

to the special hardware environment into metadata, consequently retargeting the IR

to multicore systems while separately preserving parallelism. The transpiled IR can

then interact with any IR-level automatic parallelization framework. To preserve

code naturalness and increase decompiler reusability, instead of directly applying a

parallelization plan to the IR, Tulip acquires and interprets only a parallelization plan

from the parallelizing compiler. Tulip is extensible because each stage of the tran-

spilation pipeline includes extensively reusable code, from leveraging standard LLVM

frontend and state-of-the-art automatic parallelization frameworks to a C decompiler

regardless of the parallel extension.
2The title is also inspired by the Canons of Dort.

6

https://www.semperreformanda.com/doctrine-2/tulip-the-synod-of-dordt/

1.1.3 Parallelism-aware Natural Decompiler

Decompilers [1, 68, 46, 26, 40, 23, 107, 29, 130, 129] have great potential to enable

collaboration in which better performance can be obtained with less manual effort.

However, when it comes to parallel programs, state-of-the-art decompilers cannot

produce portable code. Translating parallel IR to portable parallel source code is not

a trivial task. First, most parallel programming models impose strict requirements

for loop structures. For example, the OpenMP [93] omp for construct requires syn-

tactically canonical for loops with no additional code between the pragma and the

loop. However, most decompilers end up translating low-level parallelized loops into

do-while loops. This is because parallelization often relies on loop rotation for canon-

icalization, which converts all loops into do-while form. Furthermore, parallelism in

the IR is often expressed using parallel runtime library calls. For reverse engineer-

ing purposes, code decompiled by previous decompilers exposes these library calls,

making the decompiled code not recompilable with compilers using another runtime

library.

Since code produced by state-of-the-art decompilers is not portable, it is also not

natural. Natural code is informative about what and how a compiler parallelizes,

enabling the programmer to improve program performance in any desired workflow.

A do-while loop compared with a for loop is less natural without features like in-

duction variables. Low-level runtime-specific details of parallelization also obfuscate

previously decompiled code. While making the decompiled code portable helps with

naturalness, code decompiled in previous approaches assigns variables with names

corresponding to physical registers. The lack of informative variable names intrudes

significant overhead in understanding code semantics.

To overcome the obstacles mentioned above and practically enable collabora-

tive parallelization, this work proposes SPLENDID, the first LLVM-to-C/OpenMP

decompiler that provides portable natural translation from parallel LLVM-IR to

7

OpenMP-parallel source code. SPLENDID explicitly represents parallelism through

the widely used parallel programming model, OpenMP [93]. Since using OpenMP

directives eliminates compiler-specific implementations of parallel constructs and re-

quires for-loops, SPLENDID-produced parallel code is portable and more natural.

Moreover, code generated by SPLENDID preserves variable names and is thus closer

to manually written code. With variable names that are representative of semantics,

SPLENDID significantly reduces the manual effort of interpreting code semantics.

SPLENDID is designed with the careful consideration of what to de-transform so

that key optimizations, such as parallelizations and loop optimizations, are made evi-

dent to the programmer. While the goal of this paper is to enable better collaborative

parallelization, Readers may find the results useful for other tasks that may benefit

from more natural reverse engineering, such as debugging. For example, SPLEN-

DID may be used in debugging and performance tuning of computational kernels

automatically parallelized using Polly [45], an LLVM-based parallelizing compiler.

1.2 Summary

In summary, the primary contributions of this dissertation are:

• Presenting a CUDA-to-OpenMP transpilation framework that targets mul-

tiple mainstream CPU and GPU (i.e., through OpenMP Offloading) systems,

Tulip. Tulip-produced code is robust, with parallelism enhanced by the state-

of-the-art parallelization framework, NOELLE [76], programmer interactivity,

and toolings originally unavailable to the source PPM.

• Presenting the first decompiler targeting OpenMP-parallel IR, SPLENDID [117].

SPLENDID-produced code makes the output of a parallelizing compiler portable,

recompilable with any host compiler, and natural for easy programmer involve-

ment.

8

• Bringing together the best of the two orthogonal prior approaches and enabling

automatic parallelization, programmer interaction, and software tool-

ings working together. Unlike prior source-to-source or software rewriting,

Tulip’s transpilation occurs at the language-agnostic IR level and involves ag-

gressive compiler optimizations. Unlike direct transpilation, instead of directly

generating executables after transpilation, Tulip generates natural source code

that can further interact with a programmer or be kept as the new golden source

for the target machine.

• Realizing a smarter trade-off between how close the decompiled code is to the

original source code and how instructive it is to compiler parallelization.

• A novel pass that restores source variable names by eliminating virtual reg-

ister to variable naming conflicts and by inferring variable names from another

function through inlining.

• Across 19 Polybench benchmarks, outperforming native CUDA compila-

tion by 14%, native AMD compilation by 12%, 1.1x-2.93x over Polygeist, the

best source-to-many-machine approach, and 12% over Hipify, the best prior

source-to-source approach. When Tulip transpiled OpenMP code are run on

an AMD GPU, they exceed CUDA native code on NVidia GPUs by a geomean

speedup of 10%.

• When SPLENDID-decompiled code is recompiled using GCC, an average speedup

of 11x of 16 PolyBench benchmarks is made available universally outside LLVM.

The same benchmarks demonstrate an average of 39x improvement on the

BLEU score (i.e., a widely-used naturalness metric [95]) over the best prior

work. With an average of 3 lines of manual change on top of SPLENDID-

generated code, the speedup is doubled relative to both manual and compiler

parallelization alone on 7 PolyBench benchmarks, programs simple enough that

9

either the compiler or the programmer should have easily been able to deliver

maximal performance but did not.

The proposed decompilation framework, SPLENDID, is published in [117]. Tulip, the

proposed transpilation pipeline, is in preparation for publication.

10

Chapter 2

Motivation

Source-to-source and direct transpilation approaches hold significant potential for ro-

bust code migration across non-native systems with diverse execution models. How-

ever, previous methods consistently fail to generate optimally performing code. Fur-

thermore, while these methods may achieve high performance on some platforms,

their robustness does not extend to future PPMs and execution models. The subse-

quent sections will explore these shortcomings in greater detail.

2.1 Partial Performance Enablers

Ultimately, increasing program portability aims to deliver the best performance on a

target machine from otherwise incompatible source PPM. We identified three major

performance enablers in transpilation: source-level tools, language-agnostic optimiza-

tions, and programmer interactivity. As shown in Table 2.1, prior approaches only

involve a subset of performance enablers in transpilation, thus not fully exploiting

the potential for performance improvement.

11

Pe
rfo

rm
an

ce
En

ab
le

rs
So

ur
ce

-le
ve

l
To

ol
s

La
ng

ua
ge

-a
gn

os
tic

A
gg

re
ss

iv
e

O
pt

im
iz

at
io

ns
Pr

og
ra

m
m

er
In

te
ra

ct
iv

ity

D
ire

ct
Tr

an
sp

ila
tio

n
G

PU
O

ce
lo

t
[3

7]
5

5
5

M
C

U
D

A
[1

12
]

5
5

5

Po
ly

ge
ist

[8
1,

80
,5

3]
5

3
5

N
ea

r-
so

ur
ce

R
ew

rit
e

A
ut

oP
ar

-C
la

va
[8

]
3

3
3

B
on

es
[8

8]
3

5
3

D
PC

+
+

[1
28

]
3

5
3

R
O

SE
[1

02
]

3
3

3

hi
pf

y
[4

]
5

5
3

So
ur

ce
-t

o-
So

ur
ce

Tr
an

sp
ila

tio
n

Tu
lip

(T
hi

s
wo

rk
)

3
3

3

Ta
bl

e
2.

1:
C

om
pa

ris
on

w
ith

pr
io

r
wo

rk
s

ca
te

go
riz

ed
ba

se
d

on
th

re
e

ap
pr

oa
ch

es
.

Tu
lip

is
a

so
ur

ce
-t

o-
so

ur
ce

tr
an

sp
ile

r,
th

e
on

ly
ap

pr
oa

ch
th

at
ut

ili
ze

pr
og

ra
m

m
er

,c
om

pi
le

r,
an

d
cr

os
s

pl
at

fo
rm

to
ol

s
to

de
liv

er
th

e
be

st
pe

rfo
rm

an
ce

.

12

2.1.1 Source-level Tools

Many source-level tools, such as compilers, only take a source program as input, and

frequently include optimizations tailored to benefit only a subset of programs. There-

fore, when code is compiled directly for a specific target machine (source-to-many

machine), compilers designed for the same target do not impact the performance of

the resulting executable. For instance, if Polygeist is used to transpile code from GPU

to multicore architecture, other compilers that target multicore systems, like GCC,

cannot enhance the optimization of the transpiled code, as shown in Figure 2.1. In

the context of near-source rewrite tools, if the target PPM shares the same execution

model as the source PPM, tools designed for PPMs of a different execution model

will not be applicable, as in the case of Hipify.

2.1.2 Language-agnostic Optimizations

While near-source rewrites typically focus on language-specific optimizations at the

AST level, language-agnostic IR-level optimizations are highly reusable. This reusabil-

ity allows applications to benefit from more optimizations, enhancing performance as

the diversity of source and target PPMs grows. Occasionally, automatic paralleliza-

tion, like that used in ROSE, can be done at the AST-level and potentially enable

scalable speedups. However, language-specific constraints impede accurate memory

analysis which inhibits meaningful automatic parallelization. Thus, produced par-

allelization plans are conservative and lack performance gains. Conversely, memory

representation at the IR level offers detailed insights essential for optimizing parallel

execution. Thus, prior near-source rewrite tools fail to incorporate language-agnostic

optimizations to enable greater performance.

13

2.1.3 Programmer Interactivity

When code is transpiled across different execution models, the target PPM may be

capable of expressing parallelism originally unavailable in the source PPM. Portions

of what otherwise be manual parallelization in target PPM can be replaced by com-

piler parallelization. The decompiled parallel code can then be maintained in place

of the original code in source PPM. After seeing what the compiler and the original

source parallelize in the decompiled source code, the programmer can focus primar-

ily on the loops that have not been parallelized. Moreover, after seeing the already

optimized transpiled loop parallelization, the programmer can utilize additional ex-

pressible parallelism inherent in the target PPM to further parallelize transpiled code

to be more suitable for running on target hardware. This practical use of knowledge of

the target PPM and the source code allows for more effective and efficient paralleliza-

tion. Instead, the prior direct transpilation approach directly generates executables

onto different platforms, missing the opportunity to engage programmers to further

increase parallelization.

To practically enable programmer to involve in interactive parallelization with the

compiler, generating natural source code is a key step. However, to gain the benefit

of aggressive compiler optimizations, generating source code is not as trivial as what

is done in near-source rewrite, but instead, it requires decompilation. Potentially, we

could use any out-of-box decompilers available in industry or academia [1, 107, 28,

114]. Unfortunately, code produced by previous decompilers is neither portable be-

yond the parallelizing compiler nor sufficiently natural for understanding parallelism,

as shown in Table 2.2. This is because the primary goals of previous decompilers,

including reverse engineering and analysis, do not rely on decompiled code being syn-

tactically correct, recompilable, or natural. We have identified three core areas that

prevent decompilation from enabling collaborative parallelization: lack of explicit

parallelism, unnatural control flow translation, and use of artificial variable names.

14

Ta
bl

e
2.

2:
C

om
pa

ris
on

w
ith

pr
io

r
de

co
m

pi
le

r
fra

m
ew

or
ks

.
A

s
th

e
fir

st
de

co
m

pi
le

r
fo

r
co

lla
bo

ra
tiv

e
pa

ra
lle

liz
at

io
n,

SP
LE

N
D

ID
em

ph
as

iz
es

po
rt

ab
ili

ty
an

d
na

tu
ra

ln
es

s
fo

r
tr

an
sla

tin
g

pa
ra

lle
lc

od
e.

D
ec

om
pi

le
r

D
ec

om
pi

la
ti

on
L

ev
el

P
ri

m
ar

y
G

oa
l

E
xp

lic
it

P
ar

al
le

lis
m

T
ra

ns
la

ti
on

C
on

tr
ol

F
lo

w
T

ra
ns

la
ti

on
V

ar
ia

bl
e

T
ra

ns
la

ti
on

Pa
ra

lle
lR

un
tim

e
Li

br
ar

y
C

al
l

El
im

in
at

io
n

Pa
ra

lle
l

Lo
op

R
es

to
ra

tio
n

Pa
ra

lle
l

C
od

e
In

lin
in

g

Pr
ag

m
a

G
en

er
at

io
n

Fo
r-

Lo
op

C
on

st
ru

ct
io

n
Lo

op
R

ot
at

io
n

D
e-

tr
an

sf
or

m
at

io
n

SS
A

D
e-

tr
an

sf
or

m
at

io
n

So
ur

ce
Va

ria
bl

e
R

en
am

in
g

G
hi

dr
a

[1
]

bi
na

ry
R

ev
er

se
En

gi
ne

er
in

g
5

5
5

5
3

3
n/

a
5

G
us

so
ni

et
al

.[
46

]
bi

na
ry

Se
cu

rit
y

5
5

5
5

5
5

n/
a

5

C
he

n
et

al
.[

26
]

bi
na

ry
So

ftw
ar

e
M

ai
nt

ai
na

nc
e

5
5

5
5

5
5

n/
a

5

Sm
ar

tD
ec

[4
0]

bi
na

ry
R

ev
er

se
En

gi
ne

er
in

g
5

5
5

5
5

5
n/

a
5

Ph
oe

ni
x

[2
3]

bi
na

ry
Se

cu
rit

y
5

5
5

5
3

5
n/

a
5

H
ex

-r
ay

s
ID

A
Pr

o
[1

07
]

bi
na

ry
So

ftw
ar

e
Va

lid
at

io
n

5
5

5
5

3
3

n/
a

5

R
el

yz
e

[6
8]

bi
na

ry
B

in
ar

y
A

na
ly

sis
5

5
5

5
5

5
n/

a
5

R
el

lic
[1

14
]

LL
V

M
-I

R
Se

cu
rit

y
5

5
5

5
3

5
3

5

LL
V

M
C

B
ac

ke
nd

[2
9]

LL
V

M
-I

R
R

ev
er

se
En

gi
ne

er
in

g
5

5
5

5
5

5
5

5

SP
LE

N
D

ID
(T

hi
s

W
or

k)
LL

V
M

-I
R

C
ol

la
bo

ra
tiv

e
Pa

ra
lle

liz
at

io
n

3
3

3
3

3
3

3
3

15

The rest of this section further describes these three roadblocks.

Lack of Explicit Parallelism

The broad use of OpenMP [93] suggests that it is easier for a programmer to ex-

press explicit parallelism through pragmas than controlling threads through calling

runtime functions (e.g., pthreads [86]). Prior work lacks the support to encode IR-

level parallelism explicitly at the source code level. As a motivating example, Rellic

produces code filled with parallelization setup instructions, namely instructions gen-

erated to enable parallel execution at lines 3, 7 to 24, and 38 in Figure 4.1. Some

of these parallelization setup instructions are runtime-specific. For example, line 3 of

the Rellic-generated code shows the runtime fork call from the LLVM/OpenMP run-

time [70], __kmpc_fork_call, brought directly from the IR to C. Bringing runtime-

specific instructions to the source code restricts portability since the decompiled code

can now only be compiled with that specific runtime (e.g., libomp [70] in the motivat-

ing example). Moreover, these parallelization setup instructions make produced code

unreadable. While the fork call suggests some parallelism, it is not explicit. With-

out specific knowledge of the OpenMP runtime library designed for LLVM, it can be

difficult for a programmer to interpret this line. SPLENDID, however, is designed to

produce semantic and portable parallelism.

Obfuscated Control Flow Translation

Many parallel programming models constrain the structure of the control flow. For

example, OpenMP loop-related pragmas only accept loops in canonical for-loop for-

mat. Thus, failing to produce a canonical Control Flow Graph (CFG) required by the

selected parallel programming model for source-level parallelism will result in syntac-

tic errors in the source code. For example, it is syntactically wrong to apply omp for

to a do-while loop.

16

For parallel programs, loops generated by previous decompilers are often do-while

loops. This is because loop rotation [69] is a normalization pass that is commonly

applied before optimizations (e.g., LLVM -O1 or higher, and parallelizing compil-

ers such as NOELLE [76] and Polly [45]). Loop rotation transforms each loop into

its rotated form in which the exit condition succeeds the loop body. Without fur-

ther analysis, rotated loops are, at best, decompiled as do-while loops with a guard

check, as shown in line 25. The guard check did not exist in the original program;

it was created by loop rotation to prevent entry to the loop when the initial state

of the loop satisfies the exit condition before rotation. This leads to loop-related

OpenMP pragmas being unable to be generated because the original for loop has

been replaced with a loop that OpenMP does not support. SPLENDID instead fully

recovers OpenMP-compatible canonical for loops.

Variable Names Irrelevant to Semantics

Prior work produces source code where variable names have no association with the

original program semantics [116]. While binaries may still contain debug information

that theoretically helps to reconstruct variable names, binary decompilers such as

Ghidra were designed for published executables with such data stripped. Even though

the IR maps a source code variable to a virtual register with debugging intrinsics, as

shown in line 1 of the Parallel LLVM-IR, even fundamental compiler transformations

such as Single Static Assignment (SSA) dramatically change the nature of variables

in the IR.

First, the number of mappings from a source code variable to virtual registers

grows dramatically. This is because promoting a memory reference to a register

reference (as done by mem2reg in LLVM) may split a single source code variable

into multiple instructions connected by a phi instruction to satisfy the SSA form.

Moreover, once split, virtual registers may have an overlapping lifetime. That is,

17

one of two virtual registers mapped to the same source code variable may still be

alive after the definition of the other (conflict). Two conflicting virtual registers

cannot be mapped back to the same source code variable. Additionally, heavily

optimized code regions lose such debugging intrinsics because compiler optimizations

are performance-driven, lacking the intention to preserve source information which is

thought to be unnecessary for improving performance. SPLENDID introduces a new

technique to recover the majority of the source code variable names.

2.2 Transpilation Across Execution Models

Traditionally, near-source rewrites were performed at the AST level, where pattern

matching was adequate for translating between two languages that shared the same

execution model. This consistency ensured that the degree of parallelism required at

the source remained unchanged across such models. For example, although NVIDIA

uses CUDA and AMD uses Hip, their GPU execution models are similar, rendering

the semantics of these languages nearly identical; their differ only in syntax. Con-

sequently, tools like Hipify are effective, as they can rewrite the AST to facilitate a

one-to-one syntactic mapping within the same execution model. However, challenges

arise when translating PPMs across different execution models. The semantics of the

source and target PPMs often require significant alterations to accommodate differ-

ent levels of parallelism. For instance, although OpenMP was originally designed for

multicore parallelism, its extension to GPU execution via OpenMP offloading has

proven less stable, heavily relying on compiler heuristics for performance optimiza-

tion. Prior studies have indicated that to achieve performance comparable to CUDA,

a more explicit set of abstractions is needed beyond standard OpenMP directives (i.e.,

OpenMPX [35, 50, 54]). The lack of existing CUDA to OpenMP target transpilers

underscores the difficulty of translating between source-to-source languages with dis-

18

parate levels of expressible parallelism. This indicates that merging paradigms across

different execution models necessitates advanced analysis and transformations beyond

what is possible at the AST level. Thus, with the trend towards increased heterogene-

ity in computing architectures, the conventional approach of near-source translation

is becoming increasingly inadequate.

2.3 Limited Extensibility

Extensibility is essential due to the ever-expanding variety of hardware platforms and

the increasing heterogeneity that necessitates further specialization in PPMs. Tradi-

tionally, near-source rewrites have been specifically developed for each pair of source

and target languages. Tools like ROSE, with their unified AST, provide a middle

ground where optimizations can potentially be shared across languages. However,

one significant limitation remains: the need to develop a customized parser and un-

parser for each language pair. Furthermore, as noted in Section 2.1.2, optimizations

at the AST level are largely language-specific and thus are less reusable. A new set

of AST-level optimizations would likely need to be developed to achieve comparable

performance in a new target PPM. If the source and target PPMs operate under dif-

ferent execution models, achieving extensibility at the AST level necessitates finding

a suitable abstraction layer and developing coherent strategies for the front and back

ends.

On the other hand, direct transpilation essentially functions as a compiler with

specialized targets, involving various execution models. Setting aside economic con-

siderations, mainstream compilers like GCC and ICX often exhibit limited extensibil-

ity due to their complexity, underscoring the need for more innovative and adaptable

solutions. Among existing compilers, LLVM [101] is notable for its relative high level

of extensibility. However, achieving its current level of development was a complex

19

and lengthy process. Consequently, compilers designed to retarget execution models

face an even greater challenge: they must navigate the complexities inherent in tra-

ditional compilers while also adapting to hardware that supports diverse execution

models, thereby exacerbating their extensibility issues.

20

Multi-Core CPU NVIDIA GPU AMD GPU

TULIP

Polygeist

HIPIFY

Intel GPU

CUDA
(Native)

Clang GCC

ICX ...

Clang NVHPC

DPC++ ...

Clang HIPCC

AOCC ...

DPC++ Clang

ICX ...

Clang

Polygeist Polygeist Polygeist

HIPCC

NVCC Clang

Figure 2.1: Comparison of supported platforms and toolings among prior approaches
and Tulip.

21

Chapter 3

Tulip

3.1 Tulip Overview

This thesis introduces Tulip, an extensible transpilation framework designed to en-

hance code portability and performance across increasingly specialized platforms.

Tulip improves upon traditional code migration methods by initially compiling the

source code into a language-agnostic IR to facilitate robust transpilation and opti-

mization. Subsequently, it decompiles this IR to generate natural source code that

supports software tooling and enhances programmer interaction. This method more

effectively handles significant variations in language features and execution models

compared to either AST-level pattern-matching rewrites or direct transpilation to a

non-native system.

As shown in Figure 3.11, at the IR level, language-agnostic optimizations, and

specifically, state-of-the-art automatic parallelization frameworks, are utilized by Tulip

to improve parallelism. Then, unlike the previous approaches that directly transpile

and retarget the code, the backend of Tulip decompiles the optimized IR back to the

source code in the target PPM. This enables an expert in the target PPM to under-

stand parallelism that otherwise may be obfuscated due to the lack of expertise in
1Insights credit goes to Johannes Doerfert, Michael Kruse, and all other coauthors of Tulip.

22

TU
LI

P
 '

s
A

pp
ro

ac
h

(T
hi

s
w

or
k)

St
an

da
rd

Fr
on

t-e
nd

(c
la

ng
, f

la
ng

 e
tc

)

LL
VM

C
om

m
un

ity

O
pt

im
iz

ed
Ta

rg
et

 P
PM

So
ur

ce
PP

M

In
cr

ea
se

Pa
ra

lle
lis

m

Ta
rg

et
PP

M
D

ec
om

pi
le

r

So
ur

ce
 P

PM
-

cu
st

om
iz

ed
Fr

on
t-e

nd

So
ur

ce
PP

M
IR

Fr
on

t-e
nd

Po
ly

ge
is

t-
sp

ec
ia

liz
ed

Fr

on
t-e

nd

R
O

SE
A

STIR

C
ro

ss
 P

la
tfo

rm
Tr

an
sp

ila
tio

n

M
id

dl
e-

en
d

Pe
rf

or
m

an
ce

O
pt

im
iz

at
io

n

R
ul
e-
ba

se
d

Tr
an

sf
or
m
at
io
ns

In
te

ra
ct

iv
e

Pa
ra

lle
lis

m

LL
VM

B
ac

ke
nd

U
np

ar
se

r

Ex
te

ns
ib

ili
ty

B
ac

k-
en

d

Ta
rg

et
PP

M

O
pe

nM
P

Bi
na

ry

Pr
og

ra
m

m
er

In
te

ra
ct

io
n

O
pt

im
iz

ed
Ta

rg
et

 P
PM

R
O

SE

's
A

pp
ro

ac
h

(P
rio

r w
or

k)

Po
ly

ge
is

t's
A

pp
ro

ac
h

(P
rio

r w
or

k)

C
U

D
A

So
ur

ce

LL
V
M

O
pt
im

iz
er

A
ut
om

at
ic

P
ar
al
le
liz
at
io
n

...

Pe
rf

or
m

an
ce

En
ab

le
rs

T T

E E

C
Pa

ra
lle

liz
in

g
C

om
pi

le
r

E
Ta

rg
et

 P
PM

 E
xp

er
t

T
So

uc
e-

le
ve

l T
oo

lin
gs

C
So

ur
ce

-le
ve

l
To

ol
in

g

Ta
rg

et
 S

ou
rc

e
O

pt
im

iz
at

io
n

Figure 3.1: Transpilation pipeline comparison between Tulip (this work) and prior
works.

23

either the source PPM or compiler knowledge. Furthermore, the expert can further

enhance the parallelism of the transpiled code upon fully understanding the available

parallelism already presented at the source in the target PPM.

Another advantage of generating source code rather than executables for different

target machines is the ability to utilize numerous source-level toolings. As demon-

strated in Figure 2.1, Tulip facilitates this by transpiling CUDA to OpenMP, enabling

at least eight compiler selections across three hardware platforms. This number could

increase with the variety of tools available for the target PPM. The flexibility to

choose any compiler toolchain allows each application to achieve the best possible

performance, taking advantage of the specific optimizations that each compiler of-

fers, which are often fine-tuned for particular types of applications. In this manner,

all performance enhancers—including language-agnostic optimizations, programmer

interactivity, and toolings—collectively contribute to maximizing the speedup on the

target hardware platform.

3.1.1 Performance Enablers In Action

Figure 3.2 illustrates how Tulip leverages all performance enablers described in Sec-

tion 2.1 to optimize performance in code migration. The example provided is a sim-

plified kernel commonly used in High-Performance Computing (HPC) applications,

performing batch processes of matrix-vector multiplication. Although the multipli-

cation kernel itself can run in parallel on GPUs, as shown at line 12, the outer batch

processing loop at line 9 cannot be parallelized due to an external library call with

unknown dependences. This loop-carried dependence on its argument C cannot be

verified, as indicated at line 14. Initially, Tulip compiles the CUDA source code

to LLVM-IR while preserving the parallel semantics specified by the CUDA expert

(Step 1). Subsequently, a parallelizing compiler may enhance the IR by detecting

a reduction operation on dot at line 9 and vectorizing the loop at line 7 (Step 2).

24

By generating natural source code in the target PPM, OpenMP, Tulip presents the

parallelism preserved from the source PPM (CUDA) and that generated by the par-

allelizing compiler (NOELLE) to the OpenMP expert in the form of an OpenMP

pragma (Step 3).

Next, an expert in OpenMP can quickly understand the Tulip-generated OpenMP

code since it appears natural. Such an individual can directly grasp the parallelism

initially described in CUDA or automatically generated by the compiler without re-

quiring knowledge of CUDA or automatic parallelization techniques. With an under-

standing of the acceptable output space—specifically, whether the external library

may have dependences across iterations for C at line 13 in Step 3—the programmer

and programmer alone can decide whether the outer loop at line 1 can be paral-

lelized. Furthermore, as an expert in OpenMP, they can collapse the nested loops

generated in replacement of the original CUDA kernel call into a single, flattened

loop, enhancing parallel execution efficiency across iterations. Note that loop col-

lapse is expressible only in OpenMP and not in CUDA since CUDA does not support

the concept of loops. This difference exemplifies how source and target PPMs may

represent incompatible forms of parallelism, and thus, further manual optimization of

the transpiled code using knowledge of the parallelism expressible in the target PPM

is highly desirable, as outlined in Step 4. Lastly, any compiler toolchains that support

OpenMP can be used to compile the code generated in Step 4 onto any CPU or GPU

platform, ranging from out-of-the-box options like GCC, ICX, and NVHPC, to the

continuously evolving OpenMP offloading efforts within the LLVM community.

25

1

_
_
g
l
o
b
a
l
_
_

2

v
o
i
d

m
v
(
d
o
u
b
l
e

*
A
,

d
o
u
b
l
e

*
B
,

d
o
u
b
l
e

*
C
)

{

3

i
n
t

i

=

b
l
o
c
k
I
d
x
.
x

*

b
l
o
c
k
D
i
m
.
x

+

t
h
r
e
a
d
I
d
x
.
x
;

4

f
o
r

(
i
n
t

j

=

0
;

j

<

N
;

+
+
j
)

5

d
o
t

+
=

A
[
i
]

*

B
[
i

*

N

+

j
]
;

6

C
[
i
]

=

d
o
t
;

7

}

8 9

f
o
r

(
i
n
t

i
t
e
r

=

0
;

i
t
e
r

<

B
A
T
C
H
_
S
I
Z
E
;

+
+
i
t
e
r
)

{

1
0

.
.
.

/
/

i
n
i
t
i
a
l
i
z
e

A

&

B

1
1

m
o
v
e
T
o
D
e
v
i
c
e
<
d
o
u
b
l
e
>
(
A
,

B
)
;

1
2

m
v
<
<
<
g
r
i
d
D
i
m
,

b
l
o
c
k
D
i
m
>
>
>
(
A
,

B
,

C
)
;

1
3

m
o
v
e
T
o
H
o
s
t
<
d
o
u
b
l
e
>
(
C
)
;

1
4

e
x
t
e
r
n
L
i
b
C
a
l
l
(
C
)
;

1
5

}

1

f
o
r

(
i
n
t

i
t
e
r

=

0
;

i
t
e
r

<

B
A
T
C
H
_
S
I
Z
E
;

+
+
i
t
e
r
)

{

2

.
.
.

/
/

i
n
i
t
i
a
l
i
z
e

A

&

B

3

#
p
r
a
g
m
a

o
m
p

t
a
r
g
e
t

t
e
a
m
s

d
i
s
t
r
i
b
u
t
e

\
\

p
a
r
a
l
l
e
l

f
o
r

c
o
l
l
a
p
s
e
(
2
)

4

f
o
r

(
i
n
t

b
i
d

=

0
;

b
i
d

<

g
r
i
d
D
i
m
;

+
+
b
i
d
)

{

5

f
o
r

(
i
n
t

t
i
d

=

0
;

t
i
d

<

b
l
o
c
k
D
i
m
;

+
+
t
i
d
)

{

6

i

=

b
i
d

*

b
l
o
c
k
D
i
m

+

t
i
d
;

7

#
p
r
a
g
m
a

o
m
p

s
i
m
d

r
e
d
u
c
t
i
o
n
(
+
:
d
o
t
)

8

f
o
r

(
i
n
t

j

=

0
;

j

<

N
;

+
+
j
)

9

d
o
t

+
=

A
[
i
]

*

B
[
i

*

N

+

j
]
;

1
0

C
[
i
]

=

d
o
t
;

1
1

}

1
2

}

1
3

e
x
t
e
r
n
L
i
b
C
a
l
l
(
C
)
;

1
4

}

1

#
p
r
a
g
m
a

o
m
p

p
a
r
a
l
l
e
l

f
o
r

2

f
o
r

(
i
n
t

i
t
e
r

=

0
;

i
t
e
r

<

B
A
T
C
H
_
S
I
Z
E
;

+
+
i
t
e
r
)

{

3

.
.
.

/
/

i
n
i
t
i
a
l
i
z
e

A

&

B

4

#
p
r
a
g
m
a

o
m
p

t
a
r
g
e
t

t
e
a
m
s

d
i
s
t
r
i
b
u
t
e

5

f
o
r

(
i
n
t

i

=

0
;

i

<

g
r
i
d
D
i
m

*

b
l
o
c
k
D
i
m
;

+
+
i
)

{

6

#
p
r
a
g
m
a

o
m
p

p
a
r
a
l
l
e
l

f
o
r

r
e
d
u
c
t
i
o
n
(
+
:
d
o
t
)

7

f
o
r

(
i
n
t

j

=

0
;

j

<

N
;

+
+
j
)

8

d
o
t

+
=

A
[
i
]

*

B
[
i

*

N

+

j
]
;

9

C
[
i
]

=

d
o
t
;

1
0

}

1
1

e
x
t
e
r
n
L
i
b
C
a
l
l
(
C
)
;

1
2

}

C
la

ng

So
ur

ce
 P

PM
C

om
pi

la
tio

n

Au
to

Pa
r

D
ec

om
pi

la
tio

n

TU
LI
P

Tr
an

sp
ila

tio
n

S
te

p
 1

: C
U

D
A

 e
xp

er
t

sp
ec

if
ie

s
p

ar
al

le
li

sm
in

 s
ou

rc
e

P
P

M

S
te

p
 2

: C
om

p
il

er
ex

p
lo

re
s

p
ar

al
le

li
sm

in
 t

ar
ge

t
P

P
M

S
te

p
 3

: T
U

L
IP

 g
en

er
at

es
n

at
u

ra
l s

ou
rc

e
co

d
e

in
 t

h
e

ta
rg

et
 P

P
M

S
te

p
 4

: O
p

en
M

P
 e

xp
er

t
en

h
an

ce
s

p
ar

al
le

li
sm

in
 t

ar
ge

t
P

P
M

Sa
fe

 to
 re

m
ov

e
de

pe
nd

en
ce

bl
oc

ke
d

by
 e

xt
er

na
l c

al
l?

Sa
fe

 c
ol

la
ps

in
g

lo
op

 n
es

t?

Figure 3.2: Tulip transpilation generates natural source code, in which programmers
of the source and target PPMs and the parallelizing compiler exhaustively explore
parallelism.

26

3.2 Design and Implementation

The design of the Tulip transpilation framework is structured to engage programmers

specializing in source PPMs, parallelizing compilers, and those specializing in target

PPMs in a collaborative process of parallelization. While Figure 3.2 illustrates one

possible pipeline where Tulip transpiles CUDA to OpenMP, enhanced by a paral-

lelizing compiler, NOELLE, Tulip’s methodology can be adapted for a broader range

of source and target PPMs, employing various parallelizing compilers or none at all.

This section delves into the technical specifics of how Tulip transpiles CUDA into

OpenMP source code and details each stage of the process. It also explains how

Tulip’s framework can be expanded to incorporate additional source PPMs, paral-

lelizing compilers, performance-enhancing transformations, and target PPMs.

3.2.1 Source PPM Compilation

Tulip’s method for integrating a new source PPM capitalizes on the capabilities of

well-established compiler frontends within the active LLVM community, augmented

by a minimal post-processing pass. This pass normalizes the compiled LLVM-IR

for GPU targets into LLVM-IR optimized for CPU targets, a process elaborated

upon in Section 3.2.1. For instance, instead of creating a new compiler frontend for

CUDA, Tulip utilizes Clang [62], the standard frontend, to compile CUDA source code

into GPU-targeted LLVM-IR, as depicted in Figure 3.3. This GPU-targeted LLVM-

IR then undergoes a customized lightweight frontend pass, designed specifically for

CUDA as the source PPM, converting it into sequential CPU-targeted IR with par-

allelism represented as LLVM metadata. In contrast to the Clang compiler, which

consists of at least 400,000 lines of code, this frontend pass for converting CUDA

targets comprises only about 1,000 lines of code, making it exceptionally streamlined

and manageable. Several popular PPMs commonly utilized in HPC applications, such

27

..
.

..
.

..
.

..
.

..
.

TU
LI

P
 '

s
Im

pl
em

en
ta

tio
n

C
la

n
g

4
0

4
k

Lo
C

so
ur

ce
.ll

h
os

t.
ll

d
ev

ic
e.

ll

C
P

U
-T

ar
g

et
 s

ou
rc

e.
ll

..
.

S
P

LE
N

D
ID

1
2

k
Lo

C

Ex
te

ns
io

n-
ba

se
d

N
or

m
al

iz
at

io
n

cu
d

a-
lin

k
1

k
Lo

C

PO
LL

Y

PO
LL

Y
In

te
rp

re
te

r

N
O

EL
LE

1
0

6
k

Lo
C

N
O

EL
LE

 I
n

te
rp

re
te

r

ac
c-

ge
n

22
8

Lo
C

om
p

-g
en

2
2

3
 L

oC

ta
rg

et
.c

pp

ta
rg

et
.c

p
p

Ex
p

lic
it

P
ar

al
le

lis
m

A
s

M
et

ad
at

a

En
h

an
ce

d
P

ar
al

le
lis

m
A

s
M

et
ad

at
a

..
.

ta
rg

et
.c

pp

so
u

rc
e.

cu

/

§4
.1

§4
.2

§4
.3

Ex
is

tin
g

In
fr

as
tr

uc
tu

re

TU
LI

P
Ex

te
ns

io
ns

Figure 3.3: Tulip transpilation generates natural source code, in which programmers
of source PPM, the parallelizing compiler, and programmers of the target PPM ex-
haustively explore parallelism.

28

as Fortran (i.e., Flang [100]), OpenMP (i.e., Clang), CUDA (i.e., Clang), and Ope-

nACC (i.e., Clacc [36]), are already supported by robust LLVM compiler frontends.

The following describes the implementation in Tulip of the normalization pass, which

converts GPU-target parallel LLVM-IR compiled from CUDA into CPU-target IR,

with parallelism encoded as metadata (as shown in cuda-link in Figure 3.3).

1 ; device.ll

2 source_filename = "mv.cu"

3 target triple = "nvptx64 -nvidia -cuda"

4 define void @ kernel (double* %A, ...){

5 %blockDim.x = call i32 @ llvm.nvvm.read.ptx.sreg.ntid.x ()

6 ;device_kernel code

7 }

8
9
10
11
12
13 ; host.ll

14 source_filename = "mv.cu"

15 target triple = "x86_64 -unknown -linux -gnu"

16 void @kernel (...

17 define dso_local void @host (){

18 %devA_Ptr = alloca i8*
19 %sizeA = i64 load …

20 %A = call noalias i8* @malloc(i64 %sizeA)

21
22 store i8* %A, i8** %A_Ptr

23 call i32 @cudaMalloc(i8** %devA_Ptr , i64 %sizeA)

24 %A.2 = load i8*, i8** %A_Ptr

25 call i32 @cudaMemcpy(i8* %dev_A , i8* %A.2, i64 %sizeA , ...)

26 call i32 @cudaConfigureCall(i64 %gridDim , i64 %blkDim , ...)

27 %devA.2 = load i8*, i8** %devA_Ptr

28
29
30
31
32 call void @ kernel (i32 %devA.2, ...)

33 }

34

(a) IR Before Normalization

1 ; normalized.ll

2 source_filename = "cuda -normalize"

3 target triple = "x86_64 -unknown -linux -gnu"

4 define void @ kernel_device (double* %A, %blkDim , ...){

5
6 ;device_kernel code

7 }
8 define internal i64 @ load_noopt…() #1 {

9 entry:

10 %sizeA = load i64 …

11 ret i64 %sizeA

12 }

13
14
15
16 void @kernel_host (...

17 define dso_local void @host (){

18
19 %sizeA = call i64 @ load_noopt…()

20 %A = call noalias i8* @malloc(i64 %sizeA) !tulip.data.mapto !1

21
22 store i8* %A, i8** %A_Ptr

23
24
25
26
27 %A.2 = load i8*, i8** %A_Ptr

28 header.0: ;start of generated loop nests

29 ...

30 br ... !tulip.doall.loop !2
31 ; inner most loop

32 call void @ kernel_device (i32 %A.2 , %blkDim , ...)

33 }

34 attributes #1 = { noinline optnone }

(b) IR After Normalization

Figure 3.4: IR before and after CUDA Normalization.

GPU-to-CPU Target Conversion

Clang generates a CPU-target and GPU-target LLVM-IR for host and device code,

respectively, for each CUDA source code, denoted by different data layouts and target

triples. Functions in Host and device IR can have identical names with different

function bodies. For example, shown in Figure 3.4 (a) is a host function call (line 30)

to a stub function on the host side (line 14), which in turn calls the actual kernel to

be run on the device (line 4). Often, the stub function on the host and device have

identical names, as shown at line 14 and line 4. Thus, to link the host and device IR,

29

we developed a customized linker, cuda-link, built on top of llvm-link to resolve the

name conflicts.

The first step in cuda-link is to unify the target and data layout to be those of a

CPU-target IR and create linked.ll from the host and device IR. cuda-link is almost

identical to the standard llvm-link except for at link time, i) change the target and

data layout triple to be of a CPU machine model and ii) rename functions upon a

naming in conflict. Then, the kernel invocation, previously invoked indirectly through

a stud on the host, is replaced by a direct call to the kernel on the device. In the

example shown in Figure 3.4, the call to stub function at line 30 is replaced by a

direct call to the kernel function at line 4, which is now renamed as kernel_device

after resolving naming conflict. This can be done by searching the actual kernel

invocation within the stub function.

Further normalization needs to be done to retarget the linked IR to CPUs. Grid

and block dimensions specified in the CUDA configuration call (line 24 in (a)) are used

to transpile the kernel into loop nests around the device kernel invocation (line 26-

28 in (b)). Since each grid and block can be up to three dimensions, at most, six

nested loops can be generated. Within the device kernel function, the CUDA-specific

intrinsics to get the grid and block dimensions and indexes (e.g., llvm.nvvm.read.*

as in line 5 in (a)) are replaced by explicit parameter passing (line 4 in (b)). The

current implementation optimizes loop nest generation to exclude generating loops

for dimensions of only one iteration. Data movements from and to the device are

detected from cudaMemcpy calls (line 23 in (a)) and eliminated by replacing the

use of device memory objects with the corresponding host objects copied in and out

from cudaMemcpy (line 18 in (b)). Once all uses of the device memory objects are

erased, all the pointer chasing, casting, allocation and deallocation (e.g., cudaFree)

instructions become dead code and easily optimized, a standard 01 level optimization

can then remove them all. In the example shown, line 16 and 21-22 can all be removed.

30

Additionally, special math functions in CUDA are replaced by their equivalents in

standard C libraries, such as sqrt and fmax. Lastly, once all the CUDA function calls

are removed, the generated IR is no longer library-dependent, CUDA-dependent, and

GPU target-dependent.

As the normalization pass is a small building block to showcase a promising future

of PPM transpilation via programmer and compiler interaction, the current imple-

mentation does not accommodate all CUDA semantics, such as device synchronization

(e.g., __syncthreads() or CUDA shuffle instructions). Prior work [81, 112] has shown

how synchronization on the device (e.g., __syncthreads() or CUDA shuffle instruc-

tions) can be transpiled on CPUs, such as applying loop distribution at each barrier.

While the engineering required to support synchronization increases the complexity

of the normalization pass design compared to the standard Clang compiler, we expect

it to still be lightweight compared to the standard frontend, Clang.

Parallelism as Metadata

When grids and blocks of threads are normalized to be loop nests in a CPU-target

IR, every loop in that loop nest is DOALL parallel; namely, there is no loop-carried

dependence between iterations. The normalization pass, then, upon creating the loop

nest, attaches to each terminator of the loop header metadata denoting the loop as

DOALL. Information about data being copied to and from the device can be traced

through cudaMemcpy, through which the original creation of the memory object on

the host is denoted with the direction of movement (i.e., to device, from device, or

both) and array dimensions. Additionally, the live range of memory objects on the

device per device kernel invocation is identified in topological order, starting with the

first memory object copied into the device kernel and ending with the last memory

object copied out of the device. The live range of memory objects is important to

group statements at source and reconstruct data mapping such as #pragma omp

31

data map in OpenMP and #pragma acc data in OpenACC, respectively. Attaching

metadata to loops (e.g., llvm.loop) or influencing optimizations using metadata (e.g.,

loop vectorization and interleaving) are well-adopted as simple solutions to loop-

level transformations. Potentially, LLVM canonicalization passes such as mem2reg,

instcombine, or dce can remove instructions to which Tulip metadata are attached.

This can be resolved by outlining instructions into functions with attribute optnone

prior to canonicalization. For example, in Figure 3.4 (a) highlighted in blue, %sizeA

on line 17, is a load instruction that can potentially be promoted as a register value

through mem2reg. To prevent the removal of Tulip metadata, in Figure 3.4 (b),

the instruction is outlined into its equivalent function %load_noopt at line 17 with

attribute optnone at line 32. In this way, Tulip still largely benefits from even peep-

hole optimizations by disabling them on a few instructions to which Tulip metadata

are attached. Other forms of parallel representation that come with greater capacity

for optimizations also exist within the community, such as Tapir [109] and PS-PDG,

and can potentially be adopted by the current Tulip design. Note that at this step,

the compiled IR is fully transformed into being CPU-targeted; as it is, it can then be

passed into the backend of Tulip to be decompiled into source code, or be compiled

into executables.

3.2.2 Interaction with a Parallelizing Compiler

We define in the Tulip pipeline the interaction with a parallelizing compiler to be, in-

stead of applying the actual parallelization onto the CPU-target IR, the parallelizing

compiler adopts Tulip’s API in the form of metadata, and while making no modifi-

cation to the IR itself, emits more parallelism as metadata. This design choice first

ensures that the interaction with any parallelizing compiler is easily extensible, that

the Tulip backend, namely the decompiler, does not need to understand the engi-

neering effort and design choices made by each parallelizing compiler, such as which

32

parallel runtime library to use (e.g., libomp [70] or libgomp [43] for OpenMP), and

scheduling policies (e.g., dynamic, static, and chunking sizes). In this way, Tulip

decompiler logic needs no change to whenever a new parallelizing compiler comes

into the play, and it can always assume it receives a CPU-target IR without par-

allel runtime library calls as the input, and parallelism can always be interpreted

in the defined API to the parallelizing compiler to be involved. Beyond hindering

extensibility, the decision to express parallelism as metadata instead of applying par-

allelization to IR prevents further code obfuscation and thus produces unnatural code

after decompilation. Prior work [117] has shown that unnatural code not only pre-

vents programmer interaction, but when it comes to parallel programming models,

unnaturalness can result in incorrect code. For example, since OpenMP requires loops

to be in the canonical form, when a rotated loop in IR is decompiled as a do-while

loop, applying OpenMP pragmas to it results in compilation error. To demonstrate

how a parallelizing compiler participates in the Tulip pipeline, we integrated the

state-of-the-art compiler, NOELLE, to generate additional Tulip metadata identify-

ing DOALL loops with parallelization enablers such as reduction. Polly, PLUTO,

and other parallelization frameworks in LLVM can similarly be integrated with the

extension of understanding and emitting Tulip metadata.

Interaction with NOELLE

Internally, NOELLE relies upon the Program Dependence Graph (PDG) [39] to deter-

mine the applicability of a particular parallelization scheme. For a loop to be DOALL-

parallelizable, all loop-carrying dependences of that loop need to be disproven. This

is done through state-of-the-art memory analysis frameworks such as SCAF [7] and

SVF [113]. If the only loop-carried dependences existing after all the analysis are the

ones resulting from reduction operations such as sum, min, and max, a remedy can

be applied so that the loop is DOALL with reduction. Compared to LLVM, which

33

supports only single-use reducible variables, NOELLE identifies reducible variables of

a loop independently on its uses. Normally, once NOELLE determines that DOALL

is applicable to a certain loop, it then outlines the loop body, inserting parallel run-

time function calls to spawn threads and dispatching the loop body onto available

threads to run in parallel. This is a standard approach to most parallelizing compilers,

first identifying parallelism, then injects its own runtime to realize such parallelism.

To participate in the Tulip pipeline, instead of generating the parallel code for the

DOALL loop, NOELLE generates Tulip DOALL metadata at the terminator of the

loop header while leaving the loop as it is. Since NOELLE provides APIs to query

whether a loop is DOALL-, DSWP [105]-, or HELIX [24]-parallelizable, integrating

NOELLE into Tulip requires no modification to the parallelizing compiler itself but

simply adding a pass to add Tulip metadata using the query API of NOELLE. With

264 LoC to build the query pass, Tulip integrates with NOELLE, whose paralleliza-

tion tools along with the abstractions are built with 106k LoC.

Beyond the primary form of interaction by querying NOELLE, collaboration can

be enhanced by the parallelizing compiler using the metadata generated from Tulip

frontend (i.e., parallelism from source PPM) to improve parallelization. Specifically,

in NOELLE, Tulip’s metadata that denotes parallelism from the frontend can be used,

in addition to the analysis frameworks, to disprove dependences. For example, if a

loop is denoted as Tulip DOALL from the frontend, such as loops created from CUDA

normalization, all loop-carried dependences of the loop can be disproven. Though this

work includes the implementation for this form of interaction since the frontend PPM

is CUDA, CUDA parallel kernels can be easily analyzed as DOALL as they are often

simple affine loops. Thus, the implementation on which the evaluation section is

based uses the formerly described query pass.

34

3.2.3 Source Code Generation

Source code generation consists of IR decompilation and parallel construct genera-

tion. The decompiler of Tulip is adopted from SPLENDID, which reconstructs all

counted loops with induction variables into loops and restores the majority of vari-

able names using the source variable detection algorithm described in SPLENDID.

Code generated by SPLENDID has shown great improvement in naturalness com-

pared to the best prior approach. Unlike SPLENDID, which decompiles IR with

lower-level parallel runtime function calls, Tulip’s transpilation and interaction with

a parallelizing compiler does not engage in parallel code generation. Since in Tulip,

no parallelization is actually applied to the IR itself, no parallel runtime function

calls are generated to make the IR library dependent, and no parallelization-enabling

transformation such as outlining occurs, obfuscating the IR to be decompiled. Thus,

unlike SPLENDID, which includes complex analysis to detransform outlining parallel

regions and remove parallel runtime calls, the complexity of Tulip decompilation is

greatly reduced since it receives an IR with almost no optimization applied as an

input. Thus, the code generated by Tulip is as natural as that of SPLENDID but

with a simpler decompilation design.

Tulip decompiles the CPU-target IR separately from parallelism as metadata. A

specialized pragma generator is developed for each targeted parallel extension. For

instance, omp-gen is implemented to interpret parallelism and generate OpenMP

pragmas, as illustrated in Figure 3.3. The current metadata interface accommodates

DOALL parallelism transpiled from CUDA, translating it into OpenMP parallel loops

or SIMD, depending on the applicability. When multiple loops within the same

nest are DOALL, the Tulip backend adds pragmas to the outermost DOALL loop

to enhance data locality and expand the parallel region. For loop nests exceeding

two levels, Tulip employs the collapse directive in OpenMP to boost the parallelism

visible to the compiler. Although CUDA lacks a CPU-equivalent reduction code

35

pattern (requiring special libraries or more sophisticated synchronization for GPU

reductions), a parallelizing compiler can identify additional reduction operations after

the IR is re-targeted to the CPU. These reduction operations are also captured as

metadata and converted into OpenMP reductions. Data transfers between the host

and device (e.g., line 18 in Figure3.4(b)) are converted into #pragma omp data if

OpenMP offloading is utilized. If the target PPM is OpenMP without offloading,

namely multicore targeted OpenMP, since the code is already normalized for CPU-

targeting with all data movement eliminated at the IR level, metadata related to data

movement can be disregarded.

The advantage of separately generating sequential code and parallel construct is

that the generation of sequential code can be shared for PPMs designed as extensions

to C/C++, especially those that are directive-based (e.g., OpenMP and OpenACC).

In the case of generating OpenMP and OpenACC code, the sequential code generation

portion is entirely shared, while the metadata encoding parallelism is used to construct

OpenMP or OpenACC pragmas depending on the desired output.

36

Chapter 4

SPLENDID

4.1 SPLENDID Overview

This work introduces SPLENDID, a decompiler framework that produces portable

OpenMP code natural for programmer involvement. As shown in Table 4.1, SPLEN-

DID includes all features necessary for producing portable code. Loop-related trans-

formations, such as Loop Rotation De-transformation, restore loops in IR to canonical

for loops in source code. Features related to transforming runtime library calls, such

as Parallel Runtime Elimination, remove runtime-specific constructs and explicitly

express parallelism as OpenMP pragmas at the source level. Together, these tech-

niques enable SPLENDID to produce code not only syntactically correct but also

compilable universally with any runtime library. In addition to being portable, the

same set of techniques also makes SPLENDID-produced OpenMP code more natural,

because they restrict code structures (e.g., making loops more natural), and repre-

sent parallelism using OpenMP (e.g., eliminating obfuscated runtime function calls).

Moreover, SPLENDID chooses variable names that reflect code semantics. The more

natural the decompiled code is, the less effort is required from a programmer to un-

derstand what and how a compiler parallelizes, and the better chance of additional

37

Ta
bl

e
4.

1:
Te

ch
ni

qu
es

of
SP

LE
N

D
ID

to
pr

od
uc

e
po

rt
ab

le
co

de
th

at
is

al
so

na
tu

ra
lf

or
m

an
ua

li
m

pr
ov

em
en

t.

T
ec

hn
iq

ue
s

P
or

ta
bi

lit
y

N
at

ur
al

ne
ss

Pa
ra

lle
lR

un
tim

e
El

im
in

at
io

n

Lo

op
Pa

ra
m

et
er

R
es

to
ra

tio
n

Lo

op
R

ot
at

io
n

D
e-

tr
an

sf
or

m
at

io
n

Fo
r

Lo
op

C
on

st
ru

ct
io

n

Pa

ra
lle

lC
od

e
In

lin
in

g

Pr
ag

m
a

G
en

er
at

io
n

SS
A

D
et

ra
ns

fo
rm

at
io

n

So

ur
ce

Va
ria

bl
e

R
en

am
in

g

38

1
vo
id
 j
ac
ob
i_
1d
_i
mp
er
(…
)
{

2
…

3

__
km
pc
_f
or
k_
ca
ll
(…
,
&p
ar
al
le
l_
re
gi
on
…)
;

4
…

5
}

6
vo
id
 p
ar
al
le
l_
re
gi
on
(…
)
{

 …
 /
/p
ar
al
le
li
za
ti
on
 s
et
up
 i
ns
tr
uc
ti
on
s

20

__
km
pc
_f
or
_s
ta
ti
c_
in
it
_8
(…
);

 …
 /
/p
ar
al
le
li
za
ti
on
 s
et
up
 i
ns
tr
uc
ti
on
s

25

if
 (
(l
on
g)
va
l8
<=
(l
on
g)
va
l1
0)
 {
//
gu
ar
d
ch
ec
k

26

ph
i1
1
=
(l
on
g)
va
l8
;

27

do
 {

…

33

va
l1
5
=
ph
i1
1
+
po
ll
y_
km
pc
_i
nc
;

34

ph
i1
1
=
va
l1
5;
 /
/i
v
ne
xt

35

}
wh
il
e
(!
((
lo
ng
)v
al
8
<=
 (
lo
ng
)v
al
10

&&
 (
lo
ng
)v
al
15
 >
 (
lo
ng
)v
al
10
))
;

36

}

37
 …

38

 _
_k
mp
c_
fo
r_
st
at
ic
_f
in
i(
…)
;

39

 r
et
ur
n;

40
 }

R
el

lic

3

…

4

%
l
b
.
a
d
d
r

=

a
l
l
o
c
a

i
6
4

5

…

6
 …

7
 s
to
re
 i
32
 %
or
ig
in
al
.l
b,
 i
64
*
%l
b.
ad
dr

8
 …

9
 c
al
l
vo
id
 @
__
km
pc
_f
or
_s
ta
ti
c_
in
it
_8
(…
 %
lb
.a
dd
r
…)

10
 …

11
 %
ub
 =
 l
oa
d
i6
4,
 i
64
*
%u
b.
ad
dr
 /
/l
oc
al
 u
pp
er
 b
ou
nd

12
 %
lb
 =
 l
oa
d
i6
4,
 i
64
*
%l
b.
ad
dr
 /
/l
oc
al
 l
ow
er
 b
ou
nd

13
 %
cm
p
=
ic
mp
 s
gt
 i
32
 %
lb
,
%u
b
//
Gu
ar
d
Ch
ec
k

14
 b
r
i1
 %
cm
p,
 l
ab
el
 %
ru
nt
im
e.
fi
ni
sh
,
la
be
l
%l
oo
p.
bo
dy

Ex
pli

cit
 P

ar
all

eli
sm

G
en

er
at

ion
Va

ria
bl

e
G

en
er

at
io

n

1
#p
ra
gm
a
om
p
pa
ra
ll
el

2
{

3

#p
ra
gm
a
om
p
fo
r
sc
he
du
le
(s
ta
ti
c)
 n
ow
ai
t

4

 f
or
(u
in
t6
4_
t
i=
0;
 i
<=
(3
99
8-
1)
;i
=i
+1
){

5

 B
[i
+1
]
=
((
A[
i+
1]
 +
 A
[i
])
 +
 A
[i
+2
])
/3
;

6

 }

7
}

Pa
ra

lle
liz

at
io

n
Se

tu
p

En
try

Pa
ra

lle
l C

od
e

Re
gi

on
Se

qu
en

tia
l C

od
e

Re
gi

on

Pa
ra

lle
l R

un
tim

e
C

al
l

Pa
ra

lle
liz

ed
 L

oo
p

Pa
ra

lle
liz

at
io

n
Fi

ni
sh

 S
et

up

15
 %
iv
 =
 p
hi
 i
64
 [
 %
iv
.n
ex
t,
 %
lo
op
.b
od
y
],

[
%l
b,
 %
pa
ra
ll
el
iz
at
io
n.
se
tu
p
]

16
 %
B.
i
=
ge
te
le
me
nt
pt
r
i8
,
i8
*
%a
rg
B,
 i
64
 %
iv

17
 …

18
 %
iv
.n
ex
t
=
ad
d
ns
w
i6
4
%i
v,
 %
on
e

19
 %
cm
p
=
ic
mp
 s
gt
 i
64
 %
iv
.n
ex
t,
 %
ub

20
 b
r
i1
 %
cm
p,
 l
ab
el
 %
ru
nt
im
e.
fi
ni
sh
,
la
be
l
%l
oo
p.
bo
dy

21
 …

22
 c
al
l
vo
id
 @
__
km
pc
_f
or
_s
ta
ti
c_
fi
ni
(…
)

23
 r
et
 v
oi
d

1
ca
ll
 v
oi
d
@l
lv
m.
db
g.
va
lu
e(
me
ta
da
ta

do
ub
le
**
 %
B.
ad
dr
,
me
ta
da
ta
 !
30
,…
)

2
ca
ll
 v
oi
d
…@
__
km
pc
_f
or
k_
ca
ll
(…
 @
pa
ra
ll
el
_r
eg
io
n

…
%B
.a
dd
r
…)

X

/
/
N

d
e
f
i
n
e
d

a
s

4
0
0
0

1

f
o
r

(
i

=

1
;

i

<

N

-

1
;

i
+
+
)

2

B
[
i
]

=

(
A
[
i
-
1
]
+
A
[
i
]
+
A
[
i
+
1
]
)
/
3
;

Pa
ra

lle
l I

R
G

en
er

at
io

n

To
 R

el
lic

To
 S

PL
EN

D
ID

Se
qu

en
tia

l S
ou

rc
e

Pr
og

ra
m

O
pt

im
iz

at
io

ns
lo

op
-ro

ta
te

m
em

2r
eg

…

C
om

pi
la

tio
n

Pa
ra

lle
liz

er
(P

ol
ly

)

Pa
ra

lle
l I

R

LL
VM

-IR

SP
L

E
N

D
ID

 (T
hi

s W
or

k)

So
ur

ce
 C

od
e

&
 C

om
pi

la
tio

n
Fl

ow
Pa

ra
lle

l L
LV

M
-I

R
SP

L
E
N

D
ID

 v
s.

R
el

lic Na
tur

al
Co

ntr
ol-

Flo
w

Ge
ne

ra
tio

n

Figure 4.1: A comparison of code decompiled using Rellic [114] and SPLENDID. The
motivating example is a simplified hot loop from jacobi-1d-imper in PolyBench [98].
The original sequential code is compiled into LLVM-IR, optimized by LLVM -O2,
and parallelized using Polly [45]. The resulting parallel LLVM-IR then serves as the
input for decompilation. Compared to code produced by Rellic, code produced by
SPLENDID is portable to any host compiler and natural.

39

profitable collaborative parallelization.

By using SPLENDID, a programmer i) is freed from parallelizing that which the

compiler is capable of parallelizing, ii) can make incremental improvements to what

the compiler can parallelize, and iii) can focus on parallelizing what the compiler

cannot parallelize. The rest of this section starts by describing techniques developed

to overcome each hindrance identified in Section Section 2.1.3. Then, we present an

example demonstrating how each technique in SPLENDID contributes to producing

portable and natural source code. Lastly, we present case studies to show how i)

SPLENDID successfully supports collaborative parallelization, a promising direction

in bringing performance in the post-Moore’s Law era, and ii) despite the enabling

power of collaborative parallelization, SPLENDID advances the state of decompila-

tion by making critical optimizations clearer to programmers.

4.1.1 Explicit Parallel Translation using OpenMP

As far as we know, SPLENDID is the first decompiler that translates parallel IR

into portable OpenMP code [93]. This is achieved by first finding loops parallelized

from a parallel code region with extraneous parallel execution setup code. Then, the

parallel execution setup is removed, namely, instructions that enable a code region to

run in parallel, including parallel runtime function calls. With no implementation-

specific code at the source code, the decompiled code is portable to any compiler

and more natural. After that, SPLENDID generates OpenMP pragmas to replace

IR-level parallelism since OpenMP is widely accepted and can be easily understood

by developers. Lastly, since the parameters of a parallel loop (e.g., loop bounds and

step sizes) are thread-local, loop parameters are restored to the original sequential

loop parameters.

40

4.1.2 Enhanced Natural Control Flow Translation

Unlike many loop optimizations that bring considerable performance gain, loop rota-

tion, though critical for loop normalization, does by itself not improve program perfor-

mance but simplifies the implementation of other loop optimizations. Thus, SPLEN-

DID is designed to de-transform rotated counted loops to for loops. SPLENDID-

generated loops are much more comprehensible since the loop structure is closer to

the original source code. Moreover, the well-structured loops generated by SPLEN-

DID make pragma selection easier. As depicted in the motivating example, when the

loop is restored to a DOALL for loop (with no dependence across iterations), simply

applying #pragma omp for parallelizes the loop. However, SPLENDID intentionally

does not de-transform optimizations other than loop rotation as they do not hinder

portability and are critical to performance.

4.1.3 Natural Variable Reconstruction

Since SSA separates what was originally one source variable into multiple virtual

registers (instructions), SPLENDID collapses instructions connected through a phi

instruction into one variable. Further, SPLENDID beautifies variables by assigning

names to them that are indicative of code semantics. This work proposes relating

each instruction with a source variable through mappings extracted from debug in-

formation. Unfortunately, because of conflicts, mappings of virtual registers to source

variables cannot be directly used to assign variable names. SPLENDID provides a

novel verification module that detects and removes conflicts. Details about conflict

elimination are described in Section Section 4.2.3.

If debug information is missing for an instruction, SPLENDID takes one step fur-

ther and attempts to associate this instruction with debug information from another

code region. Specifically, while debug information is preserved throughout transfor-

mations to the compiler backend in LLVM, optimizations such as automatic paral-

41

lelization [6, 76, 45] developed on top of LLVM are not designed with decompilation

in mind. Thus, when these optimizations insert new instructions, they may not have

precise debug information. To overcome this constraint, SPLENDID assigns source

variables to a code region without source information by relating it to a region where

source information is present through inlining.

4.1.4 SPLENDID in Action

Figure 4.1 shows how each aforementioned technique contributes to the final transla-

tion of the example loop. First, all the parallel runtime setup instructions, which are

at lines 2–12 and 22 in the parallel LLVM-IR, are used to i) restore the parallelized

loops to a sequential loop and ii) generate OpenMP pragmas for the sequential loop.

The parallel code region and its input are some of the inputs to one of the runtime

calls, __kmpc_fork_call at line 2, through which multiple workers are spawned to ex-

ecute the parallel region specified as inputs. Parallel regions are functions containing

the outlined and parallelized loops from the original code. By recognizing inputs to a

fork call, the loops that are parallelized and the original sequential loop parameters

are recognized by SPLENDID. The parallelized loop from lines 15 to 20 is then found

between the runtime initialization call at line 9 and the finish call at line 22. Since

each instance of the parallel region only executes a portion of the parallelized loop,

loop parameters such as loop bounds are unique to each worker and are calculated

using the original loop parameters as inputs to the initialization call. To restore each

parallelized loop to the combined iteration space of all threads, SPLENDID replaces

the loop parameters with the values before the initialization call. For example, the

lower bound at line 12 is replaced with its original value of 0 at line 7. Once the

parallel region is transformed into a sequential loop with OpenMP pragmas, SPLEN-

DID removes all parallelization setup instructions as depicted in gray and inlines the

outlined parallel region into the sequential code region.

42

At this point, the inlined loop is still rotated, and SPLENDID, after verifying the

loop is counted by finding the induction variable at line 15, transforms the sequential

rotated loop into the for loop shown at lines 4 to 6 in the final produced code in

Figure 4.1. Note that SPLENDID removes the guard check at lines 13 and 14 in the

parallel LLVM-IR by proving that it is equivalent to the initial exit condition of the

transformed for loop. Constructing the for loop not only improves naturalness but

also validates the use of the #pragma omp for at line 3, as the pragma can only be

used on a for loop.

Lastly, SPLENDID collapses and renames virtual registers. SPLENDID removes

each phi instruction by replacing its inputs with itself or an expression containing

itself. In the motivating example, iv.next is replaced with iv, the name of the phi

instruction, which is then detected as an induction variable and generated as the

variable i at lines 4 and 5 in the produced code. As the final step, if there is debug

metadata relating a source variable name to a virtual register, an instruction, SPLEN-

DID assigns each instruction the source variable name it is related to unless there

is a lifetime overlap (such a conflict is described in Section Section 4.2.3). When an

instruction has no debug metadata, such as argB from the parallel region at line 16, it

can indirectly relate to a source variable through inlining in the following way. First,

the sequential code region contains debug metadata that maps instruction B.addr to

variable B at line 1. Meanwhile, since the parallelized loop is inlined, argB is re-

placed by the input to the parallel region at line 2, which is B.addr. Thus, as B.addr

is mapped to the source variable B, so does argB after inlining. As SPLENDID finds

no conflict with this mapping, variable B can safely replace argB as the generated

variable name at line 5 in the produced code.

43

4.1.5 Case Studies

This section presents case studies to demonstrate two use cases of SPLENDID. First,

SPLENDID enables compiler-programmer collaborative parallelization, as shown in

Table 4.2 and Figure 4.2. Second, SPLENDID advances the state of decompilation

by presenting natural code in the presence of aggressive compiler transformations, as

shown in Figure 4.3.

Compiler-Programmer Collaboration

Instead of letting the programmer try to optimize the whole program, we propose

an alternative approach. That is, before any manual optimization, let the compiler

present its parallelization plan to the programmer through SPLENDID.

As shown in Table 4.2, there is a large overlap between what the compiler and the

programmer alone can parallelize. By first letting SPLENDID produce parallel code

that is portable to any compiler, programmers are freed from parallelizing loops that

are parallelizable by a compiler. By knowing what the compiler can parallelize, a pro-

grammer can focus on parallelizing loops that the compiler could not parallelize. This

way, SPLENDID enables the parallelization of all loops proposed by the programmer

and the compiler.

Moreover, whatever is already parallelizable by the compiler may also benefit

from the knowledge of a programmer. As shown in Figure 4.2, the example loop

can be conditionally parallelized by the compiler (e.g., Polly [45]) when A and B do

not alias. Thus, an aliasing check is injected to provide a fallback to the sequential

version of the code when A and B alias. The compiler can emit such aliasing check

because i) alias analysis is limited (e.g., because it is limited to intra-procedural

analysis) to proving that A and B do not alias even if the programmer has only called

MayAlias with separately allocated units, or ii) alias may indeed occur at runtime as

the programmer may pass the same pointer to both arguments A and B, as in the

44

1 void MayAlias(double* A, double* B, double *C) {
2 //... initializations
3 for (i = 0; i < N-1; i++){
4 A[i+1] = M_PI*B[i] + exp(C[i]);
5 }
6 }
7 void main(...){
8 double *A = (double*) malloc(n * sizeof(double));
9 double *B = (double*) malloc(n * sizeof(double));

10 double *C = (double*) malloc(n * sizeof(double));
11 MayAlias(A, B, C);
12 MayAlias(A, A, C);
13 }

(a) Original Code

1 void MayAlias(double* A, double* B, double *C) {
2 if ((A+1000) <= B | (B+999) <= (A+1) & (A+1000) <= C | (C+999) <= (A+1))

{//Aliasing check

3 #pragma omp parallel
4 {
5 #pragma omp for schedule(static) nowait
6 for(uint64_t i = 0; i<=998; i = i + 1){
7 A[i+1] = (exp(C[i]) + B[i] * 3.1415926535897931);
8 }
9 }

10 } else {
11 for(uint64_t i = 1; i < 999; i = i + 1){
12 A[(i+1)] = (exp(C[i]) + B[i] * 3.1415926535897931);
13 }
14 }
15 }

(b) SPLENDID Output

1 void NoAlias(double* restrict A, double* restrict B, double* C) {
2 for (i = 0; i < N-1; i++){
3 A[i+1] = M_PI*B[i] + exp(C[i]);
4 }
5 }
6 void <func>_InPlace(double* A, double* C);
7
8 NoAlias(A, B, C);
9 <func>_InPlace(A, C);

(c) Specialized Optimization by Programmer

Figure 4.2: An example of the programmer removing compiler generated aliasing
checks.

45

case of line 12 in the original code. In the first scenario, a programmer, knowing A

and B cannot alias, can remove the sequential version of the code, eliminating the

computational overhead from the aliasing check. If the programmer is a compiler

writer, he/she no longer needs to search in IR to be informed of the limitation in

its compiler analysis. The alias analysis can be improved by looking at decompiled

source code. In the second scenario, the programmer, after knowing that the compiler

can parallelize the cases when A and B do not alias, can improve the original code

by simply restricting the accessing of example code to only when A and B do not

alias (i.e., line 1 in (c)) and focus on optimizing cases when A and B must alias in a

separate function (i.e., line 6 in (c)). In both scenarios, the programmer is freed from

manually parallelizing the example loop under the condition that A and B do not alias.

More importantly, such interaction greatly improves the final produced code in both

naturalness and performance. Such interaction is only enabled through SPLENDID,

as any unnaturalness introduced at the assembly level or by other decompilers can

make finding the aliasing check extremely difficult.

Advancement in Decompilation

Natural decompilation goes beyond producing code identical to the original source

code. An advanced decompiler should present performance-enabling optimizations

the compiler applies in a human-readable way. SPLENDID achieves this by mak-

ing a trade-off of what to de-transform. Figure 4.1 has already shown the natural

representation of the parallelization of SPLENDID. Instead of aggressively applying

de-transformations to all compiler optimizations, SPLENDID chooses to de-transform

only peep-hole optimizations that intrude unnaturalness while having little or no in-

fluence on performance (e.g., SSA and loop rotation). This design choice results in

aggressive optimizations, such as loop transformations, remaining untouched and pre-

sented to the programmer, as shown in Figure 4.3. Performance engineers can then

46

fo
r(
ui
nt
64
_t
 i
 =
 0
;
i
<
99
;
i
=
i
+
1)
{

fo
r(
ui
nt
64
_t
 j
 =
 0
;
j
<
10
0;
 j
 =
 j
 +
 1
){

A[
i
+
1]
[j
]
=
i
+
1
+
j;

}

} fo
r(
ui
nt
64
_t
 i
 =
 0
;
i
<
99
;
i
=
i
+
1)
{

fo
r(
ui
nt
64
_t
 j
 =
 0
;
j
<
10
0;
 j
 =
 j
 +
 1
){

B[
i
+
1]
[j
]
=
((
i
+
1)
 *
 j
 -
 A
[i
][
j]
);

}

}

fo
r
(i
 =
 0
;
i<
10
00
;
i+
+)

 A
[i
]
=
B[
i]
 +
 C
[i
];

fo
r(
ui
nt
64
_t
 i
 =
 0
;
i
<
10
00
;
i
=
i
+
4)

{
A[
i]
 =
 (
B[
i]
 +
 C
[i
])
;

A[
i
|
1]
 =
 (
B[
i
|
1]
 +
 C
[i
 |
 1
])
;

A[
i
|
2]
 =
 (
B[
i
|
2]
 +
 C
[i
 |
 2
])
;

A[
i
|
3]
 =
 (
B[
i
|
3]
 +
 C
[i
 |
 3
])
;

}

fo
r(
i=
1;
 i
<1
00
;
i+
+)
{

fo
r(
j=
0;
 j
<1
00
;
j+
+)
{

A[
i]
[j
]
=
i
+
j;

B[
i]
[j
]
=
i*
j

-
A[
i-
1]
[j
];

}

}

Lo
op

D
is
tri
bu
tio
n

Lo
op

U
nr
ol
lin
g

O
ri

gi
na

l C
od

e
C

om
pi

le
r

O
pt

im
iz

at
io

n
SP

L
E

N
D

ID
 O

ut
pu

t

Figure 4.3: Decompiling loop optimizations using SPLENDID.

47

read the output of SPLENDID and quickly find relevant code properties, such as

unrolling factors.

48

Table 4.2: SPLENDID enables the parallelization of all loops that the compiler and
programmer can parallelize alone, with reduced manual effort.

Benchmarks Programmer
Parallelized [44]

Compiler
Parallelized [45]

Total
Parallelizable

Eliminated Manual
Parallelization

2mm 2 2 2 2
3mm 3 6 6 3
adi 6 2 7 1
atax 2 1 3 0
bicg 2 1 3 0
doitgen 1 1 1 1
fdtd-2d 4 2 4 2
floyd-warshall 1 1 2 0
gemm 1 4 4 1
gemver 4 4 4 4
gesummv 1 1 2 0
jacobi-1d-imper 2 2 2 2
jacobi-2d-imper 2 2 2 2
mvt 2 3 3 2
syr2k 2 4 4 2
syrk 2 4 4 2
Total 37 40 53 24

49

4.2 Design and Implementation

This section describes how SPLENDID obtains the features described in Section Sec-

tion 4.1.

4.2.1 Parallel Source Code Generation

SPLENDID explicitly represents parallel code regions using OpenMP, which consists

of the OpenMP pragmas and sequential code regions to which the pragmas are ap-

plied. OpenMP requires loops to be strictly structured in counted for-loop fashion

with no loop-carried dependences. However, beyond the fact that LLVM loops vastly

differ from OpenMP-compatible loops, parallel IR contains a large body of low-level

OpenMP runtime setup code, making it extremely difficult to extract the parallelized

loop. Nevertheless, SPLENDID transforms highly obfuscated IR into portable and

natural parallel C code. It starts with the OpenMP Semantic Analyzer.

Parallel Semantic Analyzer

Parallel Semantic Analyzer first collects the runtime calls and then extracts the par-

allel code regions from the runtime fork calls: __kmpc_fork_call. The fork function

gets an outlined function as an argument, and when it is called, it creates multiple

workers to work on the outlined function simultaneously. The Parallel Analyzer then

finds the parallel code region through the outlined function.

Parallel Region Detransformer

Parallelized Region Detransformer i) extracts each parallelized loop from the paral-

lel code region, ii) restores loop parameters, and iii) removes all the parallelization

setup instructions such that the output only contains the original loop. To detect a

parallelized loop, the Parallelized Region Detransformer searches for loops between a

50

Parallel LLVM-IR

Parallel C Code w/ OpenMP

Metadata
Interpreter

Parallel
Semantic
Analyzer

Variable
Generator

Variable Proposer

Loop
Inliner

 Parallel
 Region

Detransformer

IR-Variable
Mappings

Control-Flow
Generator

Variable Names

Conflicting
Definition Detection

Pragma
Generator

Inlined
Loops

Per Fork Call

Loop-Rotate
Detransformer

Outlined
Functions

Runtime
Calls

PHI
Renamer

Explicit Parallelism

Natural Control-Flow

Variable Generation

⁕

⁕

⁕

⁕

†

†

‣
‣

‣

Figure 4.4: The design and workflow of SPLENDID.

51

pair of runtime function calls that initializes and ends a parallelized region, such as

__kmpc_for_static_init_8 and __kmpc_for_static_fini in Figure 4.1. Then, loop

parameters are restored by replacing them with those used as arguments for the ini-

tialization call. Since extraneous instructions can cause an error when placed between

#pragma omp for and the parallelized loop, the parallelization-related instructions

are removed.

The loop is then inlined into the sequential code region. Since the runtime fork call

indirectly calls the outlined function, inlining requires that the Loop Inliner replaces

arguments passed into the runtime fork call with their corresponding arguments of

the outlined function. Lastly, the Loop Inliner replaces the runtime fork call in the

sequential region with the transformed sequential loop, eliminating the last runtime-

dependent instruction.

Pragma Generator

Explicit parallelism is presented using sequential loops with OpenMP directives.

Pragmas are generated from runtime function calls through one-to-one or many-to-one

mappings or from static analysis (e.g., private clause). Scheduling policy and chunk

size are determined by extracting and interpreting parameters of runtime initialization

calls. When more than one correct translation exists, the Pragma Generator uses the

most performing pragmas. For example, a pair of __kmpc_static_for_init_8 and

__kmpc_for_static_fini with no barrier calls can be transformed into both #pragma

omp for schedule(static) and #pragma omp for schedule(static) nowait. The Pragma

Extractor, in this case, produces the latter since there is no implicit barrier.

While most pragmas are generated through runtime calls, the Pragma Generator

minimizes the use of clauses to reduce the knowledge required for programmers to

interpret code produced by SPLENDID. For example, if the earliest definition of a

variable is inside the parallel region, declaring it inside the parallel region by default

52

makes the variable private, thus eliminating the need of using the private clause.

4.2.2 Natural Control-Flow Generation

SPLENDID generates for loops which OpenMP requires through de-transforming

loop rotation. The Loop Rotate Detransformer first attempts to produce a for loop

from a well-structured rotated loop by searching for loop parameters, including the

induction variable and loop upper and lower bounds. Traditionally, inverting a rotated

loop is done by loop peeling, which separates the first iteration from the rest of the

loop so that the exit condition can be moved before the loop body. A loop initially

rotated from a for loop is counted and thus can omit loop peeling by directly changing

the upper bound to allow execution of one more iteration since the exit condition is

checked before executing the loop body. Inverting the rotated loop creates a for loop,

but within a guard check created by loop rotation to ensure that if the exit condition

before loop rotation fails, the loop is not executed once by mistake. This guard

check can be removed if it is verified to be equivalent to the initial exit condition

of the transformed for-loop. For example, in Figure 4.1, the guard check prevents

entering the loop if the lower bound is greater than the upper bound in line 13 in the

IR. The rotated loop exits if the induction variable initialized with the lower bound

incremented by one is greater than the upper bound in line 19. Since loop rotation

examines the exit condition one iteration later than the original loop, transforming

this exit condition to be used for a for loop will make it equivalent to the guard check.

Therefore, the guard check in the motivating example can be safely removed by the

Loop-Rotate Detransformer.

4.2.3 Variable Generation

This section describes how variables are generated by combining phi instructions,

detecting and utilizing conflict-free debug information, and inlining parallel code re-

53

gions.

Variable Proposer

Variable generation starts by proposing to replace instructions with variables that

reflect original code semantics. The incoming values of phi instructions are proposed

to be combined and named with the phi instruction itself. The Metadata Interpreter

leverages LLVM-IR metadata containing source variable debug information. The rela-

tionship between an IR and a source variable is contained in debug intrinsics encoded

as LLVM metadata. As shown in Figure 4.5, %1 and %2 are both associated with the

variable var through a debug intrinsic function containing metadata !30. While debug

information can be invalidated as optimizations are applied, LLVM guarantees that

debug information are correct throughout all the mid-level and backend passes [101],

including mem2reg. Thus, the Metadata Interpreter can safely rely on debug infor-

mation. A Metadata Extraction table is built with the debug information, as shown

in Figure 4.5. Since a phi instruction may also be mapped to a source variable when

the incoming values are combined for a phi instruction, they are mapped together to

the associated source variable.

Variable Generator

While many instructions can be mapped to the same variable, mappings are invalid

if instructions mapped to the same variable have a conflict. A conflict in variable

naming occurs when a pair of instructions have overlapping lifetimes. For example, a

conflict exists between %1 and %2 in Figure 4.5 since they map to the same variable

var, and instruction F uses %1 after %2 is defined. Renaming them with the same

variable results in incorrect execution, as %1 will wrongfully use the value of %2.

Thus, the Conflicting Definition Detection module inside the Variable Generator is

designed to remove such conflicting mappings. The module detects the most recent

54

variable definitions at every point in the program, as described in Algorithm 1. This is

a forward data flow analysis in which a most recent variable to an instruction mapping

is generated at this instruction if metadata containing a source variable is available,

indicating that the most recent definition of the variable is the current instruction.

Simultaneously, the old definition of the variable to which a new definition is generated

is killed (i.e., their lifetime ends), as depicted in the Most Recent Variable Definition

table in Figure 4.5.

Once the most up-to-date variable definitions are established at each point of

the program, the module then uses it to remove conflicting definitions from the pro-

posed instruction-to-variable map, as described in Algorithm 2. At each use of a

proposed variable definition, the algorithm checks if the most up-to-date definition

of the proposed variable is indeed the used definition. If not, a conflict is detected,

and SPLENDID chooses to remove the most recent mapping to eliminate the conflict

arbitrarily. For example, at instruction F, the definition at use, %1, is mapped to

variable var according to the Metadata Extraction Table generated by the Variable

Proposer. However, according to the Most Recent Variable Definition table, the most

recent definition for var is %2 at instruction F. Thus, only the %1-to-var mapping

is valid, and the %2-to-var mapping is removed. After Conflicting Definition Detec-

tion, the rest of the instruction-to-variable mappings are valid for generating variable

names. For example, %3, which also maps to var, is not defined before any use of 1

or 2, so it can also be mapped to var.

The Variable Generator then generates declarations using the resulting mappings.

At the definition or use of a variable, the Variable Generator returns the same value

as its declaration by referring to the exact IR-variable mapping shown in Figure 4.5.

As for variables without a mapping, such as %2, they are given the virtual register

name as it is unique and somewhat meaningful (e.g., indvar tells the programmer

this variable is an induction variable).

55

A: %1 = …
B: call void @llvm.dbg.value(metadata i8* %1, metadata !30,…
C: func(%1)
D: %2 = …
E: call void @llvm.dbg.value(metadata i8* %2, metadata !30,…
F: func(%1)
G: %3 = …
H: call void @llvm.dbg.value(metadata i8* %3, metadata !30,…
I: func(%3)
… // no more use of %1 or %2
J: !30 = !DILocalVariable(name: “var”…

%1 var
%3 var

Final IR-Variable Map

Definition Variable

InstructionDefinition
A

Variable
var

Metadata Extraction (§4.3.1)
IR_Variable_Proposal

IR_Variable_Map

%1
varD %2

Intermediate Results
var%3G (var, %2)

(var, %1)
A

Most Recent Var-IR PairsInstruction

F
G (var, %3)

(var, %3)I

D

(var, %1)

Most Recent Variable Definition (§4.3.2)

(var, %2)
C

Input Program

IR_Variable_Map

%1 %1

Conflicting Variable Detection (§4.3.2)

Instruction
C

%1F %2
var
var

Most Rencent IR
for VariableAvailable

Variable

varI %3%3

Operand

Figure 4.5: An example of how SPLENDID associates an IR to a source variable
(Final IR-Variable Map) through the Metadata Interpreter and Conflicting Definition
Detection.

56

Algorithm 1: Most Recent Variable Definitions
Input: IR_Variable_Proposal - Proposed instruction to variable mappings
Result: MR_Var_IR_Maps - Most recent variable definitions at each

instruction
Var ← getVariable(I, IR_Variable_Proposal);
GEN[I] ← (Var, I);
Kill[I] ← (Var, I_old);
IN[I] ← ∪PI∈Pred(I)OUT[PI];
OUT[I] ← GEN[I]∪(IN[I]-Kill[I]);
MR_Var_IR_Maps ← OUT;
return MR_Var_IR_Maps;

Algorithm 2: Conflicting Definition Removal
Input: IR_Variable_Proposal - proposed instruction to variable mappings

MR_Var_IR_Maps - Output of Algorithm 1
Result: IR_Variable_Map - validated mappings with conflicting definitions

removed
for Instruction I in F do

for Operand op in I.Operands() do
var ← getVariableName(op);
if op != MR_Variable_IR_Maps[I][var] then

IR_Variable_Proposal.erase(pair(op, var)) ;
end

end
IR_Variable_Map ← IR_Variable_Proposal;
return IR_Variable_Map;

57

Chapter 5

Evaluation

This chapter provides an empirical evaluation of the thesis, focusing on the effec-

tiveness of enhancing code quality—specifically in terms of robustness and readabil-

ity—through the proposed Tulip pipeline equipped with the natural decompilation

technique, SPLENDID. TULIP and SPLENDID are based on the LLVM Compiler In-

frastructure [101] (versions 9.0.0 and 10.0.1, respectively), with SPLENDID addition-

ally utilizing the LLVM C Backend [29] for basic decompilation support of C syntax.

The C backend closely approximates a one-to-one translation from IR instructions to

C statements, translating IR branch instructions into C goto statements. All modules

described in Chapters 3 and 4 were developed in-house for Tulip and SPLENDID.

The evaluation of Tulip and SPLENDID is structured as follows:

• Section 5.1 describes the experimental setup for this evaluation, including the

selection of benchmarks, tools, and metrics used.

• Section 5.2 details the established pipelines enabled by this thesis and demon-

strates the extensibility of the proposed Tulip transpilation, which achieves

complex integrations with only a few lines of code.

• Section 5.3 presents a detailed analysis of the performance improvements in

58

code generated by Tulip, comparing it to native compilers and the best previous

approaches.

• Lastly, Section 5.4 assesses the naturalness of the code using the BLEU score

and lines of code as metrics. This section also highlights a code snippet from

Tulip’s code generation, emphasizing the reduction in explicit data movement

achieved through SPLENDID decompilation and the recovery of variables by

SPLENDID.

5.1 Experiment Setup

We performed 4 experiments to evaluate Tulip. First, we demonstrate the perfor-

mance improvement of Tulip with all performance enablers in action against the best

prior approaches. Second, we showcase Tulip’s performance improvement when en-

hanced by NOELLE. Third, we show the performance numbers of OpenACC and

Line of Code (LoC) for the components of Tulip. Lastly, we show a code snippet of

Tulip-generated code to make a case for naturalness.

We performed 4 experiments to evaluate SPLENDID. First, we show that the

SPLENDID-generated code is natural and enables collaborative parallelization. Sec-

ond, naturalness is further depicted by portability. Namely, SPLENDID is recompil-

able using other compilers and libraries such as GCC and libgomp. Third, we provide

BLEU score and LoC to measure code naturalness. Lastly, we show the percentage

of variables reconstructed by SPLENDID.

5.1.1 Benchmarks

We evaluated Tulip against 20 Polybench [98] benchmarks handwritten in CUDA,

with their OpenMP and Hip equivalents as baselines. CUDA, OpenMP and Hip

implementation of the same benchmarks have no algorithm level changes. 10 bench-

59

marks are eliminated for they need support from thrust library. Since Tulip focuses

on PPM transpilation itself, library function support is out of the scope of this pa-

per. Cholesky failed in its Hip implementation and our baseline transpiler, Polygeist.

Thus, we also excluded Cholesky 1 from most graphs for a fair comparison and simple

calculation.

We measure the end-to-end runtime of each benchmark. Speedups are calculated

by averaging 5 runs of each benchmark to reduce variance. For each benchmark,

we verified the output for correctness by making sure the output of their sequential

equivalent or within an acceptable range of small floating point precision errors due

to optimizations

Similarly, SPLENDID is evaluated using 16 benchmarks from the PolyBench

benchmark suite. Other benchmarks in PolyBench are excluded due to the lack

of industrial-level robustness in CFG transformations implemented in SPLENDID.

To generate parallel IR (i.e., the input to SPLENDID), a benchmark is first compiled

to LLVM-IR, optimized with LLVM -O2, and parallelized using Polly [45]. Com-

paring original sequential code to parallel code generated from parallel LLVM-IR is

counter-intuitive when evaluating code naturalness since even manually parallelized

code should look different from the sequential code. Thus, we define code naturalness

to be how close the decompiled parallel code is to a piece of semantically equivalent

hand-written parallel code. To obtain reference code fair for comparison, OpenMP

pragmas are manually added into the original sequential source code according to how

Polly parallelizes them to simulate the most natural parallel code that a decompiler

can generate using OpenMP without divergence in semantics.
1Reported here are the raw speedup numbers against sequential CPU run time.

clang.cpu: 15.73, gcc.cpu: 15.09, clang.cpu.noelle: 15.70, gcc.cpu.noelle: 15.12, icx.cpu:
16.67, icx.cpu.noelle: 16.52, nvhpc.nvidia: 173.67, nvhpc.nvidia.noelle: 174.72, clang.nvidia:
98.51, clang.nvidia.noelle: 99.30, clang.amd: 78.08, clang.amd.noelle: 78.33, aomp.amd: 76.39,
aomp.amd.noelle: 76.58

60

5.1.2 Hardware Systems

We evaluated Tulip transpilation performance on mainstream GPU and CPU systems,

including multicore shared memory, NVIDIA and AMD GPU. The CPU evaluation

was done on a machine with two Intel Xeon E52697 v3 processors, each with 14 cores

(28 cores total) and a total of 252 GB of memory. The operating system is 64-bit

Ubuntu 20.04 LTS. The GPU evaluation for NVIDIA was done on a system with

Intel Xeon Gold 6252 × 2 with 192 GB memory and an NVIDIA A100 (40 GB), and

for AMD on a system with Intel Xeon Silver 4215 × 2 with 384 GB Memory and an

AMD MI210, both of which use AlmaLinux 8.7 for their operating system.b Further

specification for the GPUs are in Figure 5.5a (b).

For SPLENDID, performance of all programs are evaluated on a commodity

shared-memory machine with two 14-core Intel Xeon CPU E5-2697 v3 processors

(28 cores total) running at 2.60GHz (turbo-boost disabled) with 250GB of memory.

The operating system is 64-bit Ubuntu 20.04 LTS with GCC 9.4.0.

5.1.3 Baselines

We use Polygeist [81, 53] (commit 11265cd8) as a baseline, a state-of-the-art tran-

spilation framework that targets the same hardware as Tulip. Polygeist uses a

common parallel-optimization-friendly intermediate representation to retarget CUDA

programs to run on either the originally intended NVIDIA GPU, AMD GPU, or

CPU while applying target-specific optimizations. MCUDA as a potential baseline

for source-to-source transpilation was eliminated because, as prior work [81] suggests,

it handles the earliest release and only a subset of input semantics, and we were

unable to compile Polybench with it. Since there is no direct CUDA-to-OpenMP

or OpenACC source-to-source transpiler, we use Hipify to translate CUDA to Hip to

compare performance on AMD GPUs. Since Hip is the official programming language

for AMD GPUs and HipCC the native AMD compiler, Hipify is used as a baseline

61

comparison against Tulip’s transpilation to OpenMP AMD Offloading.

For SPLENDID, Rellic, the state-of-the-art LLVM-to-C decompiler, and Ghidra,

a widely used binary-to-C decompiler, are used as baselines. Rellic is the fairest

comparison since its input is at the same level as SPLENDID, while the input of

Ghidra is binary. Nevertheless, we found Ghidra to be a competitive baseline as it is

an industrial standard.

5.1.4 Tools Selection

As described in Figure 2.1, Tulip enables using toolings that are otherwise incompat-

ible with the source PPM, among which we selected the most widely used compilers

for compilation, namely, Clang (v9.0.0), GCC (v9.4.0), and ICX (2024.0.2) for mul-

ticore systems, NVCC (native, v12.3), Clang (v18.1.2), and NVHPC (v24.3-0) for

NVIDIA GPUs, and HipCC (v19.0.0), Clang (v18.1.2) and HipCC(native, v5.4) for

AMD GPUs. Additionally, NVHPC is also used to compile Tulip transpiled Ope-

nACC.

5.1.5 Metrics

Tulip focuses its evaluation on performance and extensibility with metrics commonly

seen in literature such as speedup and LoC. For SPLENDID, the first metric used

is speedup, which shows that SPLENDID-produced code is portable to other host

compilers. Then, several naturalness metrics are used to evaluate the claim that

since explicit parallelism is expressed through OpenMP directives in SPLENDID, it

also brings naturalness on top of portability. First, naturalness is measured using

the number of code lines (LoC) since eliminating low-level parallel implementation

dramatically reduces LoC. Then, the percentage of variable names restored to the

source is provided to show the effectiveness of the variable renaming of SPLENDID

(Section Section 4.1.3).

62

Lastly, the BLEU score (BiLingual Evaluation Understudy) [95] is used to measure

overall code naturalness. The BLEU score measures the similarity between a refer-

ence text to a set of manual translations of the same text. It correlates highly with

the human-evaluated quality of natural-language translations [95], which also has

been explored recently to evaluate programming languages, specifically in machine

learning-based code migration (e.g., source-to-source compilers [61, 38, 60, 59, 2]).

The use of the BLEU score for formal languages is well established in the literature.

CodeXGLUE [72] project developed by Microsoft, for example, uses it to evaluate

every source-to-source compiler infrastructure submitted for testing. As in this pa-

per, others [106, 121] use BLEU as the gold standard. However, no other proposed

metrics have been found to be practically better. For example, codeBLEU [106] by

design is biased towards longer inputs because it can find more matches from the

reference. Originally, BLEU score ranges from 0 to 1 with 1 the translated text being

identical to a reference. To conform with other literature, this paper uses BLEU-4

score with the score also reported on a scale between 0 and 100. Appendix A.1 illus-

trates in detail how BLEU-4 score is calculated and its capability in measuring code

naturalness. As already pointed out by Tran et al. (in [121]), BLEU does not enforce

rigorous word ordering following the syntactic rules of a programming language and

thus does not evaluate the correctness of code. Whether code emitted by SPLENDID

is syntactically and semantically correct by construction is confirmed by showing a

similar speedup to the parallelizing compiler.

5.2 Translation Pipelines

Table 5.1 presents the current transpilation pipelines supported by Tulip. C, OpenMP,

and CUDA all utilize Clang as a common frontend. For CUDA, Clang generates

NVPTX-related calls, address space, and PTX intrinsics, whereas for OpenMP, it

63

Ex
ist

in
g

Tu
lip

Pi
pe

lin
e

St
an

da
rd

Fr
on

en
d:

C
la

ng
N

or
m

al
iz

at
io

n
(L

oC
)

Pa
ra

lle
liz

in
g

C
om

pi
le

r
(L

oC
)

A
ut

oP
ar

In
te

rp
re

te
r

(L
oC

)
C

D
ec

om
pi

le
r:

SP
LE

N
D

ID
Pr

ag
m

a
D

ec
om

pi
la

tio
n

(L
oC

)

C
/O

pe
nM

P→
Po

lly
→

O
pe

nM
P

Po
lly

(9
8k

)
po

lly
-in

te
rp

re
t

(5
09

)
(1

92
x)

C
/O

pe
nM

P→
N

O
EL

LE
→

O
pe

nM
P

N
on

e
(0

)

C
U

D
A
→

N
O

EL
LE
→

O
pe

nM
P

om
p-

ge
n

(2
23

)
(5

3x
)

C
U

D
A
→

N
O

EL
LE
→

O
pe

nA
C

C

40
4k

Lo
C

cu
da

-n
or

m
al

iz
e

(1
k)

(4
04

x)

N
O

EL
LE

(1
06

k)
no

el
le

-in
te

rp
re

t
(2

64
)

(4
01

x)

12
k

Lo
C

ac
c-

ge
n

(2
28

)
(5

2x
)

Ta
bl

e
5.

1:
Lo

C
co

m
pa

ris
on

of
di

ffe
re

nt
co

m
po

ne
nt

s
of

ex
pe

rim
en

te
d

Tu
lip

pi
pe

lin
e.

Sh
ad

ed
in

co
lu

m
ns

ar
e

ex
ist

in
g

to
ol

s
th

at
do

no
t

ch
an

ge
ac

ro
ss

PP
M

s.
T

he
nu

m
be

rs
in

pa
re

nt
he

se
s

ar
e

th
e

Lo
C

nu
m

be
rs

.

64

syrk syr2k
gemm

2mm 3mm doitgen
adi fdtd-2d

gemver
jacobi-1d-imper

jacobi-2d-imper

mvt atax bicg gesummv

lu symm
covariance

correlation

trmm
cholesky

nussinov
seidel-2d

heat-3d
geomean

0.03
0.06
0.12
0.25

0.5
1
2
4
8

16
32
64

128

Sp
ee

du
p

(x
)

Figure 5.1: Performance of Tulip generated OpenACC source code.

produces KMPC-related calls. NVPTX calls, without normalization, are not exe-

cutable on CPUs. However, no normalization is required for OpenMP since the back-

end, SPLENDID, includes KMPC decompilation. Consequently, no additional lines

of code (0 LoC) are needed for normalization in the compilation of C or OpenMP, as

pragmas are ignored during the compilation process. Remarkably, Tulip achieves nor-

malized CPU-targeted IR from various input PPM within 1,000 lines of code, which

is 400 times fewer than required by the complex Clang compiler.

We experimented with integrating two parallelizing compilers into the proposed

transpilation pipeline: Polly [45] and NOELLE, each equipped with its own analysis-

based interpreter at the IR level. Both compilers are complex and feature extensive

code analysis capabilities. Specifically, NOELLE utilizes numerous profilers and anal-

ysis frameworks and creates advanced abstractions on top of LLVM-IR, such as pro-

gram dependence graphs, loop forests, and environments. However, the interpreter

developed within Tulip is 400 times simpler than these complex parallelizing compil-

ers. In the case of Polly, which was developed before the introduction of Tulip meta-

data, significant effort is devoted to decompiling KMPC runtime function calls. This

task could be transferred to the Tulip frontend as a normalization pass for OpenMP.

Despite the challenges of decompiling runtime functions instead of interpreting Tulip-

generated metadata, the integration of Polly was achieved with approximately 500

lines of code, making it 192 times simpler than the Polly parallelizer itself.

In addition to the OpenMP backend, we have implemented emitting OpenACC

directives to demonstrate the extensibility of the Tulip backend. OpenACC [94], like

65

OpenMP, is a parallel extension for C/C++ but is prescriptive in nature and thus

gives the compiler a higher degree of freedom for optimization. The generation of

both OpenMP and OpenACC pragmas is distinct from the natural C code generation

process. While the decompilation of 12k lines of C code is substantial, the generation

of parallel extensions for OpenMP and OpenACC involves only about 200 lines of

code each, primarily consisting of a direct mapping from Tulip metadata to pragmas.

Figure 5.1 illustrates a significant performance improvement, showing a geometric

mean speedup of 5.36x for Tulip-generated OpenACC code, validating its correctness

and efficiency within the current transpilation framework. The generated code was

compiled using the NVHPC OpenACC compiler, the primary support of OpenACC,

to ensure a direct translation.

5.3 Migrated Code Performance

Figure 5.2 shows the performance of all the transpilation pipelines enabled by Tulip

and Figure 5.3 shows inside of Tulip the performance differences with and without

NOELLE. We produced three plots for the three targets we evaluated: multicore CPU,

NVIDIA GPU, and AMD GPU. When the best configuration is picked, Tulip outper-

forms the original programming model, native compilers, and best prior work. This

is largely due to its flexibility with tools, automatic parallelization, and programmer

interaction. With all performance enablers described in Section 3.1 in action, against

Polygeist, TULIP achieves a geomean speedup of 2.93x, 37%, and 11% on multicore,

NVIDIA, and AMD systems, respectively. Moreover, compared to native compila-

tion, TULIP achieves 85%, 14%, and 12% against handwritten OpenMP, CUDA, and

Hip, respectively.

66

do
itg

en
he

at
-3

d
trm

m
co

va
ria

nc
enu
ss

ino
v

ge
om

ea
n

(m
an

ua
l)sy

rk
jac

ob
i-1

d-
im

pe
r

se
ide

l-2
dge

mve
rco

rre
lat

ion3m
m

2m
m

ge
mm

sy
mm

lu
mvt

sy
r2

k
jac

ob
i-2

d-
im

pe
r

bic
g

ge
su

mmvat
ax

ad
i

fd
td

-2
d

ge
om

ea
n

(a
ll)

0

0.
51

1.
52

2.
53

MI210
Speedup (x)

0.05

0.03

3

3
19

7
6

8

Pa
ra

lle
liz

at
io

n
En

ab
le

rs
: T

ul
ip

, C
om

pi
le

r T
oo

lch
ai

ns
,

Pr
og

ra
m

m
er

(L
in

es
 o

f c
od

e
ch

an
ge

d
fo

r
m

an
ua

l p
ar

al
le

liz
at

io
n)

Pa
ra

lle
liz

at
io

n
En

ab
le

rs
: T

ul
ip

, C
om

pi
le

r T
oo

lch
ai

ns

(c
)

CU
DA

 ->
 Tu

lip
 ->

 O
pe

nM
P

->
 C

la
ng

 ->
 M

I2
10

Tu
lip

 B
es

t
CU

DA
 ->

 Tu
lip

 ->
 O

pe
nM

P
->

 H
IP

CC
 ->

 M
I2

10
CU

DA
 ->

 P
ol

yg
ei

st
 ->

 M
I2

10
CU

DA
 ->

 Tu
lip

 ->
 O

pe
nM

P
->

 P
ro

gr
am

m
er

 ->
 M

I2
10

CU
DA

 ->
 H

IP
IF

Y
->

 H
IP

 ->
 C

la
ng

 ->
 M

I2
10

HI
P

->
 H

IP
CC

 ->
 M

I2
10

X

ge
su

mmvfd
td

-2
d

he
at

-3
d

at
ax

bic
g

nu
ss

ino
v

ge
om

ea
n

(m
an

ua
l)lu

sy
rk

sy
r2

k
se

ide
l-2

dge
mm

2m
m

3m
m

do
itg

en
mvt

trm
m

sy
mm

ad
i

jac
ob

i-1
d-

im
pe

r

jac
ob

i-2
d-

im
pe

r

ge
mve

rco
va

ria
nc

eco
rre

lat
ion

ge
om

ea
n

(a
ll)

0123456

CPU
Speedup (x)

20

21
22

15
18

4

17

0.08

0.04

0.02

Pa
ra

lle
liz

at
io

n
En

ab
le

rs
: T

ul
ip

, C
om

pi
le

r T
oo

lch
ai

ns
, P

ro
gr

am
m

er
(L

in
es

 o
f c

od
e

ch
an

ge
d

fo
r

m
an

ua
l p

ar
al

le
liz

at
io

n)
Pa

ra
lle

liz
at

io
n

En
ab

le
rs

: T
ul

ip
, C

om
pi

le
r T

oo
lch

ai
ns

(a
)

CU
DA

 ->
 Tu

lip
 ->

 O
pe

nM
P

->
 C

la
ng

 ->
 C

PU
Tu

lip
 B

es
t

CU
DA

 ->
 Tu

lip
 ->

 O
pe

nM
P

->
 G

CC
 ->

 C
PU

CU
DA

 ->
 P

ol
yg

ei
st

 ->
 C

PU
CU

DA
 ->

 Tu
lip

 ->
 O

pe
nM

P
->

 IC
X

->
 C

PU
Op

en
M

P
->

 C
la

ng
 ->

 C
PU

CU
DA

 ->
 Tu

lip
 ->

 O
pe

nM
P

->
 P

ro
gr

am
m

er
 ->

 C
PU

X
X

X

co
va

ria
nc

eco
rre

lat
iontrm

m
he

at
-3

d
do

itg
en

nu
ss

ino
v

ge
om

ea
n

(m
an

ua
l)mvt

3m
m

2m
m

lu
sy

r2
k

ge
mm

jac
ob

i-2
d-

im
pe

r

sy
mm

sy
rk

se
ide

l-2
dfd

td
-2

d
jac

ob
i-1

d-
im

pe
r

ad
i

ge
su

mmvat
ax

bic
g

ge
mve

r
ge

om
ea

n
(a

ll)

0

0.
51

1.
52

2.
5

A100
Speedup (x)

7
41

19
3

3

5

13

Pa
ra

lle
liz

at
io

n
En

ab
le

rs
: T

ul
ip

, C
om

pi
le

r T
oo

lch
ai

ns
, P

ro
gr

am
m

er
(L

in
es

 o
f c

od
e

ch
an

ge
d

fo
r

m
an

ua
l p

ar
al

le
liz

at
io

n)
Pa

ra
lle

liz
at

io
n

En
ab

le
rs

: T
ul

ip
, C

om
pi

le
r T

oo
lch

ai
ns

(b
)

 C
UD

A
->

 Tu
lip

 ->
 O

pe
nM

P
->

 C
la

ng
 ->

 A
10

0
Tu

lip
 B

es
t

 C
UD

A
->

 Tu
lip

 ->
 O

pe
nM

P
->

 N
VH

PC
 ->

 A
10

0
 C

UD
A

->
 P

ol
yg

ei
st

 ->
 A

10
0

CU
DA

 ->
 Tu

lip
 ->

 O
pe

nM
P

->
 P

ro
gr

am
m

er
 ->

 A
10

0
CU

DA
 ->

 N
VC

C
->

 A
10

0

Figure 5.2: Performance enhancements comparing Tulip’s transpilation to the best
previous methods, including Polygeist and Hipify, relative to native compilation. The
’-O3’ optimization level is consistently applied across all compilers. Each pipeline’s
performance is evaluated both with and without the NOELLE framework, and the
superior configuration is selected for comparison. ’Tulip Best’ represents the optimal
result for each benchmark, utilizing the most effective tools and, where applicable,
manual performance optimizations at the source level.

67

5.3.1 Freedom of Choosing the Tools

We first show the performance difference of various tooling. In (a), GCC almost

always outperforms other compilers due to its robust in-house optimization. GCC,

however, is of no use in the case of direct transpilation such as Polygeist, as shown

in Figure 2.1. In (c), For some benchmarks like gemm or bicg, Clang-compiled code

performs better, and for others like 2mm or syr2k, HipCC-compiled code runs faster.

Since Tulip provides the freedom to choose tools tailoring performance for each bench-

mark, the Tulip Best speedup consists of the maximum speedup out of all tools for

each benchmark.

Automatic Parallelization

Figure 5.3 shows across all platforms, whenever a benchmark noticeably performs bet-

ter than the native compiler is when NOELLE is in the pipeline. On both NVIDIA

and AMD GPUs, many benchmarks perform at best as the native compiler, as shown

as vertically aligned at 1x along the x-axis. With NOELLE, many benchmarks per-

form significantly better, up to 5x, than the speedup gained without NOELLE on the

CPU.

5.3.2 Programmer Interactivity

For 6 benchmarks that exhibited suboptimal performance on each system, as shown

on the left side of Figure 5.2, we manually parallelized them because Tulip generates

naturally comprehensible source code, making it easier for programmers to modify,

as detailed in Section 5.4. On average, all manual modifications involved no more

than 20 lines of code. Most benchmarks benefited from straightforward adjustments,

such as altering loop scheduling, chunking policies and imposition of thread limits

in GPU-targeted code. Additional enhancements included optimizing data transfer

pragmas to improve efficiency beyond the conservative original translations (e.g.,

68

0
1

2
3

4
No

el
le

 O
FF

 S
pe

ed
up

01234 Noelle ON Speedup

Ba
se

lin
e:

 O
pe

nM
P

->
 C

la
ng

 ->
 C

PU

CP
U

(c
la

ng
)

CP
U

(g
cc

)

0.
0

0.
5

1.
0

1.
5

No
el

le
 O

FF
 S

pe
ed

up

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

1.
6

Noelle ON Speedup

Ba
se

lin
e:

 C
UD

A
->

 N
VC

C
->

 A
10

0

A1
00

 (n
vh

pc
)

A1
00

 (c
la

ng
)

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

No
el

le
 O

FF
 S

pe
ed

up

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

Noelle ON Speedup

Ba
se

lin
e:

 H
IP

 ->
 H

IP
CC

 ->
 M

I2
10

M
I2

10
 (c

la
ng

)
M

I2
10

 (a
om

p)

Figure 5.3: Effect of NOELLE on performance with the native programming model
and compiler for each of the NVIDIA, AMD, and Multicore CPU platforms.

69

changing ’tofrom’ to ’from’ for result arrays initialized within the kernel). However,

implementing these adjustments on the compiler side is challenging, as no single set of

optimizations yields optimal performance across all benchmarks and target platforms.

In cases like correlation, where more modification is required, Tulip’s static ap-

proach to ordering nested loops sometimes causes unwanted memory access patterns.

This involves manually changing the tiling effect created by CUDA’s execution model

(i.e., collapsing loops along each grid and block dimension or changing the tiling

size). Doing so also eliminates the expensive calculation of the index from the block

and thread IDs that involve multiplication. Creating a heuristic to automatically

explore the impact of different placements and scheduling strategies on performance

optimization is an interesting future work direction2.

dim3 block{threadsPerBlock, 32, 1};
dim3 grid{blocksPerGrid, 8, 1};
kernel<<<grid, block>>>(...);

(a) CUDA

#pragma omp parallel for collapse(2)
for(int i = 0; i < blockPerGrid; i = i + 1)
for(int j = 0; j < threadsPerBlock; j = j + 1)

//loop tiling
for(int k = 0; k < 8; k = k + 1)
for(int l = 0; l < 32; l = l + 1){

m = 8 * i + k;
n = 32 * j + l;
//kernel

}

(b) Tulip Generated OpenMP

#pragma omp parallel for collapse(2)
for (int i = 0; i < n; i++)

for (int j = 0; j < n; j++)
//kernel

(c) Handwritten OpenMP

Figure 5.4: Simplified loop nests from gemver.

Loop Tiling Most Polybench benchmarks see performance improvements from loop

tiling, as indicated in Figure 5.4, which shows an overall speedup in the majority of

benchmarks running on CPUs (Figure 5.2 (a)). Due to the CUDA programming

model, which aligns closely with the hierarchically parallel structure of GPUs, pro-

grammers must define the grid and block dimensions. These dimensions are analogous

to loop nests in CPUs and often follow widely accepted best practices for optimal

performance. Typically, the block dimension should be multiples of 32, while the

grid size should correspond to the size of the processed elements. This adherence

to ’golden rules’ for setting block and grid sizes is not primarily about optimizing
2Insights credited to Yebin Chon and all other coauthors of Tulip.

70

code but rather about following established guidelines. However, when this structure

is translated to CPU code, it results in loop tiling, a technique critical for enhanc-

ing computational performance through better cache locality. Thus, loop tiling is a

performance optimization naturally gained by transpilation.

5.3.3 Better Speedups on AMD than on NVIDIA

Figure 5.5a demonstrates that Tulip Best achieves a better geometric mean speedup

on AMD MI210 compared to native CUDA speedup on NVIDIA A100, while native

HIP compilation underperforms against the same NVIDIA baseline. One contribut-

ing factor is that when Hipify translates CUDA code to HIP, it maintains the original

computation schedule—meaning the same number of blocks and threads are specified,

and the same workload is assigned to each thread for AMD as for NVIDIA. How-

ever, hardware differences between NVIDIA and AMD GPUs, such as the number of

threads per warp (32 for CUDA, 64 for AMD), suggest that the CUDA scheduling

may not be optimal for AMD GPUs.

When we transpile CUDA code to OpenMP, we remove the explicit scheduling

(block and thread numbers) defined in the original code. This adjustment allows

the OpenMP runtime to employ compiler heuristics to optimize scheduling for blocks

and threads, potentially assigning a different number of work items per thread, un-

like the fixed one work item per thread in the CUDA model. This indicates that

AMD’s OpenMP compilers are better optimized for such dynamic scheduling deci-

sions than tools such as Hipify which does a one-to-one translation from CUDA to

Hip. By default, the Clang OpenMP runtime for AMD launches as many blocks and

threads as needed to fully utilize the parallelism available on the target device then

assigns multiple work items per thread both statically and serially. Tulip capitalizes

on the advanced scheduling decisions integrated into AMD’s OpenMP implementa-

tion. In contrast, NVIDIA has focused more on enhancing its CUDA programming

71

model compiler (nvcc), which accounts for the observed performance disparities. As

illustrated in Figure 5.5b, even though the A100 and MI210 GPUs are from roughly

the same generation and have similar capabilities, matching performance on AMD

hardware would likely not be achieved without the programming model changes and

optimizations provided by Tulip3.

5.4 Naturalness

Generated code must be natural to allow meaningful programmer engagement. Sec-

tion 5.4.1 shows that the Tulip pipeline generates natural code through SPLENDID

by comparing the BLEU score and LoC with the best of prior work, and an example

of the generated code. Section 5.4.3 shows how, by making the code portable, it

is also made natural. Section 5.4.4 shows the effectiveness of the variable renaming

technique introduced by SPLENDID.

5.4.1 Naturalness Overview

Table 5.2 shows that, by eliminating low-level run-time specific code, parallel repre-

sentation in SPLENDID-produced code uses less than 13 lines of OpenMP pragmas,

including brackets, at least 35x less than naively decompiling parallel execution setup

instructions to the source level. The LoC produced by SPLENDID is within 18 LoC

difference from the reference code for every benchmark, almost identical to LoC in

total with only 0.1x difference, 45x less than the better of the baselines.

The BLEU scores presented in Figure 5.7 evaluate the overall code naturalness

as described in Section 5.1.5. Using the generated code as the translation under

evaluation and the reference code as an instance of natural translation, the BLEU

score indicates how close the parallel translation is to manual translation.
3Insights credited to Ivan R. Ivanov and all other coauthors of Tulip.

72

Table 5.2: Comparison of LoC similarity to reference code. Programs decompiled by
SPLENDID contain LoC highly similar to the reference code.

Benchmark
LoC Parallel Representation (LoC)

Ghidra Rellic SPLENDID Ref GhidraRellic SPLENDID

2mm 534 (8.1x) 381 (5.8x) 74 (1.1x) 66 343 171 4

3mm 813 (9.0x) 624 (6.9x) 105 (1.2x) 90 620 425 12

adi 311 (5.0x) 371 (6.0x) 70 (1.1x) 62 129 122 4

atax 155 (3.7x) 173 (4.1x) 41 (1.0x) 42 46 49 2

bicg 154 (3.0x) 202 (4.0x) 52 (1.0x) 51 53 52 2

doitgen 442 (9.6x) 307 (6.7x) 58 (1.3x) 46 296 123 2

fdtd-2d 405 (6.8x) 322 (5.4x) 67 (1.1x) 60 132 118 4
floyd-
warshall 153 (4.8x) 150 (4.7x) 33 (1.0x) 32 48 49 2

gemm 455 (7.7x) 373 (6.3x) 63 (1.1x) 59 362 262 8

gemver 433 (5.8x) 410 (5.5x) 81 (1.1x) 75 295 275 4

gesummv 130 (2.6x) 155 (3.1x) 41 (0.8x) 50 57 59 2
jacobi-
1d-imper 153 (3.8x) 217 (5.4x) 58 (1.4x) 40 70 92 4

jacobi-
2d-imper 460 (10.7x) 276 (6.4x) 53 (1.2x) 43 361 142 4

mvt 229 (4.5x) 258 (5.1x) 54 (1.1x) 51 166 185 6

syr2k 458 (7.6x) 379 (6.3x) 62 (1.0x) 60 369 278 8

syrk 400 (7.5x) 357 (6.7x) 59 (1.1x) 53 324 261 8

Total 5685 (6.5x) 4955 (5.6x) 971 (1.1x) 880 3671 2663 76

73

We create two variants of SPLENDID to quantify explicit parallelism for natural-

ness. The first variant, SPLENDID v1, only enables the natural control-flow construc-

tion, which contains basic CFG analysis and the novel Loop-Rotation Detransformer

proposed in Section 4.2.2. On top of natural control-flow construction, SPLENDID

v2 enables explicit parallelism translation, representing parallel code regions using

inlined sequential loops applied with OpenMP pragmas. Thus, SPLENDID v2 pro-

duces code recompilable with any host compiler. All counted loops are generated as

for loops using SPLENDID v1, yielding an average BLEU score of 1.4, 3.4x higher

than the best prior approach in terms of BLEU score, Ghidra. The improvement is

not significant because BLEU score focuses on word matching and any improvement

in control flow only results in a few keyword differences. SPLENDID v2, however,

achieves a much higher BLEU score, indicating that what comes with portability is

the massive benefit of naturalness. Code produced by portable SPLENDID scores

21x higher than Ghidra and 43x higher than Rellic due to removing a considerable

amount of parallel execution setup code unrelated to original code semantics.

Lastly, Figure 5.6 shows the actual transpiled code compared to the original CUDA

source program for the motivating example discussed in Section 3.1.1 with limited

manual changes of parenthesis spacing. All the data movement from and to the device

in the CUDA source program is replaced by OpenMP data mapping, as highlighted in

grey. In addition to the natural pragma generation, OpenMP pragmas are, by nature,

a minimal extension to sequential CPU code, more readable than reading code with

two devices in mind, as in the case with CUDA. The actual kernel code, highlighted

in blue, is almost identical on both sides by fully leveraging naturalness-enhancing

detransformations such as variable renaming and loop detransformation mentioned

in SPLENDID. Note that though for simplicity NOELLE parallelization is left out in

this direct transpilation, we see only additional pragmas being added for additional

parallelism discovered by parallelizing compilers, as parallelism applies not directly

74

to the IR.

5.4.2 Naturalness by Effective Interaction

Portability automatically frees the programmer from parallelizing what Polly can

parallelize. As shown in Table 4.2, among the loops parallelizable by Polly, 60% of

what a compiler parallelizes is what the programmer can also parallelize but is freed

from doing so. An additional 40

By adding or modifying on average 13 lines of code in the Tulip generated code,

a geomean of 1.08-4.43x speedup over the unmodified version is achieved across 5-6

benchmarks for each platform, 1.06-5.37x over the transpiling down to many targets

approach Polygeist took. It took in total roughly 8 hours for an engineer with 3 years

of experience in OpenMP to manually optimize the 15 benchmarks evaluated in Fig-

ure 5.2, some for multicore and some for GPUs. The actual time taken to understand

the code is negligible. Most time was spent on performance debugging, specifically

fine-tuning the scheduling policy and the chunking size since GPU workloads per

thread can be tiny compared to the overhead of thread spawning on multicores.

A similar engineering effort was demanded for SPLENDID-enabled paralleliza-

tion. We found 7 benchmarks among the 16 simple and highly parallelizable Poly-

Bench benchmarks where, surprisingly, neither the programmer nor the compiler

achieved the best result, as shown in Figure 5.9. The manually parallelized Poly-

Bench benchmarks were found on Github by the Cavazos Lab [44]. SPLENDID

restores all counted affine for-loops, enabling simple manual parallelization on top of

SPLENDID-generated parallel code. By simply applying loop distribution (in the case

of bicg and atax) and DOALL parallelism to loops that Polly does not parallelize, the

speedup is doubled compared to both the compiler and programmer parallelization on

its own. This collaborative parallelization is only made practical with SPLENDID.

75

5.4.3 Portability

One way to ensure that code is natural is that it is portable. Namely, the generated

code can be recompiled with any library, compiler, or target platform. Figure 5.2

effectively shows the Tulip-generated code enables source-level toolings of the target

PPM that cannot be used by a direction transpilation approach. Not only is Tulip-

generated code portable, but it is portable across platforms.

SPLENDID, likewise, practically reduces the involvement of programmers in par-

allelization by replacing original sequential source code with portable parallel source

code. Since previous compilers, such as Ghidra and Rellic emit low-level runtime-

specific code, the work of a parallelizing compiler, such as Polly, cannot be automat-

ically made available at the source level. Figure 5.8 shows the result of comparing

speedup obtained by Polly-generated binaries and SPLENDID-generated OpenMP

code recompiled using Clang and GCC. All binaries were produced with the same

optimization level (-O3) and were run 5 times on a near-idle machine. The result

shows that SPLENDID-generated code produces identical speedup as Polly, indi-

cating SPLENDID faithfully represents the complete work of Polly. A similar av-

erage speedup is obtained when recompiled using GCC and its standard runtime

library for OpenMP, libgomp [43], indicating SPLENDID-generated code is compiler-

independent. Through SPLENDID, the programmer is freed from parallelizing what

a parallelizing compiler like Polly can parallelize, and an average of 11x speedup

is made universally available outside of LLVM. The programmer can then choose a

compiler with optimizations capable of achieving the best performance. For example,

for benchmarks such as mvt, GCC produces a noticeable speedup over Clang on the

decompiled code.

76

5.4.4 Variable Renaming

SPLENDID-generated code is much more readable because of intuitive variable names.

In more detail, Figure 5.10 shows that, on average, 87.3% of variables are either recon-

structed from metadata or inferred through inlining using source variables. Variables

that are not reconstructed are because of the loss of source information even before

parallelization during the optimization pipeline, such as loop invariant code motion

promoting registers and hoisting memory accesses out of the loop. This code hoisting

creates an intermediate instruction not associated with any source variable. Since

neither Rellic nor Ghidra creates intuitive variable names related to original code

semantics, no numbers are provided for prior work. With variable renaming enabled

on top of control flow and parallel translation, SPLENDID-generated code achieves

an average of 16.4 in BLEU score, 39x times higher than Ghidra and 82x times higher

than Rellic.

77

syrk syr2k
gemm

2mm 3mm doitgen
adi fdtd-2d

gemver
jacobi-1d-imper

jacobi-2d-imper

mvt atax bicg gesummv

lu symm
covariance

correlation

trmm
nussinov

seidel-2d
heat-3d

geomean

0.0
0.5
1.0
1.5
2.0
2.5
3.0

A100 Native (nvcc) MI210 Native (hip) MI210 Tulip (best)

(a) Performance comparison of native CUDA code on an NVIDIA GPU against two ap-
proaches of executing the same code on an AMD GPU.

GPU NVIDIA A100 AMD MI210

Compute Capability 8.0 gfx90a
SMs 108 104
FLOPs (f64) 9.75T 22.60T
FLOPs (f32) 19.49T 22.60T
Memory Bandwidth 1555 GB/s 1638 GB/s
Global Memory 40 GB 64 GB
L2 Cache 40 MB 16 MB
L1 Cache (Per SM) 192 KB 16 KB

(b) Specification of similarly graded A100 and MI210.

Figure 5.5: Tulip-generated code outperforms NVIDIA on AMD.

78

1
__
gl
ob
al
__

vo
id

mv
(d
ou
bl
e

*A
,
do
ub
le

*B
,
do
ub
le

*C
,
in
t
m,

in
t

n)
{

2
in
t

i
=
bl
oc
kD
im
.x

*
bl
oc
kI
dx
.x

+
th
re
ad
Id
x.
x;

3
if

(i
<
m)

{
4

do
ub
le

do
t
=
0.
0;

5
fo
r

(i
nt

j
=
0;

j
<

n;
j+
+)

6
do
t
+=

A[
i]

*
B[
i*
n

+
j]
;

7
C[
i]

=
do
t;

8
}

9
}

10 11 12 13
ho
st
()
{

14
do
ub
le

*d
ev
_A
;

15
do
ub
le

*d
ev
_B
;

16
do
ub
le

*d
ev
_C
;

17
cu
da
Ma
ll
oc
(&
de
v_
A,

n*
m*
si
ze
of
(d
ou
bl
e)
);

18
cu
da
Ma
ll
oc
(&
de
v_
B,

m*
n*
si
ze
of
(d
ou
bl
e)
);

19
cu
da
Ma
ll
oc
(&
de
v_
C,

n*
n*
si
ze
of
(d
ou
bl
e)
);

20
cu
da
Me
mc
py
(d
ev
_A
,

A,
n*
m*
si
ze
of
(d
ou
bl
e)
,

cu
da
Me
mc
py
Ho
st
To
De
vi
ce
);

21
cu
da
Me
mc
py
(d
ev
_B
,

B,
m*
n*
si
ze
of
(d
ou
bl
e)
,

cu
da
Me
mc
py
Ho
st
To
De
vi
ce
);

22 23
mv
<<
<g
ri
dD
,

bl
oc
kD
>>
>(
de
v_
A,

de
v_
B,

de
v_
C,

m,
n)
;

24 25
cu
da
Me
mc
py
(C
,

de
v_
C,

n*
n*
si
ze
of
(d
ou
bl
e)
,

cu
da
Me
mc
py
De
vi
ce
To
Ho
st
);

26 27
cu
da
Fr
ee
(d
ev
_A
);

28
cu
da
Fr
ee
(d
ev
_B
);

29
cu
da
Fr
ee
(d
ev
_C
);

30
}

31 32 33

(a
)O

ri
gi
na

lC
U
D
A
so
ur
ce

1
vo
id

mv
(d
ou
bl
e*

A,
do
ub
le
*
B,

do
ub
le
*
C,

ui
nt
32
_t

m,
ui
nt
32
_t

n,
2

ui
nt
32
_t

gr
id
Di
m_
x,

ui
nt
32
_t

gr
id
Di
m_
y,

ui
nt
32
_t

gr
id
Di
m_
z,

3
ui
nt
32
_t

bl
oc
kD
im
_x
,

ui
nt
32
_t

bl
oc
kD
im
_y
,
ui
nt
32
_t

bl
oc
kD
im
_z
,

4
ui
nt
32
_t

bl
oc
kI
dx
_x
,

ui
nt
32
_t

bl
oc
kI
dx
_y
,
ui
nt
32
_t

bl
oc
kI
dx
_z
,

5
ui
nt
32
_t

th
re
ad
Id
x_
x,

ui
nt
32
_t

th
re
ad
Id
x_
y,

ui
nt
32
_t

th
re
ad
Id
x_
z)

{
6

ui
nt
32
_t

i
=
bl
oc
kD
im
_x

*
bl
oc
kI
dx
_x

+
th
re
ad
Id
x_
x;

7
if

(i
<
m)

{
8

do
ub
le

do
t

=
0;

9
fo
r(
in
t

j
=
0;

j
<
n;

j
=
j
+
1)
{

10
do
t
=

do
t
+
A[
i]

*
B[
j
+

i
*
n]
;

11
}

12
C[
i]

=
do
t;

13
}

14
re
tu
rn
;

15
}

16
ho
st
()
{

17 18 19 20 21
#p
ra
gm
a
om
p
ta
rg
et

da
ta

ma
p(
to
:
A[
0:
n
*
m]
,
B[
0:
m
*
n]
)
ma
p(
fr
om
:
C[
0:
n
*
n]
)

22
{

23
#p
ra
gm
a
om
p
ta
rg
et

te
am
s
di
st
ri
bu
te

24
fo
r(
in
t3
2_
t

i
=
0;

i
<
gr
id
D;

i
=
i
+
1)
{

25 26
#p
ra
gm
a
om
p
pa
ra
ll
el

fo
r

27
fo
r(
in
t3
2_
t

j
=
0;

j
<
bl
oc
kD
;

j
=
j
+
1)
{

28
mv
((
(d
ou
bl
e*
)A
),

((
do
ub
le
*)
B)
,
((
do
ub
le
*)
C)
,

m,
n,

gr
id
D,

29
1,

1,
bl
oc
kD
,
1,

1,
i,

0,
0,

j,
0,

0)
;

30
}

31
}

32
}

33
}

(b
)T

ra
ns
pi
le
d
O
pe
nM

P
so
ur
ce

Figure 5.6: CUDA source and Tulip generated OpenMP code (without NOELLE) for
the motivating example in Figure 3.2.

79

ad
i

fd
td

-2
d

flo
yd

-w
ar

sh
al

l

ja
co

bi
-1

d-
im

pe
r

ja
co

bi
-2

d-
im

pe
r

ge
su

m
m

vat
ax

bi
cg

m
vt

ge
m

ve
r

do
itg

en
sy

rk
2m

m
3m

m
ge

m
m

sy
r2

k
m

ea
n

0.
050.

1
0.

250.
51251025

BLEU score

Re
lli

c
Gh

id
ra

SP

LE
N

D
ID

 v
1

(c
on

tr
ol

-fl
ow

)
Po

rt
ab

le
 S

PL
EN

D
ID

 (c
on

tr
ol

-fl
ow

+
ex

pl
ic

it
pa

ra
lle

lis
m

)
SP

LE
N

D
ID

Figure 5.7: BLEU score comparison of code decompiled using Rellic, Ghidra, and
SPLENDID (this work).

80

Polly Polly→ Ghidra→ Clang Polly→ Rellic→ Clang Polly→ SPLENDID→ Clang Polly→ Ghidra→ GCC Polly→ Rellic→ GCC Polly→ SPLENDID→ GCC

3 5 5 3 5 5 3

ad
i

fd
td

-2
dflo

yd
-w

ar
sh

al
l

ja
co

bi
-1

d-
im

pe
r

ja
co

bi
-2

d-
im

pe
r

ge
su

m
m

vat
ax

bi
cg

m
vt

ge
m

ve
r

do
itg

en
sy

rk
2m

m
3m

m
ge

m
m

sy
r2

k
ge

om
ea

n

1235101525 Speedup (x)

Po
lly

Po
lly

SP
LE

N
D

ID
Cl

an
g

Po
lly

SP
LE

N
D

ID
GC

C

Figure 5.8: Performance of code decompiled from benchmarks automatically paral-
lelized by Polly using SPLENDID. SPLENDID allows parallelization of Polly to be
used by GCC. Polly achieves a geomean speedup of 10.7x on 28 cores. With SPLEN-
DID, GCC also achieves a 11.3x geomean speedup.

81

fdtd-2d
jacobi-1d-imper

jacobi-2d-imper

gesummv
atax bicg gemver

mean
1

2
3

5

10
15

Sp
ee

du
p

(x
)

4 1
1 1 3 6

1

3

Manual Only Compiler Only Compiler-Manual

Figure 5.9: Performance of code with additional manual parallelization after decom-
piling Polly-parallelized IR using SPLENDID. The numbers represent LoC used to
manually parallelize SPLENDID-generated code.

adi
0

10
20
30
40
50
60
70
80
90

100

Re
co

ns
tr

uc
te

d
Va

ria
bl

es
 (%

)

Variable Names from IR Reconstructed Variable Names

fdtd-2d
floyd-warshall

jacobi-1d-imper

gesummv

ataxbicg
jacobi-2d-imper

mvt
gemver

doitgen
syrk2mm

3mm
gemm

syr2k
mean

Figure 5.10: Percentage of variables whose names are reconstructed by SPLENDID.

82

Chapter 6

Related Work

This chapter explores various strands of research related to this thesis. Section 6.1

describes PPMs proposed in the past and their approach to performance engineering.

Section 6.2 delves into historical approaches to source-level rewrites and source-to-

source translation. Section 6.3 reviews established works on direct transpilation found

within the scholarly literature. Section 6.4 examines studies on OpenMP offloading

and their contributions to this field. Section 6.5 details significant breakthroughs in

automatic parallelization that have improved the effectiveness of this work. Finally,

Section 6.6 discusses decompilation frameworks that relate to the SPLENDID project.

6.1 Parallel Programming Models

Over the years, a variety of parallel programming models and libraries, both general-

purpose and domain-specific, have been developed to leverage parallelism from hard-

ware architectures. Extremely explicit parallel languages such as Fortran, CUDA,

HIP, and SYCL [57] have been designed to provide precise control over parallelism.

However, they require programmers to deeply engage with the parallelization process,

which can be burdensome. In contrast, languages such as OpenMP, OpenACC, and

OpenCL [58] use compiler directives to abstract parallelism, allowing programmers to

83

maintain a predominantly sequential approach to coding while managing parallel ex-

ecution indirectly. Yet, this model falters when explicit synchronization is necessary,

forcing programmers to contend with low-level hardware details once more. To reduce

the complexities of performance engineering, libraries like RAJA [49], Thrust [90], and

Kokkos [122] have been introduced. These libraries encapsulate the intricacies of par-

allelism, simplifying the developer’s task of optimizing code across varied computing

platforms. However, they may not always provide the appropriate level of abstraction

for every application or deliver perfect optimization for each platform. In academic

settings, several implicit parallel programming styles have also gained traction, af-

fording compilers or runtime systems greater control over parallelism and further al-

leviate the burden of a programmer by eliminating the need for explicit programming

directives. Notable examples include COMMSET [99], Sequoia, StreamIt [120], and

Cilk [16], among others [75, 73, 31, 125, 22, 115]. While these models closely resem-

ble sequential programming paradigms, they still demand thorough understanding to

maximize performance. Despite the varying challenges and advantages of each paral-

lel programming model (PPM), the necessity to port legacy code for future hardware

platforms without manually rewriting large code bases underscores the importance of

robust transpilation frameworks like Tulip.

6.2 Source Level Rewrite

Manual rewriting is one technique to facilitate code portability across different plat-

forms. However, it is labor-intensive, error-prone, and heavily dependent on the

programmer’s expertise to optimize performance effectively [75, 73, 31, 125, 22]. Pi-

oneer works in source-to-source transpilers were designed using sublanguages of the

original source and target languages that comprise additional concepts that are not

directly compatible with the source language but can be mapped into them, such

84

as the Ada-Pascal Converter [3]. Transpilation via sublanguages is limited in exten-

sibility for each pair of source and target language; novel sublanguages need to be

designed without reusability [82].

Source-to-source translation of modern languages relies largely on AST, which

provides extensibility due to its language-agnostic representation and preserves nat-

uralness, as source features can be implemented as separate AST nodes. AST-level

transformations add minor language features(e.g., backward compatibility and type

safety) within the same software toolchain, as often seen in commodity compilers

such as the Closure Compiler [17], Babel [118], TSC [13], CoffeeScript [10], and Poly-

glot [91]. Stratego/XT [21], ROSE, and Haxe [41], for example, facilitate transpilation

among C, C++, Java, and JavaScript. Others, such as SUIF [67] and Cetus [64], use

source-to-source transformations to insert parallel constructs in source code. ROSE

shows AST-based transpilation is easily extensible by including 9 languages and bi-

naries as source and target languages. Instead of using an AST, the extensibility of

Tulip comes from sharing LLVM frontend compilers (C, C++, Fortran, CUDA, etc)

while preserving naturalness by detransforming canonicalization passes (e.g., loop ro-

tation) and restoring variable names during decompilation. Tulip backend can also

be easily extended to include C/C++ directive-based models such as OpenACC (as

demonstrated), Cilk [15], OpenCL, etc. Moreover, Tulip targets PPMs across different

levels of parallel abstraction, ranging from the highly explicit CUDA to more sequen-

tial models like OpenMP and OpenACC. Given that these models lack a one-to-one

mapping, a simple AST-level rewrite would not be suitable.

6.3 Direct Transpilation

Much research focuses on transpiling a PPM to various target machines. In the realm

of general-purpose computing, cross-compilation from a native machine (where the

85

translation is performed) to a target machine is well-established. For example, com-

piling ARM binaries from an x86 machine using GCC tailored for ARM architectures

illustrates this process. However, unlike the transpilation discussed in this work,

cross-compilation from x86 to ARM still leverages the generality of the sequential

programming model.

The older CUDA toolkit includes a built-in emulator for CPUs, accessible through

the ‘-deviceemu‘ option, which allows CUDA code to run serially on CPUs. Sim-

ilarly, in academia, works [96] have explored emulating GPU executions on the

host, albeit in a serial manner. These tools are primarily designed for debugging

purposes, while Tulip transpilation is aimed at high-performance code migration.

MCUDA [112], GPUOcelot [37], and Polygeist [81] retarget CUDA code for multicore

systems, NVIDIA, and AMD platforms, respectively. Both MCUDA and Polygeist

have investigated the use of, or extensions to, loop fission to manage synchronization,

achieving high-performance CUDA transpilation at the AST or IR level. Specifi-

cally, Polygeist enhances performance by fusing parallel regions to reduce the costs

associated with thread spawning and by coarsening tasks per thread. Rather than tar-

geting multiple platforms directly, Tulip generates source code in a target PPM such

as OpenMP or OpenACC, which not only facilitates interaction between program-

mers and compilers at the target PPM level but also generates platform-independent

source code that can utilize the tools of other compiler frameworks.

Orthogonal to the proposed transpilation pipeline of this work, works in parallel

semantics representation [55, 48, 109, 84] can further enhance the interaction be-

tween a source PPM and a parallelizing compiler. Tapir [109] extends traditional IRs

by introducing new constructs specifically designed to represent parallel operations,

such as task spawning, synchronization, and communication primitives. PS-PDG [48]

augments nodes and edges in a conventional PDG to capture parallel semantics from

a parallel source code, creating more parallel execution plans for the parallelizing

86

compiler to explore.

6.4 OpenMP Offloading

Similar to prior works that port CUDA to OpenCL [108], Tulip ports CUDA to the

multi-platform language OpenMP, whose GPU targets rely on offloading [5, 78, 34,

111, 33]. While some directives are shared between OpenMP for host and GPU ex-

ecution (e.g., parallel, for, barrier), others, such as teams and distribute, are more

commonly used in offloading settings due to the hierarchical nature of GPUs. Of-

floading also involves directives unique to device code, such as explicit data movement

to and from the device (e.g., #pragma omp target map(to/from:...)). More recent

efforts, such as OMPX [50, 54, 35], explore OpenMP extensions that resemble CUDA-

like explicit parallelism and have shown success in bypassing the complexities of the

OpenMP runtime. These improvements have, in some cases, exceeded existing CUDA

performance.

6.5 Automatic Parallelization

Automatic parallelization, being a potential player in source-to-source transpilation,

can drastically increase program performance. Recent developments in paralleliza-

tion, memory analysis [7, 113], and profiling frameworks [83] all exist at the IR level.

Polyhedral-based parallelizing compilers [45, 126, 19] have demonstrated tremendous

speedup on scientific workloads with affine loops, with Pluto and Polly operating

at the LLVM-IR level, and Polygeist [80] at the MLIR level. Perspective [6] has

shown scalable speedups on irregular general-purpose workloads by reducing the cost

of speculative privatization. Alternatively, the parallelizers in NOELLE [76] over-

comes dependences that hinder parallelization by integrating parallelization schemes

of greater applicability, such as HELIX [24] and DSWP [105]. Parallelization greatly

87

enhances Tulip transpilation.

Prior work has shown success in combining the automatic parallelization of se-

quential code with the emission of parallel code. ROSE and AutoPar-Clava [8, 25],

for example, can generate OpenMP pragmas for sequential C codes within an AST-

level automatic parallelization framework. Due to limited alias analysis, automatic

parallelization in ROSE often requires frequent programmer assertions to denote no

alias conditions. AutoPar-Clava incorporates additional DSL knowledge in its analy-

sis. SPLENDID integrates with Polly at the IR level and automatically parallelizes C

code into OpenMP. Tulip applies state-of-the-art automatic parallelization not only

to sequential but also to parallel source programs, allowing collaborative enhancement

of original source-level parallelism with a parallelizing compiler.

6.6 Decompilation

Existing tools [99, 52, 27] provide insights into and suggestions from the compiler to

the programmer. Intel Advisor, for example, informs the programmer of memory or

computation bottlenecks and insights into whether and how to offline code to GPUs.

Implicit programming tools, such as COMMSET, provide programmer dependences

preventing parallelization. None of these suggestion-based tools have practically re-

duced the work of a programmer while enabling more parallelism like SPLENDID.

Many advancements in decompilation [46, 79, 130, 129, 110, 107] have greatly

improved code naturalness by reducing the usage of goto statements. For exam-

ple, eliminating irreducible graphs [79], diamond-shaped CFGs [46], and many more

transformations significantly reduce the number of goto statements. However, with

loop rotation, loops generated by previous decompilers are often do-while loops. For

portability, SPLENDID instead de-transforms loop rotation to produce for-loops.

Existing LLVM-to-C decompilers [79, 130, 129, 29] produce code that is unnat-

88

ural. LLVM C Backend [29], the LLVM-to-C decompiler that SPLENDID is built

upon, produces assembly-like code with most branches emitted as goto statements.

Rellic shows no indication of using variable names representative of the code seman-

tics. The C Backend emits source file names and line numbers in its decompiled code

using #line, a debugging directive. Prior research [32, 65] in debugging has primarily

focused on validating debug information instead of using it for variable renaming.

SPLENDID, however, directly generates variable names using original source vari-

ables.

More work has been devoted to binary-to-C decompilers [40, 79, 110, 26, 46],

some of which are integrated into IDEs as part of the debugger (e.g., Ghidra [1],

Hex-Rays Decompiler [107], and Relyze [68]). An IDE often has a graphical interface

that enables some level of interaction with programmers. Ghidra, for example, allows

programmers to rename variables to assist in interpreting code semantics. Likewise,

rellic-xref [92], a web interface for Rellic, allows programmers to selectively run some

transforms in a user-defined order. However, the kind of interaction is not comparable

to the interactive development for parallelization that SPLENDID enables.

Another line of work [60, 61, 38] adopts self-supervised methods in Natural Lan-

guage Processing using deep learning models. Models are trained using obfuscated

source code at a similar level of abstraction to improve code naturalness. Code pro-

duced in this approach cannot guarantee correctness and thus requires a manual

inspection from programmers. More recent work [63] adapts interaction with GPT

to improve variable names. SPLENDID and Tulip, however, produces code that is

semantically correct, portable, and with speedup identical to the underlying auto-

matically parallelized code.

Parallelizing compilers such as QuickStep [77] and Alter [123] insert OpenMP

pragmas directly into the original input C code. QuickStep cannot preserve program

semantics since it trades accuracy for more parallelism. SPLENDID preserves code

89

semantics in decompilation. Alter requires manual annotations for parallelization

and is limited to its own analysis and transformations. SPLENDID, however, is a

decompiler that does not target a specific parallelizing compiler. Thus, the perfor-

mance of SPLENDID-generated code will not be limited by analysis within a single

parallelizing compiler.

Source-to-source compilers [56, 87, 9] were designed for code migrations due

to naturalness preserved from not lowering to assembly-like IRs. Thus, source-to-

source compilers are limited to transformations that do not go beyond the AST level.

Some [97, 18, 126] use polyhedral transformations to parallelize code with polyhedral

loops. However, parallelization near the source level is not scalable with front-end

languages, breaking the ideal source-target independent IR model. Moreover, unlike

LLVM IR, rarely is there a community interest in the continued development and

maintenance of source-to-source compilers. SPLENDID is easily scalable to other

front-end languages as it targets LLVM IR. For the same reason, SPLENDID can

be easily supported and maintained within the LLVM community. Furthermore,

SPLENDID produces code that is natural and easy for manual code investigation.

90

Chapter 7

Conclusion

7.1 Conclusion

In response to the challenges posed by increasing specialization in hardware and the

risk of legacy code becoming unrunnable due to future hardware and software frag-

mentation, this thesis presents a transpilation pipeline that fully leverages advanced

compiler optimizations, programmer interactivity, and source-level tooling.

We present Tulip, a CUDA-to-OpenMP transpilation framework that can target

both CPUs and GPUs (through OpenMP offloading). Unlike previous approaches

that use AST for close-to-source transpilation, our new pipeline employs IR, enabling

deeper compiler analysis for automatic parallelization and various optimizations. In-

stead of direct transpilation across platforms, Tulip emits source code that can be

compiled with different source-level toolchains to deliver peak performance tailored

to each application. Furthermore, since Tulip generates natural code, programmers

can engage further to optimize the code. Programmer engagement is particularly

valuable when PPM changes occur, as new PPMs may contain different kinds of par-

allelism than what the source PPM expresses. Additionally, Tulip’s components are

reusable and require only lightweight communication through Tulip’s API to utilize

91

established front ends and automatic parallelizers. Lastly, Tulip generates natural

source code that enhances programmer intractability. These features allow it to out-

perform native CUDA compilation by 14%, achieve a 1.1x to 2.93x improvement

over Polygeist—the best source-to-many-machine approach—and surpass Hipify, the

leading prior source-to-source approach, by 12%.

In addition, we present SPLENDID, an OpenMP/C decompiler that produces

portable and natural code. SPLENDID’s naturalness is due, in part, to a novel

technique that materializes variable names inferred from the original source code.

SPLENDID-produced code achieves a 39x higher average BLEU score than the best

prior approach. A decompiler that produces natural parallelized code can enable a

more efficient collaborative parallelization effort between the compiler and the pro-

grammer. This work has shown that SPLENDID makes the work of the parallelizing

compiler more available to the programmer and frees the programmer from work that

can be done automatically. For 7 simple and easily parallelizable programs, in a col-

laboration enabled by SPLENDID, the compiler and programmer produce code that

runs twice as fast as either the compiler or programmer working alone.

7.2 Future Work

The primary focus of this thesis has been on enhancing CUDA-to-OpenMP transpi-

lation, which has notably improved code migration and enabled programs designed

for NVIDIA GPUs to run on various platforms. Building on this success, future re-

search will explore incorporating advanced parallelization schemes like PS-DSWP and

HELIX into established models, to better handle irregular workloads. Additionally,

efforts will focus on enhancing natural decompilation processes for more intuitive

code generation. Importantly, we will also look beyond the explicit parallelism of

CUDA to investigate whether CUDA, as a programming model, offers additional

92

value for parallelization. These inquiries are aimed at expanding the reach and effi-

cacy of source-to-source transpilation and automatic parallelization, setting the stage

for significant advancements in parallel computing.

7.2.1 Source Representation of Advanced Parallelization Schemes

By generating natural source code, the compiler presents its parallelization to pro-

grammers. With great readability, programmers can improve parallelization by mod-

ifying the proposed source-level representation, which the compiler can then inter-

pret to enhance the parallelization plan. Many state-of-the-art compilers have ex-

plored parallelization schemes beyond basic DOALL parallelism with strategies such

as privatization and reduction. Among these, DSWP [105] and HELIX [24] have

demonstrated greater applicability than DOALL. Although these schemes have been

successful in speeding up irregular workloads, they are known to be challenging to

implement in practice. For instance, the original work on DSWP has shown that

solving the DSWP thread partitioning problem is NP-hard. One way to achieve bet-

ter performance with DSWP and HELIX is through continual enhancements to the

compiler, which will result in better analysis, thereby reducing dependencies, and im-

proved heuristics, leading to more balanced thread partitioning. Another approach

is leveraging the programmer’s expertise to influence compiler decisions at the source

level. The following sections first describe each parallelization scheme and their com-

monalities. Then, Section 7.2.1 proposes a source representation common to both

DSWP and HELIX.

HELIX

Unlike DOALL, which requires all loop-carried dependences to be disproven, HELIX

uses a DOACROSS scheme that leverages inter-core communication to manage these

dependences effectively. This approach allows for the overlapping of loop iterations

93

#pragma ipm dswp
{

for (auto i = 0; i < N; ++i){

#pragma ipm stage outs(a)
a = SCC1(a);
#pragma ipm stage ins(a) outs(b)
b = SCC2(a, b);
#pragma ipm stage ins(b) outs(c)
c = SCC3(b, c);
//…
#pragma ipm stage ins(g) outs(h)
h = SCC8(g, h);

}
}

#pragma ipm helix
{

for (auto i = 0; i < N; ++i){

#pragma ipm stage ins(a) outs(a)
a = SCC1(a);
#pragma ipm stage ins(b) outs(b)
b = SCC2(a, b);
#pragma ipm stage ins(c) outs(c)
c = SCC3(b, c);
//…
#pragma ipm stage ins(h)
h = SCC8(g, h);

}
}

SCC1

Source Representaion Execution
Core 1

Iter 1

Iter 1

Iter 2

Iter 3

Iter 4

Core 2 Core 3

a

a

b

b
c

SCC1

SCC1

SCC1

SCC1

SCC2

SCC2

SCC2

SCC2
…

…
… …

…

SCC3

SCC3

SCC3

SCC1

SCC2 SCC1

…

…

…

SCC3 SCC2

SCC3

SCC1

SCC2

SCC3

Core 1 Core 2 Core 3

c

Iter 1

Iter 2

Iter 3

Figure 7.1: Source Representation for DSWP (top) and HELIX (bottom) parallelism
based on strongly connected components (SCCs).

94

across multiple cores, enhancing parallelism once the initial communication setup is

completed, as demonstrated in Figure 7.1.

In HELIX, a Program Dependence Graph (PDG) is used to identify Strongly

Connected Components (SCCs), which represent tightly coupled operations within

the loop. HELIX does not schedule SCCs of the same iteration across cores, but the

inputs and outputs of SCCs need to be identified for inter-core communication. This

organization necessitates structured inter-core communication to handle loop-carried

dependencies appropriately, enabling parallel execution of loop iterations across cores

while respecting the dependences delineated by the SCCs in the PDG.

Pipelined Parallelism

SCCs, defined by mutual dependences among their operations, can be grouped and

allocated across cores. Unlike the HELIX model, which confines the execution of

a loop body within a single thread to maintain thread-locality, advanced pipelined

parallelism strategies like DSWP, PS-DSWP, and Pipette distribute each loop iter-

ation across multiple cores to optimize concurrency. Specifically, DSWP is designed

to retain all loop-carried dependencies within the same thread, thereby minimizing

cross-core communication; however, it necessitates the management of intra-loop de-

pendencies between cores, as demonstrated in the upper two graphs of Figure 7.1.

Over the years, numerous pipelined parallelization strategies have emerged, each char-

acterized by distinct heuristics and optimizations, as discussed by Nguyen et al.[85].

These enhancements include the integration of speculative execution techniques in

speculative DSWP to reduce dependences speculatively[124], as well as the applica-

tion of the DOALL strategy to stages devoid of loop-carried dependencies, further

exemplified by PS-DSWP [105]. These advancements underscore the ongoing inno-

vation in exploiting parallel execution frameworks to achieve optimal performance on

multicore systems.

95

Motivation for an Abstraction across Parallelization Schemes

In the foundational work on Decoupled Software Pipelining (DSWP), the thread parti-

tioning challenge is identified as NP-hard. This challenge involves strategically group-

ing Strongly Connected Components (SCCs) into balanced threads while minimizing

communication to maximize performance. Despite the theoretical advancements, the

practical adoption of these complex parallelization schemes, beyond simpler models

like DOALL, remains limited in industrial-grade compilers. This hesitance reflects

the significant difficulties involved in achieving profitable implementations.

Historical benchmarks, as discussed in prior research [76], indicate that the effec-

tiveness of parallelization strategies may vary significantly depending on the nature of

loop dependences. Programs with fewer loop-carried dependencies may achieve bet-

ter performance enhancements from a HELIX-like schedule, which tends to reduce

inter-thread communication. In contrast, those with more extensive loop-carried de-

pendencies might benefit from pipelined parallelism approaches that place the com-

munication of intra-loop dependencies along the critical path, thereby optimizing

execution times.

To address these variations effectively, a unified framework that accommodates

all parallelization schemes could be instrumental. Such a framework allows for the

involvement of programmers, who can apply their domain-specific knowledge to in-

fluence thread partitioning decisions, thus narrowing the search space and enhancing

profitability. Additionally, it provides a robust abstraction layer for in-depth analysis

and comparison of different parallelization techniques. This flexibility could pave the

way for advanced automatic parallelization methods that are adaptable across various

programming contexts.

In this unified model, all parallelization strategies are conceptualized as SCC

scheduling problems. The range of these strategies spans from HELIX and DOALL,

which confine SCCs within the same iteration to a single core, to pipelined paral-

96

lelism, which distributes SCCs across different iterations but within the same core.

As depicted on the left side of Figure 7.1, this framework uses directives that specify

how SCCs, along with their inputs and outputs, should be managed across different

parallelization schemes. In this proposed model, HELIX and DSWP share the same

stages—each comprising individual SCCs—but differ in their management of inputs

and outputs. By extending this model to include attributes that define whether a

stage applies the DOALL approach, we can describe more complex configurations like

PS-DSWP, which combines DSWP with DOALL strategies in certain code segments.

This versatile scheduling could potentially offer superior performance by optimizing

various portions of the loop body with different parallelization tactics, thus outper-

forming traditional methods.

7.2.2 Effect of CUDA Programming Across Platforms

Figure 5.3 demonstrates that in some cases, the Tulip-transpiled code outperforms

native compilation across various platforms, such as Clang for OpenMP, NVCC for

CUDA, and HipCC for HIP, even when automatic parallelization is disabled. Fur-

ther analysis revealed, as depicted in Figure 5.4, that tiling—an optimization that

improves cache locality and increases workload per thread—is automatically applied

when transpiling from CUDA to OpenMP. This observation raises an intriguing ques-

tion: beyond explicit parallelism, does the CUDA programming model inherently offer

additional benefits? The following sections explore potential avenues to leverage these

implicit advantages.

CUDA on CPU vs Sequential and OpenMP Code

When writing CUDA kernels, it is common practice to specify block sizes as multi-

ples of the warp size (32) and to adjust grid sizes to cover the entirety of the dataset

without exceeding it. These dimensions are often chosen based on general guidelines

97

rather than deep parallel programming knowledge. Interestingly, these choices, while

enhancing GPU parallelism, inadvertently lead to a form of tiling that significantly

benefits multicore CPU architectures when the CUDA code is transpiled. This un-

expected outcome demonstrates the potential of CUDA as a robust programming

model, even for sequential execution on CPUs.

The automatic application of tiling during the transpilation from CUDA to CPU

mimics what would typically require deliberate optimization by a programmer. This

automatic structuring improves cache locality and workload distribution, resulting

in notable performance improvements—even when the original CUDA code does not

explicitly focus on parallelism. To explore this phenomenon, a proposed experiment

could compare the performance of transpiled CUDA code against traditionally opti-

mized sequential or OpenMP code in single-threaded CPU contexts, examining met-

rics such as speed, cache efficiency, and hardware utilization.

Further insights are gleaned from the Parboil Benchmark Suite’s Histogram bench-

mark, which processes the histogram of RGB colors in an image. CUDA programmers

often make high-level design choices, such as dividing pixels into tiles, that are nat-

urally conducive to parallel processing. These decisions, initially tailored for GPU

efficiencies, potentially translate well to CPUs via transpilation, showcasing reduced

communication and synchronization overhead compared to traditional OpenMP ap-

proaches. Expected result would suggest that CUDA’s method of structuring data

and tasks could inherently offer a superior framework for programming multicore

CPUs, surpassing traditional models that rely heavily on explicit parallel loop con-

structs and synchronization mechanisms. Thus, further experiments can be developed

to examine the effect of CUDA programming on algorithm-wise improvement of code

robustness.

98

CUDA on non-Nvidia GPUs

Prior work suggests that OpenMP runtime overheads can be greatly reduced when

CUDA syntax is replaced by OpenMPX, a more recent extension of OpenMP that is

more explicit in defining threads and synchronization, similar to CUDA. This suggests

that despite the significant engineering efforts in developing its ecosystem, CUDA

heavily relies on programmer involvement in encoding explicit parallelism to achieve

effective performance. Experiments can be developed to compare the performance of

CUDA transpiled to OpenMPX against native CUDA performance, demonstrating

that CUDA necessitates explicit parallelism for performance gains.

7.2.3 Natural Decompilation Enhanced by LLM

SPLENDID represents an initial step towards the promising future of enabling effec-

tive collaboration between programmers and compilers in parallelization tasks. While

SPLENDID has significantly enhanced the naturalness of code through compiler de-

transformations, there is potential for further integration with large language models

or other machine learning models in future work. To ensure correctness, unlike pre-

vious approaches which relied solely on machine learning models for correctness (e.g.,

[61, 63]), we propose a system where the compiler generates code and consults an

LLM for syntax usage and transformation suggestions. However, the final decision

on whether and how to apply these transformations remains with the compiler, thus

ensuring correctness. For instance, the compiler could query an LLM like GPT for

meaningful variable names, replacing the heuristic-based variable name generation

used in SPLENDID, but it is the compiler’s responsibility to apply these names to

guarantee correctness. Similarly, the compiler can consult GPT for suggestions on

intuitive control flows, loop structures, and comments to describe code segments.

Additionally, the compiler can leverage machine learning models to narrow down the

search and optimization space by adopting transformations and detransformations

99

suggested by GPT.

100

Appendix A

Implementation Details

A.1 BLEU For Formal Languages

* (A + i) = fn (j)

Candidate ŷ

A [i] = fn (j)

Reference y

* (A + (A + i … fn (j)

4-grams G4(ŷ)

1 match in y
C4("fn (j)", y) = 10 matches in y

C4("* (A +", y) = 0

Figure A.1: BLUE score calculation

Figure A.1 illustrates the calculation of the BLEU score. The underlying idea is

to build a set of all sub-sequences of length n of a candidate phrase, called n-grams,

and see whether they also occur in a reference phrase. In the case of formal languages,

a phrase is a sequence of tokens as detected by the language lexer. The BLEU score

101

for(i=1; i<N-1; i++)
 B[i] = (A[i-1] + A[i] + A[i+1]) / 3;

for(var0 = 1; var0 < N - 1; var0++)
 var1[var0] = (var2[var0-1] + var2[var0] + var2[var0+1]) / 3;

if (N - 1 > 0) {
 i = 1;
 do {
 i += 1;
 B[i] = (A[i-1] + A[i] + A[i+1]) / 3;
 } while (i < N - 1);
}

__kmpc_fork_call(param1, param2, param3, kmp_int32
4, forked_function, param5, A, B, &lb, &ub);

void forked_function(Type1 arg1, Type2 arg2,
double *A, double *B, int *lb, int *ub){
 __kmpc_for_static_init_8(arg1, arg2, 33,

 lb, ub, 1, 1);
 for (i=*lb; i<*ub; i++)
 B[i] = (A[i-1] + A[i] + A[i+1]) / 3;
 __kmpc_for_static_fini(arg1, arg2);
}

Reference Program

Candidate Programs
(a) Obfuscated Variable Names
BLEU Score: 0.3730

(b) Unnatural Control Flow
BLEU Score: 0.5928

(c) No Explicit Parallelism
BLEU Score: 0.3600

Figure A.2: A hand-crafted example of BLEU scores reflecting each area of unnatu-
ralness in Section Section 2.1.3.

102

is a percentage of matched n-grams relative to the theoretical maximum number of

matches (i.e., if the candidate and reference are identical):

Number of matches
Theoretical max number of matches

=

∑
s∈Gn(ŷ)

C(s, y)∑
s∈Gn(ŷ)

C(s, ŷ)
(A.1)

A candidate n-gram can occur more times in the reference that in itself; to ensure

that the score is in the range [0, 1], the number number of matches that are counted

is bounded: ∑
s∈Gn(ŷ)

min(C(s, ŷ), C(s, y))∑
s∈Gn(ŷ)

C(s, ŷ)
(A.2)

The final BLEU-4 score is the geometric mean of the n-gram scores of n = 1, . . . , 4.

If the candidate phrase is very short, then the denominator will be small and fewer

matches be needed to reach a high BLEU score. Therefore, when the candidate phrase

is shorter than the reference, an additional brevity penalty is applied1. Typically, the

final score is presented as a percentage, i.e. multiplied by 100.

The BLEU score for natural languages also allows comparison multiple reference

phrases, in which case for each n-gram, the reference phrase with the most matches

is used.

This work measures code naturalness using the BLEU-4 score since it is also used

in other literature [38, 61] to evaluate formal language naturalness. As shown in

Figure A.2, unnatural variable names, control flow, and parallelism representation all

degrade the BLEU score from 1 (identical to the reference program). While program

(a) has a higher 1-gram score with better word-by-word matching, program (b) con-

tains at least an identical loop body to the reference code, resulting in higher 2-gram
1In contrast, the CodeBLEU score is biased towards longer candidates, but does not apply a

“verbosity” penalty.

103

to 4-gram scores. Thus, programs (b) have shown higher BLEU-4 scores. This means

that variable renaming described in Section Section 4.1.3] has a significant influence

on improving the BLEU score. To show that BLEU scores still reflect improvement

in naturalness by constructing natural control flow and explicit parallelism, we thus

reported the BLEU score of SPLENDID with variable renaming turned off, namely

SPLENDID v1 and Portable SPLENDID, as shown in Figure 5.7. Overall, the BLEU

score of Rellic-produced code in Figure 4.1 is 0.0035, and SPLENDID-produced code

instead scores 0.29322.

2This section was largely contributed by Michael Kruse and all the coauthors of SPLENDID.

104

Bibliography

[1] National Security Agency. Ghidra. https://ghidra-sre.org/, 2019.

[2] Karan Aggarwal, Mohammad Salameh, and Abram Hindle. Using machine
translation for converting python 2 to python 3 code. Technical report, PeerJ
PrePrints, 2015.

[3] Paul F. Albrecht, Philip E. Garrison, Susan L. Graham, Robert H. Hyerle,
Patricia Ip, and Bernd Krieg-Brückner. Source-to-source translation: Ada to
pascal and pascal to ada. Proceedings of the ACM-SIGPLAN symposium on
Ada programming language, 1980.

[4] AMD. Hipify. https://github.com/ROCm/HIPIFY, 2024.

[5] SF Antao, A Bataev, and AC Jacob. Offloading support for openmp in clang
and llvm. In Third Workshop on the LLVM Compiler Infrastructure in HPC.
IEEE, 2016.

[6] Sotiris Apostolakis, Ziyang Xu, Greg Chan, Simone Campanoni, and David I
August. Perspective: A sensible approach to speculative automatic paralleliza-
tion. In Proceedings of the Twenty-Fifth International Conference on Archi-
tectural Support for Programming Languages and Operating Systems, ASPLOS
’20, pages 351–367, New York, NY, USA, 2020. Association for Computing
Machinery.

[7] Sotiris Apostolakis, Ziyang Xu, Zujun Tan, Greg Chan, Simone Campanoni,
and David I August. Scaf: A speculation-aware collaborative dependence anal-
ysis framework. In Proceedings of the 41st ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation, PLDI 2020, pages 638–654,
New York, NY, USA, 2020. Association for Computing Machinery.

[8] Hamid Arabnejad, João Bispo, Jorge G. Barbosa, and João M.P. Cardoso.
Autopar-clava: An automatic parallelization source-to-source tool for c code
applications. In Proceedings of the 9th Workshop and 7th Workshop on Parallel
Programming and RunTime Management Techniques for Manycore Architec-
tures and Design Tools and Architectures for Multicore Embedded Computing
Platforms, PARMA-DITAM ’18, page 13–19, New York, NY, USA, 2018. As-
sociation for Computing Machinery.

105

https://ghidra-sre.org/
https://github.com/ROCm/HIPIFY

[9] Hamid Arabnejad, João Bispo, João MP Cardoso, and Jorge G Barbosa. Source-
to-source compilation targeting openmp-based automatic parallelization of c
applications. The Journal of Supercomputing, 76(9):6753–6785, 2020.

[10] Jeremy Ashkenas. Coffeescript. https://github.com/jashkenas/
coffeescript, 2009.

[11] David I. August and Matthew J. Bridges. The velocity compiler: extracting
efficient multicore execution from legacy sequential codes, 2008.

[12] Ira D. Baxter, Christopher Pidgeon, and Michael Mehlich. Dms®: Program
transformations for practical scalable software evolution. In Proceedings of
the 26th International Conference on Software Engineering, ICSE ’04, page
625–634, USA, 2004. IEEE Computer Society.

[13] Gavin Bierman, Martín Abadi, and Mads Torgersen. Understanding typescript.
In European Conference on Object-Oriented Programming, pages 257–281.
Springer, 2014.

[14] Guy E Blelloch and John Greiner. A provable time and space efficient imple-
mentation of nesl. ACM SIGPLAN Notices, 31(6):213–225, 1996.

[15] Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kuszmaul, Charles E.
Leiserson, Keith H. Randall, and Yuli Zhou. Cilk: An efficient multithreaded
runtime system. In Proceedings of the Fifth ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, PPOPP ’95, page 207–216,
New York, NY, USA, 1995. Association for Computing Machinery.

[16] Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kuszmaul, Charles E.
Leiserson, Keith H. Randall, and Yuli Zhou. Cilk: An efficient multithreaded
runtime system. Journal of Parallel and Distributed Computing, 37(1):55–69,
1995.

[17] Michael Bolin. Closure: The definitive guide: Google tools to add power to your
JavaScript. ” O’Reilly Media, Inc.”, 2010.

[18] Uday Bondhugula, Muthu Baskaran, Sriram Krishnamoorthy, J. Ramanu-
jam, A. Rountev, and P. Sadayappan. Automatic transformations for
communication-minimized parallelization and locality optimization in the poly-
hedral model. In International Conference on Compiler Construction (CC),
page 132–146, Berlin, Heidelberg, 2008. Springer.

[19] Uday Bondhugula, Albert Hartono, J. Ramanujam, and P. Sadayappan. A
practical automatic polyhedral parallelizer and locality optimizer. In Proceed-
ings of the 29th ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI ’08, page 101–113, New York, NY, USA, 2008. As-
sociation for Computing Machinery.

106

https://github.com/jashkenas/coffeescript
https://github.com/jashkenas/coffeescript

[20] James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris
Leary, Dougal Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye
Wanderman-Milne, and Qiao Zhang. JAX: composable transformations of
Python+NumPy programs, 2018.

[21] M. Bravenboer and E. Visser. The stratego xt transformation system. Science
of Computer Programming, 72(1-2):52–70, 2008.

[22] Matthew J. Bridges. The VELOCITY Compiler: Extracting Efficient Multicore
Execution from Legacy Sequential Codes. PhD thesis, Department of Computer
Science, Princeton University, Princeton, New Jersey, United States, Nov 2008.

[23] David Brumley, JongHyup Lee, Edward J. Schwartz, and Maverick Woo. Native
x86 decompilation using Semantics-Preserving structural analysis and iterative
Control-Flow structuring. In 22nd USENIX Security Symposium (USENIX
Security 13), pages 353–368, Washington, D.C., August 2013. USENIX Associ-
ation.

[24] S. Campanoni, T. M. Jones, G. Holloway, G. Y. Wei, and D. Brooks. HELIX:
Making the extraction of thread-level parallelism mainstream. IEEE Micro,
32(4):8–18, July 2012.

[25] João M.P. Cardoso, Tiago Carvalho, José G.F. Coutinho, Wayne Luk, Ricardo
Nobre, Pedro Diniz, and Zlatko Petrov. Lara: an aspect-oriented programming
language for embedded systems. In Proceedings of the 11th Annual Interna-
tional Conference on Aspect-Oriented Software Development, AOSD ’12, page
179–190, New York, NY, USA, 2012. Association for Computing Machinery.

[26] Gengbiao Chen, Zhuo Wang, Ruoyu Zhang, Kan Zhou, Shiqiu Huang, Kangqi
Ni, Zhengwei Qi, Kai Chen, and Haibing Guan. A refined decompiler to generate
c code with high readability. In 2010 17th Working Conference on Reverse
Engineering, pages 150–154, Beverly, MA, USA, 2010. Institute of Electrical
and Electronics Engineers (IEEE).

[27] Clang. Expressive diagnostics. https://clang.llvm.org/diagnostics.html,
2023.

[28] LLVM Community. Introduction and development of the emitc dialect in mlir.
https://reviews.llvm.org/D76571. Discussion on the development and fea-
tures of the EmitC dialect, accessed: [insert date here].

[29] Julia Computing. Llvm cbackend. https://github.com/JuliaComputingOSS/
llvm-cbe, 2022.

[30] Enrico A Deiana, Vincent St-Amour, Peter A Dinda, Nikos Hardavellas, and
Simone Campanoni. Unconventional parallelization of nondeterministic appli-
cations. In Proceedings of the Twenty-Third International Conference on Ar-
chitectural Support for Programming Languages and Operating Systems, pages
432–447, 2018.

107

https://clang.llvm.org/diagnostics.html
https://reviews.llvm.org/D76571
https://github.com/JuliaComputingOSS/llvm-cbe
https://github.com/JuliaComputingOSS/llvm-cbe

[31] Zachary DeVito, Niels Joubert, Francisco Palacios, Sean Oakley, Margarita
Medina, Mario Barrientos, Erich Elsen, Frank Ham, Alex Aiken, Karthik Du-
raisamy, Eric Darve, Juan Alonso, and Pat Hanrahan. Liszt: a domain specific
language for building portable mesh-based pde solvers. In Proceedings of 2011
International Conference for High Performance Computing, Networking, Stor-
age and Analysis, pages 9:1–9:12, New York, NY, USA, 2011. ACM.

[32] Giuseppe Antonio Di Luna, Davide Italiano, Luca Massarelli, Sebastian Öster-
lund, Cristiano Giuffrida, and Leonardo Querzoni. Who’s debugging the debug-
gers? exposing debug information bugs in optimized binaries. In Proceedings of
the 26th ACM International Conference on Architectural Support for Program-
ming Languages and Operating Systems, ASPLOS ’21, page 1034–1045, New
York, NY, USA, 2021. Association for Computing Machinery.

[33] JM Diaz, S Pophale, K Friedline, and O Hernandez. Evaluating support for
openmp offload features. In Proceedings of the Second Annual OpenMP Users
Conference. ACM, 2018.

[34] R Dietrich, F Schmitt, A Grund, and D Schmidl. Performance measurement
for the openmp 4.0 offloading model. In Euro-Par 2014: Parallel Processing
Workshops. Springer, 2014.

[35] Johannes Doerfert, Atemn Patel, Joseph Huber, Shilei Tian, Jose M Monsalve
Diaz, Barbara Chapman, and Giorgis Georgakoudis. Co-designing an openmp
gpu runtime and optimizations for near-zero overhead execution. In 2022 IEEE
International Parallel and Distributed Processing Symposium (IPDPS), pages
504–514, 2022.

[36] Rob Farber. CLACC: An Open Source OpenACC Compiler and Source
Code Translation Project. https://www.exascaleproject.org/highlight/
clacc-an-open-source-openacc-compiler-and-source-code-translation-project/,
2024. Accessed: April 19, 2024.

[37] Naila Farooqui, Andrew Kerr, Gregory Diamos, Sudhakar Yalamanchili, and
Karsten Schwan. A framework for dynamically instrumenting gpu compute
applications within gpu ocelot. page 9, 03 2011.

[38] Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming
Gong, Linjun Shou, Bing Qin, Ting Liu, Daxin Jiang, et al. Codebert: A
pre-trained model for programming and natural languages, 2020.

[39] Jeanne Ferrante, Karl J. Ottenstein, and Joe D. Warren. The program depen-
dence graph and its use in optimization. ACM Trans. Program. Lang. Syst.,
9(3):319–349, jul 1987.

[40] Alexander Fokin, Egor Derevenetc, Alexander Chernov, and Katerina Troshina.
Smartdec: Approaching c++ decompilation. In 2011 18th Working Conference
on Reverse Engineering, pages 347–356, Limerick, Ireland, 2011. IEEE.

108

https://www.exascaleproject.org/highlight/clacc-an-open-source-openacc-compiler-and-source-code-translation-project/
https://www.exascaleproject.org/highlight/clacc-an-open-source-openacc-compiler-and-source-code-translation-project/

[41] Haxe Foundation. Haxe. https://github.com/HaxeFoundation/haxe, 2005.

[42] Edgar Gabriel, Graham E. Fagg, George Bosilca, Thara Angskun, Jack J. Don-
garra, Jeffrey M. Squyres, Vishal Sahay, Prabhanjan Kambadur, Brian Barrett,
Andrew Lumsdaine, Ralph H. Castain, David J. Daniel, Richard L. Graham,
and Timothy S. Woodall. Open MPI: Goals, concept, and design of a next gen-
eration MPI implementation. In Proceedings, 11th European PVM/MPI Users’
Group Meeting, pages 97–104, Budapest, Hungary, September 2004. Springer,
Berlin, Heidelberg.

[43] GNU. GNU libgomp. https://gcc.gnu.org/onlinedocs/libgomp/, 2022.

[44] Scott Grauer-Gray, Lifan Xu, Robert Searles, Sudhee Ayalasomayajula, and
John Cavazos. Auto-tuning a high-level language targeted to gpu codes. In
2012 innovative parallel computing (InPar), pages 1–10, San Jose, CA, USA,
2012. IEEE.

[45] Tobias Grosser, Armin Groesslinger, and Christian Lengauer. Polly—perform-
ing polyhedral optimizations on a low-level intermediate representation. Parallel
Processing Letters, 22(04):1250010, 2012.

[46] Andrea Gussoni, Alessandro Di Federico, Pietro Fezzardi, and Giovanni Agosta.
A comb for decompiled c code. In Asia Conference on Computer and Commu-
nications Security (ASIA CCS’20), page 637–651, New York, NY, USA, 2020.
Association for Computing Machinery.

[47] Tim Harris and Satnam Singh. Feedback directed implicit parallelism. In
Proceedings of the 12th ACM SIGPLAN international conference on Functional
programming, ICFP ’07, pages 251–264, Freiburg, Germany, 2007. Association
for Computing Machinery.

[48] Brian Homerding, Atmn Patel, Enrico Armenio Deiana, Yian Su, Zujun Tan,
Ziyang Xu, Bhargav Reddy Godala, David I. August, and Simone Campanoni.
The parallel semantics program dependence graph, 2024.

[49] Richard D Hornung and Jeffrey A Keasler. The raja portability layer: overview
and status. 2014.

[50] Joseph Huber, Melanie Cornelius, Giorgis Georgakoudis, Shilei Tian, Jose
M Monsalve Diaz, Kuter Dinel, Barbara Chapman, and Johannes Doerfert.
Efficient execution of openmp on gpus. In 2022 IEEE/ACM International Sym-
posium on Code Generation and Optimization (CGO), pages 41–52, 2022.

[51] Wen-mei Hwu, Shane Ryoo, Sain-Zee Ueng, John H Kelm, Isaac Gelado, Sam S
Stone, Robert E Kidd, Sara S Baghsorkhi, Aqeel A Mahesri, Stephanie C Tsao,
et al. Implicitly parallel programming models for thousand-core microproces-
sors. In Proceedings of the 44th annual Design Automation Conference, pages
754–759, San Diego, CA, USA, 2007. IEEE.

109

https://github.com/HaxeFoundation/haxe
https://gcc.gnu.org/onlinedocs/libgomp/

[52] Intel. Intel® advisor user guide. https://www.intel.com/content/www/us/
en/develop/documentation/advisor-user-guide/top.html, 2022.

[53] I. R. Ivanov, O. Zinenko, J. Domke, T. Endo, and W. S. Moses. Retargeting and
respecializing gpu workloads for performance portability. In 2024 IEEE/ACM
International Symposium on Code Generation and Optimization (CGO), pages
119–132, Los Alamitos, CA, USA, mar 2024. IEEE Computer Society.

[54] Alister Johnson, Camille Coti, Allen D. Malony, and Johannes Doerfert. Mar-
tini: The little match and replace tool for automatic application rewriting with
code examples. page 19–34, Berlin, Heidelberg, 2022. Springer-Verlag.

[55] Herbert Jordan, Simone Pellegrini, Peter Thoman, Klaus Kofler, and Thomas
Fahringer. Inspire: The insieme parallel intermediate representation. In Pro-
ceedings of the 22nd International Conference on Parallel Architectures and
Compilation Techniques, pages 7–17, 2013.

[56] Lester Kalms, Tim Hebbeler, and Diana Göhringer. Automatic opencl code
generation from llvm-ir using polyhedral optimization. In Proceedings of the
9th Workshop and 7th Workshop on Parallel Programming and RunTime Man-
agement Techniques for Manycore Architectures and Design Tools and Archi-
tectures for Multicore Embedded Computing Platforms, PARMA-DITAM ’18,
page 45–50, New York, NY, USA, 2018. Association for Computing Machinery.

[57] Khronos Group. SYCL Specification, 2020. Version 2020.

[58] Khronos Group. OpenCL Specification, 3.0 edition, 2022.

[59] Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris Callison-Burch, Marcello
Federico, Nicola Bertoldi, Brooke Cowan, Wade Shen, Christine Moran, Richard
Zens, et al. Moses: Open source toolkit for statistical machine translation. In
Proceedings of the 45th annual meeting of the association for computational lin-
guistics companion volume proceedings of the demo and poster sessions, pages
177–180, Prague, Czech Republic, 2007. Association for Computational Lin-
guistics.

[60] Marie-Anne Lachaux, Baptiste Roziere, Lowik Chanussot, and Guillaume Lam-
ple. Unsupervised translation of programming languages, 2020.

[61] Marie-Anne Lachaux, Baptiste Roziere, Marc Szafraniec, and Guillaume Lam-
ple. Dobf: A deobfuscation pre-training objective for programming languages.
Advances in Neural Information Processing Systems, 34:1–18, 2021.

[62] C. Lattner and V. Adve. Llvm: a compilation framework for lifelong program
analysis & transformation. In International Symposium on Code Generation
and Optimization, 2004. CGO 2004., pages 75–86, 2004.

110

https://www.intel.com/content/www/us/en/develop/documentation/advisor-user-guide/top.html
https://www.intel.com/content/www/us/en/develop/documentation/advisor-user-guide/top.html

[63] Celine Lee, Abdulrahman Mahmoud, Michal Kurek, Simone Campanoni, David
Brooks, Stephen Chong, Gu-Yeon Wei, and Alexander M Rush. Guess & sketch:
Language model guided transpilation. arXiv preprint arXiv:2309.14396, 2023.

[64] Sang-Ik Lee, Troy A Johnson, and Rudolf Eigenmann. Cetus–an extensible com-
piler infrastructure for source-to-source transformation. In Languages and Com-
pilers for Parallel Computing: 16th International Workshop, LCPC 2003, Col-
lege Station, TX, USA, October 2-4, 2003. Revised Papers 16, pages 539–553.
Springer, 2004.

[65] Yuanbo Li, Shuo Ding, Qirun Zhang, and Davide Italiano. Debug informa-
tion validation for optimized code. In Proceedings of the 41st ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI 2020,
page 1052–1065, New York, NY, USA, 2020. Association for Computing Ma-
chinery.

[66] Chunhua Liao, Daniel J Quinlan, Thomas Panas, and Bronis R De Supinski. A
rose-based openmp 3.0 research compiler supporting multiple runtime libraries.
In Beyond Loop Level Parallelism in OpenMP: Accelerators, Tasking and More:
6th Internationan Workshop on OpenMP, IWOMP 2010, Tsukuba, Japan, June
14-16, 2010 Proceedings 6, pages 15–28. Springer, 2010.

[67] Shih-Wei Liao, Amer Diwan, Robert P Bosch Jr, Anwar Ghuloum, and Mon-
ica S Lam. Suif explorer: An interactive and interprocedural parallelizer. In
Proceedings of the seventh ACM SIGPLAN symposium on Principles and prac-
tice of parallel programming, pages 37–48, 1999.

[68] Relyze Software Limited. Relyze. https://www.relyze.com/, 2022.

[69] LLVM. Llvm loop terminology (and canonical forms), 2023.

[70] LLVM/OpenMP. LLVM/OpenMP 15.0.0git documentation. https://openmp.
llvm.org/design/Runtimes.html, 2023.

[71] David B. Loveman. Program improvement by source-to-source transformation.
J. ACM, 24(1):121–145, jan 1977.

[72] Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey Svyatkovskiy, Ambrosio
Blanco, Colin B. Clement, Dawn Drain, Daxin Jiang, Duyu Tang, Ge Li, Li-
dong Zhou, Linjun Shou, Long Zhou, Michele Tufano, Ming Gong, Ming Zhou,
Nan Duan, Neel Sundaresan, Shao Kun Deng, Shengyu Fu, and Shujie Liu.
Codexglue: A machine learning benchmark dataset for code understanding and
generation. CoRR, abs/2102.04664:1–14, 2021.

[73] Roberto Lublinerman, Swarat Chaudhuri, and Pavol Cerny. Parallel program-
ming with object assemblies. In Proceedings of the 24th ACM SIGPLAN confer-
ence on Object oriented programming systems languages and applications, pages
61–80, New York, NY, USA, 2009. ACM.

111

https://www.relyze.com/
https://openmp.llvm.org/design/Runtimes.html
https://openmp.llvm.org/design/Runtimes.html

[74] Stefano Markidis, Steven Wei Der Chien, Erwin Laure, Ivy Bo Peng, and Jef-
frey S Vetter. Nvidia tensor core programmability, performance & precision. In
2018 IEEE international parallel and distributed processing symposium work-
shops (IPDPSW), pages 522–531. IEEE, 2018.

[75] Norio Maruyama, Tatsuo Nomura, Kento Sato, and Satoshi Matsuoka. Physis:
an implicitly parallel programming model for stencil computations on large-scale
gpu-accelerated supercomputers. In High Performance Computing, Networking,
Storage and Analysis (SC), 2011 International Conference for, pages 1–12.
IEEE, 2011.

[76] Angelo Matni, Enrico Armenio Deiana, Yian Su, Lukas Gross, Souradip Ghosh,
Sotiris Apostolakis, Ziyang Xu, Zujun Tan, Ishita Chaturvedi, Brian Homerd-
ing, et al. Noelle offers empowering llvm extensions. In 2022 IEEE/ACM
International Symposium on Code Generation and Optimization (CGO), pages
179–192, Seoul, Korea, 2022. IEEE, IEEE.

[77] Sasa Misailovic, Deokhwan Kim, and Martin Rinard. Parallelizing sequential
programs with statistical accuracy tests. ACM Transactions on Embedded Com-
puting Systems (TECS), 12(2s):1–26, 2013.

[78] A Mishra, L Li, M Kong, and H Finkel. Benchmarking and evaluating unified
memory for openmp gpu offloading. In Proceedings of the Fourth Workshop on
Accelerator Programming Using Directives. ACM, 2017.

[79] Simon Moll. Ast - extractor for llvm (axtor). https://github.com/
cdl-saarland/axtor, 2017.

[80] William S. Moses, Lorenzo Chelini, Ruizhe Zhao, and Oleksandr Zinenko.
Polygeist: Raising c to polyhedral mlir. In 2021 30th International Conference
on Parallel Architectures and Compilation Techniques (PACT), pages 45–59,
2021.

[81] William S. Moses, Ivan R. Ivanov, Jens Domke, Toshio Endo, Johannes Doer-
fert, and Oleksandr Zinenko. High-performance gpu-to-cpu transpilation and
optimization via high-level parallel constructs. In Proceedings of the 28th ACM
SIGPLAN Annual Symposium on Principles and Practice of Parallel Program-
ming, PPoPP ’23, page 119–134, New York, NY, USA, 2023. Association for
Computing Machinery.

[82] Vincent D Moynihan and Peter JL Wallis. The design and implementa-
tion of a high-level language converter. Software: Practice and Experience,
21(4):391–400, 1991.

[83] Author(s) Name(s). Prompt: A framework for streamlined development of fast
memory profilers. arXiv preprint arXiv:231103263X, 2023.

112

https://github.com/cdl-saarland/axtor
https://github.com/cdl-saarland/axtor

[84] V. Krishna Nandivada, Jun Shirako, Jisheng Zhao, and Vivek Sarkar. A trans-
formation framework for optimizing task-parallel programs. ACM Trans. Pro-
gram. Lang. Syst., 35(1), apr 2013.

[85] Quan M. Nguyen and Daniel Sanchez. Pipette: Improving core utilization
on irregular applications through intra-core pipeline parallelism. In 2020 53rd
Annual IEEE/ACM International Symposium on Microarchitecture (MICRO),
pages 596–608. IEEE, 2020.

[86] Bradford Nichols, Dick Buttlar, and Jacqueline Proulx Farrell. Pthreads pro-
gramming. O’Reilly & Associates, Inc., Sebastopol, CA, USA, 1996.

[87] Gabriel Noaje, Christophe Jaillet, and Michaël Krajecki. Source-to-source code
translator: Openmp c to cuda. In 2011 IEEE International Conference on
High Performance Computing and Communications, pages 512–519, Banff, AB,
Canada, 2011. IEEE.

[88] Cedric Nugteren and Henk Corporaal. Introducing ’bones’: a parallelizing
source-to-source compiler based on algorithmic skeletons. In Proceedings of
the 5th Annual Workshop on General Purpose Processing with Graphics Pro-
cessing Units, GPGPU-5, page 1–10, New York, NY, USA, 2012. Association
for Computing Machinery.

[89] NVIDIA, Péter Vingelmann, and Frank H.P. Fitzek. Cuda, release: 10.2.89,
2020.

[90] NVIDIA Corporation. Thrust: Parallel Algorithms Library, 2023.

[91] N. Nystrom, A. Aiken, and M. Odersky. Polyglot: An extensible compiler
framework for java. In Proceedings of the 2003 ACM SIGPLAN conference on
Programming Language Design and Implementation (PLDI), 2003.

[92] Trail of Bits Inc. rellic-xref. https://github.com/lifting-bits/rellic/
tree/master/tools/xref, 2022.

[93] OpenMP Architecture Review Board. OpenMP Application Program Interface,
October 2007.

[94] OpenACC-Standard Organization. OpenACC Programming and Best Practices
Guide. OpenACC-Standard Organization, Online, 2022. Accessed: 2023-04-22.

[95] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a
method for automatic evaluation of machine translation. In Proceedings of
the 40th annual meeting of the Association for Computational Linguistics, ACL
’02, page 311–318, USA, 2002. Association for Computational Linguistics.

[96] Atmn Patel, Shilei Tian, Johannes Doerfert, and Barbara Chapman. A virtual
gpu as developer-friendly openmp offload target. In LLPP ’21: The First
Workshop on LLVM in Parallel Processing, pages 1–7. ACM, 2021.

113

https://github.com/lifting-bits/rellic/tree/master/tools/xref
https://github.com/lifting-bits/rellic/tree/master/tools/xref

[97] Louis-Noël Pouchet, Uday Bondhugula, Cédric Bastoul, Albert Cohen, J. Ra-
manujam, and P. Sadayappan. Combined iterative and model-driven optimiza-
tion in an automatic parallelization framework. In Conference on Supercomput-
ing (SC’10), pages 1–11, New Orleans, LA, November 2010. IEEE Computer
Society Press.

[98] Louis-Noël Pouchet. Polybench/c. http://web.cs.ucla.edu/~pouchet/
software/polybench/, 2021.

[99] Prakash Prabhu, Soumyadeep Ghosh, Yun Zhang, Nick P. Johnson, and
David I. August. Commutative set: A language extension for implicit par-
allel programming. In Proceedings of the 32nd ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI ’11, page 1–11, New
York, NY, USA, 2011. Association for Computing Machinery.

[100] Flang Project. Flang: a Fortran Compiler Targeting LLVM. https://github.
com/flang-compiler/flang, 2019.

[101] LLVM Project. LLVM Language Reference Manual. https://llvm.org/docs/
LangRef.html, 2022.

[102] Dan Quinlan, Shmuel Ur, and Richard Vuduc. An extensible open-source com-
piler infrastructure for testing. In Shmuel Ur, Eyal Bin, and Yaron Wolfsthal,
editors, Hardware and Software, Verification and Testing, pages 116–133, Berlin,
Heidelberg, 2006. Springer Berlin Heidelberg.

[103] Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain Paris, Frédo
Durand, and Saman Amarasinghe. Halide: a language and compiler for opti-
mizing parallelism, locality, and recomputation in image processing pipelines.
Acm Sigplan Notices, 48(6):519–530, 2013.

[104] Arun Raman, Jae W. Lee, and David I. August. From sequential program-
ming to flexible parallel execution. In Proceedings of the 2012 International
Conference on Compilers, Architectures and Synthesis for Embedded Systems,
CASES ’12, page 37–40, New York, NY, USA, 2012. Association for Computing
Machinery.

[105] Easwaran Raman, Guilherme Ottoni, Arun Raman, Matthew J. Bridges, and
David I. August. Parallel-stage decoupled software pipelining. In Proceedings of
the 6th Annual IEEE/ACM International Symposium on Code Generation and
Optimization, CGO ’08, page 114–123, New York, NY, USA, 2008. Association
for Computing Machinery.

[106] Shuo Ren, Daya Guo, Shuai Lu, Long Zhou, Shujie Liu, Duyu Tang, Neel
Sundaresan, Ming Zhou, Ambrosio Blanco, and Shuai Ma. Codebleu: a method
for automatic evaluation of code synthesis. CoRR, abs/2009.10297:1–8, 2020.

114

http://web.cs.ucla.edu/~pouchet/software/polybench/
http://web.cs.ucla.edu/~pouchet/software/polybench/
https://github.com/flang-compiler/flang
https://github.com/flang-compiler/flang
https://llvm.org/docs/LangRef.html
https://llvm.org/docs/LangRef.html

[107] Hex-Rays SA. Hex-Rays Decompiler - User Manual. https://www.hex-rays.
com/products/decompiler/manual/, 2021.

[108] Paul Sathre, Mark Gardner, and Wu-chun Feng. On the portability of cpu-
accelerated applications via automated source-to-source translation. In Pro-
ceedings of the International Conference on High Performance Computing in
Asia-Pacific Region, HPCAsia ’19, page 1–8, New York, NY, USA, 2019. Asso-
ciation for Computing Machinery.

[109] Tao B. Schardl, William S. Moses, and Charles E. Leiserson. Tapir: Embedding
fork-join parallelism into llvm’s intermediate representation. SIGPLAN Not.,
52(8):249–265, jan 2017.

[110] Snowman decompiler. https://github.com/yegord/snowman, 2021.

[111] L Sommer, J Korinth, and A Koch. Openmp device offloading to fpga acceler-
ators. In IEEE 28th International Conference on Application-specific Systems,
Architectures and Processors. IEEE, 2017.

[112] John A. Stratton, Sam S. Stone, and Wen-mei W. Hwu. Mcuda: An efficient
implementation of cuda kernels for multi-core cpus. In José Nelson Amaral,
editor, Languages and Compilers for Parallel Computing, pages 16–30, Berlin,
Heidelberg, 2008. Springer Berlin Heidelberg.

[113] Yulei Sui and Jingling Xue. Svf: interprocedural static value-flow analysis in
llvm. In Proceedings of the 25th international conference on compiler construc-
tion, pages 265–266, 2016.

[114] Marek Surovič and Francesco Bertolaccini. Rellic.

[115] Steven Swanson, Andrew Schwerin, Michela Mercaldi, Andrew Petersen, An-
drew Putnam, Ken Michelson, Mark Oskin, and Susan Eggers. Sequoia: Pro-
gramming the memory hierarchy. Proceedings of the 2006 ACM/IEEE confer-
ence on Supercomputing, 2006.

[116] Armstrong A Takang, Penny A Grubb, and Robert D Macredie. The effects of
comments and identifier names on program comprehensibility: an experimental
investigation. J. Prog. Lang., 4(3):143–167, 1996.

[117] Zujun Tan, Yebin Chon, Michael Kruse, Johannes Doerfert, Ziyang Xu, Brian
Homerding, Simone Campanoni, and David I. August. Splendid: Supporting
parallel llvm-ir enhanced natural decompilation for interactive development. In
Proceedings of the 28th ACM International Conference on Architectural Sup-
port for Programming Languages and Operating Systems, Volume 3, ASPLOS
2023, page 679–693, New York, NY, USA, 2023. Association for Computing
Machinery.

[118] Babel Team. Babel. https://github.com/babel/babel, 2014.

115

https://www.hex-rays.com/products/decompiler/manual/
https://www.hex-rays.com/products/decompiler/manual/
https://github.com/yegord/snowman
https://github.com/babel/babel

[119] William Thies, Michal Karczmarek, and Saman Amarasinghe. Streamit: A
language for streaming applications. In International Conference on Compiler
Construction, pages 179–196, Berlin, Heidelberg, 2002. Springer, Springer.

[120] William Thies, Michal Karczmarek, and Saman P. Amarasinghe. Streamit: A
language for streaming applications. In Proceedings of the 11th International
Conference on Compiler Construction, pages 179–196, 2002.

[121] Ngoc Tran, Hieu Tran, Son Nguyen, Hoan Nguyen, and Tien Nguyen. Does
BLEU score work for code migration? In 2019 IEEE/ACM 27th International
Conference on Program Comprehension (ICPC), page 165–176, Montreal, Que-
bec, Canada, may 2019. IEEE Press.

[122] Christian R Trott, Damien Lebrun-Grandié, Daniel Arndt, Jan Ciesko, Vinh
Dang, Nathan Ellingwood, Rahulkumar Gayatri, Evan Harvey, Daisy S Holl-
man, Dan Ibanez, et al. Kokkos 3: Programming model extensions for the exas-
cale era. IEEE Transactions on Parallel and Distributed Systems, 33(4):805–817,
2021.

[123] Abhishek Udupa, Kaushik Rajan, and William Thies. Alter: exploiting break-
able dependences for parallelization. ACM SIGPLAN Notices, 47:480, 08 2012.

[124] Neil Vachharajani, Ram Rangan, Easwaran Raman, Matthew J. Bridges, Guil-
herme Ottoni, and David I. August. Speculative decoupled software pipelining.
In Proceedings of the 16th International Conference on Parallel Architectures
and Compilation Techniques (PACT). IEEE, 2007.

[125] Hans Vandierendonck, Simon Rul, and Koen De Bosschere. The paralax in-
frastructure: automatic parallelization with a helping hand. In Proceedings
of the 19th international conference on Parallel architectures and compilation
techniques, pages 389–400, New York, NY, USA, 2010. ACM.

[126] Sven Verdoolaege, Juan Carlos Juega, Albert Cohen, José Ignacio Gómez,
Christian Tenllado, and Francky Catthoor. Polyhedral parallel code genera-
tion for cuda. ACM Trans. Archit. Code Optim., 9(4), jan 2013.

[127] Christoph Von Praun, Luis Ceze, and Calin Caşcaval. Implicit parallelism with
ordered transactions. In Proceedings of the 12th ACM SIGPLAN symposium
on Principles and practice of parallel programming, PPoPP ’07, pages 79–89,
New York, NY, USA, 2007. Association for Computing Machinery.

[128] Zhiming Wang, Yury Plyakhin, Chenwei Sun, Ziran Zhang, Zhiwei Jiang, Andy
Huang, and Hao Wang. A source-to-source cuda to sycl code migration tool:
Intel® dpc++ compatibility tool. In International Workshop on OpenCL,
IWOCL’22, New York, NY, USA, 2022. Association for Computing Machin-
ery.

116

[129] Khaled Yakdan, Sergej Dechand, Elmar Gerhards-Padilla, and Matthew Smith.
Helping johnny to analyze malware: A usability-optimized decompiler and mal-
ware analysis user study. In 2016 IEEE Symposium on Security and Privacy
(SP), pages 158–177, Los Alamitos, CA, USA, 2016. IEEE, IEEE Computer
Society.

[130] Khaled Yakdan, Sebastian Eschweiler, Elmar Gerhards-Padilla, and Matthew
Smith. No more gotos: Decompilation using pattern-independent control-flow
structuring and semantic-preserving transformations. In NDSS Symposium
2015, NDSS ’15, pages 1–15, San Diego, CA, USA, 2015. Internet Society.

117

	Abstract
	Acknowledgements
	1 Introduction
	1.1 Dissertation Contributions
	1.1.1 New Vision for Programmer and Compiler Interactive Parallelization
	1.1.2 Compiler Enhanced Source-to-Source Transpilation Framework
	1.1.3 Parallelism-aware Natural Decompiler

	1.2 Summary

	2 Motivation
	2.1 Partial Performance Enablers
	2.1.1 Source-level Tools
	2.1.2 Language-agnostic Optimizations
	2.1.3 Programmer Interactivity

	2.2 Transpilation Across Execution Models
	2.3 Limited Extensibility

	3 Tulip🌷
	3.1 Tulip Overview
	3.1.1 Performance Enablers In Action

	3.2 Design and Implementation
	3.2.1 Source PPM Compilation
	3.2.2 Interaction with a Parallelizing Compiler
	3.2.3 Source Code Generation

	4 SPLENDID
	4.1 SPLENDID Overview
	4.1.1 Explicit Parallel Translation using OpenMP
	4.1.2 Enhanced Natural Control Flow Translation
	4.1.3 Natural Variable Reconstruction
	4.1.4 SPLENDID in Action
	4.1.5 Case Studies

	4.2 Design and Implementation
	4.2.1 Parallel Source Code Generation
	4.2.2 Natural Control-Flow Generation
	4.2.3 Variable Generation

	5 Evaluation
	5.1 Experiment Setup
	5.1.1 Benchmarks
	5.1.2 Hardware Systems
	5.1.3 Baselines
	5.1.4 Tools Selection
	5.1.5 Metrics

	5.2 Translation Pipelines
	5.3 Migrated Code Performance
	5.3.1 Freedom of Choosing the Tools
	5.3.2 Programmer Interactivity
	5.3.3 Better Speedups on AMD than on NVIDIA

	5.4 Naturalness
	5.4.1 Naturalness Overview
	5.4.2 Naturalness by Effective Interaction
	5.4.3 Portability
	5.4.4 Variable Renaming

	6 Related Work
	6.1 Parallel Programming Models
	6.2 Source Level Rewrite
	6.3 Direct Transpilation
	6.4 OpenMP Offloading
	6.5 Automatic Parallelization
	6.6 Decompilation

	7 Conclusion
	7.1 Conclusion
	7.2 Future Work
	7.2.1 Source Representation of Advanced Parallelization Schemes
	7.2.2 Effect of CUDA Programming Across Platforms
	7.2.3 Natural Decompilation Enhanced by LLM

	A Implementation Details
	A.1 BLEU For Formal Languages

	Bibliography

