
AUTOMATIC EXPLOITATION OF

INPUT PARALLELISM

TAEWOOK OH

A DISSERTATION

PRESENTED TO THE FACULTY

OF PRINCETON UNIVERSITY

IN CANDIDACY FOR THE DEGREE

OF DOCTOR OF PHILOSOPHY

RECOMMENDED FOR ACCEPTANCE

BY THE DEPARTMENT OF

COMPUTER SCIENCE

ADVISOR: PROFESSOR DAVID I. AUGUST

SEPTEMBER 2015

c© Copyright by Taewook Oh, 2015.

All Rights Reserved

Abstract

Parallelism may reside in the input of a program rather than the program itself. A script in-

terpreter, for example, is hard to parallelize because its dynamic behavior is unpredictable

until an input script is given. Once the interpreter is combined with the script, the resulting

program becomes predictable, and even parallelizable if the input script contains paral-

lelism. Despite recent progress in automatic parallelization research, however, existing

techniques cannot take advantage of the parallelism within program inputs, even when the

inputs remain fixed across multiple executions of the program.

This dissertation shows that the automatic exploitation of parallelism within fixed pro-

gram inputs can be achieved by coupling program specialization with automatic paralleliza-

tion techniques. Program specialization marries a program with the values that remain in-

variant across the program execution, including fixed inputs, and creates a program that

is highly optimized for the invariants. The proposed technique exploits program special-

ization as an enabling transformation for automatic parallelization; through specialization,

the parallelism within the fixed program inputs can be materialized within the specialized

program.

First, this dissertation presents Invariant-induced Pattern-based Loop Specialization

(IPLS). IPLS folds the parallelism within the program invariants into the specialized pro-

gram, thereby creating a more complete and predictable program that is easier to paral-

lelize. Second, this dissertation applies automatic speculative parallelization techniques to

specialized programs to exploit parallelism in inputs. As existing techniques fail to extract

parallelism from complex programs such as IPLS specialized programs, context-sensitive

speculation and optimized design of the speculation run-time system are proposed to im-

prove the applicability and minimize the execution overhead of the parallelized program.

A prototype of the proposed technique is evaluated against two widely-used open-

source script interpreters. Experimental results demonstrate the effectiveness of the pro-

posed techniques.

iii

Acknowledgments

First and foremost, I thank God, my Lord, for his abundant blessings to me. Despite

my weaknesses and limitations, God has faithfully guided me through each and every day.

I want my life to be used for His purpose and glory.

I was fortunate enough to be advised by Prof. David August during my Ph.D. at Prince-

ton. I thank David for helping me find interesting and intriguing research topics, which

made my times here full of excitement. I also thank David for believing in me and encour-

aging me when I was struggling through my research. David taught me invaluable lessons

about how to address challenging problems, how to make constant progress through re-

search, and how to talk persuasively with others about the research findings. It was a great

privilege to work with David.

I sincerely appreciate Prof. Brian Kernighan and Prof. Scott Mahlke for reading my

thesis and providing me their feedback. It was very lucky to have them as readers of my

committee. Brian was an example of a great teacher and software engineer. Helping Brian

teach his class as an Assistant in Instruction was both a pleasant and invaluable experience.

Scott was the best external collaborator of my team when I was working for Samsung

before I come to Princeton. His research inspired me to pursue a Ph.D. with an emphasis

on computer architectures and compilers. I would also like to thank Prof. Andrew Appel

and Prof. Sharad Malik for their invaluable time as nonreaders of my committee.

I must say that this dissertation would not have been possible without the support from

everyone in the Liberty Research Group. I thank Thomas Jablin, Arun Raman, Yun Zhang,

Jialu Huang, and Prakash Prabhu for their welcome greetings and guidance for graduate

school when I first joined the group. Hanjun Kim gave me lots of help in doing research

and settling down in Princeton, for which I am very grateful. I thank Nick Johnson for

building a great compiler infrastructure which was an essential component of my research.

Feng Liu was a big help to me in my final year when I was searching for a job and going

through the graduation process. I thank Stephen Beard, Soumyadeep Ghosh, and Jordan

iv

Fix for being both excellent collaborators and great friends. My days in Princeton were so

much fun with you guys. I thank Heejin Ahn, Nayana Prasad Nagendra, Sergiy Popovych,

and Hansen Zhang for making the group vibrant. Additionally, I thank Jae W. Lee, Ayal

Zaks, and Matt Zoufaly for many interesting discussions and collaborations while they

were in the group.

I would like to thank my wonderful friends I have met in Princeton. I thank my fellows

in Computer Science and Electrical Engineering department, including Sunha Ahn, Wonho

Kim, Kyong Ho Lee, Young-suk Lee, Srinivas Narayana, Chris Park, and Cole Schlesinger,

for sharing the pains and joys of research. I thank Daeki Cho, Changhoon Ha, Taehee Han,

Hyuncheol Jeong, Jonghun Kam, Hwanho Kim, Hyungwon Kim, Insong Kim, John Kim

and Tae-Wook Koh for the coffee/lunch breaks that kept me sane through the years. I

especially thank Taehee’s family for always helping my family when we were in dire need.

I am thankful to everyone in the Korean Graduate Student Association at Princeton and the

All Nations Mission Church for their friendship and prayers.

Many thanks to the administrative staff of Princeton University and Department of

Computer Science, in particular. I thank Melissa Lawson and Nicki Gotsis for their help

as the Graduate Coordinator. I would like to thank the Sieble Scholars program for their

recognition and generous support during my fifth year of graduate school. I thank Mi-

crosoft and Facebook for the opportunities to do summer internships, which provided me

great experience. I had a wonderful time working with Chris Mckinsey, David Tarditi,

Guilherme Ottoni, and Bert Maher among others.

My parents, Seongho Oh and Hyunjung Koo, have been great role models for me

throughout my life. I have always felt that my success and happiness were their prior-

ity. I’m grateful for their unconditional love, support, and numerous sacrifices. I also thank

my parents-in-law, Juick Kim and Yeonsim Yoo, for having supported me with their love

and encouragement. I thank my two grandmoms, Ms. Oksook Jang and Ms. Jeongsoon

Song, for their endless prayer for me to accomplish my Ph.D. I thank all my relatives for

v

their love and support.

Finally, I thank my wife, Kiyeon Kim, for her patience, understanding, and love. My

Ph.D. journey was only possible because of her amazing support and sacrifice. Thank you,

love, for being there through thick and thin, and being the best mom for our two sons,

Chanjoo and Injoo. No amount of words could express my gratitude towards you!

vi

Contents

Abstract . iii

Acknowledgments . iv

List of Tables . x

List of Figures . xi

1 Introduction 1

1.1 Dissertation Contributions . 5

1.2 Dissertation Organization . 7

2 Background 8

2.1 Program Specialization . 8

2.2 Parallelization Transforms . 10

2.3 Speculative Parallelization . 15

3 Insight by Example: Script Interpreter 18

3.1 Program Specialization as an Enabling Technique 18

3.2 Parallelizing Specialized Loops . 20

4 Invariant-Induced Pattern-based Loop Specialization (IPLS) 23

4.1 Overview of IPLS . 24

4.1.1 Profiling Overview . 24

4.1.2 Pattern Detection Overview . 28

vii

4.1.3 Code Generation Overview . 29

4.2 Profiling . 31

4.3 Pattern Detection . 37

4.4 Code Generation . 41

5 Parallelizing Specialized Programs 46

5.1 Overall Workflow . 47

5.1.1 Enabling Transformation: Loop Peeling 47

5.1.2 Profiling . 47

5.1.3 Parallelization Planner . 49

5.1.4 Speculation Applicator . 50

5.1.5 Multi-Threaded Code Generator 51

5.2 Context-Sensitive Speculation . 51

5.2.1 Motivating Context-Sensitive Speculation 52

5.2.2 Context-Sensitive Profiling . 54

5.2.3 Run-time Support for Context-Sensitive Speculation 60

5.3 Optimizing Run-time System Supporting Speculative Parallelization 62

5.3.1 Static Optimization . 62

5.3.2 Dynamic Optimization . 63

6 Evaluation 70

6.1 Performance Results . 72

6.2 Optimization of Speculation Validation . 80

6.3 Limit Study . 83

6.4 Performance Optimization Effect of IPLS 87

6.5 Limitations . 92

7 Related Work 94

7.1 Program Specialization . 94

viii

7.1.1 Compile-time Specialization . 94

7.2 Automatic Parallelization . 97

7.3 Parallelizing Script Interpretation . 100

8 Conclusion and Future Directions 102

8.1 Conclusion . 102

8.2 Future Research Directions . 103

ix

List of Tables

6.1 Execution characteristics of each interpreter and static input: P’loops de-

notes the number of loops that have been parallelized after specialization.

Coverage denotes the fraction of runtime spent in the parallelized loops

compared to total program execution time. Size denotes the original size of

the parallelized loops, in units of LLVM IR instructions. train-small, train-

large, and ref denotes the input to the script for heavy-weight profilers,

light-weight profilers, and the actual evaluation executions, respectively. . . 71

6.2 Total accessed bytes and total communicated bytes during the parallel pro-

gram execution . 80

6.3 Execution characteristics of each interpreter and each static input: Iteration

coverage denotes the fraction of hot loop iterations that are executed in the

specialized code. Meta-level loops/traces denotes the number of identified

patterns. 88

6.4 Unexpected exits from the specialized loop as a fraction of the number of

iterations running in a specialized loop. 90

6.5 Ratio of dynamic instruction count of the original program to that of the

specialized program for Lua-5.2.0. Larger numbers indicate a greater re-

duction in dynamic instructions. 91

x

List of Figures

1.1 Normalized SPEC scores for all reported configuration of machines be-

tween 1992 and 2015. 2

1.2 Speedup of multiple threads over single threaded execution for SPEC CINT2000

benchmark suite. The speedup numbers are measured on a simulation plat-

form that assumes the existence of core-to-core communication queues and

a versioned memory hardware subsystem [10] 3

2.1 Example of program specialization. (a) A code snippet describing a mean

filter algorithm. size is a runtime parameter. (b) A value of size is

fixed to 3. A code snippet specialized accordingly. (c) More aggressively

specialized code snippet by applying loop unrolling. 9

2.2 DOACROSS and DSWP schedules. A parallelizable loop described in (a)

can be parallelized by applying either DOACROSS or DSWP. (b) is the

Program Dependence Graph (PDG) of loop (a) and (c) is the DAGSCC of the

PDG. Solid lines represent data dependences while dotted lines represent

control dependences. (d) shows parallel execution schedules of the loop for

DOACROSS and DSWP when communication latency is 1 cycle, while (e)

shows the schedules when communication latency is 2 cycles. The letters

in the schedules correspond to the lines in (a) and the numbers represent

the iteration counts. 12

xi

2.3 Comparison of DSWP and PS-DSWP schedules. (a) DSWP execution plan

and (b) PS-DSWP execution plan of Figure 2.2(a) when statement C takes

three cycles to execute. 14

3.1 Example of interpreter specialization. (a) An input script, its bytecode rep-

resentation, and a snippet of the main interpreter loop. (b) Execution trace

of the interpreter running the script. The grey boxes represent four itera-

tions of the interpreter loop, which is one iteration of the loop in the input

script. Note that isLT evaluates to 1 in the first two iterations and 0 in the

last. (c) Resulting specialized loop. 19

3.2 (a) PDG of the specialized loop from Figure 3.1(c). Note that the control

dependence from node 2 applies to both sets of nodes 1-2 and 3-7. (b)

DAGSCC of PDG from (a). (c) Parallel execution plan using PS-DSWP. . . . 21

4.1 IPLS Specialization: (a) a fixed, static input script, (b) CFG of a script

interpreter, (c) result of profiling, including a pattern of static values and

their associated iteration control traces, (d) result of pattern detection, and

(e) the loop produced by code generation 25

4.2 The high-level structure of IPLS. Note that .bc files are intermediate files

containing LLVM bitcode. 26

4.3 Instrumentation added by the IPLS profiler to achieve dynamic information-

flow tracking. 33

4.4 IPLS uses object-relative memory profiling to generate repeatable, sym-

bolic names for relocatable address. 35

4.5 (a) findAddress function to find the object corresponding to the pro-

filed object at the specialized program execution time (b) Use of symbolic

address on the specialized program side 36

xii

4.6 Meta-level loops/traces detection extracts a graph which resembles a control-

flow graph in which loops are identified. 38

4.7 The code generation process: (a) original loop, (b) splitting the loop header

and latch, (c) cloning and specializing iterations from a pattern, (d) adding

dispatch conditions and stitching specialized iterations into a loop, and (e)

adding unexpected exit conditions. 42

5.1 The workflow of the system to automatically exploit input parallelism. A

sequential program, fixed inputs, and training inputs are inputs to the sys-

tem. After undergoing IPLS specialization and an enabling transformation

(5.1.1), the system profiles (5.1.2) the program and then performs specula-

tive parallelization (5.1.3-5.1.5). Note that .bc files are intermediate files

containing LLVM bitcode. 48

5.2 Benefits of context-sensitivity. (a) Example code from a specialized inter-

preter. (b) Source code for the add1 function. (c) PDG constructed using

profiling results with no context-sensitivity, which results in no opportu-

nity for parallelism. The grey region represents an SCC. (d) PDG using

profiling results with context-sensitivity. Note that the self edge on node 5

and the mutual edge between nodes 4 and 5 have been eliminated, which

reduces the size of the SCC and enables parallelism. 53

5.3 As the memory dependence profiler observes a dependence from the store

instruction in foo to the load instruction in bar, it observes a dependence

from the callsite of foo to the callsite of bar in loop L as well. How-

ever, these dependences can be speculatively removed by applying loop-

invariant load speculation to the load instruction. 59

5.4 Validation functions for speculative reads and writes within the parallelized

region . 65

xiii

5.5 Algorithm for the commit stage. Definitions of READ, WRITE, READ BEFORE WRITE,

and GET SHADOW OF are same as the ones in Figure 5.4 67

5.6 Example demonstrating how the commit process detects misspeculation.

(a) Parallelization target loop. (b) Multi-threaded loop using the optimized

run-time system. (c) A schematic time line of parallel execution. Rectan-

gular boxes next to subTXs represents the memory state of each process at

a given time. Shadowed column indicates shadow memory for each byte. . 68

6.1 Whole-program speedup of the automatically specialized and parallelized

code, compared to the sequential, unspecialized version compiled with

-O3. Number of Processes counts the number of worker processes

excluding the commit process. 73

6.2 Sequential slowdown after inserting speculation checks 74

6.3 Percentage of the parallel execution capacity that parallel workers spend on

inter-process communication. The number is averaged across all parallel

worker processes. 75

6.4 Number of bytes accessed (in MB) per iteration for each parallelized loop . 77

6.5 Fraction of execution time spent on subtransaction boundaries. 78

6.6 Overhead of memory dependence checking instructions before and after

the static optimization . 81

6.7 Effect of memory dependence speculation optimization for parallel execu-

tions . 82

6.8 Fraction of read-only page addresses in total communicated bytes. 83

6.9 Whole-program speedup using 24 processes compared to the sequential,

unspecialized version compiled with -O3, with and without validation over-

heads. 84

6.10 Sequential slowdown after inserting speculation checks assuming oracle

analysis. 86

xiv

6.11 Fraction of unavoidable data communication, including value forwarding

between pipeline stages, and live-out forwarding to the main process 86

6.12 Whole-program speedup with three interpreters: Lua, Perl, and Python,

and 11 input scripts for each. 89

6.13 Code size increase after specialization for three interpreters: Lua, Perl, and

Python, and 11 input scripts for each. 89

xv

Chapter 1

Introduction

Multi-core processors have become ubiquitous across all levels of computing, from em-

bedded systems to high performance servers. However, applications must expose enough

parallelism to utilize multiple cores in order to benefit from these computational resources.

Thus, extracting as much parallelism as possible out of programs is key to achieve high

performance on today’s architectures.

Figure 1.1 illustrates the historical performance scaling of SPEC benchmarks from

1992 to 2015 [86]. The y-axis represents performance normalized across generations of

the SPEC benchmark suite, while the x-axis represents the time when the performance

was reported. Each point on the graph represents the performance of the benchmarks on

different machine configurations. Note that the graph is drawn in log scale.

As shown in the graph, the rate of performance improvement over time has slowed

down since 2004. Up until 2004, each new generation of hardware improved the perfor-

mance transparently to the programmers. This improvement mostly came from increasing

clock speed and more instruction-level parallelism (ILP) enabled by microarchitectural en-

hancement.

Since 2004, however, processor vendors have been faced with the limitations of these

traditional approaches. The limitations are two-fold. First, the processor’s clock frequency

1

S
P
E
C

C
IN

T
P
er
fo
rm

an
ce

(l
o
g
sc
a
le
)

Year
1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014

CPU92
CPU95
CPU2000
CPU2006

> 5 years behind

Figure 1.1: Normalized SPEC scores for all reported configuration of machines between
1992 and 2015.

cannot be increased indefinitely because of excessive power usage and thermal dissipa-

tion. Second, an ILP wall emerged. Allocating more hardware resources to exploit more

ILP is providing diminishing returns. This has led to a fundamental change in processor

design. Instead of improving single-core performance, processor manufacturers started to

put multiple cores on the same die to utilize abundant transistors resulting from Moore’s

law [56].

Unfortunately, sequential programs do not benefit from additional cores. The conse-

quence is a substantial decrease in the traditional rate of performance growth, shown in

Figure 1.1. To harness multiple cores, programs need to be parallelized to exploit coarse-

grained parallelism or thread-level parallelism. However, it is widely acknowledged that

writing correct and efficient parallel programs is much harder than writing sequential ones,

even for skilled computer programmers [68]. Parallel programs are vulnerable to concur-

rency bugs like deadlocks or data races, and debugging parallel programs is more tedious

than debugging sequential ones. To make a parallel program perform well, programmers

must understand not only the program itself but also the underlying hardware architecture.

2

1

2

5

10

20

50

100

S
p

e
e
d

u
p

16
4.

gz
ip

17
5.

vp
r

17
6.

gc
c

18
1.

m
cf

18
6.

cr
af

ty

19
7.

pa
rs

er

25
3.

pe
rlb

m
k

25
4.

ga
p

25
5.

vo
rte

x

25
6.

bz
ip

2

30
0.

tw
ol

f

M
ea

n
1

4

16

64
#

o
f

T
h

re
a
d

s
Speedup
Threads

Figure 1.2: Speedup of multiple threads over single threaded execution for SPEC
CINT2000 benchmark suite. The speedup numbers are measured on a simulation plat-
form that assumes the existence of core-to-core communication queues and a versioned
memory hardware subsystem [10]

Automatic parallelization is an attractive alternative approach to manually writing par-

allel code. Automatic parallelization allows programmers to focus on the algorithm itself

and develop the sequential version of the program. Recent research in automatic paral-

lelization systems [11, 34, 38, 53, 93] shows promising results that may reduce the expense

of writing parallel programs. Figure 1.2 shows the speedup that can be obtained by apply-

ing an automatic parallelization system to each program in the SPEC CINT2000 benchmark

suite, assuming architectural support of core-to-core queues and a versioned memory sub-

system [10]. The figure presents the minimum number of threads for which the maximum

speedup occurs as well. The system achieves decent speedups for several benchmarks. For

example, it improves the performance of 164.gzip by 30× by exploiting slightly more than

30 threads.

However, existing automatic parallelizing systems are limited in the sense that they do

not consider program inputs at all. In some cases, parallelism resides in the inputs of the

3

program rather than the program itself. Disregarding program inputs altogether limits the

applicability of automatic parallelization systems to such programs.

For example, in Figure 1.2, the automatic parallelization system reported a maximum

speedup of less than 2× for 253.perlbmk, a perl script interpreter. This is the worst speedup

among all benchmarks. The speedup of 253.perlbmk does not scale beyond 5 threads,

which is the worst scaling result among all the benchmarks as well. A script interpreter

paired with an input script is an example of the case where parallelism exists in the in-

puts of the program, not in the program itself. Script interpreters are considered inherently

sequential because they are, in some sense, incomplete programs with drastically differ-

ent dynamic behavior depending upon the input script with which they are run. However,

once paired with an input script, their behavior becomes much more predictable. If the

input script describes a highly parallelizable algorithm and contains parallelism, then the

combined interpreter and script contains parallelism. While the performance of script inter-

preters becomes more and more important as scripting languages are widely adopted among

computational scientists [68], current automatic parallelization systems fail to exploit such

parallelism and miss a great opportunity for massive performance improvements.

All prior work utilizing input parallelism requires manual modification of either the

input or the program that takes the input. Most prior work focused on using parallel pro-

gramming libraries or parallel language extensions to aid in the parallelization of input

scripts [15, 57, 46, 69, 70, 79, 80] However, this approach shares the disadvantages of

manual parallelization described above. Other approaches reimplement programs to har-

ness parallelism within the inputs— for example, reimplementing a script interpreter to

take advantage of parallelism within the input script [63, 48, 90]. The problem with these

approaches is that each program needs to be modified separately, thus the effort put into

modifying one program cannot be reused for other programs.

4

1.1 Dissertation Contributions

This dissertation demonstrates the feasibility of the automatic exploitation of coarse-grained

parallelism within fixed program inputs, i.e., inputs that remain constant across multiple

program executions. The key enabling insight is to combine program specialization with

automatic parallelization. Program specialization optimizes a program with respect to pro-

gram invariants, including fixed program inputs. The primary effect is performance im-

provement. Furthermore, program specialization can naturally fold the parallelism within

fixed program inputs into the specialized program. Thus, program specialization can func-

tion as an enabling transformation for automatic parallelization.

Despite the large volume of continuing research in program specialization [1, 2, 3,

4, 18, 19, 20, 28, 29, 40, 49, 51, 58, 83, 84], prior techniques are ill-suited for adoption

as enabling transformations for automatic parallelization. Most of them [1, 3, 4, 18, 19,

20, 28, 29, 40, 49, 51, 58, 83] are based on static analysis to identify specializable parts

of the program that depend solely on program invariants. However, limited precision of

analysis forces these techniques to resort to user annotations. Some techniques [2, 84]

that perform specialization at runtime do not require user annotations. These techniques

cannot be adopted because automatic parallelization requires compile-time analysis and

code transformation. More importantly, all prior techniques specialize programs against

specific values computed by the instructions in the program. To capture and reproduce

parallelism within fixed program inputs, specialization needs to be performed on a larger

granularity.

This dissertation proposes Invariant-induced Pattern-based Loop Specialization (IPLS).

IPLS is a fully-automatic, compile-time program specialization technique. A key feature

of IPLS is that it generates a program specialized for the predictable patterns of values

induced by program invariants across loop iterations. It is possible that each occurrence

of the repeating pattern can be computed independently of all other occurrences. In such

cases, specialized loops generated from these patterns will contain loop-level parallelism,

5

which can then be realized by applying automatic parallelization techniques.

This dissertation presents enhanced automatic speculative parallelization techniques as

well. The IPLS specialization process generates aggressively unrolled loops which are hard

to reason about, either in compiler analysis or speculation techniques [34, 38, 45, 53, 72, 87,

94, 108]. To overcome this limitation, context-sensitive speculation is proposed. Context-

sensitivity improves the applicability of automatic parallelization techniques by enhancing

the precision of speculative analysis which leads to the extraction of more parallelism from

the program.

Finally, this dissertation presents optimizations to the speculative run-time system to

minimize performance overhead. Extensive use of speculation is unavoidable to automati-

cally parallelize complex programs including IPLS specialized programs. However, exist-

ing run-time systems supporting speculative parallelization issue expensive inter-process

communication for each speculated memory operation, offsetting the benefits of paral-

lelization. The optimized run-time system proposed in this dissertation resolves this issue

by reducing both the total number of communications and the total number of bytes com-

municated. This improvement provides parallel speedup even with aggressively speculated

programs.

In summary, this dissertation has the following contributions:

• Invariant-induced Pattern-based Loop Specialization (IPLS), the first fully-automatic

program specialization technique that is applicable to complex programs such as

real-world script interpreters. IPLS not only improves program performance but also

integrates input parallelism into the specialized program.

• Design and implementation of context-sensitive speculation techniques. Context-

sensitive speculation plays a critical role in discovering parallelism in complex pro-

grams.

• Optimizations to the run-time system supporting speculative parallelization, which

6

enable scalable speedup of extensively speculated parallel programs.

• A fully-automatic technique to harness input parallelism by combining program spe-

cialization with automatic speculative parallelization. A prototype implementation

is evaluated against two real-world script interpreters and demonstrates the effective-

ness of the technique.

1.2 Dissertation Organization

The remainder of this dissertation is organized as follows: Chapter 2 describes background

information necessary to understand the techniques proposed in the dissertation. Chapter 3

shows an example that delivers the high-level insight behind these techniques. Chapter 4,

published in [60], describes the detailed design and implementation of IPLS. Chapter 5

describes the automatic parallelization of IPLS specialized programs, with a focus on the

design and implementation of context-sensitive speculation techniques and optimizations

to the speculative run-time system. Chapter 6 presents an experimental evaluation of the

proposed techniques. Chapter 7 describes a discussion of existing work related to the tech-

niques proposed in this dissertation. Chapter 8 concludes the dissertation and discusses

future work.

7

Chapter 2

Background

2.1 Program Specialization

Program specialization, sometimes referred to as partial evaluation, optimizes a program

for the values that remain invariant across the program execution. These invariant values

include known, fixed program inputs that remain constant across multiple executions of the

program. Constant propagation can be considered a primitive form of program specializa-

tion.

Figure 2.1 shows how program specialization exploits program invariants to optimize

the program performance. Figure 2.1(a) is a code snippet of a mean filter program. The

size of the filter is determined by the argument size. However, if we know that the value

of size is actually determined by the fixed program input and will not be changed across

multiple program runs, function mean can be specialized against the fixed value of size

as shown in Figure 2.1(b). Moreover, program specialization may enable more aggressive

optimizations that further improves the program’s performance. By applying loop unrolling

on top of the specialized code snippet in Figure 2.1(b), the inner loop can be completely

removed as shown in Figure 2.1(c).

Many prior program specialization techniques rely on compile-time analysis called

8

void mean(uint8_t* in, uint8_t* out, unsigned size) {!
 unsigned h = size / 2;!
 for (i = h ; i < WIDTH-h ; i++) {!
 uint16_t sum = 0;!
 for (j = 0 ; j < size ; j++)!
 sum += in[i + j – h];!
 out[i] = sum / size;!
 } !
}!

void mean_spec1(uint8_t* in, uint8_t* out) {!
 // Value of size is fixed to 3 !
 for (i = 1 ; i < WIDTH-1 ; i++) {!
 uint16_t sum = 0;!
 for (j = 0 ; j < 3 ; j++)!
 sum += in[i + j – 1];!
 out[i] = sum / 3;!
 } !
}!

void mean_spec2(uint8_t* in, uint8_t* out) {!
 // Value of size is fixed to 3 !
 for (i = 1 ; i < WIDTH-1 ; i++) {!
 uint16_t sum = in[i – 1] + in[i] + in[i + 1];!
 out[i] = sum / 3;!
 } !
}!

(a)	

(b)	

(c)	

Figure 2.1: Example of program specialization. (a) A code snippet describing a mean filter
algorithm. size is a runtime parameter. (b) A value of size is fixed to 3. A code snippet
specialized accordingly. (c) More aggressively specialized code snippet by applying loop
unrolling.

9

binding-time analysis to discover program invariants [1, 3, 4, 18, 19, 20, 28, 29, 40, 49,

51, 58, 83]. Binding-time analysis separates static instructions — those which depend

solely on program invariants in the program — from dynamic instructions — those which

may depend on non-invariant values. As static instructions always produce the same value

across the program’s execution, the program specializer can generate a specialized program

by replacing static instructions with the precomputed values. However, as the precision of

compile-time analysis is limited, existing approaches necessitate manual user annotations

to analyze complex programs.

Once binding-time information is collected, specialized code generation can be per-

formed either at compile-time [1, 3, 4, 18, 19, 20, 40, 49, 51, 83] or run-time [18, 19, 20,

28, 29, 58]. Run-time code generation has an advantage over compile-time code generation

because it can exploit run-time constants that are not available at compile-time. However,

run-time approaches suffer from high overhead of dynamic code generation [58] and cannot

function as an enabling transformation for following compile-time optimizations, including

automatic parallelization.

Some specializers are not based on binding-time analysis and do not require user an-

notations [2, 84]. Instead, they identify constant or hot values at run-time and generate

specialized programs on the fly. However, the disadvantages of run-time code generation

mentioned above apply to these approaches as well. Further, their scope of detecting pro-

gram invariants is narrower than that of the compile-time techniques.

2.2 Parallelization Transforms

The most basic method of harnessing loop-level parallelism is DOALL parallelization. It-

erations of DOALL loops run completely independent of other iterations, thus resulting in

scalable parallel speedup. However, DOALL parallelization can only be applied to loops

with no loop-carried dependences, often referred to as embarrassingly parallel loops.

10

DOACROSS [21] and Decoupled Software Pipelining (DSWP) [62] overcome the lim-

ited applicability of DOALL parallelization. Both techniques can be applied even when

loop-carried dependences exist. DOACROSS schedules the entire loop body of a single

iteration on a single thread, while putting distinct iterations in different threads. DSWP di-

vides the loop body into multiple stages and assigns each stage to different threads to create

a pipeline — DSWP first builds a DAGSCC of the Program Dependence Graph (PDG) [24]

of the target loop by coalescing each strongly connected component (SCC) in the PDG into

a single node, then assigns those nodes to stages to identify a pipeline schedule. Loop-

carried dependences are modeled as back edges in the PDG, which formulate SCCs.

The different thread partitioning strategies of DOACROSS and DSWP result in a differ-

ence in the inter-thread communication pattern of the parallelized program. The partition-

ing in DOACROSS lets different threads work on different iterations by converting loop-

carried dependences into inter-thread dependences. These dependences result in a cyclic

communication pattern between threads. If there are N threads, communication from the

N-th thread to the first thread is required to handle the dependences from the N-th iteration

to the (N+1)-th iteration.

In contrast, DSWP’s partitioning causes all loop carried dependences to be communi-

cated locally, as instructions from an SCC in the PDG are scheduled to the same thread.

However, since the loop body is spread across multiple threads, any intra-iteration depen-

dence that flows between stages must be communicated across threads. Since the stages are

arranged into a pipeline, the inter-thread communication of DSWP parallelized programs

exhibits an acyclic, or unidirectional pattern, where communication only flows along the

pipeline.

Due to its acyclic communication pattern, DSWP is generally more tolerant than DOACROSS

to increases in communication latency between threads [97]; DSWP only pays the commu-

nication cost once to fill the pipeline whereas DOACROSS must pay the cost on each

iteration.

11

A.1

B.1

C.1

D.1

A.3

B.3

C.3

A.2

B.2

C.2

D.2

A.4

D.3

A.5

B.5

B.4

C.4

D.4

0

1

2

3

4

5

6

7

8

9

10

Core 1 Core 2

DOACROSS: 2 cycles/iter

A.1

B.1

A.2

B.2

A.3

B.3

A.4

C.1

D.1

C.2

D.2

C.3

B.4

A.5

B.5

D.3

C.4

D.4

0

1

2

3

4

5

6

7

8

9

10

Core 1 Core 2

DSWP: 2 cycles/iter

(d) Comm. Latency = 1 cycle (e) Comm. Latency = 2 cycles

A while(node->next) {!
B node = node->next!
C value = work(node);!
D count[value] += 1;!
E }!

(a) Loop

A B

C D

(b) PDG

DOACROSS: 3 cycles/iter

A.1

B.1

C.1

D.1

A.3

B.3

C.3

A.2

B.2

C.2

D.2

A.4 D.3

0

1

2

3

4

5

6

7

8

9

10

Core 1 Core 2

A.1

B.1

A.2

B.2

A.3

B.3

A.4

C.1

D.1

C.2

D.2

C.3 B.4

A.5

B.5

D.3

C.4

0

1

2

3

4

5

6

7

8

9

10

Core 1 Core 2

DSWP: 2 cycles/iter

(c) DAGSCC of the PDG

SCCAB

C D

Figure 2.2: DOACROSS and DSWP schedules. A parallelizable loop described in (a) can
be parallelized by applying either DOACROSS or DSWP. (b) is the Program Dependence
Graph (PDG) of loop (a) and (c) is the DAGSCC of the PDG. Solid lines represent data
dependences while dotted lines represent control dependences. (d) shows parallel execution
schedules of the loop for DOACROSS and DSWP when communication latency is 1 cycle,
while (e) shows the schedules when communication latency is 2 cycles. The letters in the
schedules correspond to the lines in (a) and the numbers represent the iteration counts.

12

Figure 2.2 depicts the difference between DOACROSS and DSWP schedules with an

example. Figure 2.2(a) describes a sequential code that can be parallelized with either

DOACROSS or DSWP. Figure 2.2(b) and (c) shows the Program Dependence Graph (PDG)

of the code and the DAGSCC of PDG. In Figure 2.2(c), nodes A and B in Figure 2.2(b) are

merged into a single node SCCAB while nodes C and D form a singleton node. Fig-

ures 2.2(d) and (e) illustrate execution plans of DOACROSS and DSWP parallelized ver-

sions of Figure 2.2(a), with inter-core communication latency of 1 cycles and 2 cycles,

respectively. Each node represents a dynamic instance of a statement in Figure 2.2(a),

where the number in each node represents the iteration to which the node belongs. DSWP

allocates SCCAB (node A and B) into one pipeline stage and other nodes into another

pipeline stage to obtain a balance between stages with a minimum number of stages.

As shown in Figure 2.2(d), both DSWP and DOACROSS generate a schedule that takes

two cycles to run each iteration ignoring the pipeline fill time, if communication latency is

one cycle. This is a 2× speedup compare to the original sequential execution plan, which

takes four cycles per each iteration. However, as illustrated in Figure 2.2(e), DOACROSS

only completes one iteration every three cycles, if communication latency becomes two

cycles. In contrast, DSWP still completes one iteration every two cycles even with the in-

creased communication latency. Again, DSWP keeps recurrence critical path dependences

thread-local, and thus induces acyclic communication pattern. This results in better latency

tolerance of DSWP compared to DOACROSS.

Parallel-Stage Decoupled Software Pipelining (PS-DSWP) [75] achieves even better

scalability than DSWP. The high-level insight of PS-DSWP is that a DSWP-pipelined stage

with no loop-carried dependences can run independently of different iterations of the same

stage, and thus can be parallelized in a DOALL fashion. If such a parallel stage exists,

DSWP can achieve better scalability by creating a pipeline where the parallel stage domi-

nates loop execution time.

Figure 2.3 illustrates the scalability of a PS-DSWP schedule with a parallel stage. As-

13

(a) DSWP: 3 cycles/iter

A.1

B.1

A.2

B.2

A.3

B.3

A.4

C.1

D.1

C.2

D.2

B.4

A.5

B.5

0

1

2

3

4

5

6

7

8

9

Core 1 Core 2 Core 3

C.3

A.1

B.1

A.2

B.2

A.3

B.3

A.4

D.1

D.2 B.4

A.5

B.5

0

1

2

3

4

5

6

7

8

9

Core 1 Core 2 Core 3 Core 4

C.1

C.2

D.3

C.3

C.4

(b) PS-DSWP: 2 cycles/iter

Figure 2.3: Comparison of DSWP and PS-DSWP schedules. (a) DSWP execution plan
and (b) PS-DSWP execution plan of Figure 2.2(a) when statement C takes three cycles to
execute.

14

sume that a function call statement C in Figure 2.2(a) now takes three cycles instead of one

cycle in the previous example. For this case, to achieve a maximum throughput, DSWP

allocates C and D into separate stages and creates a three-stage pipelined schedule, if an

additional core is available. Figure 2.3(a) shows the execution plan of the schedule. As

shown in the figure, now the second stage becomes a bottleneck and the schedule takes

three cycles to complete each iteration. The bigger problem is that even when more cores

are available, there is no room to improve the throughput; beyond three cores, additional

cores are useless with the schedule.

Unlike DSWP, PS-DSWP can harness additional cores by exploiting the parallel stage.

As statement C in Figure 2.2(a) has no loop-carried dependences formulated around it, the

second stage of the pipeline shown in Figure 2.3(a) can be a parallel stage. Exploiting this,

PS-DSWP generates a schedule where each dynamic instance of the second stage runs in

parallel. Figure 2.3(b) illustrates the execution plan of the schedule and shows that PS-

DSWP completes one iteration every two cycles.

2.3 Speculative Parallelization

Even with advanced parallelization techniques like PS-DSWP, expected performance im-

provement is limited by the amount of parallelism extracted from the program. Extracting

parallelism is often prevented by imprecise dependence analysis, especially for general

purpose programs with irregular data structures and complex control-flows. It is known

that these programs have many statically unresolvable dependences that may not mani-

fest at runtime. For example, the PS-DSWP schedule of Figure 2.3(b) is achievable only

when the compiler can prove that there are no loop-carried dependences on statement C

of Figure 2.2(a). However, in the real-world, such proof is often beyond the capability of

the compiler’s static analysis even when there are actually no loop-carried dependences

formulated around statement C. For such cases, the compiler will end up generating an

15

inefficiently parallelized version like Figure 2.3(a).

Speculative parallelization [45, 53, 72, 87, 108] can overcome the limits of static anal-

ysis. Guided by profiling results, dependences that are unlikely to occur in practice can

be speculatively removed, thereby giving the compiler increased freedom to apply paral-

lelizing transforms. However, this freedom comes at a cost. The compiler must insert

validation checks to ensure that the dependences that were speculatively removed do not

actually manifest at runtime. If the speculative assumptions are violated, the program must

signal misspeculation and then recover to non-speculative state. Recovery is typically han-

dled through a checkpoint and rollback mechanism.

Memory dependence speculation is an important and common type of speculation [17,

34, 38, 42, 44, 45, 64, 88, 98]. Transactional memory systems that observe the order of

memory operations to ensure that they were executed in an order consistent with sequential

execution can be used to support memory dependence speculation [53, 108]. However,

typical transactional systems are designed for transactions that occur within a single thread.

This leaves them incompatible with the DSWP transformation, which distributes a single

loop iteration, and thus a single transaction, across multiple threads.

To support dependence speculation in conjunction with DSWP, Vachharajani introduces

the notion of Multi-threaded Transactions (MTXs) [96]. An MTX may have multiple sub-

transactions (subTXs), and each thread participating inside an MTX opens its own subTX

within the MTX to maintain speculative state.

A MTX system requires to support two features to enable multi-threaded atomicity.

The first is called uncommitted value forwarding. Uncommitted value forwarding ensures

that the results of all the stores executed in earlier subTXs are visible in later subTXs, even

if they are executed speculatively. The other feature is group transaction commit. This

ensures that speculative work done in different subTXs inside an MTX are committed al-

together or discarded altogether. Each stage of a DSWP schedule is executed in a separate

subTX. As the original MTX proposal requires extensive hardware modifications, and is

16

therefore not compatible with commodity processors, a software-only implementation of

MTX (SMTX [74]) was developed. SMTX maintains speculative and non-speculative

state separately using process separation, and a thread for each subTX has the illusion of

private memory. A final commit thread is used to maintain the committed, non-speculative

state. To support uncommitted value forwarding, instrumentation is added to each load and

store in a subTX to forward stores in prior subTXs to later subTXs within the same MTX.

Additionally, to support group transaction commit, the instrumentation reports activity of

memory operations to the commit thread. Once an MTX is closed, the commit thread deter-

mines if a conflict has occurred by sequentially re-executing memory operations within the

MTX and comparing results with the value reported by the instrumentation. If there is no

conflict, the transaction is committed to non-speculative memory. If a conflict has occurred,

the commit unit flushes MTXs that come after the MTX with the conflict and restarts the

MTXs on the worker threads with a copy of the correct, non-speculative memory.

17

Chapter 3

Insight by Example: Script Interpreter

This chapter presents the insight behind the techniques proposed in this dissertation us-

ing the example of a script interpreter and an input script. Dynamic scripting languages

are widely used because of their ease in programming. In particular, computational scien-

tists heavily rely on dynamic scripting languages to minimize the time they spend writing

programs. However, computational scientists also require high performance as they spend

days or more waiting for their programs to complete [68]. This problem can be solved if the

scripts that scientists write can be automatically parallelized to achieve parallel speedup.

The following subsections show how this can be accomplished by coupling program spe-

cialization with speculative automatic parallelization.

3.1 Program Specialization as an Enabling Technique

Figure 3.1(a) describes the high level algorithm of the interpreter program and the input

script. The script takes an input from the command line to set the value of a variable size,

and runs a loop that iterates with induction variable i from zero to size to initialize the

index i of array a with i. The loop in the input script is described with four different

instructions at the bytecode level: FOR, GETVALUE, SETARRAY, and FORWRAP. As

there are no loop carried dependences, the loop contains DOALL parallelism.

18

script takes an input

1: size = argv[1]

2: a = []

line 3 breaks to opcode

FOR and FORWRAP

3: for i=0 to size {

line 4 breaks to opcode

GETVALUE and SETARRAY

4: a[i] = i

}

…

addres
s

opcode operands

… … …

p FOR [‘i’, ‘size’, p+4]

p+1 GETVALUE [‘i’]

p+2 SETARRAY [‘a’, ‘i’]

p+3 FORWRAP [‘i’, p]

… … …

// pc==p, b.opcode==FOR

f = isLT(get(‘i’), get(‘size’));

pc = 1 ? p+1 : p+4;

// pc==p+1, b.opcode==GETVALUE

push(get(‘i’));

pc = p+2;

// pc==p+2, b.opcode==SETARRAY

setArr(get(‘a’), get(‘i’), pop());

pc = p+3;

// pc==p+3, b.opcode==FORWRAP

inc(get(‘i’));

pc = p;

// pc==p, b.opcode==FOR

f = isLT(get(‘i’), get(‘size’));

pc = 1 ? p+1 : p+4;

// pc==p+1, b.opcode==GETVALUE

push(get(‘i’);

pc = p+2;

// pc==p+2, b.opcode==SETARRAY

setArr(get(‘a’), get(‘i’), pop());

pc = p+3;

// pc==p+3, b.opcode==FORWRAP

inc(get(‘i’));

pc = p;

// pc==p, b.opcode==FOR

f = isLT(get(‘i’), get(‘size’));

pc = 0 ? p+1 : p+4;

…

Input Script

Bytecode Representation

Known Input

for (;;) {

b = BYTECODES[pc];

switch (b.opcode) {

case FOR: {

f = isLT(get(b.op0),

get(b.op1));

pc = f ? pc+1 : get(b.op2);

break;

}

case GETVALUE: {

push(get(b.op0));

pc++; break;

}

case SETARRAY: {

setArr(get(b.op0),

get(b.op1),

pop());

pc++; break;

}

case FORWRAP: {

inc(b.op0);

pc = get(b.op1); break;

}

…

}

}

Program

header:

1: f = isLT(get(‘i’),

get(‘size’));

2: if (!f) goto exit;

body:

3: push(get(‘i’));

4: setArr(‘a’,

get(‘i’),

pop());

5: inc(‘i’);

6: pc = p;

7: goto header;

exit:

pc = p+4;

goto org;

for (;;) {

org:

if (pc == p) goto header;

// original loop body

…

}

Specialized Loop

(a)

(b) (c)

Figure 3.1: Example of interpreter specialization. (a) An input script, its bytecode repre-
sentation, and a snippet of the main interpreter loop. (b) Execution trace of the interpreter
running the script. The grey boxes represent four iterations of the interpreter loop, which
is one iteration of the loop in the input script. Note that isLT evaluates to 1 in the first two
iterations and 0 in the last. (c) Resulting specialized loop.

19

Due to the loop in the script, the main loop of the interpreter program experiences a

recurring control- and data-flow pattern during execution. As shown in Figure 3.1(b), an

execution trace of the interpreter program with the input script, the same code blocks with

the same values are repeated across iterations of the interpreter’s main loop. A program

specializer can capture these repeating patterns and generate a customized loop optimized

for these patterns, as shown in Figure 3.1(c). Some bookkeeping instructions, like an in-

struction that increases pc, are optimized out during the specialization process.

As the repeating patterns are induced by the loop in the input script, the specialized

loop reflects the structure of the input script loop, as well as the parallelism within the

loop. Reproduction of parallelism within the input script loop into the specialized loop is

enabled by the pattern-based specialization, but no prior specialization techniques before

IPLS — which is proposed in this dissertation — performs pattern-based specialization.

The following subsection will describe how the parallelism folded into the specialized loop

can be harnessed by automatic speculative parallelization.

3.2 Parallelizing Specialized Loops

The variability in the potential dynamic behaviors of the interpreter in Figure 3.1(a) make

it a poor choice for automatic parallelization. In contrast, as mentioned in the previous

section, the specialized loop in Figure 3.1(c) reproduces the parallelism within the loop

in the input script, and thus is more amenable to automatic parallelization. Figure 3.2(a)

shows the PDG of the specialized loop. Dashed boxes in Figure 3.2(a) represent basic

blocks.

Static analysis may not be able to prove that there is no data dependence between the

calls of setArr across multiple iterations; however, data-dependence profiling can de-

termine that the dependence is unlikely to manifest and can be speculatively removed.

Figure 3.2(b) is a DAGSCC of Figure 3.2(a). The strongly-connected component formulated

20

`	

1	

2	

3	

4	

5	

6	

7	

X	 3	

4	

6	

7	

S	

P	

X	

Core 1	
 Core 2	
 Core 3	
 Core 4	

S0	
	

S1	
	

S2	
	

S3	
	

S4	
	

S5	
	

	
	 P1	
	

	
	 P0	
	

Data	 dependence	
Control	 dependence	
Speculated	 X	

	
	 P2	
	

	
	 P3	
	

	
	 P3	
	

(a)	
 (b)	
 (c)	

SCC
125	

Time	

Figure 3.2: (a) PDG of the specialized loop from Figure 3.1(c). Note that the control
dependence from node 2 applies to both sets of nodes 1-2 and 3-7. (b) DAGSCC of PDG
from (a). (c) Parallel execution plan using PS-DSWP.

21

around node 1, 2, and 5 is merged into a single node in the graph.

The loop-carried dependences in SCC125 prevent the DOALL parallelism in the input

script from appearing in the specialized loop. Conceptually, this is because simple values

from the original script become complex, hard to analyze data structures stored in memory

in the specialized interpreter; i and size change from being simple integers to data struc-

tures containing values and meta-data. Thus, standard techniques for dealing with things

like loop induction variables are no longer applicable. However, instructions 3, 4, 6 and 7

do not contain loop-carried dependences, so each of these instructions can run in parallel.

Applying PS-DSWP results in a two stage pipeline where SCC125 is in a sequential stage,

to respect its loop-carried dependence, and instructions 3, 4, 6, and 7 are in a parallel stage.

Figure 3.2(c) shows that exploiting the parallelism within the specialized loop can deliver

speedup on multi-core machines, assuming that the parallel stage dominates execution time

of the specialized loop.

Existing automatic parallelization techniques work nicely for such simple examples.

Unfortunately, the loops that result from specializing real interpreters and scripts are much

more complex and beyond the capabilities of existing parallelization techniques. A later

chapter in this dissertation (Chapter 5) discusses the enhancements over prior techniques

to enable the automatic parallelization of complex programs such as specialized real-world

script interpreters.

22

Chapter 4

Invariant-Induced Pattern-based Loop

Specialization (IPLS)

This chapter presents Invariant-Induced Pattern-based Loop Specialization (IPLS) [60].

IPLS is the first program specialization technique that generates a program specialized for

the predictable patterns of values induced by program invariants across loop iterations.

IPLS is the first fully-automatic program specialization technique that is practical enough

to be applicable to several complex and widely-deployed script interpreters. As a compile-

time technique, IPLS can function as an enabling transformation for other compile-time

optimizations.

IPLS is composed of three stages: profiling, pattern detection, and code generation.

The IPLS profiler identifies static instructions in the program using dynamic information

flow tracking and traces the values computed by static instructions. The IPLS pattern de-

tector looks for repeating patterns across different iterations in the value trace, which are

characteristics of the static instructions. The IPLS code generator specializes the program

by unrolling the loop and specializing each unrolled iteration to the corresponding value

from the detected pattern.

23

4.1 Overview of IPLS

This section describes IPLS using a simple script language interpreter and an input script

as an example. Figure 4.1(b) shows the control flow graph (CFG) representation of the

main loop of the interpreter. Figure 4.1(a) is an input script to that interpreter. The input

script is transformed into a sequence of opcodes: FOR, ADD, and PRT. The interpreter’s

main loop fetches an opcode, branches to the corresponding opcode handler, and repeats.

It is beneficial to specialize the interpreter with respect to the input script if the input script

is reused many times.

In Figure 4.1(b), basic blocks A, B, C, D, ADD, MUL, FOR and PRT compose

the main loop while PRE is a preheader block. Individual instructions of the basic block A

are expressed in a medium-level compiler intermediate representation. In the loop header

block A, OP loads the next opcode from address ADDR. The next opcode is fetched into OP

and the interpreter branches to the basic block corresponding to the opcode: if the value of

OP is FOR, the interpreter jumps to the basic block FOR, and so on. The value of ADDR

comes either from the loop preheader PRE when the loop is invoked, or from basic block D

through the loop backedge.

The workflow of IPLS consists of three stages as depicted in Figure 4.2. The rest of

this section will provide a high-level overview of these three stages using the example

interpreter and script. Figures 4.1(c) through (e) show the output of each stage of the

specialization process.

4.1.1 Profiling Overview

The first stage of IPLS is profiling. The goal of the profiling stage is to identify static

instructions and the values they compute, thus enabling aggressive constant propagation

and control flow optimization in the later stages. Towards this goal the profiled executable

collects the following information:

24

ADDR	 ==	 P	

ADDR	 !=	 P	

P	

P+1	

Nodes	

Value	 Basic	 blocks	

P	 A	 ADD	 D	

P+1	 A	 FOR	 B	 C	 D	

Edges	

Src	 Dst	

P	 P+1	

P+1	 P	

Dispatch	 Condi2on	

ADDR	 ==	 P	

Address	 Value	

P	 	 ADD	

P+1	 FOR	

Meta-‐Level	 Loop	

Heap	 Constants	

(b) Interpreter CFG	

ADDR=P	 	
OP=ADD	

ADDR=P+1	 	
OP=FOR	

ADDR=P	 	
OP=ADD	

ADDR=P+1	
OP=FOR	

ADDR=P	 	
OP=ADD	

ADDR=P+1	 	
OP=FOR	

ADDR=P+2	 	
OP=PRT	

…
	

(c) Profile Result	

(d) Pattern Detector Output	
 (e) Specialized Interpreter CFG	

(a) Input Script	

sum = 0, i = 0
for i to argv[1] // FOR
 sum += i // ADD
print sum // PRT

B	 C	

D	

ADD	 MUL	 FOR	 PRT	

PRE	

A	

ADDR=Φ(PRE,	 D)	
OP=*ADDR	
switch(OP)	

P	

P+1	

Figure 4.1: IPLS Specialization: (a) a fixed, static input script, (b) CFG of a script in-
terpreter, (c) result of profiling, including a pattern of static values and their associated
iteration control traces, (d) result of pattern detection, and (e) the loop produced by code
generation

25

IPLS	 Profiler	 (Chap.	 4.2)	 	

IPLS	 Pa4ern	 Detector	 (Chap.	 4.3)	

IPLS	 Code	 Generator	 (Chap.	 4.4)	

spec.bc	

Linker	

prog.bc	

spec.exe	

Training	
Inputs	

Fixed	
Inputs	

Target	 Program	

User	 Inputs	

Specialized	 Program	

prog.c	

frontend	

runFme.bc	

Profile	 Results	

Pa4ern	 InformaFon	 Heap	 Constants	

Figure 4.2: The high-level structure of IPLS. Note that .bc files are intermediate files
containing LLVM bitcode.

26

• Values computed by the static instructions for each iteration of the loop;

• Address-value pairs for static load instructions (a load instruction is static if the result

of the load is computed from a static instruction);

• A set of distinct control-flow paths through each iteration of the loop;

• The number of dynamic uses of values computed by each static instruction in an

iteration; and

• Addresses of all basic blocks within the loop and all functions within the program.

• Size of all dynamically allocated memory objects.

To find static instructions within the program precisely without user annotations and/or

heroic static analysis, IPLS employs Dynamic Information Flow Tracking (DIFT) [89].

The only information required from the user is which program inputs IPLS may assume

fixed across different executions. For example, a user simply indicates that a script is a

fixed input to the interpreter, but inputs to the script are not. This information is propagated

along the data flow of the program by instrumented instructions, hence it is possible to

decide whether each instruction depends only on fixed input. Implementation details will

be discussed in Chapter 4.2.

Figure 4.1(c) depicts the results of profiling for the example program in Figure 4.1(b).

Since ADDR points to an opcode derived from the fixed input script throughout execution,

both ADDR and OP are classified as static. Therefore, the compiler instruments the binary

for the profiling to trace the values of ADDR and OP for every iteration. The basic blocks

executed in each iteration are also traced as represented by black boxes in Figure 4.1(c).

The values of ADDR and OP constitute an address-value pair of the static load instruction

for each iteration. For example, during the first iteration, the address-value pair is <P,

ADD> since the value of ADDR equals to P and the value of OP to ADD.

27

4.1.2 Pattern Detection Overview

The pattern detection stage interprets profiling results to identify repeating patterns of val-

ues computed by static instructions. Such a repeating pattern suggests the existence of an

input-driven loop. One can customize this input-driven loop via constant propagation and

control flow optimization to generate a specialized loop that efficiently executes those it-

erations covered by the pattern. The specialized loop can be further optimized by other

compiler optimizations, such as automatic parallelization.

Since there are multiple static instructions within the loop, the patterns they generate

may suggest multiple ways to specialize the loop. In Figure 4.1(c), two static instructions

generate two patterns (ADDR = [P, P+1] and OP = [FOR, ADD]). These two pat-

terns are of the same length, and produce the same control flow pattern, though this is

generally not the case. The specializer frequently must select among several specialization

strategies using heuristics described in Chapter 4.3.

The pattern detector’s choice of pattern for specialization determines the dispatching

instruction, i.e. the static instruction whose value will control the path taken during each

iteration. While executing the loop, if the dispatching instruction computes the value at the

beginning of the pattern, specialized code blocks are dispatched. In the example, ADDR =

φ(PRE, D) is the dispatching instruction and the pattern is ADDR = [P, P+1]. The

dispatch condition compares ADDR to P, and if equal, dispatches into specialized code.

A detected pattern can be represented by a Meta-Level Control-Flow Graph. Each value

in the pattern, which is produced by the dispatching instruction, corresponds to a node in

the graph. The graph has an edge if the values corresponding to the nodes are generated

from consecutive iterations of the loop. By representing the pattern as a graph, it is possible

to capture patterns more complex than a repeating sequence of values.

In addition, the pattern detection stage also analyzes the address-value pairs of static

load instructions taken in the profiling stage to output information about heap constants.

IPLS assumes that, if the value v corresponding to the address a is identical across all

28

address-value pairs, and the pair of 〈a, v〉 appeared more than twice, address a holds a

constant value v. The code generator uses this information about heap constants to create a

specialized program. For example, the static load instruction OP=*ADDR in Figure 4.1(c)

always loads ADD at address P and FOR at address P+1, so the two heap constants are

passed to the code generator.

Figure 4.1(d) shows the output of the pattern detection stage. A loop in the meta-

level CFG describes the pattern induced by the instruction ADDR = Φ(PRE, D), with

two nodes P and P+1, and two edges (P, P+1) and (P+1, P). The code specialized

with respect to this meta-level loop will be dispatched if the value of ADDR becomes P.

Each node in the meta loop contains a set of basic blocks which are invoked while tracing

the node. If different iterations generating the same value invoke different basic blocks,

basic block information stored in the meta-level loop takes a union of them. For example,

in Figure 4.1(c), two iterations generating the value P+1 invoke basic blocks {A, FOR,

B, D}, while the other invokes {A, FOR, C, D}. Therefore, a union of the two is

reported as the basic blocks corresponding to the value P+1 in the meta-level loop. The

code generator uses this basic block information when creating code blocks specialized for

the corresponding value.

4.1.3 Code Generation Overview

The code generation stage creates specialized codes for each meta-level loop identified in

the pattern detection stage. It duplicates the original loop for each node in the meta-level

loop and specializes the duplicated loop with respect to the value corresponding to the

meta-level node. The code generator also inserts instructions to dispatch the specialized

codes.

IPLS specializes a loop by first creating a special version for each iteration (meta-level

node). When IPLS duplicates and specializes a loop iteration, it duplicates only those basic

blocks listed in the meta-level node. This not only serves to minimize code growth caused

29

by specialization, but also simplifies the control flow of the specialized loop. These simpli-

fications allow more scheduling freedom and thus enable more instruction level parallelism

in a meta-level node.

The code generator then inserts branch instructions to link multiple specialized itera-

tions into a specialized meta-level loop. In the example, it adds branches from the end of

the specialized loop for ADDR == P to the head of the specialized loop for ADDR ==

P+1 and vice versa, reflecting the two meta-level loop edges (P, P+1) and (P+1, P).

These branches are unconditional if both of the following conditions are met. First, the

next iteration must execute. Second, the value computed by the dispatching instruction of

this meta-level loop is equal to the value that the next meta-level loop node is specialized

for. For example, a branch from the specialized loop for node P to node P+1 will be an

unconditional jump, if it is guaranteed at the end of the specialized loop for node P that

the loop executes at least one more iteration and that the value of ADDR will be P+1 at the

following iteration.

If these conditions cannot be guaranteed at specialization time, the branch must be con-

ditional. For example, at the end of the specialized loop for node P+1, if the value of ADDR

for the next instruction is only known at runtime, a conditional branch instruction whose

predicate value is ADDR == P will be inserted to reflect the meta-level loop backedge

from node P+1 to node P.

The code generator also exploits heap constants to perform specialization across load

instructions. For example, when specializing the duplicated loop with respect to the value

P of ADDR in Figure 4.1, no further specialization is possible without the information that

address ADDR holds a heap constant value ADD. Since information about heap constants is

acquired by profiling, IPLS inserts instructions to verify the assumed constant value against

actually loaded values into the specialized code. This information breaks dependences

between the load instruction and its users, thereby exposing additional instruction-level

parallelism.

30

Together with address information about basic blocks and functions provided by the

profiler, information about heap constants is used to specialize indirect branches and indi-

rect function calls. If a branch/function call target address is derived solely from a heap

constant and the address matches the starting address of a basic block or function in the

program, an indirect branch/function call can be replaced by a direct branch/function call

to the target address. The replaced branch/function call is guarded by a comparison instruc-

tion to confirm the heap constant value. This transformation potentially reduces pipeline

stalls by simplifying the program’s control flow.

Figure 4.1(e) depicts the structure of the final optimized code after specialization guided

by the meta-level CFG and heap constants in Figure 4.1(d). The main loop of the origi-

nal interpreter (top white box) dispatches the specialized meta-level loop when the value

of ADDR is equal to P. Specialized codes (round dotted box) are created by duplicating

the original main loop twice for each meta-level loop node and specializing each of them

using information about meta-level CFG and heap constants. Only necessary basic blocks

(colored black) are duplicated during specialization. Under the assumption that the value

of ADDR of the next iteration is guaranteed to be P+1 at the end of the specialized loop for

node P, the branch from node P to P+1 is unconditional. However, the branch from node

P+1 to P is conditional because the next value of ADDR cannot be determined statically.

4.2 Profiling

The profiling stage of IPLS collects information to enable the compiler to specialize the

program with respect to program invariants, including program inputs that are fixed across

multiple program executions. As described in Section 4.1.1, the IPLS profiler performs

variations of value profiling, load profiling, and path profiling.

Two optimizations distinguish the IPLS profiler from related techniques. First, the

IPLS profiler restricts its observations to static instructions. This restriction limits profiling

31

results to safe specialization assumptions yet still provide information strong enough to

support aggressive program specialization. If an instruction is static, then the sequence

of values which that instruction generates during program execution is invariant across

program executions. This property makes static instructions good candidates for program

specialization.

Second, the IPLS value profiler only observes static instructions in the loop header. To

support the pattern detector (Chapter 4.3), the IPLS profiler performs value profiling on

candidate dispatch conditions. The dispatch condition must be computable during every

iteration of the loop, and all static operations within the loop header satisfy this constraint.

This restriction greatly reduces the amount of data collected, and in turn reduces the pro-

cessing overhead of the pattern detector. As a corollary, later analysis of profiling results

is insensitive to limited profile coverage, since it ignores operations which do not execute

at least once per loop iteration. Note, however, that load profiling is still performed on all

static loads within the loop, not only those from the header.

To collect information related only to static instructions without the help of heroic com-

piler analysis or user annotations, IPLS employs DIFT. DIFT tags each intermediate value

in the program as either static, if the value is computed by static instructions, or dynamic,

for all other instructions. Profiling instrumentation propagates these tags along the original

data-flow of the program. To improve DIFT precision, the profiler tracks information flows

along register and memory data dependences, but optimistically ignores information flows

which potentially occur along control dependences. As a consequence, our implementation

may report an instruction as static when a conservative implementation would report that

value as dynamic (whether or not it actually is dynamic). This improved precision is desir-

able, since it allows IPLS to perform value profiling on instructions which are likely to be

static, thus increasing applicability. The trade-off is the risk that specialization will attempt

to predict a dynamic value, with no guarantee that the its sequences of values are invariant

across program executions. Code generation guarantees the correctness of the program by

32

FILE* fp = fopen(argv[1], ‘r’);!
!
…!
fread(buf, 1, size, fp);!
!
!
…!

OP = *ADDR;!
metadata_op = *(metadata_addr);!
if (metadata_op == STATIC)!
 profileLoadValue(…);!
switch (OP) {!
 …!
}!

metadata_fp = metadata_argv[1];!

metadata_fread = metadata_size & metadata_fp;!
memset(metadata_buf, metadata_fread, size*1);!

(a) Instrumented code that reads input	
 (b) Instrumented code that uses input	

Figure 4.3: Instrumentation added by the IPLS profiler to achieve dynamic information-
flow tracking.

falling through to the general loop if misprediction occurs. Experimental results indicate

that sequence prediction is robust and that sequence misprediction has negligible effect on

the performance of specialized applications (Chapter 6).

Figure 4.3 shows the instrumentation used to track dynamic information flow in an

example program. Figure 4.3(a) reads the input file specified by the first command line

argument. Figure 4.3(b) uses the input. ADDR in Figure 4.3(b) points to each element

of buf in Figure 4.3(a) through its execution, hence OP loads the value read from the

input file. Bold and italicized lines are the instructions automatically instrumented by the

compiler for tracing metadata and printing profile information.

The code snippet shows that the metadata of argv[1] is propagated to the metadata

of OP, through the instrumented instructions. The profiler reports the information related to

OP only if its metadata is set to static, which is true only when the metadata of argv[1]

is static. Metadata of command line inputs, which indicates whether the input is fixed or

not, is given by the user. Therefore, the profile information of OP appears at the output of

the profiler only when the user declares that the first command-line input is fixed.

Since instrumentation is added at an intermediate representation level, instrumentation

is not possible for functions whose source code is not available at specialization time. For

this reason, tracing the flow of metadata across standard library calls are handled exception-

ally via custom information flow tracking instructions. For example, Figure 4.3(a) shows

custom tracking instructions for calls to fopen and fread.

Another issue the IPLS profiler is facing is the profiling of pointer values. Recall that

33

in the example in Figure 4.1 the dispatch condition of the specialized code was ADDR

== P. However, the value P is a memory address, and there is no guarantee that the ab-

solute pointer value P is consistent across across multiple executions of the specialized

program. To address this problem, IPLS performs a variation of object-relative memory

profiling [101] to derive consistent symbolic addresses for such pointers. A symbolic ad-

dress is a tuple of (Object ID, offset). Object ID is an unique ID of each dynamic object.

offset refers to the offset from the base of the object.

Figure 4.4 describes how the object-relative memory profiling is performed in IPLS.

During execution the IPLS profiler traces every memory allocation instruction. For every

invocation of a memory allocation instruction, a function call to trace the base address and

size of the allocated object is executed. Traced information is maintained as a table shown

in Figure 4.4(a).

When the profiler outputs the information related to a pointer, it prints the symbolic

address tuple instead of the absolute number by referring to the table. For example, to trace

the pointer P, which is in range of [P0, P0 + Sn), the profiler finds the object pointed to by

P using the table (An object with ID n for the example in the figure), calculates the offset,

and records this information as shown in Figure 4.4(b).

To find the actual address of the symbolic address at specialized program execution

time, IPLS compares heap constant values. Figure 4.4(c) shows the profiled heap constant

values; the symbolic address (n,O0) should have the 4-byte constant value x, while the

symbolic address (n,O1) should have the 4-byte value y. Profile results also report that

the size of the object with ID n is Sn bytes (Figure 4.4(d)). With this information, the

IPLS run-time function findAddress, which is described in Figure 4.5(a), discovers the

base address of the object n during the specialized program execution. The preheader of

the specialization target loop calls the function for all the objects (object n in the example)

involved in the dispatch condition of specialized loops, as shown in Figure 4.5(b). The

function iterates over all dynamically allocated objects with the same size as object id

34

profileLoadValue(char* ptr, long v, size sz) {!
 Object* obj = getObject(ptr);!
 offset = ptr – (obj->base_address); !
 profile(obj->id, offset, v, sz);!

}!

Object	 ID	 Base	 Address	 Size	

…	 …	 …	

n! Pn! Sn!

…	 …	 …	

Profiler	

(a) Allocated object information	

(b) Profile information logger	

Symbolic	 Address	 Value	 Size	

…	 …	 …	

(n, O0)! x! 4!

(n, O1)! y! 4!

…	 …	 …	

Object	 ID	 Size	

…	 …	

n! Sn!

m! Sm!

…	 …	

(c) Profiled Heap Constants	
 (d) Profiled Dynamic Objects	

Profiler	 Output	

Figure 4.4: IPLS uses object-relative memory profiling to generate repeatable, symbolic
names for relocatable address.

35

 1 bool findAddress(ObjectID id) {!
 2 ProfiledObject* pobj = getProfiledObject(id);!
 3!
 4 // “objects” holds all dynamically allocated objects!
 5 for (Object* obj in objects) {!
 6 if (obj->size != sz) continue;!
 7!
 8 match = true;!
 9!
10 // hc is for each profiled heap constant value!
11 for (HeapConstant* hc in pobj->heap_consts) {!
12 offset = hc->offset;!
13 size = hc->size;!
14 value = hc->value;!
15!
16 if (obj->getValue(offset, size) != value) {!
17 match = false;!
18 break;!
19 }!
20  }!
21!
22 if (match) {!
23 base_addr[id] = obj->base_addr;!
24 return true;!
25 }!
26 }!
27 !
28 return false;!
29 }!

(a)	

Specialized	 	
Loop	

A	

D	
B	 C	

DISPATCH

PREHEADER

… !
// if (ADDR == P)!
if (found[n] && !
 ADDR == base_addr[n]+offset)!
 goto spec_code;!
…!

…!
found[n] = findAddress(n);!
…!

(b)	

Figure 4.5: (a) findAddress function to find the object corresponding to the profiled
object at the specialized program execution time (b) Use of symbolic address on the spe-
cialized program side

36

(Figure 4.5(a), line 6) and checks if the values stored in the object match the profiled heap

constant values. For object n, if any object has value x at offset O0 and value y at offset

O1, the findAddress function concludes that the object is the incarnation of object n at

specialized program execution time (Figure 4.5(a), line 11-20).

Figure 4.5(b) shows the use of symbolic addresses in the specialized program. Instead

of using the absolute value of pointer P to check the dispatch condition of the specialized

loop, it uses a value base addr[n] + offset that is generated from the symbolic

address: base addr[n] is generated by findAddress function, and value offset

comes directly from the output of the profile.

4.3 Pattern Detection

The IPLS pattern detector analyzes profiling information to identify specialization oppor-

tunities. The output of this stage includes meta-level loops, which represent repeating pat-

terns within the traced values computed by static instructions, and possible heap constants

extracted from the trace of static load instructions.

In addition to the meta-level loop, the pattern detector uses the meta-level trace to rep-

resent the repeating patterns in the program. While the meta-level loop represents patterns

across multiple iterations of a single invocation of a loop, the meta-level trace represents

patterns across multiple invocations of the loop. Figure 4.6(a) shows a summarized trace of

values generated by a static instruction in a loop across multiple invocations. For the first

and second invocations of the loop, the loop iterates for 8 times before it terminates, and for

the third invocation it runs for only four iterations. Across the first and second invocation

of the loop, the static instruction computes exactly the same sequence of values. There-

fore, the specializer can exploit patterns that emerge across the invocations along with the

patterns detected across the iterations of a single invocation.

In order to find a meta-level loop or meta-level trace from a given trace of values, the

37

Meta-‐level	 loop	

Invoca.on	

0	 1	 2	

Iter	 0	 a! a! a!

Iter	 1	 b! b ! g!

Iter	 2	 c! c! i!

Iter	 3	 d! d! h!

Iter	 4	 b! b!

Iter	 5	 e! e!

Iter	 6	 d! d!

Iter	 7	 f! f!

f!

a!

b!

c! e!

d!

g!

i!

(a) Example trace	
 (b) Meta-level loop/trace detected���
from example trace (a)	

h!

Meta-‐level	 trace	

Figure 4.6: Meta-level loops/traces detection extracts a graph which resembles a control-
flow graph in which loops are identified.

38

pattern detector first transforms the sequence of trace values into a graph: each traced value

becomes a node of the graph, and edges are added between two consecutive values in the

trace. Figure 4.6(b) depicts a graph generated from the trace in Figure 4.6(a).

To detect a meta-level loop, IPLS runs a natural loop detection algorithm on the graph

built from the trace. In the example of Figure 4.6(b), an edge from node d to node b

forms a backedge because its destination node dominates its source node, thus a meta-level

loop including nodes b, c, e, and d can be detected. The dispatch condition for the

specialized loop for the meta-level loop is met if the computed value of the static instruction

whose profiled values induce the meta-level loop matches the value of the loop header.

Meta-level traces are created by merging all iteration traces that share the same value

as the first iteration. The dispatch condition for the specialized codes for a meta-level trace

is determined by the common value from the first iterations. Since the traces of the three

invocations shown in Figure 4.6(a) share the same value a generated from the first iteration,

Figure 4.6(b) itself can be a meta-level trace. However, if the value diverges after the first

iteration for different invocations, and some of the values appear with a very low probability

across invocations, specialized loops for those values will merely increase the program size

without much benefit. To prevent this case, only the trace of invocations which share an

identical iteration trace are included in the meta-level trace. In Figure 4.6(a), traces of the

first and second invocations are identical, hence are combined in the meta-level trace, yet

the trace of the third invocation is excluded because there is no common trace.

At this point the pattern detector may have found several patterns in the trace data.

However, the loop can only be specialized according to one pattern. To find the right

pattern for specialization, IPLS uses a heuristic based on two measures: (1) coverage of the

pattern and (2) precision of the pattern. IPLS chooses the pattern for which the product of

these measures is greatest.

The coverage of the pattern is calculated by taking a ratio of the number of iterations

covered by the pattern to the total number of iterations in the trace. This measure is related

39

to the benefit of specialization since a higher coverage means that the specialized code

likely accelerates a greater portion of the total iterations. In the example of Figure 4.1(c),

the pattern of ADDR = [P, P+1] and the pattern of OP = [FOR, ADD] have the

same coverage of 6/7. If the coverage of the pattern is less than a certain threshold, IPLS

discards the pattern (In the current implementation, the threshold value is set to 0.01).

The precision of the pattern represents a degree of possible control-flow simplification

when the program is specialized against the pattern. The precision of the pattern is com-

puted by taking the average precision of all values within the pattern. The precision of each

value is calculated by averaging the precision of all the iterations that compute the value.

To get the precision of iteration I, IPLS pattern detector divides the number of basic blocks

executed for iteration I by the size of the set of basic blocks that have been invoked across

all the profiled iterations that compute same value as I. In the example of Figure 4.1(c),

the precision of value OP = FOR is calculated by averaging the precision of iteration 2, 4,

and 6, as those are the three iterations that compute the value OP = FOR. While iteration

2 and 4 executed four basic blocks, {A, FOR, B, D}, iteration 6 executed four basic

blocks, {A, FOR, C, D}. Therefore, the set of basic blocks that have been executed

across all iterations computing OP = FOR is {A, FOR, B, C, D}. Thus iterations 2,

4, and 6 all have the same precision value of 0.8, which is also the average. By applying

the same algorithm, the precision of OP = ADD is 1.0. The precision of the pattern of OP

= [FOR, ADD] is the average of these values, 0.9. The pattern of ADDR = [P, P+1]

has a precision of 0.9 as well.

If the product of coverage and precision is same for multiple patterns, as in the case

of the pattern OP = [P, P+1] and OP = [FOR, ADD], the number of dynamic uses

of the value computed by the static instruction generating the pattern is employed as a tie-

breaker. The profiler measures the invocation count of the instructions use the value com-

puted by the static instruction s. This number is correlated to the benefit of specialization

since a higher number implies more computation to be optimized away via precomputation.

40

In the example of Figure 4.1(c), the instruction computing ADDR has two use instructions

(i.e., OP=*ADDR and switch(OP)), while the instruction OP=*ADDR has only one use

instruction (switch(OP)). Therefore, IPLS chooses to optimize the loop with respect to

the pattern of ADDR = [P, P+1].

4.4 Code Generation

Code generation uses meta-level loop/trace information and possible heap constant infor-

mation passed by the pattern detector to specialize codes. Specialized codes are expected

to have less computation than the corresponding original codes and be better structured to

exploit instruction-level parallelism.

Figure 4.7 describes, step-by-step, how the program represented as a control flow graph

in Figure 4.7(a), which is taken from Figure 4.1(b), is specialized using the information in

Figure 4.1(d). Throughout this section the code generation process will be explained by

walking through the figure.

Step 1: Splitting header and latch block First, IPLS splits the original loop header

block and loop latch blocks (blocks which are the source of a loop backedge). As of now,

IPLS targets only natural loops for specialization. Natural loops can be canonicalized to

have only one backedge and only one latch block. Dispatch instructions for specialized

codes are added to the new header block, and the new latch block becomes a point where

control-flow is merged after the execution of specialized codes. Figure 4.7(b) shows a new

control flow graph after splitting the header and latch blocks.

As shown in the figure, φ-nodes placed in the original loop header are moved to the

new header after splitting. If the dispatch instructions of the specialized codes depend on

φ-nodes, no other modifications are required. However, if dispatch instructions depend

on other instructions, the instruction and the instructions upon which it depends must be

cloned into the new header block.

41

(a)	
 (b)	
 (c)	

A0	
	

OP=*ADDR	
if	 (OP!=ADD)	
	 	 goto	 A’	

D0	

ADD0	

D1	

FOR1	

B1	 C1	

A1	
	

OP=*ADDR	
if	 (OP!=ADD)	
	 	 goto	 A’	

(e)	
 (d)	

A0	
	

OP=*ADDR	
switch(OP)	

D0	

ADD0	

D1	

FOR1	

B1	 C1	

A1	
	

OP=*ADDR	
switch(OP)	

if	 ADDR	 ==	 P	
A0	
	

OP=*ADDR	
switch(OP)	

D0	

ADD0	

D1	

FOR1	

B1	 C1	

A1	
	

OP=*ADDR	
switch(OP)	

ADDR++	 	 //	 ==	 P+1	

goto	 A1	

if	 ADDR	 ==	 P	
	 	 goto	 A0	
else	
	 	 goto	 LATCH	

if	 ADDR	 ==	 P	

B	 C	

D	

Latch	

ADD	 MUL	 FOR	 PRT	

A	

OP=*ADDR	
switch(OP)	

Header	

ADDR=Φ(PRE,	 Latch)	

PRE	

B	 C	

D	

Latch	

ADD	 MUL	 FOR	 PRT	

A	

OP=*ADDR	
switch(OP)	

Header	

ADDR=Φ(PRE,	 Latch)	

PRE	

B	 C	

D	

ADD	 MUL	 FOR	 PRT	

PRE	

A	

ADDR=Φ(PRE,	 D)	
OP=*ADDR	
switch(OP)	

B	 C	

D	

Latch	

ADD	 MUL	 FOR	 PRT	

A	

OP=*ADDR	
switch(OP)	

Header	

ADDR=Φ(PRE,	 Latch)	

PRE	

B	 C	

D	

Latch	

ADD	 MUL	 FOR	 PRT	

Header	

ADDR=Φ(PRE,	 Latch)	

PRE	

A	

OP=*ADDR	

A’	

OP’=Φ(A,	 A0,	 A1)	
switch(OP’)	

Figure 4.7: The code generation process: (a) original loop, (b) splitting the loop header and
latch, (c) cloning and specializing iterations from a pattern, (d) adding dispatch conditions
and stitching specialized iterations into a loop, and (e) adding unexpected exit conditions.

42

Step 2: Cloning basic blocks To create versions of the loop iteration corresponding to

observed traces, the compiler clones basic blocks in the nodes in a meta-level loop/trace.

As described in Chapter 4.1.3, the basic blocks to be cloned for each meta-level node are

provided by the pattern detector, which is based on profiling. For a branch instruction

in a cloned block, if the original branch target block is also cloned then the instruction

is modified to branch to the corresponding cloned block. If not, the branch jumps to the

target block in the original loop. Figure 4.7(c) depicts the control flow graph after cloning

of basic blocks and adjusting branches.

Instead of cloning basic blocks invoked in each node during profiling, one alternative

can be analyzing executable basic blocks for each meta-level node and cloning all exe-

cutable blocks, to minimize the number of returns back to the unspecialized loop. This

happens when a branch jumps to a basic block that is never executed during profiling. This

approach makes sense because cloned blocks for each meta-level node are specialized for

a specific value of the instruction inducing meta-level loop/trace, and specialization may

mark a large portion of basic blocks within the loop as unreachable. In practice, the analysis

marks every basic block to be executable for non-negligible cases, especially if the special-

ized loop contains an inner loop. Since cloning the entire loop may lead to an explosion in

code size, IPLS clones only the profiled basic blocks.

Step 3: Adding dispatch instruction and meta-level edges After cloning basic blocks

for each meta-level node, dispatch instructions are inserted at the loop header created in

Step 1 to invoke the specialized loops. The pattern detector informs the code generator of

a dispatch condition for each meta-level loop and trace. Figure 4.7(d) depicts the control

flow edge inserted to dispatch the specialized loop, which is taken when the value of ADDR

becomes P (Recall the value acquired by the symbolic representation of value P is used in

dispatch instructions, as described in Chapter 4.2, but we use the absolute value P here to

simplify explanation).

43

Branches for meta-level edges are also added in this step. The branches are conditioned

on the dynamic value of the dispatch condition. The branch at the end of block D1 in

Figure 4.7(d) shows this. The branch checks whether the value of ADDR will actually be

P on the next iteration. If it matches, it jumps to the specialized loop corresponding to the

value of ADDR being P, or returns to the original loop otherwise. If a meta-level node has

multiple outgoing edges, IPLS uses a switch statement instead of a branch.

Sometimes a simplified control flow between cloned basic blocks makes branches for

meta-level edges unconditional. The branch added at the end of block D0 in Figure 4.7(d)

is the example. D0 is only reachable via the path A0→ADD0→D0. By basic data-flow

rules, we know ADDR == P+1 along this path. Therefore, without requiring checking,

the loop specialized for the condition of ADDR == P+1 is invoked after the execution of

D0. Such simplification of the control flow opens opportunities to exploit instruction-level

parallelism across different iterations.

Step 4: Exploiting possible heap constants As the last step of code generation, IPLS

exploits possible heap constant information.

Figures 4.7(d) and (e) differ in block A0, where the switch instruction has been replaced

with a conditional branch. This replacement is possible because the specializer knows (i)

ADDRmust point to P and (ii) the pattern detector reports that the memory at P holds a heap

constant value ADD. However, the switch cannot be simply replaced by an unconditional

branch. The heap constant information is derived via profiling, which must be verified

at runtime; instructions to check the validity of possible heap constant information must

remain.

Though it seems that there is no benefit by using heap constant information in block A0,

performance is improved by replacing switch instructions (often lowered to a jump table

in assembly) with conditional branches, which improve the performance of branch predic-

tion. Particularly, the branch prediction is nearly perfect for such cases since the profiled

44

heap constant information is generally accurate. Although it is not clear in this example,

heap constant information also breaks dependences between a load instruction and its uses,

because the loaded value can be safely assumed to be the expected heap constant after

the checking instruction. Breaking dependences creates more optimization opportunities,

including better chances for instruction level parallelism.

As an alternative to pre-checking heap constants and branching, speculation can be

employed to assume all possible heap constants. When using speculation, a log of the

comparison result is maintained rather than branching on the comparison result. Then the

program occasionally checks the logged value at runtime to see if a misspeculation has

occurred, and if so, the program rolls back to the previous checkpoint of the program,

where the program maintains correct state. By removing conditional branches speculative

execution opens additional opportunities to exploit instruction level parallelism. However,

the overhead of logging and periodic checking of the comparison results may negate the

benefit resulting from more instruction level parallelism. For this reason, checking and

branching is used in this thesis instead of speculative techniques.

45

Chapter 5

Parallelizing Specialized Programs

This chapter describes enhancements over existing automatic parallelization techniques to

handle complex programs, such as IPLS specialized programs. Although the motivation

for inventing these techniques is to exploit input parallelism folded into IPLS specialized

programs, the techniques are generally applicable to other programs as well.

Chapter 5.1 describes the overall workflow of the system that exploits input parallelism

in a fully automatic fashion. The system applies automatic speculative parallelization to the

IPLS specialized program. Chapter 5.2 presents context-sensitive speculation techniques.

Supporting context-sensitivity improves the precision of speculative analysis, and thus im-

proves the applicability of the automatic parallelization. In particular, context-sensitive

speculation plays a critical role in automatic parallelization of IPLS specialized loops,

which have been aggressively unrolled. Chapter 5.3 proposes optimizations to the run-

time system supporting speculative parallelization. Although speculation is necessary to

parallelize complex programs, the high performance overhead of the run-time to support

speculation nullifies the benefit of parallelization. Optimizations described in Chapter 5.3

reduce the overhead of memory dependence speculation validation and enables parallel

speedup for even aggressively speculated programs.

46

5.1 Overall Workflow

Figure 5.1 depicts the workflow of the system to automatically exploit input parallelism.

The user provides C or C++ source code, a fixed input, and a representative training input.

IPLS specializes the code against the fixed inputs, as described in the previous chapter.

Next, the system speculatively parallelizes the code, which entails an enabling transforma-

tion (Chapter 5.1.1), planning (Chapters 5.1.2–5.1.3), and transformation (Chapters 5.1.4–

5.1.5).

5.1.1 Enabling Transformation: Loop Peeling

As explained in Chapter 4, IPLS emits the specialized program in response to invariant-

induced execution patterns. However, even when the loop-level parallelism is available in

specialized loops, the specialized loops may not be perfectly amenable to automatic par-

allelization. When specializing the Perl interpreter, for example, the IPLS code generator

creates loops that store many values during the first iteration and then reference those values

during all subsequent iterations. This memory usage pattern induces loop-carried memory

dependences from the loop’s first iteration to all subsequent iterations. Loop-carried mem-

ory dependences inhibit many thread extraction techniques [75].

Fortunately, peeling the first iteration of specialized loops converts loop-carried depen-

dences sourced from the first iteration of the loop into dependences from live-in values.

The system uses a memory dependence profiler to identify cases where loop peeling elim-

inates such loop-carried dependences. Loop peeling also helps support context-sensitive

speculation, as discussed in Chapter 5.2.

5.1.2 Profiling

The system further enables parallelization using high-confidence, profile-guided specula-

tion of biased conditional branches, predictable values, and memory dependences. Profil-

47

IPLS	

Loop	 Peeler	 (Chap.	 5.1.1)	

Loop	 Peeler	 Loop	 Peeler	 Profilers	 (Chap.	 5.1.2)	

seq.ipls.peel.bc	 seq.ipls.peel.bc	 Profile	 Results	 Paralleliza>on	 Planner	 (Chap.	 5.1.3)	

Spec-‐PDG	

Specula>on	 Applicator	 (Chap.	 5.1.4)	

MTCG	 (Chap.	 5.1.5)	

seq.bc	

seq.ipls.peel.bc	

seq.ipls.peel.spec.bc	

par.bc	

seq.ipls.bc	

Training	
Inputs	

Fixed	
Inputs	

Sequen&al	 Program	

User	 Inputs	

Parallelized	 Program	

seq.c	

frontend	

Linker	

par.exe	

run>me.bc	

Figure 5.1: The workflow of the system to automatically exploit input parallelism. A
sequential program, fixed inputs, and training inputs are inputs to the system. After un-
dergoing IPLS specialization and an enabling transformation (5.1.1), the system profiles
(5.1.2) the program and then performs speculative parallelization (5.1.3-5.1.5). Note that
.bc files are intermediate files containing LLVM bitcode.

48

ers run on the specialized program with a representative input to estimate the program’s

expected-case behavior. Whereas a Program Dependence Graph (PDG) [24] represents a

program’s worst-case behavior, the speculation phase builds a speculative PDG represent-

ing the program’s expected-case behavior. Only loop-carried dependences are speculatively

removed, as intra-iteration dependencies have minimal effect on the applicability of parallel

transformations [37]. This phase does not modify the IR.

A control-flow edge profiler (LLVM’s -insert-edgeprofiling [43]) identi-

fies heavily biased branches. By speculating that heavily biased branches are essentially

unconditional branches, unlikely instructions become dead code and some control depen-

dences are removed from the speculative PDG. A loop-invariant value profiler determines

whether φ-nodes compute the same loop-invariant values and whether load instructions al-

ways read the same loop-invariant values during every iteration. Similarly, a linear value

prediction profiler discovers load instructions whose value can be predicted as a linear

function of the loop’s canonical induction variable. These three profilers drive value pre-

diction speculation to eliminate loop-carried data dependences from the speculative PDG.

Finally, a memory dependence profiler [50] records the memory dependences observed

during a training run. The parallelization system speculates that memory dependences not

observed during profiling do not exist and removes them from the speculative PDG.

Profiling results are context-sensitive for memory dependence, loop-invariant load, and

linear value prediction profiles. Chapter 5.2 describes how the parallelization system lever-

ages context-sensitivity.

5.1.3 Parallelization Planner

The parallelization planner formulates a concrete plan to achieve parallel execution based

upon the speculative PDG (from Chapter 5.1.2). The planner considers the applicability

of the PS-DSWP parallelization technique [75] on the speculative PDG of each hot loop.

PS-DSWP supports the classical DOALL transformation as a pipeline with a single parallel

49

stage. The planner rejects any parallelization that it does not expect to yield a performance

improvement. Expected performance improvement is computed based on the weight of

the target loop, weight of the instructions in each pipeline stage, and the number of cores

in the target system. The weight of each loop/instruction is provided by the control-flow

edge profiler, while the number of cores is provided as a compiler option. The planner also

rejects nested parallelism: if the system can parallelize two loops, where one occurs within

the other, it chooses to parallelize the one that will yield the higher expected performance

improvement.

The parallelization planner finds a set of parallelizable loops with non-overlapping in-

vocations while maximizing the expected performance improvement across the whole pro-

gram. The planner builds an undirected graph in which nodes represent loops in the pro-

gram. The weight of the node indicates the expected performance improvement of the loop.

Edges are added between nodes if the loops represented by the nodes are not nested within

each other. An extended Bron-Kerbosch algorithm [33], an algorithm to find exact solu-

tions to the maximum weighted clique problem, is applied to the graph to find the set of

loops that maximizes expected performance improvement across the whole program.

5.1.4 Speculation Applicator

Once the parallelization planner has selected a parallelization plan (Chapter 5.1.3), the

system proceeds to the transformation phase. First, it transforms the sequential IR into

speculative sequential IR. The speculation applicator inserts new instructions to validate

that all speculative assumptions hold true at run-time. If any speculative assumption fails,

these validation instructions signal misspeculation to initiate the recovery mechanism.

For control-speculation, the speculation applicator adds instructions in speculatively

dead basic blocks that trigger misspeculation. For value-prediction speculation, the spec-

ulation applicator inserts instructions to compute a predicted value, replaces uses of the

original value with the prediction, and inserts instructions that validate that the predic-

50

tion is correct. To validate memory dependence speculation and to provide misspeculation

recovery, Software Multi-Threaded Transactions (SMTX) [74] are used. The validation

applicator inserts instructions that commit transactions after each loop iteration and inserts

mtx write and mtx read calls on speculated store and load instructions.

5.1.5 Multi-Threaded Code Generator

After applying speculation, the system parallelizes the speculative sequential IR. The Multi-

Threaded Code Generation (MTCG) algorithm transforms the speculative, sequential IR to

create one or more threads [61]. For pipelined parallelization, like DSWP or PS-DSWP,

instructions assigned to each stage of the pipeline partition are copied into new functions

representing each pipeline stage. MTCG additionally inserts produce/consume commu-

nication primitives to preserve data dependences that span pipeline stages and duplicates

control flow instructions to preserve control dependences that span pipeline stages.

Our implementation also employs the replicable-stage extension [32], which serves as

a generalization of induction variable expansion. The code generator emits instructions

into each worker that rematerialize side-effect free, loop-carried values such as induction

variables or pointer-chasing recurrences. These instructions are redundant across worker

processes, but reduce the core-to-core communication of values that are more easily recom-

puted. Although each of n parallel stages primarily executes 1/n iterations, the parallel

stage also executes the rematerialized instructions for the remaining (n− 1)/n iterations.

5.2 Context-Sensitive Speculation

This section describes context-sensitive speculation. Chapter 5.2.1 motivates context-sensitive

speculation with an example of specialized interpreter program. Chapter 5.2.2 explains

how the profilers used in the automatic parallelization system generate context-sensitive

profiling results. Chapter 5.2.3 proposes a run-time system to support context-sensitive

51

speculation.

5.2.1 Motivating Context-Sensitive Speculation

Figure 5.2 depicts the importance of context-sensitive speculation. Figure 5.2(a) is a code

snippet of an interpreter program specialized for a script that includes a simple loop, L,

whose body is arr[i]+=1, and where i is the loop induction variable. Lines (1) to

(3) load the memory object for variables i, arr, and arr[i], respectively. The function

add1 (Figure 5.2(b)) is called twice in the loop (lines (4) and (5)). Once to increment

of the induction variable i, which has a loop carried data dependence across iterations of L,

and the other to increment the value of arr[i], which has no loop carried data dependence

across iterations of L. Note that these were the same callsite in the non-specialized version

of the interpreter.

To achieve more precise dependence information between instructions that is beyond

the capability of static analysis, memory dependence profiling is necessary. A profiler

observes that there are loop-carried dependences 9→7 and 10→10, which are formulated

only around the object o i that models the induction variable i. However, if profiling

results ignore the calling context and only report that there are loop-carried dependences

9→7 and 10→10, the compiler will conservatively assume that those dependences exist

across every callsite of add1. Figure 5.2(c) is the speculative PDG of L for such a case. 1

Due to the lack of context information for the add1 function, dependence edges are added

from 4→5 and 5→4, as well as self-dependence edges 4→4 and 5→5. These edges create a

single SCC in the PDG, which means that there is no chance for parallelization. However, if

context information is provided by the profiling results, the compiler can apply speculation

further to remove edges 4→5, 5→4, and 5→5. The resulting PDG (Figure 5.2(d)) shows

that only node 1, 4 and 6 form an SCC, thus parallel transformation can be applied. 2

1The run-time system supporting memory versioning removes all false dependences [74] and thus they
are not displayed.

2Note that flag will always be INT for line (7) when add1 is called from line (5). The context-

52

L:!
 Object* o_i = getObj(“i”); (1)!
 ArrayObject* o_arr = getArrObj(“arr”); (2)!
 Object* o_elem = getObj(o_arr, o_i); (3)!
 add1(o_i, o_i); (4)!
 add1(o_elem, o_elem); (5)!
 if (isLT(o_i, getObj(“size”))) goto L; (6)!
…!

void add1(Object* dst, Object* src) {!
 FLAG flag = src->flag; (7) !
 if (flag == INT) { (8)!
 dst->flag = INT; (9)!
 dst->value.i += 1; (10)!
 }!
 else {!
 dst->flag = FLOAT; (11)!
 dst->value.f += 1.0; (12)!
 }!
}!

(a)	

(b)	

(c)	
 (d)	

data
dependence

control
dependence

1	 2	

5	

3	

6	

4	 1	 2	

3	

6	

4	 5	

Figure 5.2: Benefits of context-sensitivity. (a) Example code from a specialized interpreter.
(b) Source code for the add1 function. (c) PDG constructed using profiling results with
no context-sensitivity, which results in no opportunity for parallelism. The grey region
represents an SCC. (d) PDG using profiling results with context-sensitivity. Note that the
self edge on node 5 and the mutual edge between nodes 4 and 5 have been eliminated,
which reduces the size of the SCC and enables parallelism.

53

5.2.2 Context-Sensitive Profiling

As described in Chapter 5.1.2, loop-invariant load, linear value prediction, and memory de-

pendence profilers used in the automatic parallelization system proposed in this dissertation

generate context-sensitive profiling results. To support context-sensitivity, these profilers

trace execution contexts along with the core information.

The execution context specifies a position within the profiling target loop. For a certain

instruction I in the target loop L, if I is syntactically contained in L, then I itself is the

execution context. Alternatively, if instruction I is buried within a procedure call, then the

execution context references the call site in loop L. In the example of Figure 5.2(a), where

the target loop is L, the execution context allows the system to distinguish between the

execution of the add1 function for o i from the execution for o elem. In the former case

the execution context is (4), while in the latter case it is (5). The profilers do not trace

the execution context for nested invocations of the target loop.

Loop-invariant load profiler A loop-invariant load profiler enables speculative opti-

mization by removing dependences incident on loop-invariant load instructions. A loop-

invariant value profiler discovers a load instruction LD in execution context C that meet

the loop invariant load criterion:

Loop-Invariant Load Criterion: Let LD be the load instruction in loop L. LD is

speculatively loop-invariant in context C iff throughout the profiling run, every execution

of LD in context C reads the same value V from the same memory address A.

Note thatC == LD ifLD is syntactically contained in the target loop, by the definition

of execution context. Algorithm 1 profiles loop-invariant load values. Loop invariants are

sensitive loop-invariant value profiler can capture this fact and thereby speculatively remove the dependence
edge from 9→7. However, this will not affect the PDG of loop L because the dependence edge 4→4 will still
exist due to the dependence 10→10.

54

Algorithm 1: LoopInvariantLoadProfile(C,LD,A, V)

1 let Key := 〈C,LD〉;
2 if Key in LoopInvs then
3 if LoopInvs[Key].A != A then
4 let LoopInvs[Key].valid := false;

5 if LoopInvs[Key].V != V then
6 let LoopInvs[Key].valid := false;

7 else
8 let LoopInvs[Key] := LoopInvariant(A, V);

traced for each pair of execution context C and load instruction LD. If the loaded value

and the memory address are identical across all executions of 〈C,LD〉, the profiler assumes

that LD under execution context C loads a loop-invariant value.

Linear value prediction profiler A linear value prediction profiler finds load instructions

that meet the following criterion:

Linear Value Prediction Criterion: Let LD be a load instruction in loop L, and let

V (ITER) the value which LD reads from memory during iteration ITER of loop L. LD

is speculatively linear in L under context C iff throughout the profile run, V (ITER) =

m × ITER + b for some fixed constants m, b, and every execution of LD in context C

reads a value from the same memory address A.

Algorithms 2 and 3 describe how the linear value prediction profiler determines co-

efficients m, b to characterize each speculatively linear load. Algorithm 2 runs for each

dynamic load instruction in the target loop; V and A refer to the loaded value and the

memory address of the load instruction, respectively. A separate predictor is assigned to

each pair of 〈C,LD〉. A predictor finds m and b by computing the linear interpolant from

the first two sample points (Algorithm 3, lines 14-18), then checks the consistency of the

linear interpolant with additional samples (Algorithm 3, line 20-21). Parameter x of func-

55

Algorithm 2: LinearV aluePredictionProfile(C,LD, ITER,A, V)

1 let Key := 〈C,LD〉;
2 if Key not in Predictors then
3 let Predictors[Key] := LinearV aluePredictor(A);

4 AddSample(Predictors[Key], ITER, V,A);

Algorithm 3: AddSample(lp, x, y, addr)
1 if lp.addr != addr then
2 let lp.valid := false;
3 return;

4 if not lp.init then
5 let lp.x := x;
6 let lp.y := y;
7 let lp.init := true;

8 else if not lp.interpolated then
9 if lp.x = x and lp.y != y then

10 let lp.valid := false;
11 return;

12 if lp.x = x and lp.y = y then
13 return;

14 let xinterval = x− lp.x;
15 let yinterval = y − lp.y;
16 let lp.m := yinterval/xinterval;
17 let lp.b := y − lp.m× x;
18 let lp.interpolated := true;

19 else
20 if (lp.m× x+ lp.b) != y then
21 lp.valid := false;

56

tion AddSample represents the target loop iteration count, while parameter y represents

a loaded value. If the target loop contains nested loops, a static load instruction can be

executed multiple times within a single iteration of the target loop. Lines 9-13 in Algo-

rithm 3 checks if a load instruction always loads the same value within a single target loop

iteration.

Memory dependence profiler A memory dependence profiler employs a shadow-memory

based profiler to trace memory accesses within the profiler. Each byte of the profiled pro-

gram’s memory corresponds to 8 bytes of metadata in the shadow memory. Allocation

and deallocation of the shadow memory is performed by instrumentation to the alloca-

tion/deallocation events of the original memory. For each dynamic instruction that writes

to memory, the profiler records the execution context and the iteration count of the target

loop as metadata, as described in Algorithm 4; CW , ITERW , and A refer to the execution

context, iteration count of the target loop, and the memory address to write to, respectively.

Note that only the execution context is recorded into metadata, the write instruction

itself is not recorded. Since the client of the profiling result is automatic parallelization, the

dependence relationship between instructions syntactically included in the target loop is the

only interest. In the example of Figure 5.2, it is not important to know that instruction (9)

and (10) write a value but it is important that the execution context was (4). Address

translation between the given address and the corresponding shadow address is performed

by a small number of bit-wise operations.

Memory dependences are logged at each dynamic execution of an instruction that reads

from memory. If instruction LD reads a value from the memory address A at the target

Algorithm 4: ShadowMemoryWrite(CW , ITERW , A)

1 let Metadata := pack(CW , ITERW);
2 let SA := Translate(A);
3 let ∗SA := Metadata;

57

loop iteration count of ITERR, the profiler reads the metadata from the shadow memory

corresponding toA and computes the dependence information as described in Algorithm 5.

Dependences are characterized by the execution context of the write event (CW), the ex-

ecution context of the read event (CR), the instruction that reads the memory (LD), and

whether the dependence is either loop-carried (i.e. ITERW != ITERR) or not.

Unlike memory write instructions, memory read instructions are traced along with ex-

ecution contexts. The motivation behind this is that if loop-invariant load or linear value

prediction speculation is applicable to the memory read instruction, the dependence formu-

lated around the read instruction can be speculatively removed. Figure 5.3 illustrates such

a case. A memory dependence exists between the store instruction in function foo and

the load instruction in function bar, which results a dependence between callsites of foo

and bar in loop L. Assuming that the store in foo writes a heap-constant value and the

load in bar always reads a value written by the store in foo, a dependence from the store

to the load can be speculatively removed by loop-invariant load speculation. If a memory

dependence profiler reports that the load instruction in function bar is the only cause of

the dependence between the callsites of foo and bar, i.e. if the profiler reports the read

instruction itself along with execution contexts, the client of the memory dependence pro-

filing results can tell that the dependence between callsites can be speculatively removed

along with the dependence between the store in foo and the load in bar.

Algorithm 5: MemoryDependenceProfile(CR, LD, ITERR, A)

1 let SA := Translate(A);
2 let 〈CW , ITERW 〉 := unpack(∗SA);
3 let Dependence := 〈CW , CR, LD, ITERW != ITERR〉;
4 let Dependences := Dependences ∪ {Dependence} ;

58

L:!
 …!
 foo();!
 bar();!
 …!

foo() {!
 …!
 // x is a heap constant!
 STORE *p, x;!
 …!
}!
!
bar() {!
 …!
 y = LOAD *p;!
 …!
}!

X	

Figure 5.3: As the memory dependence profiler observes a dependence from the store
instruction in foo to the load instruction in bar, it observes a dependence from the callsite
of foo to the callsite of bar in loop L as well. However, these dependences can be
speculatively removed by applying loop-invariant load speculation to the load instruction.

59

5.2.3 Run-time Support for Context-Sensitive Speculation

Speculative parallelization requires run-time system support to validate speculation as-

sumptions during execution of the parallel program. The following paragraphs explain

the run-time support for each type of context-sensitive speculation.

Loop-invariant load speculation The run-time system for context-sensitive loop-invariant

load speculation verifies that each speculated instruction satisfies the loop-invariant load

criterion described in Chapter 5.2.2 at parallel program execution time.

Profiling results can tell which instruction LD and execution context C to apply spec-

ulation to. However, for many cases, memory address A and the loaded value V can only

be known at run-time. This problem can be overcome through loop peeling. The automatic

parallelization system instruments the first iteration of the target loop to observe the loaded

address A and the loaded value V , and emits code that saves them into the loop-invariant

table, which is index by each pair of load instruction LD and execution context C.

Speculative iterations predict the loaded value V according to this table. Before exe-

cuting the first stage of each iteration, a worker for the first stage enforces the prediction

by initializing its private memory to match with the loop-invariant table: for each (A, V) in

the table, it stores V to address A. This enforcement is propagated to the following stages

by the SMTX run-time system.

There is no need to validate intra-iteration dependencies, as only loop-carried depen-

dencies are removed in the speculative PDG. To validate loop-carried dependencies, it is

sufficient to check i) each invocation of a speculated instruction LD under execution con-

text C loads the value from the address in the loop-invariant table indexed by (LD,C), and

ii) each pair of (A, V) within the loop-invariant table is valid. The commit process validates

each pair of (A, V) in the table by loading the value of A from the speculative iteration, V ′,

and compares V ′ with V after each iteration. It triggers misspeculation if V ′ 6= V .

60

Linear value prediction speculation To verify if each speculated instruction meets the

linear value prediction criterion (Chapter 5.2.2), linear-value prediction speculation em-

ploys a table, much like loop-invariant load speculation. The first peeled loop iteration

captures the effective address A for each speculatively-linear load instruction LD under

execution context C and saves it into the linear-prediction table alongside coefficients m, b,

which are provided by the profiling results. Before execution of the first stage of each iter-

ation I , a worker enforces the prediction by initializing its private memory to concur with

the linear-prediction table: for each (A,m, b) in the table, it stores m× I + b to address A.

After each iteration I , a worker validates the next iteration’s prediction: for each (A,m, b)

in the table, it loads V ′ from A and triggers misspeculation if V ′ 6= m × (I + 1) + b.

For each invocation of instruction LD under C, the run-time checks if the loaded address

matches the address stored in the linear-prediction table.

Memory dependence speculation Although the SMTX run-time system implementa-

tion did not intentionally support context-sensitivity, its memory dependence validation

scheme is strong enough to be adapted to context-sensitive memory dependence specula-

tion; SMTX replays all speculative memory operations sequentially and guarantees that all

speculatively executed loads compute the same value as the non-speculated execution.

However, as context-sensitivity enables more aggressive speculation, supporting context-

sensitivity increases the performance overhead of the run-time system. To support memory

dependence speculation, validation instructions are inserted around speculated memory op-

erations. These validation instructions introduce overhead both in terms of sequential la-

tency of a single iteration and an increase in the communication among processes. Recall

the example of Figure 5.2. If context-sensitive speculation is not supported (Figure 5.2(c)),

no validation instructions are required simply because parallelization is not applicable. If

context-sensitive speculation is supported (Figure 5.2(d)), validation instructions need to

be added to all memory operations within the add1 function, as the dependence between

61

callsites of the function is speculatively removed. In other words, context-sensitive mem-

ory dependence speculation improves the applicability of speculative parallelization at the

cost of additional run-time overhead. This motivates the performance optimizations to the

run-time system, which are described in Chapter 5.3.

5.3 Optimizing Run-time System Supporting Speculative

Parallelization

As described in the previous chapter, while aggressive memory dependence speculation is

necessary to automatically parallelize complex programs, it increases run-time validation

overheads. Excessive validation overheads may offset the parallelization benefits. This

chapter describes static and dynamic optimization techniques to reduce these overheads

and enable scalable parallel speedup even with aggressively speculated programs.

5.3.1 Static Optimization

Algorithm 6: Find redundant load-validation
1 let Redundant := ∅;
2 let AllMemOps := all load instructions in the function;
3 foreach Load l1 ∈ AllMemOps do
4 foreach Load l2 ∈ AllMemOps do
5 let SD := strictDominators(l2);
6 if l1 ∈ SD and alias(l1.ptr,l2.ptr)==MustAlias then
7 let Redundant := Redundant ∪{l2};

8 return Redundant;

Static optimization reduces validation overheads by making use of the observation that

when one transaction accesses the same memory cell multiple times, validation is only

necessary on the first load and the last store. Algorithm 6 identifies load instructions whose

validation is unnecessary. If a load instruction is dominated by another load instruction,

62

and their loaded addresses are guaranteed to point the same memory address, validation for

the load is redundant. An analogous algorithm identifies redundant stores.

Kim et al.’s static communication optimization [38] is based on the same insight. If a

parallelization target loop has inner loops, their technique hoists load and store instructions

out of the inner loop if the address operand is proved to a loop-invariant. The optimiza-

tion proposed here does not perform hoisting, but is more generally applicable than the

optimization proposed by Kim et al.

5.3.2 Dynamic Optimization

To support uncommitted value forwarding and group transaction commit, which are the two

features of MTX to enable multi-threaded atomicity, the existing SMTX implementation

requires expensive inter-process communication for each store instruction and each specu-

lative load instruction in the parallelized loop. SMTX communicates the address-value pair

of every store operation executed in an earlier subTX to later subTXs to implement uncom-

mitted value forwarding. Additionally, SMTX forwards the address-value pair of every

store and speculative load operation executed in a worker process to the commit process in

order to enable group transaction commit.

Dynamic optimization is based on two key insights. First, for each subTX, it is suf-

ficient to forward its final memory state to later subTXs to support uncommitted value

forwarding. The same idea applies to when each subTX communicates the values to be

committed to the commit process. Second, checking the pipeline scheduling assumption is

sufficient to validate memory dependence speculation. To validate speculation, the exist-

ing SMTX commit thread replays every store and speculated load instruction sequentially

and compares the result with the result from speculatively parallel execution. However, so

long as no loop-carried dependences manifest from a later subTX to an earlier subTX (or

within a subTX if the subTX is running a parallel stage), it is safe to assume that there

is no memory dependence misspeculation, given that intra-iteration dependencies are not

63

speculatively removed in the PDG.

Exploiting these insights, the optimized run-time system minimizes the total number

of communications and the total number of bytes communicated. For each dynamic mem-

ory operation, the optimized run-time simply updates shadow metadata instead of issuing

inter-process communication. Shadow memory is private to each subTX, and cleared at

the beginning of the subTX for each iteration. Each byte of the program’s memory cor-

responds to 3-bits of metadata in the shadow memory. Each bit indicates if the byte is

read, written, or read-before-write during the subTX execution. If i) read-before-write bit

is set, or ii) read bit is set but written bit is not set, it implies that the corresponding byte is

not written by the subTX but read within the subTX. For such a case, the system needs to

guarantee that the byte has not been written by a later subTX (or by the same subTX for a

different iteration if the subTX is running a parallel stage) to validate memory dependence

speculation.

Figure 5.4 describes the run-time validation functions to be executed for every specula-

tive memory read (mtx read) and write (mtx write) in the parallelization region. For

reads, the instrumentation simply marks the metadata as read. For writes, instrumentation

marks the metadata as written, and if the read bit has been set but the written bit has not

been set, it also sets the read-before-write bit. As only a small number of bit operations and

memory operations are added to each dynamic memory operation, the validation overhead

is much smaller than performing inter-process communication. The shadow memory ad-

dress can be computed with a single bit-wise XOR instruction with the help of customized

memory allocation functions. The run-time functions are designed to be more efficient

for memory reads than writes because there are generally more reads than writes in the

program [36].

With the optimized run-time system, inter-process communication happens only at the

subTX boundaries. At the end of the subTX, all pages that have been accessed during the

subTX execution are forwarded to later subTXs, along with their shadow pages. When the

64

#define READ 0x04;!
#define WRITTEN 0x02;!
#define READ_BEFORE_WRITE 0x01;!
#define GET_SHADOW_OF(x) ((ADDR)(x)^SHADOW_MASK);!
!
/* Validation function for speculative reads */!
!
void mtx_read(Byte* ptr) {!
 Byte* shadow = (Byte*)GET_SHADOW_OF(PTR);!
 *shadow = *shadow | READ;!
}!
!
/* Validation function for writes */!
!
void mtx_write(Byte* ptr) {!
 Byte* shadow = (Byte*)GET_SHADOW_OF(ptr);!
!
 Byte mask1 = *shadow >> 2;!
 Byte mask2 = ~(*shadow >> 1);!
 !
 // RBW is set only when READ bit has been set !
 // but WRITE bit has not been set!
 Byte RBW = mask1 & mask2 & READ_BEFORE_WRITE;!
 !
 *shadow = *shadow | WRITTEN | RBW;!
}!

Figure 5.4: Validation functions for speculative reads and writes within the parallelized
region

65

later subTX receives the pages, it scans the shadow pages to find the values that have been

written by the earlier subTX and updates its private memory accordingly. Uncommitted

value forwarding is accomplished via this update.

Accessed pages and their corresponding shadow pages are forwarded to the commit

process as well. The commit process analyzes subTXs and processes pages communicated

from each subTX in order. The processing algorithm is described in Figure 5.5. If the

metadata for a byte indicates that the byte is i) only read, or ii) was read before being

written during the subTX execution, the commit process checks if misspeculation occurred.

The commit process maintains its own shadow memory that holds the ID of the subTX

that last wrote to memory at byte-level granularity. With this shadow information, the

commit process compares the IDs of the subTX to ensure that the memory write occurred

in an earlier subTX than the memory read. Otherwise, misspeculation has occurred. If the

metadata forwarded from the worker process indicates that a byte is written, the commit

process updates its own memory with the written value and writes the subTX ID to the

shadow memory. If no misspeculation occurred throughout the transaction, the commit

process writes its memory state to the global state. This write represents group transaction

commit.

Figure 5.6 explains how the optimized run-time system discovers memory dependence

misspeculation. Figure 5.6(a) shows a parallelization target loop. With the assumption

that the loop-carried dependence between the store and the load in Figure 5.6(a) can be

speculatively removed, pipeline parallelization is applicable to the loop. Figure 5.6(b) is a

multi-threaded loop using the optimized run-time system. As the dependence between the

store and the load is speculatively removed, mtx read and mtx write calls are inserted

before the load and the store. mtx communicate is called at the end of iteration to

forward accessed and shadow pages to the later subTXs and the commit process.

Figure 5.6(c) is a schematic time line of parallel execution where misspeculation oc-

curs. Pointers p and r both point to address A throughout the loop execution. For each

66

void mtx_commit(!
 /* address of the page to be processed */ !
 Byte* addr, !
 /* contents of the page coming from the worker process */!
 Byte* data[PAGE_SIZE],!
 /* metadata of the page coming from the worker process */!
 Byte* metadata[PAGE_SIZE], !
 /* ID of the subTx that running on the worker process */!
 ID subTX!
) {!
 Bool isPStage = isParallelStage(stage);!
!
 for (unsigned i = 0 ; i < PAGE_SIZE ; i++) {!
 Byte md = metadata[i];!
 Bool rbw = md & READ_BEFORE_WRITE;!
 Bool written = md & WRITTEN;!
 Bool read = md & READ;!
 Bool validate = rbw || (read && !written);!
 !
 if (validate) {!
 Byte* pShadow = (Byte*)GET_SHADOW_OF(&addr[i]);!
 ID writtenSubTX = (ID)(*pShadow); !
 Bool misspec = *writtenSubTX > stage;!
 !
 if (isPStage && (*writtenSubTX == stage)) !
 misspec = true;!
!
 if (misspec)!
 mtx_misspeculation(“Memory Dependence Misspeculation”);!
 }!
 if (written) {!
 addr[i] = data[i];!
 Byte* pShadow = (Byte*)GET_SHADOW_OF(&addr[i]);!
 *pShadow = (Byte)subTX;!
 }!
 }!
}!

Figure 5.5: Algorithm for the commit stage. Definitions of READ, WRITE,
READ BEFORE WRITE, and GET SHADOW OF are same as the ones in Figure 5.4

67

…! …!

A x

…! …!

mtx_read(…)!
v1 = LD *p!

SubTX1
…! …!

A x R

…! …!

Validate &
Update

Validate &
Update

Validate &
Update

Commit

…! …!

A y 2

…! …!

…
	

…! …!

A x

…! …!

…! …!

A x 0

…! …!

Begin	
Parallel	 	
Execu/on	

mtx_read(…)!
v1 = LD *p!

SubTX1
…! …!

A x R

…! …!

mtx_write(…)!
ST v2, *r!

SubTX2
…! …!

A y W

…! …!

…
	

0 < 1	 ?	 True	
à	 valid	

2 < 1 ?	 False	
à	 misspecula*on	

Itera/on	 0	

Worker	 1	 Worker	 2	 Commit	

Time	

L:!
 …!
 mtx_read(…);!
 v1 = LD *p;!
 …!
 mtx_communcate();!

!
!
!

L:!
 …!
 mtx_write(…);!
 ST v2, *r!
 …!
 mtx_communcate();!

!
!
!

subTX1

subTX2

L:!
 …!
 v1 = LD *p;!
 …!
 ST v2, *r;!
 …!

x	
specula/ve	
parallel	 	

transforma/on	

p = r = A, v2 = y!

(a) (b)

(c)

specula,vely	 removed	

Figure 5.6: Example demonstrating how the commit process detects misspeculation. (a)
Parallelization target loop. (b) Multi-threaded loop using the optimized run-time system.
(c) A schematic time line of parallel execution. Rectangular boxes next to subTXs repre-
sents the memory state of each process at a given time. Shadowed column indicates shadow
memory for each byte.

68

execution of SubTX1 from Worker1, mtx read sets a read bit in the shadow byte of A.

This information is communicated to the commit process, and the commit process checks

if the byte is not written by the later subTX. For iteration 0, the commit process verifies

that the load in subTX1 is valid; shadow memory maintained by the commit process shows

that metadata for address A is 0, indicating the value stored in A is a live-in. As the commit

process handles each subTX in sequential order, pages forwarded from subTX2 of iteration

0 are processed next. Forwarded information tells that address A is written by subTX2, so

the commit process updates its private memory according to the value written by subTX2.

In addition, the commit process sets metadata for address A to 2, indicating that subTX2

writes the address. Next, the commit process evaluates pages from subTX1 of iteration 1

and detects misspeculation. Address A is read by subTX1, but metadata indicates that the

address is written by subTX2 if the program follows the sequential order. This violates

the pipeline partitioning assumption, and accordingly, the commit process flags misspecu-

lation. The implementation of misspeculation recovery follows the algorithm described in

[74].

There are two further improvements that have been applied to the optimized run-time

system. If the entire page is read-only, there is no need to communicate the entire page

and its corresponding shadow page. Communicating the address of the page to the commit

process is sufficient to validate memory dependence speculation. In addition, if only a

small fraction of the page is accessed during the subTX execution, communicating only

the accessed fraction can be more efficient than communicating the entire page. This is

a trade-off between the total number of communications and the total number of bytes

communicated. Forwarding the entire page can be performed with a single jumbo packet,

while finer-granularity forwarding will require multiple communications. In the current

implementation, the entire page is sent only when more than 64 bytes of the 4K sized page

are accessed.

69

Chapter 6

Evaluation

The system proposed in this dissertation is evaluated on a shared-memory machine with

four 6-core Intel Xeon X7460 processors (24 cores total) running at 2.66 GHz and 24

GB of memory. It runs 64-bit Ubuntu 9.10. The compiler is implemented in the LLVM

compiler framework [43] revision 164307.

Two open-source C programs are used to evaluate the system: the Lua script inter-

preter version 5.2.3 [47] and the Perl script interpreter 5.20.1 [65]. IPLS specializes each

program against 6 input scripts. The IPLS-specialized interpreter is then parallelized by

the automatic parallelization system. Neither interpreter was modified, though Perl was

compiled with non-default configuration options (see Section 6.5). 6 programs were cho-

sen from Polybench [66] that are known to be amenable to DOALL parallelism [38] and

reimplemented as Lua and Perl scripts.

Table 6.3 describes the six input scripts for the Lua and Perl interpreters that were

used to test the system. In each case, the main interpreter loop has been specialized and

parallelized, resulting in a large amount of coverage for each program. The table also

describes the input to the script that is used in profiling and evaluation. train-small is

for the profilers with relatively high execution overhead, including the IPLS profiler and

the memory dependence profiler. train-large is used to run light-weight profilers, such as

70

Input P’loops Coverage Size Input to the Script
Script (LLVMIRs) train-small train-large ref

Lua-5.2.3 (20,258 LOC, Interpreter main loop: 2,499 LLVMIRs)
2mm 2 96.00% 1,028 / 973 32 256 512
3mm 3 96.61% 973 / 973 / 973 32 256 512

correlation 1 95.17% 1,224 50 400 800
covariance 1 93.14% 1,231 50 400 800

doitgen 1 95.58% 1,337 16 64 100
gemm 1 94.43% 2,229 32 256 512

Perl-5.20.1 (296,166 LOC, Interpreter main loop: 8 LLVMIRs)
2mm 2 96.22% 927 / 1,087 32 256 512
3mm 3 95.17% 1,140 / 1,063 / 927 32 256 512

correlation 1 94.90% 1,427 50 400 800
covariance 1 90.73% 1,562 50 400 800

doitgen 1 95.28% 1,332 16 64 100
gemm 1 89.44% 2,209 32 256 512

Table 6.1: Execution characteristics of each interpreter and static input: P’loops denotes the
number of loops that have been parallelized after specialization. Coverage denotes the frac-
tion of runtime spent in the parallelized loops compared to total program execution time.
Size denotes the original size of the parallelized loops, in units of LLVM IR instructions.
train-small, train-large, and ref denotes the input to the script for heavy-weight profilers,
light-weight profilers, and the actual evaluation executions, respectively.

71

control-flow and value profilers. ref is used in actual evaluation runs. The input to the

script determines the size of the data structure to be computed (e.g. size of matrices to be

multiplied).

Note that the main interpreter loop of Perl contains only 8 LLVM IR instructions due

to the use of indirect function calls indexed by the instruction OP-code. Without special-

ization, this loop would be exceedingly difficult to parallelize. By exploiting fixed inputs,

the proposed system is able to build and then parallelize a specialized loop for each input.

6.1 Performance Results

Figure 6.1 presents whole-program speedup. These speedups are normalized against the

sequential, unspecialized version of the Lua and Perl interpreters compiled with clang -O3.

The majority of the performance improvement is due to parallelization. Specialization

provides up to 24% and 19% sequential improvement over Lua and Perl performance,

respectively.

The DOALL parallelism in the input scripts becomes pipeline parallelism in all 12

specialized programs (6 for each of Lua and Perl). PS-DSWP extracts a two-stage pipeline

featuring a leading sequential stage and a trailing parallel stage. The leading sequential

stage contains code to control the loop execution. The specialized loop is no longer a

simple counted loop; its control predicate is computed from two complex data structures,

the loop control variable and bound value from the input script, which are loaded from

memory. The parallel stage handles the actual workload of the input script; the presence of

a parallel stage is consistent with exploiting the DOALL parallelism from the input script.

Manual inspection confirms that the automatically parallelized code executes iterations of

the input script across several cores concurrently. Since the parallel stage contains the

majority of each iteration’s execution time, this parallelization scales well.

Across all scripts, parallelization achieves greater improvement on Lua than on Perl due

72

0x

1x

2x

3x

4x

5x

6x

7x

8x

 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

F
u

ll
y

-A
u

to
m

at
ic

 W
h

o
le

-P
ro

g
ra

m
 S

p
ee

d
u

p
o

v
er

 B
es

t
O

ri
g

in
al

 S
eq

u
en

ti
al

Number of Processes

2mm
3mm

correlation
covariance

doitgen
gemm

geomean

(a) Lua-5.2.3

0x

1x

2x

3x

4x

5x

6x

 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

F
u

ll
y

-A
u

to
m

at
ic

 W
h

o
le

-P
ro

g
ra

m
 S

p
ee

d
u

p
o

v
er

 B
es

t
O

ri
g

in
al

 S
eq

u
en

ti
al

Number of Processes

2mm
3mm

correlation
covariance

doitgen
gemm

geomean

(b) Perl-5.20.1

Figure 6.1: Whole-program speedup of the automatically specialized and parallelized
code, compared to the sequential, unspecialized version compiled with -O3. Number
of Processes counts the number of worker processes excluding the commit process.

73

Figure 6.2: Sequential slowdown after inserting speculation checks

to lower speculation validation overhead for Lua. There are two types of validation over-

heads; one is the overhead from executing validation instructions that are inserted for each

speculated memory operation, and the other is the overhead observed at subTX boundaries

to communicate data and their corresponding metadata. Perl experiences higher overhead

than Lua for both types of overheads.

Figure 6.2 shows that the overhead of executing validation instructions is higher for

Perl than Lua. The numbers in the figure represent sequential slowdown (i.e., executing

the program after inserting speculation checks but before parallelization) due to validation

instructions. For Perl the geomean slowdown was 2.73×, while for Lua it was 2.31×. The

slowdown was greater for Perl across all scripts.

Communication overhead is higher for Perl than Lua as well. Figure 6.3 presents com-

munication overhead as a percentage of the execution capacity that parallel worker pro-

cesses spend at subTX boundaries when using 4, 8, 12, 16, and 24 processes. These per-

centages are normalized to the total computation capacity of the parallel invocation (in

core-seconds), i.e., the number of cores times the duration of the invocation. The figure

shows that Lua spent a geomean of 4.55% of its execution at subTX boundaries when

74

(a) Lua-5.2.3

(b) Perl-5.20.1

Figure 6.3: Percentage of the parallel execution capacity that parallel workers spend on
inter-process communication. The number is averaged across all parallel worker processes.

75

using 24 cores while Perl spent 19.84%.

There are three primary components contributing the communication overhead ob-

served at subTX boundaries of worker processes. First is the overhead to forward pages,

and their corresponding shadow pages, that are accessed during execution of the subTX to

later subTXs and the commit process. Second, there are overheads to update process’s local

memory based on the data coming from earlier subTXs, which is required for uncommitted

value forwarding. Third is the overhead to set the protection of all allocated pages. In order

to keep track of pages that are accessed during the subTX execution, the current implemen-

tation of the run-time system sets the permissions of all allocated pages to PROT NONE at

the beginning of each subTX. When the page is accessed for the first time in the subTX, a

page fault occurs and a custom interrupt handler is invoked. The interrupt handler marks

the page as touched, then retrieves the original protection of the page. Under the assump-

tion that a single page is generally accessed multiple times during the subTX execution,

this implementation is more efficient than the alternative approach where every dynamic

memory operation marks the accessed page, because the alternative approach performs the

marking operations redundantly if the same page is accessed multiple times in the subTX.

Perl experiences higher overheads for all three components of overhead at subTX bound-

aries. The overhead of forwarding pages is directly related to the number of pages accessed

during the subTX execution. When averaging across all input scripts, the worker processes

of Perl access 9,066,011 dynamic pages during the program execution. For Lua, the worker

processes access only 765,532 dynamic pages. The overhead of processing incoming data

is dominated by number of incoming pages from earlier subTXs. While Perl’s parallel stage

worker processes receive 4,140 dynamic pages on average from earlier stages, Lua’s par-

allel worker processes receive only 1,026 dynamic pages when averaged across all scripts.

The overhead of setting the page protection at the beginning of the subTX is determined

by the total number of allocated pages when subTX begins. For Perl, each subTX observes

27,551 pages at the beginning on average. For Lua, it is 8,986 pages.

76

Figure 6.4: Number of bytes accessed (in MB) per iteration for each parallelized loop

The higher communication overhead for Perl can be explained by memory require-

ments. All three components affecting the communication overhead are likely to be in-

creased if the sequential program requires more memory. Figure 6.4 compares the number

of accessed bytes per iteration of the loops targeted for parallelization after they are spe-

cialized for the same input script and the same input to the script. Perl accesses 2.23×

more bytes by geomean than Lua, implying that Perl consumes much more memory than

Lua to run the same algorithm (the sequential version of Perl takes at most 26% more time

than the sequential version of Lua across the same input sets). This suggests that memory

efficiency of the sequential program greatly affects parallel performance.

Figure 6.5 shows the contribution of each component to the total execution time spent

on the subTX boundaries. The figure confirms that the sum of the three components men-

tioned above takes almost 100% of the execution time spent on the subTX boundaries. The

figure also shows that the fraction of the overhead for setting page protection increases as

the number of processes increases. This suggests that the overhead for setting page protec-

77

(a) Lua-5.2.3

(b) Perl-5.20.1

Figure 6.5: Fraction of execution time spent on subtransaction boundaries.

78

tion in each parallel process remains constant even when the number of workers running

the parallel stage increases. As the number of worker processes assigned to the parallel

stage increases, the overhead for handling incoming and outgoing pages is reduced for

each process since each worker process only touches the pages relevant to the subTX it

runs. However, each worker process needs to set the protection of all allocated pages,

regardless of the parallel factor, in order to detect relevant pages.

Thus, the scalability of parallel speedup is most sensitive to the overhead of setting the

protection for every allocated page at the beginning of each subTX. Figure 6.5(a) shows

that the fraction of the overhead for setting protection is exceptionally high in doitgen

compared to other scripts. In Figure 6.1(a), all Lua scripts except doitgen show similar

scalability, while doitgen’s scalability is slightly worse than the others. This is consistent

with Perl. 3mm and doitgen, the two scripts that contain loops with the highest fraction of

protection setting overhead in Figure 6.5(b), present distinctly worse scalability than the

other scripts. High memory bandwidth requirement of doitgen shown in Figure 6.4 implies

the poor scalability of doitgen for both Perl and Lua.

The difference in speedup between distinct input scripts for Perl can be explained by

considering the overhead of executing validation instructions and communication overhead.

Except doitgen, all scripts have similar overhead for executing validation instructions, as

seen in Figure 6.2. The speedup rank between these scripts using 24 processors approx-

imately follows the rank of communication overhead shown in Figure 6.3(b). 2mm and

3mm, scripts which experience much higher communication overhead than others, show

less speedup. gemm has relatively high communication overhead, but its overhead for ex-

ecuting validation instructions is the lowest. doitgen has relatively low communication

overhead. This is because the parallelized loop in doitgen’ is quadruple-nested, while all

other parallelized loops are triply nested. Consequently, doitgen spends relatively less time

at subTX boundaries. However, it does not mean that doitgen’s absolute communication

overhead is low. Figure 6.4 suggests that the absolute communication overhead of doitgen

79

Program Input Script Bytes Accessed (MB) Bytes Communicated (MB)

Lua

2mm 193674.7 36.3
3mm 193344.4 38.3
correlation 348311.0 172.3
covariance 348883.4 144.1
doitgen 226535.9 73.4
gemm 199580.7 38.2

Perl

2mm 422705.7 288.9
3mm 427264.7 288.5
correlation 857042.7 278.1
covariance 858525.6 5256.9
doitgen 417550.5 426.1
gemm 494880.1 258.7

Table 6.2: Total accessed bytes and total communicated bytes during the parallel program
execution

is likely to be greater than any other scripts.

6.2 Optimization of Speculation Validation

The numbers in Figure 6.6 represent the slowdown of sequential execution with valida-

tion instructions, i.e., execution after inserting speculation validation instructions but be-

fore parallelizing, with and without static validation optimization (see Chapter 5.3.1). The

static optimization reduces overhead by approximately 11% for Lua and 23% for Perl.

The benefit of static optimization is likely to increase if a program executes more memory

operations. Perl benefits more than Lua because Perl executes about 72% more memory

operations at run-time than Lua to run a script describing the same algorithm.

Figure 6.7 presents the effectiveness of static validation optimization in terms of appli-

cation speedup. When running on 24 processors, the optimization results in approximately

5.8% speedup for Lua and 4.0% for Perl. Though Perl benefits more from the optimization

for sequential execution, Lua benefits more for parallel executions. This implies that the

communication overhead dominates the validation overhead.

80

(a) Lua-5.2.3

(b) Perl-5.20.1

Figure 6.6: Overhead of memory dependence checking instructions before and after the
static optimization

81

Figure 6.7: Effect of memory dependence speculation optimization for parallel executions

Table 6.2 shows the effect of the dynamic optimizations for the run-time system pro-

posed in this dissertation. The table presents the total number of bytes accessed by the

program and total number of bytes communicated between processes during parallel exe-

cution. Based on the fact that dependence analysis of the proposed system relies heavily

on speculation, the total number of communicated bytes would be at least as much as the

total number of bytes accessed if the dynamic optimization is not applied to the run-time

system. This is because the existing run-time system supporting multi-threaded transac-

tions [74] requires inter-process communication for every speculative load and store. The

table shows that the dynamic optimization reduces the data communication by several or-

ders of magnitude.

The optimization for read-only pages described in Chapter 5.3.2 greatly reduces the

amount of inter-process data communication. With the optimization, if a page is only read

during the subTX execution, the run-time system communicates the address of the page

rather than sending the entire page and the corresponding shadow page. In the current

82

Figure 6.8: Fraction of read-only page addresses in total communicated bytes.

implementation, the read-only optimization reduces the amount of communication from

8196 bytes to 8 bytes for each page. Figure 6.8 shows that 8.1% (Lua) and 12.7% (Perl)

of inter-process communication bandwidth is used to forward read-only page addresses, in

geomean. This implies that the total number of communicated bytes could be around 100×

larger than in Table 6.2 without the optimization for read-only pages.

6.3 Limit Study

Figure 6.9 presents the speedup that could be achieved if there is no unnecessary validation

overhead. To compute these numbers, the compiler gets feedback from the original parallel

execution and generates a version that skips the validation instrumentation of load instruc-

tions if the load never violates speculation assumptions, even with the ref input. In other

words, these numbers are based on the oracle analysis that perfectly predicts the run-time

behavior. As no memory dependence misspeculation has happened across all evaluated

83

(a) Lua-5.2.3

(b) Perl-5.20.1

Figure 6.9: Whole-program speedup using 24 processes compared to the sequential, un-
specialized version compiled with -O3, with and without validation overheads.

84

programs, no validation instructions for loads are inserted. Speedup numbers with valida-

tion overhead are presented in Figure 6.9 as well for comparison.

Without validation overhead, the geomean speedups are 8.52× for Lua and 4.70× for

Perl using 24 processes. Considering that the parallel stage dominates the program exe-

cution time, and 21 among 24 processes are dedicated to the parallel stage, these numbers

are still much lower than the optimal speedup of 21×. This is because each worker runs

in a separate process and has its own, separate address space. Value forwarding from the

process running the earlier stage to the process running the later stage is required regardless

of whether speculation is used or not. To support value forwarding, store instructions still

need to be instrumented if the value written by the store is read by later stages. Moreover,

process based parallelization requires all live-out values to be merged to the main process.

This means that all stores that write live-out values need to be instrumented. Addition-

ally, inter-process communication for live-out values is necessary. If the run-time system

is designed in a way that all workers share the same address space, better speedup can be

achieved with the oracle analysis. However, there is no practical reason to design a run-time

system that assumes the availability of oracle analysis.

Figure 6.10 and Figure 6.11 support the numbers in Figure 6.9. Figure 6.10 shows

the sequential slowdown of the program when only store instructions in the parallelization

target loops are instrumented. Based on the assumption that every store contributes to

either value communication between stages or updating live-out values, the numbers in

the figure approximate the overheads resulting from the necessary instrumentation even

with the oracle analysis. Figure 6.11 presents the fraction of i) value forwarding between

pipeline stages and ii) live-out forwarding to the main process in the amount of total data

communication. As mentioned above, communication for these two is unavoidable even

when the oracle analysis is available. The figure shows that with the oracle analysis the

amount of data communication can be reduced to 65.8% and 36.7% in geomean for Lua

and Perl, respectively.

85

Figure 6.10: Sequential slowdown after inserting speculation checks assuming oracle anal-
ysis.

Figure 6.11: Fraction of unavoidable data communication, including value forwarding be-
tween pipeline stages, and live-out forwarding to the main process

86

6.4 Performance Optimization Effect of IPLS

Although IPLS is used as an enabling transformation for automatic parallelization in the

proposed system, IPLS can be used as a standalone program specializer to improve program

performance.

Standalone IPLS is evaluated by specializing Lua, Perl, and Python script interpreters [71]

against eleven input scripts. The eleven input programs are selected from the Computer

Language Benchmarks Game [16], which are commonly available for all three interpreters

and single-threaded (IPLS does not support specialization of multi-threaded programs).

Table 6.3 describes the characteristics of each interpreter and each input script.

Figure 6.12 shows whole program speedup for the programs specialized with IPLS over

the original, non-specialized program compiled with clang -O3. Figure 6.13 depicts the

program size increase after specialization. As shown, IPLS achieves a geomean speedup

of 14.1% in program execution with 7.0% of program size increase.

Speedup of the specialized program correlates to the fraction of iterations executed in

the specialized loop. Table 6.3 shows this trend. The Iteration coverage column shows the

fraction of all iterations of the main loop which execute within specialized code. For Lua,

there is a clear distinction between cases where iteration coverage is less than 3% and cases

where iteration coverage is greater than 70%. In the latter case, specialization yields 7.4%–

138% speedups, while in the former case, specialization yields a performance degradation.

For Python, among the 5 scripts whose iteration coverage is greater than 30%, 4 showed

better speedup than the other scripts: fannkuch-redux, mandelbrot, nbody, and

spectralnorm.

Low iteration coverage is caused by two factors: unexpected exits due to the limited

coverage of path profiling, and value mispredictions, which prevent dispatch into the spe-

cialized loop.

Profile coverage may be limited when a path does not occur during training. Since

IPLS generates specialized loops according to path profiling, the program may take an

87

Input Script (Lines of Code) Iteration Coverage(%) Meta-level-loops/traces
Lua-5.2.0 (19,832 LOC)

binary-trees (50) 78.01% 5
fannkuch-redux (48) 74.75% 6
fasta (98) 42.63% 5
k-nucleotide (66) 98.50% 2
mandelbrot (27) 99.99% 4
meteor (223) 0.76% 7
nbody (121) 97.57% 4
pidigits (104) 99.61% 9
regex-dna (46) 2.93% 5
reverse-complement (40) 0.00% 2
spectral-norm (43) 88.90% 5

Perl-5.14.2 (201,786 LOC)
binary-trees (47) 99.99% 4
fannkuch-redux (55) 99.99% 4
fasta (122) 98.99% 11
k-nucleotide (29) 99.93% 2
mandelbrot (77) 99.90% 4
meteor (235) 99.90% 10
nbody (107) 99.90% 10
pidigits (47) 95.06% 11
regex-dna (49) 99.92% 3
reverse-complement (29) 99.99% 4
spectral-norm (49) 99.99% 4

Python-2.7.2 (314,921 LOC)
binary-trees (70) 9.36% 2
fannkuch-redux (56) 35.02% 3
fasta (118) 3.03% 4
k-nucleotide (57) 5.15% 1
mandelbrot (55) 52.09% 1
meteor (205) 2.06% 5
nbody (116) 76.48% 6
pidigits (40) 1.15% 3
regex-dna (44) 11.23% 8
reverse-complement (37) 64.83% 10
spectral-norm (56) 48.77% 5

Table 6.3: Execution characteristics of each interpreter and each static input: Iteration
coverage denotes the fraction of hot loop iterations that are executed in the specialized
code. Meta-level loops/traces denotes the number of identified patterns.

88

g
eo

m
ea

n

b
in

ar
y
−

tr
ee

s
fa

n
n
k
u
ch

−
re

d
u
x

fa
st

a
k
−

n
u
cl

eo
ti

d
e

m
an

d
el

b
ro

t
m

et
eo

r
n
b
o
d
y

p
id

ig
it

s
re

g
ex

−
d
n
a

re
v
er

se
−

co
m

p
le

m
en

t
sp

ec
tr

al
−

n
o
rm

g
eo

m
ea

n

S
p
ee

d
u
p
 o

v
er

 O
ri

g
in

al
 E

x
ec

u
ti

o
n

Benchmark
Lua Perl Python

 0.8x

 1x

 1.2x

 1.4x

 1.6x

 1.8x

 2x

 2.2x

 2.4x

b
in

ar
y
−

tr
ee

s
fa

n
n
k
u
ch

−
re

d
u
x

fa
st

a
k
−

n
u
cl

eo
ti

d
e

m
an

d
el

b
ro

t
m

et
eo

r
n
b
o
d
y

p
id

ig
it

s
re

g
ex

−
d
n
a

re
v
er

se
−

co
m

p
le

m
en

t
sp

ec
tr

al
−

n
o
rm

g
eo

m
ea

n

b
in

ar
y
−

tr
ee

s
fa

n
n
k
u
ch

−
re

d
u
x

fa
st

a
k
−

n
u
cl

eo
ti

d
e

m
an

d
el

b
ro

t
m

et
eo

r
n
b
o
d
y

p
id

ig
it

s
re

g
ex

−
d
n
a

re
v
er

se
−

co
m

p
le

m
en

t
sp

ec
tr

al
−

n
o
rm

Figure 6.12: Whole-program speedup with three interpreters: Lua, Perl, and Python, and
11 input scripts for each.

re
v
er

se
−

co
m

p
le

m
en

t
sp

ec
tr

al
−

n
o
rm

g
eo

m
ea

n

b
in

ar
y
−

tr
ee

s
fa

n
n
k
u
ch

−
re

d
u
x

fa
st

a
k
−

n
u
cl

eo
ti

d
e

m
an

d
el

b
ro

t
m

et
eo

r
n
b
o
d
y

p
id

ig
it

s
re

g
ex

−
d
n
a

re
v
er

se
−

co
m

p
le

m
en

t
sp

ec
tr

al
−

n
o
rm

g
eo

m
ea

nIn
cr

es
ed

 S
iz

e
o
v
er

 O
ri

g
in

al
 B

in
ar

y
 S

iz
e

Benchmark
Lua Perl Python

 1x

 1.02x

 1.04x

 1.06x

 1.08x

 1.1x

 1.12x

 1.14x

 1.16x

 1.18x

 1.2x

b
in

ar
y
−

tr
ee

s
fa

n
n
k
u
ch

−
re

d
u
x

fa
st

a
k
−

n
u
cl

eo
ti

d
e

m
an

d
el

b
ro

t
m

et
eo

r
n
b
o
d
y

p
id

ig
it

s
re

g
ex

−
d
n
a

re
v
er

se
−

co
m

p
le

m
en

t
sp

ec
tr

al
−

n
o
rm

g
eo

m
ea

n

b
in

ar
y
−

tr
ee

s
fa

n
n
k
u
ch

−
re

d
u
x

fa
st

a
k
−

n
u
cl

eo
ti

d
e

m
an

d
el

b
ro

t
m

et
eo

r
n
b
o
d
y

p
id

ig
it

s
re

g
ex

−
d
n
a

Figure 6.13: Code size increase after specialization for three interpreters: Lua, Perl, and
Python, and 11 input scripts for each.

89

Input script Lua (%) Perl (%) Python (%)
binary-trees 19.46 0.00 20.10
fannkuch-redux 2.13 0.00 3.32
fasta 12.50 0.00 0.99
k-nucleotide 0.00 0.00 46.90
mandelbrot 0.00 0.00 1.10
meteor 4.22 0.00 8.67
nbody 0.00 0.00 0.30
pidigits 0.03 0.00 46.83
regex-dna 9.71 0.00 1.66
reverse-complement 0.57 0.00 0.00
spectral-norm 1.25 0.00 8.33

Table 6.4: Unexpected exits from the specialized loop as a fraction of the number of itera-
tions running in a specialized loop.

unexpected path within an iteration of its hot loop. To guarantee correctness, the code

generator inserts tests to detect this case, and conservatively branches to the unspecialized

code. We call such exits unexpected. Since the dispatch condition may only enter the spe-

cialized loop at the beginning of a pattern, if a specialized loop experiences an unexpected

exit the remainder of that pattern must execute in non-specialized code before there is an

opportunity to re-enter specialized code. The occurrence of unexpected exits among the

total number of iterations is shown in Table 6.4.

Additionally, value misprediction may prevent the main loop from dispatching into the

specialized loop. This occurs for some input scripts in which control dependences carry

information from dynamic input to the dispatch condition. In other words, our optimistic

implementation of DIFT occasionally misclassifies a dynamic value as static. As a result,

the specialized program may experience a pattern that did not occur during profiling. In

such cases, the main loop does not dispatch to the specialized code, decreasing iteration

coverage. For example, the hottest loop of reversecomplement implemented in Lua

includes an if statement that is predicated on an input that varies across program invoca-

tions. This induces two different control paths in the script and foils IPLS value prediction.

Fasta implemented in Lua experiences performance degradation even though the pro-

90

Input script Ratio of dynamic instruction counts
binary-trees 1.11
fannkuch-redux 1.13
fasta 1.01
k-nucleotide 1.16
mandelbrot 2.28
meteor 0.99
nbody 1.55
pidigits 1.58
regex-dna 1.00
reverse-complement 1.00
spectral-norm 1.65

Table 6.5: Ratio of dynamic instruction count of the original program to that of the spe-
cialized program for Lua-5.2.0. Larger numbers indicate a greater reduction in dynamic
instructions.

gram has good iteration coverage. The difference in dynamic instruction counts after spe-

cialization, shown in Table 6.5, explains the slowdown. The table shows the ratio of the

dynamic instruction count of the original program over the specialized program. There-

fore, larger numbers in the table mean that fewer dynamic instructions were executed in

the specialized program compared to the original. Unlike other programs with high itera-

tion coverage, the ratio is close to 1 for Fasta. This implies that for Fasta, specialization

was not able to find enough precomputable static instructions to amortize the specialized

loop dispatch overhead introduced in the original loop.

Python reversecomplement is another case that experiences a slow down despite

high iteration coverage. This is because the hottest loop in reversecomplement con-

sists of a single meta-level node. Specialization of a singleton meta-level loop has negligi-

ble benefit since there are no opportunities for optimization over multiple iterations.

Perl is unique in the sense that it executes more than 99% of its main loop iterations in

specialized code for almost all inputs, as shown in Table 6.3. This indicates the effective-

ness of value prediction based on detected patterns. This high predictability stems from the

unique implementation of the Perl interpreter’s intermediate representation. For instance,

reverse-complement is implemented using Perl’s split operation instead of a syn-

91

tactic if statement. Since the Perl interpreter implements large operations such as split

as a single opcode, the control flow in Perl scripts is typically less dynamic.

The Perl interpreter’s main loop is structured differently than others. While other inter-

preters load the opcode, parse it, and branch to the appropriate handler, each handler in the

Perl interpreter returns a function pointer that serves as a continuation to the next operation.

Hence, the Perl interpreter repeatedly performs indirect calls. This is beneficial for IPLS

since there can be no unexpected exits. On the other hand, it limits IPLS since there are

fewer opportunities to optimize precomputable instructions.

This suggests that most performance improvements for Perl come from increased instruction-

level parallelism exposed by unrolling the loop and by better branch prediction caused by

replacing the indirect function calls with a conditional branch and direct function call. The

ratio of dynamic instructions before and after specialization for Perl ranges from 0.96 to

1.02, except 0.90 in pidigits, which shows no benefit from specialization.

6.5 Limitations

While no modification has been made to the interpreter source code, Perl is configured

with the PURIFY and NO PERL PRESERVE IVUV compile time options. The PURIFY

flag compiles Perl with C’s default implementation of malloc and free, rather than a

specially crafted implementation. Custom memory allocators introduce many complex de-

pendences that are hard to analyze; whereas the proposed system’s analysis understands

common library functions, such as malloc and free, and is thus able to disprove de-

pendences involving them. The NO PERL PRESERVE IVUV flag disables an interpreter

optimization for script values that are assumed to be integers. Without these flags, the

specialized code includes additional features that are difficult to analyze.

Python interpreter (Python-2.7.5, 537,450 LOC) has also been tried to be parallelized

with the proposed technique. However, Python-2.7.5 contains various implementation

92

characteristics that prevent parallelization, even after specialization has been applied. For

example, the main loop of the Python interpreter handles asynchronous events (e.g. sig-

nal handler invocation) after every n Python bytecode executions. This logic introduces

extra dependences that are unrelated to the behavior of the input script. Another example

is Python-2.7.5’s handling of integer multiplication overflow. If overflow occurs, the inter-

preter may create a new object that holds the correct value and use the new object going

forward, which introduces another memory dependence. The additional dependences in-

troduced by the aforementioned characteristics are independent of fixed input behavior and

prevent parallelization.

Another limitation comes from the applicability of IPLS. Abstract syntax tree inter-

preters cannot be parallelized with the proposed technique, because IPLS targets high it-

eration count loops and assumes the existence of an instruction in the loop that computes

values in each iteration forming repeating patterns. While bytecode interpreters satisfy

these conditions with their main loops and the instructions representing interpreter’s pro-

gram counter, abstract syntax tree interpreters do not have such structures. In addition,

IPLS only looks for patterns of values generated by a single instruction. If an interpreter

uses complex structures to represent its program counter which cannot be computed by a

single instruction, IPLS will fail to recognize the pattern. Lastly, if the implementation of

the interpreter main loop is optimized with goto statements, IPLS may not be applicable.

IPLS only observes instructions in the loop header to detect repeating patterns, but gotos

may place the instruction for interpreter’s program counter outside the main loop header.

93

Chapter 7

Related Work

Recent advances in both the fields of program specialization and automatic parallelization

have made great strides in increasing program performance. This dissertation proposes the

first technique to make use of their natural synergy.

This chapter describes summarizes prior work on program specialization and automatic

parallelization. As script interpretation is a key application domain of the proposed tech-

nique, techniques about parallelizing script interpretation are described as well.

7.1 Program Specialization

Program specialization techniques can be classified into two categories: compile-time spe-

cialization that generates specialized programs at compile-time, and run-time specializa-

tion that performs specialization at run-time. IPLS, a program specialization technique

proposed in this dissertation, is a compile-time technique.

7.1.1 Compile-time Specialization

Compile-time specialization requires binding-time information, which classifies all instruc-

tions in the target program as either static or dynamic. To obtain binding-time information,

94

C-Mix [1, 49] and Tempo [18, 19] rely on compile-time analysis and user annotations.

Unlike C-Mix and Tempo, IPLS exploits profiling information to obtain the binding-time

information, so IPLS is complementary to these previous works.

Berlin et al. [3, 4] propose a specializer that optimizes scientific programs written in

high-level languages such as LISP. Since control flows in scientific programs are not af-

fected by input values, they unroll loops to expose parallelism inherent in the underlying

numerical computation. However, the loop unrolling may cause code explosion, so they

explicitly exclude loops with high iteration counts from unrolling. Although the authors

propose a heuristic to stop unrolling beyond a certain threshold, the heuristic is not evalu-

ated. C-Mix [1, 49] and Tempo [18, 19] also suffer from code explosion, and rely on user

annotations to avoid the problem. Since IPLS uses pattern based loop unrolling, this work

neither has the code explosion problem, nor does it require any user annotation.

JSpec [83] specializes Java using C as an intermediate language and uses Tempo for

binding-time analysis. Kleinrubatscher et al. [40] propose a specializer for a subset of

FORTRAN using abstract interpretation to gather binding-time information.

Run-time Specialization Run-time specialization [2, 20, 26, 28, 29, 51, 84] has an ad-

vantage over compile-time specialization because it can exploit run-time constants that are

not available at compile-time. However, run-time specialization suffers from high over-

head of dynamic code generation. Tempo [20] supports both compile-time and run-time

specialization sharing binding-time analysis together, but run-time specialization of Tempo

achieves about 80% of the speedup of compile-time specialization, due to the run-time

overheads [58]. It shows that specializing the program statically as much as possible can

maximize the potential performance of specialized programs. Exploiting profiling results

at compile-time, IPLS avoids the run-time overheads.

DyC [28, 29] is a run-time specializer, primarily focused on reducing run-time over-

heads from dynamic code generation and optimization. DyC requires user annotations to

95

direct optimization policy and improve the precision of binding time information given by

compile-time analysis. Although Calpa [55] automatically generates the annotations for

DyC with profile information, it is limited to annotations about optimization policy only.

Therefore, without hints from programmers, Calpa’s final result is still limited by compile-

time analysis. Unlike DyC, IPLS is a fully-automatic specializer that does not require any

user annotation.

Bala et al. [2] and Shankar et al. [84] propose run-time specializers that, like IPLS,

do not require any user annotation. The specializers automatically find and optimize fre-

quently executed traces by exploiting the information available at run-time only. Since they

detects hot values to find traces, multiple traces in hot code regions can be generated in-

creasing dispatching overheads. However, IPLS detect patterns before specializing codes,

so IPLS can reduce dispatching overheads. In addition, while Shankar et al. [84] rely on

strong type systems of Java to optimize program with possible heap constants, IPLS can

specialize programs written in C without type system supports.

Bolz et al. and Yermolovich et al. propose Just-In-Time compilers which are optimized

to the specific requirements of extracting performance benefits from script interpreters [7,

103]. Script interpreters cannot benefit from tracing-JIT techniques [26, 106] which do not

trace across multiple iterations. That is because each iteration in main loops of interpreters

has diverse control flow due to different instructions in the script. Addressing the problem,

these compilers find frequently executed traces in the scripts that stretch over multiple

iterations of the interpreter main loops, and specialize the interpreters for the traces. This

approach is similar to IPLS, but the JIT compilers require user annotations in the interpreter

program at branch instruction handlers to find boundaries of loops in the scripts, and at data

structures to find static values.

96

7.2 Automatic Parallelization

There has been a large body of work on automatic parallelization. Most of the early works

concentrated on parallelizing programs manipulating regular, analyzable data structures

like array-based scientific applications [6, 12, 13, 22, 27, 52, 76, 77, 82, 100, 102]. How-

ever, recent approaches target general purpose programs with complex control-flow and

irregular data structures. Some techniques [11, 62, 75] rely solely on static program anal-

ysis to identify the applicability of parallel transformations. These techniques are able

to achieve considerable speedups for programs in which precise dependence information

can be obtained at compile-time. For example, HELIX [11] achieves an average of 2.25×

speedup for thirteen benchmarks from SPEC CPU2000 [86] on a commodity six-core ma-

chine.

Still, imprecision and fragility of static analyses limits the applicability of automatic

parallelization [37]. Several techniques have been proposed to overcome this limitation by

resorting to programmer’s help [9, 41, 67, 92, 95, 98, 105]. Some of the techniques [9, 41,

67] ask programmers to add annotations to the program to relax serializing constraints that

inhibit parallelization. Paralax [98] requires users to give hints on dependence analysis,

while Tournavitis et al. [95] and Yu et al. [105] run dependence profiling and ask users

to verify the profiling result. Theis et al. [92] proposed annotations that directly specify

the boundaries of partition for pipelined parallelism. However, it is unsafe and error-prone

to ask programmers to manually annotate or inspect complex programs. The problem is

worse for specialized script interpreters, which are automatically generated by compiler.

Speculation alleviates the limitations of static analysis without manual intervention.

Many automatic parallelization systems using speculation [8, 25, 30, 31, 34, 35, 37, 38, 45,

53, 72, 87, 93, 94, 97, 99, 107, 108] have been proposed, but most of them [8, 25, 30, 31,

35, 45, 72, 87, 97, 99, 107, 108] require specialized hardware to support speculative parallel

execution. SUDS [25] is an automatic parallelization system targeting Raw microproces-

sors [91]. Steffan et al. [87] proposed a system where compiler and TLS (Thread-Level

97

Speculation) supporting architecture work together to achieve efficient speculative paral-

lelization. However, the work is more focused on designing scalable TLS hardware than

parallelizing compiler. Mitosis compiler [72] partitions the target program into speculative

threads under the assumption of hardware support for speculation. Mitosis compiler gen-

erates pre-computation slices to predict live-in values for each thread, which reduces the

overhead from inter-thread data dependences. POSH [30, 45] is another parallelizing com-

piler targeting architectures with speculation support. POSH exploits program structures

(e.g. subroutines, loops) to simplify the generation of concurrent tasks, and uses profil-

ing to ignore non-profitable tasks. Johnson et al. [35] proposed a more elaborate profiling

algorithm to discover the most profitable parts of the program to perform speculative par-

allel execution. Speculative DSWP presented by Vachharajani et al. [97] enables applying

speculation to pipeline parallelization. However, a hardware versioned memory system is

required to run the parallelized program. Zhong et al. [108] proposed code transforma-

tions to make loops in the target program amenable to speculative DOALL parallelization,

assuming the availability of TLS hardware. Wang et al. [99] and Hertzberg and Oluko-

tun [31] showed a potential of exploiting hardware support to enable run-time speculative

parallelization for legacy binaries.

Another class of speculative parallelization methods [34, 37, 38, 53, 93, 94] does not

require any hardware extensions and is applicable to commodity machines. In the CorD

execution model [93, 94], each loop iteration is separated into a prologue and epilogue,

which are executed sequentially by the main thread, and the body, which is executed spec-

ulatively. The main thread is responsible for in-order commit and misspeculation detec-

tion as well. Mehrara et al. [53] proposed a system based on the code generation frame-

work presented by Zhong et al. [108]. To support commodity machines, the system uses a

light-weight software transactional memory instead of TLS hardware. Privateer [34] is the

first fully automatic system that supports speculative reduction and privatization. The sys-

tem rely on software-based run-time system to validate speculative assumptions. Cluster

98

Spec-DOALL [38] and ASAP [37] proposed an automatic parallelizing compiler and run-

time system to enable speculative parallel execution on commodity clusters. While Cluster

Spec-DOALL only supports DOALL parallelization, ASAP supports pipelined paralleliza-

tion as well. Unlike the system proposed in this dissertation, none of these techniques are

capable of context-sensitive speculation. Supporting context-sensitivity is critical to par-

allelizing complex loops that contain many function calls, as a significant number of non-

manifesting dependences can only be identified using context-sensitive information. The

context-sensitive speculation developed in this dissertation played a vital role in achieving

speedup for the evaluated programs.

Several works focus on proposing software run-time systems to support speculative par-

allelization. LRPD [78] and R-LRPD [22] supports speculative DOALL execution by vali-

dating the absence of loop-carried dependences at the end of parallel execution. For LRPD,

if speculation fails then the entire loop needs to be re-executed sequentially. R-LRPD ad-

dresses this problem by adapting sliding window strategy. If N processors are available,

R-LRPD distributes only first N iterations to the processors instead of distributing the entire

iteration space, then validates speculation at the end of the parallel execution of N iterations.

This strategy avoids re-execution of successful iterations, but parallel performance is pe-

nalized by frequent interruption of sequential validation. Cintra and Llanos [14] proposed

a run-time system that performs eager memory management that each speculative opera-

tion checks if misspeculation occurred and updates the non-speculative memory directly

when there is no misspeculation. To support this, an expensive memory fence operation is

required for each speculative memory operation. These techniques are only applicable to

array-based scientific programs, as the techniques cannot address the memory access using

pointers.

Oancea et al. [59] proposed SpLIP to reduce various memory and performance over-

heads of prior software-based run-time systems (e.g. overhead to buffer the speculative

state, overhead of executing synchronization operations for every speculative memory ac-

99

cess). However, as SpLIP still performs expensive hash operations for each speculated

load and store, it has high performance overheads when applied to aggressively speculated

programs. Yiapanis et al. [104] proposed two software run-time systems, MiniTLS and

Lector. MiniTLS relies on eager memory management where each speculative operation

updates the non-speculative memory directly, while Lector uses a lazy approach that buffers

the speculative state and commits them later. However, both MiniTLS and Lector requires

every speculative memory operation to acquire a lock, which results in high execution over-

head. STMLite [53] is based on software transactional memory (STM) [23, 81, 54, 85]. It

optimizes performance by providing enough functionality to support speculative loop par-

allelization without implementing the whole spectrum of transactional memory features.

STMLite, however, relies on a centralized commit unit, which prevents this technique from

scaling to large numbers of threads. None of these techniques support multi-threaded atom-

icity, which is necessary to enable speculative pipeline parallelization.

Raman et al. resolve this problem by developing SMTX [74], a software run-time sys-

tem that allows multi-threaded atomicity, as described in Chapter 2.3. Kim et al. proposed

DSMTX [39], a SMTX implementation targeting clusters. The optimized run-time system

proposed in this dissertation is based on SMTX.

7.3 Parallelizing Script Interpretation

There are a variety of parallel libraries or parallel language extensions [15, 57, 46, 69, 70,

79, 80] for scripting languages that allow the programmer to take advantage of multiple

processors by manually parallelizing their code. Manual parallelization, however, is a toil-

some and error-prone process, and is best avoided by leveraging automatic parallelization.

There are several techniques that were developed for automatically parallelizing se-

quential scripts. These techniques are focused on parallelizing the R programming lan-

guage [73], because of R’s popular use in scientific computing and machine learning com-

100

munity. In [48], Ma et al. build a framework that uses dynamic dependence analysis to

identify parallelizable tasks in R programs and parallelizes the execution accordingly. This

technique is able to parallelize loops and function calls, but only when there are absolutely

no dependences. ALCHEMY [63] is another platform that supports the automatic paral-

lelization of R programs. Talbot et al. present Riposte [90], a runtime system that is able

to dynamically discover and extract sequences of vector operations from arbitrary R code.

These sequences can be fused to eliminate unnecessary memory traffic and compiled to

exploit SIMD units as well as multiple cores.Though these techniques are able to success-

fully parallelize some scripts, they require manual changes or extensions to the interpreting

environment. Thus porting them to other scripting languages requires large amounts of pro-

gramming effort. In comparison, the technique proposed in this paper can be seamlessly

applied across different script interpreters.

101

Chapter 8

Conclusion and Future Directions

This dissertation proposes techniques to exploit input parallelism in a fully automatic fash-

ion. Evaluation of these techniques with a prototype implementation demonstrates the

potential of research on automatic extraction of input parallelism. This chapter concludes

the dissertation and describes potential future avenues to make further advances in the field.

8.1 Conclusion

As multi-core processors become the norm in all-levels of computing, extracting thread-

level parallelism from the application is necessary to achieve performance improvement.

However, writing multi-threaded program is much harder than sequential program, which

makes automatic parallelization of sequential program an attractive alternative to harness

multiple cores. Despite the recent advances in automatic parallelization systems, existing

techniques cannot exploit parallelism in program inputs. This prevents the application of

automatic parallelization to some key application domains, including script interpretation.

This dissertation proposes a fully automatic technique to exploit the parallelism within

fixed program inputs. By coupling program specialization with speculative parallelization

techniques, input parallelism can result in parallel speedup. First, the dissertation presents

IPLS, a program specialization technique that harnesses the repeating pattern induced by

102

program invariants including fixed program inputs. IPLS materializes parallelism within

the program invariants into the specialized program, thereby functioning as an enabling

transformation for automatic parallelization. Second, the dissertation proposes context-

sensitive speculation to improve the applicability of automatic parallelization. Context-

sensitivity plays a critical role in extracting parallelism from programs that hard to rea-

son about, such as IPLS specialized programs. Lastly, the dissertation proposes optimiza-

tion to the run-time system that supports speculative parallelization. Proposed optimiza-

tions greatly reduce the performance overhead of the run-time system and enable scalable

speedup even with aggressively speculated programs.

The prototype implementation of the proposed technique has been evaluated against

two widely-used open-source script interpreters with 6 input scripts, which describe parallel

algorithms, each yielding a geomean speedup of 5.10× over the best sequential version.

This proves that the automatic exploitation of input parallelism is both feasible and worthy

of further investigation.

8.2 Future Research Directions

• Handling dependences resulting from fixed-input-independent program behavior: As

discussed in Chapter 6.5, dependences between instructions caused by program be-

havior independent of fixed program inputs are primary obstacles to the paralleliza-

tion of specialized programs. Inventing program transformation techniques that cleanly

separate parts of the program that depend upon fixed program inputs from the other

parts will be one way to alleviate this problem. The DIFT-based profiling technique

proposed in this dissertation, which distinguishes instructions dependent solely upon

program invariants from other instructions, can be extended to support such transfor-

mations.

• Exploiting complex forms of input parallelism: Evaluation shows that the specializa-

103

tion process introduces dependences that change DOALL parallelism in input scripts

into pipeline parallelism in the specialized interpreter program. If the input script

contains complex forms of parallelism, e.g., pipeline parallelism, more non-trivial

dependences manifest. Techniques proposed in this dissertation can be extended to

resolve such dependences to enable extraction of complex forms of input parallelism.

• Applying the techniques to the domain outside of script interpretation: Techniques

proposed in this dissertation are only evaluated against script interpreters and their

input scripts. Though script interpretation is the application domain that motivates

this research, the techniques can be applied to other applications as well.

Scientific computations such as numerical simulations, computational optimizations,

and signal processing systems represent another application domain that may have

input parallelism and can benefit from the technique proposed in this dissertation.

Programs in this domain are implemented in highly parameterized fashion to main-

tain generality [5], and specific values of each parameter are given as program input.

For many cases, some parameters have fixed values across multiple executions of

the program. Prior work [5, 83] showed that specializing scientific programs against

fixed values of parameters simplifies data- and control-flow of the program. It is

possible that simplification of data- and control-flow removes dependences between

instructions and unlocks parallelism. For such a case, automatic parallelization can

be enabled by applying the techniques presented in this dissertation. As programs

in scientific computation domain are computation intensive, a substantial speedup is

expected when they are parallelized.

104

Bibliography

[1] L. O. Andersen. Program analysis and specialization for the C programming lan-

guage, May 1994.

[2] V. Bala, E. Duesterwald, and S. Banerjia. Dynamo: A transparent dynamic optimiza-

tion system. In Proceedings of the ACM SIGPLAN ’00 Conference on Programming

Language Design and Implementation, pages 1–12, June 2000.

[3] A. Berlin. Partial evaluation applied to numerical computation. In LISP and Func-

tional Programming ’90, 1990.

[4] A. Berlin and D. Weise. Compiling scientific code using partial evaluation. IEEE

Computer, 23, December 1990.

[5] A. A. Berlin and R. J. Surati. Partial evaluation for scientific computing: The super-

computer toolkit experience. In PEPM’94 - ACM SIGPLAN Workshop on Partial

Evaluation and Semantics-Based Program Manipulation, Walt Disney World Vilage,

Orlando, Florida, USA, 25 June 1994, Proceedings. Technical Report 94/9, pages

133–141, 1994.

[6] B. Blume, R. Eigenmann, K. Faigin, J. Grout, J. Hoeflinger, D. Padua, P. Petersen,

B. Pottenger, L. Rauchwerger, P. Tu, and S. Weatherford. Polaris: The next genera-

tion in parallelizing compilers. In Proceedings of the workshop on Languages and

Compilers for Parallel Computing, 1994.

105

[7] C. F. Bolz, A. Cuni, M. Fijalkowski, and A. Rigo. Tracing the meta-level: Pypy’s

tracing jit compiler. In Proceedings of the 4th workshop on the Implementation,

Compilation, Optimization of Object-Oriented Languages and Programming Sys-

tems, ICOOOLPS ’09. ACM, 2009.

[8] M. Bridges, N. Vachharajani, Y. Zhang, T. Jablin, and D. August. Revisiting the

sequential programming model for multi-core. In MICRO ’07: Proceedings of the

40th Annual IEEE/ACM International Symposium on Microarchitecture, pages 69–

84, Washington, DC, USA, 2007. IEEE Computer Society.

[9] M. J. Bridges. The VELOCITY Compiler: Extracting Efficient Multicore Execu-

tion from Legacy Sequential Codes. PhD thesis, Department of Computer Science,

Princeton University, Princeton, New Jersey, United States, November 2008.

[10] M. J. Bridges, N. Vachharajani, Y. Zhang, T. B. Jablin, and D. I. August. Revisiting

the sequential programming model for the multicore era. IEEE Micro, January 2008.

[11] S. Campanoni, T. Jones, G. Holloway, V. J. Reddi, G.-Y. Wei, and D. Brooks. HE-

LIX: Automatic parallelization of irregular programs for chip multiprocessing. In

Proceedings of the 10th International Symposium on Code Generation and Opti-

mization, CGO ’12, pages 84–93. ACM, 2012.

[12] D.-K. Chen and P.-C. Yew. On effective execution of nonuniform doacross loops.

IEEE Trans. Parallel Distrib. Syst., 7(5):463–476, May 1996.

[13] D.-K. Chen and P.-C. Yew. Redundant synchronization elimination for doacross

loops. IEEE Transactions on Parallel and Distributed Systems, 10(5):459–470,

1999.

[14] M. Cintra and D. R. Llanos. Design space exploration of a software speculative

parallelization scheme. IEEE Trans. Parallel Distrib. Syst., 16(6):562–576, June

2005.

106

[15] R. Collobert, K. Kavukcuoglu, and C. Farabet. Torch7: A matlab-like environment

for machine learning. In BigLearn, NIPS Workshop, 2011.

[16] Computer Language Benchmarks Game. http://shootout.alioth.debian.org/.

[17] D. A. Connors. Memory profiling for directing data speculative optimizations and

scheduling. Master’s thesis, Department of Electrical and Computer Engineering,

University of Illinois, Urbana, IL, 1997.

[18] C. Consel, L. Hornof, F. Noël, J. Noyé, and N. Volansche. A uniform approach for

compile-time and run-time specialization. In Selected Papers from the Internaltional

Seminar on Partial Evaluation, pages 54–72, London, UK, 1996. Springer-Verlag.

[19] C. Consel, J. L. Lawall, and A.-F. Le Meur. A tour of tempo: a program specializer

for the c language. Sci. Comput. Program., 52:341–370, August 2004.

[20] C. Consel and F. Noel. A general approach for run-time specialization and its appli-

cation to c. In Proceedings of the ACM Symposium on Principles of Programming

Languages, pages 145–156, January 1996.

[21] R. Cytron. DOACROSS: Beyond vectorization for multiprocessors. In Proceed-

ings of the International Conference on Parallel Processing, pages 836–884, August

1986.

[22] F. H. Dang, H. Yu, and L. Rauchwerger. The R-LRPD test: Speculative paralleliza-

tion of partially parallel loops. In IPDPS ’02: Proceedings of the 16th International

Parallel and Distributed Processing Symposium, pages 20–29, 2002.

[23] D. Dice and N. Shavit. Understanding tradeoffs in software transactional memory. In

Proceedings of the International Symposium on Code Generation and Optimization,

CGO ’07. IEEE Computer Society, 2007.

107

[24] J. Ferrante, K. J. Ottenstein, and J. D. Warren. The program dependence graph and

its use in optimization. ACM Transactions on Programming Languages and Systems,

9:319–349, July 1987.

[25] M. I. Frank. SUDS: Automatic Parallelization for Raw Processors. PhD thesis, MIT,

2003.

[26] A. Gal, B. Eich, M. Shaver, D. Anderson, D. Mandelin, M. R. Haghighat, B. Ka-

plan, G. Hoare, B. Zbarsky, J. Orendorff, J. Ruderman, E. W. Smith, R. Reitmaier,

M. Bebenita, M. Chang, and M. Franz. Trace-based just-in-time type specialization

for dynamic languages. In Proceedings of the 2009 ACM SIGPLAN conference on

Programming language design and implementation, pages 465–478, 2009.

[27] M. Girkar and C. D. Polychronopoulos. Extracting task-level parallelism. ACM

Trans. Program. Lang. Syst., 17(4):600–634, July 1995.

[28] B. Grant, M. Mock, M. Philipose, C. Chambers, and S. Eggers. Annotation-directed

run-time specialization in C. In Proceedings of the ACM SIGPLAN Symposium

on Partial Evaluation and Semantics-Based Program Manipulation (PEPM), pages

163–178, June 1997.

[29] B. Grant, M. Philipose, M. Mock, C. Chambers, and S. Eggers. An evaluation of

staged run-time optimizations in DyC. In Proceedings of the ACM SIGPLAN Sympo-

sium on Programming Language Design and Implementation, pages 293–304, May

1999.

[30] L. Han, W. Liu, and J. M. Tuck. Sspp:1772954.177297opeculative parallelization

of partial reduction variables. In Proceedings of the 8th Annual IEEE/ACM Interna-

tional Symposium on Code Generation and Optimization, CGO ’10, pages 141–150,

New York, NY, USA, 2010. ACM.

108

[31] B. Hertzberg and K. Olukotun. Runtime automatic speculative parallelization. In

Code Generation and Optimization (CGO), 2011 9th Annual IEEE/ACM Interna-

tional Symposium on, april 2011.

[32] T. B. Jablin. Automatic Parallelization for GPUs. PhD thesis, 2013.

[33] B. J. Jain and K. Obermayer. Extending bron kerbosch for solving the maximum

weight clique problem. CoRR, abs/1101.1266, 2011.

[34] N. P. Johnson, H. Kim, P. Prabhu, A. Zaks, and D. I. August. Speculative separation

for privatization and reductions. Programming Language Design and Implementa-

tion (PLDI), June 2012.

[35] T. A. Johnson, R. Eigenmann, and T. N. Vijaykumar. Speculative thread decompo-

sition through empirical optimization. In Proceedings of the 12th ACM SIGPLAN

Symposium on Principles and Practice of Parallel Programming, PPoPP ’07, pages

205–214, New York, NY, USA, 2007. ACM.

[36] A. Kejariwal, A. Veidenbaum, A. Nicolau, X. Tian, M. Girkar, H. Saito, and

U. Banerjee. Comparative architectural characterization of spec cpu2000 and

cpu2006 benchmarks on the intel R© coreTM 2 duo processor. In Embedded Com-

puter Systems: Architectures, Modeling, and Simulation, 2008. SAMOS 2008. Inter-

national Conference on, pages 132–141, July 2008.

[37] H. Kim. ASAP: Automatic Speculative Acyclic Parallelization for Clusters. PhD

thesis, 2013.

[38] H. Kim, N. P. Johnson, J. W. Lee, S. A. Mahlke, and D. I. August. Automatic

speculative doall for clusters. International Symposium on Code Generation and

Optimization (CGO), March 2012.

109

[39] H. Kim, A. Raman, F. Liu, J. W. Lee, and D. I. August. Scalable speculative paral-

lelization on commodity clusters. In In Proceedings of the 43rd IEEE/ACM Interna-

tional Symposium on Microarchitecture. IEEE Computer Society, 2010.

[40] P. Kleinrubatscher, A. Kriegshaber, R. Zöchling, and R. Glück. Fortran program

specialization. SIGPLAN Not., 30:61–70, April 1995.

[41] M. Kulkarni, K. Pingali, B. Walter, G. Ramanarayanan, K. Bala, and L. P. Chew.

Optimistic parallelism requires abstractions. In Proceedings of the 2007 ACM SIG-

PLAN conference on Programming language design and implementation, PLDI ’07,

pages 211–222, New York, NY, USA, 2007. ACM.

[42] J. R. Larus. Loop-level parallelism in numeric and symbolic programs. IEEE Trans.

Parallel Distrib. Syst., 4:812–826, July 1993.

[43] C. Lattner and V. Adve. LLVM: A compilation framework for lifelong program

analysis & transformation. In CGO ’04: Proceedings of the International Sympo-

sium on Code Generation and Optimization, page 75, Washington, DC, USA, 2004.

IEEE Computer Society.

[44] S.-W. Liao, A. Diwan, R. P. B. Jr., A. M. Ghuloum, and M. S. Lam. SUIF explorer:

An interactive and interprocedural parallelizer. In Principles Practice of Parallel

Programming, pages 37–48, 1999.

[45] W. Liu, J. Tuck, L. Ceze, W. Ahn, K. Strauss, J. Renau, and J. Torrellas. POSH: a

TLS compiler that exploits program structure. In PPoPP ’06: Proceedings of the

11th ACM SIGPLAN Symposium on Principles and Practice of Parallel Program-

ming, pages 158–167, 2006.

[46] L. Lu, W. Ji, and M. L. Scott. Dynamic enforcement of determinism in a paral-

lel scripting language. In Proceedings of the 35th ACM SIGPLAN Conference on

Programming Language Design and Implementation, PLDI ’14. ACM, 2014.

110

[47] Lua. http://www.lua.org/.

[48] X. Ma, J. Li, and N. Samatova. Automatic parallelization of scripting languages: To-

ward transparent desktop parallel computing. In Parallel and Distributed Processing

Symposium, 2007. IPDPS 2007. IEEE International, March 2007.

[49] H. Makholm. Specializing c - an introduction to the principles behind c-mix/ii. Tech-

nical report, University of Copenhagen, Department of Computer Science, 1999.

[50] T. R. Mason. Lampview: A loop-aware toolset for facilitating parallelization. Mas-

ter’s thesis, Department of Electrical Engineering, Princeton University, Princeton,

New Jersey, United States, August 2009.

[51] H. Masuhara and A. Yonezawa. Run-time bytecode specialization. In Proceedings

of the Second Symposium on Programs as Data Objects, PADO ’01, pages 138–154,

London, UK, 2001. Springer-Verlag.

[52] K. S. McKinley. Evaluating automatic parallelization for efficient execution on

shared-memory multiprocessors. In Proceedings of the 8th International Confer-

ence on Supercomputing, ICS ’94, pages 54–63, New York, NY, USA, 1994. ACM.

[53] M. Mehrara, J. Hao, P.-C. Hsu, and S. Mahlke. Parallelizing sequential applications

on commodity hardware using a low-cost software transactional memory. In Pro-

ceedings of the 2009 ACM SIGPLAN conference on Programming language design

and implementation, PLDI ’09, pages 166–176, New York, NY, USA, 2009. ACM.

[54] C. C. Minh, J. Chung, C. Kozyrakis, and K. Olukotun. Stamp: Stanford transactional

applications for multi-processing. In Workload Characterization, 2008. IISWC 2008.

IEEE International Symposium on, Sept 2008.

111

[55] M. Mock, M. Berryman, C. Chambers, and S. Eggers. Calpa: A tool for automating

dynamic compilation. In Proceedings of the Second Workshop on Feedback-Directed

Optimization, pages 100–109, November 1999.

[56] G. Moore. Cramming more components onto integrated circuits. Proceedings of the

IEEE, 86(1):82 –85, Jan 1998.

[57] Multicore. http://www.rforge.net/doc/packages/multicore/multicore.html.

[58] F. Noel, L. Hornof, C. Consel, and J. L. Lawall. Automatic, template-based run-time

specialization: Implementation and experimental study. In Proceedings of the 1998

International Conference on Computer Languages, pages 132–, Washington, DC,

USA, 1998. IEEE Computer Society.

[59] C. E. Oancea, A. Mycroft, and T. Harris. A lightweight in-place implementation

for software thread-level speculation. In Proceedings of the Twenty-first Annual

Symposium on Parallelism in Algorithms and Architectures, SPAA ’09, pages 223–

232, New York, NY, USA, 2009. ACM.

[60] T. Oh, H. Kim, N. P. Johnson, J. W. Lee, and D. I. August. Practical automatic loop

specialization. In Proceedings of the Eighteenth International Conference on Ar-

chitectural Support for Programming Languages and Operating Systems, ASPLOS

’13. ACM, 2013.

[61] G. Ottoni. Global Instruction Scheduling for Multi-Threaded Architectures. PhD

thesis, Department of Computer Science, Princeton University, Princeton, New Jer-

sey, United States, September 2008.

[62] G. Ottoni, R. Rangan, A. Stoler, and D. I. August. Automatic thread extraction with

decoupled software pipelining. In MICRO ’05: Proceedings of the 38th Annual

IEEE/ACM International Symposium on Microarchitecture, pages 105–118, Wash-

ington, DC, USA, 2005. IEEE Computer Society.

112

[63] F. Padberg and M. Mirold. An experimentation platform for the automatic paral-

lelization of r programs. In Software Engineering Conference (APSEC), 2012 19th

Asia-Pacific, Dec 2012.

[64] A. K. Peng Wu and C. Cascaval. Compiler-driven dependence profiling to guide

program parallelization. In LCPC, pages 232–248, 2008.

[65] Perl. http://www.perl.org/.

[66] L.-N. Pouchet. PolyBench: The Polyhedral Benchmark suite. http://www-

roc.inria.fr/ pouchet/software/polybench/download.

[67] P. Prabhu, S. Ghosh, Y. Zhang, N. P. Johnson, and D. I. August. Commutative set:

A language extension for implicit parallel programming. In Proceedings of the 2011

ACM SIGPLAN conference on Programming language design and implementation,

PLDI ’11, New York, NY, USA, 2011. ACM.

[68] P. Prabhu, T. B. Jablin, A. Raman, Y. Zhang, J. Huang, H. Kim, N. P. Johnson,

F. Liu, S. Ghosh, S. Beard, T. Oh, M. Zoufaly, D. Walker, and D. I. August. A

survey of the practice of computational science. Proceedings of the 24th ACM/IEEE

Conference on High Performance Computing, Networking, Storage and Analysis

(SC), November 2011.

[69] PyMPI. http://pympi.sourceforge.net/.

[70] Pypar. https://code.google.com/p/pypar/.

[71] Python. http://www.python.org/.

[72] C. G. Quiñones, C. Madriles, J. Sánchez, P. Marcuello, A. González, and D. M.

Tullsen. Mitosis compiler: an infrastructure for speculative threading based on pre-

computation slices. In Proceedings of the 2005 ACM SIGPLAN conference on Pro-

113

gramming language design and implementation, pages 269–279, New York, NY,

USA, 2005. ACM.

[73] R Development Core Team. R: A language and environment for statistical comput-

ing. R Foundation for Statistical Computing, Vienna, Austria, 2004. 3-900051-07-0.

[74] A. Raman, H. Kim, T. R. Mason, T. B. Jablin, and D. I. August. Speculative paral-

lelization using software multi-threaded transactions. In ASPLOS ’10: Proceedings

of the Fifteenth International Conference on Architectural Support for Programming

Languages and Operating Systems, March 2010.

[75] E. Raman, G. Ottoni, A. Raman, M. Bridges, and D. I. August. Parallel-stage de-

coupled software pipelining. In Proceedings of the 2008 International Symposium

on Code Generation and Optimization, April 2008.

[76] L. Rauchwerger, N. M. Amato, and D. A. Padua. A scalable method for run-time

loop parallelization. International Journal of Parallel Programming (IJPP), 26:537–

576, 1995.

[77] L. Rauchwerger and D. Padua. The LRPD test: speculative run-time parallelization

of loops with privatization and reduction parallelization. In Proceedings of the ACM

SIGPLAN 1995 conference on Programming language design and implementation,

1995.

[78] L. Rauchwerger and D. A. Padua. The LRPD test: Speculative run-time paralleliza-

tion of loops with privatization and reduction parallelization. IEEE Transactions on

Parallel Distributed Systems, February 1999.

[79] RMPI. http://www.stats.uwo.ca/faculty/yu/Rmpi/.

114

[80] A. Rubinsteyn, E. Hielscher, N. Weinman, and D. Shasha. Parakeet: A just-in-time

parallel accelerator for python. In Proceedings of the 4th USENIX Conference on

Hot Topics in Parallelism, HotPar’12. USENIX Association, 2012.

[81] B. Saha, A.-R. Adl-Tabatabai, and Q. Jacobson. Architectural support for software

transactional memory. In Proceedings of the 39th Annual IEEE/ACM International

Symposium on Microarchitecture, MICRO 39. IEEE Computer Society, 2006.

[82] J. Saltz, R. Mirchandaney, and R. Crowley. Run-time parallelization and scheduling

of loops. IEEE Transactions on Computers, 40, 1991.

[83] U. P. Schultz, J. L. Lawall, and C. Consel. Automatic program specialization for

java. ACM Trans. Program. Lang. Syst., 25:452–499, July 2003.

[84] A. Shankar, S. S. Sastry, R. Bodı́k, and J. E. Smith. Runtime specialization with op-

timistic heap analysis. In Proceedings of the 20th annual ACM SIGPLAN conference

on Object-oriented programming, systems, languages, and applications, 2005.

[85] N. Shavit and D. Touitou. Software transactional memory. In Proceedings of the

Fourteenth Annual ACM Symposium on Principles of Distributed Computing, PODC

’95. ACM, 1995.

[86] Standard Performance Evaluation Corporation (SPEC).

http://www.spec.org.

[87] J. G. Steffan, C. Colohan, A. Zhai, and T. C. Mowry. The STAMPede approach to

thread-level speculation. ACM Transactions on Computer Systems, 23(3):253–300,

February 2005.

[88] J. G. Steffan, C. B. Colohan, A. Zhai, and T. C. Mowry. A scalable approach to

thread-level speculation. In Proceedings of the 27th International Symposium on

Computer Architecture, pages 1–12, June 2000.

115

[89] E. Suh, J. W. Lee, and S. Devadas. Secure program execution via dynamic infor-

mation flow tracking. In Proceedings of the Eleventh International Conference on

Architectural Support for Programming Languages and Operating Systems, 2004.

[90] J. Talbot, Z. DeVito, and P. Hanrahan. Riposte: A trace-driven compiler and parallel

vm for vector code in r. In Proceedings of the 21st International Conference on

Parallel Architectures and Compilation Techniques, PACT ’12. ACM, 2012.

[91] M. Taylor, J. Kim, J. Miller, D. Wentzlaff, F. Ghodrat, B. Greenwald, H. Hoffman,

P. Johnson, J. Lee, W. Lee, A. Ma, A. Saraf, M. Seneski, N. Shnidman, V. Strumpen,

M. Frank, S. Amarasinghe, and A. Agarwal. The Raw microprocessor: A com-

putational fabric for software circuit and general-purpose programs. IEEE Micro,

22(2):25–35, March 2002.

[92] W. Thies, V. Chandrasekhar, and S. Amarasinghe. A practical approach to exploiting

coarse-grained pipeline parallelism in C programs. In MICRO ’07: Proceedings of

the 40th Annual IEEE/ACM International Symposium on Microarchitecture, pages

356–369, Washington, DC, USA, 2007. IEEE Computer Society.

[93] C. Tian, M. Feng, and R. Gupta. Supporting speculative parallelization in the pres-

ence of dynamic data structures. In Proceedings of the 2010 ACM SIGPLAN Con-

ference on Programming Language Design and Implementation, PLDI ’10. ACM,

2010.

[94] C. Tian, M. Feng, V. Nagarajan, and R. Gupta. Copy or discard execution model

for speculative parallelization on multicores. In Proceedings of the 41st Annual

IEEE/ACM International Symposium on Microarchitecture, MICRO 41. IEEE Com-

puter Society, 2008.

[95] G. Tournavitis, Z. Wang, B. Franke, and M. F. O’Boyle. Towards a holistic approach

to auto-parallelization: Integrating profile-driven parallelism detection and machine-

116

learning based mapping. In Proceedings of the 2009 ACM SIGPLAN Conference on

Programming Language Design and Implementation, PLDI ’09, 2009.

[96] N. Vachharajani. Intelligent Speculation for Pipelined Multithreading. PhD the-

sis, Department of Computer Science, Princeton University, Princeton, New Jersey,

United States, November 2008.

[97] N. Vachharajani, R. Rangan, E. Raman, M. J. Bridges, G. Ottoni, and D. I. August.

Speculative decoupled software pipelining. In PACT ’07: Proceedings of the 16th In-

ternational Conference on Parallel Architecture and Compilation Techniques, pages

49–59, Washington, DC, USA, 2007. IEEE Computer Society.

[98] H. Vandierendonck, S. Rul, and K. De Bosschere. The Paralax Infrastructure: auto-

matic parallelization with a helping hand. In Proceedings of the 19th international

conference on Parallel architectures and compilation techniques, PACT ’10, pages

389–400, New York, NY, USA, 2010. ACM.

[99] C. Wang, Y. Wu, E. Borin, S. Hu, W. Liu, D. Sager, T. fook Ngai, and J. Fang. Dy-

namic parallelization of single-threaded binary programs using speculative slicing.

In ICS’09, 2009.

[100] R. Wilson, R. French, C. Wilson, S. Amarasinghe, J. Anderson, S. Tjiang, S. Liao,

C. Tseng, M. Hall, M. Lam, and J. Hennessy. The suif compiler system: A par-

allelizing and optimizing research compiler. Technical report, Stanford, CA, USA,

1994.

[101] Q. Wu, A. Pyatakov, A. N. Spiridonov, E. Raman, D. W. Clark, and D. I. August.

Exposing memory access regularities using object-relative memory profiling. In

Proceedings of the International Symposium on Code Generation and Optimization.

IEEE Computer Society, 2004.

117

[102] C.-Z. Xu and V. Chaudhary. Time stamp algorithms for runtime parallelization

of doacross loops with dynamic dependences. IEEE Trans. Parallel Distrib. Syst.,

12(5):433–450, May 2001.

[103] A. Yermolovich, C. Wimmer, and M. Franz. Optimization of dynamic languages

using hierarchical layering of virtual machines. In Proceedings of the 5th symposium

on Dynamic languages, DLS ’09. ACM, 2009.

[104] P. Yiapanis, D. Rosas-Ham, G. Brown, and M. Luján. Optimizing software runtime

systems for speculative parallelization. ACM Trans. Archit. Code Optim., 9(4):39:1–

39:27, Jan. 2013.

[105] H. Yu, H.-J. Ko, and Z. Li. General data structure expansion for multi-threading.

In Proceedings of the 34th ACM SIGPLAN Conference on Programming Language

Design and Implementation, PLDI ’13. ACM, 2013.

[106] M. Zaleski, A. D. Brown, and K. Stoodley. YETI: a graduallY extensible trace

interpreter. In Proceedings of the 3rd international conference on Virtual execution

environments, pages 83–93, 2007.

[107] A. Zhai, J. G. Steffan, C. B. Colohan, and T. C. Mowry. Compiler and hardware

support for reducing the synchronization of speculative threads. ACM Transactions

on Architecture and Code Optimization, 5(1):1–33, 2008.

[108] H. Zhong, M. Mehrara, S. Lieberman, and S. Mahlke. Uncovering hidden loop

level parallelism in sequential applications. In HPCA ’08: Proceedings of the 14th

International Symposium on High-Performance Computer Architecture, 2008.

118

