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Abstract
All layers of today’s computing systems, from hardware to software, are vulnerable to

attack. Market and economic pressure push companies to focus on performance and fea-

tures, leaving security and correctness as secondary concerns. As a consequence, systems

must frequently be patched after deployment to fix security vulnerabilities. While this non-

virtuous exploit-patch-exploit cycle is insecure, it is practical enough for companies to use.

Formal methods in both software and hardware can guarantee the security they provide.

Ideally, modern systems would be comprised of formally verified and secure components.

Unfortunately, such methods have not seen widespread adoption for a number of reasons,

such as difficulty in scaling, lack of tools, and high skill requirements. Additionally, the

economics involved in securing and replacing every component in all systems, both new

and currently deployed, result in clean slate solutions being impractical. A practical solu-

tion should rely on a few, simple components and should be adoptable incrementally.

TrustGuard, the first implementation of the Containment Architecture with Verified

Output (CAVO) model developed at Princeton, showed how a simple, trusted Sentry could

protect against malicious or buggy hardware components to ensure integrity of external

communications. This was accomplished by ensuring the correct execution of signed soft-

ware, with support from a modified CPU and system architecture. However, TrustGuards

practicality was limited due to its reliance on modified host hardware and its requirement

to trust entire application stacks, including the operating system.

The work presented in this dissertation seeks to make the CAVO model a practical solu-

tion for ensuring the integrity of data communicated externally in an untrusted commodity

system. This work extends CAVO in two ways. First, it makes the Sentry compatible with

a wide range of devices without requiring hardware modifications to the host system, thus

increasing its flexibility and ease of integration into existing environments. Second, it gives

developers the option to use trusted code to verify the execution of untrusted code, thus re-

ducing the size of the trusted code base. This is analogous to the small, trusted Sentry

ensuring correctness of execution of a large amount of complex, untrusted hardware.
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Chapter 1

Introduction

Cars, homes, hospitals, banks, credit bureaus, utilities, government services, and defense

systems are increasingly computerized and networked. However, computing devices in all

of these areas are vulnerable to attacks that can lead to financial losses [4, 34], damage to

enterprise assets [6, 45], operational disruption [1, 36], industrial and military espionage [2,

11], and even physical harm to people and their environment [3, 5, 34]. In most cases,

designers, manufacturers, and developers do not possess an effective and practical way to

secure their products. Thus, security and privacy breaches continue to be daily news.

System engineers and software developers have traditionally accepted security to be a

never-ending game of cat-and-mouse between attackers and defenders. Under this model,

vulnerabilities often first come to light when they are exploited by attackers. System de-

signers and developers then fix these vulnerabilities and issue patches to protect those sys-

tems from that attack in the future. While patching software can be expensive, annoying,

and disruptive (even when done correctly, which is often not the case), at least software

is patchable. Even when vulnerabilities are fixed, the time between the exploitation of a

vulnerability, its disclosure, and its patching can result in huge losses [47].

The story is different for hardware, where only a subset of vulnerabilities can be re-

paired through mechanisms such as microcode patches or firmware updates [8]. Hardware
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designers use a combination of formal verification and testing techniques to try to ensure

correctness of hardware at various points in the design, manufacturing, and post-production

phases [60, 64, 70, 109]. However, the complexity of modern hardware design has simply

outpaced our ability to ensure their correctness, as demonstrated by the recent Spectre [69]

and Meltdown [79] vulnerabilities.

An alternate approach to system design, called “clean slate design,” is gaining increas-

ing traction in the research community. The idea of “clean slate” is to build computing

systems using hardware and software components whose designs are formally proven se-

cure. While formal methods have made progress over the years in proving security prop-

erties of software and hardware designs, they require a high level of specialized exper-

tise and a significantly extended development period. Though there has been a great deal

of progress in the formal verification of systems, especially RISC-V based systems [32],

these methods currently do not scale to the large and complex designs of modern comput-

ing systems [65, 66, 68, 72, 84] However, even if this approach matures enough to handle

the complexity of modern system designs, one cannot expect companies to throw away

decades of established knowledge and infrastructure. Furthermore, economic and logistic

issues make secure production and delivery of every component infeasible.

Acknowledging that modern computing hardware and software are too complex to be

vulnerability-free, others have proposed a minimal Trusted Computing Base (TCB) ap-

proach. A TCB is composed of the minimal set of hardware, firmware, and/or software

components that are critical to the security of a computing device [73, 94]. By using the

small TCB to ensure important security properties, developers and designers can spend the

necessary time and effort needed to properly secure them as ensuring the security of the

TCB ensures the security of the entire system.

Recent attempts at creating real TCBs include processor based secure enclaves such as

Intel’s SGX [61] and ARM’s TrustZone [16]. In these systems, a piece of secure code ex-

ecutes in an isolate environment inside the enclave. The enclave code is typically respon-
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sible for executing a security critical task (such as decrypting sensitive data, performing

some operation on it, then re-encrypting it) while the hardware ensures the integrity and

confidentiality of its execution. While secure enclaves can be an effective tool for some

particular types of tasks, they still require placing trust in a complex processor (made even

more complex by the enclave) that cannot yet be properly secured. Furthermore, the sensi-

tive data cannot be used unencrypted outside the enclave without putting it at risk. Given

that users ultimately need to interact with unencrypted data, they are left with little option

to do so securely (§2.2).

1.1 Prior Work: TrustGuard

Rather than attempting to integrate the security components into the complex system as

in processor-based secure enclaves, prior work promoted the approach of containing the

effects of compromised hardware components within the system using a simple security

component [54, 120]. Trusting a small, simple component for containment avoids the

impractical task of securing complex hardware directly. The TrustGuard architecture, seen

in Figure 1.1(a), was built using this approach.

Security and privacy assurances in TrustGuard are founded on a pluggable and simple

hardware element, called the Sentry. The key to TrustGuard lies in a physical gap between

the system and its external interfaces through which all external communications must pass.

The gap is bridged by the Sentry, a hardware component designed to ensure that all output

from the system is the result of correct execution of signed software. While containment

by the Sentry does not provide availability guarantees (for instance, a processor may fail

or halt as the result of an attack), it assures users that any output of the system is only

the result of the correct execution of trusted software, not the result of errors or malice in

hardware or interference by other software on the system.

TrustGuard utilizes a combination of instruction checking and cryptographic data in-

3
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Figure 1.1: (a) Prior Work: TrustGuard. A Sentry, with help from a modified CPU, prevents
erroneous (malicious or not) actions of untrusted hardware components from leaving the
system through containment. (b) This Dissertation: CAVO. CAVO expands containment to
the whole system, both hardware and software, and can protect existing systems. Proposed
advances enable less than 10K LoC to protect more than 500M LoC.

tegrity assurance (via a Merkle Tree) to ensure correctness of output with respect to the

specifications of the host instruction set architecture (ISA). TrustGuard consists of a con-

ventional processor with modifications to communicate execution information to the Sen-

try, the Sentry itself, and the interface between these two chips. The goals of prior research

were to investigate the feasibility of having a pluggable Sentry, whose design is optimized

for simplicity and security, provide system containment for a modern complex system with-

out impacting its performance. This goal was achieved by leveraging the idea that the un-

trusted system can perform much of the dynamic verification work for the Sentry without

4



compromising security.

The Sentry’s simplicity and pluggability make it tractable for suppliers and consumers

to take additional measures to secure it using approaches such as formal verification, super-

vised manufacture, and supply chain diversification. Significantly, a simple Sentry running

at a fraction of the clock frequency of the untrusted processor had only an 8% impact on

system performance and energy consumption [54, 120]. These properties of the Sentry

make the TrustGuard approach feasible for use in systems designed with Sentry support

from the start (§2.3).

1.2 This Dissertation: CAVO

This dissertation generalizes TrustGuard’s concept of containment to a broader, more prac-

tical, and effective Containment Architecture with Verified Output (CAVO) model. CAVO

addresses two critical limitations of TrustGuard. First, CAVO is machine-architecture inde-

pendent and thus is able to protect existing commodity systems. The CAVO model frees the

Sentry from direct coupling to the customized CPU in TrustGuard, replacing it with effi-

cient run-time support in software, thus removing the dependence on customized hardware.

Second, CAVO generalizes the hardware protection from TrustGuard to provide protection

for applications, thus enabling full system containment. In doing so, CAVO reduces the

trusted code base from the entire application stack in TrustGuard to small per application

Dynamic Specification Checks (DSCs). To encourage adoption, CAVO must be flexible and

cause as little disruption as possible for all involved actors, including hardware designers

and manufacturers, software developers, and end users. Several key ideas have improved

the coverage and effectiveness of the CAVO model, as shown in Figure 1.1(b) and described

below.

The CAVO model is designed to provide practical security benefits through containment

for existing systems. For CAVO to be machine-architecture independent, the Sentry must

5



not depend upon the custom processor and architecture in TrustGuard. To decouple the

Sentry, this dissertation proposes moving the modified processor functionality that supports

the Sentry into software. Removing the need for the modified processor allows the Sentry

ISA to be independent of the host system, thus allowing the Sentry to have a simple RISC

ISA but still be able to protect systems with complex performance and legacy focused ISAs,

such as the ubiquitous x86-64 ISA.

In the same way that the Sentry serves as a small, trusted verifier for a large amount

of untrusted hardware, CAVO provides developers a way to create a small, trusted DSC

to serve as the verifier for a large amount of application and system code. By combining

the software protection provided by DSCs with the hardware protections provided by the

Sentry, the CAVO model can provide an efficient and true bottom-up approach to device

security, starting from correct instruction execution and going all the way up to overall

system behavior.

DSCs dynamically validate that the results produced by untrusted code adhere to some

specification or policy (§3.2.2). This allows developers to reduce the amount of trusted

code from all software (including applications, libraries, OS, and kernel) to only the DSC,

which makes formal verification of the security critical components much more tractable.

This dissertation presents a programming model for CAVO that allows developers to easily

create small DSCs for their systems. For example, the prototype key-value DSC presented

in Chapter 6.1 was written in just ∼3K lines of code (LoC) using the CAVO programming

model. When combined with the Sentry’s ∼4K lines of RTL, CAVO protects a database

system containing over 500 million LoC using only ∼7k trusted LoC. Additionally, Sentry

verification is a one-time cost as its design is independent of applications, not just host pro-

cessor type. DSCs are ideally designed to protect a general protocol or class of application,

and thus could be reused for many different applications and implementations.

The CAVO model is composed of several flexible and exchangeable components. To

allow for environments with different levels of trust in components. Recognizing that some
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users may not require the extra security offered by the hardware Sentry, the CAVO archi-

tecture allows for multiple configurations to suit the users’ desired level of security. These

configurations could range from very high security (e.g., a military application where only

the Sentry is trusted) to lower security (e.g., a web server where a trusted machine per-

forms validation). Furthermore, given that developers need the freedom to prioritize their

resources to address security concerns, the programming model is flexible enough to sup-

port a wide range of DSC types (§3.2.2). Ideally, the DSC is a simple verifier that ensures

that all communication from an application is correct, such as in the proof-of-concept DSC

for Redis, a commercial grade key-value store (§6.1). For some applications, developers

may be more concerned with enforcing certain security policies, such as preventing data

loss or loss of cyber-physical control, with high assurance and low effort.

Finally, this dissertation presents a complete implementation of one prototype instanti-

ation of the CAVO model. This implementation includes: a library for the C programming

language that enables DSC creation; a modified toolchain that takes as input a Sentry C

program and outputs a native binary instrumented to communicate with a Sentry; a Sentry

Control runtime that manages the Sentry (analogous to the prior modified CPU function-

ality); and finally an evaluation of the system using a prototype implementation of the

Sentry on an FPGA card, implemented by Hansen Zhang [119]. Together, these compo-

nents enable a Sentry protected program to run on a commodity system, with the added

Sentry FPGA card. This prototype implementation was designed to show the capabilities

of CAVO rather than to test its performance limits. For example, the Sentry implementa-

tion is a simple, single pipeline version of the Sentry implemented on an FPGA running at

100 MHz, rather than the high performance, multi-instruction checking pipeline, fabricated

chip running at 1 GHz as envisioned in TrustGuard [54, 120].

In summary, the contributions of this dissertation are:

• Design of the Containment Architecture with Verified Output (CAVO) model, which

provides the flexibility to suit a desired effort-to-security trade-off.
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• CAVO programming model that allows for the creation of Design Specification Checks

(DSCs), which enable a small piece of trusted code to provide full system contain-

ment.

• A generalization of the Sentry design that enables it to protect existing commodity

systems and support Design Specification Checks.

• The first complete design and implementation of an instantiation of the CAVO model,

comprised of:

– Sentry library and programming model for C to produce DSCs and Sentry pro-

tected programs.

– Sentry software toolchain that takes a Sentry program and produces a native

binary.

– A software implementation of the Sentry Control.

– Enhanced design of the Sentry to handle untrusted values and IO.

• A formal model of the untrusted and trusted components.

• A proof that the trusted Sentry will indeed accept results from a correctly imple-

mented untrusted host.

• Validation of the CAVO Model through evaluation of a DSC designed to protect the

Redis key-value store on a Prototype FPGA Sentry Implementation.

1.3 Building CAVO

This dissertation presents the first complete CAVO design and implementation. It builds

heavily on prior work and current collaboration with other members of the Liberty Research

Group. The Sentry from TrustGuard [54, 120] is the basis on which the entire CAVO model

rests. A patent application for this work also exists [19]. I contributed to the original design

of the Sentry, including being the primary designer of the Sentry’s interactions with the

system through program loading and peripheral interaction.
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The prototype in this presentation relies on the prototype implementation of the Sentry

on a NetSume FPGA card. The design of which was jointly developed with but fully

implemented by Hansen Zhang [119], who also developed the parts of the Sentry Control

responsible for managing the Merkle Tree and interfacing with the Sentry. Finally, Sotiris

Apostolakis implemented the original Redis DSC, which I used as the basis for the Sentry

Programming Model version in this thesis, and the pragma parsing front end for the Sentry

Compiler. A patent application for the expanded CAVO model also exists [18].

1.4 Dissertation Organization

The rest of this dissertation is organized as follows: Chapter 2 discusses background infor-

mation that motivates the need for the CAVO model. Chapter 3 presents the threat model

and overall design of the CAVO model, including example DSC applications. Chapter 4

presents the details of the first full implementation of CAVO. Chapter 5 presents a simpli-

fied DSC language semantics. Chapter 6 evaluates the CAVO model using a DSC for the

Redis key-value store. Chapter 7 discusses other related work. Finally, Chapter 8 concludes

with a discussion of future research areas for the CAVO model.
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Chapter 2

Background and Motivation

Modern computer systems are built upon a layered architecture, typically abstracted as

software (including applications, libraries, operating systems, and hypervisors) comprising

of the top layers and hardware comprising the bottom layers. Upper layers often depend

on multiple layers below them for functionality. This means that the security of the upper

layers also depends upon the security of the lower layers. Dyer et al. note: “Applications

cannot be more secure than the kernel functions they call, and the operating system cannot

be more secure than the hardware that executes its commands.” [43] Thus, trust in a system

must ultimately start from the hardware and be built upon in software.

Given the difficulties in securing hardware (§7), many have take the approach of using

a minimal trusted hardware base to establish security in the system. The rest of this section

discusses three hardware TCB approaches: attestation, enclaves, and containment.

2.1 Trust through Attestation

One of the earliest forms of a hardware root of trust came through attestation [51], with

many modern systems implementing both local attestation, sometimes referred to as se-

cured boot, and remote attestation [111], for establishing the identity of remote hosts in a

network environment. The threat model for attestation assumes that there is a secure and
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trusted set of hardware and software that can be used to determine the level of trust in a

remote system. The hardware module typically contains signatures of the trusted hardware,

firmware, bios, bootloader, operating system, and applications. The hardware module can

then watch the boot process and ensure that only legitimate versions of these components

are used to establish the system.

While attestation can be useful, especially in relatively simple embedded and controlled

environments, it is simply not sufficient for establishing security in today’s complex com-

modity systems. Attestation can only prove that a particular piece of hardware or code is

in use, it cannot prove anything about their security or runtime behavior. Thus, trust must

be established through some other method.

Ideally, trust in these components would be based on formal guarantees of their cor-

rectness and security properties. Formal methods have made great strides and shown much

promise in both hardware and software. For example, recent hardware efforts have proven

simple in-order processors correct [81, 106]. Recent software efforts have formally verified

a C compiler [75], a simple operating system kernel [58, 67, 84], a deterministic random

bit generator [118], and an HMAC algorithm used for TLS [49]. Unfortunately, they are

still not widely adopted due to a variety of reasons, many of which revolve around the size

and complexity of modern code bases (§7). Note the change in perspective from 1989:

The state of the art of computer security today is such that reasonably secure

standalone operating systems can be built... [51]

to 2003:

...commodity operating systems are complex programs that often contain mil-

lions of lines of code, thus they inherently offer low assurance. Building sim-

ple, high-assurance applications on top of these operating systems is impossi-

ble... [50]
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2.2 Trust through Enclaves

Recognizing that it is too difficult to ensure trust in the entire system, others use a trusted

hardware module to build a secure enclave or trusted execution environment inside the

system. The threat model for enclave based security assumes that the trusted enclave is

secure, there is trusted code that will run within the enclave, and there is other potentially

malicious hardware and software on the system that will try to extract information from

the trusted code. Enclaves are typically used to secure some critical secret (such as crypto-

graphic keys) or to ensure the integrity and privacy of sensitive data during operations on it

in an untrusted environment (such as protecting medical records in a cloud environment).

Enclave approaches can appear as either security functionality provided by the processor

(such as Intel’s SGX [61] and ARM’s TrustZone [16]) or as secure co-processors (such as

the IBM 4758 [43], Trusted Platform Modules [10, 15], and Apple’s Secure Enclave [12]).

The first approach necessitates trusting a modern complex processor, a risky proposition

given their complexity. This risk has been demonstrated by the recent Spectre [69] and

Meltdown [79] vulnerabilities. In fact, some researchers have already found ways to apply

Spectre to attack SGX enclaves [37]. Co-processors typically come with a performance

overhead, as they are usually much slower than the main processor and require off-chip

communication, and fixed capabilities (such as encryption/decryption, remote attestation,

or secure key management).

While the enclave approach is designed to ensure integrity and privacy inside the en-

clave, it cannot provide any assurances for anything that occurs outside the enclave. In cur-

rent approaches, the trusted enclave is embedded within and surrounded by the untrusted

components. Thus, the privacy and integrity of any sensitive data that leaves the enclave in

an unencrypted state is at risk. Among other things, this means that the user cannot input

or view sensitive data without it being exposed to the untrusted parts of the system. Thus,

the enclave model is primarily useful for ensuring the privacy of data that never needs to

directly interact with the user, such as encryption keys, and for ensuring the integrity and
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privacy of computation in a shared environment, such as in the cloud.

2.3 Trust through Containment

In contrast to the enclave approach, prior work presented TrustGuard [54, 120]. The threat

model for TrustGuard assumes the following: there is a trusted hardware element, called

the Sentry; trusted software; the only communication path off of the system passes through

the Sentry; and that all other hardware and software in the system is potentially malicious.

Thus, in TrustGuard, the Sentry contains the untrusted system by sitting between it and its

external interfaces. Figure 2.1 shows the high-level design of the TrustGuard architecture.

To gain access to the system’s external interfaces, the untrusted system components must

prove to the Sentry that any output results from the correct execution of signed software.

TrustGuard is a prototype CAVO system designed to test the feasibility of using a sim-

ple pluggable Sentry to verify the execution of an untrusted system. TrustGuard supports

a uniprocessor system with trusted providers of signed software, including both the oper-

ating system and applications. The TrustGuard architecture includes a design of the only

trusted hardware component in the system, called the Sentry, and supporting changes to

the untrusted processor. TrustGuard demonstrated that a relatively simple and separately

manufactured Sentry can validate the execution of a system with a fast, complex processor

without a major impact to performance. Thus, TrustGuard proved the feasibility of the

CAVO model during steady state operation.

In TrustGuard, the processor sends a trace of its committed instructions’ results to the

Sentry. The instruction checking unit in the Sentry re-executes the instructions using its

own functional units to verify that the results produced were correct, as per the specifica-

tions for the instruction set architecture. Re-execution has the added benefit of protecting

against design errors or transient faults in the untrusted system, thereby adding an extra

layer of redundancy and reliability [20, 21, 22, 30, 56, 83, 98, 99, 102, 105, 115, 123].
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Additionally, the Sentry uses a Bonsai Merkle Tree-based memory integrity scheme [101]

to ensure that the data and instructions in memory that are sent by the processor are correct.

In TrustGuard, the untrusted processor is responsible both for sending execution trace

information to the Sentry for verification (§2.3.1) and for managing the Sentry’s instruction

and data caches (§2.3.2). By pushing these responsibilities to the untrusted components,

the complexity of the trusted Sentry’s design is significantly reduced (§2.3.3). To ensure

security, any values or control information sent by the untrusted system are validated before

any external communication is allowed.

2.3.1 Parallel Redundant Instruction Checking

By speculatively assuming that the processor correctly executes and forwards results, the

Sentry is able to break dependencies between instructions and validate multiple instructions

in parallel. Thus, the Sentry can utilize older, extensively tested, but slower functional unit

designs without materially impacting performance. This allows Sentry to be manufactured

at trusted fabrication plants using several-generations-old technology.

The Redundant Instruction Checking Unit (RICU) in the Sentry consists of multiple

pipelines, each with four stages. The first stage, Instruction Read (IR), retrieves the next

set of instructions to be checked from the Sentry’s instruction cache. The second stage,

Operand Routing (OR), determines and forwards the operands to be used for redundant

execution to the appropriate checking pipeline. The third stage, Value Generation (VG), re-

executes the instructions using Sentry’s functional units. Finally, the fourth stage, Checking

(CH), compares the result of re-execution to the value sent by the processor stored in the

Incoming ExecInfo Buffer to determine if the processor had reported the correct value.

The Sentry maintains a private shadow register file, which contains all the register values

corresponding to the verified instruction sequence, in order to facilitate checking.
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2.3.2 Memory Validation

In order to verify instructions, the Sentry needs to validate both the instructions and data

supplied by the untrusted processor. Rather than requiring a trusted copy of the entire

memory state of the program, TrustGuard uses a variant of the Bonsai Merkle Tree-based

cryptographic memory integrity scheme [101]. In this scheme, each data block (typically

a cache line) is protected by a Message Authentication Code (MAC) created by a keyed

cryptographic hash of the block, the address of the block, and a counter. The counter

represents the version of the block, and is incremented any time a new MAC is generated.

A tree of MACs is built over the counters to protect the integrity of the entire memory

space. To ensure security, the cryptographic key and root of the tree are kept only on the

Sentry.

To validate memory integrity upon loading a data block and its MAC, the MAC for

the block is recalculated (using the data value, address, and counter value) and compared

against the loaded value. A mismatch indicates an integrity violation in either the data or

the counter. To ensure integrity of the counter, the chain of MAC values to the root is

validated.

To reduce the amount of data communicated and number of validations required to

ensure memory integrity, prior work has proposed caching Merkle tree nodes in trusted

caches [101, 107]. When performing a load, only Merkle tree nodes that are not in the

trusted cache need to be validated. Further, MAC values and counters only need to be

updated upon eviction from the cache, rather than upon store. Thus, the Sentry contains

a mirror of the processor’s L1 cache. To reduce validation overhead, the Sentry contains

an independent cache checking unit. Upon receiving new cache values from the processor,

the Sentry speculatively assumes they are correct and proceeds with instruction validation

while the cache checking unit validates the memory integrity. The Sentry’s cache contains

an extra flag to indicate if the cache line has been validated. Results are released from the

Pending Output Buffer only when the instruction that generated it has been validated by
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both the cache checking unit and RICU.

2.3.3 Simplicity of the Sentry Design

The Sentry in CAVO must be simple and pluggable to ensure its trustworthiness through

all stages of its creation, from design to manufacturing to deployment. To keep the Sentry

simple and pluggable, TrustGuard enhances the processor to provide the Sentry with suffi-

cient information to reduce the difficulty in performing validation. This allows the Sentry

to be manufactured at trusted fabrication plants using several generations old technology.

The information sent by the processor is validated before being relied upon and thus does

not compromise security and privacy.

The design of the TrustGuard Sentry is comparable in complexity to various simple

in-order pipelined processor designs that have been formally verified previously [81, 106].

Additionally, as can be seen in Figure 2.1, the Sentry lacks a number of components that

are typically present in an out-of-order superscalar processor, such as: branch predictor,

register renaming unit, reorder buffers, L2 cache, instruction queue, dispatch unit, load/-

store queues, memory dependence predictor, and inter-stage forwarding logic. Since the

Sentry exclusively relies on information sent to it by the processor, including loaded cache

lines which are cryptographically protected and verified, it also does not need a memory

controller. Even some of the components on the Sentry that bear a similarity to components

on the untrusted processor are much smaller and simpler. Furthermore, a slower Sentry can

protect against incorrect program output in a system with a faster processor (§2.3.4). The

functional units on the Sentry can utilize older, extensively tested but slower functional

unit designs. Combined with the pluggability of the Sentry, this allows the Sentry to be

manufactured in a separate, trusted supply chain at closely controlled, domestic fabrication

plants.
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2.3.4 TrustGuard Performance

TrustGuard [54, 120] was modeled in the gem5 simulator using an out-of-order (OoO)

ARM-core based untrusted processor to perform the analysis. TrustGuard evaluated the

Sentry’s effect on the processors performance during steady state operation. Performance

was evaluated against 8 SPEC INT2006 and three SPEC FP2006 workloads. Figures 2.2−2.5

reproduced with permission from Ghosh [54, 120].

TrustGuard reported performance degradation from three sources. First, from an in-

crease in cache and memory pressure from the Merkle tree accesses. The untrusted proces-

sor performing the Merkle tree operations, without the Sentry, resulted in a geomean IPC

decline of 5.8% as seen in Figure 2.2. This comes from an average 91.0% increase in the

number of L1 cache misses and an average 55.7% more memory accesses.

The second source is from bandwidth stalls where the dedicated channel between the

processor and Sentry becomes saturated and the Sentry must wait for execution informa-

tion. When varying the bandwidth from 5, 10, and 15 GB/s TrustGuard reported a geomean

IPC decline was 21.1%, 8.5%, and 7.5% respectively, as seen in Figure 2.3. The majority of

the communication from the processor and Sentry comes from the Merkle tree operations.

Given that the processor only needs to send information on cache misses, programs with

good cache locality need significantly less bandwidth than those with poor locality. For

example, 445.gobmk had an L1 data cache hit rate of 66.6% and had bandwidth stalls for

20.3% of execution cycles while 456.hmmer had a cache hit rate of 99.1% and had band-

width stalls in only 0.0064% of execution cycles. All future experiments were performed

at a bandwidth of 10GB/s.

The final source is from the Sentry itself creating stalls by failing to check instructions

fast enough to keep up with the processor. TrustGuard reported two sets of experiments

to evaluate the Sentry’s performance. The first set of experiments varied the number of

instruction checking pipelines (ICPs) on the Sentry, while clocking the Sentry at 500MHz

(1/4th the clock frequency of the untrusted processor). As can be seen from Figure 2.4, as
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the number of ICPs on Sentry increased from 4 to 6 to 8, the untrusted processor experi-

enced a geomean IPC decline of 36.81%, 18.99%, and 12.94% respectively on different

SPEC benchmarks, compared to that on the untrusted processor without any TrustGuard

modifications.

Finally, TrustGuard reported results from experiments that varied the Sentry’s clock

frequency, using 8 ICPs on the Sentry. The Sentry’s throughput increased at higher fre-

quencies, as shown in Figure 2.5. Compared to out-of-order baseline, geomean IPC reduc-

tion on different SPEC benchmarks was 40.01% at 250MHz, 12.94% at 500MHz, 10.46%

at 750MHz and 8.77% at 1GHz. From this, TrustGuard showed that the Sentry can exist as

a separate chip that runs significantly slower than the host CPU and still achieve security

benefits with very little performance decline.
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Chapter 3

Towards a Practical Containment

Architecture

Security techniques must be practical to be adopted. To that end, this chapter presents

an enhanced design for building Containment Architectures with Verified Output (CAVO)

based systems. The design has been driven by the following guiding principles and key

insights:

1. A trustworthy system can be created using untrustworthy hardware and software.

2. For important economic reasons, a practical solution must address existing systems by

incorporating untrusted hardware and software components, representing decades of

development and refinement.

3. Trust should only be placed in components that are simple enough to be verified.

4. Containment can protect against potentially damaging actions by allowing only trusted

actions to have external effects.

5. Verifying the correctness of an application is often much easier than checking all of its

computation.

The design has been made flexible and incrementally adoptable so that the containment

model can ultimately be used in a variety of threat models, with different mixes of trusted
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and untrusted hardware and software components. For example, in some settings hardware

or an OS provided by a trusted source may be secure enough to be trusted, while in some

high security settings only components that can be formally verified are secure enough to

be trusted. This thesis considers one of the most restrictive threat models, where only the

Sentry and signed software are trusted, and notes where the design may be relaxed for less

secure settings.

3.1 Threat Model

CAVO ensures that only correctly executed signed software is allowed to communicate

externally. In this way, CAVO ensures that no errant or malicious process or hardware is

able to communicate, nor affect the communication of signed software.

The only trusted hardware component in CAVO is the Sentry. All other hardware com-

ponents (e.g. processor, memory, and disk) are considered untrusted. These untrusted com-

ponents have the potential to produce incorrect results, either through flaws in their design

or malicious tampering at any point during the design, manufacturing, or deployment of

the components. While the Sentry ensures integrity of execution that leads to communi-

cation, it does not provide availability guarantees. CAVO requires that all communication

channels out of the system pass through the Sentry.

Any software that is signed as trusted for verification by the Sentry is considered trusted

and will be able to communicate out of the system. Establishing trust in the signed soft-

ware would ideally be done through formal methods, but is ultimately the responsibility

of the software developer. CAVO will ensure that the software is executed faithfully to its

specification. Unsigned and untrusted software is able to run on the untrusted processor.

However, any effects of unsigned software must be explicitly verified by trusted software

before being allowed to leave the system.

Adversaries are assumed to not be able to physically bypass or tamper with the Sen-
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try. CAVO does not address leakage through the Sentry via covert or side channels (e.g.

encoding information in energy usage, long duration timings, availability failures).

3.2 CAVO

The goal of CAVO is to provide users strong privacy and integrity guarantees for their sys-

tem’s communication. This guarantee relies only on a small hardware and software trusted

computing base. This is accomplished by separating the system into trusted components

(whose purpose is to ensure the security of the system) and untrusted components (whose

purpose is performance and functionality). The work of the untrusted components is ulti-

mately validated by trusted components before leaving the system. The trusted components

are divided into hardware and software components. First, software Dynamic Specification

Checks (DSCs) ensure that any communication that leaves the system adheres to the in-

tention of the programmer. Next, the hardware Sentry ensures that DSCs are faithfully

executed by the hardware.

While TrustGuard [54, 120] served as an excellent proof of concept for containment

architectures, this thesis improves upon the design in two major ways. First, it presents a

generalized framework that can be used to build CAVO systems without requiring substan-

tial hardware modifications to the system under protection, such as the specialized proces-

sor and custom bus to interface with the Sentry required by TrustGuard. Second, it gives

developers the option to use trusted code to verify the execution of untrusted software, thus

enabling a reduction of the size of the trusted code base. This protection from untrusted

software is analogous to the way that the small, trusted Sentry can ensure correctness of

execution of a large amount of complex, untrusted hardware.
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Figure 3.1: (a) TrustGuard, and (b) This Thesis: The CAVO model, containment made
suitable for commodity systems and reducing the amount of trusted software in the system.

3.2.1 CAVO Infrastructure

One key idea behind CAVO is that the Sentry-enabling functionality in the modified pro-

cessor from TrustGuard can instead be performed by logic implemented in software. This

is shown in Figure 3.1, where the supporting functionality provided by Modified Proces-

sor from (a) is replaced by software components in the DSC and the Sentry Runtime in

(b). Eliminating the need for a custom processor to support the Sentry allows the Sentry to

become independent of the host processor ISA and to protect commodity systems.

In TrustGuard, the Modified Processor was responsible for sending execution results to
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the Sentry, managing the Sentry’s instruction and data caches, and performing the Merkle

Tree operations. While a Sentry Runtime can be used to manage the caches and Merkle

Tree, there are many ways to extract and forward execution results. Some potential infras-

tructures considered were: an emulator / virtual machine approach, where DSCs compiled

for the native Sentry ISA (SISA) could execute inside the emulator and the emulator would

automatically forward results to the Sentry; an interpreter based approach, where a mod-

ified script interpreter could execute trusted scripts and forward results to the Sentry; and

finally a compiler based approach, where Sentry assembly could be translated for native

execution execution by the host and instrumented to forward results to the Sentry.

This dissertation presents an infrastructure using the compiler approach because it has

several key advantages. First, a compiler-based approach should suffer from less perfor-

mance penalties than the other approaches. Next, many of the technical challenges involved

in the compiler-based approach are similar to the challenges faced by the other approaches.

Thus, creating a compiler-based infrastructure should make it significantly easier to cre-

ate an emulator- or interpreter-based approach in the future. Finally, a compiler-based

approach opens a path for future research into using classical or developing new optimiza-

tions that improve performance and security further. For example, reverse program slicing

(which calculates the backwards trace from an output operation) could be used to reduce

the overhead of the Sentry’s validation by only checking instructions that affect output.

Sections 4.2 and 4.3 discuss details of the software toolchain and runtime, respectively.

Finally, there is the integration of the Sentry with the commodity system, rather than the

custom integrated Sentry from TrustGuard. The Sentry could exist in a number of potential

form factors, such as a PCIe network card, USB “bump in the wire,” or in rack/datacenter

appliance. However, to appeal to lower security use cases, the verification element could

be simply a trusted system or a virtual machine / hypervisor. The programming model and

software toolchain should support any physical manifestation of the verification element.

This dissertation makes use of a prototype Sentry on an FPGA PCIe network card [119]
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due to its ease of testing both the network card and appliance type manifestations.

3.2.2 Dynamic Specification Checks

The Sentry can ensure that only correctly executed signed software is allowed to commu-

nicate. However, the Sentry cannot verify that the signed software itself is correct, namely

free of vulnerabilities and bugs. Thus, CAVO allows for custom checking functionality,

either through libraries or custom written Design Specification Checks (DSCs), thereby

reducing the trusted code base to just the DSC and Sentry libraries, rather than the OS,

libraries, and whole applications as in TrustGuard.

Ideally, DSCs are small pieces of verification code that ensure a dynamic specification

for an entire untrusted system. In such cases, the DSC dynamically validates all values

generated by the untrusted system that are to be communicated externally. For example, a

database DSC can ensure that all database requests are serviced with only correct responses

by using authenticated data structures to check the integrity of all database operations [108].

In some cases, it may be more desirable for a DSC to enforce a particular security policy

for the application rather than ensuring correctness. Since simple and flexible DSC creation

is the key to its adoption, CAVO seeks to give developers flexibility in implementing DSCs

to suit their needs. Policy enforcement also serves as a powerful tool to allow developers

to gain customized security assurances, with relatively low effort, that is more flexible than

the correctness specification of their programs.

DSCs facilitate formal verification by drastically reducing the size of the trusted code

base, analogous to the way that the Sentry greatly reduced the amount of trusted hard-

ware. Additionally, separating the trusted validation code from the untrusted, performance

critical, application code allows the validation code to be written in a language that facili-

tates formal verification while the performance critical code can be written in language that

focuses on performance.

Furthermore, DSCs allow for decreased runtime verification overhead. For example, it
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is much easier to verify that a sorting algorithm has executed correctly than it is to actually

perform the sort. By verifying rather than re-executing, CAVO reduces the amount of

validation work the Sentry must perform and also benefits from the additional assurances to

program correctness through implementation diversity. Additionally, developers can write

their programs such that the untrusted code performs additional work to reduce the amount

of work done by the DSC to perform validation, analogous to the way that the untrusted

processor in TrustGuard performed additional work to facilitate validation performed by

the Sentry.

DSCs are flexible enough to enforce a wide range of specifications and policies. How-

ever, all DSCs must meet the following requirements:

• The correctness of the DSC in implementing its specification or policy must be en-

sured as it is critical to the security of the system. Thus, DSCs should be simple

enough to be thoroughly tested or formally validated.

• A DSC must ensure that all values returned from untrusted execution are validated

before being trusted by other trusted code that uses those values.

• Upon detecting a violation, a DSC must trigger an alert or take remedial action.

Example Applications

Table 3.1 summarizes various types of DSCs each with different trade-offs between levels

of protection and developer effort. At the base level, a developer that simply wishes to

treat their application as trusted can do so and still gain the security properties guaranteed

by the Sentry, namely protection from malicious hardware and interference from untrusted

applications. Similarly, programs that have already been formally verified, such as Comp-

Cert [75], Milawa [38], or FSCQ [31], can be signed and executed with the security guar-

antees offered by their verification and those of the Sentry. Below are some example areas

where DSCs can be used to ensure correctness in programs or enforce security properties.
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Protection Type Effort Protection Examples

1. Sentry Only None
Malicious HW; and
Interference from
malicious programs

Any Program

2.
Algorithmic
Verification Low

Protections from (1); and
Ensure correct output of algorithm
through verification

Sort; SAT;
Gradient Descent;
Euler’s Method;
Newton’s Method

3.
Security Policy
Verification Low

Protections from (1); and
Ensure security policy

Data Loss Prevention;
Login Restrictions;
Mechanical Protections
for Physical Systems

4.
Specification
Verification Medium

Protections from (1); and
Ensure correct output according
to specification

Database Operations;
Compiler Transformations;
Circuit Equivalence Checking

5.
Full Program
Verification High

Protections from (1); and
Ensure correct execution
of entire program

CompCert;
Milawa;
FSCQ

Table 3.1: Various levels of protection offered by the Sentry depending upon the level of
developer effort in DSR creation and program verification.

Algorithmic Verification There are many algorithms that are easier to validate than to

execute. Developers may wish to protect such algorithms with a small DSC to ensure

proper execution of a critical algorithm in their code. Such examples not only include

straightforward examples such as sorting algorithms, but also for many mathematical algo-

rithms. For example, it would be easy for a validator to execute a few extra rounds of an

iterative algorithm, such as gradient descent or Newton’s Method, to prove convergence.

Some algorithms may require some additional work on the part of the solver to facilitate

efficient verification by a validator. Verified SAT solvers may be the most well known such

algorithm [17, 121]. In verified SAT solvers, witnesses returned from an untrusted solver

allow a trusted core to verify solutions. Thus, a developer may have the untrusted SAT

solver code produce a witness (“unSAT core”) to reduce the amount of work performed

by the small DSC SAT validator. Verifiable computing [114], where an untrusted machine

computes a result and a proof that the result is correct, is another example of this class of

algorithm.
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Policy Enforcement In some cases enforcing a security policy may be more desirable or

feasible than enforcing a particular program specification, as noted by work on reference

monitors [44]. For example, many companies are highly concerned with data loss preven-

tion [80, 91, 116] and preventing conflicts of interest [29]. Thus, ensuring correct operation

of a database may not be sufficient. For example, companies are highly concerned that their

database server doesn’t leak private data (such as passwords and credit card information)

even if such an operation is correct with respect to the database specification. Thus, a pol-

icy based DSC for such a database might completely restrict the external release of certain

rows or only allow their release under certain conditions.

Similarly, many physical devices are directed by computerized control systems. Such

systems usually take in input from physical sensors, perform some computation, and output

control signals to manipulate robotic devices. In such cases, it may be more desirable to

have a DSC prevent certain failure conditions, such as spinning a centrifuge too quickly

or accelerating a car to unsafe speeds, rather than validating computation on potentially

imperfect input information.

Specification Verification Many server-client type applications have a clear specification

for the operations of the server. For example, databases have a clear specification relating

their input to their output. The first specification DSC that integrates with the Sentry val-

idates execution from a commercial grade database server, Redis [97]. The DSC code

validates database operations, similar to prior work in outsourced databases [42, 76, 77, 85,

86, 90, 117, 124]. A more detailed discussion of the Redis DSC is found in Chapter 6.1.

Additionally, there are other application types that have a clear and easily verifiable

specification for the relationship between their input and output. One classic example is in

translation validation, where the input and output should be functionally equivalent. For

such transformations, it is typically easier to verify the equivalence of the input and output

rather than try to determine the correctness of the transformation directly. Classic examples
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include compiler optimizations and register allocation [87, 100, 103]; circuit equivalence

checking [26, 71]; and High-Level Synthesis tools, such as C-to-RTL translation [13].

3.3 First CAVO Prototype

For this thesis, I chose to create a CAVO prototype utilizing a compiler-based toolchain

capable of producing programs consisting of untrusted native code and protected Sentry

code. These programs are capable of communicating to an FPGA-based Sentry [119].

This system seemed to give maximum flexibility in not only showing the capability of the

system, but also gave opportunity for future research into improving and optimizing the

system.
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Chapter 4

CAVO Prototype Implementation

This work introduces the first prototype implementation of a full CAVO system and re-

lies upon an FPGA Sentry implementation developed by Hansen Zhang [119]. Figure 4.1

shows a simplified overview of the system. There are three main phases that will be dis-

cussed in more detail in this chapter. First is writing a program in the CAVO programming

model (§4.1), which divides an application into trusted and untrusted code. In this model,

an application starts in trusted code and can then invoke untrusted code to perform work

on its behalf. Upon receiving a result from the untrusted code, the trusted code will verify

the received results to ensure that what the untrusted code has produced is acceptable. Ad-

ditionally, the model contains a library that allows the programmer to direct the Sentry to

perform I/O operations and use select Sentry functionality.

The second component is the software toolchain (§4.2). The software toolchain takes

as input both the trusted and untrusted code. The trusted code is sent through the CAVO

Compiler, where it is compiled down to the Sentry Instruction Set Architecture (SISA).

This is used to generate a trusted Sentry Binary, with matching signature, and an equivalent

C program with instrumentation to forward the results of the untrusted execution of trusted

code to the Sentry. These are then passed to the native Host Compiler, along with the

untrusted code, to create an executable binary for the host system.
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Figure 4.1: Simplified view of the first prototype implementation of a CAVO based system.

Runtime verification (§4.3) is the final major phase. At runtime, a Sentry Loader first

loads the Sentry Binary into the Sentry’s memory space and verifies that the binary cor-

rectly matches the signature. The program may then begin execution. During execution,

the instrumentation for trusted code streams results to the Sentry Control as well as re-

ceiving the results of any external communication. The Sentry Control is responsible for

managing all of the functionality previously handled by the untrusted processor in Trust-

Guard, namely managing the Sentry’s cache, Merkle Tree data (including the MACs, block

counters, and the tree of MACs §2.3.2), and streaming results to the Sentry. The Sentry

Control can either be a daemon running on the untrusted machine, which is the current im-

plementation, or as an untrusted hardware component. Finally, the Sentry itself validates

instructions and communicates with the external interface.

In this model, only the programmer’s trusted code, the CAVO compiler, and the Sentry

are trusted. The CAVO compiler takes the programmer’s trusted code and produces a Sentry

Binary protected by a signature. This signature is checked by the Sentry during program

loading (§4.3.1). Thus, any malicious modifications during either compile or runtime by
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any of the other components, including the native compiler or processor, will be detected,

either through a signature mismatch on the Sentry Binary or as a runtime verification failure

detected by the Sentry.

4.1 Programming Model

The goals of the CAVO Programming Model are to ease the creation of DSCs and enable

trusted communication through the Sentry. For the purposes of this dissertation, the pre-

sented model uses C for both the trusted and untrusted languages, though any language

is extendable in this way. Future implementations of CAVO may use a language whose

programs can be formally verified more easily.

4.1.1 Supporting DSCs

As discussed in Section 3.2.2, one of the core ideas of CAVO is to allow a small, trusted

DSC to validate the execution of a large amount of untrusted code. Thus, DSCs require the

following mechanisms:

• demarcate trusted and untrusted code;

• call into untrusted code from trusted code;

• receive untrusted values from untrusted execution; and

• trigger an alert if validation fails.

The first step in the process of writing a CAVO-protected program is to determine what

sections of code will be trusted and what sections will be untrusted. Program control must

start in trusted code to give the program a trusted basis from which to call into untrusted

code. Additionally, all external communication must originate in trusted code so that it may

be validated by the Sentry. Untrusted code sections could be used to perform operations

that do not lead to output, such as logging, and operations whose results can be validated.

Since the execution of untrusted code is not directly validated by the Sentry, untrusted code
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1 typedef struct sqrtVals{
2 double val;
3 double res;
4 } sqrtVals_t;
5 const size_t sz = sizeof(double);
6

7 int main(int argc, char *argv[]){
8 uint64_t sockfd;
9 double x, res;

10

11 TG_init_server(LST_PORT);
12 while(1){
13 TG_recvAny(&sockfd, &x, sz);
14 res = sqrt(x);
15 TG_send(sockfd, res, sz);
16 }
17 return 0;
18 }

20 #pragma TrustGuard(UNT_EXEC)
21 void sqrtUnt(void *arg);
22

23 void sqrtChk(sqrtVals_t *arg){
24 double x = arg->val;
25 TG_getUntVal(&(arg->res), sz);
26 if(fabs(x*x - *arg->res) > EPS){
27 TG_alert(-1);
28 }
29 }
30

31 double sqrt(double x){
32 sqrtVals_t arg;
33 arg.val = x;
34 sqrtUnt(&arg);
35 sqrtChk(&arg);
36 return arg.res;
37 }

Figure 4.2: Example of a square root server written with the CAVO programming model.
The function sqrtChk is a DSC that validates that the value returned from untrusted
computation is the square root of the argument by ensuring that the square of the argument
less the returned value is within some epsilon value, rather than recomputing the square
root calculation.

cannot directly communicate externally. DSCs must be written to validate the results from

untrusted code before the results are used to generate external communication.

These concepts are demonstrated with an example Square Root Server, seen in Fig-

ure 4.2. In this example, the actual square root functionality is considered untrusted and

performed by the host system, since square root is both a complicated and costly proce-

dure. The untrusted square root operation is validated by a relatively simple sequence of

multiplication, subtraction, and comparison. The results from the untrusted square root

are validated by the DSC before being used by the rest of the program. Untrusted com-

putations and DSCs for real programs will typically be more complex, but these simple

examples serve as instructive proxies.

The Square Root Server in Figure 4.2 accepts incoming connections (line 11), receives

a value (line 13), passes the value to untrusted code to compute its square root (line 34),

uses a DSC to validate the result (line 35), signals an alert if the DSC fails (line 27), and
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sends the result back to the client (line 15). The networking components will be discussed

further in the next section.

As the untrusted code is not executed by the Sentry, the programmer needs to indicate

which functions call into untrusted code so that the toolchain will not generate such calls in

the trusted code. This is accomplished by the TrustGuard(UNT EXEC) pragma shown

on line 20, which is used to indicate that the sqrtUnt function is untrusted. The pragma

ensures that the untrusted function is called only on the host and is not executed by the

Sentry, which is accomplished by emitting any calls to such functions with the call.unt

pseudoinstruction.

The signature for untrusted calls, a void pointer argument and no return value, is shown

on line 21. The argument to the function should be a user-defined structure, shown in this

example on lines 1-4, that contains all arguments and return values. Packing the arguments

and returns into a single structure simplifies the code emitted by the toolchain. Additionally,

structuring the untrusted calls in this way easily allows for future extensions to execute the

untrusted calls in a parallel thread. This signature was modeled after the signature used by

pthread create.

After returning from the untrusted call to sqrtUnt, the result from the untrusted code

is stored in arg→res. This value is currently untrusted, since it was generated by untrusted

code, and not registered with the Sentry, since the Sentry has not yet seen this value. Thus,

its first use in trusted code must be to register them with the Sentry using a DSC. Reg-

istering the values with the Sentry allows it to protect them from any future malicious or

erroneous interference by the untrusted system, in the same way that the Sentry protects

values generated by trusted code.

Lines 23-39 show the sqrtChk DSC example. Note that the signature of the DSC is

not required to be the same as that of the untrusted calls, but untrusted values should only

be passed by reference to the DSC to avoid a use of the value before registration with the

Sentry.
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Value registration is accomplished by the TG getUntVal function. TG getUntVal

takes the address and length of an untrusted value in order to emit special instructions

(r.unt) to send these values to the Sentry for registration. It is important to note that

after this step, the values from untrusted execution are now part of the Sentry’s integrity

structure but have not yet been validated. Thus, the programmer should take great care to

ensure that any such values do not escape from the DSC without proper validation.

After loading the untrusted values into the Sentry, the DSC should validate the val-

ues returned from the untrusted code in some way. The sqrtChk DSC ensures that the

received result is indeed the square root of the argument x by ensuring that the result of

subtracting the value provided by the untrusted code from the square of x is less than some

epsilon threshold. If the result passes this check, it is considered correct and returned to the

program. If it does not, then the special TG alert function is called. TG alert (which

converts to the SISA instruction alrt) raises an alert in the same way that the Sentry alerts

if program execution validation fails.

Currently, an alert will simply halt the program. Future versions of the Sentry may

make this a user defined parameter, with potential actions including halting the program,

continuing in a special error handler, or halting after some number of failures. Other DSCs

may be able to take some level of remediation to correct or repair the result returned by

the untrusted code. The semantics of the programming model are discussed further in

Section 5.

4.1.2 Network Communication

A custom networking library is used to communicate through the Sentry due to its modified

networking behavior. To simplify the Sentry, all communication occurs via explicit get

and put communication instructions. To remove the nondeterminism inherent in commu-

nication and reduce the amount of communication flowing through the Sentry, the TCP/IP

stack exists on the other side of the Sentry from the host machine. These design decisions
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are discussed in further detail in Section 4.3.3.

The library includes standard networking calls such as connect, select, send,

recv, and close. Additionally, as all DSCs written thus far have been for server type

programs, specialized functions have been written to make such server programs easier

to write and more efficient. These include the calls seen in the example in Figure 4.2.

TG init server initializes the server to listen for any incoming connections on the

specified port. TG recvAny accepts communication from any incoming communication

and stores the descriptor in the first argument. Additionally, there is a TG recvRdy()

function that checks to see if any incoming data has been received and is waiting for pro-

cessing.

4.2 Compiler Based Software Toolchain

The toolchain is responsible for converting the trusted and untrusted source code of an

application into a native binary and the signature-protected Sentry binary. The native binary

is augmented with instrumentation to send results from the untrusted execution of trusted

code to the Sentry. Figure 4.3 shows the basic flow of the toolchain.

CAVO Toolchain

Sentry 
Compiler

Native Binary 
w/ 

Instrumentation

Sentry Binary
Signature

Application

DSC Sentry 
Assembler

Host 
Compiler

Sentry 
Linker

SISA	Assembly

Annotated	C

Native	Binary

Assembled	SISA

Untrusted 
Component

Trusted 
Component

Code

Legend

Sentry 
Libraries

Figure 4.3: CAVO Software Toolchain that takes as input the trusted and untrusted program
source and generates the instrumented native executable along with the signature-protected
Sentry binary.
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The developer first passes the trusted and untrusted source files into the toolchain. Then

any trusted source files, including the DSCs and Sentry Libraries, are passed into the Sentry

Compiler, which is a modified version of the RISCV LLVM compiler [9]. The trusted code

is then compiled down to the native SISA assembly. SISA is a simplified version of RISCV,

consisting of only the basic memory, arithmetic, logical, branch, and jump instructions.

RISCV was chosen as the basis for the Sentry ISA due to its open design and ongoing

work for a formal specification and verification. It is additionally augmented with the

Sentry instructions get, put, r.unt, and alrt and the pseudoinstruction call.unt

discussed previously.

The resulting assembly is then passed into the Sentry Assembler, an augmented version

of RISCV GAS. The assembler produces two results. First, a functionally equivalent ver-

sion of the program in C (further discussed in §4.2.1). This type of emulation is similar to

the binary translation used in other projects, such as the PowerPC to x86 translator and the

Itanium Execution Layer [24]. This C code is additionally augmented with instrumenta-

tion to send execution results to the Sentry and is passed to the system’s native compiler to

produce a native binary. The assembler also passes an assembled version of the program to

the Sentry Linker.

Finally, the host compiler passes the native binary to the Sentry Linker. The linker then

performs final linking on the assembled SISA to ensures that the addresses of any objects

that are visible to both the trusted and untrusted pieces of the program are aligned. The

linker then signs the resulting Sentry Binary with its private key to ensure that it is not

tampered with and produces the final combined native and Sentry binaries. Note that the

Host Compiler does not need to be trusted in this setup as all operations it performs are

validated through the Sentry’s re-execution of the trusted and protected Sentry Binary.
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1 sqrt:
2 ...
3 call.unt sqrtUnt
4 ...
5

6 sqrtChk:
7 ...
8 r.unt ft1, 0(a1)
9 fsd ft1, 0(a1)

10 ...
11 fld fa0, 0(a0)
12 fmul ft0, fa0, fa0
13 ...
14 blt ft0, ft1, l1
15 l0:
16 ...

(a)

1 sqrt:
2 ...
3 sqrtUnt(a0);
4 ...
5

6 sqrtChk:
7 ...
8 ft1 = *(0+a1);
9 sendToSentry(ft1);

10 *(0+a1) = ft1;
11 sendToSentry(ft1);
12 ...
13 fa0 = *(double *)(0+a0);
14 sendToSentry(fa0);
15 ft0 = fa0 * fa0;
16 sendtoSentry(ft0);
17 ...
18 if(ft0 < ft1) {
19 sendtoSentry(0);
20 sendtoSentry(Sentry_l1_addr);
21 goto l1;
22 } else {
23 sendtoSentry(1);
24 }
25 l0:
26 ...

(b)

Figure 4.4: Example showing the conversion of parts of the DSC from Figure 4.2 into SISA
(a) and the equivalent C with instrumentation (b). Note that results are sent in (b) to break
depenencies and enable parallel checking within the Sentry. SISA assembly instructions:
call.unt= call untrusted function;
r.unt= receive untrusted value;
fsd= floating point store double;
fld: floating point load double;
fmul= floating point multiply;
blt= branch less than
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4.2.1 Sentry Emulation and Program Instrumentation

To enable the protection of commodity systems, the Sentry Assembler converts trusted

Sentry code to an instrumented C version that can be compiled for native execution as

well as an assembled SISA version. This involves three primary functions. First, inserting

instrumentation to send results to the Sentry via the helper function sendToSentry.

Second, converting SISA instructions into their equivalent C codes, so that the C code can

then be compiled to a native binary. Third, untrusted calls are properly executed in the

untrusted code but not executed by the Sentry. Figure 4.4 shows a snippet of the DSC from

Figure 4.2 in SISA (a) and instrumented C (b).

Instruction conversion falls into two main categories for standard instructions: control

flow changing instructions and all other instructions. To maintain its simplicity, the Sentry

has very simple logic to gather instructions, with control flow changing instructions being

handled specially. Control flow instructions send a special status bit to indicate if the jump

was taken (0) or not taken (1). If the jump was taken, the jump target address is additionally

sent [54, 120]. This can be seen in Figure 4.4, where the blt in (a) is converted into the

if/else block in lines 18-24 of (b). All other normal instructions are converted in the

logical manner to maintain their functionality. For example, the fmul instruction in line

12 (a) is converted into the multiply expression in line 15 (b).

The special pseudoinstruction call.unt indicates to the Sentry Assembler that the

function call should be executed only by the untrusted host and not by the Sentry. Thus, the

instruction is converted into a standard function call in the C version and is totally omitted

from the assembled SISA version. This can be seen in Figure 4.4, where the call.unt

sqrtUnt call in line 3 (a) becomes the simple function call sqrtUnt(a0) in line 3 (b).

This also demonstrates how the requirement for all untrusted calls to take a single argument

simplifies the C code generation of the Sentry Assembler, the function call generated by

call.unt always has the single a0 argument.

Of final note is the r.unt instruction, which is converted frmo the TG getUntVal
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function. This instruction causes the untrusted host to load the value from the specified

address into the specified register. However, as this value originated from untrusted execu-

tion, the Sentry simply accepts the incoming value from the Incoming ExecInfo Buffer and

stores this value into the specified register. This value should then be validated by the DSC

to ensure that an acceptable value has been sent by the untrusted host.

4.3 Runtime Verification

The final phase of CAVO is the execution and runtime verification of a protected program.

Figure 4.5 shows the current implementation of the CAVO Runtime Verification system. In

this system, both the application under protection and the Sentry Control run as separate

processes in the commodity host system. The Sentry is instantiated on an FPGA on a

PCIe network card[119]. A Linux system is also instantiated on the FPGA using a softcore

system, i.e. the full system is implemented in FPGA logic. The softcore is used to control

the external Ethernet interface and run the TCP/IP server that the Sentry communicates

through.
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Figure 4.5: CAVO Runtime verification for a system with the Sentry on an FPGA PCIe
network card.

When a program is launched, the Sentry Program Loader, discussed in more detail

in the next section, first sends the Sentry Binary to the Sentry Control. Next, it loads
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the Sentry Binary into the Sentry’s memory and Merkle tree and validates its signature.

After successfully loading, the program then executes. The instrumentation inserted by the

toolchain ensures that the result from every trusted instruction is sent to the Sentry Control

process through the IPC channel 1 .

The Sentry Control is responsible for delivering results to the Sentry and managing the

Sentry’s cache system. The Sentry Control delivers these to the Sentry through the PCIe

driver 2 . The Sentry Control also receives all results of cache evictions from the Sentry

through the PCIe Driver 3 . The Sentry itself validates all results received through its

functional unit re-execution.

The Sentry sends the results of all successfully validated put instructions to the soft-

core through an internal FPGA buffer 4 . The softcore accepts or creates TCP/IP con-

nections according to the commands received through the Network Communication library

discussed in Section 4.1.2. All inbound communication is sent via an internal FPGA buffer

to the Sentry 5 , where it waits until a get instruction captures it. Additionally, inbound

communication is sent along the bypass channel 6 so that the application can execute

get instructions locally without waiting for the Sentry. The results of get instructions

are later validated against the value received by the Sentry, thus ensuring that the untrusted

system cannot manipulate received values that it receives through the bypass.

4.3.1 Program Loader

The program loader is responsible for loading the trusted binary into the Sentry’s memory

and Merkle Tree, and validating the binary’s signature. To load the binary into the Sentry’s

memory, the program loader itself must execute as trusted thus creating a bootstrapping

problem. One possible solution is for the manufacturer of the Sentry to generate the Merkle

Tree metadata for the program loader upon creating the Sentry’s private key. The root of

this tree will then be stored in a private static register on the Sentry. Upon initialization, the

Sentry will load this value into the Merkle Tree root register. Additionally, the Merkle Tree
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Figure 4.6: Encoding for Sentry Binary format

node values will be stored as part of the Sentry Control so that every program will start

with the program loader already loaded into memory. The loader additionally contains the

public key for the trusted software source.

The program loader will then read the Sentry Binary as untrusted data and store it

into memory. The Sentry Binary format, shown in Figure 4.6, is designed to easily be

looped over and read by the program loader. While loading the binary, the program loader

also generates the hash of the binary. Upon fully loading the binary, the loader decrypts

the 16-byte hash using the trusted source’s public key and compares it with the generated

hash value. If the values match, the loader jumps to the start address and begins program

execution. If the values do not match, an alert is triggered. Once the program is validated

and loaded into memory, it will be protected from erroneous or malicious modification by

the Sentry’s memory protection provided by the Merkle tree.

4.3.2 Sentry Control

The Sentry Control (SC) handles all communication with and control of the Sentry, func-

tionality previously handled by the modified CPU in TrustGuard [54, 120]. The SC cur-

rently runs as a daemon process on the host machine and communicates to the application

process via a Unix socket. Algorithm 1 shows the basic control algorithm for the Sentry

Control.

The SC starts by sending a reset command to the Sentry that causes it to load the default

root value into the Merkle Tree Root Register and to flush its cache. After receiving the

program binary from the application, the SC goes into the main loop and waits to receive

results. Upon receiving a result, the SC determines what instruction this result should have
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Algorithm 1: Sentry Control algorithm
1 resetSentry()
2 prog = receiveProgram()
3 PC = 0
4 while not exited do
5 res = receiveResult()
6 inst = prog(PC)
7 if notCached(inst) then
8 update instruction cache line
9 update Merkle Tree data

10 if isLoad(inst) or isStore(inst) then
11 if notCached(res.addr) then
12 update res.addr cache line
13 update Merkle Tree data
14 else
15 send res.addr

16 PC++
17 else if isControl(inst) then
18 send res.jumpStat
19 if jumpTaken(res.jumpStat) then
20 send res.jumpDst
21 PC = res.jumpDst
22 else
23 PC++

24 else
25 send res.val
26 PC++

originated from. Next, it determines if this instruction is already in the Sentry’s cache. If

not, it sends the cache line for the instruction and the appropriate Merkle Tree data as well

as the appropriate evict messages to ensure these lines are available.

If the instruction is a memory instruction, i.e. a load or a store, the SC determines if

the accessed address is already in the cache. If so, it sends accessed address to the Sentry.

If the address would be a cache miss, it sends the appropriate cache line for the address

and associated Merkle Tree data as well as the evict messages to ensure these lines are

cleared. All dirty cache lines must additionally have their Merkle Tree nodes updated. The

45



SC can direct the Sentry to perform these updates, but must wait for the Sentry to return the

updated lines as the SC is untrusted and does not have access to the Sentry’s private key. In

both cases, the SC increments its PC index to the next instruction.

If the instruction is a control flow changing instruction, the SC first sends the jump

status, taken or not taken. If the jump was taken, the destination is sent and the SC updates

its PC to the new value. If the jump was not taken, the SC takes no special action. For

all other instructions, the SC simply sends the result and increments its PC to the next

instruction.

If the program exits normally, the SC exits out of the loop and waits for the next program

to start. To prevent the SC from getting stuck in the case a program crashes, all applications

send a special reset packet to the SC to force it to exit from the main loop, reset the Sentry,

and receive the new Sentry Binary.

4.3.3 Sentry 2.0

Several enhancements and four new instructions have been added to the Sentry to enable it

to protect commodity systems and support DSCs. Figure 4.7 shows an updated architectural

diagram for the Sentry.

First, a special saved root (S. Root) static register has been added. This register holds

the root of the Merkle Tree when the program loader is the only thing in memory. Upon

powering on or receiving a reset signal, the S. Root register’s contents are loaded into the

working root register (W. Root) so that the program loader may load the application binary

into the Sentry’s memory and Merkle Tree.

get rd The get instruction is used to receive a value from the external softcore system.

Communication from the softcore is held in the Sentry’s Input Buffer. When a get instruc-

tion is executed, the next value in the Input Buffer is loaded into the destination register.

The received value is compared against the value reported by the Host.
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Figure 4.7: Architectural diagram of Sentry 2.0.

put rs1 The put instruction is used to send a value to the external softcore system.

The value is compared against the shadow register value. If the values match, the output

value is stored in the Pending Output Buffer. Recall that instruction checking in the Sentry

is performed in a speculative manner, assuming that all associated memory validation will

succeed[54, 120]. Thus, the potential output value will wait in the buffer until all associated

memory checking has been completed by the Metadata Checking Unit.

r.unt rd The receive untrusted instruction is used to load a value from untrusted exe-

cution into the Sentry without causing a checking violation. The r.unt instruction simply

takes the result from from the Incoming ExecInfo Buffer and stores it into the specified

register, thus no check is performed on this instruction. Instead, the programmer should be

sure that their DSC properly validates the untrusted value.

alrt The alert instruction is used to indicate that the DSC validation check has failed.

This instruction simply causes a failure in the checking unit in the same way that a normal
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instruction would if its check fails.

4.4 Conclusion

This chapter has presented the first prototype implementation of a CAVO system that runs

on a commodity system protected by a prototype Sentry implementation running on an

FGPA PCIe network card. Many of the design decisions for this initial prototype were

focused towards generating a stable and easily modifiable prototype, rather than focusing

on performance. The next chapter presents the DSC Semantics while Chapter 6 describes

two initial case study DSCs.
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Chapter 5

DSC Semantics

This chapter presents a simplified DSC semantics at the programmer, host assembly, and

Sentry assembly levels. It concludes by presenting the effective semantics when the host

and Sentry are combined and treated as a single entity.

5.1 Programmer-Level Semantics

The programmer-level semantics is a simplified model that the programmer can use to

understand the behavior of trusted Sentry code and DSCs. It is a modified version of

the Dynamic Security Labels semantics [126], which is a security-typed lambda calculus

that supports first class dynamic labels. In the programmer level semantics, the labels

are used to represent the status of the value stored at a particular memory address, either

trusted and protected by the Sentry or untrusted. Thus, the TG getUntVal function from

Chapter 4.1.1 is simplified to an untrusted load operation. Additionally, variables are stored

separately from memory and are considered unmodifiable by untrusted code.
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naturals n ∈ Z
locals x ∈ Var
local storage R ∈ Var→ Z
memory M ∈ Z→ Z
labels L ∈ U | T
label storage Γ ∈ Z→ L
get queue Qg ∈ [n0, . . . , nn]

put queue Qp ∈ [n0, . . . , nn]

arithmatic expr a (∈ AExp) ::= n | x | (a0 ⊕ a1)

bool t (∈ T) ::= true | false
bool expr b (∈ BExp) ::= t | (a0 � a1) | (b0 � b1) | (¬b)
commands c (∈ Com) ::= x := a | x := [a]T | x := [a]U | [a]T := a | c0 ; c1

| get x | put x | if b then c1 else c2
| while b do c | alert | invoke a | skip

arithmatic operators ⊕ ::= + | ∗ | −
comparitors � ::= ≤ | =

logical operators � ::= ∨ | ∧

Figure 5.1: Syntax for programmer level semantics.

5.1.1 Syntax

The syntax of the programmer level semantics is shown in Figure 5.1, where R repre-

sents the storage space of variables and M represents the memory storage. The labels,

represented by L, U and T are stored in the label space Γ, which can be thought of as

a shadow storage to the main storage M. Finally, Qg and Qp represent infinite storage

queues through which the DSC can communicate with the network. The big-step evaluation

of constants, variables, arithmetic and boolean operations take the form of the judgment

〈R,M,Γ,Qg,Qp, e〉 ⇓ v, where e ∈ Z,Var, AExp,T, BExp. The small step evaluation

of commands is defined as the judgment 〈R,M,Γ,Qg,Qp, c〉 →
〈
R′,M ′,Γ′,Q′

g,Q′
p, c

′〉.
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5.1.2 Operational Semantics

The operational semantics for the programmer level language extends standard operational

semantics with the security-enhanced memory operations, the ability to invoke external

code, and the network get and put operations.

Arithmetic Expressions

〈R,M,Γ,Qg,Qp, n〉 ⇓ n
constants

〈R,M,Γ,Qg,Qp, x〉 ⇓ R(x)
regLoad

〈R,M,Γ,Qg,Qp, a0〉 ⇓ n0 〈R,M,Γ,Qg,Qp, a1〉 ⇓ n1 n2 = n0 ⊕ n1

〈R,M,Γ,Qg,Qp, a0 ⊕ a1〉 ⇓ n2
AExp

Boolean Expressions

〈R,M,Γ,Qg,Qp, a0〉 ⇓ n0 〈R,M,Γ,Qg,Qp, a1〉 ⇓ n1 t = n0 � n1

〈R,M,Γ,Qg,Qp, a0 � a1〉 ⇓ t
comp

〈R,M,Γ,Qg,Qp, b0〉 ⇓ t0 〈R,M,Γ,Qg,Qp, b1〉 ⇓ t1 t2 = t0 � t1
〈R,M,Γ,Qg,Qp, b0 � b1〉 ⇓ t2

boolOp

〈R,M,Γ,Qg,Qp, b ⇓ t0〉 t1 = ¬t0
〈R,M,Γ,Qg,Qp,¬b〉 ⇓ t1

neg

Commands

〈R,M,Γ,Qg,Qp, skip〉 and 〈R,M,Γ,Qg,Qp, alert〉 are final configurations, with alert

indicating that a violation has occurred.

〈R,M,Γ,Qg,Qp, a〉 ⇓ n
〈R,M,Γ,Qg,Qp, x := a〉 → 〈R[x := n],M,Γ,Qg,Qp, skip〉

asgn
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〈R,M,Γ,Qg,Qp, a〉 ⇓ n0 M(n0) = n1 Γ(n0) = T

〈R,M,Γ,Qg,Qp, x := [a]T 〉 → 〈R[x := n1],M,Γ,Qg,Qp, skip〉 load

〈R,M,Γ,Qg,Qp, a〉 ⇓ n Γ(n) = U

〈R,M,Γ,Qg,Qp, x := [a]T 〉 → 〈R,M,Γ,Qg,Qp, alert〉 load.fail

A trusted load that returns a T label operates in the same way as a normal load opera-

tion. A trusted load that returns a U label triggers an alert.
〈R,M,Γ,Qg,Qp, a〉 ⇓ n0 M(n0)→ n1

〈R,M,Γ,Qg,Qp, x := [a]U〉 → 〈R[x := n1],M,Γ,Qg,Qp, skip〉 load.unt

〈R,M,Γ,Qg,Qp, a0〉 ⇓ n0 〈R,M,Γ,Qg,Qp, a1〉 ⇓ n1

〈R,M,Γ,Qg,Qp, [a0]T := a1〉 → 〈R,M [n0 := n1],Γ[n0 := T ],Qg,Qp, skip〉 store

Q′
g = n :: Qg

〈R,M,Γ,Qg,Qp, get x〉 → 〈R[x := n],M,Γ,Q′
g,Qp, skip〉

get

〈R,M,Γ, x〉 ⇓ n Qg = n :: Q′
g

〈R,M,Γ,Qg,Qp,put x〉 → 〈R,M,Γ,Qg,Q′
p, skip〉

put

∀n 〈M(n) 6= M ′(n) =⇒ Γ(n) = U ∧M(n) = M ′(n) =⇒ Γ(n) = Γ′(n)〉
〈R,M,Γ,Qg,Qp, invoke a〉 → 〈R,M ′,Γ′,Qg,Qp, skip〉 invoke

Invoke allows untrusted code to execute and store values to memory. Untrusted code

may update multiple elements of M , but any update will change the corresponding label in

Γ to U .
〈R,M,Γ,Qg,Qp, c0〉 → 〈R′,M ′,Γ′,Q′

g,Q′
p, c

′
0〉

〈R,M,Γ,Qg,Qp, c0; c1〉 → 〈R′,M ′,Γ′,Q′
g,Q′

p, c
′
0; c1〉

seq

〈R,M,Γ,Qg,Qp, skip; c〉 → 〈R,M,Γ,Qg,Qp, c〉
sseq

〈R,M,Γ,Qg,Qp, b〉 ⇓ true
〈R,M,Γ,Qg,Qp, if b then c0 else c1〉 → 〈R,M,Γ,Qg,Qp, c0〉

if.true

〈R,M,Γ,Qg,Qp, b〉 ⇓ false
〈R,M,Γ,Qg,Qp, if b then c0 else c1〉 → 〈R,M,Γ,Qg,Qp, c1〉

if.false

〈R,M,Γ,Qg,Qp,while b do c〉 → 〈R,M,Γ,Qg,Qp, if b then (c; while b do c) else skip〉 while
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5.2 Host Assembly Level Semantics

The host level assembly semantics is a simplified model that represents the execution of

code on the untrusted host machine. It is an extension of the WHILE3ADDR language [57].

The extensions include memory and the Sentry specific features described below. In the

host level semantics, execution can either be in trusted or untrusted mode. In trusted mode,

execution information is sent to the Sentry depending upon the instruction type.

5.2.1 Syntax

The syntax of the host assembly semantics is shown in Figure 5.2, where pc represents the

program counter, rk represents the kth register, R represents the register file, M represents

memory, P represents the program, Qg represents the incoming queue from the network,

and S represents the current trusted state as either untrusted (0) or trusted (1). There are

no labels in the host side semantics as the host does not update labels nor perform memory

validation. Additionally, there is no put queue as the host does not have access to the

put queue and must send all outgoing traffic through the Sentry. The small-step judgment

for the host assembly semantics have the following form, P host 〈R,M, S,Qg, pc〉
τ→〈

R′,M ′, S ′,Q′
g, pc

′〉, where τ→ represents the transfer of trace values from the execution of

the instruction from the host to the Sentry.

5.2.2 Operational Semantics

The host assembly level semantics represents a simplified system where all data from an

instruction is sent after each operation, including the instruction, its operands, and its result.

The host communicates these values, represented by τ , to the Sentry. Note that τ is used to

represent the transfer of trace values and ε is used to denote an empty transfer. The alert

and return instructions represent the end of the program.
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naturals n ∈ Z
program counter pc ∈ Z
register r ∈ rk

k∈{0...31}

register file R ∈ r → Z
memory M ∈ Z→ Z
program P ∈ Z→ c

get queue Qg ∈ [n0, . . . , nn]

trusted mode S ::= 0 | 1

commands c ::= add rd, rs, rt | addi rd, rs, n | sub rd, rs, rt | j n
| bgtz rs, n | sw [rd], rs | lw.U rd, [rs] | lw.T rd, [rs]

| alert | return | get rd | put rs
| trustedMode | untrustedMode

Figure 5.2: Syntax for the host side assembly semantics.

Arithmetic

P [pc] = add rd, rs, rt R(rs) = n0 R(rt) = n1 n2 = n0 + n1

if S = 1 then (τ = P [pc], n0, n1, n2) else (τ = ε)

P host 〈R,M, S,Qg, pc〉
τ→ 〈R[rd := n2],M, S,Qg, pc+ 1〉

add

P [pc] = addi rd, rs, n1 R(rs) = n0 n2 = n0 + n1

if S = 1 then (τ = P [pc], n0, n2) else (τ = ε)

P host 〈R,M, S,Qg, pc〉
τ→ 〈R[rd := n2],M, S,Qg, pc+ 1〉

addi

P [pc] = sub rd, rs, rt R(rs) = n0 R(rt) = n1 n2 = n0 − n1

if S = 1 then (τ = P [pc], n0, n1, n2) else (τ = ε)

P host 〈R,M, S,Qg, pc〉
τ→ 〈R[rd := n2],M, S,Qg, pc+ 1〉

sub
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Control Flow

P [pc] = j n if S = 1 then (τ = P [pc], n) else (τ = ε)

P host 〈R,M, S,Qg, pc〉
τ→ 〈R,M, S,Qg, n〉

jump

P [pc] = bgtz rs, n0 R(rs) = n1 n1 > 0
if S = 1 then (τ = P [pc], n1, n0) else (τ = ε)

P host 〈R,M, S,Qg, pc〉
τ→ 〈R,M, S,Qg, n0〉

bgtz.g

P [pc] = bgtz rs, n0 R(rs) = n1 n1 ≤ 0
if S = 1 then (τ = P [pc], n1, pc+ 1) else (τ = ε)

P host 〈R,M, S,Qg, pc〉
τ→ 〈R,M, S,Qg, pc+ 1〉

bgtz.l

Memory

P [pc] = lw.U rd, [rs] R(rs) = n0 M(n0) = n1

if S = 1 then (τ = P [pc], n1) else (τ = ε)

P host 〈R,M, S,Qg, pc〉
τ→ 〈R[rd := n1],M, S,Qg, pc+ 1〉

load.unt

P [pc] = lw.T rd, [rs] R(rs) = n0 M(n0) = n1

if S = 1 then (τ = P [pc], n0, n1) else (τ = ε)

P host 〈R,M, S,Qg, pc〉
τ→ 〈R[rd := n1],M, S,Qg, pc+ 1〉

load

P [pc] = sw [rd], rs R(rd) = n0 R(rs) = n1

if S = 1 then (τ = P [pc], n0, n1) else (τ = ε)

P host 〈R,M, S,Qg, pc〉
τ→ 〈R,M [n0 := n1], S,Qg, pc+ 1〉

store

Input/Output

P [pc] = get r Q′
g = n :: Qg if S = 1 then (τ = P [pc], n) else (τ = ε)

P host 〈R,M, S,Qg, pc〉
τ→
〈
R[r := n],M, S,Q′

g, pc+ 1
〉 get

P [pc] = put r R(r) = n if S = 1 then (τ = P [pc], n) else (τ = ε)

P host 〈R,M, S,Qg, pc〉
τ→ 〈R,M, S,Qg, pc+ 1〉

put
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Checking Enable/Disable

P [pc] = trustedMode

P host 〈R,M, S,Qg, pc〉
ε→ 〈R,M, 1,Qg, pc+ 1〉

enable

P [pc] = untrustedMode

P host 〈R,M, S,Qg, pc〉
ε→ 〈R,M, 0,Qg, pc+ 1〉

disable

Final States

P [pc] = alert if S = 1 then (τ = P [pc]) else (τ = ε)

P host 〈R,M, S,Qg, pc〉
τ→ 〈R,M, S,Qg〉

alert

P [pc] = return if S = 1 then (τ = P [pc]) else (τ = ε)

P host 〈R,M, S,Qg, pc〉
τ→ 〈R,M, S,Qg〉

return

5.3 Sentry Assembly Level Semantics

The Sentry level assembly semantics is a simplified model that represents the re-execution

of code by the Sentry. It is an extension of the WHILE3ADDR language [57]. The Sentry

semantics considers only the execution of trusted code. As the Sentry does not have trusted

memory, it must ensure memory integrity through a Merkle tree.

In this simplified semantics, the Merkle tree operations are performed only at the leaves.

This simplification reduces the complexity of the example by eliminating the additional

tree walk and corresponding additional hash operations required for a true Merkle tree.

Prior work has formally shown that the use of Merkle trees is secure under the standard

assumption of a collision-resistant hash function [82, 89]. The model presented here could

be extended using these methods.

Additionally, to further simplify the semantics presented, the Sentry has a private mem-

ory that it uses to store all hash values. This allows for a unidirectional communication

channel from the host to the Sentry that the host uses to send trace values to the Sentry.

While this is a valid CAVO architecture, the implementation presented in Chapter 4 uses a

two way communication channel between the host and Sentry, where the host sends both
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trace and Merkle tree values to the Sentry and the Sentry performs any required updates to

the Merkle tree before sending it back to the host for storage. Chapter 5.4.1 discusses this

further.

5.3.1 Syntax

The syntax of the Sentry assembly semantics is shown in Figure 5.3, where pc represents

the program counter, rk represents the kth register, R represents the register file, P repre-

sents the program, Qg represents the incoming queue from the network, Qp represents the

outgoing queue to the network, τ represents the incoming trace values from the untrusted

host. P[0] represents the program exiting in an alert state, and P[1] represents the program

exiting successfully.

hash represents an internal Sentry function that uses a keyed cryptographic hash (e.g.

HMAC). Only the Sentry has access to the key, thus the untrusted components cannot

compute the hash. The hash values are used to validate memory operations and are stored

in γ.

5.3.2 Operational Semantics

The Sentry attempts to validate successful execution of instructions using the value τ sent

by the untrusted host and to validate loaded memory values using γ.
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naturals n ∈ Z
program counter pc ∈ Z
register r ∈ rk

k∈{0...31}

register file R ∈ r → Z
hash Keyed cryptographic hash function Z→ Z

hash storage γ ∈ Z→ Z
program P ∈ Z→ c

get queue Qg ∈ [n0, . . . , nn]

put queue Qp ∈ [n0, . . . , nn]

trace values τ ∈ c, [n0, . . . , nn]

commands c ::= add rd, rs, rt | addi rd, rs, n | sub rd, rs, rt | j n | bgtz rs, n
| sw [rd], rs | lw.U rd, [rs] | lw.T rd, [rs]

| alert | return | get rd | put rs

Figure 5.3: Syntax for the Sentry side assembly semantics.

Arithmetic

τ = (τc, n0, n1, n2) τc = P [pc] = add rd, rs, rt R(rs) = n0 R(rt) = n1 n2 = n0 + n1

P sentry 〈R, γ,Qg,Qp, pc〉
τ→ 〈R[rd := n2], γ,Qg,Qp, pc+ 1〉

add

τ = (τc, n0, n2) τc = P [pc] = addi rd, rs, n1 R(rs) = n0 n2 = n0 + n1

P sentry 〈R, γ,Qg,Qp, pc〉
τ→ 〈R[rd := n2], γ,Qg,Qp, pc+ 1〉

addi

τ = (τc, n0, n1, n2) τc = P [pc] = sub rd, rs, rt R(rs) = n0 R(rt) = n1 n2 = n0 − n1

P sentry 〈R, γ,Qg,Qp, pc〉
τ→ 〈R[rd := n2], γ,Qg,Qp, pc+ 1〉

sub
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Control Flow

τ = (τc, n) τc = P [pc] = j n

P sentry 〈R, γ,Qg,Qp, pc〉
τ→ 〈R, γ,Qg,Qp, n〉

jump

τ = (τc, n1, n0) τc = P [pc] = bgtz rs, n0 R(rs) = n1 n1 > 0

P sentry 〈R, γ,Qg,Qp, pc〉
τ→ 〈R, γ,Qg,Qp, n0〉

bgtz.g

τ = (τc, n1, pc+ 1) τc = P [pc] = bgtz rs, n0 R(rs) = n1 n1 ≤ 0

P sentry 〈R, γ,Qg,Qp, pc〉
τ→ 〈R, γ,Qg,Qp, pc+ 1〉

bgtz.l

Memory

τ = (τc, n0) τc = P [pc] = lw.U rd, [rs]

P sentry 〈R, γ,Qg,Qp, pc〉
τ→ 〈R[rd := n0], γ,Qg,Qp, pc+ 1〉

l.unt

As the Sentry does not have access to memory, the memory load [rs] is ignored by the

Sentry. Note that no validation is performed on the untrusted load instruction, the value of

τ0 is simply used to update the shadow register file. This is the equivilent of the r.unt

instruction discussed in Chapter 4.3.3. It is the responsibility of the programmer to ensure

their DSC properly validates this value.

τ = (τc, n0, n1) τc = P [pc] = lw rd, [rs] R(rs) = n0 γ(n0) = n2 hash(n1) = n2

P sentry 〈R, γ,Qg,Qp, pc〉
τ→ 〈R[rd := n1], γ,Qg,Qp, pc+ 1〉

load

τ = (τc, n0, n1) τc = P [pc] = sw [rd], rs R(rd) = n0 R(rs) = n1 hash(n1) = n2

P sentry 〈R, γ,Qg,Qp, pc〉
τ→ 〈R, γ[n0 := n2],Qg,Qp, pc+ 1〉

store

Input/Output

τ = (τc, n) τc = P [pc] = get r Qg = n :: Q′
g

P sentry 〈R, γ,Qg,Qp, pc〉
τ→
〈
R[r := n], γ,Q′

g,Qp, pc+ 1
〉 get

τ = (τc, n) τc = P [pc] = put r R(r) = n Q′
p = Qp :: n

P sentry 〈R, γ,Qg,Qp, pc〉
τ→
〈
R, γ,Qg,Q′

p, pc+ 1
〉 put
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Final States

τ = (τc) τc = P [pc] = alert

P sentry 〈R, γ,Qg,Qp, pc〉
τ→ 〈R, γ,Qg,Qp, 0〉

alert

τ = (τc) τc = P [pc] = return

P sentry 〈R, γ,Qg,Qp, pc〉
τ→ 〈R, γ,Qg,Qp〉

return

5.3.3 Sentry Accept and Reject

If the Sentry is able to complete a step using the above rules, it accepts the result and thus

has validated the successful execution of the instruction by the host system. If it cannot,

either because of a mismatch between a value in τ sent by the untrusted system or a failure

to properly validate a loaded memory value’s hash in γ, the Sentry will trigger an alert. It

is easily decidable to detect when the Sentry is able to take a step. Thus the negative step

for reject is easily constructable. If the host sends an empty τ , the Sentry will consume it

and its state will remain unchanged.

〈R, γ, τ,Qg,Qp, pc〉
τ→
〈
R′, γ′, τ ′,Q′

g,Q′
p, pc

′〉
P ` sentry 〈R, γ, τ,Qg,Qp, pc〉

τ→
〈
R′, γ′, τ ′,Q′

g,Q′
p, pc

′〉 accept

〈R, γ, τ,Qg,Qp, pc〉
τ9
〈
R′, γ′, τ ′,Q′

g,Q′
p, pc

′〉
P ` sentry 〈R, γ, τ,Qg,Qp, pc〉

τ→ 〈R, γ, τ,Qg,Qp, 0〉
reject

P ` sentry 〈R, γ, τ,Qg,Qp, pc〉
ε→ 〈R, γ, τ,Qg,Qp, pc〉

empty

5.4 Combining Host and Sentry

The Sentry semantics show (trivially, by definition) that the Sentry maintains correctness

(only the results of the correct execution of programs are allowed to communicate exter-

nally) in the presence of any given processor. However, this is true even for a processor that

produces no output. This section shows that a host processor can prove its execution correct

to the Sentry and be allowed to communicate externally. More concretely, if a processor
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properly executes according to the semantics in Chapter 5.2, then the Sentry semantics in

Chapter 5.3 will accept its results and allow external communication.

Theorem 1. If a host executes a program according to the host semantics, i.e. by stepping

through the program until reaching return, and the user’s DSC accepts the results (i.e. does

not execute the alert command), then the Sentry will step through the program according to

the Sentry semantics, forwarding any external communication generated by the host, until

reaching return.

We prove Theorem 1 by showing that the sentry simulates the host: For each step the

host takes, the Sentry takes a similar step leading to an equivalent state. Toward that end,

we first relate Sentry and host states when the host is in trusted mode.

Definition 1 (State simulation).

H ∼ σ ,

pcH = pcσ ∧

RH = Rσ ∧

∀ n ∈M, hash(M [n]) = γ[n] ∧

Qg,H = Qg,σ

Informally, a sentry state simulates a host state when its program counter pcσ matches

the host’s program counter pcH , the Sentry’s register file Rσ matches the host’s register

file RH , the Sentry’s input queue Qg,σ matches the host’s input queue Qg,H , and for all

locations in the host’s memory, the Sentry stores a hash of the contents.

We write P host H
τ→ H ′ to denote the host processor taking a step and updating its

state H to H ′. We write P sentry σ
τ→ σ′ to denote the Sentry taking a step and updating

its state σ to σ′.

Lemma 1 (Host-Sentry Simulation). For all programs P , host states H and H ′, and sentry

states σ, if P host H
τ→ H ′ and H ∼ σ, then there exists σ′ such that either H ′ ∼ σ′ and
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P sentry σ
τ→ σ′, or τ = ε and σ = σ′

Informally, Lemma 1 states that if the host, H , can take a step to H ′ and the host is

simulated by the Sentry, then the Sentry will take a corresponding step to maintain the

simulation (either by stepping through the next command or by taking no step if τ = ε).

Thus, such a host is able to convince the Sentry that it has properly executed, inducing

the Sentry to produce external communication on its behalf. Theorem 1 follows from

Lemma 1.

Proof of Lemma 1 goes by induction on the structure of host transition relation. The

initial states of H and σ are equal by definition. A selection of interesting cases of the

induction follow.

UNTRUSTED MODE: Suppose we have P host H
ε→ H ′, then ∃ σ′ = σ by definition.

ADD: Suppose we have P host H
τ→ H ′ from the add rule of P host . It follows that

• H = 〈R[rd = n0, rt = n1],M, 1,Qg, pc〉 with n2 = n0 + n1,

• H ′ = 〈R[rd = n2],M, 1,Qg, pc+ 1〉, and

• τ = (P [pc], n0, n1, n2),

Let σ′ be 〈R[rs = n0, rt = n1, rd = n2], γ,Qg,Qp, pc+1〉. H ′ ∼ σ′ holds with pcH = pcσ,

RH(rd) = Rσ(rd), and M,γ, and Qg unchanged, and and we can conclude that P sentry

H
τ→ H ′ from the add rule of P sentry .

BGTZ.G: Suppose we have P host H
τ→ H ′ from the bgtz.g rule of P host . It follows

that

• H = 〈R[rs = n1],M, 1,Qg, pc〉 with n1 > 0,

• H ′ = 〈R,M, 1,Qg, n0〉, and

• τ = (P [pc], n1, n0),

Let σ′ be 〈R[rs = n1], γ,Qg,Qp, n0〉. H ′ ∼ σ′ holds with n0 = pcH = pcσ, RH(rs) =

Rσ(rs), and M,γ, and Qg unchanged, and and we can conclude that P sentry H
τ→ H ′

from the bgtz.g rule of P sentry .

LOAD: Suppose we have P host H
τ→ H ′ from the load rule of P host . It follows that
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• H = 〈R[rs = n0],M [n0 = n1], 1,Qg, pc〉,

• H ′ = 〈R[rd = n1],M, 1,Qg, pc+ 1〉, and

• τ = (P [pc], n0, n1).

Let σ′ be 〈R[rs = n0, rd = n1], γ[n0 = n2],Qg,Qp, pc+ 1〉, with hash(n1) = n2. H ′ ∼ σ′

holds with pcH = pcσ, RH(rd) = Rσ(rd), and M,γ, and Qg unchanged, and we can

conclude that P sentry H
τ→ H ′ from the load rule of P sentry .

STORE: Suppose we have P host H
τ→ H ′ from the store rule of P host . It follows that

• H = 〈R[rd = n0, rs = n1],M, 1,Qg, pc〉,

• H ′ = 〈R,M [n0 = n1], 1,Qg, pc+ 1〉, and

• τ = (P [pc], n0, n1).

Let σ′ be 〈R[rd = n0, rs = n1], γ[n0 = n2],Qg,Qp, pc + 1〉 and hash(n1) = n2. H ′ ∼ σ′

holds with pcH = pcσ, hash(M(n0)) = γ(n0), and RH , Rσ andQg unchanged, and we can

conclude that P sentry H
τ→ H ′ from the store rule of P sentry .

GET: Suppose we have P host H
τ→ H ′ from the get rule of P host . It follows that

• H = 〈R,M, 1, n :: Qg, pc〉,

• H ′ = 〈R[r = n],M, 1,Qg, pc+ 1〉, and

• τ = (P [pc], n).

Let σ′ be 〈R[r = n], γ,Qg,Qp, pc + 1〉. H ′ ∼ σ′ holds with pcH = pcσ, RH(r) = Rσ(r),

Qg,H = Qg,σ and M and γ unchanged, and we can conclude P sentry H
τ→ H ′ from the

get rule of P sentry .

PUT: Suppose we have P host H
τ→ H ′ from the put rule of P host . It follows that

• H = 〈R[r = n],M, 1,Qg, pc〉

• H ′ = 〈R,M, 1,Qg, pc+ 1〉, and

• τ = (P [pc], n).

Let σ′ be 〈R[r = n], γ,Qg,Qp :: n, pc + 1〉. H ′ ∼ σ′ holds with pcH = pcσ, and

RH , Rσ,M, γ and Qg unchanged, and we can conclude that P sentry H
τ→ H ′ from

the put rule of P sentry .
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5.4.1 Beyond Synchronous One Way Host-Sentry

The host and Sentry models of Sections 5.2 and 5.3 serve well as simple base models, with

the Sentry maintaining its own storage of Merkle tree data (metadata) and operating in

lockstep with the host. Although this is a valid CAVO model, it requires the Sentry to have

access to a large, trusted memory, and any implementation is only as fast as the Sentry,

greatly reducing its usefulness. The following sections discuss more sophisticated models

that overcome these limitations.

Two-Way Communication

The first step is to more closely model the metadata management presented in Chapter 4.

This requires the host to store the metadata and send both memory values and metadata to

the Sentry on loads. It also requires two-way communication between the host and Sentry

to properly update the metadata on stores: the host sends memory values and metadata

to the Sentry, the Sentry computes the updated metadata, the Sentry sends the updated

metadata back to the host for storage. Toward that end, we move the metadata storage, γ,

from the Sentry state to the host state. Additionally, we introduce a channel back from the

Sentry to the host, so the Sentry can send the updated metadata, β, back to the host. This

is is essentially the reverse of the channel used to transfer τ .

This change only affects the load and store commands when the host is in trusted

mode; it does not change its operation in untrusted mode. For load, the host is responsible

for loading the metadata and forwarding it to the Sentry. For store, the host sends the results

and metadata to the Sentry, and the Sentry validates its results. If validation succeeds, the

Sentry then updates the metadata and sends it back to the host for storage. After sending

τ , the host waits for the response β. For all commands other than store, β = ε and the host

does not need to wait for a response. A sketch of the updated load and store rules follow:
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P [pc] = lw.T rd, [rs] R(rs) = n0 M(n0) = n1 γ(n0) = n2

τ = (P [pc], n0, n1, n2)

P host 〈R,M, γ, 1,Qg, pc〉
τ→
ε
〈R[rd := n1],M, γ, 1,Qg, pc+ 1〉

load

P [pc] = sw [rd], rs R(rd) = n0 R(rs) = n1

τ = (P [pc], n0, n1) β = (n2)

P host 〈R,M, γ, 1,Qg, pc〉
τ→
β
〈R,M [n0 := n1], γ[n0 := n2], 1,Qg, pc+ 1〉

store

τ = (τc, n0, n1, n2) τc = P [pc] = lw rd, [rs] R(rs) = n0 hash(n1) = n2

P sentry 〈R,Qg,Qp, pc〉
τ→
ε
〈R[rd := n1],Qg,Qp, pc+ 1〉

load

τ = (τc, n0, n1) τc = P [pc] = sw [rd], rs R(rd) = n0 R(rs) = n1

hash(n1) = n2 β = (n2)

P sentry 〈R,Qg,Qp, pc〉
τ→
β
〈R,Qg,Qp, pc+ 1〉

store

Asynchronous Host-Sentry Operation

The second step is to change from a lock-step model to an asynchronous model where the

host is able to execute the program and stream values to the Sentry, which could be many

hundreds or thousands of instructions behind the host. Such a change requires changing the

communication channels that carry τ and β to queues. For instructions that do not access

memory, this change is trivial.

The metadata management required to validate memory instructions presents a chal-

lenge to an asynchronous model due to the following: the host is responsible for managing

both memory and metadata; the host is ahead of the Sentry in terms of program execution;

the host updates memory immediately after a store; and the Sentry generates updated meta-

data after a store and sends it to the host for storage. Combined, these facts mean that the

host has an up-to-date view of memory but potentially an out-of-date view of the metadata.

Thus, a program can store to a memory location and then load from it before the host has

received the updated metadata for that location from the Sentry. In such a situation, the host

cannot send the correct instruction trace and metadata values to the Sentry for validation.

The host system is thus required to track when there are outstanding updates to the

metadata, for example by marking the corresponding memory location dirty. A naı̈ve im-
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plementation of the host system could pause execution if a load occurs to a dirty memory

location and wait for the updated metadata. However, this would essentially reduce the

system to the lock-step model. One solution, which is the system implemented by this dis-

sertation, is to introduce a trusted cache to the Sentry that is managed by the host (in reality

it would be managed by the Sentry Control in the host as in Chapter 4). The trusted cache

allows the Sentry to validate load operations by trusting that its internally cached version

of the value is correct, thus obviating the Sentry’s need for the metadata for validation of

cached values.1 When executing loads from dirty locations, the host can simply send the

Sentry the loaded value and direct the Sentry to use its cached value for validation. Upon

evicting a value from the cache, the Sentry computes the updated metadata and sends it

back to the host for storage. If the host loads a value that has an outstanding eviction, it

can again direct the Sentry to use its internal values for validation. Once an eviction has

completed and the host has received the updated metadata, it can mark the location as clean

and future loads from that location can be validated as described in the section above.

Given the complexity of this system, we do not present its formal semantics and proof

of correctness. However, this system is essentially maintaining a kind of cache-coherence

between the host and the Sentry using a directory-based protocol, where the host acts as

the directory. Many prior works have formally validated the correctness of cache-coherence

protocols [62, 93, 96], and proof of the correctness of this system would follow those works.

1The cached values can either be validated before being placed into the cache, or speculatively used during
validation as described in Chapter 2.3.2 [54, 120].

66



Chapter 6

Two DSC Case Studies

In order to test the difficulty in writing DSCs and test the capabilities of the Sentry to protect

real programs, we evaluate two case studies, an in-memory database and a SAT solver. The

in-memory database serves as a strenuous test of the networking capabilities of CAVO.

The DSC for the in-memory database shows the potential for protecting a wide variety

of programs whose primary functionality is storage, such as databases and filesystems.

The SAT solver serves as a strenuous test for a program that requires a large amount of

computation and shows how to adapt programs with well known verification methods to

CAVO.

6.1 Redis

Redis is a commercial grade, open source, in-memory data structure store with persistence

features. It is used as a database, cache, and message broker [97]. Redis or its variants are

used in many datacenter applications and are offered by cloud services such as Amazon

Web Services and Microsoft Azure. The integrity of production databases, like Redis, is

incredibly important to virtually every organization that uses computer systems. Databases

that return incorrect results and/or leak data can cause irreparable harm, especially in sensi-

tive environments such as hospitals and financial institutions. However, the complexity of
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system components and of their interactions makes it almost impossible for a Redis server

to guarantee the correctness of its returned results. Apart from bugs and vulnerabilities in

Redis, bugs in the system itself can have adverse effects on the integrity of the database, in-

cluding bugs in disk firmware (e.g. lost write [95]), bus controllers (e.g. not reporting write

failure or corrupt data [48]), device drivers (e.g. issues disk requests with bad parameters

or data [33]), filesystems (e.g. ZFS vulnerable to memory corruptions [125]). Thus, this

thesis presents a prototype DSC for Redis to explore the ability for the CAVO model to

protect a database server.

The Redis DSC along with the Sentry can prevent such irreparable harm. For example,

an attacker could compromise the server and attempt to covertly inject private data from

the server into the Redis database as a data value. The attacker could then query for that

data in an attempt to exfiltrate the private data. However, as the insertion of the value was

not properly authenticated by the DSC, the outward communication of the value would be

prevented by the DSC and Sentry. As confirmed by the proof of concept, CAVO prevents

attempts to manipulate the results of queries, such as by manipulating the data directly or

returning old values via replay.

6.1.1 Redis Validation

The DSC for Redis is realized as a proxy layer that sits between the Redis server and

the client, as shown in Figure 6.1. The proxy layer receives all requests from the client,

forwards them to Redis, and then validates the responses returned before sending them to

the client. This proxy-based approach eliminates the need to change or even examine the

Redis server code. Note that the proxy-based approach is just one of many ways that DSCs

can be implemented.

The Redis DSC follows prior work done to authenticate queries from outsourced databases [76,

77, 124] and uses Authenticated Data Structures (ADS) [41, 82, 108] to check the integrity

of database operations. ADS allows for the outsourcing of data maintenance and process-
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ing tasks to untrusted parties without loss of integrity. The results of database operations

can be efficiently verified using a short digest, which can be viewed as a summary of the

current contents of the data and is kept by the verifier. By using ADS, a computationally

bound malicious entity cannot fool the verifier into accepting an incorrect result.

To ensure that the response to a request is the correct value, the DSC augments key-

values stored to the database with hashes and updates an authenticated search tree (AST)

on top of the hashes. The root of this AST represents the state of the database at any time

and is updated on every store (i.e. Redis SET operation). As in a Merkle tree, the AST root

secures the entire structure. Using this AST, replies to reads (i.e. Redis GET operations)

from the Redis Server that involve stale or invalid values will be detected.

After initializing, the DSC waits to receive client requests. Upon receiving a client

request 1 , the DSC first parses then places the request into the request queue 2 . Next

the DSC forwards the request to the Redis Server 3 . The reply from Redis 4 is then

matched to the parsed command. If the command was a SET 5a , the AST is updated and

the hash of the new key-value pair is stored in the DSC’s metadata and also back into Redis.

If the command was a GET 5b , the hash of the key-value response is compared against

the stored hash in the DSC’s metadata. Note that because the DSC’s memory integrity is
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ensured by the Sentry, validation up to the root of the AST does not need to be performed.

Simply validating the key-value hash is sufficient to ensure the validity of the response.

This is because the Sentry will ensure that the DSCs entire AST is correct in memory. Thus,

validation of a single node is sufficient to ensure correctness. This process is similar to the

way the Sentry does not need to perform memory validation for values already checked and

stored in its cache. This demonstrates how DSCs can be simplified by taking advantage of

the protections offered by the Sentry.

The current prototype implementation for the Redis server node DSC is ∼3K lines of

C code (LOC). When combined with the ∼4k lines of Verilog of the Sentry, the DSC and

Sentry provide integrity for a complete Redis server using only ∼7K LOC. These ∼7K

LOC protect an untrusted system of hardware and software totaling more than 500M LOC.

This dramatically reduces formal verification efforts by five orders of magnitude.

Planned future work is to enable the Sentry to provide the programmer access to the

Sentry in order to provide persistent protection. This could either be in the form a non-

volatile root register stored on the Sentry, or exposing the Sentry’s encryption ability to the

programmer. Such functionality will also useful for ensuring other persistence state such

as the file system and other storage integrity.

With this functionality, the Redis DSC AST root could be stored so that it can survive

restarting the DSC process and full system reboots. During initialization, the DSC could

recover the AST root from the Sentry. The DSC could then either read the contents of

the database to validate its integrity, or validate the database on demand during subsequent

SETs and GETs.

6.2 SAT

The Boolean Satisfiability Problem (SAT) is the problem of determining if there exists

an assignment of variables in a given propositional logic formula such that the formula
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evaluates to true. SAT is a well studied and important problem. It was the first problem that

was proven to be NP-Complete [35] and has important applications in areas such as circuit

design [55], bounded model checking [27], and automatic theorem proving [23]. SAT

solvers typically take a formula as input and produce an output that claims the formula to

be either satisfiable (SAT) or unsatisfiable (UNSAT). Modern solvers typically require the

input to be in Conjunctive Normal Form (CNF) to simplify their operation. While there

are many SAT solving algorithms, the Davis-Logemann-Loveland (DLL) algorithm [39],

commonly referred to as the DPLL algorithm in recognition of the algorithm basis in the

earlier Davis-Putnam algorithm [40], forms the basis of most modern SAT solvers.

Given its power and importance across many fields, developing fast SAT solvers has

long been a priority for many and has spawned conferences and yearly international SAT

competitions [63]. While many recent advances have greatly increased the performance of

SAT solvers, the need for speed had also introduced bugs from the additional complexity of

the performance increasing features. Given that SAT solvers are frequently used in mission

critical applications, it is important to ensure that the solver produces correct results [121].

6.2.1 SAT Validation

A SAT solver DSC must be able to validate both SAT and UNSAT responses. Validating

SAT is relatively straight forward. It is possible for the SAT solver to produce the variable

assignment that shows the formula is satisfiable with relatively little additional overhead.

A validator can then verify the solution in linear time given the assignment and the original

problem in CNF form. However, validating an UNSAT response is usually not trivial.

Early work in verifying SAT solvers proved that such an approach is feasible [52, 59],

but were based on older SAT solving algorithms. zChaff provided the first validator that

can easily check the correctness of state-of-the-art DPLL SAT solvers [122]. The zChaff

validator is based on the fact that showing that an empty clause can be generated is sufficient

to show that a formula in CNF is unsatisfiable. The validator requires that the SAT solver
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generate a trace of its resolution process. Using the trace and the original CNF formula,

the validator attempts to find a resolution sequence that generates an empty clause from

the original clause. If such a sequence is found, the UNSAT solution is accepted. If such

a sequence is not found, the validator has proven that the solver has produced either an

incorrect result or an incorrect trace.

The validator in zChaff is the perfect example of a DSC. Using minor modifications

to the untrusted code (the solver), the validator is able to determine the correctness of the

result provided. Thus, we use the zChaff solver and validator, with the below modifications,

as a second case study in the creation of DSCs.

The zChaff SAT validator serves as the basis for the trusted CAVO program. First, the

validator was converted from C++ to C in order to allow it to be compiled by the CAVO

toolchain. This involved replacing the use of the standard template vector and set libraries

with custom C versions. Next, the validator was converted into a server that accepts con-

nections from clients, receives a SAT formula in CNF from the client, forwards the response

to the untrusted zChaff solver, receives a response, validates the response, and forwards the

result to the client. No modifications (besides the C++ to C conversion) needed to be made

the actual validation algorithm and code.

6.3 Evaluation

Evaluation of the two DSC case studies has four primary goals. First is to ensure that

the original goal of simplicity of the trusted components in CAVO has been maintained.

Second is to ensure that the functionality of the original programs are maintained. Third is

to show the ability of CAVO to prevent erroneous output from escaping the system. Fourth

is to determine the current performance of the unoptimized system in order to provide

guidance for future optimization efforts.

All evaluation was performed on an Ubuntu 16.04 Linux server with an Intel(R) Core(TM)
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Trusted Code Untrusted Code
Redis - ∼20k

Redis DSC ∼2000 ∼200
zChaff DSC ∼700 ∼100

zChaff validator ∼800 -
zChaff - ∼2000

Sentry Library ∼3000 ∼500

Table 6.1: Approximate lines of code for different trusted and untrusted components for
the Redis and zChaff SAT DSCs, and the programs they validate.

i5-6500 CPU @ 3.20GHz and 32GB memory. The CAVO toolchain is based on the RISC-

V toolchain [9] (commit ad9ebb8557e32241bfca047f2bc628a2bc1c18cb), with modifica-

tions to the Clang front end (to support the Sentry pragmas) and the GNU assembler (to

support the creating the Sentry binary). gcc v4.8.4 serves as the untrusted host compiler.

The Sentry is instantiated on a NetFPGA SUME Board [7] operating at 100 MHz and uses

only a single instruction checking pipeline and encryption engine (to perform the hashes

need for Merkle tree operations) for simplicity.

6.3.1 Simplicity

Table 6.1 shows the line counts for various components of the CAVO system used to eval-

uate the two DSC case studies, which serves as a proxy for complexity of the components.

Ideally, trusted components are of minimal complexity, but should never be more complex

than the untrusted components they protect. Furthermore, converting an existing validator

to a DSC should not be an overly complex process.

The Redis DSC compares favorably to Redis itself, ∼2000 LOC vs ∼20k, and even

more favorably to the rest of the system, which consists of ∼400M LOC in the OS, ∼20M

LOC in the kernel, 〈100M LOC for the processor and hardware. The majority of the

Redis DSC code (∼500 LOC) is simple code that handles the parsing and processing of

the received Redis commands. The SAT validator DSC is actually shorter than the original

SAT validator. This is primarily due to the fact that the networking library for the Sentry
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is currently simpler than its pure C counterpart. Additionally, the code that handles the

communication with the SAT solver has become untrusted. In total, the validator required

only five additional lines to become a DSC: two lines to send the UNSAT core and its

length to the Sentry, and three lines to check for a failure to validate the core and trigger

a Sentry alert. Finally, the Sentry Library (which contains small DSCs for various C

standard library calls and the Sentry networking functions §4) is currently ∼3000 lines of

code. Since this library is used across all CAVO programs, it represents a one time cost in

terms of formally verifying its correctness. The Sentry Library also contains ∼500 lines

of untrusted code to setup the DSC for native execution and communicate with the Sentry

FPGA.

6.3.2 Base Functionality and Attack Testing

CAVO ensures that any external communication is the result of the correct execution of pro-

grams. To ensure that CAVO did not prevent correct communication, unmodified versions

of Redis and zChaff were evaluated. Redis was evaluated using its provided benchmarking

tool (redis-bench) and zChaff was evaluated using well known SAT inputs. Both programs

were able to successfully communicate correct results.

To simulate errors and malicious activity by the untrusted software and hardware com-

ponents, two sets of experiments were performed. The first set simulated errors in the

untrusted program. For Redis, this involved randomly changing values in the database

without going through the DSC. Upon retrieving this value, the DSC triggered an alert. For

zChaff, this meant randomly changing values in the trace. This change was detected by the

DSC during trace validation and triggered an alert. To simulate errors in any part of the

host system, including the Sentry control, errors were injected into the trace sent from the

host to the Sentry for both the Redis and SAT programs by randomly flipping bits in the

data stream. All errors were detected by the Sentry, causing the program to halt. Future

instantiations of CAVO could include user configurable policies to handle errors, such as
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DSC Values Sent Sentry Control
TCP/IP
Server

Redis
Set

Redis
Get SAT

1 Native 1.05× 1.8× 1×
2 Native Native 1.05× 1.38× 1.02×
3 CAVO IO Only Forward IO Native 1.1× 7.7× 1.04×
4 CAVO All Results Forward IO Native 1.1× 27× 1.8×

Table 6.2: Overhead of CAVO components evaluated on the Redis and SAT DSCs.

alerting the user or attempting to repair the errors.

6.3.3 Unoptimized Toolchain Performance

As discussed in Chapter 4.3, there are several major components that make up the runtime

of CAVO. The focus of this dissertation is to create a complete, working, CAVO system.

In order to determine areas for future study and optimization, we evaluate the overhead

of multiple components. Table 6.2 shows the results of testing the Redis and SAT DSCs.

Redis is evaluated using the benchmarking tool provided by Redis using a 40 client testing

environment. All overheads are normalized to the baseline throughput of 770 SET/sec and

138k GET/sec for the 40 client environment. SAT is evaluated using zChaff SAT solver

and validator DSC converted into a server. The baseline is the combined native solver and

validator time. The input formula is the unsatisfiable 1dlx c mc ex bp f test case, which is

the Boolean condition for the correctness of a single-issue pipelined DLX processor with

multicycle functional units, exceptions, and branch prediction [46]. The baseline solver

and validator time for this formula is 0.122 seconds.

Row 1 shows the overhead of using a native version of the DSC without any Sentry

protections. For Redis, this introduces a modest amount of overhead from the extra work

done by the DSC, as well as the additional communication between the DSC and the Redis

server. Note that the GET operations slowed down much more than the SET operations,

1.79× for GETs and 1.05× for SETs. Redis is designed to be a fast, in-memory database,

SET operations are highly optimized and thus more impacted by overhead compared to the
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relatively heavy weight SET operations and the even heavier SAT solver. In some sense,

Redis SET can be thought of as trusting the entire program, rather than trusting a DSC that

is lightweight in compared to the untrusted calculations.

Recall from Chapter 4.3 that CAVO uses an external TCP/IP server between the Sentry

and the network to avoid requiring the Sentry to validate the TCP/IP protocol. Row 2 shows

the results of adding in an external TCP/IP server (§4.3) on the host system. Adding in the

external TCP/IP server has a minor impact to SETs. It actually speeds up SET operations in

comparison to the native Redis DSC alone as it is able to decouple the client management

from the DSC operations.

The DSC in row 3 has gone through the CAVO toolchain and been transformed into a

Sentry compatible program and sends only the results of the Sentry put and get opera-

tions to a simplified version of the Sentry Control that only handles these IO operations.

The relatively small decline in GET and SAT performance shows that the toolchain, even

in its current unoptimized form, is a viable approach for some DSCs. Row 4 shows the

results of sending all results to the Sentry Control, of which only the IO operations are pro-

cessed and forwarded to the external TCP/IP server. This shows the overhead of extracting

all results from the program, 1.8× for SET, 41.8× for GET, and 2.4× for SAT. Recall

that the instrumentation is responsible for storing instruction results so that they may be

sent to the Sentry. Given that these results can be batched, the amortized cost of storing

them is a memory store and register increment. Naı̈vely, this triples the number of dynamic

instructions executed. However, the actual effects are more complex. These instructions

will always serve to increase the size of the basic block they are located in. Given that

modern superscaler processors are more easily able to find instruction parallelism in large

blocks, it is possible that adding these instructions can have a less than 3× impact to perfor-

mance. However, the additional store instructions will fill the processor’s memory queue

and pollute the cache, negatively impacting performance. Making use of modern processor

features, such as streaming store instructions to avoid polluting the cache, can reduce the
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overhead further.

6.3.4 Prototype FPGA Performance

The following experiments evaluated the performance of the prototype software Sentry

Control and the functional prototype FPGA Sentry implemented on a PCIe network card,

provided by Zhang [119]. These prototypes were implemented to demonstrate the full

functionality of a CAVO system, but are still under development and optimization. First,

an experiment to determine the overhead of sending of all results from the DSC as well

as all operations in the Sentry Control except for the Merkle tree operations showed over-

heads of 5.6× for SETs, 209× for GETs, and 9.01× for SAT. Recall that the Sentry Control

is responsible for determining the instruction type for the next instruction, managing the

Sentry’s cache, generating Merkle tree operations, and forwarding the result to the Sentry

based on the instruction type. The sizeable increase in overhead for this experiment indi-

cates that the overhead of sending all values and the full processing of the Sentry Control

requires substantial improvement. Moving the Sentry Control to hardware would greatly

reduce its overhead. The Sentry Control is essentially emulating the Sentry in software,

thereby creating a substantial amount of overhead.

The next experiment evaluated the PCIe FPGA card, a simple Sentry without memory

validation, and placed the TCP/IP server on the external softcore system. Introducing the

PCIe card again has a relatively small impact on the SET operations compared to the previ-

ous experiment (5.6× vs 7×) and a noticeable impact on GET operations (209× vs 405×)

and SAT (9.01× vs 135×). The final experiment evaluated the full system, including the

Merkle tree memory validation operations. The 154×, 8117×, and 677× slowdowns for

GET, SET, and SAT respectively show that the Merkle tree operations introduce serious

overheads. This overhead comes from both the additional operations required by the Sen-

try Control and the additional operations performed by the Sentry itself. This overhead

is magnified in the case of GET as it has a relatively higher ratio of memory to normal
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instructions. This shows the need for both a hardware Sentry Control, more instruction

checking pipelines in the Sentry, and the need for additional or pipelined hash engines.

The prototype Sentry used for this evaluation is running at 100 MHz, with a single in-

struction checking pipeline, and a single hash checking engine. In a production system, the

Sentry would need to more closely mirror the Sentry evaluated in TrustGuard [54, 120],

i.e. 8 instruction checking pipelines, multiple hash checking engines, and an operating fre-

quency of at least 1 GHz. The Sentry would need to be fabricated as an ASIC to support

these additional features. These enhancements, which are part of on-going work, represent

an improvement of several orders of magnitude over the current prototype, which would

put the overhead of the Sentry in line with the results reported by TrustGuard of∼15% per-

formance overhead. Thus, the Sentry would have only a minor impact to performance and

the performance of the full system would be limited by the Sentry Control. The full system

performance would then be expected to be of the same magnitude as the system without the

Sentry, with the additional overhead of the Merkle tree management. To roughly estimate

the performance of such a system, we replaced the Sentry with simple logic to manage IO

and saw overheads of roughly ∼10× for GET, ∼500× for SET, and ∼180× for SAT.

Given that the Sentry Control is untrusted, its implementation does not impact the se-

curity of the system. Thus, it could be placed as an untrusted component, along with the

Sentry and a cache for Merkle tree data, on a fabricated circuit to reduce its performance

overhead. Furthermore, the Sentry Control represents an ideal component to move to hard-

ware to improve performance. Recall from Chapter 4.3.2 that the Sentry Control has four

primary runtime functions: receive program results, decode the current instruction, for-

ward results and Merkle tree data based on the instruction type, and manage the Sentry’s

cache. Each of these are simple routines that represent very little overhead in hardware

but are costly in software. For example, determining the instruction type in software re-

quires multiple instructions to execute in the host, whereas instruction decode in hardware

is a single pipeline stage. Similarly, the cache and Merkle tree management both require
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100s of instructions in the Host, but are highly efficient in hardware. Prior work has shown

that hardware based Merkle tree mechanisms can have as low as ∼2% performance im-

pact [101]. Thus, when moved to hardware, the Sentry Control should have performance

impact similar to adding another pipeline stage to the Sentry, slightly increasing latency but

not grossly impacting throughput. When combined with the Sentry improvements above,

it is expected that the performance bottleneck will be the instrumentation inserted into the

program to gather results and the bandwidth required to transfer the results to the Sentry.

TrustGuard showed that a host-Sentry bandwidth of 10 GB/s, well below modern host-PCIe

bandwidths, is sufficient to limit overhead to below 10% [54, 120]. Thus, with adequate

bandwidth, overall system performance should be of the same order of magnitude as Row

4, where the instrumentation gathers all results but the Sentry and Sentry Control do not

impact performance.
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Chapter 7

Other Related Work

Chapter 2 motivated the CAVO model through comparison to other techniques that use

minimal trusted hardware to secure systems. This chapter gives an overview of select other

related work, much of which is complimentary to CAVO.

Industrial Adoption of Formal Methods Industry is increasingly adopting formal meth-

ods to ensure that critical applications are free from bugs and vulnerabilities. For example,

Amazon has used formal methods to ensure correctness in several critical algorithms within

the Amazon Web Services infrastructure [49, 88] and Microsoft has used them to design

and validate Cosmos DB [74]. This shows a willingness of companies to ensure the se-

curity and correctness of critical pieces of software. However, the security of these pieces

assumes the security and correctness of all the layers beneath them, including the OS and

hardware, to execute the application correctly. Many companies are unwilling to change

critical components, such as the OS, and replace their entire computing base due to the

economic and operational costs in such changes [28]. Thus, the CAVO model, which needs

only a secure DSC and the Sentry to ensure the security of the entire system, is a natural way

for companies to continue to adopt formal methods to secure applications without needing

to additionally ensure the security of the entire system that sits beneath those applications.
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Verifiable Outsourcing. The idea of a trusted entity outsourcing execution to an un-

trusted entity and then verifying the returned results, without needing to re-execute the

original computation, has long existed in many different forms and has seen increasing in-

terest with the rise of cloud computing. For example, work in outsourced databases [42,

76, 77, 85] seeks to ensure the authenticity, integrity, and non-repudiation of database result

queries when the database is hosted by an untrusted third party. Such systems typically have

trusted local hosts querying data from a trusted publisher that is stored on in an untrusted

database. Work in verifiable outsourced computation seeks to generalize the concept to

enable a trusted local machine to validate the correctness of the remote execution of any

generic program [92, 110, 112, 113, 114]. Such techniques typically involve the use of

probabilistic proof systems in which the prover (untrusted worker) generates a proof in the

form of a mathematical assertion that the given program and input generate the provided

output. The verifier can then efficiently validate the correctness of the proof. While these

systems have seen dramatic improvement recently, they are still limited by factors such as

applicability (typically they only work for programs with static loop bounds and no indirect

memory access) and efficiency (in terms of the costs of setting up and checking the proof).

The CAVO model can greatly benefit both sets of techniques by bringing true trustworthi-

ness to the local host to correctly perform validation. In fact, ideas from the outsourced

database community helped to guide the Redis DSC.

Security Reference and Program Monitors. Dynamically enforcing policies at runtime

has taken many forms, such as execution monitors [14, 104] and inline reference moni-

tors [44, 78]. To be effective in any form, reference monitors must fulfill three require-

ments. First, they must provably implement the policy they are enforcing by being simple

enough to either fully test or formally prove correct. Next, they must fully control the

resource for the policy they are enforcing, otherwise an attacker could simply bypass the

monitor. Finally, they must be tamper-proof, otherwise an attacker could attack the moni-
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tor itself. Examples of program monitors include enforcement of the Brewer-Nash Chinese

Wall security policy [29] to ensuring that Microsoft Word cannot execute macros [44].

Reference monitors originated in a 1972 U.S. Air Force report [14]. The original moti-

vation was to ensure the protection of various levels of classified and unclassified informa-

tion that could exist simultaneously on a multi-user system. The report proposed reference

monitors that would capture and validate all resource access by a user, which would later

go on to form the basis of modern multi-user systems.

Schneider later defined the class of enforcement mechanisms that monitor the execu-

tion of a system as EM, Execution Monitoring. Examples of EM systems include security

kernels, firewalls, and reference monitors. He also defined the first formal models for un-

derstanding EM and showed that EM systems are capable of enforcing safety properties

(nothing bad happens during execution), but not other properties such as liveness (avail-

ability) nor enforce information-flow policies [104].

Later work sought to enforce security policies by inlining the monitors into the program,

rather than externally monitoring it. Such inline reference monitors were more powerful as

they could enforce security properties unique to the program under protection, rather then

simply enforcing system level properties such as memory access [25, 44, 78]. The Polymer

system [25, 78] extended the capabilities of monitors by allowing them to “insert actions

on behalf of, and suppress actions of, untrusted target applications.” These more general

monitors, called edit automata, are more powerful than EM type systems in that they can

enforce liveness properties in addition to safety properties.

The CAVO model can be thought of as a type of Program Monitor, where DSCs im-

plement security policies and the Sentry ensures their correct, tamper-free execution while

controlling all access to the protect resource (network communication). Currently the DSCs

presented in this thesis enforce only safety properties. However, there is no limitation to

that system that prevents them from enforcing other properties as well. For example, one

could imagine a DSC that is able to repair incorrect results returned from untrusted code.
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Chapter 8

Conclusion

This dissertation has proposed the CAVO model to enable full system containment of the

erroneous and malicious effects of untrusted hardware and reduce the size of the trusted

software base. It proposed and implemented a programming model, prototype software

toolchain, and runtime capable of producing Sentry-protected programs consisting of trusted

Dynamic Specification Checks and untrusted program code. This dissertation also pro-

posed an augmented design for the Sentry capable of supporting the programming model

and external communication. Using an implementation of this design on an FPGA [119],

the dissertation also evaluates two DSC case studies to show the feasibility and capability

of the CAVO model.

8.1 Conclusion

This dissertation seeks a middle ground behind the ad-hoc nature of current security prac-

tices and the impracticality of abandoning all current computing systems as required by

clean slate approaches. It proposes the Containment Architecture with Verified Output

model, where a simple hardware module, the Sentry, and an application specific Design

Specification Check combine to ensure the only output from a system is the result of the

correct execution of trusted software. By separating the security of the system into these
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two components, CAVO makes formal verification of the TCB practical.

CAVO’s practicality is enabled through an enhanced machine-independent Sentry (thus

allowing it to protect existing commodity machines) and a simple programming model and

semantics (to facilitate the creation of simple DSCs). CAVO’s feasibility is demonstrated

through the implementation of the first prototype CAVO system and evaluation on a Redis

DSC.

Evaluation of the Redis DSC showed that CAVO is capable of protecting a commercial

grade database system including over 500 million lines of code in just ∼4K lines of RTL

for the Sentry and ∼2K lines of code for the DSC. Evaluation of the zChaff SAT DSC

showed the ease of converting an existing program validator to a DSC, requiring just 5

additional lines of code and changing ∼20 lines of of C networking code into a few lines

of Sentry networking library calls. The performance of the software system for CAVO

shows its potential, 1.8× for GET and 2.4× for SAT. While the performance of the proto-

type hardware and software version of the Sentry Control are not yet at acceptable levels

(slowdowns ranging from 100-8000×), their architectural similarities to high-performance

prior work gives confidence that their performance impact can be brought in line with 15%

performance overhead reported by TrustGuard [54, 120].

8.2 Future Research Directions

This dissertation has proposed extensions to the CAVO model that bring it closer to prac-

tically securing real systems. Below are future research directions to further enhance the

types of applications that CAVO can protect and increase its efficiency.

Federation of Sentries CAVO gives assurances as to the integrity of execution and com-

munication from a given machine. However, in a networked environment, it is insufficient

to secure individual nodes without giving them a method to confirm the security of the

nodes with which they are communicating. Thus, to be a viable solution security solution
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in production environments and extend the applications supported, TrustGuard requires

some form of remote attestation. There are many different design trade offs that can be

made depending upon the desired properties guaranteed by the attestation, the complexity

of the protocol used, the relative computational power of the devices, etc. Thus, explor-

ing different models such as the collective containment among groups of protected devices

for distributed applications and containing a group of devices with a single Sentry for IoT

environments are interesting areas of future research.

Hardware Sentry Control As discussed in Chapter 6.3, the Sentry Control is a major

source of overhead in the current implementation as it must perform many actions to sup-

port the evaluation of a single trusted instruction. However, while there are many actions

it performs, they are all relatively simple and algorithmic (for example, cache control ).

Thus, moving the Sentry Control to an untrusted hardware module on the Sentry’s board

would greatly increase its performance. Additionally, this would facilitate research into

more interesting cache configurations, such as a tiered metadata cache to better match the

structure of the Merkle Tree.

Extending Sentry Protections The Sentry can currently protect the execution of a single

application at a time. Extending the Sentry to have the capabilities to protect concurrent

execution and persistent storage would further increase the range of applications that can

be secured by CAVO. As stated in Chapter 6.1.1, this could potentially be accomplished by

exposing the Sentry’s encryption functionality or a nonvolatile root register on the Sentry

to the programmer.

Sentry Protected Values Homomorphic encryption allows systems to process data with-

out giving them access to the underlying data [53]. The CAVO model could be used to

provide similar functionality without requiring expensive homomorphic operations. Exten-

sions could be added that protect sensitive data by never releasing the true values to the
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host system. Instead, dummy values could be used in the host system while the protected

values remain only on the Sentry. The special Sentry operations would know to ignore the

computed values sent by the host and instead use its own values. These operations would

be slightly more expensive than standard operations, as the host values cannot be used to

break dependencies between operations in the Sentry, but would be significantly cheaper

than fully homomorphic operations.

Multicore Support A natural next step for a single-core design is the extension to mul-

ticore. The selective checking functionality provided by the CAVO Programming Model

allows for a single threaded application to validate the execution of a multi-threaded exe-

cution. For example, the single threaded SAT DSC presented in Chapter 6.2 could easily

validate the execution of a multi-threaded SAT Solver. However, some environments may

require multiple Sentry protected programs to run concurrently on a multicore machine.

One potential solution for this situation would have a Sentry per CPU core. This would

require an almost infeasible amount of bandwidth per core. Using die-stacking technology,

with one layer consisting of the CPU cores and one layer consisting of the Sentries for each

core, could provide the required bandwidth to make such an approach feasible and is worth

future exploration.
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