
A SENSIBLE APPROACH TO SPECULATIVE

AUTOMATIC PARALLELIZATION

SOTIRIS APOSTOLAKIS

A DISSERTATION

PRESENTED TO THE FACULTY

OF PRINCETON UNIVERSITY

IN CANDIDACY FOR THE DEGREE

OF DOCTOR OF PHILOSOPHY

RECOMMENDED FOR ACCEPTANCE

BY THE DEPARTMENT OF

COMPUTER SCIENCE

ADVISER: DAVID I. AUGUST

JANUARY 2021

c© Copyright by Sotiris Apostolakis, 2020.

All Rights Reserved.

Abstract

The promise of automatic parallelization, freeing programmers from the error-prone and

time-consuming process of making efficient use of parallel processing resources, remains

unrealized. For decades, the imprecision of memory analysis limited the applicability of

automatic parallelization. The introduction of speculation to automatic parallelization over-

came these applicability limitations but caused profitability problems due to high commu-

nication and bookkeeping costs for speculation validation and commit.

This dissertation shifts the focus from applicability to profitability by making spec-

ulative automatic parallelization more efficient. Unlike current approaches that perform

analysis and transformations independently and in sequence, the proposed system inte-

grates, without loss of modularity, memory analysis, speculative techniques, and enabling

transformations.

Specifically, this dissertation involves three main contributions. First, it introduces a

novel speculation-aware collaborative analysis framework (SCAF) that minimizes the need

for high-overhead speculation. Second, it proposes a new parallelizing-compiler design that

enables careful planning. Third, it presents new efficient speculative privatization transfor-

mations that avoid privatization overheads of prior work.

SCAF learns of available speculative information via profiling, computes its full im-

pact on memory dependence analysis, and makes this resulting information available for

all code optimizations. SCAF is modular (adding new analysis modules is easy) and col-

laborative (modules cooperate to produce a result more precise than the confluence of all

individual results). Relative to the best prior speculation-aware dependence analysis tech-

nique, SCAF dramatically reduces the need for expensive-to-validate memory speculation

in the hot loops of all 16 evaluated C/C++ SPEC benchmarks.

The introduction of planning in the compiler enables the selection of parallelization-

enabling transformations based on their cost and overall impacts. The benefit is twofold.

First, the compiler only applies a minimal-cost set of enabling transformations. Second,

iii

this decision-making process makes the addition of new efficient speculative enablers pos-

sible, including the proposed privatization transformations.

This dissertation integrates these contributions into a fully-automatic speculative-

DOALL parallelization framework for commodity hardware. By reducing speculative

parallelization overheads in ways not possible with prior parallelization systems, this work

obtains higher overall program speedup (23.0× for 12 general-purpose C/C++ programs

running on a 28-core shared-memory machine) than Privateer (11.5×), the prior automatic

speculative-DOALL system with the highest applicability.

iv

Acknowledgments

First and foremost, I would like to thank my advisor Prof. David I. August for his

support and guidance over the years. I am grateful for his faith in me and his constant

encouragement during challenging times. He taught me a great deal about research. He

taught me to set ambitious and impactful goals and keep a positive and ‘can be done’

attitude. Moreover, he helped me improve my writing and presentation skills by showing

me how to frame my research clearly and convincingly. I also appreciate that he gave me

the freedom to pursue my research interests and ideas. Finally, the culture of collaboration

and solidarity he has cultivated in the Liberty Research Group made my research much

more enjoyable and rewarding.

I thank the rest of my dissertation committee: Prof. Andrew Appel, Prof. Brian

Kernighan, Prof. Simone Campanoni, and Prof. Zachary Kincaid. I want to addition-

ally thank Prof. Campanoni and Prof. Kincaid for taking the time to serve as readers

on my committee. Their feedback helped improve the quality of this dissertation. Prof.

Campanoni has also been a great collaborator for the work presented in this dissertation.

I thank the members of the Liberty Research Group for all their help throughout the

years. I thank Stephen, Jordan, Deep, Heejin, Nayana, and Hansen for welcoming me to

Princeton and to the group. I want to especially thank Hansen, who has been a great friend

and collaborator. Further, I want to thank the newest members of the group that brought

new energy and enthusiasm: Ziyang, Greg, Bhargav, Zujun, and Ishita. I want to especially

thank Ziyang, Greg, and Zujun for their interest in my research and their contributions to

my dissertation work over the last two years. Finally, I want to thank Nick and Taewook,

who are alumni of the group. Nick’s work laid the groundwork for my research, and it was

an invaluable source of inspiration. Taewook was an excellent mentor during my summer

internship at Facebook.

I thank the administrative staff of the Department of Computer Science at Princeton. In

particular, I thank Nicki Gotsis for helping me with all sorts of bureaucratic matters and

v

Pamela DelOrefice for taking care of travel grants and reimbursements. I also thank the

Davis International Center staff for their help on all immigration-related issues.

I am deeply grateful to all my friends for everything we shared during the past five

years. I thank the many friends I was lucky to meet at Princeton that helped me adapt to

a new way of life both academically and socially. I also thank my long-time friends from

back home in Greece. Our summer and Christmas trips helped me recharge my batteries.

Thank you for your enduring support. The Greek community at Princeton was also a great

support group. Our nights at Fine Hall, dinners, and various events helped me blow off

some steam. I want to especially thank Nick and Themis for all the fun moments we shared

and for patiently hearing me complain about work at times. I thank Maria for her patience,

encouragement, and love. I thank her for always being there for me, and I cherish all the

moments we spent together.

I am thankful to my parents for their unconditional love and support, for their personal

sacrifices to provide me the education and opportunities that enabled my path, and for the

values they instilled in me. I also thank my brother for always believing in me.

I gratefully acknowledge generous financial support by the Siebel Scholars Founda-

tion through the Siebel Scholar award, the Seeger Center for Hellenic Studies through the

Stanley J. Seeger fellowship, and the National Science Foundation (NSF) through grants

CCF-1814654, CNS-1441650, and CCF-1439085.

vi

Contents

Abstract . iii

Acknowledgments . v

List of Tables . xi

List of Figures . xii

1 Introduction 1

1.1 Dissertation Contributions . 3

1.1.1 Speculation-Aware Collaborative Analysis Framework 3

1.1.2 Planning & New Enablers . 5

1.1.3 Fully-Automatic Parallelizing Compiler 5

1.1.4 Summary . 5

2 Background 7

2.1 Dependences . 7

2.1.1 Memory Dependences . 8

2.1.2 Register Dependences . 9

2.1.3 Control Dependences . 9

2.1.4 Intra- & Cross-Iteration Dependences 10

2.1.5 Program Dependence Graph . 10

2.2 Dependence Analysis . 11

2.3 Enabling Transformations . 12

vii

2.3.1 Speculation . 12

2.3.2 Privatization & Reduction . 15

2.4 Parallelization Transformations . 16

2.4.1 DOALL Parallelization . 16

2.4.2 Tolerating Cross-Iteration Dependences 17

3 Motivation 20

3.1 State-of-the-Art for DOALL Parallelization 20

3.2 Overheads of State-of-the-Art . 21

3.2.1 Excessive Use of Memory Speculation 22

3.2.2 Expensive Privatization . 23

4 The Perspective Approach 24

4.1 Speculation-Aware Analysis . 25

4.2 Planning . 25

4.3 New Enabling Transformations . 26

4.4 Example . 28

5 Speculation-Aware Collaborative Analysis Framework 34

5.1 Motivation . 34

5.1.1 Example . 36

5.2 Design . 37

5.2.1 Collaboration . 38

5.2.2 Query Language . 38

5.2.3 Orchestrator . 42

5.2.4 SCAF within a Compiler . 45

5.2.5 Example . 46

5.3 Implementation . 49

5.3.1 Memory Analysis Modules . 49

viii

5.3.2 Speculation Modules . 51

6 Parallelization Infrastructure Implementation 60

6.1 Enabling Transformations . 62

6.1.1 Memory Dependences . 62

6.1.2 Register & Control Dependences 64

6.2 Parallelization Transformations . 65

6.3 Transformation Selector . 66

6.4 Profiling . 67

6.5 Preprocessing . 67

6.5.1 LLVM Optimizations . 67

6.5.2 Profile-Guided Selective Inlining 68

6.6 Loop Selection . 68

6.7 Multi-Process Code Generation . 69

6.8 Runtime . 69

7 Evaluation 71

7.1 Speculation-Aware Collaborative Analysis Framework 71

7.1.1 Benefit of Collaboration . 74

7.1.2 Contributions of Modules to Collaboration 76

7.1.3 Query Latency . 78

7.2 Perspective Parallelization Framework . 79

7.2.1 Scalability of Perspective . 79

7.2.2 Comparison with State-of-the-Art 82

7.2.3 Performance Analysis of Perspective 83

7.2.4 Misspeculation Evaluation . 86

8 Related Work 88

8.1 Speculation-Aware Analysis . 88

ix

8.2 Parallelizing Compilers . 90

8.3 Planning . 91

9 Conclusion and Future Directions 92

9.1 Conclusion . 92

9.2 Future Directions . 93

9.2.1 Impact for Pipelined Parallelism 93

9.2.2 Efficient and Robust Profiling . 94

9.2.3 Broader Language Support . 94

9.2.4 Beyond CPUs . 95

9.2.5 General-purpose Accelerators . 95

Bibliography 96

x

List of Tables

5.1 Comparison of Proposals for Integration of Speculation into Analysis . . . 36

5.2 Summary of Memory Analysis Modules Implemented in SCAF 50

5.3 Summary of Speculation Modules Implemented in SCAF 55

7.1 Collaboration Coverage of Modules in SCAF 77

7.2 Detailed Experimental Results for the Effect of this Work’s Contributions . 80

xi

List of Figures

2.1 Speculation Validation Code Examples . 14

2.2 Comparison of Parallelization Transformations that can Tolerate Cross-

iteration Dependences . 18

3.1 Motivating Example from dijkstra . 22

4.1 Example where all Proposed Speculative Privatization Variants are Appli-

cable . 28

4.2 Sequential Version of the Motivating Example from dijkstra 29

4.3 Comparison of the Decision-Making Process of Privateer and Perspective

for the Parallelization of dijkstra . 30

4.4 Comparison of the Parallelized dijkstra Code by Privateer and

Perspective . 33

5.1 Motivating Code Example . 36

5.2 Design of Collaborative Analysis Frameworks 38

5.3 Syntax for SCAF’s Query and Query Response 39

5.4 Difference between MustAlias, NoAlias, PartialAlias, and

SubAlias . 42

5.5 Motivating Code Example . 46

5.6 A Step-by-step Example of SCAF in Action 48

5.7 Shortened Version of the dijkstra Example 51

xii

6.1 Perspective Framework Overview . 61

7.1 Dependence Coverage by Different Schemes 75

7.2 Comparison of Composition by Collaboration (SCAF) with Composition

by Confluence at the loop level . 76

7.3 CDF of query latency for CAF, SCAF without the Desired Result parame-

ter, and SCAF . 78

7.4 Perspective’s Fully Automatic Whole Program Speedup over Sequential

Execution . 81

7.5 Whole Program Speedup Comparison among Privateer and Variants of

Perspective with 28 Cores . 84

7.6 Impact of Misspeculation . 86

xiii

Chapter 1

Introduction

Using PThreads [91], Map-Reduce [24], OpenMP [70], and other libraries and languages,

programmers routinely produce coarse-grained parallel programs even at the warehouse

scale. Such programs are not ideally suited for multicore as they tend to stress multicore’s

shared resources, such as caches and memory bandwidth. Manually extracting parallelism

fine-grained enough for multicore remains a challenge despite developments in parallel

programming languages, parallel libraries, and tools [102, 69].

At the other end of the parallelism granularity spectrum, compilers and out-of-order

processors consistently extract instruction-level parallelism (ILP) from programs without

any programmer intervention. Unfortunately, despite progress in recent years, automatic

parallelization is not yet a reliable solution for the extraction of multicore-appropriate par-

allelism.

Parallelizing compilers integrate program analysis, enabling transformations, and par-

allelization patterns to find work that can execute concurrently. Automatic parallelization

naturally focuses on loops because that is where programs spend their time. An essential

aspect of program analysis in a parallelizing compiler is memory analysis because the com-

piler must understand memory access patterns to divide work across threads or processes.

Enabling transformations use control flow and data flow facts from analysis to make the

1

code amenable to a given parallelization pattern. Examples of enabling transformations

include: i) loop skewing, which re-arranges array accesses to move cross-iteration depen-

dences out of inner loops; ii) reduction, which expands storage locations to relax ordering

constraints on associative and commutative operations; and iii) privatization, which creates

private data copies for each worker process to remove contention caused by the reuse of

data structures. Many parallelization patterns exist, but the most desirable is DOALL, the

independent execution of loop iterations.

For decades, parallelizing compilers only performed enabling transformations that

could be proven correct with respect to the facts provided by static analyses [10, 100, 21,

71, 78, 15]. While this approach showed some success in scientific codes, its reliance on

memory analysis, a type of analysis notorious for its imprecision [52, 37], severely limited

the applicability of automatic parallelization.

Following the success of speculation for extracting ILP, speculation in automatic par-

allelization has gained traction in the last decade [64, 77, 93, 48, 44]. Speculation allows

the compiler to optimize for the expected case. The effect is dramatic since there are many

fewer dependences in practice than can be proved nonexistent by memory analysis. Mem-

ory speculation is a popular speculative enabling transformation that asserts the absence of

memory dependences not manifested (or manifested infrequently) during profiling, backing

its assertions with runtime checks to initiate misspeculation recovery when necessary. Par-

allelizing compilers also commonly employ control speculation to simplify the program’s

control flow by asserting the direction of biased branches and initiating recovery when the

speculatively dead path is taken. Another important speculative enabling transformation

is speculative privatization proposed in Privateer [44]. With speculation, Privateer is able

to handle dynamic data structures even in the presence of unrestricted pointers, a task that

proved insurmountable for non-speculative privatization techniques.

Despite the dramatic advance that speculation represents for automatic parallelization,

challenges remain that prevent its widespread adoption [16, 32, 73, 46]. While mem-

2

ory speculation is popular, its relaxed program dependence structure comes with a high

cost. Even in cases without any misspeculation, validation of memory speculation requires

instrumenting memory operations on every iteration to log or communicate speculative

accesses to additional validation code. For large regions with many speculation checks,

the validation cost can become prohibitively expensive, negating the benefits of the paral-

lelization. Speculative privatization may also entail high overheads but in a different way.

Correctly merging the private memory state of each parallel worker at the end of a loop

invocation can require speculative privatization systems to monitor large write sets during

execution, significantly degrading their profitability [48, 44, 83]. This dissertation demon-

strates that much of these costs result from the lack of speculation-awareness and planning

in compiler analysis and optimization.

1.1 Dissertation Contributions

This dissertation shifts the focus from applicability to profitability and proposes a paral-

lelization system that minimizes the overheads of state-of-the-art speculative parallelization

approaches while maintaining their applicability. The proposed system, called Perspective,

is an automatic parallelization framework integrating a speculation-aware collaborative

analysis framework (SCAF), new efficient variants of speculative privatization, and a new

planning phase to select the cheapest set of parallelization-enabling transformations.

1.1.1 Speculation-Aware Collaborative Analysis Framework

The validation and recovery code inserted by speculative transformations can be viewed as

dynamically-enforced assertions ensuring that certain data or control flow relationships re-

ported by program analysis cannot exist in the protected code. In existing compiler designs,

subsequent program analysis and optimization passes operate on the transformed code, un-

aware of the full impact of these speculative assertions. This is problematic because the

3

unrecognized value of a single speculative assertion can be significant. For example, the

application of control speculation to speculatively enforce the elimination of a control path

may make many previously reported memory dependences impossible. Unaware of the

speculative control flow information, the compiler will needlessly continue to respect the

now nonexistent memory dependences. This might lead to the compiler unnecessarily pre-

venting the application of valuable transformations on account of the phantom memory

dependences. Alternatively, it might lead to the pointless application of additional specula-

tion to remove the phantom memory dependences. Even worse, this additional speculation

is typically much more expensive than the already-applied control speculation.

This dissertation aims to enable lower-cost speculation with a modular, collaborative,

and speculation-aware memory analysis framework (§5). This speculation-aware collabo-

rative dependence analysis framework, called SCAF, learns of available speculative asser-

tions, computes their full impact on memory dependence analysis, and makes this resulting

information available for code optimization. In this way, SCAF enables the compiler to

make the most of speculation by speculating more judiciously. Like the collaborative anal-

ysis framework (CAF [43]) of prior work, SCAF is modular and collaborative. The mod-

ularity makes the addition of new analysis modules easy. The collaborative aspects mean

that analysis modules cooperate to produce a result that is more precise than the confluence

of all individual results. Relative to CAF, SCAF is made possible:

(i) by the addition of speculation modules, a new type of analysis module that uses

profiling information to answer analysis queries;

(ii) by the introduction of a new coordinating component called the Orchestrator; and

(iii) by extensions to CAF’s dependence analysis query language and its semantics to

carry additional information related to speculation.

Relative to the best prior speculation-aware dependence analysis technique, by max-

imizing the impact of inexpensive speculation, SCAF dramatically reduces the need for

4

expensive-to-validate memory speculation in the hot loops of all 16 evaluated C/C++ SPEC

benchmarks (§7.1).

1.1.2 Planning & New Enablers

Perspective’s planning phase (§4.2) makes feasible the addition of new efficient speculative

enablers (§4.3) by selecting the applied enablers based on their cost and overall impacts.

Prior work systems were not sophisticated enough to make these decisions in an informed

way. As a consequence, these systems generally had a small number of powerful, but

expensive-to-validate, speculative enablers [44, 64].

1.1.3 Fully-Automatic Parallelizing Compiler

This work achieves scalable automatic DOALL parallelization on a commodity shared-

memory machine without any programmer hints (§7.2). Perspective is evaluated on a set

of 12 C/C++ benchmarks used in prior state-of-the-art automatic parallelization system pa-

pers [44, 48, 15]. On a 28-core machine, Perspective yields a geomean whole-program

speedup of 23.0× over sequential execution. This represents a doubling in performance

compared to Privateer, the most applicable prior state-of-the-art speculative-DOALL sys-

tem [44]. These results come from the effective usage of static properties of the code in

conjunction with cheap speculative assertions, the careful selection of applied transforma-

tions, and a lightweight process-based runtime system.

1.1.4 Summary

In summary, the primary contributions of this dissertation are:

• A novel speculation-aware collaborative dependence analysis framework (SCAF)

that computes the full impact of speculation on memory dependence analysis (§5),

dramatically reducing the need for expensive-to-validate memory speculation (§7.1);

5

• A new planning phase that combines non-speculative and speculative techniques to

select the most profitable set of parallelization-enabling transformations (§4.2);

• New efficient speculative privatization transformations that avoid the overheads

of prior speculative privatization techniques (§4.3);

• A fully-automatic speculative parallelization framework for commodity hard-

ware (§6) that exhibits scalable speedups by minimizing the speculative paralleliza-

tion overheads of prior work (§7.2).

These contributions constitute an important and necessary step towards fulfilling the

promise of automatic parallelization.

Published work: The speculation-aware collaborative dependence analysis framework

(Chapter 5) has been published in [6], while the proposed approach (Chapter 4) and infras-

tructure (Chapter 6) for automatic parallelization have been published in [5].

6

Chapter 2

Background

Automatic parallelization has the potential to enable efficient use of multicore systems

without undue programmer effort. The programmer writes sequential code, and then a

parallelizing compiler automatically produces an executable that runs efficiently in multiple

cores. A major challenge for automatic parallelization is handling dependences (§2.1). To

address this challenge, state-of-the-art research involves three main components:

(i) Dependence Analysis (§2.2) tries to disprove the existence of dependences;

(ii) Enabling Transformations (§2.3) break dependences, but almost always with a cost;

(iii) New Parallelization Transformations (§2.4) provide ways to tolerate unremovable

dependences.

2.1 Dependences

This section provides definitions of various types of dependences (§2.1.1 - §2.1.4) in the

context of this dissertation and introduces the program dependence graph, a convenient

program representation for parallelizing compilers (§2.1.5).

7

2.1.1 Memory Dependences

This dissertation adopts the following definition of memory dependence:

Definition 1 (Memory Dependence). A memory dependence from instruction i1 to instruc-

tion i2 exists iff:

(i) the footprint of operation i1 may-alias the footprint of i2 (alias);

(ii) at least one of the two instructions writes to memory (update);

(iii) there is a feasible path of execution P from i1 to i2 (feasible-path) such that,

(iv) no operation in P overwrites the common memory footprint (no-kill).

Footprint refers to the memory locations accessed (read or written) by an instruction.

A memory dependence is further classified to:

• RAW (read-after-write) dependence (also called “flow” or “true” dependence) when

an instruction writes a value that is subsequently read by another instruction.

• WAR (write-after-read) dependence (also called “anti” dependence) when an instruc-

tion reads a value that is subsequently overwritten by another instruction.

• WAW (write-after-write) dependence (also called “output” dependence) when an in-

struction writes a value that is subsequently overwritten by another instruction.

We say that a dependence is “false” if it is either an anti or an output dependence.

Side-effects: This dissertation models side-effect dependences as memory dependences.

For example, calls to print statements have visible effects outside the program’s execution

context and should not be re-ordered. Memory analysis in this work computes the necessary

memory dependences to enforce proper ordering of such calls.

8

2.1.2 Register Dependences

Representation of the code in Static Single Assignment (SSA) [22] form renders compu-

tation of data dependences carried via registers1 trivial. Registers in SSA only induce true

dependences (i.e., no anti or output dependence) since every register has a single definition

that dominates all uses.

The compiler infrastructure presented in this dissertation is built upon LLVM. Thus, the

compiler’s intermediate representation (IR) is in SSA form, allowing trivial computation of

dependences carried via the virtual registers of LLVM IR. These register dependences are

separated in this dissertation from the rest of data dependences that are carried through

memory; memory dependences refer only to the latter.

2.1.3 Control Dependences

This dissertation employs the definition of control dependence from Ferrante et al. [30]:

Definition 2 (Control Dependence). Let X and Y be two nodes in a control-flow graph. Y

is control dependent on X iff:

(i) there exists a directed path P from X to Y with any Z in P (excluding X and Y)

post-dominated by Y ; and

(ii) X is not strictly post-dominated by Y .

This definition is restricted to control-flow graphs where the “end” node is reachable

by all nodes. To correctly compute control dependences for programs with function calls

that may not return, this work inserts auxiliary control-flow edges from such function calls

to the program’s “end” node, as in [72].

1In this dissertation, registers refer to storage locations that are accessed only directly through a unique
name and cannot be accessed indirectly through a pointer.

9

2.1.4 Intra- & Cross-Iteration Dependences

Static instructions often represent several dynamic instances during program execution. For

parallelization techniques, it is essential to disambiguate between certain dynamic instances

of instructions within loops. In particular, prior work in parallelization [71, 78, 45, 42] con-

siders two types of dependences: cross-iteration (Definition 3) and intra-iteration (Defini-

tion 4). This separation is necessary since most parallelization techniques can tolerate

intra-iteration dependences while cross-iteration depedences either prohibit parallelization

or increase communication costs (§2.4). In other words, without this separation, more de-

pendences than necessary would restrict parallelization.

Definition 3 (Cross-iteration Dependence). There is a cross-iteration dependence with re-

spect to loop L from instruction t to instruction u iff

(i) there is a dynamic instance ti of t which executes during the i-th iteration of L and

(ii) a dynamic instance uj of u which executes during the j-th iteration of L,

(iii) such that i 6= j and there is a dependence from ti to uj .

In this context, a dynamic instance of a static instruction represents all the executions of

this instruction in a given loop iteration.

Definition 4 (Intra-iteration Dependence). There is an intra-iteration dependence with re-

spect to loop L from instruction t to instruction u iff

(i) there are dynamic instances ti, ui of t, u, respectively, which both execute during the

i-th iteration of L,

(ii) such that there is a dependence from ti to ui.

2.1.5 Program Dependence Graph

A program dependence graph (PDG) [30] is a graph with static instructions as vertices and

control, register, and memory dependences among these instructions as directed edges. In

10

this dissertation, each pair of instructions might be connected with more than one depen-

dence edge. Intra-iteration and cross-iteration dependence edges (§2.1.4) are separated,

and different edges are created for each type of memory dependence (flow, anti, and output

dependence).

A PDG is a convenient program representation for code transformations, and espe-

cially for thread-level parallelism. To be correct, transformations only need to respect all

dependences depicted in the PDG since transforming an input PDG while respecting its de-

pendences produces an isomorphic PDG, and Horwitz et al. [38] prove that two programs

are strongly equivalent if they have isomorphic PDGs.

2.2 Dependence Analysis

Dependence analysis allows compiler optimizations to transform code while respecting

data and control flow relationships between instructions. Increased program analysis preci-

sion can dramatically improve the effectiveness of compiler optimizations, including those

that perform instruction-level parallelization (ILP), thread-level parallelization (TLP), and

vectorization.

This dissertation focuses on handling and mitigating memory dependences, which pose

one of the biggest challenges for automatic parallelization systems. Therefore, in the con-

text of this dissertation, dependence analysis will refer to the static analysis of memory

dependences, and the terms dependence analysis, memory analysis, and memory depen-

dence analysis will be used interchangeably.

The goal of dependence analysis algorithms is to disprove dependences among program

operations. To that end, algorithms attempt to invalidate one of the conditions for the ex-

istence of a memory dependence (Definition 1): disproving aliasing, disproving a feasible

path, or proving a killing operation exists along all feasible paths. If they fail to disprove

at least one condition, they conservatively report that those operations may depend.

11

Decades of research have been devoted to increasing the precision of memory anal-

ysis to address each of these conditions. Advancements include algorithms in points-to

analysis [4, 9, 12, 55, 57, 88], alias analysis [99, 60], shape analysis [86, 34, 35], and

loop dependence analysis [8, 76]. Nevertheless, memory analysis is undecidable [52] and

remains insufficiently precise in practice, especially for languages like C/C++ [37].

2.3 Enabling Transformations

Parallelizing compilers apply enabling transformations to make the program more

amenable to parallelization.

2.3.1 Speculation

Speculation allows optimizations to overcome the limitations of static analysis. Specula-

tion typically relies on profiling information to identify data and control flow relationships

expected to rarely or never occur during program execution.2 Offline runs of the target

program with representative inputs produce this profiling information. Relationships re-

ported by static analysis but not observed during profiling may actually exist (analysis is

not limiting) or not exist (analysis is imprecise). In either case, the benefits of speculation

remain.

Speculative optimizations optimize for the common case by assuming that these specu-

lative assertions are true while transforming the code. To preserve correctness, speculative

optimizations add checks to activate recovery code when these assumptions prove untrue.

Recovery involves rolling back to a previous valid program state and non-speculative re-

execution. To be profitable, speculative optimizations must consider the benefits of opti-

mizing for the common case against the expected frequency of misspeculation, the cost of

misspeculation recovery, and the validation cost. The validation cost is the cost of check-

2This dissertation refers to predictions based on profiling information as speculative assertions

12

ing for misspeculation, a cost that exists even when there is no misspeculation. More

concretely, the use of a speculative optimization is profitable when:

original time > (1− misspec rate)× (validation time + optimized time)+

(misspec rate)× (invalid time + recovery time)

The optimized time denotes the execution time of the optimized code without consid-

ering any speculation overhead. The original time denotes the execution time of the code

without the application of the speculative optimization. The invalid time denotes the execu-

tion time till the detection of misspeculation and involves the work that gets undone with the

rollback. Checkpointing (periodically saving a valid program state) during speculative ex-

ecution increases the validation time but decreases the invalid time and the recovery time.

Aggressive use of speculation is most prominently observed in parallelization schemes,

where high-performance gains can compensate for the overheads introduced by specula-

tion [82, 44, 48, 94, 64].

Memory Speculation: Memory speculation is the most commonly used and powerful

speculation technique [82, 94, 64, 44, 48]. It asserts the absence of memory dependences

non-observed during profiling using a loop-sensitive memory dependence profiler [18].

Yet, memory speculation is also the most expensive speculation technique. Excessive us-

age of memory speculation often negates its enabling effect [32, 16, 93]. To validate that a

memory dependence between two operations is not manifested at runtime, the access pat-

tern of these two memory operations needs to be monitored at runtime. A shadow memory

is commonly used to keep track of accessed memory locations for all the speculative ac-

cesses [44, 69, 82]. This is expensive for software-only systems where monitoring of large

read and write sets results in dramatic slowdowns [44, 77].

13

r0 := addr

point_to_heap_check:
r1 = r0 & MASK
br r1 != EXPECTED,misspec

(a) Inexpensive

r0 := addr
r1 := type

mem_spec_check:
r2 = r0 | SHADOW_MASK
r3 = M[r2]
r4 = check_meta(r3, r1)
br r4 == FAIL, misspec
r5 = update_meta(r3, r1)
M[r2] = r5

(b) Expensive

Figure 2.1: Speculation validation code examples. Validation of inexpensive speculative
assertions involves only a few bitwise/arithmetic/branch instructions, while the memory
speculation check involves many more operations, including memory accesses.

To lower the validation cost, a diverse set of cheaper but less powerful speculation

techniques have been proposed. Prior work includes speculative assertions that: certain

control paths are never taken; certain load instructions always read the same value; certain

memory objects live only within a single loop iteration [44, 48, 93]; pointers only reference

a restricted family of objects [44]; certain types of data structures change infrequently [79];

or that certain memory objects are read-only [44].

Figure 2.1b shows an assembly code snippet of a typical memory speculation valida-

tion code and compares it with an example of a cheap-to-validate speculation (points-to

heap/family check in Figure 2.1a). Validation of the rest of the aforementioned cheap-

to-validate speculative assertions is not more complicated than the simple check shown

in Figure 2.1a. Note that if a parallelization transformation employs memory speculation

for a cross-iteration dependence, memory speculation validation additionally involves the

communication of memory footprints among parallel workers. In contrast, for most inex-

pensive speculation techniques, each parallel worker only needs to perform local checks

with no communication overhead.

14

2.3.2 Privatization & Reduction

The reuse of data structures introduces artificial constraints to automatic parallelization.

Privatization is an enabling transformation that creates private data copies for each parallel

worker to remove contention caused by the reuse of data structures. The privatization

criterion in the context of loop parallelization follows:

Definition 5 (Privatization Criterion [44]). We say a memory object M is privatizable in a

loop L if M does not partake in cross-iteration flow dependences, namely there is no read

of M in iteration i of L that should return a value written in an earlier iteration j.

Reduction is another important parallelization-enabling transformation. Reduction ex-

pands storage locations to relax ordering constraints on associative and commutative oper-

ations. Contrary to privatization, there is a real flow dependence in reducible operations,

but it is bypassed by expanding the shared storage location in multiple copies. Each paral-

lel worker updates independently its own private copy during the execution of the loop. At

the end of the loop invocation, all copies are merged together to form the final result. This

dissertation’s applicability criterion of reduction follows:

Definition 6 (Reduction Criterion [44]). We say a memory object M is reducible in a loop

L if all writes to M within L are performed with a single associative and commutative

operator, and no other operation within L reads an intermediate value of M .

Speculative Variants Early work focused on satisfying the privatization and reduction

criteria statically [96, 28]. To increase the applicability of these enablers, later work imple-

mented speculative variants [82, 23]. However, these works are limited to arrays and scalar

variables and cannot handle dynamically allocated data structures and pointers; hence they

are largely inapplicable to most C/C++ programs. More recently, Privateer [44] introduced

more advanced and applicable speculative variants of privatization and reduction that are

insensitive to memory layout by employing profile-guided speculative separation of mem-

15

ory objects. These variants are powerful enough to handle dynamic and recursive data

structures, even in the presence of unrestricted pointers.

2.4 Parallelization Transformations

After the application of enablers, the program is parallelized, if possible. Many paralleliza-

tion transformations with varying degrees of applicability and effectiveness have been pro-

posed in the literature. The most desirable and simple is DOALL [47]. Other techniques,

like DOACROSS [21] or PS-DSWP [78], are less efficient but more applicable thanks to

their ability to tolerate cross-iteration dependences. This dissertation focuses mainly on

DOALL parallelization. However, some proposed techniques are agnostic to the paral-

lelization scheme (§5), and the proposed infrastructure, apart from DOALL, also supports

pipelined parallelization [78, 71] (§6.2). Thus, this background section also provides a brief

discussion of other parallelization techniques.

2.4.1 DOALL Parallelization

DOALL parallelization is applicable to a loop when each iteration of this loop is inde-

pendent of the other iterations. In other words, it is applicable for loops that do not

have any cross-iteration dependences. If this criterion is satisfied, the DOALL transfor-

mation can schedule each loop iteration in parallel. Since there is no need for commu-

nication among the parallel workers, DOALL is the most profitable parallelization tech-

nique. The critical path of the loop is just the execution latency of the longest single iter-

ation. Since even one cross-iteration dependence renders DOALL inapplicable, multiple

research works [82, 44, 48, 64], including this dissertation, try to eliminate every single

cross-iteration dependence by any means possible (e.g., sophisticated static analysis, new

enabling transformations).

16

2.4.2 Tolerating Cross-Iteration Dependences

Loops in general-purpose programs sometimes have unremovable cross-iteration depen-

dences that prevent the use of DOALL. Figure 2.2a shows a commonly found code pattern

with a cross-iteration dependence. This code pattern involves traversing through a linked

list and performing some work on every node of the linked list. Note that the critical path

(i.e., longest dependence chain) for this loop comprises of all Ai and Bi instructions, where

i represents the ith loop iteration.

Historically, one way to parallelize such loops is to use DOACROSS, where each loop

iteration is scheduled on a separate core, and cross-iteration dependences are forwarded

between cores [47]. Figure 2.2b shows the DOACROSS parallelization for this loop, which

takes an average of 5 cycles per loop iteration to execute. As can be seen from the figure,

the cross-iteration dependence that is a part of the critical path (Ai → Bi → Ai+1) must be

communicated across cores. This results in a cyclic communication pattern that increases

the length of the critical path by putting the latency of the inter-core communication onto

the critical path. The critical path now consists of the latency of execution of all Ai and

Bi instructions and the inter-core communication latency (set to 3 cycles in this example)

required to communicate each Bi → Ai+1 dependence. If the inter-core communication

latency were to be increased from 3 cycles to 4 cycles, execution of the loop would slow

down from 5 to 6 cycles per iteration.

Campanoni et al. [15] proposed HELIX to perform a finer-grained and more scalable

parallelization than its DOACROSS predecessor. HELIX carefully overlaps inter-core

communication with computation in an attempt to mitigate DOACROSS’s sensitivity to

inter-core communication latency. HELIX is especially successful at moving data forward-

ing off the critical path when proper hardware support is provided (HELIX-RC [13]) or

minor output distortions are acceptable (HELIX-UP [14]).

To maximize loop performance, one needs to minimize the latency of the critical path

of the loop. A minimal path can quickly free up parallel work in the noncritical sections of

17

A
:
w
h
i
l
e
(
n
o
d
e
-
>
n
e
x
t
)
{

B
:

n
o
d
e
=
n
o
d
e
-
>
n
e
x
t
;

C
:

w
o
r
k
(
n
o
d
e
)
;

} (a
)L

in
ke

d
lis

tt
ra

ve
rs

al
co

de
ex

am
pl

e

A

1

B
1

C
1

A
2

B
2

C
2

A
3

0 1 2 3 4 5 6 7 8 9 10 11

C
or

e
1

C
or

e
2

C
2

(b
)D

O
A

C
R

O
SS

[2
1]

5
cy

cl
es

/it
er

at
io

n

A

1

B
1 A
2

B
2

A
3

B
3 A
4

B
4

0 1 2 3 4 5 6 7 8 9 10 11

C
or

e
1

C
or

e
2

C
1

A
5

B
5

A
6

C
2

(c
)D

SW
P

[8
0,

71
]

3
cy

cl
es

/it
er

at
io

n

A

1

B
1 A
2

B
2

A
3

B
3 A
4

B
4

0 1 2 3 4 5 6 7 8 9 10 11

C
or

e
2

C
or

e
3

C
2

A
5

B
5

A
6

C
3

C
or

e
1

C
1

(d
)P

S-
D

SW
P

[7
8]

2
cy

cl
es

/it
er

at
io

n

Fi
gu

re
2.

2:
C

om
pa

ri
so

n
of

pa
ra

lle
liz

at
io

n
tr

an
sf

or
m

at
io

ns
th

at
ca

n
to

le
ra

te
cr

os
s-

ite
ra

tio
n

de
pe

nd
en

ce
s.

E
dg

es
co

nn
ec

tin
g

in
st

ru
ct

io
ns

fr
om

di
ff

er
en

t
ite

ra
tio

ns
re

pr
es

en
t

cr
os

s-
ite

ra
tio

n
de

pe
nd

en
ce

s.
C

ol
or

ed
bo

xe
s

an
d

th
ic

k
ed

ge
s

hi
gh

lig
ht

th
e

cr
iti

ca
l

pa
th

.
In

te
r-

co
re

co
m

m
un

ic
at

io
n

la
te

nc
y

is
se

tt
o

3
cy

cl
es

.A
si

m
ila

rfi
gu

re
ap

pe
ar

s
in

[3
1]

.

18

the loop, thereby yielding better performance. Based on this insight, Decoupled Software

Pipelining (DSWP) was proposed [80, 71]. Instead of scheduling the loop iteration as a sin-

gle monolithic unit, DSWP divides the loop body into multiple pipeline stages and assigns

each stage to a different core for execution. DSWP schedules the critical path of the loop

on the same core. Some values corresponding to dependences between instructions must

still be communicated between cores, but none of these dependences are on the loop’s

critical path. Figure 2.2c shows how DSWP parallelizes the loop. Unlike DOACROSS

or HELIX, the scheduling of dependences on the critical path as core-local gives DSWP

communication-latency tolerance. Thus, even if the latency of the inter-core communi-

cation were to increase, DSWP would still take on average 3 cycles per loop iteration.

However, despite the latency tolerance, DSWP’s scalability is restrained to the number of

pipeline stages.

In response, Raman et al. [78] developed Parallel Stage Decoupled Software Pipelining

(PS-DSWP), an enhancement to DSWP. PS-DSWP showed that the noncritical instruc-

tions scheduled by DSWP on different cores may subsequently be parallelized in a myriad

of ways, including DOALL [78] and LOCALWRITE [40]. Figure 2.2d shows that the PS-

DSWP transformation executes each loop iteration of this example in only 2 cycles once

the pipeline is filled. This transformation detects that there are no cross-iteration depen-

dences between the noncritical path instructions and thus schedules these instructions on

different cores. Therefore, by isolating the critical path of a loop in the first stage and subse-

quently parallelizing the noncritical work sections, PS-DSWP unlocks scalable parallelism

for loops previously thought to be inherently sequential [49, 78].

19

Chapter 3

Motivation

Since this dissertation focuses mainly on DOALL parallelism, this chapter first discusses

the state-of-the-art for DOALL parallelization systems. It then presents the inefficiencies

of the state-of-the-art to motivate this dissertation’s work. Note that the presented ineffi-

ciencies are not unique to DOALL and actually plague any type of prior automatic par-

allelization system. Similarly, the presented techniques that address these inefficiencies

are either agnostic to the parallelization scheme (§5) or are extensible to schemes beyond

DOALL (§6.2).

3.1 State-of-the-Art for DOALL Parallelization

Software-based automatic DOALL parallelization systems have been studied for a long

time. Early works in the 1990s, including Polaris [10], SUIF [100], PD [81], and Hybrid

Analysis [85], use static or runtime analysis to parallelize programs and examine the ap-

plicability of enabling transformations such as privatization and reduction. However, the

imprecision of static analysis and the difficulty of extracting low-cost runtime checks limit

the applicability of these systems to scientific codes.

More recent works like STMlite [64], Cluster Spec-DOALL [48], Privateer [44] use

profile-guided speculation to overcome the limitations of static analysis and enable paral-

20

lelization of loops with pointers, irregular memory accesses, and complex control flows.

Among these works, Privateer [44] supports speculative privatization and reduction even

in the presence of unrestricted pointers by using speculative heap separation, and it has the

greatest applicability of all prior automatic speculative-DOALL systems.

Despite increased applicability, evaluation results of automatic speculative-DOALL

systems on real hardware are still underwhelming due to overheads that often negate the

benefits of parallelization [16, 32]. This dissertation first identifies core inefficiencies of

the state-of-the-art parallelizing compilers and subsequently describes how the proposed

frameworks mitigate them.

3.2 Overheads of State-of-the-Art

Privateer [44] is the most applicable automatic DOALL parallelization system, and thus

this dissertation focuses on the parallelization overheads of Privateer. By examining the

evaluation of Privateer, this work identifies two core inefficiencies:

(i) excessive use of memory speculation, which is the most common problem of prior

speculative parallelization systems; and

(ii) expensive privatization, which applies to most systems with privatization support,

especially speculative ones.

In §3.2.1 and §3.2.2, this dissertation discusses the impact of these two main overheads on

Privateer along with a motivating example taken from the dijkstra benchmark (used

in Privateer’s evaluation) from MiBench [36]. The simplified code for the hot loop of this

benchmark is shown in Figure 3.1. Section 4.4 shows how the proposed approach in this

dissertation avoids these overheads for this example.

21

1 int *pathcost; // dyn alloc 1-D N
2 int *adj; // dyn alloc 2-D NxN
3 int dist;
4 int nDist;
5

6 void allocatePathCost() {
7 pathcost = (int*)malloc(N*sizeof(int));
8 }
9

10 int dequeue() {
11 if (!nullQHead()) {
14 dist = ...
15 ...
16 }
19 }
20

21 void hot_loop(int N) {
26 for (src=0; src<N; src++) {
29 for (i=0; i<N; i++)
30 pathcost[i] = inf;
31

32 enqueue(src, 0);
33 while (!emptyQ()) {
34 int v = dequeue();
35 for (i=0; i<N; i++) {
39 nDist = adj[v][i] + dist;
42 if (pathcost[i] > nDist) {
45 pathcost[i] = nDist;
46 enqueue(i, nDist);
47 }
48 }
49 }
53 }
55 }

Figure 3.1: Motivating example from dijkstra [36]

3.2.1 Excessive Use of Memory Speculation

Privateer’s excessive use of memory speculation leads to large overheads for monitoring

speculative memory accesses, with an average of 23.7 GB of reads and 18.4 GB of writes

monitored per benchmark, as reported in the paper [44]. This problem is especially appar-

ent for the dijkstra benchmark which has particularly high overheads (84.9GB of reads

and 56.7GB of writes) that limit its speedup to 4.8× on 24 cores. For example, Privateer

resorts to memory speculation to resolve the cross-iteration flow dependence from line 14

to line 39 in order to privatize dist. Static analysis alone is unable to disprove this de-

pendence, since the write to dist is inside a conditional block. Other prior speculative

parallelization systems, similarly to Privateer, cannot avoid the use of memory speculation

in this case.

22

As this dissertation demonstrates (§7), prior work resorts to memory speculation due to:

(i) lack of awareness within the compiler of the full effect of cheaper-to-validate speculative

techniques; and/or (ii) lack of planning that would avoid unnecessary use of expensive spec-

ulation and prioritize cheaper alternatives. By enabling judicious use of speculation with

the introduction of speculation-aware analysis and a planning phase, this work manages to

remove the aforementioned dependence in this example without the use of expensive-to-

validate memory speculation, as shown in §4.4.

3.2.2 Expensive Privatization

Perhaps unexpectedly, parallelized programs may still have large overheads due to book-

keeping of writes to privatized objects, even without the use of memory speculation. For

dijkstra, even assuming checks for speculative reads are removed, Privateer still needs

to log 56.7 GB of writes to privatized objects, which constitutes around 20% of each par-

allel worker’s time. In Figure 3.1, static analysis alone can disprove all cross-iteration flow

dependences related to pathcost and safely privatize it. However, because pathcost

is a live-out object (i.e., might be read after the loop invocation), Privateer still logs its

writes to track in which iteration each byte of the object was last written.

Prior work, including Privateer, lacks the decision-making mechanisms to simultane-

ously consider multiple applicable enabling transformations, resorting to a few powerful,

but expensive speculative enablers. This work introduces new efficient speculative pri-

vatization variants that are enabled by its planning phase. By selecting a more efficient

privatization variant, this work avoids the unnecessary bookkeeping for the pathcost

object in this example, as discussed in §4.4.

23

Chapter 4

The Perspective Approach

For years, the biggest problem of automatic parallelization was limited applicability.

Progress on that front was made, mainly with the introduction of speculation, rendering

automatic parallelization more applicable. Given that success, this dissertation shifts the

focus to profitability by making those approaches to applicability more profitable.

Current parallelizing compiler designs utilize memory analysis and speculative tech-

niques independently and apply a fixed sequence of powerful but often high-overhead en-

abling transformations. These designs lead to overheads that often negate the benefits of

parallelization. As one of its contributions, this dissertation identifies many such overheads

as being unnecessary.

To overcome the inefficiencies of prior work, this dissertation introduces a paralleliza-

tion framework, called Perspective, that integrates a novel speculation-aware dependence

analysis framework (§4.1) and a planning phase involving careful selection of applied trans-

formations (§4.2). Perspective’s design enables the discovery of efficient parallelization op-

portunities not possible in prior parallelizing compilers, including new efficient speculative

privatization transformations (§4.3).

24

4.1 Speculation-Aware Analysis

Prior techniques use memory analysis and speculative assertions independently. This is

problematic since the unrecognized effect of speculative assertions can be significant. In-

stead, this work proposes a speculation-aware collaborative analysis framework (SCAF)

that combines the strengths of static analysis and cheap-to-validate speculative assertions

to reduce the need for expensive speculation. SCAF enables memory analysis to view

cheap-to-validate speculative assertions as facts, ignoring the possibility of misspeculation.

To enable the compiler to preserve correctness and judiciously speculate, SCAF reports for

each analysis response the speculation assertions leveraged in the process. Thus, the com-

piler only needs to protect (with validation and recovery code) useful speculative assertions

while fully leveraging each one of them. For the design and implementation details of the

speculation-aware analysis framework refer to §5.

4.2 Planning

Unlike prior speculative systems that apply a fixed sequence of parallelization-enabling

transformations, Perspective proposes a more sensible approach: before applying any trans-

formation, plan first.

Enabling transformations modify the code to remove parallelization inhibitors, which in

the context of DOALL parallelization are cross-iteration dependences. All transformations

are split into two parts to facilitate planning: the applicability guard that participates in the

planning phase of the compilation, and the actual transformation that is applied, if selected,

in the transformation phase. The applicability guard utilizes properties produced by the

speculation-aware analysis framework to determine which parallelization inhibitors the cor-

responding transformation can handle. The interface between the speculation-aware anal-

ysis framework and enabling transformations is an annotated program dependence graph

(PDG). The output of each applicability guard is collected in a transformation proposal.

25

Each proposal also includes the cost for the application of the transformation and a set of

speculative assertions required for the transformation to be applicable. At the end of the

planning phase, the transformation selector picks a minimal-cost set of transformation pro-

posals necessary for DOALL parallelization. This planning approach generalizes beyond

DOALL, as discussed in §6.2.

Instead of targeting individual cross-iteration dependences, memory-related transfor-

mations offer to handle a set of memory objects, effectively addressing all associated

cross-iteration dependences. This object-centric approach is motivated by the fact that

memory-related enabling transformations often operate at the object level. For example,

the privatization transformation creates private copies of memory objects.

4.3 New Enabling Transformations

Prior work on speculative parallelization focuses on the enabling effects of transforma-

tions without enough consideration of their costs. To maximize applicability, enabling

transformations are often given a program dependence graph relaxed with the use of all

the available speculative assertions. This approach not only creates ambiguity in terms of

which speculative assertions are necessary but also prevents the usage of efficient variants

of transformations. By exposing a combination of static analysis information and the ef-

fect of speculative assertions, Perspective enables more efficient enabling transformations.

This is especially true for the case of speculative privatization, efficient variants of which

are explored in this dissertation.

Prior software speculative systems with extended support for privatization [44, 48] only

infer the basic privatization property: a memory object does not have any cross-iteration

data flows. This way, speculative privatization application involves costly instrumentation

of all write accesses of privatized objects for logging or communication. At commit, the

26

private copies of each worker are merged according to metadata that specifies which worker

last wrote each byte.

To avoid expensive monitoring of write sets during parallel execution and minimize

copy-out costs, this dissertation proposes four efficient variants of the speculative priva-

tization transformation. These variants require additional memory object properties apart

from the basic privatization property to be applicable. With respect to a target loop, a

private memory object can additionally be:

(i) independent, if it does not source or sink any cross-iteration false dependences;

(ii) overwritten, if it is written to the same memory locations at every loop iteration;

(iii) predictable, if the live-out content of the private object is predictable; or,

(iv) local, if it is allocated outside the loop but all its accesses are contained within the

loop.

Inference of any of these four private properties allows the complete elimination of

bookkeeping costs provided that the basic privatization property was satisfied without the

use of memory flow speculation. The first two variants have been explored by Tu et al. [96]

but were limited to static-analysis-based detection of privatization. Unlike any prior work,

Perspective extends the applicability of these two variants to programs with pointers, dy-

namic allocation, and type casts using speculative assertions.

Figure 4.1 demonstrates cases where the proposed privatization variants are applicable.

All the memory objects in this example satisfy the privatization criterion. However, all ob-

jects except for the privatized array satisfy one additional property that enables efficient

privatization. Prior work cannot distinguish these different cases and thus would have to

apply speculative privatization with expensive monitoring for all the arrays in this example.

27

1 int *independent_array; // dyn alloc 1xN
2 int overwritten_array[K];
3 int predictable_liveout_array[K] = {0};
4 int local_array[K];
5 int privatized_array[K];
6

7 // parallelized loop
8 for (i=0; i<N; i++) {
9

10 independent_array[i] = ...
11

12 for (j=0; j<K; j++) {
13

14 if (!rare)
15 overwritten_array[j] = ...;
16

17 if (rare)
18 predictable_liveout_array[j] = ...;
19

20 if (non_biased_cond) {
21 local_array[j] = ...;
22 privatized_array[j] = ...;
23 }
24 ...
25 }
26 }
27

28 // no use for local_array
29 // outside the parallelized loop
30 ...

Figure 4.1: Example where all proposed speculative privatization variants are applicable. i)
independent: the independent array can be shared among the workers (executing outer-
loop iterations) since there are no overlapping memory accesses. ii) overwritten: the over-
written array is speculatively fully-overwritten at every outer-loop iteration (speculated
that the rare condition is never true); thus its liveout state is the last iteration’s state of the
array. iii) predictable: the predictable liveout array is predicted to include only zeroes at
the end of the loop invocation (speculated that the rare condition is never true). iv) local:
no use for the local array outside the parallelized loop; thus no need to compute its liveout
state. v) just privatizable: the privatized array has unknown liveout state; thus its writes
need to be monitored.

4.4 Example

This section describes how the new ideas introduced in this dissertation (§4.1, §4.2, §4.3)

enable efficient parallelization of the dijkstra benchmark from MiBench [36]. This

section also highlights the limitations of prior work. Consider again the motivating example

discussed in §3.2 and presented again in Figure 4.2. Figure 4.3 compares the compilation

flow of Perspective with that of Privateer [44] for handling memory objects pathcost

and dist from this code example.

28

1 int *pathcost; // dyn alloc 1-D N
2 int *adj; // dyn alloc 2-D NxN
3 int dist;
4 int nDist;
5

6 void allocatePathCost() {
7 pathcost = (int*)malloc(N*sizeof(int));
8 }
9

10 int dequeue() {
11 if (!nullQHead()) {
14 dist = ...
15 ...
16 }
19 }
20

21 void hot_loop(int N) {
26 for (src=0; src<N; src++) {
29 for (i=0; i<N; i++)
30 pathcost[i] = inf;
31

32 enqueue(src, 0);
33 while (!emptyQ()) {
34 int v = dequeue();
35 for (i=0; i<N; i++) {
39 nDist = adj[v][i] + dist;
42 if (pathcost[i] > nDist) {
45 pathcost[i] = nDist;
46 enqueue(i, nDist);
47 }
48 }
49 }
53 }
55 }

Figure 4.2: Sequential version of the motivating example from dijkstra [36]. The
line numbering is consistent with the parallelized versions of this example presented in
Figure 4.4 (missing line numbers account for inserted logging and checking operations in
the parallelized code).

Perspective employs an exploration phase that yields a much more profitable plan than

Privateer’s scheme. At first, the speculation-aware collaborative analysis framework

(SCAF) processes the sequential code and the profile information, and it is queried to pro-

duce a program dependence graph (PDG) annotated with properties and underlying spec-

ulative assertions, as shown in Figure 4.3b. Observe that memory flow speculation is not

included in SCAF, since memory speculation just asserts the absence of dependences with-

out being able to collaborate with other speculation or memory analysis modules within

SCAF.

In this example (Figure 4.2), the branch in line 11 is heavily biased; it is always taken

in practice. Therefore, control speculation leveraging edge profiling information can assert

29

R
AW

W
AR

W
AW

R
em

ov
ed

pa
th
co
st

di
st

pa
th
co
st

di
st

Tr
an

sf
or

m
s

U
se

d

R
un

ti
m

e
O

ve
rh

ea
ds

Se
qu

en
tia

l C
od

e
Pr

ofi
le

 In
pu

ts

Po
in

ts
-to

Pr
ofi

le
r

C
la

ss
ifi

er

Ed
ge

Pr
ofi

le
r

M
em

or
y

Pr
ofi

le
r

29

44

13

38

41

U
O

=
7

U
O

=
3

U
O

=
3

U
O

=
7

U
O

=
7

PDG (Memory Only)

- P
riv

at
iza

tio
n

- M
em

or
y

Sp
ec

ul
at

io
n

- S
ep

ar
at

io
n

Sp
ec

ul
at

io
n

 Results

- H
ea

p
ch

ec
k

- P
riv

ac
y

ch
ec

ks
 &

 lo
gg

in
g

fo
r

al

l a
cc

es
se

s
- C

om
m

un
ic

at
io

n
an

d

m
er

gi
ng

 o
f p

riv
at

e
co

pi
es

- H
ea

p
ch

ec
k

- P
riv

ac
y

ch
ec

ks
 &

 lo
gg

in
g

fo
r

al

l a
cc

es
se

s
- C

om
m

un
ic

at
io

n
an

d

m
er

gi
ng

 o
f p

riv
at

e
co

pi
es

C
on

tro
l

Fl
ow

Po
in

ts
-to

M
ap

M
em

or
y

Fl
ow

Sp
ec

ul
at

iv
e

As
se

rti
on

s

- P
riv

at
iza

tio
n

- M
em

or
y

Sp
ec

ul
at

io
n

- S
ep

ar
at

io
n

Sp
ec

ul
at

io
n

(a
)P

riv
at

ee
r[

44
]

O
V

E
R

W
R

IT
E

 (C
F1

)
U

O
=

7
(P

M
1)

U
O

=
3

U
O

=
3

(P
M

4)

U
O

=
3

U
O

=
3

(P
M

5)
U

O
=

7
(P

M
3)

U
O

=
7

(P
M

2)

O
V

E
R

W
R

IT
E

O
V

E
R

W
R

IT
E

Se
qu

en
tia

l C
od

e

Po
in

ts
-to

Pr
ofi

le
r

Tr
an

sf
or

m
at

io
n

Se
le

ct
or

Ba
si

c
Pr

iv
at

iza
tio

n
O

ve
rw

rit
e

Pr
iv

at
iza

tio
n

Lo
ca

l P
riv

at
iza

tio
n

Ed
ge

Pr
ofi

le
r

M
em

or
y

Pr
ofi

le
r

St
at

ic
An

al
ys

is
C

on
tro

l
Fl

ow
 (C

F)
Po

in
ts

-to
M

ap
 (P

M
)

M
em

or
y

Fl
ow

 (M
F)

Sp
ec

ul
at

iv
e

As
se

rti
on

s

29

44

41

13

38

(M
F1

)

(C
F3

)

(M
F3

)

(C
F2

)

(M
F2

)

di
st

{C
F3

}

R
AW

W
AR

W
AW

R
em

ov
ab

le

Annotated PDG (Memory Only) Transformation
Proposals

pa
th
co
st

{P

M
1,

2,
3}

di
st

{C
F3

}
pa
th
co
st

{P

M
1,

2,
3}

di
st

{C
F1

,3
}

pa
th
co
st

pa
th
co
st

di
st

di
st

Tr
an

sf
or

m
s

Se
le

ct
ed

R
un

ti
m

e
O

ve
rh

ea
ds

- H
ea

p
ch

ec
k

- O
ve

rw
rit

e
Pr

iv
at

iza
tio

n
- S

ep
ar

at
io

n
Sp

ec
ul

at
io

n
(P

M
1,

2,
3)

- L
oc

al
 P

riv
at

iza
tio

n
- C

on
tro

l S
pe

cu
la

tio
n

(C
F1

,3
)

- C
on

tro
l m

is
sp

ec
ul

at
io

n
ch

ec
k

Results

SCAF

Pr
ofi

le
 In

pu
ts

(b
)P

er
sp

ec
tiv

e
(T

hi
s

W
or

k)

Fi
gu

re
4.

3:
C

om
pa

ri
so

n
of

th
e

de
ci

si
on

pr
oc

es
s

fo
r

ha
nd

lin
g

m
em

or
y

ob
je

ct
s
p
a
t
h
c
o
s
t

an
d
d
i
s
t

of
d
i
j
k
s
t
r
a

.
N

um
be

rs
in

ci
rc

le
s

ar
e

lin
e

nu
m

be
rs

in
Fi

gu
re

4.
2;

“U
O

=#
”

m
ea

ns
th

e
un

de
rl

yi
ng

ob
je

ct
is

al
lo

ca
te

d/
de

cl
ar

ed
in

lin
e

#;
C

ol
or

s
in

(b
)

in
di

ca
te

th
e

co
m

po
ne

nt
(s

)t
ha

ti
nf

er
re

d
a

pr
op

er
ty

;P
riv

at
ee

rd
oe

s
no

tk
ee

p
tr

ac
k

of
ho

w
a

pr
op

er
ty

w
as

in
fe

rr
ed

.

30

that the branch is always taken and that the instruction in line 14 executes at every invo-

cation of the dequeue function. Normally, memory analysis is unaware of this assertion

and thus is unable to handle the cross-iteration data flow from line 14 to line 39. However,

the proposed speculation-aware analysis framework allows memory analysis algorithms to

view this assertion as a fact, ignore the branch and the possibility of misspeculation, and

observe the read in line 39 as being dominated by the write in line 14. This way, a kill-flow

analysis algorithm aware of this assertion can infer that there is no cross-iteration data flow

between these two operations since the write to dist appears to always kill the flow from

a previous iteration before it reaches the read operation in line 39. This combination of

control speculation and static analysis removes a dependence that would require the use of

expensive-to-validate memory speculation in any prior speculative parallelization system.

The speculation-aware analysis framework is not only queried to produce different op-

tions for removable edges but also to provide useful information for non-removable edges.

Non-removable output dependence edges, in the example in Figure 4.3b, are annotated

with the overwrite property that indicates that the destination operation always overwrites

the footprint of the source operation.

Furthermore, the speculation-aware analysis framework is queried to annotate instruc-

tions that may access memory with underlying memory objects, namely the instruction’s

memory footprint (“UOs” in Figure 4.3b). This information can be inferred either statically

or via points-to profile information, and it is required by privatization transformations that

need to map memory objects to memory operations for correct identification of privatizable

objects.

In the next step, based on the annotated PDG, three different transformations offer to

handle memory objects, including overwrite privatization and local privatization, intro-

duced in §4.3.

To enable DOALL parallelization, the transformation selector then selects the lowest

cost option for each memory object. For example, the local privatization’s offer is selected

31

for dist since it is the cheapest privatization transformation (no monitoring and no copy-

out costs), and its needed speculative assertion is the same as those of other options. The

nDist object (not shown in this figure) is also handled by local privatization, while the

pathcost array is handled by the overwrite privatization transformation.

On the other hand, Privateer, the prior automatic DOALL parallelization system with

the highest applicability, cannot parallelize dijkstra as efficiently as Perspective (Fig-

ure 4.3a). The problem is that Privateer relies on profile information to create a spec-

ulatively relaxed PDG, creating ambiguities on how each dependence was removed.

Moreover, the produced PDG does not contain any information on the remaining edges.

This overall lack of information impedes consideration of the efficient privatization vari-

ants described in this dissertation. Instead, Privateer’s approach necessitates excessive

memory speculation validation to conservatively preserve program correctness and expen-

sive privatization of the objects with privacy checks and costly merging of private copies.

The end result for Privateer’s parallelization is high runtime overheads.

Figure 4.4 compares the resulting parallelized versions (in a simplified form) by

Perspective and Privateer. The code includes all the added checks, logging, and live-out

handling overheads. The code changes are marked with the average added overhead

compared to each worker’s useful work. Based on this figure, it is clear that Perspective

is able to parallelize dijkstra without Privateer’s overheads, thanks to the use of the

speculation-aware analysis framework, careful selection of applied transformations, and

use of efficient privatization variants. In fact, Perspective exhibits 4.8× speedup over

Privateer for the dijkstra benchmark (see §7.2.2).

32

10
i
n
t

d
e
q
u
e
u
e
(
)

{
11

i
f

(
!
n
u
l
l
Q
H
e
a
d
(
)
)

{
12

/
/

P
r
i
v
a
c
y

L
o
c
a
l

C
h
e
c
k

&
L
o
g
g
i
n
g

13
p
r
i
v
a
t
e
_
w
r
i
t
e
(
&
d
i
s
t
,

s
i
z
e
o
f
(
i
n
t
)
,

m
d
)
;

/
/

<
1
%

a
d
d
e
d

O
H

14
d
i
s
t
=

.
.
.

15
.
.
.

16
}

17 18 19
}

20 21
v
o
i
d

w
o
r
k
e
r
_
l
o
o
p
(
i
n
t

s
t
a
r
t
,

i
n
t

N
,

i
n
t

s
t
e
p
)

{
22

v
o
i
d
*
m
d

=
a
l
l
o
c
(
)
;

/
/

a
l
l
o
c
a
t
e

m
e
t
a
d
a
t
a

23
/
/

S
e
p
a
r
a
t
i
o
n

L
o
c
a
l

C
h
e
c
k

24
c
h
e
c
k
_
h
e
a
p
(
p
a
t
h
c
o
s
t
,

P
R
I
V
A
T
E
)
;

/
/

<
0
.
0
0
1
%

a
d
d
e
d

O
H

25
c
h
e
c
k
_
h
e
a
p
(
&
d
i
s
t
,

P
R
I
V
A
T
E
)
;

/
/

<
0
.
0
0
1
%

a
d
d
e
d

O
H

26
f
o
r

(
s
r
c
=
s
t
a
r
t
;

s
r
c
<
N
;

s
r
c
+
=
s
t
e
p
)

{
27

/
/

P
r
i
v
a
c
y

L
o
c
a
l

C
h
e
c
k

&
L
o
g
g
i
n
g

28
p
r
i
v
a
t
e
_
w
r
i
t
e
(
p
a
t
h
c
o
s
t
,

N
*
s
i
z
e
o
f
(
i
n
t
)
,

m
d
)
;

/
/

<
1
%

a
d
d
e
d

O
H

29
f
o
r

(
i
=
0
;

i
<
N
;

i
+
+
)

30
p
a
t
h
c
o
s
t
[
i
]

=
i
n
f
;

31 32
e
n
q
u
e
u
e
(
s
r
c
,

0
)
;

33
w
h
i
l
e

(
!
e
m
p
t
y
Q
(
)
)

{
34

i
n
t

v
=

d
e
q
u
e
u
e
(
)
;

35
f
o
r

(
i
=
0
;

i
<
N
;

i
+
+
)

{
36

/
/

P
r
i
v
a
c
y

L
o
c
a
l

C
h
e
c
k
s

&
L
o
g
g
i
n
g

37
p
r
i
v
a
t
e
_
r
e
a
d
(
&
d
i
s
t
,

s
i
z
e
o
f
(
i
n
t
)
,

m
d
)
;

/
/

1
1
.
4
%

a
d
d
e
d
O
H

38
p
r
i
v
a
t
e
_
w
r
i
t
e
(
&
n
D
i
s
t
,

s
i
z
e
o
f
(
i
n
t
)
,

m
d
)
;

/
/

1
3
.
3
%

a
d
d
e
d

O
H

39
n
D
i
s
t

=
a
d
j
[
v
]
[
i
]

+
d
i
s
t
;

40
/
/

P
r
i
v
a
c
y

L
o
c
a
l

C
h
e
c
k

&
L
o
g
g
i
n
g

41
p
r
i
v
a
t
e
_
r
e
a
d
(
&
p
a
t
h
c
o
s
t
[
i
]
,

s
i
z
e
o
f
(
i
n
t
)
,

m
d
)
;

/
/

1
1
.
6
%

a
d
d
e
d

O
H

42
i
f

(
p
a
t
h
c
o
s
t
[
i
]

>
n
D
i
s
t
)

{
43

/
/

P
r
i
v
a
c
y

L
o
c
a
l

C
h
e
c
k

&
L
o
g
g
i
n
g

44
p
r
i
v
a
t
e
_
w
r
i
t
e
(
&
p
a
t
h
c
o
s
t
[
i
]
,

s
i
z
e
o
f
(
i
n
t
)
,

m
d
)
;

/
/

<
1
%
a
d
d
e
d

O
H

45
p
a
t
h
c
o
s
t
[
i
]

=
n
D
i
s
t
;

46
e
n
q
u
e
u
e
(
i
,

n
D
i
s
t
)
;

47
}

48
}

49
}

50
i
f

(
c
h
e
c
k
p
o
i
n
t
D
u
e
(
)
)

{
51

c
h
e
c
k
P
r
i
v
A
c
c
c
e
s
s
e
s
C
o
n
f
l
i
c
t
s
(
m
d
)
;

/
/

<
1
%

a
d
d
e
d

O
H

52
}

53
}

54
c
o
m
m
u
n
i
c
a
t
e
L
i
v
e
O
u
t
M
e
m
S
t
a
t
e
(
m
d
)
;

/
/

<
1
%

a
d
d
e
d

O
H

55
}

(a
)P

riv
at

ee
r[

44
]

10
i
n
t

d
e
q
u
e
u
e
(
)

{
11

i
f
(
!
n
u
l
l
Q
H
e
a
d
(
)
)

{
12 13 14

d
i
s
t

=
.
.
.

15
.
.
.

16
}

17
e
l
s
e

18
m
i
s
s
p
e
c
(
"
C
o
n
t
r
o
l

m
i
s
s
p
e
c

i
n
d
e
q
u
e
u
e
(
)
"
)
;
/
/

0
%

a
d
d
e
d
O
H

19
}

20 21
v
o
i
d

w
o
r
k
e
r
_
l
o
o
p
(
i
n
t

s
t
a
r
t
,
i
n
t

N
,

i
n
t

s
t
e
p
)

{
22 23

/
/
S
e
p
a
r
a
t
i
o
n

L
o
c
a
l

C
h
e
c
k

24
c
h
e
c
k
_
h
e
a
p
(
p
a
t
h
c
o
s
t
,

O
V
E
R
W
R
I
T
E
_
P
R
I
V
A
T
E
)
;
/
/

<
0
.
0
0
1
%
a
d
d
e
d

O
H

25 26
f
o
r

(
s
r
c
=
s
t
a
r
t
;

s
r
c
<
N
;

s
r
c
+
=
s
t
e
p
)

{
27 28 29

f
o
r

(
i
=
0
;

i
<
N
;

i
+
+
)

30
p
a
t
h
c
o
s
t
[
i
]
=

i
n
f
;

31 32
e
n
q
u
e
u
e
(
s
r
c
,
0
)
;

33
w
h
i
l
e

(
!
e
m
p
t
y
Q
(
)
)

{
34

i
n
t

v
=

d
e
q
u
e
u
e
(
)
;

35
f
o
r

(
i
=
0
;

i
<
N
;
i
+
+
)

{
36 37 38 39

n
D
i
s
t
=

a
d
j
[
v
]
[
i
]

+
d
i
s
t
;

40 41 42
i
f

(
p
a
t
h
c
o
s
t
[
i
]

>
n
D
i
s
t
)

{
43 44 45

p
a
t
h
c
o
s
t
[
i
]

=
n
D
i
s
t
;

46
e
n
q
u
e
u
e
(
i
,

n
D
i
s
t
)
;

47
}

48
}

49
}

50
}

51
/
/
o
n
l
y

l
a
s
t

i
t
e
r
a
t
i
o
n
’
s

p
a
t
h
c
o
s
t

a
r
r
a
y

52
/
/
n
e
e
d
s

t
o

b
e
c
o
m
m
u
n
i
c
a
t
e
d

53
i
f
(
i
s
L
a
s
t
I
t
e
r
(
s
r
c
,

s
t
a
r
t
,

N
,

s
t
e
p
)
)

54
c
o
m
m
u
n
i
c
a
t
e
_
p
a
t
h
c
o
s
t
(
)
;

/
/

<
1
%

a
d
d
e
d

O
H

55
}

(b
)P

er
sp

ec
tiv

e
(T

hi
s

W
or

k)

Fi
gu

re
4.

4:
C

om
pa

ri
so

n
of

pa
ra

lle
liz

ed
co

de
fo

r
d
i
j
k
s
t
r
a

.
L

og
gi

ng
an

d
ch

ec
ks

du
ri

ng
lo

op
ex

ec
ut

io
n

do
m

in
at

e
th

e
ov

er
he

ad
s,

in
di

ca
te

d
in

th
e

co
de

as
“a

dd
ed

O
H

”.

33

Chapter 5

Speculation-Aware Collaborative

Analysis Framework

One of the primary contributions of this dissertation is SCAF, a dependence analysis frame-

work that enables collaboration between memory analysis and speculative techniques with-

out sacrificing modularity. This chapter first motivates the need for a collaborative, mod-

ular, and speculation-aware dependence analysis framework and then describes the design

and implementation of SCAF.

5.1 Motivation

This section describes how prior work expresses the impact of speculative assertions to

other transformations and analyses within the compiler, and then motivates the approach

proposed in this dissertation.

One might attempt to express the effect of speculative assertions by transforming the

code. For example, Neelakantam et al. [66] propose converting biased branches to asser-

tions to expose speculative control flow information to subsequent transformations. This

approach does not generalize for all the types of speculative assertions, especially for those

that assert the absence of certain data flow relationships. For example, the impact of sep-

34

aration speculation [44] and memory speculation (§2.3.1) cannot be expressed via a trans-

formation. Further, applying speculative transformations without fully evaluating their en-

abling effect is problematic. Compilers should only apply speculative transformations that

enable optimizations with performance gains exceeding the speculation overheads. More-

over, the application of a transformation may limit the applicability of some subsequent

transformations (phase-order problem).

To avoid these pitfalls, the impact of speculative information needs to be visible during

an analysis phase prior to transformation. This requires integrating speculation into mem-

ory analysis. Prior work has explored two different ways to perform this integration: via

composition by confluence and monolithically.

Composition by Confluence: To integrate speculative information into an analysis

phase, some consider the effect of speculative techniques on memory dependences in a

sequence, independently of each other and of memory analysis [98, 103, 64, 48]. This

dissertation characterizes this approach as composition by confluence since the result

of this composition is the confluence of all individual techniques’ results. This design

is modular (consists of independently developed components) but does not support the

synergistic co-existence of speculation and analysis. Therefore, it fails to fully leverage

the impact of speculative information, as shown in the motivating example (§5.1.1).

Monolithic Integration: In this approach, memory analysis algorithms are extended

with knowledge and interpretation of profile-based speculative information [29, 26]. This

scheme increases the impact of speculative assertions. Yet, given the diverse set of existing

memory analysis algorithms and speculative techniques, creating monolithic and complex

implementations of different combinations does not scale in terms of engineering effort and

hinders extensibility and maintainability.

35

Table 5.1: Comparison of Proposals for Integration of Speculation into Analysis

Approaches
Supported Forms of Collaboration Memory Analysis

Decoupled from
Speculation

Among
Speculative Techniques

Between Memory Analysis
and Speculative Techniques

Monolithic Integration
[29, 26] 7 3 7

Composition by Confluence
[98, 103, 64, 48] 7 7 3

Composition by Collaboration
(This Work) 3 3 3

Composition by Collaboration: Motivated by the deficiencies of prior work, this dis-

sertation introduces a new approach of integrating speculation with memory analysis. The

proposed approach exposes the full impact of speculative assertions by enabling collabora-

tion of memory analysis and speculative techniques (composition by collaboration) without

sacrificing modularity and prior to any transformation. In fact, this scheme allows memory

analysis to leverage speculative information despite being developed independently.

Table 5.1 summarizes the comparison of this work with existing proposals of the de-

signs described earlier in this section.

5.1.1 Example

For the code example in Figure 5.1, a client wants to determine whether there is a cross-

iteration dependence from instruction i3 to i2. By inspecting the code, one can observe a

cross-iteration data flow from i3 to i2 when the branch is taken. However, since this path

1 loop L:
2 if (rare)
3 // no writes to a
4 ...
5 else
6 i1: a = ...;
7 i2: b = foo(a);
8 ...
9 i3: a = ...;

Figure 5.1: Motivating Code Example

36

is highly unlikely to execute, one could speculatively ignore it and infer that instruction i1

kills the data flow from i3 to i2.

A compiler using memory analysis cannot disprove the cross-iteration data flow from

i3 to i2 since none of the conditions described in §2.1.1 (alias, update, feasible-path, no-

kill) can be statically disproven. Further, control speculation cannot assert the absence

of this dependence in isolation since neither i2 nor i3 are speculatively dead. Therefore,

composition by confluence is unable to remove this dependence.

To maximize the impact of the control flow assertion (branch is never taken), interaction

among control speculation and memory analysis is necessary in this example.

The monolithic integration approach would extend the kill-flow analysis algorithm [43]

to interpret edge profiling information. This way, kill-flow can leverage the biased branch

in the example, view i1 as executing on every iteration, infer that the condition no-kill from

§2.1.1 is violated, and thus can assert the absence of the cross-iteration data flow from i3

to i2.

Instead, this work is able to assert the absence of the cross-iteration data flow from i3

to i2 without any transformation and in a modular fashion, as shown in §5.2.5.

5.2 Design

SCAF can be seen as a speculation-aware extension of CAF [43]. CAF is limited to col-

laboration among memory analysis algorithms, depicted as memory analysis modules in

Figure 5.2. SCAF introduces speculation into the analysis framework with the introduction

of speculation modules (Figure 5.2b). Speculation modules express the effect of specula-

tive techniques by interpreting profiling information in terms of dependence analysis.

37

Terminator

Memory Analysis
Module

Memory Analysis
Module

Client

(a) CAF [43]

Query
Response

Orchestrator

Client

Memory
Analysis
Module
(Base)

Memory
Analysis
Module

(Factored)

Speculation
Module
(Base)

Speculation
Module

(Factored)

(b) SCAF (This Work)

Figure 5.2: Design of Collaborative Analysis Frameworks

5.2.1 Collaboration

Collaboration among modules in SCAF occurs indirectly through a new coordinating com-

ponent, called the Orchestrator. Modules may formulate premise queries from incoming

queries to resolve propositions about which they cannot reason (same as in CAF [43]).

Modules that create premise queries are called factored modules, while the rest are called

base modules. Premise queries are sent back to the Orchestrator to allow other modules to

resolve them and effectively contribute to resolving the original queries. That way, mod-

ules are agnostic to who produces an incoming query or who assists them, and there is no

need for direct communication among modules. In fact, memory analysis modules, despite

being speculation-unaware, can collaborate with speculation modules. This decoupled de-

sign enables independent development of modules and easy extension of the framework.

5.2.2 Query Language

The query language enables interactions between clients and analysis modules, and among

the analysis modules. It defines how dependence analysis queries are expressed and serves

as the modules’ interface. Figure 5.3 defines the syntax of the analysis queries (§5.2.2.1,

§5.2.2.2) and the query responses (§5.2.2.3).

38

Q
ue

ry
Sy

nt
ax

Q
ue

ry
q
::
=

q a
|
q m

A
lia

s
Q

ue
ry

q a
::
=

al
ia

s(
m

1
,t

r,
m

2
,l
,c

c,
dr
)

M
od

R
ef

Q
ue

ry
q m

::
=

m
od

re
f(
i,

tr
,m

,l
,c

c,
dt
,p

dt
)

|
m

od
re

f(
i 1
,t

r,
i 2
,l
,c

c,
dt
,p

dt
)

M
em

or
y

L
oc

at
io

n
m

::
=

(p
,s
)

Te
m

po
ra

lR
el

at
io

n
tr
::
=

B
ef

or
e
|

Sa
m

e
|

A
ft

er
D

es
ir

ed
R

es
ul

t
dr
::
=

N
oA

lia
s
|

M
us

tA
lia

s

R
es

po
ns

e
Sy

nt
ax

Q
ue

ry
R

es
po

ns
e

r
::
=

(R
,S

)

R
es

ul
t

R
::
=
R

a
|
R

m

A
lia

s
R

es
ul

t
R

a
::
=

N
oA

lia
s|

M
us

tA
lia

s|
Su

bA
lia

s|
M

ay
A

lia
s

M
od

re
fR

es
ul

t
R

m
::
=

N
oM

od
R

ef
|R

ef
|M

od
|M

od
R

ef
Se

to
fO

pt
io

ns
S:
:=
∅
|
{O
}
|
S
+
S
|
S
×
S

A
ss

er
tio

n
O

pt
io

n
O
::
=
∅
|
{A
}
|
O

+
O

A
ss

er
tio

n
A
::
=

(i
d,

tp
,e

c,
cp
)

O
th

er
N

ot
at

io
ns

i
:

In
st

ru
ct

io
n

p
:

Po
in

te
r

s
:

A
cc

es
s

Si
ze

l
:

L
oo

p

cc
:

C
al

lin
g

C
on

te
xt

dt
:

D
om

in
at

or
Tr

ee
pd

t:
Po

st
-D

om
in

at
or

Tr
ee

id
:

M
od

ul
e

ID

tp
:

Tr
an

sf
or

m
at

io
n

Po
in

ts
ec

:
E

st
im

at
ed

C
os

t
cp

:
C

on
fli

ct
Po

in
ts

Fi
gu

re
5.

3:
Sy

nt
ax

fo
r

SC
A

F’
s

qu
er

y
an

d
qu

er
y

re
sp

on
se

.
C

ol
or

ed
te

xt
in

di
ca

te
s

ne
w

sy
nt

ax
ex

te
ns

io
ns

ov
er

th
e

qu
er

y
la

ng
ua

ge
of

no
n-

sp
ec

ul
at

iv
e

an
al

ys
is

fr
am

ew
or

ks
(C

A
F

[4
3]

,L
LV

M
[6

0]
).
B
e
f
o
r
e

,A
f
t
e
r

,a
nd

S
a
m
e

de
no

te
th

at
th

e
fir

st
op

er
at

io
n

ex
ec

ut
es

/th
e

fir
st

po
in

te
ri

s
co

m
pu

te
d

in
a

st
ri

ct
ly

-e
ar

lie
r/

a
st

ri
ct

ly
-l

at
er

/th
e

sa
m

e
ite

ra
tio

n
th

an
/a

s
th

e
se

co
nd

.

39

5.2.2.1 Query Types

As in LLVM’s alias analysis infrastructure (LLVM 5.0 [60]) and CAF [43], SCAF supports

two types of analysis queries: alias and modref queries. Alias queries determine

whether two pointers may alias each other, while modref queries determine whether an

instruction may read or write a memory location (defined by a pointer and a location size)

or the memory footprint of another instruction.

5.2.2.2 New Query Parameters

This dissertation introduces new query parameters, compared to CAF and LLVM, essential

for collaboration in the presence of speculative analysis modules and for query latency

reduction.

In a traditional memory analysis framework, there is only one valid control flow graph.

However, the introduction of speculation modules, particularly modules that interpret

branch-related profile information, enables new variants of the control flow. To allow

modules to communicate control-flow knowledge, this dissertation introduces optional

control-flow query parameters in the form of dominator and post-dominator trees. That

way, control-flow sensitive modules of the ensemble can leverage this speculative infor-

mation to resolve queries, unresolvable with the traditional static control-flow information.

Even so, modules are agnostic to whether the control-flow information contained in the

received query is speculative or not.

Modules that generate premise alias queries often benefit from only one specific alias

result. However, CAF’s (and LLVM’s) interface does not differentiate a must-alias query

from a query that is meant to check for no-alias. Therefore, this dissertation introduces an-

other (optional) parameter that allows modules to specify exactly the alias result they need

from premise alias queries to resolve the original query. This new parameter significantly

reduces the query latency (§7.1.3) since modules can bail-out early if they cannot return the

required answer.

40

Another introduced (optional) parameter provides calling-context information. This

context helps disambiguate between different dynamic instances of the same static instruc-

tion. This parameter is essential for more fine-grained identification of memory objects

since the same static instruction may create several memory objects. Speculation analysis

modules that reason about memory objects benefit from this context.

Moreover, queries in SCAF, same as in CAF [43], contain additional context informa-

tion via the loop and temporal relation parameters. The loop parameter scopes the query

to represent dynamic instances of operations during the loop’s execution. The temporal re-

lation parameter restricts the considered paths and allows distinguishability between intra-

iteration (Same) and cross-iteration (Before, After) dependences.

5.2.2.3 (Speculative) Query Response

Memory analysis frameworks [60, 43] do not need to provide any additional information

apart from the query result (e.g., NoAlias). In SCAF, by contrast, answers might be

predicated on speculative assertions that need to be validated at runtime if the client wishes

to preserve the semantics of the original code. Thus, SCAF’s query responses may contain

speculative assertions information added by speculation modules that contributed to the

resolution of the query. In fact, the query response may contain a set of different options,

any of which can be selected by the client (Response Syntax in Figure 5.3). Each of these

options may contain multiple speculative assertions that all need to hold true for the analysis

result to be sound. The algorithms presented in §5.2.3 demonstrate how the Orchestrator

populates this set of options according to client-selected policies. Note that as opposed to

clients, modules within SCAF do not need to be aware of the utilized speculative assertions

for a given query.

Each speculative assertion includes (i) a module identifier that specifies which spec-

ulation module produced the assertion; (ii) program points that specify where to apply

speculation (different for each module); (iii) an estimated cost for validation overhead; and

41

p1 p2

p3 p4

… …
MustAlias: (p1, p3)
NoAlias: (p2, p3), (p3, p4)
PartialAlias:(p1, p2), (p2, p4)
SubAlias: (p1, p4)

Figure 5.4: Difference between MustAlias, NoAlias, PartialAlias, and
SubAlias. Arrows represent the pointed memory addresses, and dashed lines denote
access sizes. Only the most precise result is presented. Analysis may return MayAlias
when it cannot infer any other relation.

(iv) potential conflict points introduced by the application of this assertion. Clients use

this information to correctly enforce these assertions by applying the required validation

code, avoid conflicting options, and consider the cost/benefit of responses. Details about

how speculation modules populate this information are presented in a generic fashion in

§5.3.2.1 and on a per-module basis in §5.3.2.3 and §5.3.2.4.

Moreover, this dissertation introduces an additional alias query result: SubAlias.

This result is returned when a memory location is fully contained within the other memory

location of the alias query. SubAlias is different from LLVM’s PartialAlias [60],

where two memory objects are known to be overlapping in some way, but one is not nec-

essarily contained within the other. Figure 5.4 (inspired by [61]) illustrates the differences

among alias results. In this Figure, the memory location referenced by pointer p4 is fully

contained within the memory location referenced by p1 but only overlaps with the memory

location referenced by p2. NoAlias is inferred when there is no overlap, while pointers

p1 and p3 have a MustAlias relationship since they point to the same memory address.

5.2.3 Orchestrator

The Orchestrator coordinates the interactions among modules and between modules and

the client by forwarding queries to the modules and by processing query responses (Algo-

42

rithm 1). It allows modules to remain simple and decoupled, and it can be instantiated with

different configurations to accommodate different clients’ requirements.

Algorithm 1: handle (query)
Input: Query
Output: Query Response
(module list, bailout policy, join policy)← getConfig();
final res← conservativeResponse(query);
for module in module list do

res← eval(module, query);
final res← join(join policy, final res, res);
if bailout(bailout policy, final res) then

return final res;

return final res;

Modules’ implementations only need to respect the query interface, without considering

interactions or conflicts with other modules. Clients can easily reconfigure the Orchestrator

to adjust the received responses without any modification to the modules.

The need for configurability is caused by the presence of speculation modules in SCAF.

In traditional memory analysis frameworks [43, 60], the clients are typically indifferent to

which module resolved the query; only the result is of interest. However, in SCAF, the

same analysis outcome may come with different caveats depending on which modules par-

ticipated in the resolution of the query. Each speculation module has different requirements

in terms of validation for its speculative assertions.

The join policy determines what the Orchestrator records for each received re-

sponse (Algorithm 2). It can either collect all the possible ways a query can be resolved to

enable clients to perform global reasoning, or just keep the locally optimal option. Need

for global reasoning sources from the fact that a single speculative assertion might resolve

with the same cost multiple client’s queries as opposed to a cheaper assertion that resolves

only one query. The latter is locally better for one particular query, but the former is glob-

ally better. Regarding the conflicting results case, it represents an analysis bug if the results

are not speculative. If the results are predicated on speculative assertions, it is possible that

43

Algorithm 2: join (join policy, r1, r2)
Input: Join Policy, Query Response 1, Query Response 2
Output: Combined Query Response
/* Define assertion-related semantics */
Def O1 +O2 = O1 ∪ O2 ;
Def S1 + S2 = S1 ∪ S2 ;
Def S1 × S2 = {O1 +O2 : O1 ∈ S1,O2 ∈ S2} ;
/* Define order of precision of results */
Def pr(NoAlias) == pr(MustAlias) >pr(SubAlias) >pr(MayAlias);
Def pr(NoModRef) >pr(Mod) == pr(Ref) >pr(ModRef);
(R1,S1)← r1;
(R2,S2)← r2;
if pr(R1) >pr(R2) then return r1;
if pr(R1) <pr(R2) then return r2;
/* pr(R1) == pr(R2) */
ifR1 ==R2 then

switch join policy do
case ALL return (R1, S1 + S2);
case CHEAPEST return (R1, cheaper(S1, S2));
case Other Policies ...;

/* Special Case: Mod and Ref */
else if (R1 == Mod andR2 == Ref) or (R1 == Ref andR2 == Mod) then

if conflict(S1, S2) then
return handleConflictingAssertions(r1, r2)

else
return (NoModRef, S1 × S2)

else
return handleConflictingResults(r1, r2);

for different profiling inputs, different results appear true. The difference in speculation

confidence could determine which one should be preferred.

The bailout policy determines when to stop the search. A default base policy

makes the Orchestrator immediately return when a definite answer (i.e., the most precise) is

found with no attached assertions (i.e., cost-free). Apart from this policy, the Orchestrator’s

search may stop when all the options have been explored (exhaustive search), or when a

timeout occurs (clients sensitive to compilation time), or when a definite answer is found

regardless of cost, or based on some other heuristic.

For simplicity and lack of empirical evidence justifying exposure of all options and ex-

haustive search, this work’s implementation opts for a greedy search that terminates when

a definite result is found and presents only one option to the client.

44

The Orchestrator could also be configured to query any subset of the available modules.

For example, a client who wants to avoid speculation can configure the Orchestrator to

query only memory analysis modules. The ordering of modules is also important as it

affects query latency and the effectiveness of greedy approaches. Typically, modules with

the smaller average cost of speculative assertions are prioritized. Since memory analysis

modules’ answers are caveat-free (no validation), they are normally queried first. From

among the memory analysis modules, the order could be determined by the query latency.

5.2.4 SCAF within a Compiler

SCAF suggests: SCAF does not perform any transformation. SCAF merely makes sug-

gestions. Clients can choose to ignore SCAF’s suggestions to avoid paying the cost of their

accompanying speculative assertions. Different configurations of the Orchestrator adjust

the content of these suggestions, but the final decision on what transformations to perform

is still left to the client.

SCAF facilitates planning: SCAF avoids the defect of conventional compiler designs

where the effect of speculative transformations is only visible after performing the ac-

tual transformation. Since SCAF reports the result of queries predicated on speculative

assertions, the compiler can perform global reasoning and weigh the impact of applying

speculative transformations prior to actually applying them. For example, a parallelization

transformation client could query SCAF for all the dependences in a hot loop. Then, to

select the set of necessary speculative assertions, this client can formulate an optimization

problem considering the removal cost of dependences and the parallelization gains. In the

case of multiple clients, a coordinating component could consider the cost/benefit of mul-

tiple optimizations simultaneously and prevent redundant speculation validation checks.

Finally, rational clients would not apply validation checks for non-leveraged speculative

assertions.

45

5.2.5 Example

This section illustrates concepts and design decisions described in the previous sections

with the motivating example from section §5.1.1. For this example (presented again in

Figure 5.5a), a client wants to determine whether there is a cross-iteration dependence from

instruction i3 to i2. Such a client could be a parallelization transformation that needs to

remove all the cross-iteration dependences so that each iteration can execute independently

and in parallel.

Edge profiling information allows control speculation to infer that the branch in this

code example is never taken (rare condition). This dissertation proposes that memory anal-

ysis and other speculation modules should leverage the full effect of control speculation

without performing code transformations. In particular, the speculative assertion that the

branch is not taken should be understood by all modules in SCAF as a fact (view misspec-

ulation as impossible) since recovery code, inserted by the client, preserves correctness in

the case of misspeculation. The view of the real effect of control speculation is presented

loop L:
if (rare)

// no writes to a
...

else
i1: a = ...;
i2: b = foo(a);

...
i3: a = ...;

(a) Original Code

loop L:
// rare path ignored

i1: a = ...;
// data flow from i3
// killed by i1

i2: b = foo(a);
...

i3: a = ...;

(b) Speculative View

loop L:
if (rare)

misspec(branch_tag);
...

else
i1: a = ...;
i2: b = foo(a);

...
i3: a = ...;

(c) Control Speculation Applied

Figure 5.5: Motivating Code Example

46

in Figure 5.5b. The speculative view is not intended to show transformed code (SCAF does

not change the code) but to explain how the code should be understood by other modules

given speculative dominance information. This view of the code enables the kill-flow anal-

ysis algorithm to prove that i1 kills (overwrites) the cross-iteration data flow from i3 and

thus disprove the dependence in question.

Figure 5.6 shows how this code example is handled by SCAF step-by-step. For sim-

plicity, this example only consists of two modules – a kill-flow memory analysis module

and a control speculation module. SCAF enables control speculation to express a specula-

tive control flow of the loop to other modules via a premise query. This premise query is

received by the kill-flow module that can resolve the premise query as opposed to the ini-

tially received query. In the end, the client receives a NoModRef result predicated on the

speculative assertion A that the branch is never taken. If the client chooses to leverage the

NoModRef result and wants to preserve soundness, it would need to insert a function call

at the beginning of the taken path to trigger misspeculation, as shown in Figure 5.5c. For

a parallelization transformation client, recovery would involve rollback to the last check-

pointed memory state and sequential execution of the original code (without speculation

applied) up to the iteration that caused the misspeculation.

In this example, a collaboration between a speculation module and a memory analysis

module results in a dependence removal. In general, collaboration in SCAF can also occur

among speculation modules or be initiated by memory analysis modules.

Without collaboration, the removed dependence in this example would require memory

speculation. Memory speculation just asserts the absence of non-observed during profiling

dependences without any understanding of why they are not observed; there is no rea-

soning. Thus, its validation requires expensive monitoring of the involved operations and

comparison of their access patterns. Instead, SCAF manages to inexpensively remove the

dependence in question by understanding why this dependence did not manifest during

profiling (i.e., not taken branch).

47

O
rc

he
st

ra
to

r (
O

)

C
lie

nt
 (C

)

Ki
ll

Fl
ow

M
od

ul
e

(K
F)

C
on

tro
l S

pe
c

M
od

ul
e

(C
S)

82

1
14

6
3

12

10
13

11

94
5

7

St
ep

Fl
ow

A
ct

io
n

1
C
→

O
C

al
lh
a
n
d
l
e

(q
0

=m
o
d
r
e
f

(i
3,

B
ef

or
e,

i2
,L

,c
c,

dt
,p

dt
))

2
O
→

K
F

C
al

le
v
a
l

(K
F,
q
0

)
3

K
F

G
en

er
at

e
r 0

:(
M

od
R

ef
,∅
)

//
th

e
flo

w
fr

om
i3

to
i2

is
no

tk
ill

ed
4

K
F→

O
R

et
ur

n
r 0

5
O
→

C
S

C
al

le
v
a
l

(C
S,

q
0

)

6
C

S
G

en
er

at
e

pr
em

is
e

qu
er

y
q
1

:
m
o
d
r
e
f

(i
3,

B
ef

or
e,

i2
,L

,c
c,

sp
ec

dt
,s

pe
c

pd
t)

7
C

S→
O

C
al

lh
a
n
d
l
e

(q
1

)
8

O
→

K
F

C
al

le
v
a
l

(K
F,
q
1

)
9

K
F

G
en

er
at

e
r 1

:(
N

oM
od

R
ef
,∅
)

//
i1

ki
lls

th
e

flo
w

fr
om

i3
to

i2
10

K
F→

O
R

et
ur

n
r 1

11
O
→

C
S

R
et

ur
n
r 1

12
C

S
G

en
er

at
e

co
nt

ro
ls

pe
cu

la
tio

n
as

se
rt

io
n
A

(b
ra

nc
h

ne
ve

rt
ak

en
),

as
se

rt
io

n
op

tio
n
O

={
A
},

an
d

re
sp

on
se

r 3
:(

N
oM

od
R

ef
,O

)
13

C
S→

O
R

et
ur

n
r 3

14
O
→

C
R

et
ur

n
r 3

Fi
gu

re
5.

6:
A

st
ep

-b
y-

st
ep

ex
am

pl
e

of
SC

A
F

in
ac

tio
n.

T
he

cl
ie

nt
w

an
ts

to
de

te
rm

in
e

if
th

er
e

is
a

cr
os

s-
ite

ra
tio

n
da

ta
flo

w
fr

om
i3

to
i2

in
th

e
lo

op
in

Fi
gu

re
5.

5a
.T

o
th

at
en

d,
it

cr
ea

te
s

a
m

od
re

fq
ue

ry
th

at
as

ks
if

in
st

ru
ct

io
n

i3
m

ay
re

ad
or

w
ri

te
th

e
m

em
or

y
fo

ot
pr

in
to

fi
2

in
a

la
te

ri
te

ra
tio

n,
as

su
m

in
g

so
m

e
st

at
ic

co
nt

ro
lfl

ow
in

fo
rm

at
io

n
(d

t,
pd

t)
.T

he
ki

ll-
flo

w
an

d
co

nt
ro

ls
pe

cu
la

tio
n

m
od

ul
es

sy
ne

rg
is

tic
al

ly
re

so
lv

e
th

is
qu

er
y,

no
ta

dd
re

ss
ab

le
in

is
ol

at
io

n
by

ei
th

er
of

th
es

e
tw

o
m

od
ul

es
.

In
St

ep
9,

th
e

ki
ll-

flo
w

m
od

ul
e

pe
rc

ei
ve

s
th

e
co

de
as

in
th

e
Sp

ec
ul

at
iv

e
Vi

ew
in

Fi
gu

re
5.

5b
du

e
to

th
e

sp
ec

ul
at

iv
e

co
nt

ro
lfl

ow
in

fo
rm

at
io

n
(s

pe
c

dt
,s

pe
c

pd
t)

.

48

5.3 Implementation

SCAF is implemented on the LLVM Compiler Infrastructure [53] (version 5.0.2). This

section describes the memory analysis (§5.3.1) and speculation (§5.3.2) modules included

in SCAF’s implementation.

5.3.1 Memory Analysis Modules

SCAF includes the 17 analysis algorithms described in CAF [43, 42]. Each of these algo-

rithms tries to disprove one of the conditions described in §2.1.1. Some of these analyses

reason about features of the LLVM IR and the C standard library (Auto-Restrict, Basic

Loop, Φ-Maze, Semi-Local). The Kill-Flow and the Callsite Depth-Combinator modules

look for flow-killing operations to disprove the no-kill condition in §2.1.1. Several mem-

ory analysis modules involve reachability algorithms, which reason about which object

addresses can be stored in particular memory locations (Global Malloc, Non-Captured

Global, Non-Captured Source, Unique Access Paths). Other algorithms disprove alias-

ing by reasoning about induction variables and the scalar evolution of pointers (Array of

Structures, SCEV). The rest of the algorithms reason about shape analysis (Sane Types,

Non-Captured Fields, Acyclic, Disjoint Fields, Field Malloc). Table 5.2 briefly summa-

rizes the memory analysis modules implemented in SCAF.

Several of these algorithms initiate collaboration by creating premise queries. In CAF,

these premise queries can only be resolved by other memory analysis algorithms. In SCAF,

both memory analysis and speculation modules attempt to resolve these queries, effectively

increasing the impact of the partially resolved queries. Moreover, memory analysis mod-

ules can also resolve premise queries generated by speculation modules. An example of

collaboration among memory analysis and speculation modules is presented in §5.2.5.

Next, this section presents a critical improvement of this work to the Kill-Flow algo-

rithm of CAF.

49

Table 5.2: Summary of memory analysis modules implemented in SCAF. It includes all
the analysis algorithms described in CAF [43, 42]. An almost identical table is presented
in [42]. For a more detailed description of these memory analysis algorithms, refer to
Appendix A in [42].

Sensitivity
Memory Analysis

Module
Memory

-flow
Control
-flow

Array/
field

Calling-
context

Demand-
driven?

Premise
Queries

Auto-restrict × × × X Partially X
Basic Loop × × X × Fully ×

Φ-Maze × × × × Fully ×
Semi-Local × × × × Partially X
Kill Flow X X × × Fully X
Callsite X X × X Fully X

Global Malloc X × × × Partially ×
Non-Captured Global × × × × Fully ×
Non-Captured Source × × × × Fully ×

Unique Paths X × X X Partially X
Array of Structures × × X × Fully X

SCEV × × × × Fully ×
Sane Types X × × × Partially X

Non-Captured Fields X × X × Partially X
Acyclic × × X × Partially ×

Disjoint Fields × × X × Partially ×
Field Malloc × × X × Partially X

Extended Kill-Flow Analysis Algorithm: Kill-Flow is a highly effective analysis algo-

rithm that searches for killing operations along all feasible paths between two operations.

If a killing operation is found, then these two operations cannot have a dependence. Since

there may be infinitely many paths, its search involves a timeout and is restricted to blocks

that post-dominate the source of the queried dependence and dominate the destination.

This approximation prevents the detection of a common pattern (seen in 052.alvinn,

179.art, dijkstra) that can be observed in the code in Figure 5.7. The write to

pathcost in line 30 kills values flowing from the previous iteration to the read in line

42. However, there is no dominance relation, and thus it cannot be detected. This work

extends the Kill-Flow algorithm of prior work [43] to detect this pattern. Observe that

the loop header of the inner loop in line 29 dominates the read in line 42. The extended

50

21 void hot_loop(int N) {
26 for (src=0; src<N; src++) {
29 for (i=0; i<N; i++)
30 pathcost[i] = inf;
31

32 enqueue(src, 0);
33 while (!emptyQ()) {
34 int v = dequeue();
35 for (i=0; i<N; i++) {
39 nDist = adj[v][i] + dist;
42 if (pathcost[i] > nDist) {
45 pathcost[i] = nDist;
46 enqueue(i, nDist);
47 }
48 }
49 }
53 }
55 }

Figure 5.7: Shortened version of the dijkstra example from §4.4

Kill-Flow algorithm treats this inner loop as a single operation that overwrites a range of

memory locations. This way, it can easily be proven that this range write overwrites at

every outer-loop iteration the memory addresses read in line 42. Therefore, this exten-

sion allows SCAF’s Kill-Flow module to disprove additional data flows compared to the

proposed algorithm in CAF, further reducing the need for memory speculation.

5.3.2 Speculation Modules

This section describes a design pattern for speculation modules (§5.3.2.1), enumerates the

profilers that guide them (§5.3.2.2), and finally briefly describes the speculation modules

implemented in SCAF (§5.3.2.3, §5.3.2.4). For each speculation module, this section

describes the effect of its speculative assertions on dependence analysis, the validation code

for its assertions, and the possibility of conflicts with other speculation modules. Table 5.3

briefly summarizes the speculation modules implemented in SCAF.

5.3.2.1 Developing Speculation Modules

To overcome the inherent imprecision of memory analysis algorithms, traditional compiler

designs involve speculative transformations. Memory speculation can address the impre-

cision of memory analysis by asserting the absence of dependences not manifested during

51

profiling. However, memory speculation incurs a high validation cost [16, 32, 93]. To lower

the validation cost, state-of-the-art compilers also implement less generic but cheaper-to-

validate speculative transformations compared to memory speculation [44, 48, 93].

In this dissertation, such a speculative transformation is decomposed into an analysis

and a transformation part. This decomposition exposes the effect of a speculative transfor-

mation prior to its application, enabling careful planning. The analysis part is a speculation

module that interprets profile information in terms of dependence analysis, produces spec-

ulative assertions, and communicates with the same query language (§5.2.2) as memory

analysis modules. The transformation part includes validation code generation that en-

sures the correctness of the produced speculative assertions, recovery code generation in

case of misspeculation, and runtime support. SCAF’s clients apply this transformation

part to safely leverage the module’s speculative assertions without violating the program’s

semantics.

Design of Speculative Assertions: Each speculative assertion includes a module identi-

fier, transformation program points, an estimated cost, and conflict points. The identifier

is used by clients to identify the corresponding transformation code. The program points

specify where to apply the transformation (e.g., a branch instruction for control specula-

tion). The cost enables clients to optimize the selection of applied transformations based on

their cost and benefit. Conflict points specify program operations that need to be modified

and allow clients to detect ahead of time conflicting transformations (i.e., application of

one prevents the application of another).

Estimated Cost Computation: The cost of speculation comes from validation and re-

covery, as discussed in §2.3.1. This work models the validation cost but not the recovery

cost. Estimation of the latter appears unnecessary given the speculative assertions used in

SCAF. Validating speculative assertions’ adds latency in the common case, not only in the

case of misspeculation. Further, all speculative assertions in this work are high-confidence

52

(always hold true during profiling). Therefore, misspeculation is equivalently unlikely for

all the assertions. The existence of less conservative speculation schemes with varying mis-

speculation rates would necessitate modeling this recovery cost. The total validation cost

of a speculative assertion is computed by multiplying a latency estimate of one invocation

of the validation code with the execution count (measured during profiling) of the guarded

operation. For example, for the case of value prediction on a load operation, the validation

code (check that the predicted value matches the loaded value) will execute as many times

as the load operation (guarded instruction). The validation cost estimate for one invocation

is the average execution time of the validation code observed during profiling runs across

several benchmarks and inputs.

Directives to Minimize Conflicts: To minimize conflicts in terms of validation, it is

preferable to insert validation code adjacent to speculated operations rather than replacing

original program operations. By following this principle, most of the produced specula-

tive assertions in this implementation do not introduce any conflict points. For the rest,

orthogonality in terms of coverage prevents conflicts. In particular, modules that modify

the allocation sites of memory objects could conflict with each other, but the set of memory

objects that such modules handle are disjoint, preventing any conflicts.

Modular Design: Each speculation module and its validation code is decoupled and can

be developed independently from other modules as long as the module interface described

in §5.2.2 is respected. The development of these speculation modules and integration in

SCAF is not more complex than the development of separate speculation transformations

as customary in existing research compilers. The main new overhead is additional code

to conform to the SCAF’s interface. This code, though, is of insignificant complexity

compared to the logic for determining the applicability of the transformation or the code

for the application of the transformation.

53

Design with Collaboration in Mind: The proposed system does better than simply

adding speculation modules into the ensemble. Speculation modules in SCAF are de-

signed with collaboration in mind to maximize their impact. Traditionally, speculative tech-

niques are self-contained, resolving dependences in isolation. In SCAF, speculation mod-

ules can still directly address dependence queries but can also generate premise queries,

delegated by the Orchestrator to memory analysis modules or other speculation mod-

ules. This collaborative environment enables the decomposition of complex speculative

techniques to multiple simple speculation modules (e.g., extraction of points-to (§5.3.2.3),

read-only (§5.3.2.4), and short-lived (§5.3.2.4) modules from separation speculation [44])

and participation of speculation modules in resolution of queries that go beyond their own

reasoning (e.g., Figure 5.6).

5.3.2.2 Profilers

SCAF’s speculation modules use information generated by a set of profilers: (i) an edge

profiler that identifies biased branches [53]; (ii) a value-prediction profiler that detects pre-

dictable loads [33]; (iii) a pointer-to-object profiler that produces a points-to map, allowing

detection of underlying objects for every memory access [44]; and, (iv) an object-lifetime

profiler that detects short-lived memory objects, namely objects that exist only within a

single loop iteration [44].

5.3.2.3 Base Speculation Modules

The following base speculation modules resolve client queries or premise queries of other

modules using profiling information. Base modules do not generate premise queries.

Pointer-Residue Speculation attempts to disambiguate different fields within an object

and may also recognize different regular strides across an array. Each pointer is charac-

terized according to the observed during profiling values of its four least-significant bits

54

Table 5.3: Summary of speculation modules implemented in SCAF.

Speculation
Module Validation Conflict Points

Demand-
driven?

Premise
Queries

Pointer-Residue
Speculation

Few Bitwise & Branch
Operations None Fully ×

Points-to
Speculation N/A N/A Fully ×

Control
Speculation

Off-path Assertion
(practically zero cost) None Partially X

Value Prediction Branch Operation None Partially X

Read-only
Few Bitwise & Branch

Operations
Modified

Allocation Sites Partially X

Short-lived
Few Bitwise, Arithmetic &

Branch Operations
Modified

Allocation Sites Partially X

(residue). This module asserts the absence of dependences between operations with dis-

joint residue sets (with respect to their access size). Validation of this speculative infor-

mation is inexpensive, involves bitwise operations that ensure that dynamic pointer values

have expected residues, and does not conflict with the validation of other modules’ asser-

tions (original code instructions are left unmodified). This speculative technique has been

proposed by Johnson [42].

Points-to Speculation identifies underlying objects (allocation sites) for every pointer

using a points-to profiler. Using this speculative information, it answers alias queries, and it

may return SubAlias (explained in §5.2.2.3). Validating points-to objects information is,

in general, expensive and complicated. Thus, this module assigns a prohibitively high cost

to points-to assertions that effectively prevents clients from using responses predicated on

such assertions. Yet, answers of the points-to module can be leveraged by other speculation

modules, such as the read-only and short-lived modules (§5.3.2.4), without paying this

high cost. In particular, these modules’ validation code separates select memory objects

to a separate heap. Since distinguishing objects within a heap is not necessary for these

modules, they only need to insert points-to heap checks instead of expensive points-to

55

object checks. In other words, these modules can safely ignore the expensive-to-validate

points-to speculation assertion in the premise query response and replace it with their own

assertions.

5.3.2.4 Factored Speculation Modules

Same as factored memory analysis algorithms in CAF [43], factored speculation modules

initiate collaboration by generating premise queries that may be resolved by other specula-

tion or memory analysis modules.

Control Speculation identifies speculatively dead1 basic blocks using edge profiling. It

asserts that speculatively dead instructions cannot source or sink memory dependences.

This speculative assertion enables the resolution of client queries and premise queries of

other modules.

For example, the control speculation module can address premise queries generated

by the reachability algorithms described in CAF [43] (i.e., Global Malloc, Non-Captured

Global, Non-Captured Source, Unique Access Paths). These reachability algorithms reason

about which object addresses can be stored in particular memory locations. The control

speculation module may resolve premise queries related to speculatively unreachable stores

to these memory locations, thus facilitating the resolution of queries related to pointers

loaded from these locations.

Additionally, the control speculation module initiates collaboration by generating

premise queries that replace static control flow information of received queries with spec-

ulative control flow information (in the form of dominator and post-dominator trees). The

premise query with the optimistic control flow information is more likely to be resolved by

control-flow sensitive analysis modules compared to the original query. If the speculative

control flow is proven to be useful by leading to the resolution of a query, the control

1This work focuses on high-confidence speculation and thus only never executed during profiling basic
blocks are considered.

56

speculation module appends the required speculative control-flow assertions to the query

response.

Validation involves the insertion of a function call triggering recovery at the beginning

of the speculatively dead path of biased branches. This validation does not modify original

code instructions. Thus, it does not introduce conflicts with other speculative assertions, as

opposed to other schemes (e.g., [66]) that propose the replacement of biased branches with

assertions. The validation cost of control speculation is practically zero since the biased

branch is computed anyway. The only potential overhead is the cost of recovery in the

unlikely case of misspeculation.

Value Prediction identifies predictable loads using profiling information. It resolves data

dependences that sink into or source from these predictable loads. The value prediction

module can also interpret predictable loads as kill operations to resolve additional queries

leveraging the no-kill condition from §2.1.1. If a predictable load post-dominates the source

of a queried dependence and dominates the destination, the value prediction module gen-

erates premise queries to compare the memory footprint of the predictable load with the

footprint of the dependent instructions. A MustAlias result for either of the two premise

queries enables the value prediction module to assert a lack of dependence. Validation is

inexpensive, involves a simple comparison of the loaded value with the predicted one, and

it does not conflict with other assertions.

Read-only identifies memory objects that are never written to within a target loop based

on profiling information [44]. This module generates premise queries to compare the mem-

ory locations of read-only objects with the memory locations involved in received queries.

It asserts that read-only memory locations cannot be written to and asserts disjointedness

of read-only objects from pointers to other objects. Johnson et al. [44] have shown that val-

idation of these assertions is inexpensive via separation of read-only memory objects to a

separate heap and simple bitwise operations on computed pointers to check points-to heap

57

assertions. Note that this work separates and decomposes the analysis part of separation

speculation [44] to simple modules that collaboratively infer at least the same properties

as the monolithic design proposed in [44]. Further, this work avoids points-to heap checks

if the premise query reports MustAlias with zero cost. Since read-only assertions re-

quire re-allocation of the involved memory objects to the read-only heap, they conflict with

any other assertions that require modification of the allocation sites of the same memory

objects.

Short-lived identifies memory objects that only exist within one iteration of the loop of

interest using profiling information [44, 48, 93]. Similarly to the read-only module, it gen-

erates premise queries to compare the memory locations involved in the original query with

the locations of short-lived objects. It asserts the absence of cross-iteration dependences on

any access to short-lived objects and asserts disjointedness of these objects from pointers to

other objects. Similarly to the read-only module’s validation, validation of the short-lived

module’s assertions is inexpensive and introduces conflicts on the allocation sites of the

involved short-lived objects. Note that the short-lived and the read-only objects are disjoint

sets, and thus no conflict between their assertions is possible. In addition, the short-lived

module’s assertions additionally require a simple check at the end of every loop iteration

that verifies that the count of allocated short-lived objects equals the count of freed ones.

5.3.2.5 Recovery

Clients utilizing SCAF’s query responses with speculative assertions need to insert the cor-

responding validation code (described in §5.3.2.3, §5.3.2.4) to preserve the semantics of the

original code. At runtime, if the validation checks fail, misspeculation occurs and recov-

ery code should be activated. Therefore, clients that leverage speculative assertions should

support recovery and separation of speculative and non-speculative state. There is a rich

literature of recovery mechanisms for systems that speculate memory dependences. These

58

mechanisms, that SCAF’s clients can leverage, are summarized in two main categories:

process-based [27, 46, 44, 77, 49] and thread-based [64, 93, 92, 94, 39] schemes. The im-

plementation of the Perspective parallelizing compiler, which uses SCAF and is presented

in §6, employs process-based runtime support for misspeculation recovery (§6.8).

59

Chapter 6

Parallelization Infrastructure

Implementation

This chapter discusses implementation details for Perspective, a fully-automatic paral-

lelization system that incorporates the ideas described in §4. Figure 6.1 depicts an overview

of the Perspective framework, which includes a set of profilers, a parallelizing compiler,

and a runtime system.

The compilation flow begins with a preprocessing step in which the code is canoni-

calized, and the profiling results are generated. In the planning phase, for each hot loop,

the compiler queries the speculation-aware collaborative analysis framework (SCAF) to

populate a program dependence graph (PDG) annotated with information utilized by the

rest of the planning phase. Annotations include properties for the dependences and the

dependent instructions. A memory speculation module provides additional annotations for

dependences not manifested during profiling. The applicability guard of each enabling

transformation examines the annotated PDG and creates transformation proposals that of-

fer to remove parallelization-inhibiting cross-iteration dependences in the loop, along with

their cost. Then, each applicable parallelization transformation produces a proposal that

specifies the offered speedup along with the dependences that need to be removed for it to

60

Sequential Program

LLVM IR Profile Inputs

Inlined IR

Target IR

Annotated Loop PDG

Enabling
Transformation Proposals

Parallel IR

Parallel Executable

Profiling Results

Clang

Profile-Guided Inliner (§6.5.2)

Applicability Guard of
Enabling Tranformations

(§6.1)

Clang++

ProfilersProfilersProfilersProfilers (§6.4)

Speculation-Aware
Collaborative Analysis
Framework (SCAF) (§5)

LLVM Optimizer (§6.5.1)

LLVM Optimizer (§6.5.1)

Set of Transformations
to Be Applied

Transformation Selector (§6.3)

Memory
Speculation

(§2.3.1)

Parallelization
Transformation Proposals

Applicability Guard of
Parallelization Tranformations

(§6.2)

Transformation Selector (§6.3)

Per Hot Loop

Loop Selection Transformation
 Application (§6.1)(§6.6)

Multi-Process Code
Generation (§6.7)

Preprocessing
&

Profiling

Planning

Transformation
&

Code Generation

Runtime (§6.8)

Figure 6.1: Perspective Framework Overview

61

be applicable. For DOALL parallelism, which is the focus of this dissertation, these are

all the cross-iteration dependences. Next, the transformation selector picks for each par-

allelization proposal a minimal-cost set of enabling transformations that covers all target

dependences, and then it selects the most profitable parallelization plan (if any). Finally,

the compiler selects a set of compatible parallelizable loops with the maximum profitabil-

ity, applies the transformations in their plans, and generates the parallel IR, which is then

linked with the runtime and compiled to a parallel executable.

The rest of this chapter begins with the description of components (except for SCAF)

in the planning phase, which includes the main contributions of this dissertation, and sub-

sequently describes other parts of the framework. A detailed description of the design and

the implementation of SCAF is provided in §5.

6.1 Enabling Transformations

Enabling transformations address memory, register or/and control cross-iteration depen-

dences, which inhibit the parallelization of the target loops.

6.1.1 Memory Dependences

Applicability: A transformation’s applicability guard uses the annotated PDG to find

memory objects that satisfy a specific set of desired properties. For each found mem-

ory object, it records the needed speculative assertions. A transformation applicable for a

memory object can handle all the cross-iteration memory dependences associated with this

memory object.

Transformation Proposal: The output of each applicability guard is assembled in a

transformation proposal that is sent to the transformation selector (§6.3). The proposal

includes for each memory object an estimated handling cost based on the transformation

62

itself and the validation cost of all used speculative assertions. For simplicity, each type

of transformation and speculation validation operation is assigned a fixed cost that ensures

a basic ordering among the options. For example, memory speculation has an extremely

high cost (expensive validation), loaded value prediction has a much smaller cost, while

control speculation has no cost. For the set of transformations and speculative assertions

in this implementation and in the context of DOALL parallelization, this simplified cost

model proved sufficient to detect minimal-cost plans for the evaluated benchmarks.

Transformation Application: Each transformation reallocates memory objects it is se-

lected to handle to its own heap, disjoint from any others; transformations may also perform

additional transformation-specific modifications.

Separating objects is essential for two reasons. First, each transformation may demand

different memory mapping semantics and handles objects differently at commit. Second,

mapping of memory accesses to objects often relies on profiling information, especially in

languages with unrestricted pointers like C/C++. Ensuring that all objects’ accesses are

contained within a transformation’s heap is sufficient to validate underlying object asser-

tions. This idea of heap separation has been explored previously by Johnson et al. (Priva-

teer [44]).

Memory-related enabling transformations include:

• Privatization: Applicable for objects with no cross-iteration flow depende-

nces (§2.3.2). Requires costly logging and merging at commit (§4.3).

• Reduction: Applicable for objects that only participate in reduction opera-

tions (§2.3.2). At commit, objects are merged according to their reduction operation.

• Short-lived: Applicable for objects that only exist within one iteration of the loop.

Inserts check to ensure that all these objects are freed at the end of each iteration.

Relies on the short-lived speculative assertions (§5.3.2.4).

63

• Read-only: Applicable for objects that are unmodified within the loop. Requires

no transformation-specific checks. Relies on the read-only speculative assertions

(§5.3.2.4).

• I/O deferral: Applicable for shared I/O objects (e.g., stdout). When applied, it

replaces I/O library calls with custom calls. During runtime, it collects output oper-

ations and performs them in-order at commit.

Efficient Privatization Variants: This dissertation introduces four efficient variants of

the privatization transformation. Their applicability criteria are described in §4.3.

• Independent: This transformation’s heap is shared among all parallel workers since

there are no overlapping memory accesses. No monitoring of write sets is needed.

At commit, if the loop is speculatively parallelized, the heap is copied out to the

non-speculative state.

• Overwrite Private: This transformation’s heap has CoW (copy-on-write) mapping.

At the end of the parallel invocation, the last executed iteration state is copied-out,

and no monitoring is needed.

• Predictable Private: This transformation’s heap has CoW mapping. The live-out state

is predictable, so no monitoring or merging of parallel worker state is needed.

• Local Private: This transformation’s heap has CoW mapping, and there is no need

for copy-out or monitoring.

6.1.2 Register & Control Dependences

Cross-iteration register dependences are handled with reduction, replication, control spec-

ulation, or value prediction. Replication replicates side-effect-free computation across par-

allel workers to overcome cross-iteration dependences and avoid inter-thread communi-

cation. Cross-iteration control dependences are handled either with replication or control

64

speculation. The use of replication allows handling of uncounted loops, namely loops with

unknown trip count when the loop is invoked. In terms of transformation cost, all trans-

formations have constant costs except for replication. Replication’s cost depends on how

many instructions need to be replicated. Non-speculative enablers (reduction and replica-

tion) are preferred, in most cases, over speculative ones, and reduction is preferred over

replication.

6.2 Parallelization Transformations

Parallelization transformations partition the code into work units that can execute in par-

allel. Multiple parallelization schemes have been proposed with varying degrees of ef-

fectiveness and applicability (§2.4). This dissertation focuses on the DOALL transforma-

tion, which is the most commonly used parallelization scheme. Yet, the planning phase

of Perspective was built to generalize beyond DOALL. Although not evaluated in this

dissertation,1 the infrastructure2 supports another parallelization transformation, the PS-

DSWP [78] transformation described in §2.4.2.

Similarly to the enabling transformations, parallelization transformations are split into

two parts: an applicability guard that produces parallelization proposals in the planning

phase of the compiler, and the actual transformation that is applied (if selected) in the code

generation phase of the compiler. The latter part is briefly discussed in §6.7.

The applicability guard of each parallelization transformation takes as inputs the anno-

tated loop PDG and the proposals of the enabling transformations. These inputs combined

essentially provide a simplified view of the dependence graph of the target loop, namely a

loop PDG that only includes the non-removable dependences of the loop. Based on these

inputs, the applicability guard determines whether the parallelization pattern in question

1DOALL parallelization was selected instead of PS-DSWP for all the evaluated benchmarks.
2The Perspective Parallelization Framework is available at: https://github.com/

PrincetonUniversity/cpf.

65

https://github.com/PrincetonUniversity/cpf
https://github.com/PrincetonUniversity/cpf

is applicable for the target loop. If it is applicable, the guard produces a parallelization

proposal.

The parallelization proposal includes an estimated loop speedup that the parallelization

scheme can offer for the target loop. For example, DOALL parallelization, if applicable,

can offer close-to-linear speedups. PS-DSWP’s offered speedups mainly depend on the

portion of the loop that is parallelizable. This speedup estimate does not incorporate the

cost of applying any necessary enabling transformations. To avoid the application of un-

necessary enabling transformations, the guard additionally includes in the proposal all the

dependences that need to be removed for the transformation to be applicable (i.e., limit-

ing dependences). For DOALL, these are all the cross-iteration dependences in the loop.

PS-DSWP, after producing a pipeline based on the simplified PDG, reports as limiting de-

pendences all the cross-iteration dependences in the parallel stages of the pipeline and all

the dependences from later pipeline stages to earlier stages. Finally, the proposal also in-

cludes all the enabling transformation proposals that address at least one of these limiting

dependences. The selection of the enabling transformations that will cover all the limiting

dependences is left to the transformation selector.

6.3 Transformation Selector

The selector’s goal is to pick the most efficient parallelization proposal. This selection is a

two-step process. First, for each parallelization transformation proposal, the selector picks

the cheapest set of enabling transformations that enables the proposed parallelization trans-

formation. In the current implementation, it greedily selects the cheapest enabling transfor-

mation proposal for each limiting dependence reported in the parallelization transformation

proposal. The second step of the selection involves picking the cheapest parallelization pro-

posal taking into account both the reported speedup and the cost of the selected enabling

transformations. In practice, the selector’s implementation in Perspective always selects,

66

if available, the DOALL parallelization plan. Though one could always increase the com-

plexity of this selection process, no empirical evidence justifies such extra complexity. Note

that if no speculative assertions are used, the selector produces a non-speculative plan, for-

going the need for any speculation overhead. Naturally, if no parallelization proposal is

provided, the selector reports that the loop is not parallelizable.

6.4 Profiling

Perspective employs all the profilers used by SCAF (§5.3.2.2), namely an edge profiler [53],

a value-prediction profiler [33], a pointer-to-object profiler [44], and an object-lifetime

profiler [44]. Additionally, Perspective uses a memory dependence profiler [18] (reports

memory dependences observed during profiling) to fuel the memory speculation module.

6.5 Preprocessing

The compilation process begins with a preprocessing step that generates the targeted-for-

parallelization intermediate representation (IR) of the program. The build system uses

Clang [53] to generate LLVM IR from the sequential C/C++ programs, followed by LLVM

IR optimizations. It then performs a pass of selective profile-guided inlining and finally

another round of LLVM IR optimizations to produce the target LLVM IR that is used as

the starting point for the rest of the compilation.

6.5.1 LLVM Optimizations

Transformations in this preprocessing step are crucial for the applicability and profitability

of parallelization. Parallelizing compilers usually compile the source code with the -O3

flag to get the initial IR and then perform a few additional passes. However, traditional

compiler transformations are meant for optimized sequential execution. Some of these op-

67

timizations could unnecessarily complicate the code and preclude parallelization efforts.

Any performance improvements from these optimizations are negligible compared to the

benefits of successful parallelization. For example, LLVM tries to sink common instruc-

tions from two different execution paths. This reduces the code size, but when applied to

memory operations, it complicates the inference of the underlying objects. To avoid such

problems, Perspective’s preprocessing step only applies a small selective set of LLVM IR

enabling transformations that simplify and canonicalize the IR.

6.5.2 Profile-Guided Selective Inlining

Dependences involving callsites often prevent parallelization or lead to extensive use of

expensive-to-validate memory flow speculation. Inlining can mitigate this problem, but the

heuristics used to determine whether to inline or not in industrial compilers are tailored for

sequential code optimization and are mostly irrelevant to effective parallelization.

Perspective uses profile information to detect hot loops and speculatively dead callsites.

Only callsites that are within these hot loops and that cannot be speculated away with

control speculation are inlined. Of these callsites, Perspective also avoids inlining ones

that do not sink or source cross-iteration dependences, that inhibit parallelization.

6.6 Loop Selection

An execution time profiler – similar to gprof [90] but focused on loops – finds hot loops that

execute for at least 10% of the total program execution. Out of the profitably parallelizable

loops, certain loops are not selected for parallelization. The excluded loops are either

simultaneously active with another more profitable loop (no support for nested parallelism),

or their memory object heap assignments conflict with the assignments of a more profitable

loop (each memory object can be allocated to only one heap in the current implementation).

68

6.7 Multi-Process Code Generation

Perspective’s code generation (MPCG) is based on the multi-threaded code generation al-

gorithm proposed by Ottoni et al. [71, 72]. MPCG generates efficient parallel code for

both DOALL and PS-DSWP plans. In particular, MPCG takes as input for each target

loop a parallelization plan (i.e., partitioning of the loop body into separate work units) and

produces for each partition code that involves its corresponding instructions and additional

communication instructions to preserve the original code’s control and data flow. MPCG

also generates code that invokes the runtime just before the loop invocation to set up the

parallel workers and initiate the parallel execution.

6.8 Runtime

Perspective includes an efficient runtime for both speculatively and non-speculatively par-

allelized programs.

Process-based Approach: Perspective’s runtime system uses a process-based paral-

lelization scheme, as opposed to a thread-based one for multiple reasons. First, it allows

the use of the copy-on-write (CoW) semantics of processes to communicate with low

overhead live-in values from the main process to the workers. When speculation is used,

it also offers an implicit separation between the speculative states of the workers and the

committed state that the main process maintains. The benefits of process-based paralleliza-

tion have also been discussed by prior work [27, 77, 44]. To enable cheap heap assignment

validation, each worker’s virtual memory address space is segmented into disjoint sections,

corresponding to each transform’s heap, same as in Privateer [44]. To avoid the overhead

of process spawning for parallelized inner loops with multiple loop invocations (e.g.,

052.alvinn), each worker is spawned only once at program startup, and each worker’s

virtual memory is remapped at the start of every invocation.

69

Use of Shared Memory: The runtime system utilizes POSIX named shared memory

to share data among workers and the main process. For non-speculative parallelization

plans, the independent privatization’s heap (§6.1.1) uses mmap() with shared permissions

to avoid the overhead of merging worker states and copying out live-out values.

Checkpoints and Validation: Checkpoints are used to validate speculative memory ac-

cesses across workers and to save the current program state if no misspeculation is detected.

Instead of using a separate validator thread [39, 77], Perspective employs a decentralized

validation system, as in Privateer. When a worker reaches an iteration marked with a check-

point operation, it acquires a lock to a shared checkpoint object, maps the checkpoint object

to its virtual memory space to detect disallowed overlap with other workers, and then adds

its own memory state to the object. If all workers complete the same checkpoint without

misspeculation, the checkpoint object is committed to the non-speculative state maintained

by the main process.

Recovery: The use of speculation necessitates recovery code in case misspeculation oc-

curs. When misspeculation is detected by a worker, either during an iteration or at check-

point time, other workers continue up to and commit the last valid checkpoint, then wait for

recovery to finish. The main process will execute the loop sequentially up to and including

the misspeculated iteration, using the last committed checkpoint as the starting state, and

then restart the parallel workers.

70

Chapter 7

Evaluation

This chapter presents an experimental evaluation of the proposed compiler frameworks.

Section 7.1 empirically evaluates the claim that SCAF significantly reduces the need for

expensive-to-validate memory speculation compared to the best prior speculation-aware

dependence analysis technique. Additionally, it investigates the source of this improve-

ment and evaluates SCAF’s query latency. Section 7.2 empirically evaluates the claim that

Perspective maintains the applicability of prior automatic DOALL-parallelization systems

while improving their efficiency. Further, it analyzes the performance effect of each con-

tribution of this dissertation and explores the impact of misspeculation.

SCAF and Perspective are evaluated on a commodity shared-memory machine with

two 14-core Intel Xeon CPU E5-2697 v3 processors (28 cores total) running at 2.60GHz

(turbo-boost disabled) with 768GB of memory. The operating system is 64-bit Ubuntu

16.04.5 LTS with GCC 5.5. The evaluated compiler frameworks are implemented on the

LLVM Compiler Infrastructure (version 5.0.2) [53].

7.1 Speculation-Aware Collaborative Analysis Framework

Benchmark Selection: SCAF is evaluated against 16 C/C++ benchmarks from the SPEC

suites (SPEC CPU 92/95/2000/2006/2017) [87]. Fortran SPEC benchmarks are excluded

71

due to lack of Fortran front-end support (Flang [59] not supported in LLVM 5.0). Other

C/C++ SPEC benchmarks are excluded due to the limitations of the profilers’ implementa-

tion. All profilers (§5.3.2.2) except for the edge profiler (LLVM version) are implemented

in-house, lacking industrial-level robustness in implementation. Benchmarks for which at

least one profiler failed to produce results were rejected since only a subset of the specula-

tion modules would be applicable. Problems include unanticipated code patterns that break

code instrumentation, runtime errors of instrumented executables, and prohibitively large

profile data.

Hot Loops: SCAF is evaluated on the hot loops of the evaluated benchmarks. These are

the loops that comprise at least 10% of total program execution time and iterate at least 50

times on average per invocation. SCAF is evaluated on hot loops because improvements

in memory dependence analysis for hot loops are expected to be more beneficial to clients

than other parts of the benchmarks.

Profiling Data: Profiling information is gathered using the train inputs from the SPEC

benchmark suites.

Client: SCAF is evaluated with a Program Dependence Graph (PDG) client [30]. For

each hot loop, the PDG client performs an intra-iteration and a cross-iteration dependence

query for each pair of memory operations (each dependence is valued equally). Quantifying

the impact of SCAF at the optimizing client level is done in §7.2.3 in the context of a

paralleling compiler.

Metric: Same as in prior work [43], analysis precision is measured with the %NoDep

metric. This metric denotes the percent of dependence queries for which the evaluated

analysis framework reports no flow, anti, or output dependence. The coverage in terms

of dependence removal is a direct measure of SCAF’s impact, as opposed to the perfor-

72

mance response that is tied to the specifics of the evaluated optimizing client and thus

an indirect measure. Moreover, the selected metric is indicative of a performance impact

for an optimizing client, since performance is highly correlated with the cost of memory

dependence removal in hot loops for certain types of clients, such as parallelization tech-

niques [32, 64, 93]. This is further corroborated by the performance results presented in

§7.2.3.

Best Prior Approach: The positive effect of collaboration among speculation modules

and between memory analysis and speculation modules is evaluated by comparing SCAF

against the best prior approach that integrates speculation into dependence analysis: com-

position by confluence (§5.1). This approach resembles prior proposals [103, 48, 64, 98]

that utilize speculative techniques independently, each handling memory dependences on

its own without interactions with other speculation or memory analysis modules. In compo-

sition by confluence, each dependence query is passed to each module in isolation, and the

confluence of individual results is returned. To isolate this dissertation’s contributions from

those of prior work (CAF [43] supports collaboration among memory analysis modules),

all the memory analysis modules are treated as one component within which collaboration

is permitted. This component will be referred to as CAF in the remainder of this evaluation

section. Both composition by collaboration (SCAF) and by confluence use the same mem-

ory analysis and speculation modules. Same as SCAF, composition by confluence does

not use memory speculation and only reports cheap-to-validate assertions (responses that

include points-to speculation assertions are discarded).

Memory Speculation: Memory speculation is the most commonly used and applicable

speculation technique [82, 94, 64, 44, 48]. However, memory speculation is also the most

expensive-to-validate speculation technique. SCAF aims to reduce the gap between the

dependence coverage of memory speculation and inexpensive speculation techniques to

73

enable more profitable speculative optimizations. For a detailed description of memory

speculation refer to §2.3.1.

7.1.1 Benefit of Collaboration

Figure 7.1 compares SCAF, composition by confluence, memory speculation, and CAF [43]

using the %NoDepmetric for the PDG client. Since resolving a memory dependence within

a frequently executed loop has typically a larger impact for optimizing clients to that within

a less frequently executed loop, %NoDep is recorded at a loop granularity and weighted by

the loop’s profiled execution time. In particular, for each benchmark, the reported result,

referred to as dependence coverage, is a weighted average of the %NoDep of its loops.

SCAF increases, on average, the dependence coverage by 68.35% (56.27% for ge-

omean) compared to composition by confluence. Note that SCAF outperforms composition

by confluence for all the evaluated benchmarks; in some cases, the improvement is too

small to observe in the graph. Given that both SCAF and composition by confluence use

the same inexpensive-to-validate speculative assertions, the coverage improvement high-

lights how SCAF maximizes the impact of these speculative assertions by exposing them

to all the modules in the framework.

By maximizing the impact of inexpensive speculative assertions, SCAF effectively re-

duces the need for expensive-to-validate memory speculation for dependence removal. In

fact, Figure 7.1 shows a dramatic reduction of the memory speculation bar (58.41% ge-

omean). This reduction means that SCAF removes with cheap-to-validate speculation de-

pendences for which prior work would require memory speculation. Moreover, memory

speculation asserts the absence of individual dependences, while a cheap assertion, such

as control speculation assertion, may resolve (either in isolation or collaboratively) multi-

ple dependences. In other words, to achieve the same dependence coverage as prior work,

SCAF uses not only cheaper assertions but also fewer. Therefore, these results strongly

indicate that SCAF decreases validation costs compared to the best prior approach.

74

05
2.

al
vi

nn05
6.

ea
r12

9.
co

m
pr

es
s

16
4.

gz
ip17

5.
vp

r17
9.

ar
t18

1.
m

cf18
3.

eq
ua

ke

42
9.

m
cf45

6.
hm

m
er

46
2.

lib
qu

an
tu

m

47
0.

lb
m48

2.
sp

hi
nx

3

51
9.

lb
m52

5.
x2

6454
4.

na
bAv

er
ag

eG
eo

m
ea

n

02040608010
0

Dependence%

O
bs

er
ve

d
D

ep
s

M
em

or
y

S
pe

cu
la

tio
n

C
on

flu
en

ce
S

C
A

F
C

A
F

Fi
gu

re
7.

1:
D

ep
en

de
nc

e
co

ve
ra

ge
by

di
ff

er
en

ts
ch

em
es

.
C

A
F

de
no

te
s

de
pe

nd
en

ce
s

di
sp

ro
ve

n
by

m
em

or
y

an
al

ys
is

(C
A

F
[4

3]
).

C
on

-
flu

en
ce

an
d

SC
A

F
sh

ow
ad

di
tio

na
l

de
pe

nd
en

ce
s

re
m

ov
ed

us
in

g
in

ex
pe

ns
iv

e
sp

ec
ul

at
io

n
w

ith
ou

t
an

d
w

ith
co

lla
bo

ra
tio

n,
re

sp
ec

tiv
el

y.
M

em
or

y
sp

ec
ul

at
io

n
as

se
rt

s
th

e
ab

se
nc

e
of

th
e

re
m

ai
ni

ng
de

pe
nd

en
ce

s
th

at
do

no
tm

an
if

es
td

ur
in

g
pr

ofi
lin

g.
O

bs
er

ve
d

de
ps

ar
e

de
pe

n-
de

nc
es

th
at

m
an

if
es

td
ur

in
g

pr
ofi

lin
g.

75

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

C
o
lla

b
o
ra

ti
v
e

 (
%

N
o
D

e
p

)

Confluence (%NoDep)

Figure 7.2: Composition by Collaboration (SCAF) compared with Composition by Conflu-
ence. Each point is a hot loop. Collaboration performs better on loops above the diagonal.

Figure 7.2 compares SCAF with composition by confluence in terms of the %NoDep

metric of the PDG client for each of the hot loops within the evaluated SPEC benchmarks.

SCAF outperforms composition by confluence for 37 out of 56 hot loops from the evaluated

SPEC benchmarks. For these loops, collaboration enables the removal of dependences

non-addressable by any module in isolation. For the rest of the loops, both schemes have

the same precision. Lack of benefit by SCAF on the latter loops is mostly due to high

coverage of non-observed dependences by composition by confluence, leaving few (if any)

opportunities for increasing the impact of cheap speculation. These loops are mainly found

in 056.ear, 129.compress, 164.gzip, and 179.art benchmarks.

7.1.2 Contributions of Modules to Collaboration

This section evaluates which modules within SCAF participate in collaborations across

the 16 evaluated benchmarks, contributing to the improvements in the %NoDep metric of

76

Table 7.1: Collaboration coverage of modules in SCAF across the 16 evaluated benchmarks
on the benchmark, loop, and improved query (i.e., query benefited by collaboration) levels.
The percentage of a module denotes the coverage of beneficial collaboration involving the
module for the population of a certain level (e.g., the 93.75% coverage of CAF on the
benchmark level means that CAF is used in collaboration with other modules for 93.75%
of benchmarks for removal of dependences unresolvable with composition by confluence).

Collaboration Coverage (%)
Analysis Modules Benchmark Loop Improved

Level Level Query Level
Memory Analysis (CAF) 93.75 42.86 40.02

Sp
ec

.M
od

ul
es

Read-only 87.50 53.57 71.52
Value Prediction 12.50 3.57 0.11
Pointer-Residue 6.25 1.79 0.00

Control Speculation 75.00 30.36 18.57
Points-to 87.50 53.57 81.32

Short-lived 6.25 1.79 9.80
Among Speculation Modules 87.50 53.57 81.32

Between CAF and Speculation 93.75 42.86 40.02
All 100.00 66.07 100.00

the PDG client (discussed in §7.1.1). Collaboration exhibits when two or more modules

achieve higher precision than the confluence of their individual results.

Table 7.1 presents each module’s contribution to collaboration. All the memory analysis

modules are treated as one single component (CAF), since the focus is on the interactions

of memory analysis as a whole with speculation modules.

These results strongly corroborate the hypothesis that collaboration between memory

analysis and speculation modules is beneficial. Memory analysis modules collaborate with

at least one speculation module for 15 out of 16 evaluated benchmarks, for 42.86% of the

evaluated hot loops, and for 40.02% of benefited from collaboration queries.

Notice also that the control speculation module participates in numerous fruitful col-

laborations, indicating the usefulness of providing speculative control flow information to

77

other modules. The rest of speculation modules also profitably collaborate in varying de-

grees.

Furthermore, these results show that more than two components contribute to resolving

certain queries because the sum of the percentages of all the analysis modules for queries

benefited by collaboration is bigger than 200%.

7.1.3 Query Latency

 0

 0.2

 0.4

 0.6

 0.8

 1

1e-06
1e-05

1e-04
1e-03

1e-02
1e-01

1e+00
1e+01

1e+02

C
D

F
 %

Latency (seconds)

CAF
SCAF w/o Desired Result Parameter

SCAF

Figure 7.3: CDF of query latency for CAF [43], SCAF without the Desired Result pa-
rameter, and SCAF. The vertical colored dashed lines represent the geomean of each. The
geomeans of SCAF and CAF are overlapping.

Figure 7.3 presents the cumulative distribution function (CDF) of the query latency

for CAF [43], SCAF without Desired Result parameter (see §5.2.2.2 and Figure 5.3), and

SCAF. All the queries performed by the PDG client are considered, and time is measured

in processor cycles. SCAF’s query latency is reduced by 27.50% (geomean) with the intro-

duction of the Desired Result parameter. Compared with CAF, SCAF, despite using more

analysis modules (i.e., addition of speculation modules), increases the geomean query la-

tency by only 1.61%. Finally, 95% of queries are serviced by SCAF within 2.6ms.

78

7.2 Perspective Parallelization Framework

Perspective aims to boost the efficiency of automatic DOALL parallelization while main-

taining the applicability of prior work. To validate this claim and enable credible and

direct comparison with prior work, Perspective is evaluated against benchmarks that have

been parallelized in prior work. In particular, Perspective is evaluated against 12 C and

C++ benchmarks (Table 7.2), covering all the parallelizable (exhibiting speedup) bench-

marks from two state-of-the-art automatic speculative-DOALL parallelization papers (Pri-

vateer [44], Cluster Spec-DOALL [48]) as well as an additional benchmark (179.art) from

HELIX [15], a non-speculative automatic parallelization system.

The benchmarks from Polybench and the dijkstra benchmark from MiBench are

modified to dynamically allocate previously statically allocated arrays and accept command

line defined array sizes in the same way as prior work [44, 48]. Benchmarks are profiled

using small inputs, while all the experiments presented in this section are conducted using

different, large evaluation inputs. The evaluation inputs are chosen to be large enough for

the sequential version to run for at least 10 minutes to observe accurate parallel execution

times on 28 cores. For most of the evaluated benchmarks, the input arguments specify

the problem size (e.g., size of a matrix) without any input data files. For the rest of the

benchmarks, input data files included with the distribution of these benchmarks were used.

Reported speedups are an average of 5 runs to minimize, although very small, the effect of

variance in execution time between runs.

7.2.1 Scalability of Perspective

Figure 7.4 presents fully automatic whole program speedups across a various number of

cores (up to 28 cores) for the 12 evaluated C/C++ benchmarks on a 28-core shared-memory

commodity machine. These speedups are relative to the sequential performance of the

original code, compiled with clang++ -O3. Perspective achieves scalable performance

79

B
en

ch
m

ar
k

Su
ite

%
of

E
xe

cu
tio

n
Ti

m
e

(T
he

or
et

ic
al

Sp
ee

du
p)

(A
)

SC
A

F’
s

C
ro

ss
s-

It
er

D
ep

en
de

nc
e

C
ov

(B
)

N
ew

E
na

bl
er

s’
O

bj
ec

tC
ov

(C
)

M
on

ito
re

d
R

ea
d

Se
tS

iz
e

(D
)

M
on

ito
re

d
W

ri
te

Se
tS

iz
e

(D
)

R
A

W
W

A
W

Pr
iv

at
ee

r
v1

v2
Pe

rs
pe

ct
iv

e
Pr

iv
at

ee
r

v1
v2

Pe
rs

pe
ct

iv
e

en
c-

m
d5

Tr
im

ar
an

10
0.

0%
(2

8.
0×

)
87

45
5

1.
87

T
B

9.
21

M
B

39
.1

K
B

39
.1

K
B

58
1G

B
58

1G
B

43
.2

K
B

43
.2

K
B

05
2.

al
vi

nn
SP

E
C

FP
97

.5
%

(1
6.

7×
)

0
0

4
15

3G
B

0B
0B

0B
10

7G
B

59
.9

G
B

4.
08

G
B

10
.2

M
B

17
9.

ar
t

SP
E

C
FP

99
.1

%
(2

2.
5×

)
8

8
7

1.
6T

B
64

.8
G

B
64

.8
G

B
0B

95
8G

B
95

8G
B

1.
68

G
B

1.
68

G
B

2m
m

Po
ly

B
en

ch
10

0.
0%

(2
8.

0×
)

N
/A

N
/A

2
1T

B
0B

0B
0B

1T
B

1G
B

0B
0B

3m
m

Po
ly

B
en

ch
10

0.
0%

(2
8.

0×
)

N
/A

N
/A

3
3T

B
0B

0B
0B

1.
5T

B
2.

25
G

B
0B

0B
co

rr
el

at
io

n
Po

ly
B

en
ch

99
.7

%
(2

5.
9×

)
N

/A
0

0
0B

0B
0B

0B
19

2M
B

19
2M

B
19

2M
B

19
2M

B
co

va
ri

an
ce

Po
ly

B
en

ch
99

.9
%

(2
7.

3×
)

N
/A

0
0

0B
0B

0B
0B

19
2G

B
19

2M
B

19
2M

B
19

2M
B

do
itg

en
Po

ly
B

en
ch

99
.6

%
(2

5.
3×

)
N

/A
N

/A
2

2.
53

T
B

0B
0B

0B
2.

54
T

B
10

.1
G

B
0B

0B
ge

m
m

Po
ly

B
en

ch
10

0.
0%

(2
8.

0×
)

N
/A

N
/A

1
12

8M
B

0B
0B

0B
25

6M
B

25
6M

B
0B

0B
bl

ac
ks

ch
ol

es
PA

R
SE

C
99

.7
%

(2
5.

9×
)

0
1

1
0B

0B
0B

0B
37

.3
G

B
37

.3
G

B
33

6B
33

6B
sw

ap
tio

ns
PA

R
SE

C
10

0.
0%

(2
8.

0×
)

0
0

0
70

3K
B

0B
0B

0B
16

5K
B

16
5K

B
16

5K
B

16
5K

B
di

jk
st

ra
M

iB
en

ch
99

.7
%

(2
5.

9×
)

4
18

8
97

3G
B

64
8G

B
64

8G
B

0B
64

9G
B

64
9G

B
66

3M
B

3.
61

K
B

Ta
bl

e
7.

2:
B

en
ch

m
ar

k
D

et
ai

ls
:(

A
)%

of
pr

og
ra

m
ex

ec
ut

io
n

tim
e

sp
en

ti
ns

id
e

pa
ra

lle
liz

ed
lo

op
(s

).
T

he
th

eo
re

tic
al

sp
ee

du
p

is
ca

lc
ul

at
ed

us
in

g
A

m
da

hl
’s

L
aw

fo
r

28
w

or
ke

rs
.

(B
)

#
of

cr
os

s-
ite

ra
tio

n
de

pe
nd

en
ce

s
th

at
w

ou
ld

re
qu

ir
e

m
em

or
y

sp
ec

ul
at

io
n

w
ith

ou
ts

pe
cu

la
tio

n
aw

ar
en

es
s

in
m

em
or

y
an

al
ys

is
.“

N
/A

”
in

di
ca

te
s

al
ld

ep
en

de
nc

es
ar

e
ha

nd
le

d
by

st
at

ic
an

al
ys

is
.(

C
)#

of
ob

je
ct

s
co

ve
re

d
by

th
e

pr
op

os
ed

sp
ec

ul
at

iv
e

pr
iv

at
iz

at
io

n
tr

an
sf

or
m

at
io

ns
.(

D
)M

on
ito

re
d

re
ad

an
d

w
ri

te
se

ts
iz

es
fo

rs
pe

cu
la

tio
n

va
lid

at
io

n
an

d
pr

iv
at

iz
at

io
n

by
Pr

iv
at

ee
r

an
d

va
ri

an
ts

of
Pe

rs
pe

ct
iv

e;
v1

re
pr

es
en

ts
Pe

rs
pe

ct
iv

e
w

ith
ou

tp
ro

po
se

d
en

ab
le

rs
an

d
SC

A
F

(p
la

nn
in

g
on

ly
);

v2
re

pr
es

en
ts

Pe
rs

pe
ct

iv
e

w
ith

ou
tS

C
A

F.

80

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
22

23
24

25
26

27
28

0x2x4x6x8x10
x

12
x

14
x

16
x

18
x

20
x

22
x

24
x

26
x

28
x

en
c-

m
d5

di
jk

st
ra

sw
ap

tio
ns

do
itg

en
ge

m
m

bl
ac

ks
ch

ol
es

2m
m

3m
m

17
9.

ar
t

co
rre

la
tio

n
co

va
ria

nc
e

05
2.

al
vi

nn

N
um

be
r o

f C
or

es

Whole Program Speedup over Sequential

Fi
gu

re
7.

4:
Pe

rs
pe

ct
iv

e’
s

Fu
lly

A
ut

om
at

ic
W

ho
le

Pr
og

ra
m

Sp
ee

du
p

ov
er

Se
qu

en
tia

lE
xe

cu
tio

n

81

on all the benchmarks thanks to the elimination of unnecessary overheads with the careful

selection of applied transformations, the use of the speculation-aware collaborative analysis

framework (SCAF), and the introduction of new enabling transformations.

For most of the benchmarks parallelized with Perspective, checkpointing does not

add any significant (>1%) overhead; the exceptions are 052.alvinn, correlation,

and covariance, which exhibit lower-than-expected speedups. For 052.alvinn,

checkpointing constitutes a considerable portion of the run time (∼20%) since loop it-

erations are short, and thus the useful work performed between checkpoints is small. For

covariance and correlation, the use of the basic privatization transformation en-

tails that the checkpoints merge large private sets with an introduced overhead of ∼10%

for each. Complex cross-iteration output dependences prevented the usage of more efficient

privatization variants.

For several benchmarks, speedups exceed their theoretical limits, which is attributed to

two factors: (1) The compiler replaces all calls to malloc() inside a parallelized loop

with a custom heap allocator, same as in Privateer. This custom implementation does not

track segments of memory that have been freed for later use in the way most C/C++ runtime

libraries do, and as such, the overhead for dynamic (de)allocation is considerably reduced,

as seen in dijkstra. (2) Using multiple cores increases the effective cache size, which

may reduce access times to memory [41]. This effect can be seen in the performance of

179.art, enc-md5, and doitgen.

7.2.2 Comparison with State-of-the-Art

Perspective is compared with Privateer [44], the most applicable prior automatic

speculative-DOALL system. The authors of the Privateer paper provided the evalu-

ated implementation of Privateer. This version was only modified to adhere to the more

recent LLVM version used for Perspective. The observed speedups and runtime overheads

of this implementation are similar to the results of the original paper.

82

Despite being a state-of-the-art parallelization framework, Privateer misses opportuni-

ties to reduce speculative checks and avoid monitoring of writes, as discussed in §3.2. This

is apparent in columns (D) of Table 7.2, where parallelization of most benchmarks with

Privateer requires monitoring of read and write sets orders of magnitude larger than those

of Perspective. The first bar of Figure 7.5 corresponds to the achieved speedups by Priva-

teer, and it demonstrates the performance impact of monitoring large read and write sets.

These overheads are especially high for benchmarks with many reads and writes to priva-

tized object(s) such as 3mm, doitgen, 179.art, and dijkstra. Overall, Perspective

(last bar in Figure 7.5) doubles Privateer’s geomean speedup by minimizing unnecessary

memory access monitoring and checks.

7.2.3 Performance Analysis of Perspective

To quantify the impact of the three main contributions of this work (SCAF, planning, new

enablers), two variants of Perspective with some components disabled were created. The

first variant (Planning Only / v1) includes everything in Perspective except for SCAF and

the new enabling transformations (i.e., efficient privatization variants in §6.1.1). Without

SCAF, static analysis and speculation are utilized in isolation; a dependence cannot be

resolved by a combination of static analysis and one or more speculative assertions. The

second variant (Planning & Proposed Enablers / v2) is the same as v1 but with the addition

of efficient privatization variants (i.e., Perspective without SCAF). Figure 7.5 compares the

performance of Perspective and Privateer with the two variants of Perspective.

The Planning Only variant of Perspective (v1) carefully selects the cheapest set of par-

allelization enabling transformations that need to be applied, as opposed to Privateer that

aggressively applies speculative transformations. The introduction of this planning is the

only distinguishing factor between Privateer and this variant; Privateer utilizes the same en-

ablers and static analysis as this variant. Even so, this Perspective variant yields almost 46%

geomean speedup over Privateer. The benefit of planning is particularly high for bench-

83

co
rre

lat
ion

2m
m

3m
m

co
va

ria
nc

e

ge
m

m
do

itg
en

sw
ap

tio
ns

bla
ck

sc
ho

les

05
2.

alv
inn

en
c-

m
d5

dij
ks

tra
17

9.
ar

t
Ge

om
ea

n

0x2x4x6x8x10
x

12
x

14
x

16
x

18
x

20
x

22
x

24
x

26
x

28
x

Pr
iv

at
ee

r
Pe

rs
pe

ct
iv

e
(P

la
nn

in
g

O
nl

y)
Pe

rs
pe

ct
iv

e
(P

la
nn

in
g

+
Pr

op
os

ed
 E

na
bl

er
s)

Pe
rs
pe

ct
iv

e
(P

la
nn

in
g

+
Pr

op
os

ed
 E

na
bl

er
s

+
SC

AF
)

Whole Program Speedup over Sequential

Fi
gu

re
7.

5:
W

ho
le

Pr
og

ra
m

Sp
ee

du
p

C
om

pa
ri

so
n

am
on

g
Pr

iv
at

ee
ra

nd
V

ar
ia

nt
s

of
Pe

rs
pe

ct
iv

e
w

ith
28

C
or

es

84

marks with increased read set monitoring, including 2mm, 3mm, doitgen, enc-md5,

and 179.art (Figure 7.5). These performance improvements are mostly thanks to the

avoidance of unnecessary checks on reads of non-speculatively privatized objects. Notice

in columns (D) of Table 7.2 that for doitgen and 3mm, the monitored read set size is

reduced from 2.53TB and 3TB, respectively, to zero. The absence of instrumentation for

certain reads additionally enables a peephole optimization that hoists monitoring of writes

to the same location outside of the loop, further decreasing the overhead.

The introduction of new efficient privatization transformations (§4.3) in the v2 variant

improves the geomean performance over the v1 variant by 26%, thanks to the avoidance

of unnecessary bookkeeping. These new enablers are utilized in most of the evaluated

benchmarks, as shown in column (C) of Table 7.2. The performance impact for each

benchmark depends on the amount of avoided monitoring, depicted in columns (D). For

example, the 179.art and dijkstra benchmarks significantly benefit with the appli-

cation of the overwrite privatization due to the dramatic reduction of the monitored writes.

For the enc-md5 benchmark, the use of predictable privatization contributes to the dra-

matic reduction of the monitored write set and the increased speedup, while the use of the

independent privatization for the 2mm and 3mm benchmarks has a smaller performance im-

pact. Note that just the introduction of these new enablers without the planning would not

be effective. The planning phase is essential for exposing all the fine-grained information

that makes these new transformations applicable and for allowing them to be selected over

more expensive transformations.

The full version of Perspective additionally includes the speculation-aware collabora-

tive analysis framework (SCAF, §5). With SCAF, static analysis by leveraging cheap-to-

validate speculative assertions can remove additional dependences, thought by prior work

to require expensive speculation, such as memory speculation. Its effect is seen most

prominently in dijkstra (2.6× speedup over v2), where the use of control speculation

in conjunction with static analysis enables efficient (without monitoring) privatization of

85

additional memory objects, including the global variable dist (discussed in §4.4). The in-

troduction of SCAF also removes additional dependences from 179.art, enc-md5, and

blackscholes, as shown in columns (B) of Table 7.2. For the latter two, these removed

dependences do not reduce the monitored memory accesses (columns (D)), and thus do not

have any performance impact. For 179.art, the monitored read set is nullified with the

addition of SCAF, but the performance impact is small.

7.2.4 Misspeculation Evaluation

0x

5x

10x

15x

20x

25x

30x

35x

40x

dijkstra swaptions 179.art blackscholes enc-md5 052.alvinn

Sp
ee

du
p

ov
er

 S
eq

ue
nt

ia
l

No Misspec
~0.1% Misspec

Figure 7.6: Impact of Misspeculation

Perspective uses only high-confidence speculation to minimize the chance of misspec-

ulation. In particular, it only speculates properties that hold true without exception on the

training inputs.1

This conservative approach led to a complete lack of misspeculation on the evalua-

tion inputs for the eight speculatively parallelized benchmarks (2mm, 3mm, doitgen, and

1The compiler is unaware of the evaluation inputs that are used for performance evaluation.

86

gemm were non-speculatively parallelized). Six of them could misspeculate for some (un-

usual) input. The remaining two (covariance, correlation) do not misspeculate

across all possible inputs, since speculation is only used for heap separation checks that

cannot fail (from manual inspection of the code). Even so, speculation is still necessary

given the inability of static analysis to infer the underlying objects of certain memory ac-

cesses in these two C programs. Regardless of the accuracy of the used static analysis,

such cases of non-misspeculating speculation cannot be completely eliminated due to the

undecidability of static analysis [52].

Since none of the benchmarks exhibit misspeculation on the given inputs, misspec-

ulation is artificially injected at the end of every 1000 iterations to observe the perfor-

mance degradation with a misspeculation rate of 0.1%. The inputs for 179.art were not

large enough to allow for at least 1000 iterations. Therefore, a weighted average of non-

misspeculating and misspeculating runs is performed to achieve an average corresponding

to the desired rate.

Figure 7.6 shows how misspeculation affects the performance of the six benchmarks

that could misspeculate for some input. These results demonstrate that misspeculation

severely affects performance, and thus they support the decision to use only high-

confidence speculation in Perspective.

87

Chapter 8

Related Work

8.1 Speculation-Aware Analysis

Johnson [42] proposes a design integrating speculation in a collaborative analysis frame-

work (CAF [43]); however, there has been no published work implementing this design.

Additionally, merely adding existing speculative techniques into an analysis ensemble is

not sufficient to enable collaboration. Speculative techniques need to be re-designed with

collaboration in mind. Traditionally, each speculative technique is self-contained. Instead,

speculation modules in SCAF extend their impact by initiating collaboration and requesting

assistance from other modules. SCAF also decomposes complex and monolithic specula-

tive techniques in [42] to simple analysis modules. Moreover, the query language used

in CAF is insufficient to fully leverage speculative information, most prominently control

flow information. SCAF’s query language supports the communication of both data and

control flow information among modules. Finally, Johnson’s proposal is tied to a particular

client [45], while SCAF is client-agnostic. SCAF specifies the required speculative asser-

tions along with each query answer, allowing its clients to decide on how to act upon this

information.

88

Other works [29, 26] also explored integrating speculative information into static anal-

ysis, but in a monolithic fashion. Static analysis algorithms in these prior works are tightly

coupled with specific speculative information. By contrast, SCAF is a modular and thus

easily extensible framework in which a broad set of memory analysis and speculation mod-

ules synergistically resolve queries while being fully decoupled.

Neelakantam et al. [66] propose converting biased branches to assertions to allow sub-

sequent transformations to leverage speculative control flow information. Instead, SCAF

leverages speculative control flow information during analysis and planning, prior to trans-

formation.

In terms of static analysis, prior works [51, 20, 67, 11, 12, 56, 43] explore collaboration

among analysis algorithms. However, these works do not leverage speculation and are thus

restrained by the inherent imprecision of memory analysis.

To overcome the imprecision of memory analysis, hybrid analysis [85] and sensitivity

analysis [84] explore the combination of static and run-time analysis. Static analysis is

used to extract run-time checks, which determine if the parallelized code is safe to exe-

cute. However, unlike profile-driven approaches, run-time analysis offers limited coverage

and small improvement over memory analysis. SCAF, instead, uses profiling to exploit

commonly executed patterns and avoid arbitrarily complex run-time checks.

Several speculative automatic parallelization works [48, 98] employ a composition by

confluence approach where they first produce a conservative PDG using memory analysis

and successively refine it using a series of speculative techniques. This approach does not

allow interactions among speculative techniques and memory analysis algorithms. SCAF

allows parallelization clients to identify more parallelizable regions due to higher precision

achieved via collaboration.

Other works combine profile-driven approaches with memory analysis for clients be-

yond the scope of parallelization. Lin et al. [58] propose a speculative single static assign-

ment (SSA) form that incorporates memory and control speculation. However, memory

89

analysis does not leverage speculative information, and only low-level optimizations are

targeted. Manilov et al. [62] use memory analysis enhanced with profiling information to

recognize iterators of loops. However, the authors rely on profile-guided data flow infor-

mation that would be expensive to validate. SCAF reduces validation overheads for clients

by utilizing various types of cheap-to-validate speculation techniques and achieves high

precision by enabling the collaboration of analysis modules.

8.2 Parallelizing Compilers

Early non-speculative DOALL parallelizing compilers (Polaris [10], SUIF [3, 100]) are

limited by the imprecision of static analysis. LRPD [83] and R-LRPD [23] overcome the

limitations of static analysis by leveraging speculation. Yet, these works are limited to

array-based applications and cannot handle pointers and dynamic data structures.

More recent works (STMlite [64], CorD [93], Cluster Spec-DOALL [48], Priva-

teer [44]) extend the applicability of automatic DOALL parallelization to general-purpose

programs with profile-guided speculation. Perspective mitigates core inefficiencies of

these prior works while maintaining their increased applicability.

Beyond DOALL, prior work has explored alternative parallelization paradigms (HE-

LIX [15], DOACROSS [21], DSWP [71], PS-DSWP [78]) that tolerate more dependences

than DOALL parallelization by allowing communication among workers. Perspective

mainly targets DOALL parallelism, but it also involves extensions for PS-DSWP. In gen-

eral, this dissertation’s contributions are for the most part agnostic to the used paralleliza-

tion scheme and thus should be profitable to a variety of parallelization paradigms. Evalua-

tion of the impact of this work for parallelization schemes beyond DOALL is left for future

work.

Other works [50, 74, 25, 75, 68] propose systems that require developers to cast pro-

grams in specialized code patterns or insert annotations to better express their intent. In-

90

stead, Perspective fully automatically parallelizes general-purpose applications without the

need for annotations or specialized abstractions.

Another line of work [14, 97, 65, 95] extracts parallelism by ignoring data dependences

without preserving soundness via misspeculation detection and recovery. These approaches

extract parallelism either by sacrificing the program’s output quality [14, 97, 65] or by rely-

ing on the user’s approval [95]. Instead, Perspective extracts parallelism without violating

the sequential program semantics.

8.3 Planning

The interaction of optimizing transformations can be quite complex. One transformation

may enable, disable, or drastically change the behavior of subsequent transformations in

unpredictable ways. Although many compilers ignore this problem by following a fixed

order of phases that seems to work well in practice (e.g., -O3 in clang or gcc), no fixed

order of phases can be optimal [1, 19, 89, 101]. This is referred to as the phase-order

problem [19]. Prior works have used human reasoning [101], machine learning [1, 7, 63],

search heuristics [2], and novel intermediate representations [89] to explore the transfor-

mations’ interactions and mitigate the phase-order problem. All of these approaches target

ILP and yield small improvements.

The approach proposed in this dissertation bypasses the phase-order problem owing to

two key insights. First, applicable parallelization transformations yield gains at a much

higher order of magnitude than other compiler optimizations. Second, the issues lim-

iting the applicability of these parallelization transformations and the effect of explored

parallelization-enabling transformations are predictable and easily expressible on a PDG.

Guided by these two insights, this work focuses on enabling parallelization transforma-

tions, simplifying the task of optimal selection of applied transformations.

91

Chapter 9

Conclusion and Future Directions

9.1 Conclusion

By identifying and mitigating core inefficiencies of prior speculative automatic paralleliza-

tion systems, this dissertation represents an important advance in fulfilling the promise of

automatic parallelization.

This dissertation presents SCAF, a modular and collaborative dependence analysis

framework that computes the full impact of speculation on memory dependence anal-

ysis. In SCAF, speculation modules and memory analysis modules with independent

implementations work together to resolve memory dependence queries. SCAF enables

judicious use of speculation to address memory dependences that would otherwise limit

optimizations or lead to expensive-to-validate memory speculation. Relative to the best

prior speculation-aware dependence analysis technique, SCAF dramatically reduces the

need for expensive-to-validate memory speculation in the hot loops of all 16 evaluated

C/C++ SPEC benchmarks.

This dissertation also presents Perspective, a parallelization framework that avoids over-

heads of prior work by combining SCAF with new efficient variants of speculative privati-

zation and a new parallelizing-compiler design that enables careful planning. Perspective

92

fully-automatically yields a geomean whole-program speedup of 23.0× over sequential

execution for 12 C/C++ benchmarks on a 28-core shared-memory commodity machine,

doubling the performance of the state-of-the-art.

The source code of the compiler infrastructure built for this dissertation is publicly

available.1 Further, this dissertation is accompanied by publicly available artifacts that can

be used to reproduce its evaluation results and corroborate its claims.2

9.2 Future Directions

9.2.1 Impact for Pipelined Parallelism

This dissertation evaluates its contributions in the context of DOALL parallelization. Eval-

uation for pipelined parallelism (§2.4.2) is left for future work. The infrastructure already

supports PS-DSWP parallelization (§6.2). However, there is a lack of support for validation

of certain speculative assertions for a PS-DSWP parallelization plan. The challenge is that

PS-DSWP splits each loop iteration to different workers, contrary to DOALL paralleliza-

tion where each loop iteration is executed entirely by a single worker. This necessitates

adjustments in terms of speculation validation. For example, validating that a memory

object is short-lived (i.e., exists only within one loop iteration) requires checking that the

object is allocated and de-allocated within each iteration. This check is trivial and worker-

local for DOALL, but for PS-DSWP this validation is non-trivial since an object might

be allocated by one worker and freed by another worker. Fully leveraging this disserta-

tion’s contributions in the context of pipelined parallelism will considerably increase the

applicability of the proposed compiler technology.

1SCAF is available at: https://github.com/PrincetonUniversity/SCAF. The Perspective
Parallelization Framework is available at: https://github.com/PrincetonUniversity/cpf.

2The artifact for SCAF is available at: https://doi.org/10.5281/zenodo.3751586. The
artifact for the Perspective Parallelization Framework is available at: https://doi.org/10.5281/
zenodo.3606885. These artifacts have been awarded all top ACM reproducibility badges by the artifact
evaluation committee of the PLDI ’20 and ASPLOS ’20 conferences, respectively.

93

https://github.com/PrincetonUniversity/SCAF
https://github.com/PrincetonUniversity/cpf
https://doi.org/10.5281/zenodo.3751586
https://doi.org/10.5281/zenodo.3606885
https://doi.org/10.5281/zenodo.3606885

9.2.2 Efficient and Robust Profiling

As discussed in §7.1, the implementation of profilers for the presented infrastructure lacks

industrial-level robustness. This translates to frequent failures to produce profile data,

blocking the evaluation of the proposed techniques across a broader range of programs.

Further, the use of instrumentation-based profilers introduces excessive profiling over-

heads. More efficient and robust profilers are a necessary advancement for developing

a robust speculative parallelization system. Inspired by advancements in industrial-grade

profilers [17], a reasonable next step is to design sampling-based profilers that can accom-

modate the needs of advanced speculative parallelizing compilers with minimum overhead.

9.2.3 Broader Language Support

A compiler built on top of LLVM supports (by default) various source languages (e.g.,

C, C++, Rust, Fortran) thanks to available frontends that emit LLVM IR from programs

in these languages. In practice, though, an optimizing compiler is not equally effective

across all these languages. The compiler infrastructure presented in this dissertation is

built and optimized for C programs (and secondarily for C++ programs). Better support for

C++ would involve profile-guided devirtualization that would complement the currently-

available static devirtualization that is insufficient for complex C++ SPEC benchmarks.

Effective support of additional languages by the parallelizing compiler poses both engi-

neering and research challenges. Engineering challenges include handling a variety of

LLVM IR patterns produced by a diverse set of language constructs and understanding the

behavior of each language’s standard library functions (e.g., recognizing pure functions).

Research challenges include leveraging rich language features that are lost when lowering

the programs to LLVM IR. For example, Rust offers a strong type system that enables pre-

cise computation of memory dependences. Yet, the lowered code in LLVM IR is deprived

of this critical type information. Therefore, using the existing compiler infrastructure to

parallelize Rust programs will yield a sub-optimal result. Instead, one should either bring

94

this information into LLVM IR (e.g., using LLVM intrinsic functions) or move partially (or

fully) the parallelizing compiler to a higher-level IR representation (e.g., MLIR [54]).

9.2.4 Beyond CPUs

With the end of Moore’s law and with new emerging applications came extreme hetero-

geneity in hardware. Abstractions designed to hide hardware-specific characteristics are

constantly broken today when scalability and efficiency are the goals. Programmers need

to deal with new and complex programming models for each new parallel architecture.

As a response to this problem, the ultimate goal is to develop parallelizing compilers that

automatically target all these different parallel architectures (e.g., GPUs, spatial architec-

tures). The ideas presented in this dissertation enable more efficient dependence handling,

addressing fundamental automatic parallelization limitations that are not specific to multi-

core CPU-based systems. Therefore, this work may fuel new compiler advancements that

enable automatic extraction of parallelism for other parallel architectures.

9.2.5 General-purpose Accelerators

The development of speculative, superscalar out-of-order processors is a premier success

story in accelerating sequential codes. With the right compiler technology, propelled by

the advancements presented in this dissertation, an analogous and complementary success

story will unfold. This time, the story is one of accelerating sequential codes by exposing

coarser-grained parallelism for execution over multiple cores. Routine extraction of thread-

level parallelism from sequential codes enables the effective use of an abundance of cores,

reducing the demands on the complexity and performance of individual cores. Latency

hiding in sequential codes can occur among cores, not just within them. Simpler branch

predictors, smaller caches per core, and in-order cores can mean more cores with the same

number of transistors and more effective use of the silicon.

95

Bibliography

[1] F. Agakov, E. Bonilla, J. Cavazos, B. Franke, G. Fursin, M. F. P. O’Boyle, J. Thom-

son, M. Toussaint, and C. K. I. Williams. Using machine learning to focus iterative

optimization. In CGO ’06: Proceedings of the International Symposium on Code

Generation and Optimization, pages 295–305, Washington, DC, USA, 2006. IEEE

Computer Society.

[2] L. Almagor, Keith D. Cooper, Alexander Grosul, Timothy J. Harvey, Steven W.

Reeves, Devika Subramanian, Linda Torczon, and Todd Waterman. Finding effec-

tive compilation sequences. In LCTES ’04: Proceedings of the 2004 ACM SIG-

PLAN/SIGBED conference on Languages, compilers, and tools for embedded sys-

tems, pages 231–239, New York, NY, USA, 2004. ACM Press.

[3] Saman P. Amarasinghe and Monica S. Lam. Communication optimization and code

generation for distributed memory machines. In Proceedings of the ACM SIGPLAN

1993 conference on Programming language design and implementation, PLDI ’93,

pages 126–138, Albuquerque, New Mexico, USA, June 1993. Association for Com-

puting Machinery.

[4] Lars Ole Andersen. Program Analysis and Specialization for the C Programming

Language. Technical report, 1994.

[5] Sotiris Apostolakis, Ziyang Xu, Greg Chan, Simone Campanoni, and David I. Au-

gust. Perspective: A Sensible Approach to Speculative Automatic Parallelization. In

96

Proceedings of the Twenty-Fifth International Conference on Architectural Support

for Programming Languages and Operating Systems, ASPLOS ’20, pages 351–367,

Lausanne, Switzerland, March 2020. Association for Computing Machinery.

[6] Sotiris Apostolakis, Ziyang Xu, Zujun Tan, Greg Chan, Simone Campanoni, and

David I. August. SCAF: A Speculation-Aware Collaborative Dependence Analysis

Framework. In Proceedings of the 41st ACM SIGPLAN Conference on Programming

Language Design and Implementation, PLDI 2020, pages 638–654, New York, NY,

USA, 2020. Association for Computing Machinery.

[7] Amir H. Ashouri, Andrea Bignoli, Gianluca Palermo, Cristina Silvano, Sameer

Kulkarni, and John Cavazos. Micomp: Mitigating the compiler phase-ordering prob-

lem using optimization sub-sequences and machine learning. ACM Trans. Archit.

Code Optim., 14(3):29:1–29:28, 2017.

[8] Utpal Banerjee. Loop Parallelization. Springer US, 1994.

[9] Sam Blackshear, Bor-Yuh Evan Chang, and Manu Sridharan. Thresher: precise refu-

tations for heap reachability. In Proceedings of the 34th ACM SIGPLAN Conference

on Programming Language Design and Implementation, PLDI ’13, pages 275–286,

Seattle, Washington, USA, June 2013. Association for Computing Machinery.

[10] Bill Blume, Rudolf Eigenmann, Keith Faigin, John Grout, Jay Hoeflinger, David

Padua, Paul Petersen, Bill Pottenger, Lawrence Rauchwerger, Peng Tu, and Stephen

Weatherford. Polaris: The Next Generation in Parallelizing Compilers. In Proceed-

ings of the Workshop on Languages and Compilers for Parallel Computing, pages

10–1. Springer-Verlag, Berlin/Heidelberg, 1994.

[11] Martin Bravenboer and Yannis Smaragdakis. Exception analysis and points-to anal-

ysis: better together. In Proceedings of the eighteenth international symposium on

97

Software testing and analysis, ISSTA ’09, pages 1–12, Chicago, IL, USA, July 2009.

Association for Computing Machinery.

[12] Martin Bravenboer and Yannis Smaragdakis. Strictly declarative specification of

sophisticated points-to analyses. In Proceedings of the 24th ACM SIGPLAN confer-

ence on Object oriented programming systems languages and applications, OOP-

SLA ’09, pages 243–262, Orlando, Florida, USA, October 2009. Association for

Computing Machinery.

[13] Simone Campanoni, Kevin Brownell, Svilen Kanev, Timothy M. Jones, Gu-Yeon

Wei, and David Brooks. HELIX-RC: An Architecture-Compiler Co-Design for Au-

tomatic Parallelization of Irregular Programs. In Proceeding of the 41st Annual

International Symposium on Computer Architecuture, ISCA ’14, pages 217–228.

IEEE Press, 2014.

[14] Simone Campanoni, Glenn Holloway, Gu-Yeon Wei, and David Brooks. Helix-

up: Relaxing program semantics to unleash parallelization. In Code Generation and

Optimization (CGO), 2015 IEEE/ACM International Symposium on, pages 235–245,

Feb 2015.

[15] Simone Campanoni, Timothy Jones, Glenn Holloway, Vijay Janapa Reddi, Gu-Yeon

Wei, and David Brooks. HELIX: automatic parallelization of irregular programs for

chip multiprocessing. In Proceedings of the Tenth International Symposium on Code

Generation and Optimization, CGO ’12, pages 84–93, San Jose, California, March

2012. Association for Computing Machinery.

[16] Calin Cascaval, Colin Blundell, Maged Michael, Harold W. Cain, Peng Wu, Stefanie

Chiras, and Siddhartha Chatterjee. Software Transactional Memory: Why Is It Only

a Research Toy? Queue, 6(5):46–58, September 2008.

98

[17] Dehao Chen, David Xinliang Li, and Tipp Moseley. Autofdo: Automatic feedback-

directed optimization for warehouse-scale applications. In CGO 2016 Proceedings

of the 2016 International Symposium on Code Generation and Optimization, pages

12–23, New York, NY, USA, 2016.

[18] Tong Chen, Jin Lin, Xiaoru Dai, Wei-Chung Hsu, and Pen-Chung Yew. Data De-

pendence Profiling for Speculative Optimizations. In Evelyn Duesterwald, editor,

Compiler Construction, Lecture Notes in Computer Science, pages 57–72, Berlin,

Heidelberg, 2004. Springer.

[19] Keith D. Cooper, Alexander Grosul, Timothy J. Harvey, Steven Reeves, Devika Sub-

ramanian, Linda Torczon, and Todd Waterman. ACME: Adaptive compilation made

efficient. In LCTES ’05: Proceedings of the 2005 ACM SIGPLAN/SIGBED confer-

ence on Languages, compilers, and tools for embedded systems, pages 69–77, New

York, NY, USA, 2005. ACM.

[20] Patrick Cousot, Radhia Cousot, and Laurent Mauborgne. The Reduced Product of

Abstract Domains and the Combination of Decision Procedures. In Martin Hof-

mann, editor, Foundations of Software Science and Computational Structures, Lec-

ture Notes in Computer Science, pages 456–472, Berlin, Heidelberg, 2011. Springer.

[21] R. Cytron. DOACROSS: Beyond Vectorization for Multiprocessors. In Proceedings

of the 1986 International Conference on Parallel Processing (ICPP), pages 836–

884, 1986.

[22] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. Ken-

neth Zadeck. Efficiently computing static single assignment form and the control

dependence graph. ACM Transactions on Programming Languages and Systems,

13(4):451–490, October 1991.

99

[23] Francis H. Dang, Hao Yu, and Lawrence Rauchwerger. The R-LRPD Test: Specu-

lative Parallelization of Partially Parallel Loops. In Proceedings of the 16th Interna-

tional Parallel and Distributed Processing Symposium, IPDPS ’02, page 318, USA,

April 2002. IEEE Computer Society.

[24] Jeffrey Dean and Sanjay Ghemawat. MapReduce: simplified data processing on

large clusters. In Proceedings of the 6th conference on Symposium on Operating

Systems Design & Implementation - Volume 6, OSDI’04, page 10, San Francisco,

CA, December 2004. USENIX Association.

[25] Enrico A. Deiana, Vincent St-Amour, Peter A. Dinda, Nikos Hardavellas, and Si-

mone Campanoni. Unconventional Parallelization of Nondeterministic Applica-

tions. In Proceedings of the Twenty-Third International Conference on Architec-

tural Support for Programming Languages and Operating Systems, ASPLOS ’18,

pages 432–447, Williamsburg, VA, USA, March 2018. Association for Computing

Machinery.

[26] David Devecsery, Peter M. Chen, Jason Flinn, and Satish Narayanasamy. Optimistic

Hybrid Analysis: Accelerating Dynamic Analysis through Predicated Static Analy-

sis. In Proceedings of the Twenty-Third International Conference on Architectural

Support for Programming Languages and Operating Systems, ASPLOS ’18, pages

348–362, Williamsburg, VA, USA, March 2018. Association for Computing Ma-

chinery.

[27] Chen Ding, Xipeng Shen, Kirk Kelsey, Chris Tice, Ruke Huang, and Chengliang

Zhang. Software behavior oriented parallelization. In Proceedings of the 28th

ACM SIGPLAN Conference on Programming Language Design and Implementa-

tion, PLDI ’07, pages 223–234, San Diego, California, USA, June 2007. Association

for Computing Machinery.

100

[28] P. Feautrier. Array expansion. In ACM International Conference on Supercomputing

25th Anniversary Volume, pages 99–111, New York, NY, USA, 1988. Association

for Computing Machinery.

[29] Manel Fernández and Roger Espasa. Speculative alias analysis for executable code.

In Proceedings of the 2002 International Conference on Parallel Architectures and

Compilation Techniques, PACT ’02, pages 222–231, Washington, DC, USA, 2002.

IEEE Computer Society.

[30] Jeanne Ferrante, Karl J. Ottenstein, and Joe D. Warren. The program dependence

graph and its use in optimization. ACM Transactions on Programming Languages

and Systems, 9(3):319–349, July 1987.

[31] Jordan Fix. Hardware MultiThreaded Transactions: Enabling Speculative Multi-

Threaded Pipeline Parallelization For Complex Programs. PhD Thesis, Department

of Computer Science, Princeton University, Princeton, NJ, United States, January

2020.

[32] Jordan Fix, Nayana P. Nagendra, Sotiris Apostolakis, Hansen Zhang, Sophie Qiu,

and David I. August. Hardware Multithreaded Transactions. In Proceedings of the

Twenty-Third International Conference on Architectural Support for Programming

Languages and Operating Systems, ASPLOS ’18, pages 15–29, Williamsburg, VA,

USA, March 2018. Association for Computing Machinery.

[33] Freddy Gabbay and Avi Mendelson. Can program profiling support value predic-

tion? In Proceedings of the 30th annual ACM/IEEE international symposium on

Microarchitecture, MICRO 30, pages 270–280, Research Triangle Park, North Car-

olina, USA, December 1997. IEEE Computer Society.

[34] Rakesh Ghiya and Laurie J. Hendren. Is it a tree, a DAG, or a cyclic graph? A shape

analysis for heap-directed pointers in C. In Proceedings of the 23rd ACM SIGPLAN-

101

SIGACT symposium on Principles of programming languages, POPL ’96, pages 1–

15, St. Petersburg Beach, Florida, USA, January 1996. Association for Computing

Machinery.

[35] Bolei Guo, Neil Vachharajani, and David I. August. Shape analysis with inductive

recursion synthesis. In Proceedings of the 28th ACM SIGPLAN Conference on Pro-

gramming Language Design and Implementation, PLDI ’07, pages 256–265, San

Diego, California, USA, June 2007. Association for Computing Machinery.

[36] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and R. B. Brown.

MiBench: A free, commercially representative embedded benchmark suite. In Pro-

ceedings of the Workload Characterization, 2001. WWC-4. 2001 IEEE International

Workshop, WWC ’01, pages 3–14, USA, December 2001. IEEE Computer Society.

[37] Michael Hind. Pointer analysis: haven’t we solved this problem yet? In Proceedings

of the 2001 ACM SIGPLAN-SIGSOFT workshop on Program analysis for software

tools and engineering, PASTE ’01, pages 54–61, Snowbird, Utah, USA, June 2001.

Association for Computing Machinery.

[38] S. Horwitz, J. Prins, and T. Reps. On the adequacy of program dependence graphs for

representing programs. In Proceedings of the 15th ACM SIGPLAN-SIGACT Sym-

posium on Principles of Programming Languages, POPL ’88, page 146157, New

York, NY, USA, 1988. Association for Computing Machinery.

[39] Jialu Huang, Prakash Prabhu, Thomas B. Jablin, Soumyadeep Ghosh, Sotiris Apos-

tolakis, Jae W. Lee, and David I. August. Speculatively Exploiting Cross-Invocation

Parallelism. In Proceedings of the 2016 International Conference on Parallel Ar-

chitectures and Compilation, PACT ’16, pages 207–221, Haifa, Israel, September

2016. Association for Computing Machinery.

102

[40] Jialu Huang, Arun Raman, Thomas B. Jablin, Yun Zhang, Tzu-Han Hung, and

David I. August. Decoupled Software Pipelining Creates Parallelization Oppor-

tunities. In Proceedings of the 8th Annual IEEE/ACM International Symposium

on Code Generation and Optimization, CGO ’10, pages 121–130, New York, NY,

USA, 2010. Association for Computing Machinery.

[41] Donghwan Jeon, Saturnino Garcia, Chris Louie, and Michael Bedford Taylor.

Kismet: parallel speedup estimates for serial programs. In Proceedings of the 2011

ACM international conference on Object oriented programming systems languages

and applications, OOPSLA ’11, pages 519–536, Portland, Oregon, USA, October

2011. Association for Computing Machinery.

[42] Nick P Johnson. Static Dependence Analysis in an Infrastructure for Automatic Par-

allelization. PhD Thesis, Department of Computer Science, Princeton University,

Princeton, NJ, United States, September 2015.

[43] Nick P. Johnson, Jordan Fix, Stephen R. Beard, Taewook Oh, Thomas B. Jablin, and

David I. August. A collaborative dependence analysis framework. In Proceedings

of the 2017 International Symposium on Code Generation and Optimization, CGO

’17, pages 148–159, Austin, USA, February 2017. IEEE Press.

[44] Nick P. Johnson, Hanjun Kim, Prakash Prabhu, Ayal Zaks, and David I. August.

Speculative separation for privatization and reductions. In Proceedings of the 33rd

ACM SIGPLAN Conference on Programming Language Design and Implementa-

tion, PLDI ’12, pages 359–370, Beijing, China, June 2012. Association for Comput-

ing Machinery.

[45] Nick P. Johnson, Taewook Oh, Ayal Zaks, and David I. August. Fast condensation

of the program dependence graph. In Proceedings of the 34th ACM SIGPLAN Con-

ference on Programming Language Design and Implementation, PLDI ’13, pages

103

39–50, Seattle, Washington, USA, June 2013. Association for Computing Machin-

ery.

[46] Kirk Kelsey, Tongxin Bai, Chen Ding, and Chengliang Zhang. Fast Track: A Soft-

ware System for Speculative Program Optimization. In Proceedings of the 7th an-

nual IEEE/ACM International Symposium on Code Generation and Optimization,

CGO ’09, pages 157–168, USA, March 2009. IEEE Computer Society.

[47] Ken Kennedy and John R. Allen. Optimizing Compilers for Modern Architectures:

A Dependence-Based Approach. Morgan Kaufmann Publishers Inc., San Francisco,

CA, USA, 2001.

[48] Hanjun Kim, Nick P. Johnson, Jae W. Lee, Scott A. Mahlke, and David I. August.

Automatic speculative DOALL for clusters. In Proceedings of the Tenth Interna-

tional Symposium on Code Generation and Optimization, CGO ’12, pages 94–103,

San Jose, California, March 2012. Association for Computing Machinery.

[49] Hanjun Kim, Arun Raman, Feng Liu, Jae W. Lee, and David I. August. Scalable

Speculative Parallelization on Commodity Clusters. In Proceedings of the 2010

43rd Annual IEEE/ACM International Symposium on Microarchitecture, MICRO

’43, pages 3–14, USA, December 2010. IEEE Computer Society.

[50] Milind Kulkarni, Keshav Pingali, Bruce Walter, Ganesh Ramanarayanan, Kavita

Bala, and L. Paul Chew. Optimistic parallelism requires abstractions. In Proceed-

ings of the 28th ACM SIGPLAN Conference on Programming Language Design and

Implementation, PLDI ’07, pages 211–222, San Diego, California, USA, June 2007.

Association for Computing Machinery.

[51] Monica S. Lam, John Whaley, V. Benjamin Livshits, Michael C. Martin, Dzintars

Avots, Michael Carbin, and Christopher Unkel. Context-sensitive program analysis

104

as database queries. In Proceedings of the twenty-fourth ACM SIGMOD-SIGACT-

SIGART symposium on Principles of database systems, PODS ’05, pages 1–12, Bal-

timore, Maryland, June 2005. Association for Computing Machinery.

[52] William Landi. Undecidability of static analysis. ACM Letters on Programming

Languages and Systems, 1(4):323–337, December 1992.

[53] Chris Lattner and Vikram Adve. LLVM: A Compilation Framework for Lifelong

Program Analysis & Transformation. In Proceedings of the international symposium

on Code generation and optimization: feedback-directed and runtime optimization,

CGO ’04, page 75, Palo Alto, California, March 2004. IEEE Computer Society.

[54] Chris Lattner, Mehdi Amini, Uday Bondhugula, Albert Cohen, Andy Davis, Jacques

Pienaar, River Riddle, Tatiana Shpeisman, Nicolas Vasilache, and Oleksandr Zi-

nenko. MLIR: A Compiler Infrastructure for the End of Moore’s Law, 2020.

[55] Chris Lattner, Andrew Lenharth, and Vikram Adve. Making context-sensitive

points-to analysis with heap cloning practical for the real world. In Proceedings

of the 28th ACM SIGPLAN Conference on Programming Language Design and Im-

plementation, PLDI ’07, pages 278–289, San Diego, California, USA, June 2007.

Association for Computing Machinery.

[56] Ondrej Lhotak. Program analysis using binary decision diagrams. phd, McGill

University, CAN, 2006. ISBN-13: 9780494251959.

[57] Ondřej Lhoták and Laurie Hendren. Evaluating the benefits of context-sensitive

points-to analysis using a BDD-based implementation. ACM Transactions on Soft-

ware Engineering and Methodology, 18(1):3:1–3:53, October 2008.

[58] Jin Lin, Tong Chen, Wei-Chung Hsu, Pen-Chung Yew, Roy Dz-Ching Ju, Tin-Fook

Ngai, and Sun Chan. A compiler framework for speculative analysis and optimiza-

105

tions. In Proceedings of the ACM SIGPLAN 2003 conference on Programming lan-

guage design and implementation, PLDI ’03, pages 289–299, San Diego, California,

USA, May 2003. Association for Computing Machinery.

[59] LLVM Project. Flang: A compiler front-end for Fortran. https://github.

com/llvm/llvm-project/tree/master/flang, September 2020.

[60] LLVM Project. LLVM Alias Analysis Infrastructure. http://llvm.org/

docs/AliasAnalysis.html, September 2020.

[61] Maroua Maalej and Laure Gonnord. Do we still need new Alias Analyses? re-

port, Université Lyon Claude Bernard / Laboratoire d’Informatique du Paralllisme,

November 2015.

[62] Stanislav Manilov, Christos Vasiladiotis, and Björn Franke. Generalized profile-

guided iterator recognition. In Proceedings of the 27th International Conference on

Compiler Construction, CC 2018, pages 185–195, Vienna, Austria, February 2018.

Association for Computing Machinery.

[63] Luiz G. A. Martins, Ricardo Nobre, João M. P. Cardoso, Alexandre C. B. Delbem,

and Eduardo Marques. Clustering-based selection for the exploration of compiler

optimization sequences. ACM Trans. Archit. Code Optim., 13(1):8:1–8:28, 2016.

[64] Mojtaba Mehrara, Jeff Hao, Po-Chun Hsu, and Scott Mahlke. Parallelizing sequen-

tial applications on commodity hardware using a low-cost software transactional

memory. In Proceedings of the 30th ACM SIGPLAN Conference on Programming

Language Design and Implementation, PLDI ’09, pages 166–176, Dublin, Ireland,

June 2009. Association for Computing Machinery.

[65] Sasa Misailovic, Deokhwan Kim, and Martin Rinard. Parallelizing sequential pro-

grams with statistical accuracy tests. ACM Trans. Embed. Comput. Syst., 12(2s),

May 2013.

106

https://github.com/llvm/llvm-project/tree/master/flang
https://github.com/llvm/llvm-project/tree/master/flang
http://llvm.org/docs/AliasAnalysis.html
http://llvm.org/docs/AliasAnalysis.html

[66] Naveen Neelakantam, Ravi Rajwar, Suresh Srinivas, Uma Srinivasan, and Craig

Zilles. Hardware atomicity for reliable software speculation. In Proceedings of the

34th annual international symposium on Computer architecture, ISCA ’07, pages

174–185, San Diego, California, USA, June 2007. Association for Computing Ma-

chinery.

[67] Greg Nelson and Derek C. Oppen. Simplification by Cooperating Decision Proce-

dures. ACM Transactions on Programming Languages and Systems, 1(2):245–257,

October 1979.

[68] Donald Nguyen, Andrew Lenharth, and Keshav Pingali. Deterministic galois: on-

demand, portable and parameterless. In Proceedings of the 19th international con-

ference on Architectural support for programming languages and operating systems,

ASPLOS ’14, pages 499–512, Salt Lake City, Utah, USA, February 2014. Associa-

tion for Computing Machinery.

[69] Taewook Oh, Stephen R. Beard, Nick P. Johnson, Sergiy Popovych, and David I. Au-

gust. A Generalized Framework for Automatic Scripting Language Parallelization.

In 2017 26th International Conference on Parallel Architectures and Compilation

Techniques (PACT), pages 356–369, September 2017.

[70] OpenMP Architecture Review Board. OpenMP Application Program Interface. Oc-

tober 2007.

[71] Guilherme Ottoni, Ram Rangan, Adam Stoler, and David I. August. Automatic

Thread Extraction with Decoupled Software Pipelining. In Proceedings of the

38th annual IEEE/ACM International Symposium on Microarchitecture, MICRO 38,

pages 105–118, Barcelona, Spain, November 2005. IEEE Computer Society.

107

[72] Guilherme de Lima Ottoni. Global Instruction Scheduling for Multi-Threaded Ar-

chitectures. PhD Thesis, Department of Computer Science, Princeton University,

Princeton, NJ, United States, September 2008.

[73] Manohar K. Prabhu and Kunle Olukotun. Using thread-level speculation to sim-

plify manual parallelization. In Proceedings of the ninth ACM SIGPLAN symposium

on Principles and practice of parallel programming, PPoPP ’03, pages 1–12, San

Diego, California, USA, June 2003. Association for Computing Machinery.

[74] Prakash Prabhu, Stephen R. Beard, Sotiris Apostolakis, Ayal Zaks, and David I.

August. Memodyn: Exploiting weakly consistent data structures for dynamic par-

allel memoization. In Proceedings of the 27th International Conference on Parallel

Architectures and Compilation Techniques, PACT ’18, New York, NY, USA, 2018.

Association for Computing Machinery.

[75] Prakash Prabhu, Soumyadeep Ghosh, Yun Zhang, Nick P. Johnson, and David I.

August. Commutative set: A language extension for implicit parallel programming.

In Proceedings of the 32nd ACM SIGPLAN Conference on Programming Language

Design and Implementation, PLDI ’11, pages 1–11, New York, NY, USA, 2011.

Association for Computing Machinery.

[76] William Pugh. The Omega test: a fast and practical integer programming algorithm

for dependence analysis. In Proceedings of the 1991 ACM/IEEE conference on Su-

percomputing, Supercomputing ’91, pages 4–13, Albuquerque, New Mexico, USA,

August 1991. Association for Computing Machinery.

[77] Arun Raman, Hanjun Kim, Thomas R. Mason, Thomas B. Jablin, and David I. Au-

gust. Speculative parallelization using software multi-threaded transactions. In Pro-

ceedings of the fifteenth International Conference on Architectural support for pro-

108

gramming languages and operating systems, ASPLOS XV, pages 65–76, Pittsburgh,

Pennsylvania, USA, March 2010. Association for Computing Machinery.

[78] Easwaran Raman, Guilherme Ottoni, Arun Raman, Matthew J. Bridges, and David I.

August. Parallel-stage decoupled software pipelining. In Proceedings of the 6th

annual IEEE/ACM international symposium on Code generation and optimization,

CGO ’08, pages 114–123, Boston, MA, USA, April 2008. Association for Comput-

ing Machinery.

[79] Easwaran Raman, Neil Va hharajani, Ram Rangan, and David I. August. Spice:

Speculative parallel iteration chunk execution. In Proceedings of the 6th Annual

IEEE/ACM International Symposium on Code Generation and Optimization, CGO

’08, pages 175–184, New York, NY, USA, 2008. Association for Computing Ma-

chinery.

[80] Ram Rangan, Neil Vachharajani, Manish Vachharajani, and David I. August. Decou-

pled software pipelining with the synchronization array. In Proceedings of the 13th

International Conference on Parallel Architectures and Compilation Techniques,

PACT ’04, pages 177–188, USA, 2004. IEEE Computer Society.

[81] Lawrence Rauchwerger and David Padua. The privatizing DOALL test: a run-time

technique for DOALL loop identification and array privatization. In Proceedings of

the 8th international conference on Supercomputing, ICS ’94, pages 33–43, Manch-

ester, England, July 1994. Association for Computing Machinery.

[82] Lawrence Rauchwerger and David Padua. The LRPD test: speculative run-time par-

allelization of loops with privatization and reduction parallelization. ACM SIGPLAN

Notices, 30(6):218–232, June 1995.

[83] Lawrence Rauchwerger and David A. Padua. The LRPD Test: Speculative Run-

Time Parallelization of Loops with Privatization and Reduction Parallelization.

109

IEEE Transactions on Parallel and Distributed Systems, 10(2):160–180, February

1999.

[84] Silvius Rus, Maikel Pennings, and Lawrence Rauchwerger. Sensitivity analysis for

automatic parallelization on multi-cores. In Proceedings of the 21st annual interna-

tional conference on Supercomputing, ICS ’07, pages 263–273, Seattle, Washington,

June 2007. Association for Computing Machinery.

[85] Silvius Rus, Lawrence Rauchwerger, and Jay Hoeflinger. Hybrid Analysis: Static &

Dynamic Memory Reference Analysis. International Journal of Parallel Program-

ming, 31(4):251–283, August 2003.

[86] Mooly Sagiv, Thomas Reps, and Reinhard Wilhelm. Solving shape-analysis prob-

lems in languages with destructive updating. In Proceedings of the 23rd ACM

SIGPLAN-SIGACT symposium on Principles of programming languages, POPL ’96,

pages 16–31, St. Petersburg Beach, Florida, USA, January 1996. Association for

Computing Machinery.

[87] Standard Performance Evaluation Corporation. http://www.spec.org.

[88] Bjarne Steensgaard. Points-to analysis in almost linear time. In Proceedings of the

23rd ACM SIGPLAN-SIGACT symposium on Principles of programming languages,

POPL ’96, pages 32–41, St. Petersburg Beach, Florida, USA, January 1996. Asso-

ciation for Computing Machinery.

[89] Ross Tate, Michael Stepp, Zachary Tatlock, and Sorin Lerner. Equality saturation: a

new approach to optimization. In POPL ’09: Proceedings of the 36th annual ACM

SIGPLAN-SIGACT symposium on Principles of Programming Languages, pages

264–276, New York, NY, USA, 2009. ACM.

[90] The GNU Project. GNU Binutils. Published:

\http://www.gnu.org/software/binutils/.

110

http://www.spec.org

[91] The IEEE and the Open Group. The Open Group Base Specifications Issue 6 IEEE

Std 1003.1, 2004 Edition. 2004.

[92] Chen Tian, Min Feng, and Rajiv Gupta. Speculative parallelization using state sep-

aration and multiple value prediction. In Proceedings of the 2010 international

symposium on Memory management, ISMM ’10, pages 63–72, Toronto, Ontario,

Canada, June 2010. Association for Computing Machinery.

[93] Chen Tian, Min Feng, and Rajiv Gupta. Supporting speculative parallelization in

the presence of dynamic data structures. In Proceedings of the 31st ACM SIG-

PLAN Conference on Programming Language Design and Implementation, PLDI

’10, pages 62–73, Toronto, Ontario, Canada, June 2010. Association for Computing

Machinery.

[94] Chen Tian, Min Feng, Vijay Nagarajan, and Rajiv Gupta. Copy or Discard execution

model for speculative parallelization on multicores. In Proceedings of the 41st an-

nual IEEE/ACM International Symposium on Microarchitecture, MICRO 41, pages

330–341, USA, November 2008. IEEE Computer Society.

[95] Georgios Tournavitis, Zheng Wang, Björn Franke, and Michael F.P. O’Boyle. To-

wards a holistic approach to auto-parallelization: Integrating profile-driven paral-

lelism detection and machine-learning based mapping. In Proceedings of the 30th

ACM SIGPLAN Conference on Programming Language Design and Implementa-

tion, PLDI ’09, pages 177–187, New York, NY, USA, 2009. Association for Com-

puting Machinery.

[96] Peng Tu and David A. Padua. Automatic Array Privatization. In Proceedings of the

6th International Workshop on Languages and Compilers for Parallel Computing,

pages 500–521, Berlin, Heidelberg, August 1993. Springer-Verlag.

111

[97] Abhishek Udupa, Kaushik Rajan, and William Thies. Alter: Exploiting breakable

dependences for parallelization. In Proceedings of the 32Nd ACM SIGPLAN Con-

ference on Programming Language Design and Implementation, PLDI ’11, pages

480–491, New York, NY, USA, 2011. ACM.

[98] Neil Vachharajani, Ram Rangan, Easwaran Raman, Matthew J. Bridges, Guilherme

Ottoni, and David I. August. Speculative Decoupled Software Pipelining. In Pro-

ceedings of the 16th International Conference on Parallel Architecture and Compi-

lation Techniques, PACT ’07, pages 49–59, USA, September 2007. IEEE Computer

Society.

[99] John Whaley and Monica S. Lam. Cloning-based context-sensitive pointer alias

analysis using binary decision diagrams. In Proceedings of the ACM SIGPLAN 2004

conference on Programming language design and implementation, PLDI ’04, pages

131–144, Washington DC, USA, June 2004. Association for Computing Machinery.

[100] Robert Wilson, Robert French, Christopher Wilson, Saman Amarasinghe, Jennifer

Anderson, Steve Tjiang, Shih Liao, Chau Tseng, Mary Hall, Monica Lam, and John

Hennessy. The SUIF Compiler System: a Parallelizing and Optimizing Research

Compiler. Technical Report, Stanford University, Stanford, CA, USA, 1994.

[101] Michael E Wolf, Dror E Maydan, and Ding-Kai Chen. Combining loop transfor-

mations considering caches and scheduling. In Proceedings of the 29th Annual

IEEE/ACM International Symposium on Microarchitecture. MICRO 29, pages 274–

286. IEEE, 1996.

[102] Victor A Ying, Mark C Jeffrey, and Daniel Sanchez. T4: Compiling Sequential Code

for Effective Speculative Parallelization in Hardware. In 47th Annual International

Symposium on Computer Architecture (ISCA), pages 159–172. IEEE, 2020.

112

[103] Hongtao Zhong, Mojtaba Mehrara, Steve Lieberman, and Scott Mahlke. Uncovering

hidden loop level parallelism in sequential applications. In 2008 IEEE 14th Inter-

national Symposium on High Performance Computer Architecture, pages 290–301,

February 2008. ISSN: 2378-203X.

113

	Abstract
	Acknowledgments
	Contents
	List of Tables
	List of Figures
	1 Introduction
	1.1 Dissertation Contributions
	1.1.1 Speculation-Aware Collaborative Analysis Framework
	1.1.2 Planning & New Enablers
	1.1.3 Fully-Automatic Parallelizing Compiler
	1.1.4 Summary

	2 Background
	2.1 Dependences
	2.1.1 Memory Dependences
	2.1.2 Register Dependences
	2.1.3 Control Dependences
	2.1.4 Intra- & Cross-Iteration Dependences
	2.1.5 Program Dependence Graph

	2.2 Dependence Analysis
	2.3 Enabling Transformations
	2.3.1 Speculation
	2.3.2 Privatization & Reduction

	2.4 Parallelization Transformations
	2.4.1 DOALL Parallelization
	2.4.2 Tolerating Cross-Iteration Dependences

	3 Motivation
	3.1 State-of-the-Art for DOALL Parallelization
	3.2 Overheads of State-of-the-Art
	3.2.1 Excessive Use of Memory Speculation
	3.2.2 Expensive Privatization

	4 The Perspective Approach
	4.1 Speculation-Aware Analysis
	4.2 Planning
	4.3 New Enabling Transformations
	4.4 Example

	5 Speculation-Aware Collaborative Analysis Framework
	5.1 Motivation
	5.1.1 Example

	5.2 Design
	5.2.1 Collaboration
	5.2.2 Query Language
	5.2.3 Orchestrator
	5.2.4 SCAF within a Compiler
	5.2.5 Example

	5.3 Implementation
	5.3.1 Memory Analysis Modules
	5.3.2 Speculation Modules

	6 Parallelization Infrastructure Implementation
	6.1 Enabling Transformations
	6.1.1 Memory Dependences
	6.1.2 Register & Control Dependences

	6.2 Parallelization Transformations
	6.3 Transformation Selector
	6.4 Profiling
	6.5 Preprocessing
	6.5.1 LLVM Optimizations
	6.5.2 Profile-Guided Selective Inlining

	6.6 Loop Selection
	6.7 Multi-Process Code Generation
	6.8 Runtime

	7 Evaluation
	7.1 Speculation-Aware Collaborative Analysis Framework
	7.1.1 Benefit of Collaboration
	7.1.2 Contributions of Modules to Collaboration
	7.1.3 Query Latency

	7.2 Perspective Parallelization Framework
	7.2.1 Scalability of Perspective
	7.2.2 Comparison with State-of-the-Art
	7.2.3 Performance Analysis of Perspective
	7.2.4 Misspeculation Evaluation

	8 Related Work
	8.1 Speculation-Aware Analysis
	8.2 Parallelizing Compilers
	8.3 Planning

	9 Conclusion and Future Directions
	9.1 Conclusion
	9.2 Future Directions
	9.2.1 Impact for Pipelined Parallelism
	9.2.2 Efficient and Robust Profiling
	9.2.3 Broader Language Support
	9.2.4 Beyond CPUs
	9.2.5 General-purpose Accelerators

	Bibliography

