
A System for Flexible Parallel

Execution

Arun Raman

A Dissertation

Presented to the Faculty

of Princeton University

in Candidacy for the Degree

of Doctor of Philosophy

Recommended for Acceptance

by the Department of

Electrical Engineering

Advisor: Professor David I. August

January 2012

c© Copyright by Arun Raman, 2011.

All Rights Reserved

Abstract

Exponential growth in transistor density combined with diminishing returns from

uniprocessor improvements has compelled the industry to transition to multicore ar-

chitectures. To realize the performance potential of multicore architectures, programs

must be parallelized effectively. The efficiency of parallel program execution depends

on the execution environment comprised of workload, platform, and performance goal.

In writing parallel programs, most programmers and compilers expose parallelism and

optimize it to meet a particular performance goal on a single platform under an as-

sumed set of workload characteristics. In the field, changing workload characteristics,

new parallel platforms, and deployments with different performance goals make the

programmer’s or compiler’s development-time or compile-time choices suboptimal.

This dissertation presents Parcae1, a generally applicable holistic system for platform-

wide dynamic parallelism tuning. Parcae includes:

1. the Nona compiler, which applies a variety of auto-parallelization techniques to

create flexible parallel programs whose tasks can be efficiently paused, recon-

figured, and resumed during execution;

2. the Decima monitor, which measures resource availability and system perfor-

mance to detect change in the environment; and

3. the Morta executor, which cuts short the life of executing tasks, replacing them

with other functionally equivalent tasks better suited to the current environ-

ment.

Parallel programs made flexible by Parcae outperform original parallel implemen-

tations in a variety of interesting scenarios.

1According to Roman mythology, the Parcae (pronounced \"pär-k̄i\) are the Three Fates that
control the metaphorical thread of life of each mortal. They are Nona, who creates the thread of
life; Decima, who measures the thread of life; and Morta, who cuts the thread of life.

iii

Acknowledgments

First and foremost, I sincerely thank my advisor, Prof. David August, for enabling

my chosen career path. David has taught me most of what I know about the various

aspects of conducting research in computer engineering, from ways to alleviate pres-

sure on load-store units in a processor pipeline to the art of writing good abstracts

and creating insightful presentations. I particularly appreciate his faculty for making

insightful and encouraging suggestions, which have proved to be of immense use over

the years. I am also grateful for his efforts to champion my cause by talking favor-

ably about me to others and providing opportunities to give presentations at various

research summits, especially in my early years in graduate school. On the topic of

early years, I thank him immensely for believing in me.

I sincerely thank Prof. Niraj Jha and Prof. Scott Mahlke for reading this disserta-

tion and providing thorough and insightful comments. The dissertation is significantly

better on account of their feedback. I also thank them for their quick turnaround

that facilitated the scheduling of the public defence of this dissertation. I thank Prof.

Ruby Lee and Prof. David Walker for serving on my committee. I express my grati-

tude to them for their willingness to go out of their way to accommodate me in their

extremely busy schedules.

I consider myself extremely fortunate to have worked in the Liberty group. One

would be hard pressed to find such a group of people who are willing to stay up all

night and help address the myriad issues that inevitably crop up just before a paper

deadline. I thank Jack, Jialu, Hanjun, Prakash, Nick, Tom, Thomas, and Yun for

their help over the years. In particular, I am eternally indebted to Hanjun who has

spent many hours working with me on multiple projects, and contributed significantly

to the quality of each. His work ethic provided tacit encouragement to improve my

own. I thank Prakash for the many interesting discussions on topics ranging from

data semantics to the Ashtavakra Gita. I thank Nick for fruitful discussions on the

iv

compiler implementation. I thank Taewook for volunteering to be a user of a part of

the technology described in this dissertation. I thank Tom for his help with system

administration matters over the years. I thank Jae and Ayal for their assistance

in refining the ideas presented in this dissertation and polishing the presentation.

Their help has significantly improved the clarity of this discourse. I thank Easwaran

for including me in his project in my second year, affording me the opportunity to

watch and learn. I thank Neil for taking the time to comment on early drafts of

multiple papers. I thank Guilherme, Matt, and George for providing sagely advice on

all-things-grad-school. I thank the previous generations of Liberators for the group

culture that is the envy of many, and hope that the next generation, including Deep,

Feng, Jordan, Matt, Stephen, and Taewook, will perpetuate and enhance it.

I thank Prof. Sharad Malik for guiding me in my first semester at Princeton. I

thank Prof. Martonosi for introducing me to computer architecture in my first year of

graduate school and making its study stimulating. I thank Prof. Martonosi and Prof.

Peh for serving on my general examination committee. I thank my undergraduate

advisors, Prof. Agrawal, Prof. Pillai, and Prof. Anand, for initiating me in electrical

engineering and encouraging me to pursue higher studies.

I thank Intel Corporation for supporting my work through a fellowship award. I

sincerely thank David, Guilherme, and Olivier Temam for recommending me for the

same. I am greatly indebted to Guilherme for being my advocate at Intel.

Having experienced firsthand the terrors of administrative bureaucracy prior to

Princeton, I have been fortunate to have had wonderful administrative support. My

sincere thanks to Sarah McGovern, Roelie Abdi-Stoffers, Lori Bailey, Stacey Weber,

and Melissa Lawson for handling travel grants, fellowship applications, conference

organization, and a host of other things.

My stint at Princeton was made immensely enjoyable by all the amazing people

that I met and befriended. I promise to strive to make these associations last a life-

v

time. Abhishek, thanks for your guidance in technical matters, both in my early and

later years in graduate school, when needed the most. Aman, Saurabh, and Sushob-

han, thanks for your advice on various matters in my early years at Princeton. To

all of you, “Respek.” Aditya, thanks for “all ’em laughs”. It was fun to see you

always “chillmaxing”. Ajay, thanks for always being a few hundred steps ahead in

knowing exactly what needs to be done. Amit, thanks for providing brotherly sup-

port whenever I am in the Bay Area. Thanks for guiding me in work matters and in

workout matters. Ankit, your expert advice and our engaging conversations helped

me sail through my first year at Princeton. Anirudh Sama, for being a constant friend

during my stint at Princeton, I say arigatō. The number of interests we shared was

incredible. Aravindan, thank you so much for helping me at various times in the past

five years, and for filling any room with laughter. Arjun “Annathae” Vijayakumar,

thanks for teaching me the ins and outs of social networking, and for treating me

to many culinary delights. Arnab, thanks for always reminding me do to my taxes

by getting your returns before I even filed. Ashwin “Ashbhai” Subramani, five years

in Princeton were made a lot of fun in large part due to your friendship and sup-

port. Thanks for keeping me grounded when I set off on my flights of fancy. Our

collaborative forays into food science ended in success more often than anyone could

have guessed. Bhadri “Nanbaen” Visweswaran, thanks for “teaching” me Tamil. I

encourage you to persist with your nindō. Carole and Yu-Yuan, thanks for making

me a part of your wedding encore. Volleyball was great fun, as were the many din-

ners. Deep, it was great fun hanging out, playing basketball, and hearing you rant

about the vicissitudes of Manchester United’s fortunes. “Run your socks into the

ground.” Easwaran, thanks for your guidance. Your spirituality shines through; I

only needed to observe you to understand what the elders talk about. Indraneel, it

was a lot of fun hanging out at the movies. You made the quality (lack thereof) of the

movies immaterial to having fun. Kostas and Manos, it was amazing to discover how

vi

alike Greeks and Indians are culturally, particularly when it came to perpetuating

chaos. It was always fun. Niket, thanks for blazing a trail in many ways. Your drive

and levelheadedness have always been inspirational. Prakash, the trips to the Whole

Earth deli, the not-too-infrequent visits to Mehek, and the late-afternoon fruit salad

fiestas were all made memorable, thanks to your knack for engaging conversation.

That last game of basketball remains. Prateek, working on linear algebra problems

at 2 a.m. in the first year was a lot of fun, as were the tennis games in biting cold.

The simple activity of making Maggi in the GC common room always turned out

to be anything but mundane. Rajsekar, thanks for the witticisms that you delivered

with unfailing regularity. Thanks are also due for your part in preserving for posterity

that great cultural artifact; you know what I am talking about. Rohit “Rajgaariyaa”,

thanks for your brotherly support during our time in Princeton. I always look back

fondly upon laid-back weekends enjoying the pakodas and dhoodh-paththi that you

made. Seshadhri, I made a mental note of most of your utterances, which invariably

bore the hallmark of a Guru. Entering the parking lot and exiting through the “No

Exit” next to Wawa to get from Hibben-Magie to the GC lawns ASAP was always

a class move. Srinivas, “woah woah woah”. Kalakku po. Tushar, thanks for keeping

me up-to-date with the happenings in the Liberty group. Even after you moved to

Singapore. Vaneet, thanks for showing me the ropes in terms of preparing for the

written examination and shopping at the Indian store. Varun “Koomaar”, your do-

ings never failed to regale. Our legendary contests, while disdained by some (all),

kept things real. Your achievements are a source of inspiration. “Dosth” Vijay, I

hope I can one day live up to your incredible interpretation of friendship. Bad Tamil

movies, awesome home-cooked food, thayir saadam at Bridgewater Venky’s, moving

in the rain (why exactly were we moving that often?), are only a few of the many

memories that I shall cherish.

vii

I have been shaped by the love showered upon me by all my aunts, uncles, and

cousins. To them, I convey heartfelt gratitude for their kind and encouraging words

through this journey in graduate school. In particular, I am indebted to Kumar

Chinnanna, Deepa Pinnamma, Bharat, and Tulasi, and likewise to Shanthi Atha,

Chinnasamy Mama, and Amrutaa, for their support and love and for always making

me feel at home. Kumar Chinnanna’s and Deepa Pinnamma’s help in getting me set

up when I had just landed off the boat made the resettlement from across the world

seem effortless.

My parents always inspired and instilled values, rather than prescribe a course

of action. They gave me the freedom to chart my own course, which has proved

priceless in establishing self-confidence. My sister, Aishwarya, has always taken keen

interest in my studies, asking questions that forced me to stay on top of my game.

My grandparents and parents have surmounted great challenges to increase their

children’s potential. To Amma, Anna, Aishwarya, Chellamma Awwa, Venku Thatha,

Papa Awwa, and Boocci Thatha, whose unconditional love, guidance, and example

are responsible for what I am, I dedicate this work.

viii

Contents

Abstract . iii

Acknowledgments . iv

List of Figures . xiii

1 Introduction 1

1.1 Shortcomings of Existing Approaches 3

1.1.1 Restrictive APIs . 4

1.1.2 Automatic Tuning for Only Array-based Data-parallel Programs 4

1.1.3 Single Program and Single Objective Optimization 5

1.2 Contributions . 6

1.3 Dissertation Organization . 8

2 Motivation 9

2.1 Sources of Variability in Execution Environment 9

2.2 Problems with Prevalent Methodology to Address Variability 11

2.3 Quantifying the Impact of Variability 13

2.4 A Novel Methodology to Tackle Variability 17

2.5 Comparison with Existing Systems 19

3 Parcae System Overview 22

3.1 Parcae Execution Model . 22

3.2 Parcae System Architecture . 25

ix

4 Compilation for Flexible Execution 28

4.1 Parallelism Extraction . 28

4.2 Multiple Parallelizations . 30

4.3 Task Creation . 31

4.3.1 DOANY . 31

4.3.2 PS-DSWP . 31

4.4 Code Generation of Coalesced Tasks 33

4.5 Flexible Code Generation . 33

4.5.1 Changes to Task Control Flow 35

4.5.2 Saving and Restoring State 36

4.5.3 Inter-task Communication . 38

4.6 Relayable Task Instances . 38

4.7 Hooks for Autonomous Monitoring 40

5 Parcae for the Programmer 42

5.1 Application Developer’s View . 42

5.1.1 Datatype Definitions . 42

5.1.2 Using the API: A Video Transcoding Example 47

5.1.3 Summary . 51

5.2 System Administrator’s View . 51

5.3 Mechanism Developer’s View . 52

6 Online Monitoring and Optimization 54

6.1 Overview . 54

6.2 Morta Operation Walk-through . 55

6.3 Performance Goals and Mechanisms Tested 57

6.3.1 Goal: “Minimize Response Time with N threads” 57

6.3.2 Goal: “Maximize Throughput with N threads” 59

x

6.3.3 Goal: “Maximize Throughput with N threads, P Watts” . . . 63

6.4 Closed-loop Platform-wide Mechanism 63

6.4.1 Finite-state Machine . 64

6.4.2 Optimizing the Degrees of Parallelism 67

6.4.3 Platform-wide Control . 71

7 Reducing Run-time Overheads 73

7.1 Reducing Data Management Overhead 74

7.2 Reducing Barrier Wait Overhead . 77

7.2.1 Single Parallel Task . 79

7.2.2 Sequential-Parallel-Sequential Tasks 79

7.2.3 Network of Sequential-Parallel Tasks 82

7.3 Reducing Parallelism Reconfiguration Overhead 84

7.4 Reducing Critical Sections Corresponding to Reductions 85

8 Evaluation 86

8.1 Chapter Organization . 87

8.2 Parcae API . 87

8.2.1 Goal: “Minimize Response Time with N Threads” 89

8.2.2 Goal: “Maximize Throughput with N Threads” 92

8.2.3 Goal: “Maximize Throughput with N Threads, P Watts” . . . 94

8.2.4 Summary . 95

8.3 Nona Compiler . 95

8.3.1 Power/Energy Measurement Methodology 95

8.3.2 Parcae adapts execution to workload change 97

8.3.3 Parcae optimizes across multiple parallelization schemes . . . 99

8.3.4 Parcae adapts execution to resource availability change 100

8.3.5 Optimality: A Closer Look . 101

xi

8.3.6 Morta and Decima Overheads 102

9 Related Work 103

9.1 Parallel Programming Models . 103

9.1.1 General-purpose Parallel Programming Models 103

9.1.2 Domain-specific Parallel Programming Models 104

9.2 Compiler and User-level Run-time Systems 105

9.3 Operating Systems . 107

9.4 Hardware . 108

10 Future Directions and Conclusions 109

10.1 Avenues of Future Research . 109

10.2 Conclusions . 111

xii

List of Figures

1.1 Normalized SPEC CINT scores for all reported machine configurations

from 1993 to 2011. Since 2004, uniprocessor performance improvement

has slowed considerably. Performance levels attained in 2011 would

have been achieved in 2008 itself had the pre-2004 growth rate been

sustained. 2

2.1 A mismatch between the programmer’s test platform and the user’s

deployment platform, or a mismatch between the programmer’s and

user’s notions of performance can result in suboptimal program per-

formance. Performance mismatch feedback from the user to the pro-

grammer adds significant human involvement latency to the program

optimization process. 11

2.2 As the programmer scales the application to more users, the program-

mer may need to re-optimize for potentially different platforms and

different user expectations of performance. 12

xiii

2.3 A two-level loop nest in video transcoding. Each user-submitted transcod-

ing request gets enqueued in the work queue. Multiple requests are

operated upon concurrently; this constitutes the outer level of paral-

lelism. The transcoding of each video itself is done in parallel by a

team of threads organized in a pipelined fashion as shown; different

stages of the pipeline concurrently operate on different frames of the

video. Parallelism Configuration C = (S,D) represents the scheme of

parallelization (S) and the number of threads assigned (D, the Degree

of Parallelism) to a loop (the parallel region). 14

2.4 Variation of (a) execution time and (b) throughput with load factor

and parallelism configuration in a video transcoding application on a

24-core Intel Xeon machine. (c) Impact of throughput and execution

time on end-user response time; a DoP oracle achieves best response

time characteristic by continuously varying DoP with load (ideal par-

allelism configuration for each load factor is shown). <(k, DOALL), (l,

PIPE/SEQ)> indicates that, at any given moment, k iterations of the

outer loop are being processed by l threads each, keeping k× l threads

busy. PIPE or SEQ indicates whether each outer-loop iteration is pro-

cessed in a pipeline-parallel or sequential manner, respectively. 15

2.5 Parcae enables separation (indicated by the red vertical bar) of the

concern of parallelism discovery and extraction from the concern of

optimizing and tuning that parallelism. Parcae automates the tasks

of observation, optimization/tuning, and re-deployment to adapt the

program to a new execution environment. Automation significantly

reduces the latency of optimization and re-deployment of a program. 18

xiv

3.1 Parcae execution model. (t0) program P1 is launched; (t1) program

P2 is launched; (t2) P1 acknowledges signal to pause; (t3) P1 reaches a

known consistent state; (t4) new resource allocation is determined and

parallel execution of P2 begins, while P1 switches to a parallelization

that is better for two cores. 24

3.2 Parcae system architecture and parallelization workflow 25

4.1 Transforming task code produced by MTCG. Dashed blocks/arcs rep-

resent arbitrary control flow within the loop. 36

5.1 Parcae API type definitions . 43

5.2 Separation of task’s control and functionality in the Parcae API . . . 43

5.3 A two-level loop nest in video transcoding. Multiple requests are oper-

ated upon concurrently; this constitutes the outer level of parallelism.

The transcoding of each video itself is done in parallel by a team of

threads organized in a pipelined fashion as shown; different stages of

the pipeline concurrently operate on different frames of the video. . . 45

5.4 Outer loop in x264 video transcoding 45

5.5 Task definition using Parcae . 46

5.6 Comparison of parallelization using POSIX threads and Parcae—continued

on next page . 48

5.7 Comparison of parallelization using POSIX threads and Parcae 49

5.8 Parcae mechanism developer API . 52

5.9 Mechanism to maximize throughput—Assigns a degree of parallelism

(DoP) to each task proportional to task’s execution time 53

xv

6.1 Interactions of three agents around Parcae. The application developer

describes parallelism using the Parcae API just once. The mechanism

developer implements mechanisms to transform the parallelism config-

uration. The administrator sets the constraint parameter values of the

mechanism. Morta optimizes execution of multiple applications on the

shared platform. (A) and (B) represent continuous monitoring of appli-

cation and platform features by Decima. (1)–(5) denote the sequence

of events that occurs when parallelism reconfiguration is triggered. . . 56

6.2 Image search engine ferret (a) Original pipeline (b) Pipeline with

parallel stages collapsed . 60

6.3 Run-time controller . 65

6.4 Assumed throughput characteristic as a function of the ith component

of the DoP vector, with other components fixed. Gradient-ascent is

used to determine the optimal DoP. 69

7.1 Morta execution overheads. (t0) Program P is in the steady state of PS-

DSWP execution; (t1) program P is signaled to pause by Morta; (t2)

P ’s pipeline is drained; (t3) new parallelism configuration is determined

and P begins DOANY execution. 75

7.2 Morta execution after optimization. In the same amount of time that

unoptimized Morta finishes one round of reconfiguration (shown in

Figure 7.1), optimized Morta finishes two rounds of reconfiguration.

Barrier wait overhead reduction is described later in this chapter. . . 76

7.3 Reducing cross-iteration dependency load/save overhead by hoisting

the corresponding operations out of the loop 77

7.4 Strategy of waiting at a barrier for all tasks to pause incurs the pipeline

drain overhead . 78

xvi

7.5 Barrier optimization. Näıve optimization may result in violation of

program semantics. (b) shows how increase in DoP from m to m + 1

without appropriate synchronization between S1 and S2 can result in

S2 processing iterations out of order. 81

7.6 Morta optimization to eliminate barrier wait stall saves time and en-

ables additional iterations to complete 83

7.7 Morta barrier wait optimization works for arbitrary sequential-parallel

pipeline networks . 84

8.1 Video transcoding: Response time variation with load using Static,

WQT-H, and WQ-Linear mechanisms 89

8.2 Option pricing: Response time variation with load using Static, WQT-

H, and WQ-Linear mechanisms . 90

8.3 Data compression: Response time variation with load using Static,

WQT-H, and WQ-Linear mechanisms 90

8.4 Image editing: Response time variation with load using Static, WQT-

H, and WQ-Linear mechanisms . 90

8.5 Image search engine: Response time variation with load using Static,

WQT-H, and WQ-Linear mechanisms 91

8.6 Image search engine: Throughput variation using TBF mechanism . . 93

8.7 Image search engine: Power-throughput variation using TPC mechanism 94

8.8 Parcae run-time control. Solid vertical lines indicate state transition

times. All throughput values are normalized to the throughput mea-

sured in the INIT state. States shown at the top of each figure are the

states of the program’s controller. 98

8.9 Controller optimizes multiple programs simultaneously 100

xvii

Chapter 1

Introduction

Until recently, the computing industry enjoyed a sustained exponential growth in

processor performance. Figure 1.1 shows the performance (as measured by execution

of the SPEC Integer benchmark suites) of all machine configurations that were re-

ported to SPEC between 1993 and 2011 [84]. The x-axis represents time. A point on

the graph represents performance of a real machine at that time. The y-axis mea-

sures performance normalized across generations of the SPEC benchmark suite. Note

that the y-axis is logarithmic. The trend lines are linear regressions over the best

performing machine configurations at each point in time.

The computing industry achieved this growth by scaling clock frequency and en-

hancing uniprocessor microarchitecture. This improved the performance of a wide

range of applications, with programmers remaining blissfully unconcerned with changes

in the hardware. Since 2004, however, uniprocessor performance has grown at a much

slower pace. Increasing design complexity, power and thermal constraints, and dimin-

ishing returns from uniprocessor microarchitectural enhancements are the primary

reasons for the slowdown. Meanwhile, Moore’s law continues to double the number

of transistors per unit area. Processor designers leverage these additional transistors

by placing multiple cores on the same die.

1

S
P
E
C

C
IN

T
P
er
fo
rm

an
ce

(l
og

sc
a
le
)

1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012
Year

CPU92
CPU95
CPU2000
CPU2006

3 years behind

Figure 1.1: Normalized SPEC CINT scores for all reported machine configurations
from 1993 to 2011. Since 2004, uniprocessor performance improvement has slowed
considerably. Performance levels attained in 2011 would have been achieved in 2008
itself had the pre-2004 growth rate been sustained.

Sequential programs do not benefit from multiple cores. To use the additional

cores, programs must be parallel. The hardware extracts instruction-level parallelism

within each core, but does not extract thread-level parallelism across multiple cores.

Consequently, application developers and compilers are tasked with extracting thread-

level parallelism across multiple cores. Much progress has been made in developing

tools to extract parallelism, even from seemingly sequential code [18, 24, 70, 72, 92,

104]. Tools such as POSIX threads (Pthreads) [90], Intel Threading Building Blocks

(TBB) [77], Cilk++ [17,50], OpenMP [1], and Galois [46] allow application developers

to extract thread-level parallelism.

However, parallelism extraction is just one part of the problem of synthesizing well-

performing programs that execute efficiently in a variety of execution environments.

The other, equally important, part is the tuning and packaging of the extracted

parallelism [66, 68]. In the absence of intelligent tuning and packaging, a parallel

program may perform worse than the original sequential program [54,73,85,86].

2

The performance of parallel programs depends on several run-time factors. Syn-

chronization and communication overheads are often difficult to predict and may

erode the benefits of parallelism [86]. Parallel execution resources available to the

program may vary, including number of cores and memory bandwidth [15, 54]. The

program’s workload characteristics may vary as in the case of web services such as

search and video. Furthermore, the performance goals may not be fixed and could

be some complex time-varying functions of energy, throughput, etc. Together, these

three sources of variability—workload characteristics, platform characteristics, and

performance goals—are collectively referred to as the execution environment of a

program. To execute efficiently, a parallel program must adapt to changes in execu-

tion environment. However, the vast majority of parallel programs are produced by

programmers or compilers with a single static parallelism configuration encoded at

development or compile time. Any single program configuration is likely to become

suboptimal with changes in the execution environment [73,85].

1.1 Shortcomings of Existing Approaches

Fundamentally, the ideal program configuration for a given execution environment can

be determined only during the course of execution of the program when information

about the execution environment is available. However, once the application has

been deployed, it is not possible for the application developer to re-program the

application. Consequently, the application code must be prepared ahead of time to

facilitate the process of adaptation to change in the execution environment. This

split of duties between the code generator (application developer or compiler) and

the run-time system is specified by an appropriate interface. The interface is enabled

by a run-time system implementation that performs the difficult task of adapting the

program to execute optimally as the execution environment changes. The application

3

programming interfaces (APIs), code generation algorithms, and run-time systems of

existing parallelization systems all have shortcomings.

1.1.1 Restrictive APIs

Existing parallelization APIs, including the widely used OpenMP [1] and Threading

Building Blocks (TBB) [77] APIs, enable parallelizers (application developers or com-

pilers) to encode multiple program configurations implicitly, and have an appropriate

configuration be chosen transparently at run-time based on the execution environ-

ment [16, 17, 85, 86, 94, 99]. However, these APIs force the parallelizer to either

parallelize just a single loop in a loop nest, use a specific type of parallelism (such as

task parallelism or pipeline parallelism), or specify a fixed dynamic adaptation mech-

anism that is tightly coupled to the target parallelism type. This is too restrictive for

general-purpose programs. As this dissertation demonstrates, simultaneously paral-

lelizing multiple loops in a nest can provide both scalability and latency-throughput

benefits. General-purpose programs tend to have complex dependency patterns that

require simultaneous exploitation of different types of parallelism. These programs

run on shared commodity platforms with varying constraints such as number of cores

available to the program, power, etc., and require adaptation mechanisms that can

accommodate all constraints.

1.1.2 Automatic Tuning for Only Array-based Data-parallel

Programs

Compilation for flexible execution has typically focused on array-based programs

with communication-free data-parallelism, and on parameters such as the degree of

parallelism and block size of a loop, because the performance impact of those parame-

ters can be relatively easily modeled for data-parallel array-based programs. Existing

4

compilers and run-times tune these parameters statically or dynamically to match the

execution environment, with the goal of optimizing memory access patterns or the

number of threads executing a parallel region [5, 10, 32,43,96]. However, for general-

purpose programs with complex dependency patterns, parallelism is typically non-

uniform and involves explicit synchronization or communication. This significantly

complicates performance modeling, often resulting in a large space of possibly effective

parallelism configurations. Parallelism configurations for such programs consist of the

choice of tasks to execute in parallel and the mapping of tasks to threads. Existing

compiler-based parallelization algorithms for such programs select a single configura-

tion, typically one deemed most suitable for an unloaded platform [75,95,104].

1.1.3 Single Program and Single Objective Optimization

The run-time components of existing parallelization systems optimize execution for

a single performance goal (such as throughput), and lack the ability for the system

administrator to specify the desired tradeoff between competing desiderata such as

latency and throughput or latency and power; such tradeoffs typically arise when

general-purpose programs execute on commodity hardware. Furthermore, these run-

time systems optimize the execution of individual parallel programs, without explor-

ing platform-wide implications and opportunities. They rely on the operating system

scheduler to schedule their threads without responding to system events, such as

launch of a new program and consequent reduction in the time-slices available for

execution on the platform. As this dissertation shows, the lack of coordination be-

tween the OS and the parallel program run-time system results in failure to maximize

platform-wide performance.

5

1.2 Contributions

This dissertation contributes Parcae, a novel API, compiler, and run-time system

that effectively delivers performance portability for both array-based programs and

general-purpose programs. Parcae enables new functionality in general-purpose pro-

grams — automatic adaptation to a changing execution environment. We call such

programs flexible parallel programs.

The Parcae API enables the separation of the concern of developing a functionally

correct parallel program from the concern of optimizing the parallelism for different

execution environments. This separation of concerns enables the application devel-

oper to focus exclusively on discovering parallelism in the algorithm and expressing

the parallelism in all loops in a loop nest, potentially of different types, in a function-

ally correct and unified manner just once. This frees the application developer from

being concerned with optimization and tuning of the parallel program for the dura-

tion of its lifetime. The separation of concerns also enables a mechanism developer

to specify mechanisms that encode the logic to adapt an application’s parallelism

configuration to meet the performance goals that are set by the administrator of the

system on which the program executes.

To enhance existing sequential and parallel programs, Parcae includes the Nona

compiler, which transforms those programs into flexible parallel programs by automat-

ing the tasks performed by the application and mechanism developers targeting the

Parcae API. These tasks include:

• extracting multiple types of parallelism from a program region;

• creating code to efficiently pause, reconfigure, and resume its execution; and

• inserting profiling hooks for a run-time system to monitor its performance.

.

6

To optimize multiple concurrently executing flexible parallel programs, Parcae

includes the Decima monitor and Morta executor—a multi-objective feedback-driven

run-time control system incorporating various algorithms and heuristics from control

theory. The Parcae run-time system maximizes platform-wide performance by:

• monitoring each program’s performance and system events such as launches of

new programs;

• quickly determining optimal parallelism configurations for each program; and

• pausing, replacing configurations, and resuming execution of programs effi-

ciently.

.

Specifically, the run-time system automatically and continuously determines for

each program:

• which tasks to execute in parallel (e.g., what are the stages of a pipeline);

• how many hardware threads to use (e.g., how many threads to allocate to each

stage of the pipeline); and

• how to schedule tasks on to hardware threads (e.g., on which hardware thread

should each stage be placed to maximize locality of communication).

Finally, this dissertation evaluates the proposed API, compiler transformations,

and parallelization optimization algorithms. On two real multicore platforms, this

dissertation demonstrates that Parcae provides significant platform-wide and individual-

program performance gains running a variety of general-purpose C/C++ programs.

7

1.3 Dissertation Organization

Chapter 2 contextualizes the need for dynamic adaptation of parallel execution as en-

abled by Parcae. Chapter 3 describes the overall Parcae architecture and execution

model, and sets the stage for detailed description of each component of the system.

Chapter 4 explains the novel compiler algorithms that generate flexible parallel pro-

grams. Chapter 5 describes the Parcae API for the application developer, mechanism

developer, and administrator. Chapter 6 provides details of the novel Parcae run-

time system, comprised of the Decima monitor and Morta executor, that optimizes

execution of multiple concurrently executing flexible parallel programs. Chapter 7

describes optimizations that reduce the run-time system’s overheads. Chapter 8 pro-

vides details of the methodology used to evaluate Parcae, and results of performance

improvements of several real-world applications and benchmarks on two different

platforms. Chapter 9 surveys related work. Chapter 10 discusses future avenues of

research and summarizes the conclusions of this dissertation.

8

Chapter 2

Motivation

This chapter motivates the need for a new parallel-program development and de-

ployment methodology to ensure performance portability. Section 2.1 defines the

sources of variability in a program’s execution environment. Section 2.2 describes

the prevalent methodology employed by programmers to handle the variability. Sec-

tion 2.3 quantitatively demonstrates the shortcomings of the prevalent methodology.

Section 2.4 outlines a novel methodology proposed in this dissertation. Section 2.5 de-

scribes limitations of existing systems and specific desirable properties that a system

implementing the proposed methodology should possess.

2.1 Sources of Variability in Execution Environ-

ment

A parallel program’s execution environment consists of the workload characteristics,

platform characteristics, and performance goals. Variability along any of these dimen-

sions can necessitate dynamic adaptation of parallelism in order to meet the specified

performance goal.

9

Workload Characteristics A parallel program is typically decomposed into static

tasks, with each task being instantiated multiple times at run-time. Each task typ-

ically has a workload associated with it. For example, in a pipeline parallelization,

the occupancy of the input queues of each stage in the pipeline at any given moment

could constitute the workload of that stage at that moment. As we demonstrate later

in this chapter, the ideal parallelism configuration of the program depends heavily on

the workload.

Platform Characteristics Each new multicore processor has a different (usually

larger) number of hardware threads compared to the previous generation. Hard-

ware platforms differ in the number and types of processing threads available, in the

core-core and core-memory communication latencies and bandwidths, etc. As more

applications move to server clouds, the availability of parallel processing resources

itself may change dynamically during the application’s execution. A program may

have been parallelized with certain assumptions about the target platform. Too tight

a coupling between the parallelization and the target platform leads to sub-optimal

performance when the assumptions no longer hold.

Performance Goals Computing systems are now called upon to maximize system

utility with a variety of optimization goals. One simple example performance goal is

maximizing task throughput, energy-delay-squared minimization is another. These

performance goals are to be met by the computing system under some constraints

such as finite execution resources, power and thermal budgets, etc.

10

DEPLOYMENT
PLATFORM

TEST
PLATFORM

Parallelize Tune Deploy

Programmer Selected
Fitness Function

Observe

User

Figure 2.1: A mismatch between the programmer’s test platform and the user’s de-
ployment platform, or a mismatch between the programmer’s and user’s notions of
performance can result in suboptimal program performance. Performance mismatch
feedback from the user to the programmer adds significant human involvement latency
to the program optimization process.

2.2 Problems with Prevalent Methodology to Ad-

dress Variability

Figure 2.1 shows the prevalent parallelization methodology. A programmer imple-

ments the user-specified functionality that is desired of the program in a program-

ming model that is most suited to the specifics of the program. The programmer

parallelizes the program to improve performance, with some notion of the fitness of

the parallelized code. The programmer then tunes the parallel program on his/her

development platform, and then ships out the program for deployment. Ideally, the

programmer’s involvement in the process of optimizing this piece of code would termi-

nate at this juncture, and the programmer would invest time and effort into developing

new functionality and providing value addition via new features to the user [87].

11

DEPLOYMENT
PLATFORM 1

TEST
PLATFORM

Parallelize Tune Deploy

User 1 Selected
Fitness Function

Observe

DEPLOYMENT
PLATFORM 2

TEST
PLATFORM

Parallelize Tune Deploy

User 2 Selected
Fitness Function

Observe

Figure 2.2: As the programmer scales the application to more users, the program-
mer may need to re-optimize for potentially different platforms and different user
expectations of performance.

12

However, in practice, the programmer is almost always never the end user of the

program. The end user may have slightly different expectations of performance, i.e.

may impose different fitness functions on the program. The end user may deploy the

program on a different platform from the one on which it was developed and tested.

The end user may run different workloads on the program. A mismatch in any of

these dimensions typically manifests in the program’s performance falling short of the

user’s expectations. The user observes and feeds back the difference in performance

to the programmer, who in the best case merely re-tunes the application for the

end user’s execution environment, and in the worst case ends up re-parallelizing the

existing parallel regions or identifying new sources of parallelism. This cyclic process

not only adds extra burden on the programmer, but also adds the significant latency

of human involvement to the program optimization process.

The problem exacerbates as the programmer scales the number of users (see Fig-

ure 2.2). The programmer must simultaneously optimize the program for potentially

multiple fitness functions, deployment platforms, and workloads. This leads to a

combinatorial explosion in the number of scenarios that the programmer needs to

consider.

2.3 Quantifying the Impact of Variability

To put the prior discussion of performance mismatch arising out of differences in

platforms, workloads, and user expectations of performance on a quantitative footing,

consider the following real-world example of workload variability of a video transcod-

ing server.

Video sharing websites such as YouTube, Google Video, and Dailymotion transcode

user submitted videos on their servers. Figure 2.3 shows the parallelism in video

transcoding using x264, a Pthreads parallel implementation of the popular H.264

13

standard [101]. Each video may be transcoded in parallel with others. Furthermore,

a single video may itself be transcoded in parallel by exploiting parallelism across

the frames in the video in a pipelined fashion. <Couter, Cinner> represents the paral-

lelization scheme and degree of parallelism (DoP) of the outer (inter-video) and inner

(intra-video) loops in the loop nest. Examples of parallelization schemes are data

parallel (DOALL) and pipeline parallel (PIPE) [3]. Statically fixing the configuration

of each loop may not be optimal for a given performance goal in all execution envi-

ronments. To demonstrate this, we measured throughput and execution time on a

24-core machine with Intel Xeon X7460 processors. User requests were simulated by

a task queueing thread with arrivals distributed according to a Poisson distribution.

The average system load factor is defined as the average arrival rate of tasks (videos

to be transcoded) divided by the maximum throughput sustainable by the system.

Figure 2.4(a) shows that exploiting intra-video parallelism provides much lower

per-video transcoding execution time (Texec) than when only the outer loop is par-

allelized. Texec is improved up to a maximum of 6.3× on the evaluation platform.

Read Transform Write

...
...

Transcoded

output

Work Queue

...Video

input
Couter =

(DOALL,

NUM_OUTER

_THREADS)

Cinner =

(PIPE,

NUM_INNER

_THREADS)

...

...

...
...

Figure 2.3: A two-level loop nest in video transcoding. Each user-submitted transcod-
ing request gets enqueued in the work queue. Multiple requests are operated upon
concurrently; this constitutes the outer level of parallelism. The transcoding of each
video itself is done in parallel by a team of threads organized in a pipelined fashion as
shown; different stages of the pipeline concurrently operate on different frames of the
video. Parallelism Configuration C = (S,D) represents the scheme of parallelization
(S) and the number of threads assigned (D, the Degree of Parallelism) to a loop (the
parallel region).

14

 0

 5

 10

 15

 20

 25

 30

 0.2 0.4 0.6 0.8 1 1.2

E
x
ec

u
ti

o
n

 T
im

e
(s

ec
s)

Normalized load on system

<(24,DOALL),(1,SEQ)>
<(3,DOALL),(8,PIPE)>

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.2 0.4 0.6 0.8 1 1.2

T
h
ro

u
g
h
p
u
t

(t
x
 p

er
 s

ec
)

Normalized load on system

<(24,DOALL),(1,SEQ)>
<(3,DOALL),(8,PIPE)>

(b)

 0

 10

 20

 30

 40

 50

 0.2 0.4 0.6 0.8 1 1.2

R
es

p
o
n
se

 T
im

e
(s

ec
s)

Normalized load on system

Crossover from optimizing latency
to optimizing throughput

<3,8> <3,8> <3,8> <3,8> <3,8>
<6,4> <4,6>

<6,4>

<12,2>

<(24,DOALL),(1,SEQ)>
<(3,DOALL),(8,PIPE)>

DoP oracle

(c)

Figure 2.4: Variation of (a) execution time and (b) throughput with load factor
and parallelism configuration in a video transcoding application on a 24-core Intel
Xeon machine. (c) Impact of throughput and execution time on end-user response
time; a DoP oracle achieves best response time characteristic by continuously varying
DoP with load (ideal parallelism configuration for each load factor is shown). <(k,
DOALL), (l, PIPE/SEQ)> indicates that, at any given moment, k iterations of the
outer loop are being processed by l threads each, keeping k × l threads busy. PIPE
or SEQ indicates whether each outer-loop iteration is processed in a pipeline-parallel
or sequential manner, respectively.

15

This maximum speedup is achieved when 8 threads are used to transcode each video.

Figure 2.4(b), however, shows the dependency of throughput on the application load.

At heavy load (load factor 0.9 and above), turning on intra-video parallelism actually

degrades throughput. This is due to the inefficiency of parallel execution (a speedup

of only about 6× on 8 threads at load factor 1.0) caused by overheads such as thread

creation, communication, and synchronization.

This experiment shows that the usual static choices of parallelism configuration

are not ideal across all load factors for both execution time and throughput. In other

words, there is a tradeoff between the two. This tradeoff impacts end-user response

time, which is the primary performance metric of service-oriented applications. Equa-

tion 2.1 is helpful to understand the impact of the execution time/throughput tradeoff

on response time. The time to transcode a video is the execution time, Texec. The

number of videos transcoded per second is the throughput of the system, Throughput.

The number of outstanding requests in the system’s work queue is the instantaneous

load on the system, q(t).

Tresponse(t) = Texec(C) +
q(t)

Throughput(C)
(2.1)

The response time of a user request, Tresponse, is the time interval from the instant

the video was submitted for transcoding (at time t) to the instant the transcoded

video is output. Tresponse has two components: wait time in the work queue until the

request reaches the head of the queue, and execution time, Texec. Note that both Texec

and Throughput are functions of the parallelism configuration C. At light to moderate

load, the average arrival rate is lower than the system throughput. Consequently, the

wait time will tend to zero, and Tresponse will be determined by Texec. Assuming rea-

sonably efficient intra-video parallelism, increasing the DoP of the inner loop reduces

Texec and in turn Tresponse. In other words, in this region of operation, <Couter, Cinner>

must be optimized for execution time (Cinner = (PIPE , 8)). At heavy load, Tresponse

16

is dominated by the wait time in the work queue, which is determined by the system

throughput. In this region of operation, Cinner must be set to a value that optimizes

throughput (Cinner = (SEQ , 1)). Figure 2.4(c) presents experimental validation of

the described response time characteristic.

An intelligent programmer can be expected within reason to perform such a trade-

off analysis and determine the crossover point (0.9 load factor) when one parallelism

configuration becomes better than the other, and rewrite the parallel program to

select dynamically at run-time the version that is appropriate for the load regime.

However, as Figure 2.4(c) shows, a mere “turn inner parallelism on/off” approach is

suboptimal. An oracle that can predict load and change DoP continuously achieves

significantly better response time. The figure is annotated with the optimal DoP

<Douter, Dinner> for each load factor obtained by measuring and selecting the best

configuration out of all in the parallelism configuration space. The objective of this

dissertation is to design a parallel program development methodology and system

that can automatically achieve the optimal performance characteristic shown in Fig-

ure 2.4(c).

2.4 A Novel Methodology to Tackle Variability

Referring back to Figure 2.1, the fundamental problem with the prevalent parallel

program development methodology is that performance observation or monitoring,

parallelism tuning, and application re-deployment are all human activities that con-

tribute significant latency to the program optimization process. This additional la-

tency only serves to adversely impact end-user experience. To solve the problem, this

dissertation proposes a new methodology shown in Figure 2.5. In the new method-

ology, the tasks of performance observation or monitoring, parallelism optimization,

and program re-deployment are automated by a system called Parcae.

17

DEPLOYMENT
PLATFORM

TEST
PLATFORM

Parallelize Tune Deploy

Programmer Selected
Fitness Function

Observe

Deploy Tune

User Selected
Fitness Function

Human
Activity

Machine
Activity

Figure 2.5: Parcae enables separation (indicated by the red vertical bar) of the concern
of parallelism discovery and extraction from the concern of optimizing and tuning that
parallelism. Parcae automates the tasks of observation, optimization/tuning, and re-
deployment to adapt the program to a new execution environment. Automation
significantly reduces the latency of optimization and re-deployment of a program.

With Parcae, the problems mentioned before simply do not exist. The programmer

can develop a functionally correct parallel program on his/her development platform,

and rely on Parcae to adapt the program to the user’s deployment platform. The

programmer can optionally perform an initial tuning of the parallelism, and rely on

Parcae to re-tune if necessary to match the new execution environment. The user

now has the flexibility to specify new fitness functions, which Parcae will meet by

adapting the program as it it executes. Parcae enables continuous online optimization

of the program for the duration of its lifetime. The programmer does not need to

do anything special to scale to more users; simply re-deploying on the new platform

suffices as Parcae performs the task of re-optimizing to the other users’ platforms.

In summary, the programmer is freed of the burden of being tied into the process of

optimizing a piece of code for its lifetime, and can instead focus on developing new

functionality and features.

18

2.5 Comparison with Existing Systems

Referring to Figure 2.5, development of parallel applications that execute efficiently

throughout their lifetime in the face of variability in their execution environment

involves:

• correct partitioning of the application into parallel tasks,

• specification of logic for the application to adapt to changes in its execution

environment, and

• design of a lightweight run-time system to perform parallelism adaptation.

Most existing systems conflate the above three steps instead of dealing with each

separately, resulting in limited portability, extensibility, and reuse of code. We argue

that a system that can enable an efficient separation of the steps must have the

following properties:

Enables Declarative Parallelism Configuration Expression Libraries such

as Pthreads and OpenMP force parallelizers (compilers or programmers) to specify a

single fixed configuration of a parallel application—this is an imperative specification.

A better approach is for the parallelizers to “declaratively” specify parallelism and

not worry about the specific parallelism configuration that the application will adopt

since the ideal configuration depends on the application’s execution environment.

Performs Dynamic Adaptation Automatically The ideal system should enable

the application to adapt automatically to better parallelism configurations without

requiring the programmer to manually code the adaptation logic for each application.

Leverages Application Features Prior work has demonstrated the performance

benefits of leveraging application level features such as task workload and task exe-

19

cution time [77, 85, 94, 99]. The ideal system should enable the parallelizer to expose

such application features.

Leverages Parallelism in Loop Nest The ideal system should enable the expres-

sion of all the parallelism in a loop nest since it is crucial for scalability and flexibility

to achieve different performance goals (as shown in Section 2.3).

Supports Multiple Parallelism Types The ideal system should enable the ex-

pression of multiple parallelism types such as data parallelism, pipeline parallelism,

and task parallelism, so that the parallelizer is not constrained to fit the code into a

form that is amenable to the system. Rather, the parallelizer should express paral-

lelism in its most natural form for a given application, and the system should adapt

the parallelism according to the application’s execution environment.

Enables Multiple Performance Goals The ideal system should enable the spec-

ification of multiple performance goals including constraints, without necessitating a

rewrite of application code. This will ensure the portability of applications across

different systems with varying goals and constraints including energy, power, temper-

ature, etc.

Enables Multiple Mechanisms The ideal system should support multiple paral-

lelism optimization mechanisms because the best mechanism for a particular perfor-

mance goal could be different from the best mechanism for a different performance

goal. Additionally, as more constraints, such as power or temperature, are added, the

best mechanism will evolve. The system’s APIs should be robust to the evolution.

Optimizes Across Multiple Programs General-purpose computing platforms

are typically shared by multiple simultaneously executing parallel programs, each

of which may be able to utilize all available parallel execution resources. The ideal

20

Feature \ Library
Pthreads Intel TBB FDP Parcae

[90] [77] [85] [This work]

Declarative Parallelism Expression 7 3 3 3
Automatic Dynamic Adaptation 7 3 3 3
Leverages Application Features 7 7 3 3
Supports Parallelism in Loop Nest 3 3 7 3
Supports Multiple Parallelism Types 3 7 3 3
Enables Multiple Performance Goals 7 7 7 3
Enables Multiple Mechanisms 7 7 7 3
Optimizes Across Multiple Programs 7 7 7 3

Table 2.1: Comparison of various software-only parallelization libraries for general-
purpose applications

system must optimize and efficiently multiplex the execution of all program simultane-

ously to provide system-wide optimal execution in terms of system-wide throughput,

energy consumption, etc.

Table 2.1 evaluates different existing solutions to the dynamic adaptation problem.

The columns show how prior systems do not possess the properties discussed above.

By contrast, Parcae possesses these properties by design.

21

Chapter 3

Parcae System Overview

This chapter gives an overview of the proposed Parcae execution model and the Parcae

system architecture.

3.1 Parcae Execution Model

In the prevalent execution model, the operating system presents the illusion that a

program is running on an unloaded platform. While this abstraction is desirable

to reduce the complexity of developing flexible parallel programs, it may result in

significant performance degradation when the platform is oversubscribed due to the

overheads associated with scheduling the execution of multiple concurrently execut-

ing programs. Parcae eliminates the scheduling overheads by re-allocating execution

resources (subject to platform constraints such as total number of available cores)

when new programs are launched or old programs terminate, and by relying on the

programs to adapt themselves to the new resource allocation. Such a co-operative use

of resources yields significant performance benefits, as Chapter 8 demonstrates. The

primary inhibitor of such execution was the complexity associated with developing

flexible parallel programs. Parcae addresses this problem by simplifying the devel-

opment process for transforming conventional parallel programs into flexible parallel

22

programs through use of the Parcae API, and by automatically transforming sequen-

tial programs into flexible parallel programs through the Nona compiler.

Figure 3.1 shows an example of the Parcae execution model on a hypothetical five-

core machine. Each parallel region consists of a set of concurrently executing tasks.

(The inscription inside a box indicates the task and iteration number of a region; e.g.,

M5 represents the fifth iteration of task M . White space within a core that is not

surrounded by the outline of a task is communication or synchronization delay.) At

time t0, program P1 is launched with a pipeline parallel configuration (PS-DSWP1)

having three stages corresponding to tasks A, B, and C. A and C are executed

sequentially whereas B is executed in parallel by 3 cores as determined by the run-

time system. At time t1, another program P2 is launched on the same machine. In

response, the run-time system signals P1 to pause at the end of its current iteration

(iteration 5). The core receiving this signal (Core 1) acknowledges the signal at time

t2 and propagates the pause signal to the other cores. At time t3, P1 reaches a known

consistent state, following which the run-time system determines a new allocation of

resources to programs P1 and P2, say 2 cores to P1 and 3 cores to P2. At time t4, the

run-time system launches DOANY2 execution of both programs P1 and P2. For P1,

tasks K and L implement the same functionality as tasks A, B, and C.

In the Parcae execution model, note how a program reacts to a change in the re-

sources made available to it. Program P1 transitions from 5-way PS-DSWP execution

to 2-way DOANY execution. General-purpose parallel programs currently lack this

capability. Flexible execution, however, does involve certain overheads (such as Bar-

rier Wait and Parallelism Reconfiguration shown in the figure). Chapter 7 describes

the overheads in detail and presents means to alleviate them. Chapter 8 demonstrates

that the performance benefits delivered by Parcae far outweigh the overheads.

1The PS-DSWP transformation splits a loop body across stages and schedules them for concurrent
execution. It enforces dependencies through inter-stage communication channels.

2The DOANY transformation schedules loop iterations for parallel execution while synchronizing
shared data accesses by means of critical sections.

23

Core 1 Core 2 Core 3 Core 4 Core 5

A1

B1

C1

A2

A3

B2

B3

A4

A5 B4

B5

C2

C3

C4

C5

M1 M2

M5
M4

M3

M6

K1

K2

K3

Communication
Operation

Critical
Section

Barrier
Wait

P1
PS-DSWP

P1
DOANY

P2
DOANY

t0

t1

t4

Ti
m

e

t2

Ti
ith iteration of task T

 of program P1

Ti
ith iteration of task T

 of program P2

Parallelism
Reconfiguration

t3

Figure 3.1: Parcae execution model. (t0) program P1 is launched; (t1) program P2 is
launched; (t2) P1 acknowledges signal to pause; (t3) P1 reaches a known consistent
state; (t4) new resource allocation is determined and parallel execution of P2 begins,
while P1 switches to a parallelization that is better for two cores.

24

PDG Builder
Alias Analyses

Add Commutativity
Annotations

Report Inhibiting
Dependencies

PDG

Parcae
API

N
on

a
C

om
pi

le
r

Pr
og

ra
m

m
er

R

un
-t

im
e

Parallel code

Parallel code

Path 1 Path 2

Sequential
Source Code

Parallel
Source Code

DOANY PS-DSWP

Flexible Code
Generator

Parallelizers

Decima
Monitor

Morta
Executor

Figure 3.2: Parcae system architecture and parallelization workflow

3.2 Parcae System Architecture

Figure 3.2 shows the Parcae system architecture and parallelization workflow. Chap-

ters that follow will describe each component of the system in detail.

Loops typically constitute the hottest regions of programs, and parallelization

efforts are typically targeted at loop nests. Therefore, Parcae targets loop nests.

There are two possible workflow paths through the Parcae system, labeled Path 1

and Path 2, respectively, in the figure.

Path 1: The programmer starts from a parallel program or develops a parallel

program from scratch, and intends to convert the program into a flexible parallel

25

program. In both cases, the programmer must rewrite the program to use the Par-

cae API (described in Chapter 5). The Morta run-time system then automatically

optimizes/tunes the parallel program at run-time.

Path 2: The programmer starts from a legacy sequential program or writes a

new program using the sequential programming model, and intends to convert the

program into a flexible parallel program. For this, the Nona compiler automatically

rewrites the program into a flexible parallel program.

First, Nona identifies hot loops in the program; such loops are targets of paral-

lelization and are interchangeably called parallel regions henceforth.

Second, Nona discovers parallelism by building the program dependence graph

(PDG) of the parallel region. The PDG is a graph whose nodes are instructions

and edges are dependencies between instructions. Dependencies may be loop-carried

or not depending on whether the source and destination of the dependency are on

different iterations of a loop or not. Dependencies inhibit parallel execution of the in-

structions related by them. After constructing the PDG, Nona identifies dependency

edges that inhibit parallelization and displays them to the programmer, similar to

other parallelizing compilers [71,91,95]. The programmer then inserts commutativity

annotations on the source code to relax the sequential order of commuting instruc-

tions, or asserts that a dependency does not exist. These annotations serve to remove

edges from the PDG, and potentially enable parallelization.

Third, Nona applies multiple parallelizing transforms (parallelizers) to the PDG.

In this work, we employ a data-parallel transform with critical sections (DOANY [71,

102]) and a pipeline-parallel transform (PS-DSWP [75, 95]). The system can accom-

modate additional, new parallelizers. Each parallelizer determines whether it can

parallelize the program; if so, it partitions the PDG of the parallel region into a set of

tasks. Each task can be sequential (executed by a single thread), or parallel (executed

by a team of many threads).

26

Fourth, the Nona code generator takes as input a partitioning of the PDG nodes

into tasks, and outputs multi-threaded code that can be executed flexibly by the

Morta run-time system. The Nona code generator is based on the general multi-

threaded code generation algorithm (MTCG) described by Ottoni [64], and modifies

MTCG for flexible code generation. If multiple parallelizers were able to partition

the parallel region, the code generator creates multiple versions of the parallel region.

Additionally, the code generator creates a sequential version of the parallel region in

case the run-time system deems that sequential execution is most appropriate for a

particular execution environment. In summary, the compiler exposes multiple versions

of a parallel region corresponding to different execution schemes: SEQ (sequential),

DOANY, and PS-DSWP. For DOANY and PS-DSWP, the compiler parameterizes

the number of threads in the teams that execute parallel tasks.

Finally, the Parcae run-time system, comprising the Decima monitor and the

Morta executor, is responsible for efficient execution of the multi-threaded code output

by the compiler. The run-time system optimizes program execution by determining

the ideal parallelism configuration from among the choices exposed by the compiler.

The run-time system optimizes programs in isolation as well as across the entire

platform, as selected by the administrator.

27

Chapter 4

Compilation for Flexible Execution

The Nona compiler identifies parallel regions in a sequential program and applies a

variety of parallelizing transforms to each region, generating multiple parallel versions

of code. The generated flexible code can be paused during its sequential or parallel

execution, reconfigured, and efficiently resumed by the Morta task executor. The

compiler also inserts profiling hooks into the generated code for Decima to monitor

its behavior. Thus, parallelism opportunities are automatically extracted at compile-

time but are monitored and reconfigured at run-time, when information necessary to

make informed decisions becomes available.

The parallelizing transforms that we focus on in this work target loop nests as

their candidate regions. We therefore describe the methodology and algorithms for

the generation of flexible code at this level.

Algorithm 1 summarizes the steps in the compilation process. The following

sections describe the steps of the algorithm in detail.

4.1 Parallelism Extraction

The compiler extracts parallelism by building a program dependence graph (PDG)

of a loop nest [3, 30]. The PDG is a graph whose nodes are instructions and edges

28

Algorithm 1: Algorithm to Generate a Flexible Parallel Program

Input: Sequential loop nest L
Output: Parallel tasks equivalent to L
// 1. Extract Parallelism
G← buildProgramDependenceGraph(L)
DAGSCC ← findStronglyConnectedComponents(G)
if |DAGSCC | = 1 then

return L
// 2. Apply Multiple Parallelizations
tasks← ∅
taskSEQ ← L
tasks← tasks ∪ taskSEQ

parallelizations←{PSDSWP, DOANY}
foreach par ∈ parallelizations do
P ← par.partition(DAGSCC)
taskspar ← MTCG(P)
tasks← tasks ∪ taskspar

// 3. Transform tasks for flexible execution
foreach task ∈ tasks do

task ← changeControlFlow(task)
task ← modifyDependencyFlows(task)
task ← codegenPauseSignalPropagation(task)
task ← insertMonitoringHooks(task)

return tasks

are dependencies between instructions. Each dependency is either a data dependency

(two instructions access the same register or memory location, not both read-only) or

a control dependency (one instruction controls whether the other executes). Register

data dependencies are efficiently and precisely computed through data-flow analysis.

Memory data dependencies are computed by a pointer analysis suite [49], and control

dependencies are computed efficiently based on the post-dominance relation [27, 30].

Dependencies inhibit parallel execution of the instructions related by them.

Some data dependency edges in the PDG can be relaxed and their corresponding

nodes allowed to execute in parallel by applying special techniques such as privati-

zation and re-association of reduction operations. Nona automatically identifies min,

max, and sum reductions. Other dependency edges might be relaxed allowing the

29

corresponding nodes to execute in either order, but not concurrently. Nona processes

commutativity annotations provided by the programmer for this purpose [95]. This

can be used, for example, to indicate that multiple calls to rand() can be legally

reordered. The compiler propagates these annotations from the source code to the

PDG, relaxing dependencies between commutative operations, and synthesizes the

appropriate synchronization to ensure atomicity.

4.2 Multiple Parallelizations

Nona applies multiple parallelizing transforms to the PDG of a loop nest. In this work,

we employ a data-parallel transform (DOANY [71,102]) and a pipeline transform (PS-

DSWP [75, 95]). The framework can accommodate additional, new transformations.

Each transform extracts a distinct form of thread-level parallelism from the given loop

nest and produces code packages, called tasks, to be executed by concurrent threads.

The original, sequential version of the loop is also maintained as a task.

Tasks execute concurrently with each other and communicate or synchronize as

necessary to respect program semantics. Each task essentially contains the body of

a loop, whose iterations must either execute sequentially or may execute in parallel.

A task is labeled as either sequential or parallel accordingly. Note that parallel

execution may involve communication in case of PS-DSWP or synchronization in

case of DOANY. A dynamic instance of a task refers to any single iteration of a task.

Dynamic instances of a sequential task cannot be executed concurrently with each

other, whereas dynamic instances of a parallel task can. Note that sequential tasks

are also separated into instances; this is done to allow transition from sequential to

parallel implementations of a loop, and to support migration of a sequential task due

to affinity or load-balancing considerations.

30

4.3 Task Creation

4.3.1 DOANY

Dependencies may be loop-carried depending on whether the source and destination of

the dependency are on different iterations of a loop. DOANY annotates dependencies

in the PDG accordingly. Further, the compiler processes commutativity annotations

as described earlier, marking appropriate PDG edges as commutative. For DOANY

parallelization, such edges are treated as either non-existent or intra-iteration [71].

DOANY treats induction variable updates, min, max, and sum reductions the same

way as other commutative operations. DOANY tests the PDG for absence of loop-

carried dependencies to determine applicability. If there are no loop-carried depen-

dencies, DOANY extracts the loop into a function. DOANY marshals all loop live-ins

into the function via the heap. Finally, DOANY inserts appropriate synchronization

operations to ensure atomicity of all commutative operations. A global locking dis-

cipline ensures deadlock freedom [71]. The function thus constructed is the DOANY

task created by the Nona compiler. The DOANY task is a parallel task, which may

be executed by multiple threads at run-time without violating program semantics.

4.3.2 PS-DSWP

PS-DSWP identifies sequential and parallel tasks by building the strongly connected

components (SCCs) of the PDG. SCCs formed from the PDG form a directed acyclic

graph called the DAGSCC . The nodes of the DAGSCC represent groups of instructions

that are cyclically dependent on each other; hence, different SCCs constitute tasks

that can potentially be executed in parallel provided inter-SCC dependencies are

satisfied via appropriate communication. Further, if the dependencies in an SCC

are not carried by the loop being transformed, the SCC may be replicated to allow

execution as a parallel task.

31

Nodes of the DAGSCC may consist of only a few instructions. Consequently, nodes

are aggregated into larger units before they are exposed as tasks so that the costs of

task management at run-time are amortized. To estimate SCC size, Nona employs a

heuristic that considers the latency and execution profile weight of each instruction.

Only those SCCs of size above a predetermined threshold (SCCmin) are exposed as

tasks. Other SCCs are coalesced to construct bigger tasks. Various coalescing heuris-

tics have been proposed for pipeline parallel execution (DOACROSS [26], DSWP [65],

and PS-DSWP [75, 95]). We have implemented PS-DSWP in our compiler, and use

it to construct bigger tasks by coalescing smaller ones.

Coalescence Rules for PS-DSWP

PS-DSWP tries to coalesce the SCCs such that most of the work is performed by a

parallel task so as to maximize the potential for independent execution, Addition-

ally, PS-DSWP pipelines the execution of sequential and parallel tasks. PS-DSWP

coalesces tasks while maintaining the following invariants:

Invariant 4.3.1 (PS-DSWP Coalescence Invariant) Tasks T1, T2, ..., Tn may be

coalesced into tasks P1, P2, ..., Pm iff

1. ∀i ∈ [1, n] there exists exactly one j ∈ [1,m] such that Ti ∈ Pj.

2. For every dependency from task Tu to Tv in DAGSCC, with Tu ∈ Pi and Tv ∈ Pj,

we have i < j.

3. Parallel-tasks Ti and Tj may be coalesced iff there are no tasks Tk, Tk+1, ..., Tk+l

such that there is a dependency chain from Ti to Tj through Tk, Tk+1, ..., Tk+l.

The first condition preserves correctness by ensuring that operations are not repli-

cated across tasks. The second condition ensures that the resulting tasks form a

pipeline. The third condition ensures that coalescing two parallel tasks results in a

parallel task.

32

To create coalesced tasks, PS-DSWP chooses the biggest (in terms of estimated

cycles) subset of parallel tasks in the DAGSCC that can be coalesced into a single

parallel task without violating the above invariants. It divides the rest of the DAGSCC

into a predecessor graph from which dependencies flow into the big parallel task

computed previously and a successor graph into which dependencies flow from the big

parallel task. Other nodes that do not share dependencies with the big parallel task

are distributed to the predecessor and successor subgraphs to balance their weights.

The above algorithm is then applied recursively on the predecessor and successor

subgraphs to create more coalesced tasks [75].

4.4 Code Generation of Coalesced Tasks

The tasks extracted by each parallelizing transform are initially constructed by apply-

ing the multi-threaded code generation (MTCG) algorithm [65,75]. MTCG generates

code for each sequential and parallel task including the required inter-task communi-

cation and synchronization mechanisms. The algorithm has four steps. First, for each

coalesced task, MTCG generates a new control flow graph (CFG) containing the nec-

essary basic blocks for this task. Second, MTCG inserts instructions corresponding

to the task in the newly created CFG for that task. Third, MTCG inserts inter-task

communication and synchronization instructions. Fourth, MTCG replicates branch

instructions into the newly created CFGs as necessary to match the original CFG.

4.5 Flexible Code Generation

The Nona compiler adapts the code generated for each sequential and parallel task

in order to support pausing, reconfiguration and resumption of its execution (i.e.,

its flexibility). Originally, the code generated by MTCG targets a fixed number of

statically bound threads for each task. However, flexible parallel execution entails dy-

33

namic scheduling of task instances across different threads, execution of parallel tasks

by a varying number of threads, and pausing a set of tasks followed by resumption of

a possibly different set of tasks. Flexible parallel execution is hindered by:

1. Dependencies through private storage: A thread’s registers and stack are pri-

vate. Consequently, cross-iteration dependencies (between one task instance

and another) carried by registers and the stack inhibit executing instances across

multiple threads.

2. Inter-task communication: MTCG constructs point-to-point communication

channels between threads executing tasks, and communicates dependencies in

round-robin order across threads. If the number of threads executing each task

varies at run-time, the dependencies across the communicating tasks may be

reordered, violating sequential semantics.

3. Cross-iteration dependencies: These also inhibit the pausing of executing tasks

and relaying of work remaining in the parallel region to a new set of tasks.

To facilitate flexible execution, Nona applies the following changes:

1. Upon completing each iteration, every task yields to the run-time system that

determines whether the task should pause or can resume execution on the same

thread or a different thread.

2. Registers and stack variables that are live across iterations of sequential tasks

are saved and reloaded on the heap at the end and beginning of each iteration,

respectively.

3. Parallel tasks avoid having local state across iterations, by sharing cross-

iteration data in global memory.

4. When pipelined tasks pause, they flush their communication channels, sending

all pending items down the pipeline.

34

5. Upon resumption, tasks execute an initialization sequence to reload invariant

live-in data, and the run-time system resets the communication channels.

These changes are elaborated in the following sub-sections.

4.5.1 Changes to Task Control Flow

Consider the control flow graph CFGT of an arbitrary task T , as generated by MTCG

(Figure 4.1(a)). CFGT represents a single-entry-single-exit code region containing a

loop with a single tail→header backedge. There is a single entry edge reaching

header block from outside the loop; there may be multiple exits from the loop, but

all reach a single exit block, which cannot be reached from outside the loop. The

restrictions on CFGT simplify code generation, but can be relaxed.

Nona modifies CFGT to support migration (see Figure 4.1(a)). The backedge is

redirected from tail to a new exit block, which returns task iterating (instead

of reaching the header). The original exit block now returns task complete. Sec-

tion 4.6 discusses the third (and last) exit block that is reached from a new pre-header

block and returns task paused.

Algorithm 2: Control logic for executing task instances

// getTaskInstance() blocks until reconfiguration ends or until next region begins. It
returns NULL when program ends.

while instance← runtime.getTaskInstance() do
retVal ← invoke(instance.function, instance.args)
if retVal == task iterating then

taskIterCount[instance.getTaskID()]++
else

// retVal == task paused or task complete
region ← instance.getRegion()
region.waitOnBarrier()
if (retVal == task complete) ∧ (isMasterTask(instance)) then

region.terminate()

35

store live-outs
flush out-channels
return

header
rn= Φn(r1,r0)

tail

exit

send(x,channel1)

init block(s)

r1=…

load live-ins
r0=…

…

…

(a) MTCG

load live-ins
r0=…;store(r0,M[Φn])
c1=load(M[channel1])

call end
send(x,channel[c1])
call begin

st=get_status()
send(st,channels[])

call begin
rn= load(M[Φn])

store live-outs
flush out-channels
return task_complete

store live-outs
flush out-channels
return task_paused

header

tail

exit

Tinit

r1=…;store(r1,M[Φn])
call end

return task_iterating

T

(b) Nona

Figure 4.1: Transforming task code produced by MTCG. Dashed blocks/arcs repre-
sent arbitrary control flow within the loop.

The control logic to execute task instances is extracted into a loop, shown in

Algorithm 2. The Morta executor sets up every worker thread to execute this loop.

Upon receiving task iterating, the thread increments a counter that tracks the

number of iterations per task. Upon completing or pausing a task, the thread waits

for other tasks of the region to complete or pause by means of a barrier, before starting

to execute a new task.

4.5.2 Saving and Restoring State

Sequential tasks may have cross-iteration dependencies that flow through registers and

variables on the stack, which are local to a thread. To facilitate lightweight migration

to another thread, Nona inserts code to copy such variables to the heap at the end

of each iteration and reload them at the beginning of each iteration. Note that the

amount of information that needs to be copied through the heap is typically much

36

smaller when applied between iterations, than at arbitrary locations, as in general

context switches or checkpoints.

Nona uses static single assignment (SSA) form to represent code. In SSA form,

loop-carried register dependencies are captured by φ nodes in the loop header. Fig-

ure 4.1 shows how value flows through registers are converted into flows through the

heap. Note that a register value need only be stored to the heap at the end of an

iteration, not on every write to the register. This minimizes the cost of saving regis-

ter state. A similar treatment addresses stack variables. The figure also shows how

blocks preceding the loop header are extracted into a separate function (Tinit). This

function includes the loading of loop-invariant live-in values, and will be executed at

every task activation and resumption. Algorithm 3 summarizes the above changes.

Algorithm 3: Changes to task to enable migration, pausing, and resumption

Input: Control flow graph CFGT of task T
Output: Modified code for T that can migrate across threads
// 1. Handle loop-carried register dependencies
h← getLoopHeader(CFGT)
foreach phinode ∈ h where phinode = rn ← φ(r1, r2) do

M ← allocateHeapMemory(getType(phinode))
loadinst = rn ←load [M]
replace(phinode, loadinst)
foreach ti ← getPredecessors(CFGT , h) do

storeinst = store [M], ri
terminst = getTerminator(CFGT , ti)
insertBefore(terminst, storeinst)

// 2. Execute pre-header once
S ← getPredecessors(CFGT , h) \ {t}
while b← extractNewElementFrom(S) 6= ∅ do

S ← S ∪ getPredecessors(CFGT , b)

Tinit = extractBlocksIntoNewFunction(S)

37

4.5.3 Inter-task Communication

When extracting pipeline parallelism, dependencies between tasks executing different

stages concurrently need to be enforced. MTCG communicates such dependencies

by inserting instructions for send-receive operations over point-to-point communica-

tion channels [65,75]. Point-to-point communication (e.g., via single-producer-single-

consumer queues) has lower contention than point-to-multipoint (or broadcast) com-

munication (e.g., via single-producer-multipler-consumer queues), and allows main-

tenance of sequential program order.

Communication between two sequential tasks is straightforward; communication

between a sequential task (S) and a parallel task (P) involves data arbitration and

merge. Consider a dependency edge u → v where u ∈ S and v ∈ P . Let p be

the (varying) number of threads that execute P . The value produced by the thread

executing S flows to each of the threads executing P in a round-robin fashion: on

the ith instance of S, the value is communicated through the (i mod p)th channel.

MTCG uses the induction variable (i), which is incremented once per instance of S,

to identify the channel for a value that flows over the dependency edge. This holds

analogously for dependency edges from a parallel task to a sequential task.

In MTCG, the number p of threads that execute a parallel task P is fixed at

compile-time. This is not the case for Nona because the value of p may be changed

during execution by Morta. Still, the above communication mechanism suffices, pro-

vided p and the communication channels are maintained as run-time parameters and

task instances are made relayable.

4.6 Relayable Task Instances

As described in Section 4.5.2, parallel tasks are constructed to have no local cross-

iteration dependencies, and sequential tasks have all their cross-iteration data placed

38

in the global heap between iterations. Thus, every task instance can halt after finish-

ing or before starting an iteration, leaving the program in a known consistent state.

Once instances halt, the system can be reconfigured safely and subsequent instances

will continue to execute according to the new set of tasks and their thread allocation.

At the beginning of each iteration, every instance checks for a pause signal (see

get status() in Figure 4.1(a)), received either directly from Morta or from another

instance. If an instance receives a pause signal, it propagates the signal and yields

to Morta by returning task paused. These signals are initiated and propagated as

follows.

Initiating pause signals: When Morta chooses to reconfigure the program, it

sends a pause signal to designated master tasks. In the DOANY and sequential

versions, the single task is the master task, and in the case of PS-DSWP, only the

task executing the first stage is designated as master. The master tasks are designed

to query Morta for pause signals at the beginning of each instance, to which Morta

responds with either continue or pause.

Propagating pause signals across pipelined tasks: The master task of a

pipeline-parallel region relays the continue or pause notification to all other tasks in

the region, following the structure of the pipeline. This is achieved by placing send

instructions to all directly connected tasks in the loop header of the master task (be-

fore any other instruction, see send(st,channels[]) in Figure 4.1(a)), and matching

receive instructions (via get status()) in the corresponding location of each of the

connected tasks. Subsequent send-receive messages are placed analogously down the

stages of the pipeline. This ensures that all parts of an iteration, scattered across

pipeline stages, pause appropriately.

All send-receive operations occur over the same point-to-point communication

channels used for dependency flows. Upon receiving a pause signal, a task explicitly

39

flushes all outgoing channels, transmitting all pending items down the pipeline. This

ensures that all channels are drained properly, relying on the property that at the end

of a flushed iteration, all relevant incoming data has been received and processed.

Pausing process: Upon receiving a pause signal, a task exits the parallel region

by jumping to an exit block that returns task paused. Exiting a parallel region

on a pause is identical to exiting the region upon reaching the end of the loop.

Indeed, the block returning task paused contains the same instructions as the block

returning task complete. These instructions include flushing outgoing channels (see

Figure 4.1(a)). After exiting the iteration, the thread waits on a barrier for other

threads executing the parallel region to exit as well (see Algorithm 2).

To resume execution, Morta launches the set of tasks determined to be optimal

for the new execution environment. Each task first executes Tinit when launched (the

task initialization function, see Figure 4.1(a)).

Chapter 7 discusses pause-resume overhead as well as the means to alleviate it.

4.7 Hooks for Autonomous Monitoring

An important aspect of Parcae is task execution time monitoring by the Decima mon-

itor. Decima distinguishes between the time a task spends computing and the time it

spends waiting for communication, possibly across multiple parallel instances. Morta

relies on this information to optimize program configurations. To enable such moni-

toring, Nona inserts begin and end hooks into the code of each task. These hooks ob-

tain timestamps using the rdtsc instruction on x86 platforms (whose overhead is pre-

sented in Section 8.3.6). Nona inserts end immediately before each send and receive

instruction, and begin immediately after each send and receive instruction. Nona

also inserts begin into the entry block of a task and end into the task executing

exit block.

40

The begin and end hooks help calculate the total compute-time of an instance by

accumulating local time intervals (between consecutive {begin, end} pairs). These

local compute-times of each instance then update a global compute-time counter per

task, which feeds Decima, requiring no inter-thread synchronization. Note that the

total execute-time of an instance can easily be reported too, as the time elapsed

between the first begin and the last end, from which the communication overhead

can be derived. The latter may be important for affinity and allocation optimization

purposes; however, these effects were not significant on our evaluation platforms.

41

Chapter 5

Parcae for the Programmer

A programmer can use the Parcae API to develop a new parallel program, or port an

existing parallel program implemented using libraries such as Pthreads, OpenMP, or

TBB to the Parcae API. Section 5.1 describes the API in detail and walks through an

example illustrating the port of an application parallelized using Pthreads to use the

Parcae API. Section 5.2 describes the interface to the system administrator. Finally,

Section 5.3 describes the interface that a mechanism developer must implement to en-

code run-time program optimization logic (the system comes with a default optimizer

that the administrator can choose to employ out of the box).

5.1 Application Developer’s View

Parcae presents a task-oriented interface akin to Intel Threading Building Blocks [77]

to the application developer.

5.1.1 Datatype Definitions

A task consists of a template function that abstracts the control for creating dynamic

instances of each task, function objects (functors) that encapsulate the task’s func-

42

1 Task = {control: TaskExecutor, function: Functor, load: LoadCB,
2 desc: TaskDescriptor, init: InitCB, fini: FiniCB}
3

4 TaskDescriptor = {type: TaskType, pd: ParDescriptor[]}
5

6 TaskType = SEQ | PAR
7

8 ParDescriptor = {tasks: Task[]}
9

10 TaskStatus = task iterating | task paused | task complete

Figure 5.1: Parcae API type definitions

1 template<Functor>
2 void TaskExecutor(Functor
3 Function){
4 ...
5 while(true) {
6 ...
7 TaskStatus status =
8 Function();
9 ...

10 }
11 }

(a) Control flow abstraction

1 class Functor{
2 ... //Capture local variables
3

4 ... //Constructor
5

6 TaskStatus operator()(){
7 ... //Task function body
8 return taskstatus;
9 }

10 };
11

(b) Functor for task functionality

Figure 5.2: Separation of task’s control and functionality in the Parcae API

tionality and expose application level information, and a descriptor that describes the

parallelism structure of the task. Figure 5.1 defines the Task type and the types from

which it is composed.

TaskExecutor Parcae provides the control flow abstraction shown in Figure 5.2(a).

This is the same as the task instantiation loop shown in Algorithm 2 in Section 4.5.1.

Loop exit is determined by status (line 7 in Figure 5.2(a)). The abstraction is

parameterized on the Functor type that encapsulates a task’s functionality.

Functor The developer must implement a functor that encapsulates the desired

functionality of a task. The functor binds the local variables of the original method

containing the parallelized loop as member fields (line 2 in Figure 5.2(b)). At run-

time, a task could be either iterating normally, paused, or completed. The functor

must return the status of the task after each instance of the task (line 8 in Fig-

43

ure 5.2(b)). In particular, when a loop exit branch is to be taken, the functor must

return task complete; otherwise, the functor must return task iterating. Com-

bined with the control flow abstraction in Figure 5.2(a), the control flow structure

of the original loop is duplicated. The functor can also return task paused—its

discussion is deferred until Section 5.1.2.

LoadCB Chapter 2 described the importance of application features, such as work-

load, to determine the optimal parallelism configuration for a given performance goal.

To capture the workload on each task, the developer implements a callback functor

that, when invoked, returns the current load on the task.

InitCB and FiniCB To restart parallel execution from a globally consistent pro-

gram state after the Parcae run-time system reconfigures parallelism, Parcae requires

the programmer to implement the InitCB (FiniCB) functor that is invoked exactly

once before (after) the task is resumed (paused). The InitCB is the same as the

initialization function Tinit generated by the compiler (refer to Section 4.5.2), while

the FiniCB contains code that performs the same set of actions as are performed

when the task completes (refer to Section 4.6). Figure 4.1(a) in Chapter 4 already

illustrated these changes.

TaskDescriptor A task can be sequential (SEQ) or parallel (PAR). A parallel task’s

functionality can be executed by one or more threads. In other words, the Functor()

method (lines 6–9 in Figure 5.2(b)) can be invoked concurrently by multiple threads.

To enable description of nested parallelism, a task can specify one or more parallelism

descriptors (ParDescriptor). Specifying more than one descriptor exposes a choice

to the Parcae run-time system, which chooses the optimal parallelism configuration

(described by the corresponding ParDescriptor).

44

Read Transform Write

...
...

Transcoded

output

Work Queue

...Video

input
Couter =

(DOALL,

NUM_OUTER

_THREADS)

Cinner =

(PIPE,

NUM_INNER

_THREADS)

...

...

...
...

Figure 5.3: A two-level loop nest in video transcoding. Multiple requests are operated
upon concurrently; this constitutes the outer level of parallelism. The transcoding
of each video itself is done in parallel by a team of threads organized in a pipelined
fashion as shown; different stages of the pipeline concurrently operate on different
frames of the video.

ParDescriptor A parallelism descriptor is defined recursively in terms of Tasks.

A ParDescriptor is an array of one or more tasks that execute in parallel and

potentially interact with each other (line 8 in Figure 5.1).

1 void Transcode(){
2 Q∗ inq, outq;
3 Video∗ input, ∗output;
4 while(true){
5 ∗input = inq→deque();
6 output = transcode(input);
7 outq→enqueue(∗output);
8 }
9 }

Figure 5.4: Outer loop in x264 video transcoding

Putting it all together Figure 5.4 shows the outer loop code in x264 video

transcoding. Figure 5.5 shows the transformation of the loop by instantiation of

the Parcae types discussed above. In Figure 5.5(a), duplicated code from the original

loop in Figure 5.4 is shown in bold. As discussed in Chapter 2 and shown in Fig-

ure 5.3, the outer loop task in video transcoding can itself be executed in a pipeline

parallel fashion. Figure 5.5(c) shows the definition of the outer loop task descriptor

in terms of the inner loop parallelism descriptor. Figure 5.5(d) shows the definition

45

1 class TranscodeFunctor{
2 //Capture local variables
3 Queue∗& inq;
4 Queue∗& outq;
5 ... //Constructor
6 TaskStatus operator()(){
7 Video* input, *output;
8 *input = inq→deque();
9 output = transcode(input);

10 outq→enqueue(*output);
11 return EXECUTING;
12 }
13 };

(a) Functionality

1 class TranscodeLoadCB{
2 //Capture local variables
3 Queue∗& inq;
4 Queue∗& outq;
5 ... //Constructor
6 float operator()(){
7 //Return occupancy
8 return inq→size();
9 }

10 };
11

12

13

(b) Workload

1 TaskDescriptor
2 ∗readTD(SEQ, NULL),
3 ∗transformTD(PAR, NULL),
4 ∗writeTD(SEQ, NULL);
5 ...//Create tasks
6 //using descriptors
7 ParDescriptor
8 ∗innerPD({readTask,
9 transformTask,

10 writeTask});
11 TaskDescriptor
12 ∗outerTD(PAR, {innerPD});
13

(c) Descriptor

1 void Transcode(){
2 Queue∗ inq, ∗outq;
3 Task∗ task
4 (TranscodeFunctor(inq, outq),
5 TranscodeLoadCB(inq, outq),
6 outerTD);
7 ParDescriptor∗ outerPD({task});
8 Parcae.launch(system, outerPD);
9 }

10

11

12

13

(d) Task

Figure 5.5: Task definition using Parcae

46

Method Description

TaskStatus Task::getStatus() Check for pause signal; Parcae returns
continue or pause

void Task::begin() Inform Parcae that the CPU intensive part of
the task has begun

void Task::end() Inform Parcae that the CPU intensive part of
the task has ended

void Task::wait() Wait until child tasks complete; Parcae returns
status of master child task

Parcae* Parcae::create() Create and initialize the Parcae run-time sys-
tem

void Parcae::destroy(Parcae*

system)

Finalize and destroy the Parcae run-time sys-
tem

void Parcae::launch(Parcae*

system, ParDescriptor* pd)

Launch parallel region described by specified
parallelism descriptor under the Parcae run-
time system; wait for parallel region to end

Table 5.1: Parcae API

of the outer loop parallelism descriptor and how the outer loop is launched for ex-

ecution under the control of the Morta executor. Note that the process of defining

the functors is mechanical; it can be simplified with compiler support such as that

for lambdas in Intel’s C++0x compiler [38].

5.1.2 Using the API: A Video Transcoding Example

A developer uses the types in Figure 5.1 and associated methods in Table 5.1 to

enhance a parallel application. Figure 5.7 describes the port of a Pthreads based par-

allelization (column 1) of the video transcoding example to the Parcae API (column

2). Code that is common between the Pthreads and Parcae versions is shown in bold.

Step 1: Parallelism Description In the Pthreads parallelization, lines 4–8 create

NUM OUTER threads that execute the Transcode method. In the Transcode method,

a thread dequeues work items (videos) from the work queue (line 15), transcodes

them (lines 16–26), and enqueues the transcoded items to the output queue (line

27). Each video transcoding can itself be done in parallel in a pipelined fashion. For

47

this, the Transcode method spawns NUM INNER threads to execute the pipeline. One

thread each executes Read and Write, and one or more threads execute Transform. A

common practice is to set both NUM OUTER and NUM INNER statically based on profile

information [61]. Chapter 2 already presented the shortcomings of this approach.

In the Parcae parallelization, the application’s parallelism is described in a modu-

lar and bottom-up fashion. Line 4 gets the task definition of the outer loop by invoking

Transcode getTask. To encode nested parallelism, the Transcode getTask method

specifies that Transcode can be executed in parallel using the parallelism descrip-

tor pd (lines 13–18 in Transcode getTask). Line 5 in transcodeVideos creates a

parallelism descriptor for the outer loop.

Step 2: Parallelism Registration Line 6 in transcodeVideos initializes the

Parcae run-time system. Line 7 registers the parallelism descriptor for execution by

Morta by invoking Parcae::launch. Parcae::launch waits for the parallel region

to finish. Finally, line 8 frees up execution resources by invoking Parcae::destroy.

(a) Parallelization using POSIX threads (b) Parallelization using Parcae

 (1) Run-time initialization

 1 #include <pthread.h>

 2 void transcodeVideos() {

 3 Q* inq, *outq;

 4 pthread_t threads[NUM_OUTER];

 5 for (i = 0 ; i < NUM_OUTER ; i++) {

 6 pthread_create(threads[i], attr, Transcode,

 7 new ArgT(inq, outq));

 8 }

 9 … // Join threads

10 }

 1 #include <dope>

 2 void transcodeVideos() {

 3 Q* inq, *outq;

 4 Task* outerTask = Transcode_getTask(inq, outq);

 5 ParDescriptor* outerPD = new ParDescriptor({outerTask});

 6 Parcae* system = Parcae::create();

 7 Parcae::launch(system, outerPD); // Wait for parallel region to finish

 8 Parcae::destroy(system);

 9 }

10

 (2) Transcoding of an individual video clip

11 void* Transcode(void* arg) {

12 Q* inq = (ArgT*)arg->inq;

13 Q* outq = (ArgT*)arg->outq;

14 for(;;) {

15 *input = inq->dequeue();

16 … //Initialize q1 and q2

17 pthread_t threads[NUM_INNER];

18 pthread_create(threads[0], attr, Read,

19 new ArgR(input, q1));

20 for (i = 1 ; i < NUM_INNER – 1 ; i++) {

21 pthread_create(threads[i], attr,

22 Transform, new ArgTr(q1, q2));

23 }

24 pthread_create(threads[NUM_INNER-1],

25 attr, Write, new ArgW(q2, output));

26 … // Join threads

27 outq->enqueue(*output);

28 }

29 }

11 class TranscodeFunctor {

12 Task* task; //This functor's task

13 ... //Capture local variables

14 ... //Constructor

15 TaskStatus operator()() {

16 *input = inq->dequeue();

17 … //Initialize q1 and q2

18 status = task->wait();

19 if (status == task_paused)

20 return task_paused;

21 outq->enqueue(*output);

22 return task_iterating;

23 }

24 friend Task* Transcode_getTask(...);

25 };

26

27

28

29

11 Task* Transcode_getTask(Q* inq, Q* outq) {

12 TranscodeFunctor* func = new TranscodeFunctor(inq,outq);

13 ParDescriptor* pd = new ParDescriptor

14 ({Read_getTask(func->q1),

15 Transform_getTask(func->q1, func->q2),

16 Write_getTask(func->q2)});

17 // Note hierarchical description of parallelism

18 TaskDescriptor* td = new TaskDescriptor(PAR, {pd});

19 Task* task = new Task(func, new TranscodeLoadCB(inq),

20 td, NULL, NULL);

21 func->task = task;

22 return task;

23 }

24 class TranscodeLoadCB {

25 Q* inq;

26 TranscodeLoadCB(Q* inq) : inq(inq) {}

27 double operator()() {return inq.size();}

28 };

29

Figure 5.6: Comparison of parallelization using POSIX threads and Parcae—
continued on next page

48

 (3) Stages of pipeline to transcode an individual video clip

30 void* Read(void* arg) {

31 … //Get input and q1 from arg

32 for(;;) {

33 frame = readFrame(*input);

34 if (frame == NULL) break;

35 q1->enqueue(frame);

36 }

37 q1->enqueue(NULL);

38 }

39

40

41

42

43

44

45

46

47

48 void* Transform(void* arg) {

49 … //Get q1 from arg

50 for(;;) {

51 frame = q1->dequeue();

52 if (frame == NULL) break;

53 frame = encodeFrame(frame);

54 q2->enqueue(frame);

55 }

56 q2->enqueue(NULL);

57 }

58

59

60

61

62

63

64

65

66 void* Write(void* arg) {

67 … //Get q2 and output from arg

68 for(;;) {

69 frame = dequeue(q2);

70 if (frame == NULL) break;

71 writeFrame(output, frame);

72 }

73 }

74

75

76

77

78

79

80

30 class ReadFunctor {

31 Task* task; //This functor's task

32 ... //Capture local variables

33 ... //Constructor

34 TaskStatus operator()() {

35 status = task->getStatus();

36 if (status == task_paused)

37 return task_paused;

38 task->begin();

39 frame = readFrame(*input);

40 if (frame == NULL)

41 return task_complete;

42 task->end();

43 q1->enqueue(frame);

44 return task_iterating;

45 }

46 friend Task* Read_getTask(...);

47 };

48 class TransformFunctor {

49 Task* task; //This functor's task

50 ... //Capture local variables

51 ... //Constructor

52 TaskStatus operator()() {

53 frame = q1->dequeue();

54 if (frame == null)

55 return task_complete;

56 task->begin();

57 frame = encodeFrame(frame);

58 task->end();

59 q2->enqueue(frame);

60 return task_iterating;

61 }

62 friend Task* Transform_getTask(...);

63 };

64

65

66 class WriteFunctor {

67 Task* task; //This functor's task

68 ... //Capture local variables

69 ... //Constructor

70 TaskStatus operator()() {

71 frame = q2->dequeue();

72 if (frame == null)

73 return task_complete;

74 task->begin();

75 writeFrame(output, frame);

76 task->end();

77 return task_iterating;

78 }

79 friend Task* Write_getTask(...);

80 };

30 Task* Read_getTask(Q* q1) {

31 ReadFunctor* func = new ReadFunctor(q1);

32 TaskDescriptor* td = new TaskDescriptor(SEQ, NULL);

33 Task* task = new Task(func, NULL, td, NULL,

34 new ReadFiniCB(q1));

35 func->task = task;

36 return task;

37 }

38

39 class ReadFiniCB {

40 Q* q1;

41 ReadFiniCB(Q* q1) : q1(q1) {}

42 void operator()() {q1->enqueue(NULL);};

43 };

44

45

46

47

48 Task* Transform_getTask(Q* q1, Q* q2) {

49 TransformFunctor* func = new TransformFunctor(q2);

50 TaskDescriptor* td = new TaskDescriptor(PAR, NULL);

51 Task* task = new Task(func, new TransformLoadCB(q1),

52 td, NULL, new TransformFiniCB(q2));

53 func->task = task;

54 return task;

55 }

56 class TransformFiniCB {

57 Q* q2;

58 TransformFiniCB(Q* q2) : q2(q2) {}

59 void operator()() {q2->enqueue(NULL);}

60 };

61 class TransformLoadCB {

62 Q* q1;

63 TransformLoadCB(Q* q1) : q1(q1) {}

64 double operator()() {return q1.size();}

65 };

66 Task* Write_getTask(Q* q2) {

67 WriteFunctor* func = new WriteFunctor(q1);

68 TaskDescriptor* td = new TaskDescriptor(SEQ, NULL);

69 Task* task = new Task(func, new WriteLoadCB(q2), td,

70 NULL, NULL);

71 func->task = task;

72 return task;

73 }

74 class WriteLoadCB {

75 Q* q2;

76 WriteLoadCB(Q* q2) : q2(q2) {}

77 double operator()() {return q2.size();}

78 };

79

80

Figure 5.7: Comparison of parallelization using POSIX threads and Parcae

Step 3: Application Monitoring Each task marks the begin and end of its

CPU intensive section by invoking Task::begin and Task::end, respectively. The

run-time system records application features such as task execution time in between

invocations of these methods. To monitor per-task workload, the developer imple-

ments LoadCB for each task to indicate the current workload on the task. The callback

returns the current occupancy of the work queue in the case of the outer task (line

27), and the input queue occupancies in the case of Transform (line 64) and Write

(line 77). The callbacks are registered during task creation time.

49

Step 4: Task Execution Control If a task returns task iterating, Morta con-

tinues the execution of the loop. If a task returns task complete, Morta waits for

other tasks that are at the same level in the loop nest to also return task complete.

A task can explicitly wait on its children by invoking Task::wait. Recall from Sec-

tion 4.6 that exactly one task in each parallelized loop is assigned the role of the

master task (the first task in the array of tasks registered in the ParDescriptor). In

the running example, the task corresponding to Transcode is the master task for the

outer loop and the task corresponding to Read is the master task for the inner loop.

Invoking Task::wait on task (line 18) returns the status of the master child task.

Step 5: Task Yielding for Reconfiguration By default, Morta returns

task iterating when Parcae::getStatus is invoked (line 35 in ReadFunctor).

When Morta decides to reconfigure parallelism, it returns task paused. The applica-

tion should check this condition (lines 35–36 in ReadFunctor), and then enter a glob-

ally consistent state prior to reconfiguration. The FiniCB callbacks are used for this

purpose. In this particular example, Read notifies Transform (via the ReadFiniCB

callback), which in turn notifies Write (via the TransformFiniCB callback). The no-

tifications are by means of enqueuing a sentinel NULL token to the in-queue of the next

task. Note, by comparing the Pthreads (lines 37 and 56) and Parcae versions (lines

42 and 59), that the developer was able to reuse the thread termination mechanism

from the Pthreads parallelization to implement the FiniCBs. InitCB callbacks are

used symmetrically for ensuring consistency before the parallel region is re-entered

after reconfiguration. The video transcoding example does not require any InitCB

callbacks to be defined.

50

5.1.3 Summary

In the Pthreads based parallelization, the developer is forced to implement a concrete,

unchanging configuration of parallelism. In the Parcae parallelization, the developer

declares the parallelism structure of the program, while deliberately not specifying the

exact parallelism configuration. This underspecification allows Parcae to determine

and enforce the optimal parallelism configuration at run-time.

5.2 System Administrator’s View

Parcae presents a control panel to the system administrator. The administrator uses

the panel to specify a performance goal, which includes an objective and a set of

resource constraints under which the objective must be met. Examples of perfor-

mance goals are “minimize response time” and “maximize throughput under a peak

power constraint”. The administrator may also invent more complex performance

goals such as minimizing the energy-delay product [28], or minimizing electricity bills

while meeting minimum performance requirements [56]. Parcae aims to meet the

performance goals by dynamically adapting the configuration of program parallelism

through the use of optimization mechanisms.

A mechanism is an optimization routine that takes an objective function such

as response time or throughput, a set of constraints including number of hardware

threads and power consumption, and determines the optimal parallelism configura-

tion. The administrator provides values to a mechanism’s constraints. An example

specification by the administrator to a mechanism that maximizes throughput could

be “24 threads, 600 Watts” thereby instructing the mechanism to optimize under

those constraints. In the absence of a suitable mechanism, the administrator can

play the role of a mechanism developer and add a new mechanism to the library.

51

5.3 Mechanism Developer’s View

The Decima monitor observes both the application and the execution platform. Sec-

tion 5.1.2 already described the methods that enable Decima to monitor application

features such as task execution time and task load. To enable Morta to monitor

platform features such as number of hardware threads, power, temperature, etc., the

mechanism developer registers a feature with an associated callback that Morta can

invoke to get a current value of the feature. Figure 5.8 shows the registration API.

For example, the developer could register “SystemPower” with a callback that queries

the power distribution unit to obtain the current system power draw [6].

1 //Application features
2 double Parcae::getExecTime(Task∗ task);
3 double Parcae::getLoad(Task∗ task);
4 //Platform features
5 void Parcae::registerCB(string feature, Functor∗ getValueOfFeatureCB);
6 void∗ Parcae::getValue(string feature);

Figure 5.8: Parcae mechanism developer API

The primary role of the mechanism developer is to implement the logic to adapt

a parallelism configuration to meet a performance goal by using the information

obtained via monitoring. For this, Parcae exposes the query API shown in Fig-

ure 5.8. Figure 5.9 shows an example mechanism that can enable a “Maximize

Throughput with N threads” performance goal. Every mechanism must implement

the reconfigureParallelism method. The method’s arguments are the descriptor

of the current parallelism configuration and the maximum number of threads that

can be used to construct a new configuration. The new parallelism configuration is

returned to the run-time system, which initiates execution according the new config-

uration.

The intuition encoded by the mechanism in Figure 5.9 is that tasks that take longer

to execute should be assigned more resources. In step 1, the mechanism computes

52

1 ParDescriptor∗ Mechanism::reconfigureParallelism (ParDescriptor∗ pd, int nthreads){
2 float total time = 0.0;
3 // 1. Compute total time
4 foreach (Task∗ task: pd→tasks) {
5 total time += Parcae::getExecTime(task);
6 }
7 // 2. Assign DoP proportional to execution time;
8 // recurse if needed
9 foreach (Task∗ task: pd→tasks) {

10 task→dop = nthreads ∗ (Parcae::getExecTime(task)/total time);
11 ParDescriptor∗ innerPD = task→pd;
12 if (innerPD) {
13 task→pd[0] = reconfigureParallelism(innerPD, task→dop);
14 }
15 }
16 ... // 3. Construct new configuration − Omitted
17 return newPD;
18 }

Figure 5.9: Mechanism to maximize throughput—Assigns a degree of parallelism
(DoP) to each task proportional to task’s execution time

total execution time (lines 3–6) so that each task’s execution time can be normalized.

In step 2, the mechanism assigns a degree of parallelism (DoP) that is proportional

to the normalized execution time of each task (line 10). reconfigureParallelism is

recursively invoked to assign DoPs to the inner loops in the loop nest. For each loop,

a new configuration is constructed with the new task descriptors and returned to the

parent descriptor. For the sake of brevity, this last step is omitted.

53

Chapter 6

Online Monitoring and

Optimization

We give an overview of the Parcae run-time system, comprised of the Decima monitor

and the Morta executor, followed by a walk-through of the steps involved in re-

configuring parallelism. Then, we describe the set of mechanisms implemented by

a mechanism developer for the purposes of this study, highlighting the advantages

and disadvantages of each mechanism and the particular performance goals that each

enables. Following that, we describe a mechanism that addresses the shortcomings

of the other mechanisms and is installed as the default optimization mechanism in

Morta. Finally, we describe how the Parcae run-time system optimizes across the

entire system by re-configuring multiple simultaneously executing flexible parallel

programs.

6.1 Overview

The goal of the Parcae run-time system is to rapidly find and enforce parallelism

configurations that are optimal for the execution environment. A parallelism config-

uration consists of:

54

1. a parallelization scheme (prepared by the Nona compiler or the programmer),

which maps each loop to one of the following: S = {DOANY,PS-DSWP, SEQ};

and

2. a degree of parallelism (DoP) D, the varying number of threads allocated to

every parallel task of DOANY or PS-DSWP schemes.

A configuration also contains the assignment of threads to cores, but this aspect was

not significant on our evaluation platforms.

Figure 6.1 shows the Parcae run-time system architecture. The Morta-Executive

is responsible for directing the interactions between the various system components.

Morta maintains a Thread Pool with as many threads as constrained by the per-

formance goals. Morta uses mechanisms to adapt parallelism in order to meet the

specified goals. One advantage of the separation of concerns enabled by the Parcae

API is that a mechanism developer can implement new mechanisms and add them

to the library in order to better support existing performance goals or to enable new

ones, without changing the application code. The separation of concerns also enables

reuse of mechanisms across many parallel applications.

There are two main information flows when an application is launched. First,

the application registers its parallelism descriptors (expressed by the compiler or

application developer). Second, the administrator specifies the performance goals.

Morta then starts application execution. During execution, Decima monitors and

Morta adapts the parallelism configuration to meet those goals.

6.2 Morta Operation Walk-through

Once a mechanism is selected, Morta uses it to reconfigure parallelism. The Exec-

utive triggers a parallelism reconfiguration in response to changes in the execution

55

Application

Developer

Developer

Mechanisms
Implements

Parallelism
Describes

Mechanism

Sets Mechanism
Parameters

Dynamic
Static

Parallelism
Descriptor

(2)

...

Parallelism
Config.

Application

Mechanism
Library

Application Features

(Workload, task exec. time)

(A)

(B)

Platform Features
(Power, Temperature, ...)

(3)
Ack

New(1)

Platform

(4)

New Tasks

Launch

(5)
Execute

Pause

...

Executive

Morta

Thread
Pool

Administrator

Figure 6.1: Interactions of three agents around Parcae. The application developer
describes parallelism using the Parcae API just once. The mechanism developer im-
plements mechanisms to transform the parallelism configuration. The administrator
sets the constraint parameter values of the mechanism. Morta optimizes execution of
multiple applications on the shared platform. (A) and (B) represent continuous mon-
itoring of application and platform features by Decima. (1)–(5) denote the sequence
of events that occurs when parallelism reconfiguration is triggered.

environment, such as an increase in workload. When reconfiguration is triggered, the

following sequence of events occurs (refer to Figure 6.1):

1. The Mechanism determines the optimal parallelism configuration, which it con-

veys to the Executive.

2. The Executive returns task paused to invocations of Task::getStatus in order

to convey to the application Morta’s intent of reconfiguration.

3. In response, the application and Morta steer execution into a suspended state

by invoking the FiniCB callbacks of all the tasks.

56

4. The Executive then schedules a new set of tasks determined by the Mechanism

for execution by the Thread Pool.

5. The Thread Pool executes the new tasks on the Platform.

6.3 Performance Goals and Mechanisms Tested

We tested three different goals of system use, and multiple mechanisms to achieve

them. For each performance goal, there is a best mechanism that Morta uses by

default. In other words, a human need not select a particular mechanism to use

from among many. Multiple mechanisms are described for each performance goal in

order to demonstrate the power of the Parcae API. Table 6.1 lists the implemented

mechanisms and the number of lines of code for implementing each. Two of the

mechanisms are proposed in prior work for a fixed goal-mechanism combination.

Mechanism
WQT-H WQ-Linear TBF FDP [85] SEDA [99] TPC

28 9 89 94 30 154

Table 6.1: Lines of code to implement tested mechanisms

6.3.1 Goal: “Minimize Response Time with N threads”

For systems serving online applications, the system utility is often maximized by

minimizing the average response time experienced by the users, thereby maximizing

user satisfaction. In the video transcoding example of Chapter 2, the programmer

used an observation to minimize response time: If load on the system is light, a

configuration that minimizes execution time is better, whereas if load is heavy, a

configuration that maximizes throughput is better. This observation informs the

following mechanisms:

57

Mechanism: Work Queue Threshold with Hysteresis (WQT-H)

WQT-H captures the notion of “latency mode” and “throughput mode” in the form

of a 2-state machine that transitions from one state to the other based on occupancy

of the work queue. Initially, WQT-H is in the SEQ state in which it returns a

DoP of 1 (sequential execution) to each task. When the occupancy of the work

queue remains under a threshold T for more than Noff consecutive tasks, WQT-H

transitions to the PAR state in which it returns a DoP of dPmax (DoP above which

parallel efficiency1 drops below 0.5) to each task. WQT-H stays in the PAR state

until the work queue threshold increases above T and stays like that for more than

Non tasks. The hysteresis allows the system to infer a load pattern and avoid toggling

states frequently. The hysteresis lengths (Non and Noff) can be weighted in favor of

one state over another. For example, one extreme could be to switch to the PAR

state only under the lightest of loads (Noff � Non).

One advantage of WQT-H is that it is extremely lightweight as a control mecha-

nism. However, it has multiple disadvantages. First, it exposes a very limited space

of parallelism configurations, due to the binary nature of its DoP assignment. Each

parallel task can have a DoP of 1 or dPmax . Second, WQT-H is open-loop control;

there is no online feedback as to whether its control decisions are beneficial or not.

Mechanism: Work Queue Linear (WQ-Linear)

A more graceful degradation of response time with increasing load may be achieved

by varying the DoP continuously in the range [dPmin
, dPmax], rather than just toggling

between two DoP values. WQ-Linear assigns a DoP according to Equation 6.1.

dP = max (dPmin
, dPmax − k ×WQo) (6.1)

1Parallel efficiency equals the speedup of parallel execution over sequential execution divided by
the number of cores used to achieve the speedup.

58

WQo is the instantaneous work queue occupancy. k is the rate of DoP reduction

(k > 0). k is set according to Equation 6.2.

k =
dPmax − dPmin

Qmax

(6.2)

Qmax in Equation 6.2 is derived from the maximum response time degradation

acceptable to the end user and is set by the system administrator taking into account

the service level agreement (SLA), if any. The degradation is with respect to the

minimum response time achievable by the system at a load factor of 1.0. The threshold

value T in the WQT-H mechanism is obtained similarly by a back-calculation from the

acceptable response time degradation. A variant of WQ-Linear could be a mechanism

that incorporates the hysteresis component of WQT-H into WQ-Linear.

Like WQT-H, WQ-Linear is extremely responsive due to its relatively simple con-

trol equations. Compared to WQT-H, WQ-Linear exposes a much larger space of

parallelism configurations. However, like WQT-H, WQ-Linear is also open-loop con-

trol, and does not have means to understand the impact of its decisions.

6.3.2 Goal: “Maximize Throughput with N threads”

Many applications can be classified as throughput-oriented batch applications. Fig-

ure 6.2(a) shows the parallelism configuration of an image search engine called

ferret [13]. The parallel tasks (load, seg, extract, vec, rank, out) interact in

a pipelined fashion. Each pipeline stage may be sequential (with a DoP = 1) or

parallel (with a DoP ≥ 1).

The overall application throughput is limited by the throughput of the slowest

parallel task. By observing the in-queue occupancies of each task and task execu-

tion time, throughput-limiting tasks can be identified and resources can be allocated

accordingly. This informs the following mechanisms:

59

load

Result

Query
...Image

Queries

Work Queue

PAR [T] PAR [T] PAR [T]

vec
PAR [T] SEQ [1]

outextractseg rank
SEQ [1]

(a)

combined

Result

Query

SEQ [1]

out...Image

Queries

Work Queue

SEQ [1]

load
PAR [4T]

(b)

Figure 6.2: Image search engine ferret (a) Original pipeline (b) Pipeline with parallel
stages collapsed

Mechanism: Throughput Balance with Fusion (TBF)

TBF records a moving average of the throughput (inverse of execution time) of each

task. When reconfiguration is triggered, TBF assigns each task a DoP that is inversely

proportional to the average throughput of the task. If the imbalance in the through-

puts of different tasks is greater than a threshold (set to 0.5), TBF fuses the parallel

tasks to create a bigger parallel task. The rationale for fusion is that if a parallel

loop execution is heavily unbalanced, then it might be better to avoid the inefficiency

of pipeline parallelism. Our current implementation requires the application devel-

oper to implement and register the desired fused task via the TaskDescriptor API

that allows expression of choice of ParDescriptors. Creating fused tasks is easy and

systematic: Pipelined task execution and associated unidirectional inter-task data

transfer should be changed to method invocations and data transfer via method ar-

guments. Some of the applications that we studied already had pre-existing code for

fusing tasks in the original Pthreads-parallelized source code. These were originally

included to improve sequential execution in case of cache locality issues. Once reg-

istered, Morta will automatically spawn the fused task if task fusion is triggered by

the mechanism.

Like the previous two mechanisms, TBF is also lightweight and responsive. The

mechanism’s average-case (and worst-case) execution-time complexity is Θ(n) where

60

n is the number of parallel tasks. TBF optimizes DoPs of all parallel tasks under

the global constraint of number of threads (i.e.,
n∑

i=1

dPi
≤ N). In other words, it

has a global view of resource allocation across all parallel tasks. On the downside,

since TBF allocates all threads to tasks according to their respective throughputs, it

assumes that assigning more threads to a task does not degrade performance. This

assumption is not generally true [85]. Furthermore, by assigning tasks to all threads

at all times, TBF keeps all cores on at all times, precluding the possibility of turning

off some cores to save power and energy. However, if TBF’s assumption about lack

of performance degradation with increasing threads holds true for an application,

then TBF can determine near-optimal configurations extremely quickly within a few

iterations.

To demonstrate the ease of incorporating optimization mechanisms proposed in

other contexts into the Parcae system, we implemented two high-quality mechanisms

from prior work. These are described below.

Mechanism: Feedback Directed Pipelining (FDP) [85]

FDP initially allocates a single thread to each task. FDP then measures average

task execution times, and ranks tasks from lowest to highest throughput by dividing

a task’s iteration count by its measured average execution time. The task with the

least throughput is identified as the LIMITER task. If free threads are available, the

number of threads allocated to the LIMITER task (i.e., the DoP of the LIMITER

task) is incremented by one. Task throughputs are measured again to determine

whether performance improved. If performance did improve, the DoP of the LIM-

ITER task is incremented by one again; this process repeats until performance does

not improve any further, or there are no more free threads. If there are no more free

threads available, FDP schedules the two tasks with highest throughput for execution

on a single thread, thereby freeing up a thread for potential use by the LIMITER

61

task. The process of incrementing the DoP of the LIMITER task and measuring

performance is repeated, until a stable parallelism configuration is reached.

Compared to the other mechanisms, FDP employs proportional closed-loop con-

trol. This gives it a considerable advantage in directing its search of the optimal con-

figuration, and in converging to a configuration. However, the response time or the

number of iterations of the optimization routine to converge to a good configuration

can be quite large, especially as the dimensionality of the search space (corresponding

to the number of parallel tasks) increases. FDP assumes a hill-shaped throughput

versus DoP characteristic; consequently, it can limit the number of threads to the

number corresponding to the peak, unlike TBF. This is advantageous both to avoid

poorer performing configurations beyond the peak, and to save power and energy

by turning off unused cores. Compared to TBF, FDP only simulates task fusion via

time-multiplexing of tasks on the same thread; TBF executes real fused tasks exposed

by the parallelizer thereby avoiding the overheads of communicating data between the

fused tasks.

Mechanism: Stage Event-Driven Architecture (SEDA) [99]

The SEDA mechanism periodically samples the input work queue of a task and allo-

cates an additional thread (increments the DoP) for that task when the queue length

exceeds a threshold, up to a maximum number of threads per stage.

Each task in SEDA changes its DoP locally without coordinating with other tasks.

This is in contrast to both TBF and FDP, which have a global view of resource

allocation. Also, SEDA uses open-loop control unlike FDP.

62

6.3.3 Goal: “Maximize Throughput with N threads, P

Watts”

Mechanism: Throughput Power Controller (TPC)

The administrator might want to maximize application performance under a system-

level constraint such as power consumption. Morta enables the administrator to

specify a power target, and uses a closed-loop controller to maximize throughput while

maintaining power consumption at the specified target. The controller initializes each

task with a DoP equal to 1. It then identifies the task with the least throughput and

increments the DoP of the task if throughput improves and the power budget is not

exceeded. If the power budget is exceeded, the controller tries alternative parallelism

configurations with the same DoP as the configuration prior to power overshoot. The

controller tries both new configurations and configurations from recorded history in

order to determine the configuration with best throughput. The controller monitors

power and throughput continuously in order to trigger reconfiguration if needed.

Like FDP, TPC employs closed loop control. Unlike FDP, TPC employs closed

loop control for both power and throughput. This enables the specification of tar-

get power or throughput values, and the control mechanism will change parallelism

configurations to meet the specified target.

6.4 Closed-loop Platform-wide Mechanism

The mechanisms described previously have shortcomings such as slow response time

and lack of platform-wide optimization. This section describes a novel, comprehen-

sive control system to address these shortcomings. In this work, we focus on the

following optimization objective: Minimize total execution time, and subject to that,

minimize energy consumption. Morta achieves this objective by maximizing iteration

63

throughput (number of iterations processed per second) and saving idle threads, as

explained in this section. The system design allows additional goals, as desired.

Morta uses the following schema to identify optimal configurations: establish a

baseline performance metric; identify an optimal configuration by repeatedly search-

ing for a better configuration, pausing execution to change configurations, and mea-

suring the performance of the new configuration relative to the baseline; monitor

optimality of current configuration and trigger a new search if the dynamic execution

environment changes. By virtue of employing a closed loop optimization schema,

Morta can target other performance goals described by means of fitness functions,

provided the parameters of a fitness function can be directly measured or indirectly

computed from other measurements. As an example, Morta could be re-targeted at

minimizing the energy delay squared product, since delay can be measured directly

and energy can be indirectly computed from running power and elapsed execution

time measurements. The finite-state machine shown in Figure 6.3 implements the

above schema.

6.4.1 Finite-state Machine

State 1: Initialize Sequential Baseline. When a program enters a parallel

region, Morta selects the sequential scheme (S ′ = SEQ, D′ = {1}) and monitors its

execution to establish a baseline throughput Tseq. After completing a fixed number

of Nseq iterations (set to 10 in the current implementation), Morta reconfigures the

program to execute in an initial parallel scheme S ′ = Spar and default DoP D′ =

Dpar, and transitions to State 2. Note that D′ is a vector, every element of which

represents the DoP of a single task. Also, the initial value of D′ need not be 1

(explained in Section 6.4.2).

State 2: Calibrate New Configuration. In State 2, Morta treats the current

parallel configuration with its scheme and DoP (S ′, D′) as being new. It gathers initial

64

State 1: Initialize SEQ Baseline
T1!2

T2!3

T3!4
T3!2

T4!2

State 2: Calibrate New Config.

State 3: Optimize DoP

State 4: Monitor Optimality

T2!2

(a) Finite-state Machine Structure

Transition Description

T1→2 Measured SEQ baseline,
reconfigure to parallel scheme.

T2→3 Feed configuration profile.
T3→2 Reconfigure to next scheme.
T3→4 Reconfigure to optimal DoP.

T4→2
Detected change in workload,
re-calibrate configuration.

T2→2 Detected change in
T3→2 resource allocation,
T4→2 re-calibrate configuration.

(b) Description of Transitions

Figure 6.3: Run-time controller

timing information for scheme S ′ while repeatedly reconfiguring the system to D′± 1

and executing each configuration for a number of iterations Npar
2. This is done to

guide a local search for an optimum DoP in the next state. After completing the

calibration iterations, Morta restores the original (S ′, D′) configuration and moves to

State 3.

State 3: Optimize Degree of Parallelism (DoP). Based on the information

collected in State 2, Morta performs a local monotonic search for an optimal DoP

2The number of iterations Npar is dynamically set to max(Nseq, 2.dP), where dP is the current
DoP of the parallel task being optimized.

65

for each task, repeatedly reconfiguring the system to different values of DoP and

executing a number of Npar iterations to measure its performance. Specifically, it

uses a finite difference gradient ascent control law [34, 83], as described in detail in

Section 6.4.2. This process converges to an optimal DoP (D′′) for the given scheme S ′,

with associated throughput T ′′. If T ′′ is better than the best throughput T ∗ achieved

so far for the region, Morta updates T ∗ with T ′′ and records S ′, D′′. (T ∗ = Tseq

initially.) Morta then selects the next scheme S ′ from S, resets DoP to its default

D′ = Dpar, reconfigures the system accordingly, and returns to State 2. If all schemes

in S have been explored, Morta retrieves the configuration S ′, D′′ that achieved the

best throughput T ∗, reconfigures the system accordingly, and moves to State 4.

State 4: Monitor Configuration Optimality. In this state, the Decima moni-

tor performs a passive monitoring of the system (i.e., no reconfigurations) to detect

changes in either the resources allocated to the program or in the workload of the

program itself. For the former, Decima interacts with the platform-wide run-time

system (described in Section 6.4.3). For the latter, Decima monitors the throughput

of the parallel region; if the throughput changes by more than a preset threshold, the

workload is deemed to have changed. If any such change is detected, the configuration

is suspected to have become suboptimal, and control returns to State 2 retaining the

current scheme. If the change corresponds to an increase in resources, the current

DoP is retained (hopefully as a good starting point); otherwise, if resources decreased

or the throughput of the workload itself decreased, the DoP is reset to its initial value

Dpar.

Note that all reconfigurations that modify the DoP while keeping the scheme intact

(such as those carried out by State 2, State 3, and potentially upon transitions T3→4

and T4→2) do not require changing the code distributed among the worker threads.

Reconfigurations that do modify the parallelization scheme, upon transitions T1→2

and T3→2, do involve replacing this code.

66

6.4.2 Optimizing the Degrees of Parallelism

A given parallelization scheme may comprise both sequential {S1, S2, ...Sm} and par-

allel tasks {P1, P2, ...Pn}. The DoP dSi
for every sequential task is inherently 1. The

objective of optimizing DoP (State 3 of Figure 6.3(a)) is therefore to find a DoP

dPi
for each parallel task that maximizes the overall performance of the region. The

problem can be formulated as follows:

Maximize overall throughput : T = f(dP1 , dP2 , . . . , dPn)

subject to : dPi
≥ 1 ∀i,

n∑
i=1

dPi
≤ N

where N denotes the total number of threads made available to the program mi-

nus those used by its sequential tasks (m). Morta optimizes each dPi
separately,

in turn, according to the relative throughputs of the tasks in ascending order (see

Algorithm 4). This is done in order to prioritize slower tasks, which are typically

bottlenecks in pipelined networks of sequential-parallel tasks. This order is updated

after optimizing a task.

Morta computes the optimal DoP dPi
for a parallel task Pi by using a fast it-

erative gradient ascent technique [83], based on the assumption that function f is

unimodal with a single (local) optimum (see Figure 6.4). Section 8.3.5 discusses the

impact of this assumption. On each iteration of the optimization routine, the current

throughput is compared with the previous throughput, and this difference either es-

tablishes the gradient of the change to the next DoP or concludes the search. First,

an upper bound dPi
on the allowed DoP is calculated, which is equal to the max-

imum number of threads currently available for Pi. Initially, every parallel task is

assigned half of its fair share of threads: N
2n

. Thus, dPi
= N − ∑

j 6=i
N
2n

= (n+1)N
2n

.

The search for an optimal dPi
∈ [1, 2, . . . , dPi

] starts at the midpoint of this range:

dPi
(0) = Dpar = 1

2
dPi

. Morta then sets dPi
(1) = dPi

(0) ± 1 according to whichever

achieves greater throughput. We call the search increasing or decreasing, respectively.

67

Algorithm 4: Optimizing multiple DoPs in a region

Input: Calibrated parallel region, thread budget N
Output: Optimized DoP for region (≤ N)
totalDoP ← computeTotalDoP(region.parallelTasks())
foreach Pi ∈ region.parallelTasks() do

Pi.opt ← false; Pi.sat ← false

repeat
optimize a task ← false
P ← sortInAscendingThroughput(region.parallelTasks())
for Pi ∈ P while ¬optimize a task do

dPi
← N − totalDoP + dPi

if (¬Pi.opt) ∨ ((dPi
< dPi

) ∧ (¬Pi.sat)) then
dPi
← gradientAscent(Pi, dPi

, dPi
)

Pi.opt ← true; Pi.sat ← (dPi
< dPi

)
totalDoP ← updateTotalDoP(totalDoP, dPi

)
optimize a task ← true

until ¬optimize a task
if parThroughput(region) > (0.9*totalDoP)*seqThroughput(region) then

return totalDoP // current parallel scheme profitable, keep it

else if bumpToNextScheme(region) then
return CalibrateAndOptimize(region) // try next scheme recursively

else return 1 // no parallel scheme is profitable, revert to sequential

68

T
h

ro
u

g
h

p
u

t
(T

)

Degree of Parallelism (DoP)

1. C0

2. C0

Maximum Throughput

Optimal DoP

C0: Starting Configuration

Figure 6.4: Assumed throughput characteristic as a function of the ith component of
the DoP vector, with other components fixed. Gradient-ascent is used to determine
the optimal DoP.

Next, the gradient between the current (k + 1) solution and the previous (k)

solution is calculated, starting from k = 0:

δ(k + 1) = T (dPi
(k + 1))− T (dPi

(k)). (6.3)

If δ(k+1) < 0, the optimal solution has been passed and Morta terminates the search

taking dPi
(k) to be the solution. The gradient ascent approach is designed to take

small steps near the summit, so interpolation is typically not needed. Recall that

we seek to maximize the throughput, and subject to that, minimize the number of

threads (thereby saving energy). The case δ(k + 1) = 0 is treated similar to case

δ(k + 1) < 0 above if the search is increasing, and similar to case δ(k + 1) > 0 below

if the search is decreasing. If δ(k + 1) > 0, the next solution is calculated according

to the gradient-ascent formula:

69

dPi
(k + 2) = dPi

(k + 1) + αδ(k + 1) (6.4)

where α is positive if the search is increasing, and negative if the search is decreas-

ing. The search continues by incrementing k and evaluating Equations 6.3 and 6.4

repeatedly.

After optimizing dPi
, the optimization process repeats by sorting the tasks ac-

cording to their throughputs, and selecting the next task Pj to optimize. The process

terminates after all dPi
’s have been optimized, possibly more than once, and cannot

be further improved.

Once the search terminates at an optimal DoP, Morta measures the overall

throughput of the region T = f(dP1 , . . . , dPn) and compares it with the baseline

sequential throughput Tseq measured in State 1. The parallel configuration is deemed

profitable only if its efficiency is significantly better than that of the sequential con-

figuration. Otherwise, Morta repeats the optimization process considering an alter-

native parallel scheme exposed by Nona, if any (corresponding to transition T3→2 in

Figure 6.3). When all available schemes have been considered, Morta chooses the

most efficient scheme (possibly even SEQ) for execution, and enters State 4. To ac-

celerate the optimization process, Morta caches previously optimized configurations

and reuses them, if feasible, as initial configurations upon future entry into a parallel

region.

The controller caches optimized configurations of regions, including their scheme,

DoPs, and number of cores N used. On future entry into a parallel region, previ-

ously recorded configurations are used if applicable, according to the number of cores

available N ′: if N ′ = N , the configuration is reused; if N ′ > N , the configuration

serves to initialize the optimization process (i.e., setting Dpar); and if N ′ < N , the

configuration is not used (similar to transition T4→2 in Figure 6.3). This strategy

potentially speeds up the optimization process.

70

6.4.3 Platform-wide Control

The description of the Morta run-time system in Section 6.4.2 applies to a single pro-

gram executing a parallel region. However, the same control system used to optimize

the parallel execution of one program easily extends and generalizes to multiple pro-

grams running concurrently, thereby achieving platform-wide execution optimization.

Indeed, each executing program p can be considered a collection of parallel and se-

quential tasks, executed in parallel and independent of other co-scheduled programs,

as if all programs belong to one parallel region with multiple parallel tasks. At this

outer level, Morta must decide how to partition the total number of threads N avail-

able in the system across the different co-scheduled programs: N =
∑

pNp. Given

its budget of threads Np, a program is optimized and monitored by its dedicated

controller. Algorithm 5 summarizes the platform-wide control logic.

The platform-wide Morta run-time system is implemented as a daemon, launched

upon system boot. When a flexible parallel program p is launched, its controller

registers itself with the daemon and acquires its set of resources Np; initially Np =

N /P where P is the number of flexible parallel programs. Each controller proceeds

Algorithm 5: Platform-wide optimization

Input: platform-wide thread budget N
Output: Optimized DoP for platform (≤ N)
slack ← N
activePrograms ← platform.programs
while slack > 0 do

foreach P ∈ activePrograms do
NPslack

← slack/activePrograms.size
slack ← slack - NPslack

NP ← NPnew +NPslack
// NPnew ← 0 initially

NPnew ← P.optimizeDoP(P.region, NP)
if NPnew < NP then

slack ← slack + (NP −NPnew)
activePrograms.extract(P)

71

to initialize, optimize, and monitor its program, as explained (through States 1,2,3

and 4), and reports its optimal amount of resources N ′p ≤ Np to the daemon (upon

transition T3→4).

On receiving optimization results N ′p from the controllers, the daemon distributes

slack resources N − ∑
pN

′
p if any, among controllers with N ′p = Np. Finally, the

daemon monitors changes in system resources (launch and termination of programs)

and re-partitions resources across executing programs when they occur.

Note that this implementation distributes most of the work across the parallel

controllers; not only are the programs profiled concurrently and independently, but

the processes of optimizing them are distributed as well. This is done in order to load-

balance and speed-up the process of reaching an optimal platform-wide configuration.

All aspects of the run-time control system are implemented in shared memory, thus

making operations such as status query, execution monitoring, metadata updates, etc.

extremely lightweight. Chapter 8 evaluates the overhead of each recurring operation

and demonstrates the effectiveness of the run-time control system in making efficient

and accurate decisions about reconfiguration.

72

Chapter 7

Reducing Run-time Overheads

Figure 7.1 highlights the overheads of Parcae execution. The figure does not show

all sources of Morta overhead; specifically, it does not contain the overhead of status

query (whether the program should pause) and the overhead of monitoring execution

time and workload. Both overheads can be reduced by simply reducing the frequency

at which the corresponding functions are invoked. Of course, this may impact the

responsiveness of the run-time control system. Monitoring overhead can be reduced by

leveraging performance monitoring hardware [40, 47]. We found these two overheads

to be so low on our evaluation platforms that we do not bother to reduce them. The

overheads on which we focus are:

1. Task Migratability: consisting of (i) Task Activation, yielding to and re-

turning from the task activation loop; and (ii) Data Management, loading and

saving cross-iteration dependency data; both occurring per iteration.

2. Pause-Resume: on receiving a pause signal, all threads synchronize by means

of a barrier; threads that reach the barrier early waste cycles waiting for the

slower threads to catch up (shown as Barrier Wait in Figure 7.1). Tasks must

be re-started on threads on resumption.

73

3. Parallelism Reconfiguration: time spent executing core optimization routine

to determine new parallelism configurations (shown as Parallelism Reconfigu-

ration in Figure 7.1).

4. Critical Section Corresponding to Reduction: For the sake of illustration,

assume that the critical sections shaded darker correspond to a reduction oper-

ation (e.g., max-reduction1). Recall that parallel tasks avoid having local state

across iterations by sharing cross-iteration data—in this example, the variable

containing the maximum value (max)—in global memory. Consequently, there

may be contention for atomically performing a read-modify-update operation

on the max variable on each and every iteration.

In this chapter, we describe optimizations that almost completely eliminate each

of the above overheads. Figure 7.2 shows how the optimizations enable significantly

improved utilization of the cores; in the same amount of time, optimized Morta

completes two full rounds of reconfiguration compared to only one round in the un-

optimized case.

7.1 Reducing Data Management Overhead

Figure 7.3 illustrates the optimization. Rather than returning to the task invocation

loop on every iteration (a), the optimized version retains the original loop backedge

(b). This makes it possible to hoist the load out of the loop header into the pre-

header, and to push the corresponding store into the pause exit block. Consequently,

1Max reduction is used to determine the maximum item in a set of items in a distributed fashion.
Computing the maximum item normally involves initializing a variable max to one of the items,
comparing max with each of the other items, and updating max in case the other item is greater
than the current item stored in max. At the end of the operation, the max variable contains the
maximum item in the set. Such operations are both commutative and associative, and hence can
be performed in any order. Using this property, max reduction initializes max to one of the items,
then each thread computes a local maximum on its subset of the item-set, and finally the global
maximum is computed over the local maxima.

74

Core 1 Core 2 Core 3 Core 4 Core 5

A26

B24
C23

A27

A28

B25

B26

A29 B27

B28

C24

C25

P30

Load
Data

Barrier
Wait

DOANY

t0

t1

t3

Ti
m

e

t2

Ti
ith iteration of task T

 of program P

C26

C27
B29

C28

C29

P31 P32
P33

P34

P35
P36

P37

Save
Data

PS-DSWP

P37

Critical
Section

Parallelism
Reconfiguration

Figure 7.1: Morta execution overheads. (t0) Program P is in the steady state of
PS-DSWP execution; (t1) program P is signaled to pause by Morta; (t2) P ’s pipeline
is drained; (t3) new parallelism configuration is determined and P begins DOANY
execution.

75

Core 1 Core 2 Core 3 Core 4 Core 5

A26

B24
C23

A27

A28

B25

B26 A29

B27
B28

C24

C25

P30

Load
Data

Critical
Section

Barrier
Wait

DOANY

t0

t1

t2

Ti
m

e

t3

C26

C27 B29

C28

C29

P31 P32
P33

P34
P35

P36
P37

Save
Data

PS-DSWP

P38
P39 P40

t4
t5

Merge
Operation

Parallelism
Reconfiguration

Figure 7.2: Morta execution after optimization. In the same amount of time that
unoptimized Morta finishes one round of reconfiguration (shown in Figure 7.1), opti-
mized Morta finishes two rounds of reconfiguration. Barrier wait overhead reduction
is described later in this chapter.

76

load live-ins
r0=…;store(r0,M[Φn])
c1=load(M[channel1])

call end
send(x,channel[c1])
call begin

st=get_status()
send(st,channels[])

call begin
rn= load(M[Φn])

store live-outs
flush out-channels
return task_complete

store live-outs
flush out-channels
return task_paused

header

tail

exit

Tinit

r1=…;store(r1,M[Φn])
call end

return task_iterating

T

(a) Unoptimized Morta

load live-ins
r0=…; store(r0,M[Φn])
c1=load(M[channel1])!

call end
send(x,channel[c1])
call begin

rn= Φn (r1,r0)
st=get_status()
send(st,channels[])!

call begin

store live-outs
flush out-channels
return task_complete

store(rn, M[Φn])
store live-outs
flush out-channels
return task_paused

header

tail

exit

Tinit

r1=…
call end!

T r0 = load(M[Φn])

pause

(b) Optimized Morta

Figure 7.3: Reducing cross-iteration dependency load/save overhead by hoisting the
corresponding operations out of the loop

the cross-iteration dependency values need to be saved and loaded only once per

parallelism reconfiguration.

Note that this strategy imposes a constraint on tasks with dependencies to execute

in the same thread between reconfigurations, i.e., migration of sequential tasks is

disabled. The correct choice of retaining the ability to migrate sequential tasks versus

reducing their load/save overhead is platform-specific; Morta can execute benchmarks

to determine the (constant) overhead on a given platform and make the appropriate

choice.

7.2 Reducing Barrier Wait Overhead

Figure 7.4 shows how the full barrier on pausing for reconfiguration results in pipeline

drain stalls in case of pipelined execution. The most common scenario in which re-

configuration happens is when a scheme is being optimized, by means of the gradient-

77

Core 1 Core 2 Core 3 Core 4 Core 5

A26

B26

C24

A27

A28

B28

B27

C25

C26

Load
Data

Barrier
Wait

t0

t1

Ti
m

e

t3

C27

C28

Save
Data

PS-DSWP

A29

B30

A30

A31
B29

B33

B31
C29

C30

C31

PS-DSWP

A32

B32

A33

A34

t2

Parallelism
Reconfiguration

Figure 7.4: Strategy of waiting at a barrier for all tasks to pause incurs the pipeline
drain overhead

78

ascent algorithm. During gradient ascent, the degree of parallelism (DoP) of a parallel

task is increased or decreased (according to whether the ascent is increasing or de-

creasing) in step sizes proportional to the gradient. Since the run-time merely has

to increase the DoP of a task, the “Reconfigure Parallelism” overhead in the figure

is very small. Recall that a parallel task is explicitly constructed such that it either

does not have any loop-carried dependencies or updates global memory with appro-

priate synchronization. As a consequence, additional threads may start executing the

parallel task without violating program consistency, eliminating the need for a bar-

rier wait. In the presence of communication with other tasks, however, other actions

must be taken. Below, we work through the complexities from a specific case to the

general.

7.2.1 Single Parallel Task

If a parallel region is executed by a single parallel task, as in the case of DOANY,

then the run-time system merely needs to change the DoP of the task, and enforce as

many additional threads as the difference between the new and old DoPs to execute

the parallel task.

7.2.2 Sequential-Parallel-Sequential Tasks

Consider a set of three communicating tasks. PS-DSWP typically employs a round-

robin iteration distribution policy. In other words, the first sequential task hands

out iterations to the threads executing the parallel task in a round-robin order, and

the last sequential task consumes iterations from the threads executing the parallel

task in the same round-robin order. Let the parallel task have an initial DoP of m.

Then, the first (last) sequential task sends (receives) the ith iteration dependencies

to (from) the (i mod m)th thread executing the parallel task, where i is a simple

induction variable maintained by both sequential tasks independently.

79

Now, assume that Morta decides to increase the parallel task’s DoP to n as part

of the gradient-ascent routine. As in the case of the single parallel task previously,

the run-time system enforces n −m additional threads to execute the parallel task.

The additional threads will wait on their input queues; however, the sequential tasks

will continue to produce and consume data only on channels 0 through m − 1. So,

the run-time system

1. pauses only the sequential tasks (by sending the pause signal to the first se-

quential task that is the master task, which then propagates the signal to the

other sequential task),

2. updates their view of the DoP of the parallel task with which they are commu-

nicating to n, and

3. resumes their execution.

Merely performing the above actions may result in a race condition that leads to

violation of program semantics due to out-of-order processing of iterations. Figure 7.5

shows why. For simplicity, assume that the first sequential task (S1) produces a single

token on each iteration to the parallel task, and the parallel task (P) produces a single

token on each iteration to the last sequential task (S2). Thus, we use the word token

to denote a single iteration.

Assume that S1 receives the pause signal on iteration ipause = 2m − 2. Assume

also that the threads executing P have processed these tokens and enqueued the

corresponding out-tokens on their out-channels. (In reality, P usually lags behind S1,

but this is not pertinent to the discussion.) Finally, assume that S2 has not started

processing its tokens. Figure 7.5(a) shows the system in this state, with 2m−1 tokens

in the out-channels of the P task.

Figure 7.5(b) shows the situation when Morta increases the DoP of task P to n =

m+ 1, resulting in S1 producing iteration i’s token on the (i mod (m+ 1))th channel.

80

S1 S2

P0

P1

Pm-2

Pm-1
..."

..."

..."
0" 1"

m%2"
m%1"

m"
m+1"

2m%2"

No Token Valid Token

In-Channels Out-Channels

(a) Round-robin iteration allocation is shown near S1

S1 S2

P0

P1

Pm-2

Pm-1

..."

..."

..."

2m#

3m%2#
3m%3#

2m%1#

No Token Valid Token From
First Set of Iterations

In-Channels Out-Channels

Pm

3m%1#

Valid Token From
Second Set of Iterations

(b) Race condition may result in order violation

Figure 7.5: Barrier optimization. Näıve optimization may result in violation of pro-
gram semantics. (b) shows how increase in DoP from m to m+1 without appropriate
synchronization between S1 and S2 can result in S2 processing iterations out of order.

81

This results in P processing the tokens and producing the corresponding out-tokens

on the m+ 1 out-channels. This new set of tokens is shown in a darker shade in the

figure. Now, when S2 processes these tokens, since its channel width has been set by

the run-time to n = m+ 1, it mistakenly processes token 3m−1 on channel m before

processing tokens m through 2m−2 from the first set of iterations and tokens 2m−1

through 3m − 2 from the second set of iterations. This out-of-order processing can

result in violation of semantics, if for instance, S2 prints values to an output device.

The problem with the above näıve optimization is fairly straightforward. S2 must

process all tokens up to the iteration at which S1 was paused, before increasing the

width of the channel from m to m+ 1. In other words, the pipeline must be drained

by S2 before expanding the channel width, without impacting either S1 or P .

To solve the problem, Morta maintains a count of the number of iterations that

have been executed by the master sequential task since the parallel region was invoked.

When the run-time system signals the master sequential task S1 to pause, it reads the

value of the counter (call this I), and communicates I to the other sequential task S2.

To determine which channel to consume from, S2 compares the value of its induction

variable i (that tracks current iteration count) with I. If i < I, then S2 consumes

tokens from the (i mod m)th channel; otherwise, it updates its channel-width to n =

m+ 1 and consumes tokens from the (i mod n)th channel.

Figure 7.6 shows the improvement in performance with the above barrier opti-

mization. “Barrier Synch.” represents the additional overhead of communicating the

I counter to task S2.

7.2.3 Network of Sequential-Parallel Tasks

The barrier wait optimization described for sequential-parallel-sequential tasks can be

generalized to a pipeline network of sequential-parallel tasks, such as the one shown in

Figure 7.7, even when the DoPs of multiple parallel tasks are simultaneously changed.

82

Core 1 Core 2 Core 3 Core 4 Core 5

A26

B26

C24

A27

A28

B28

B27

C25

C26

Load
Data

Barrier
Wait

t0

t1

Ti
m

e

t3

C27

C28

Save
Data

PS-DSWP

A29

B30

A30

A31
B29

B33

B31
C29

C30

C31

PS-DSWP

A32

B32

A33

A34

t2

Parallelism
Reconfiguration

Figure 7.6: Morta optimization to eliminate barrier wait stall saves time and enables
additional iterations to complete

83

S1 S3

S2

P P P P1
P P P P2 S4

Figure 7.7: Morta barrier wait optimization works for arbitrary sequential-parallel
pipeline networks

To see why, note that the optimization only hinges upon informing all sequential

tasks (except the master task) of the number of iterations after which they must

adjust the width of their respective communication channels, following a parallelism

reconfiguration involving change of DoPs of the parallel tasks. Hence, the run-time

is modified in a straightforward manner to communicate, upon a pause, the iteration

count I of the master task to all other sequential tasks in the parallel region. Multiple

parallel tasks are handled naturally; the run-time system returns the appropriate

channel width (equal to the DoP of the corresponding parallel task) when queried by

the sequential tasks that communicate with each parallel task.

Finally, while the above discussion assumed increasing gradient ascent, where the

channel width increases, the same barrier wait optimization works for decreasing

gradient ascent as well.

7.3 Reducing Parallelism Reconfiguration Over-

head

The thread executing the master task receives the pause signal from the run-time

system. This thread can immediately start executing the optimization routine that

determines the next parallelism configuration, rather than waiting for other threads

to hit the barrier before executing the optimization routine. This enables an overlap

84

of the time spent executing the optimization routine and the difference between the

times of the last and the first thread to reach the barrier.

7.4 Reducing Critical Sections Corresponding to

Reductions

To reduce contention due to concurrent read-modify-update actions on reduction

variables by threads executing a parallel task, Parcae employs privatize-and-merge [3].

Privatization involves allocating per-thread local storage for the reduction vari-

able. After each reconfiguration, threads executing the parallel task copy the re-

duction variable (that exists in global memory) into their local storage; the copy

operation is performed in the initialization function Tinit (see Figure 7.3). Each

thread executing the parallel task then performs a local reduction. As an example,

for max-reduction, each thread computes the local maximum over the set of itera-

tions that it executes. When reconfiguration is triggered, the threads executing the

parallel task communicate the local reduction values to the sequential master task,

which merges them by executing an appropriate merge operation. For max-reduction,

the merge operation involves initializing the global max variable with one of the local

values, iterating over other local values and comparing each with max, and updating

max if the local value is greater than the current value stored in max.

85

Chapter 8

Evaluation

Table 8.1 describes the two real platforms used to evaluate Parcae. The Nona com-

piler is built on LLVM [49] revision 129859. Nona generates optimized assembly, which

is then assembled and linked by GCC version 4.4.1. The Parcae API and run-time

system are compared against Pthreads-based expertly-tuned manual parallelizations.

The Nona compiler is compared against an LLVM compiler also built on revision

129859, applying fixed high-quality parallelization schemes (PS-DSWP [75, 95] and

DOANY [71,102]). Both the manual parallelization and the LLVM parallelizing com-

piler target an unloaded parallel platform, and use a standard thread-pool with load

balancing by the Linux scheduler [71,95]. The Morta run-time system is implemented

on top of the same thread-pool, facilitating fair comparison.

Parcae performance is also compared with that of the optimal static configuration

for each workload, which is determined via exhaustive search. The execution time

of the sequential program produced by the same set of optimizations, excluding the

parallelization transformations, serves as the baseline for speedup computation of all

parallel runs. All execution times used for speedup computation are averages over N

runs, where N is the larger of three and the minimum number of runs required for a

standard deviation of less than 5% of the geomean execution time.

86

Feature Platform 1 Platform 2

Brand Name Intel Xeon E5310 Intel Xeon X7460
Processor Intel Core, 64-bit Intel Core, 64-bit
Clock Speed 1.60 GHz 2.66 GHz
Total # Threads 8 24
Total L2 Cache 16 MB 36 MB
Total L3 Cache - 64 MB
Total RAM 8 GB 24 GB
OS Linux 2.6.32 Linux 2.6.31

Table 8.1: Hardware platforms used for evaluation

In the case of applications with online server behavior, the arrival of tasks was

simulated using a task queuing thread that enqueues tasks to a work queue according

to a Poisson distribution. The average arrival rate determines the load factor on

the system. A load factor of 1.0 corresponds to an average arrival rate equal to

the maximum throughput sustainable by the system. The maximum throughput is

determined as M/T where M is the number of tasks and T is the time taken by the

system to execute the tasks in parallel (but executing each task itself sequentially).

To determine the maximum throughput for each application, M was set to 500.

8.1 Chapter Organization

We present details of evaluation of the Parcae API. Specifically, we discuss ease of

use of the API, and performance of the optimization mechanisms implemented by a

mechanism developer. Then, we present details of evaluation of the Nona compiler and

the closed-loop platform-wide optimization mechanism. Finally, we present details of

the overheads of various aspects of Morta.

8.2 Parcae API

Table 8.2 provides a brief description of the applications that have been enhanced

using Parcae. All are computationally intensive parallel applications. These are

87

Application Description

x264 Transcoding of yuv4mpeg videos (PARSEC) [13]
swaptions Option pricing via Monte Carlo simulations (PARSEC) [13]

bzip Data compression of SPEC ref input (SPEC CPU2006) [18,84]
gimp Image editing using oilify plugin (GIMP) [31]
ferret Image search engine (PARSEC) [13,53]
dedup Data deduplication (PARSEC) [13]

Table 8.2: Real-world applications enhanced using Parcae.

Application
Lines of Code

Added Modified Deleted Fused Total

x264 72 10 8 - 39617
swaptions 85 11 8 - 1428

bzip 63 10 8 - 4652
gimp 35 12 4 - 1989
ferret 97 15 22 59 14781
dedup 124 10 16 113 7546

Table 8.3: Columns 2–6 indicate the effort required to port the original Pthreads
based parallel code to the Parcae API. Where applicable, column 6 indicates the
number of lines of code in tasks created by fusing other tasks.

full real-world applications, not small kernels. The first column in the table shows

the names that will be used to refer to the benchmarks in the remainder of this

dissertation.

Columns 2–6 in Table 8.3 are indicative of the effort required to port existing

Pthreads based parallel versions of the applications to the Parcae API. The nature

of the changes has already been illustrated in Chapter 5. The number of additional

lines of code written by the application developer could be significantly reduced with

compiler support for functor creation and variable capture in C++, such as the sup-

port for lambdas in Intel’s C++ compiler [38]. Anecdotally, a single programmer was

able to port a production-quality Pthreads parallel version of bzip2 to use the Parcae

API, in the course of an afternoon. The programmer was unfamiliar with both the

Parcae API and the original Pthreads code base.

Table 8.4 shows the mechanisms that were implemented by a mechanism de-

88

Mechanism
WQT-H WQ-Linear TBF FDP [85] SEDA [99] TPC

28 9 89 94 30 154

Table 8.4: Lines of code to implement tested mechanisms

veloper. While we have explored more combinations, for all but one application in

Table 8.3, we present results on one performance goal. For one application—an image

search engine (ferret)—we present results on all the tested performance goals.

8.2.1 Goal: “Minimize Response Time with N Threads”

The applications studied for this goal are video transcoding, option pricing, data

compression, image editing, and image search. All applications studied for this goal

have online service behavior. Minimizing response time is most interesting in the

case of applications with nested loops due to the potential latency-throughput tradeoff

described in Chapter 2. The outermost loop in all cases iterates over user-transactions.

The amount of parallelism available in this loop-nesting level varies with the load on

the servers.

Figures 8.1–8.4 show the performance of the WQT-H and WQ-Linear mechanisms

compared to the static <Couter , Cinner> configurations <(DOALL, 24), (SEQ , 1)> and

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0.2 0.4 0.6 0.8 1 1.2

R
es

p
o
n
se

 T
im

e
(s

ec
s)

Normalized load on system

<(24,DOALL),(1,SEQ)>
<(3,DOALL),(8,PIPE)>

WQT-H
WQ-Linear

Figure 8.1: Video transcoding: Response time variation with load using Static, WQT-
H, and WQ-Linear mechanisms

89

 0

 2

 4

 6

 8

 10

 12

 0.2 0.4 0.6 0.8 1 1.2

R
es

p
o

n
se

 T
im

e
(s

ec
s)

Normalized load on system

<(24,DOALL),(1,SEQ)>
<(3,DOALL),(8,DOALL)>

WQT-H
WQ-Linear

Figure 8.2: Option pricing: Response time variation with load using Static, WQT-H,
and WQ-Linear mechanisms

 0

 5

 10

 15

 20

 25

 30

 0.2 0.4 0.6 0.8 1 1.2

R
es

p
o
n
se

 T
im

e
(s

ec
s)

Normalized load on system

<(24,DOALL),(1,SEQ)>
<(4,DOALL),(6,PIPE)>

WQT-H
WQ-Linear

Figure 8.3: Data compression: Response time variation with load using Static, WQT-
H, and WQ-Linear mechanisms

 0

 10

 20

 30

 40

 50

 0.2 0.4 0.6 0.8 1 1.2

R
es

p
o

n
se

 T
im

e
(s

ec
s)

Normalized load on system

<(24,DOALL),(1,SEQ)>
<(3,DOALL),(8,DOALL)>

WQT-H
WQ-Linear

Figure 8.4: Image editing: Response time variation with load using Static, WQT-H,
and WQ-Linear mechanisms

90

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.2 0.4 0.6 0.8 1 1.2

R
es

p
o

n
se

 T
im

e
(s

ec
s)

Normalized load on system

(<1,6,6,6,6,1>,PIPE)
(<1,24,24,24,24,1>,PIPE)

WQT-H
WQ-Linear

Figure 8.5: Image search engine: Response time variation with load using Static,
WQT-H, and WQ-Linear mechanisms

<(DOALL, N/dPmax), (PIPE | DOALL, dPmax)>. Here, N refers to the total number

of threads available on the platform (24) and dPmax refers to the degree of parallelism

of the inner loop above which parallel efficiency drops below 0.5.

Interestingly, WQT-H outperforms both static mechanisms at certain load factors.

For example, consider the response times at load factor 0.8 in Figure 8.2. Analysis of

the work queue occupancy and DoP assignment to tasks reveals that even though the

load factor is on average equal to 0.8, there are periods of heavier and lighter load.

Morta’s dynamic adaptation of the DoP between C = <(DOALL, 24), (SEQ , 1)> and

C = <(DOALL, N/dPmax), (PIPE | DOALL, dPmax)> results in an average DoP some-

where in between the two, and this average DoP is better than either for minimizing

response time. This provides experimental validation of the intuitive rationale behind

WQ-Linear, which provides the best response time characteristic across the load fac-

tor range. In the case of data compression (Figure 8.3), the minimum DoP dPinner
at

which speedup is obtained over sequential execution is four. This results in two prob-

lems for WQ-Linear. First, WQ-Linear may explore unhelpful configurations such

as <(DOALL, 8), (PIPE , 3)>. Second, the number of configurations at WQ-Linear’s

disposal is too few to provide any improvement over WQT-H.

91

Figure 8.5 shows the response time characteristic of ferret. The figure shows

the static distribution of threads to each pipeline stage. (PIPE ,<1, 6, 6, 6, 6, 1>) in-

dicates a single loop parallelized in a pipelined fashion with six threads allocated

to each parallel stage and one thread allocated to each sequential stage. Similarly,

(PIPE ,<1, 24, 24, 24, 24, 1>) indicates the same loop parallelized in a pipelined fash-

ion with 24 threads allocated to each parallel stage and one thread allocated to each

sequential stage. Oversubscribing the hardware resources by allocating 24 threads

to each parallel task results in much improved response time compared to a static

even distribution of the 24 hardware threads. WQ-Linear achieves a much better

characteristic by allocating threads proportional to load on each task.

8.2.2 Goal: “Maximize Throughput with N Threads”

For batch-processing applications, a desirable performance goal is throughput max-

imization. Parcae uses the mechanisms described in Section 6.3.2 to improve the

throughput of an image search engine and a file deduplication application.

Table 8.5 shows the throughput improvements for ferret and dedup using dif-

ferent mechanisms. Pthreads-Baseline is the original Pthreads parallelization with a

static even distribution of available hardware threads across all the parallel tasks after

assigning a single thread to each sequential task. (This is a common practice [61].)

The Pthreads-OS number shows the performance when each parallel task is initialized

with a thread pool containing as many threads as the number of available hardware

Apps. ferret dedup

Pthreads
Baseline 1.00× 1.00×

OS 2.12× 0.89×

Parcae

SEDA [99] 1.64× 1.16×
FDP [85] 2.14× 2.08×

TB 1.96× 1.75×
TBF 2.35× 2.36×

Table 8.5: Throughput improvement over static even thread distribution

92

threads in the platform, and the operating-system’s scheduler is called upon to do

load balancing. The remaining numbers represent the performance of the applications

enhanced using Parcae. Parcae-TB is the same as Parcae-TBF but with task fusion

turned off, in order to demonstrate the benefit of task fusion.

Parcae-TBF outperforms all other mechanisms. OS scheduling causes more

context-switching, cache pollution, and memory consumption. In the case of dedup,

these overheads result in virtually no improvement over the baseline. The overheads

may become prominent even in the case of ferret on a machine with a larger number

of cores. In addition, this mechanism is still a static scheme that cannot adapt to

run-time events such as more cores becoming available to the application. Each task

in SEDA resizes its thread pool locally without coordinating resource allocation with

other tasks. By contrast, both FDP and TBF have a global view of resource alloca-

tion and are able to redistribute the hardware threads according to the throughput

of each task. Additionally, FDP and TBF are able to either fuse or combine tasks

in the event of very uneven load across stages. Compared to FDP, which simulates

task fusion via time-multiplexed execution of tasks on the same thread, TBF has

the additional benefit of avoiding the overheads of forwarding data between tasks by

enabling the developer to explicitly expose the appropriate fused task.

Figure 8.6 shows the dynamic throughput characteristic of ferret. Morta

 0

 10

 20

 30

 40

 50

 60

 70

 0 200 400 600 800 1000 1200 1400

T
h

ro
u
g

h
p

u
t

(Q
u

er
ie

s/
s)

Time (seconds)

Throughput
Opti

Stable

Figure 8.6: Image search engine: Throughput variation using TBF mechanism

93

searches the parallelism configuration space before stabilizing on the one with the

maximum throughput under the constraint of 24 hardware threads.

8.2.3 Goal: “Maximize Throughput with N Threads, P

Watts”

Figure 8.7 shows the operation of Parcae’s power-throughput controller (TPC) on

ferret. For a peak power target specified by the administrator, Parcae-TPC first

ramps up the degree of parallelism until the power budget is fully used. Parcae-TPC

then explores different parallelism configurations and stabilizes on the one with the

best throughput without exceeding the power budget. Note that 90% of peak total

power corresponds to 60% of peak power in the dynamic CPU range (all cores idle to

all cores active). Morta achieves the maximum throughput possible at this setting.

Fine-grained per-core power control can result in a wider dynamic range and greater

power savings [82]. Full system power was measured at the maximum sampling rate

(13 samples per minute) supported by the power distribution unit (AP7892 [6]).

This limited the speed with which the controller responds to fluctuations in power

consumption. Newer chips have power-monitoring units with higher sampling rates

and clock gating per core. They could be used to design faster and higher performance

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 500 1000 1500 2000

 0

 10

 20

 30

 40

 50

 60

 70

P
o
w

er
 (

W
at

ts
)

T
h
ro

u
g

h
p
u

t
(Q

u
er

ie
s/

s)

Time (seconds)

Power
Opti

Throughput
Opti

Stable

Target Power: 90% of Peak

(60% of Dynamic Range)

Throughput: 62% of Peak

Power
Throughput

Throughput with power overshoot

Figure 8.7: Image search engine: Power-throughput variation using TPC mechanism

94

controllers for throttling power and parallelism. The transient in the Stable region of

the figure shows how constant monitoring by Decima enables Parcae to respond to

system events.

8.2.4 Summary

The experiments highlight fulfillment of the framework’s design objective of enabling

change of optimization goals and mechanisms without changing the application code.

Referring back to Table 8.4, the number of lines of code required to implement the

mechanisms evaluated above is quite modest, considering the performance benefits

that they deliver. We now present evaluation results of the Nona compiler and the

closed-loop platform-wide mechanism that is designed based on the advantages and

disadvantages of the mechanisms evaluated thus far.

8.3 Nona Compiler

Table 8.6 describes the seven benchmarks selected to evaluate the Nona compiler and

the Parcae run-time system. These include benchmarks parallelized by the baseline

state-of-the-art compiler [71], allowing direct comparison. Table 8.7 gives detailed

information about each benchmark including the targeted code region, fraction of

total execution time spent in parallelized regions, and the number of invocations and

iterations of the parallelized regions. Finally, Table 8.8 provides a summary of the

execution time and energy improvements delivered by Parcae. These improvements

are discussed in detail below.

8.3.1 Power/Energy Measurement Methodology

Processors will have interfaces to turn cores on or off at fine time granularities [14]. We

evaluated the energy savings that Parcae could deliver by leveraging such capabilities.

95

Application Description

blackscholes Portfolio pricing with the Blackscholes PDE (PARSEC) [13]
geti Data mining of frequent itemsets (MineBench) [60]

kmeans K-means clustering (STAMP) [58]
ks Kernighan-Lin graph partitioning algorithm (LLVM Test Suite) [51]

md5sum md5sum computation (Open Source) [7]
potrace Vectorization of bitmap images (Open Source) [81]

url URL based packet switching (NetBench) [57]

Table 8.6: Sequential applications automatically enhanced using the Nona compiler.

Program
Main Parallel

Total number of

Loop Coverage Invocations Iterations

blackscholes worker 92.9% 1 1000
geti FindSomeETIs 100.0% 24 12242

kmeans work 99.30% 501 131334144
ks FindMaxGpAndSwap 100.0% 7750 488250

md5sum main 100.0% 1 384
potrace main 100.0% 1 200

url main 100.0% 1 40000

Table 8.7: Sequential programs transformed, targeted code region, fraction of total
execution time spent in parallelized regions, and number of invocations and iterations
of parallelized regions.

In Section 8.2, power was measured online in spite of the low sampling rate of the

power distribution unit (AP7892 [6]). This was feasible because the applications and

workloads were real-world and long-running. For evaluating the compiler, however, we

use benchmarks from standard benchmark suites. These are short-running, and power

measurements need to be more frequent than the supported rate. Hence, we employ

an alternative methodology to determine power at different points during program

execution. We measured the power consumption characteristic of each platform by

executing a power-virus that maintains 100% CPU utilization of each core to measure

power draw when a number of cores are busy, and by leaving the system unused

to measure power draw when those cores are idle. The processor’s dynamic power

range is then the difference between active power and idle power. Active processor

power consumption as a fraction of whole platform power consumption is 18.0% for

96

Program
Parcae improvement relative to

Baseline Optimal
Exec. Time Energy Exec. Time

blackscholes -1.39% 45.35% -1.39%
geti 12.55% 23.90% -18.56%

kmeans 41.94% 83.89% -62.98%
ks 3.78% 35.11% -0.83%

md5sum 34.41% 58.51% -3.55%
potrace 9.95% 42.67% -2.97%

url -0.18% 36.22% -2.40%

Table 8.8: Improvements in execution time and energy delivered by Parcae. The
improvements are on a single input on Platform 2, and are relative to baseline parallel
and optimal parallel versions of these programs. Optimal versions are determined via
offline exhaustive search. Positive numbers indicate improvement.

Platform 1 and 26.7% for Platform 2. Processor energy is then computed as the

integral of the piece-wise product of time spent actively using a number of cores

and the average power draw of those many active cores. Recent work uses a similar

methodology [14].

We present case studies using one application for three interesting scenarios, each

highlighting a different aspect of Parcae. Table 8.8 provides a summary of the exe-

cution time and energy improvements delivered by Parcae across all benchmarks.

8.3.2 Parcae adapts execution to workload change

blackscholes calculates the prices for a portfolio of European options using the

Black-Scholes partial differential equation [13]. To study workload variation, the

source code is modified to enable pricing of multiple portfolios. Nona is able to apply

the PS-DSWP parallelization scheme, in addition to SEQ. Figure 8.8(b) shows Morta

and Decima in action. Morta starts in State 1 to initialize the sequential baseline.

It then enters State 2 to set the initial configuration and determine the direction

for gradient ascent. In State 3, it performs gradient ascent until peak throughput is

achieved, at which point (t = 5.0s) it enters State 4 to monitor the execution of this

97

 INIT State 1: Initialize
 CAL State 2: Calibrate
 OPT State 3: Optimize
 MON State 4: Monitor

 (S) Sequential Scheme
 (S,Px,S) PS-DSWP Scheme with DoP = x
 (Px) DOANY Scheme with DoP = x

Running Throughput
Running Energy

Program Degree of Parallelism
System Degree of Parallelism

(a) Legend

0.0x

2.0x

4.0x

6.0x

8.0x

10.0x

0.0

0

3.1

0

3.4

4

3.8

14

4.2

24

4.6

34

5.0

46

56.6

1050

60.3

1060

64.0

1070

67.7

1080

71.4

1090

75.2

1100

79.9

1110

402.4

2000

N
o
rm

al
iz

ed
 T

h
ro

u
g
h
p
u
t

(x
/S

E
Q

)

Time (in seconds)
Iteration Number

E
n
er

g
y
 (

in
 k

J)

D
eg

re
e

o
f

P
a
ra

ll
el

is
m

0.0

3.8
 5

7.5
 10

11.3
 15

15.1
 20

18.9
 25

(S)

INIT

(S)

CAL

(S,P3,S)

3

4

5

OPT

(S,Px,S)

6

MON

(S,P6,S)

CAL

(S,P6,S)

6 5 4 3 2

OPT

(S,Px,S)

1

(S,P2,S)

MON

(b) blackscholes: Controller re-optimizes when workload changes

0.0x

7.6x

15.2x

22.8x

30.3x

37.9x

0.0

0

0.0

0

3.9

4

7.4

14

10.1

24

12.1

34

14.0

46

15.1

58

16.8

68

19.4

78

22.1

90

24.4

104

26.0

120

78.2

1224

N
o
rm

al
iz

ed
 T

h
ro

u
g
h
p
u
t

(x
/S

E
Q

)

Time (in seconds)
Iteration Number

E
n
er

g
y
 (

in
 k

J)

D
eg

re
e

o
f

P
a
ra

ll
el

is
m

0.0

1.2
 5

2.4
 10

3.6
 15

4.7
 20

5.9
 25

(S)

INIT

(S)

CAL

(S,P3,S)

3

4

5

6

OPT

(S,Px,S)

6

CAL

(P4)

4

5

6

7

OPT

(Px)

8

(P8)

MON

(c) geti: Controller determines optimal execution scheme from many

Figure 8.8: Parcae run-time control. Solid vertical lines indicate state transition
times. All throughput values are normalized to the throughput measured in the INIT
state. States shown at the top of each figure are the states of the program’s controller.

98

configuration. During the optimization phase, the re-configuration interval constantly

varies according to the optimization logic; this results in compute throughput mea-

surements that are accurate relative to each other, but are less accurate with respect

to the baseline throughput. Hence, once the peak is reached, the system stabilizes

for additional iterations to obtain a more accurate throughput measurement. Dec-

ima’s workload change detection logic kicks in after this throughput measurement.

At t = 56.6s, Decima detects workload change via drop in throughput, and signals

Morta to re-optimize in response. In State 3, Morta reduces DoP by performing de-

creasing gradient ascent, finally to reach State 4 at t = 79.9s; Decima monitors the

remaining execution. Parcae achieves performance within 1.4% of optimal (due to

overheads) while consuming 45.4% less energy.

8.3.3 Parcae optimizes across multiple parallelization

schemes

geti is a data mining program that computes a list of frequent itemsets using a

vertical database. The set semantics of the output operations enables order relaxation

via commutativity, which is expressed using 11 annotations in 889 lines of source

code. The resulting dependence graph is then amenable to PS-DSWP and DOANY

parallelization schemes (in addition to SEQ). Figure 8.8(c) shows the execution trace.

As with blackscholes, Morta starts in State 1 to initialize the sequential baseline.

In State 2, it calibrates an initial configuration of the PS-DSWP scheme, and starts

an increasing gradient ascent in State 3. Morta determines an optimal configuration

for the PS-DSWP scheme (at t = 14.0s), and compares throughput with that of the

SEQ scheme. As the comparison is below the preset threshold, Morta returns to

State 2 in order to evaluate the next parallel scheme: DOANY. Optimizing the DoP

for DOANY then takes place in State 3 (from t = 16.8s until t = 26.0s). The optimal

DOANY configuration is found to be of adequate throughput, so Morta moves to

99

State 4 and Decima monitors the remaining execution. Parcae improves performance

over the baseline by 12.6%, and achieves performance within 18.6% of optimal. Parcae

reduces energy consumption by 23.9%.

8.3.4 Parcae adapts execution to resource availability change

Figure 8.9 illustrates Morta’s platform-wide control. Eight copies of blackscholes

are launched in succession on Platform 2 having 24 cores. For brevity, the execution

of only one copy P0 is shown (labeled Program). The figure also shows platform-wide

dynamic thread utilization as determined by the platform-wide daemon (labeled Sys-

tem). P0 begins execution on an unloaded machine, so following the initialization of

State 1, State 2 calibrates the parallel task of the PS-DSWP scheme starting from a

DoP of dP0 = 1
2
dP0 = 11. (There are two additional sequential tasks resulting in a

whole program DoP of 13.) P0’s controller then transitions to State 3 and performs

an increasing gradient ascent. By t = 3.6s, all eight program copies have launched,

and the daemon reallocates threads across them, assigning a DoP of three to each

copy. In response, P0’s controller transitions to State 2 and measures the parallel

performance of configuration (S,P1,S), which is now the only feasible parallel con-

 0

 5

 10

 15

 20

 25

0.0 2.3 3.6 5.4 10.0 45.5 47.7 49.4 51.5 54.955.9 57.5

0.0

5.0

10.0

15.0

20.0

25.0

D
eg

re
e

o
f

P
a
ra

ll
el

is
m

E
n
er

g
y
 (

in
 k

J)

Time (in seconds)

(Np) = (1,1,1,4,4,4,4,5)

MONINIT CAL OPT CAL OPT CAL OPT MON CAL OPT

System DoP
Program DoP

Energy

Figure 8.9: Controller optimizes multiple programs simultaneously

100

figuration. It then computes the configuration’s efficiency and compares the efficiency

with that of sequential execution, determining at time t = 5.4s that sequential ex-

ecution is preferred, and returning two threads back to the daemon. Spare threads

are redistributed by the daemon among the copies. By t = 10.0s, the platform-wide

optimization algorithm converges (at {Np} = {1, 1, 1, 4, 4, 4, 4, 5}), all copies enter

their stable configurations, and the controllers enter State 4. At t = 45.5s, the fastest

copy terminates, yielding its (five) threads back to the daemon, which in turn initiates

another round of optimization. The figure shows how, barring the short optimiza-

tion phases, Parcae enables full use of all threads on the platform. Compared to

OS scheduling of the eight copies of the baseline 24-thread parallel version, Parcae

reduces total execution time by 12.8%, and energy consumption by 29.1%.

Interestingly, Parcae benefits increase as the number of concurrently executing

programs increases. With 16 copies, execution time and energy improve by 18.3%

and 52.7%, respectively. With 24 copies, improvements reach 22.4% and 22.4%, re-

spectively. The co-operative release and acquisition of resources by Parcae reduces

contention among concurrently executing programs. Scheduling and memory con-

tention significantly overwhelm the benefits of parallel execution when copies of the

baseline parallelized programs execute each with 24 threads.

8.3.5 Optimality: A Closer Look

While Parcae delivers significant performance improvements, its achievements are still

short of optimal execution determined via offline exhaustive search (see Table 8.8) for

two main reasons. For blackscholes, geti, md5sum, and potrace, Parcae identifies

the optimal configuration, but converges to that solution after first spending multiple

iterations in SEQ and other sub-optimal schemes. In addition to the above overhead,

for kmeans, ks, and url, the assumption about unimodal performance characteristic

with increasing DoP (discussed in Section 6.4.2) does not hold; Parcae identifies a

101

local optimum, which is worse than the global optimum. The Parcae gradient-ascent

algorithm can be enhanced to escape from local optima by employing techniques such

as simulated annealing. We leave this to future work.

8.3.6 Morta and Decima Overheads

The execution time improvements reported in Table 8.8 include all overheads of the

system. Table 8.9 shows each overhead independently. The first three overheads are

recurring (incurred on each instance of each task). To quantify them, we executed

microbenchmarks designed to exercise each overhead independently. All aspects of

the run-time control system are implemented in shared memory, thus making the

run-time operations extremely lightweight. In the common case, task instances are

executed on the same core, resulting in low-latency access to cross-iteration depen-

dency data. Timestamp acquisitions are not serializing instructions; their latencies

may be masked naturally via hardware exploiting instruction-level parallelism. The

recurring overheads are less than 0.1% of task execution times for all benchmarks.

“Pause-Resume” and “Parallelism Reconfiguration” overheads are application-specific

and DoP-specific. Overheads shown are for blackscholes with maximum DoP.

Operation
Overhead

Platform 1 Platform 2 Unit
Task Migratability
- Task Activation 11 7 nanoseconds per task instance
- Data Management 3 2 nanoseconds per dependency

per task instance
Status Query 8 5 nanoseconds per query
Monitoring 44 15 nanoseconds per timestamp
Pause-Resume 33 4 milliseconds per pause-resume
Parallelism

35 2
milliseconds per

Reconfiguration reconfiguration

Table 8.9: Recurring run-time overheads

102

Chapter 9

Related Work

Prior work falls into four categories corresponding to the level of the system stack at

which changes for flexible execution are proposed.

9.1 Parallel Programming Models

Programming models for parallelization and flexible execution can be categorized into

general-purpose models and domain-specific models.

9.1.1 General-purpose Parallel Programming Models

Several interfaces and associated run-time systems have been proposed to adapt par-

allel program execution to run-time variability [16, 25, 28, 45, 59, 77, 85, 90, 94, 97, 99].

However, each interface is tied to a specific performance goal, specific mechanism of

adaptation, or a specific parallelism type. Most run-time systems enabling the paral-

lel programming interfaces are based on work stealing [2, 8, 17, 50, 77, 93]. They sup-

port task parallelism for independent tasks (parallel function calls) and their sched-

ulers optimize only for throughput. The Cilk++ and Intel TBB schedulers support

DOALL [3] loop parallelism, again targeting the only goal of throughput maximiza-

103

tion. Cilk++ requires the programmer to specify the degree of parallelism (DoP)

explicitly by trying out various values, thus limiting performance portability and in-

creasing programming effort since this needs to be done for each loop of each applica-

tion [50,93]. Intel TBB supports two partitioners—the Static Partitioner (SP), which

requires the programmer to explicitly specify the degree of parallelism [79]; and the

Auto Partitioner (AP), which frees the programmer from choosing the degree of par-

allelism, but is not run-time adaptive [93]. The Lazy Splitting (LS) scheduler [12,93]

is run-time adaptive. There are several points of difference between Parcae and LS:

(i) Parcae handles conditional loops whereas LS handles only counted loops (loops

with static trip counts, e.g., for i in 1:N do stmt); (ii) Parcae can optimize mul-

tiple loop-level parallelism types whereas LS handles only DOALL parallel loops;

(iii) the Parcae run-time system, in conjunction with Nona and the Parcae API, opti-

mizes across multiple parallelizations of the same parallel region, whereas Intel TBB

with LS has no such capability; and (iv) Morta can optimize for different performance

goals specified by the administrator, whereas LS can optimize only for throughput.

Navarro et al. developed an analytical model for pipeline parallelism to characterize

performance and efficiency of pipeline parallel implementations [61]. Suleman et al.

proposed Feedback Directed Pipelining (FDP) [85]. Moreno et al. proposed a similar

technique called Dynamic Pipeline Mapping (DPM) [59]. These run-time systems op-

timize a single program in isolation. By contrast, Parcae optimizes multiple programs

running concurrently.

9.1.2 Domain-specific Parallel Programming Models

Traditionally, multiple levels of parallelism across tasks and within each task have

been investigated in the database research community for SQL queries [24,33,88,89].

For network service codes, programming models, such as the Stage Event-Driven

Architecture (SEDA) [99] and Aspen [94], have been proposed. Blagojevic et al. have

104

proposed user-level schedulers that dynamically “rightsize” the loop nesting level and

extent of parallelism on a Cell Broadband Engine system [16]. All these systems

are typically restricted to a single form of parallelism (either loop-level DOALL, task

parallelism, or pipeline parallelism) that is dominant in the domain. They do not

support multiple performance goals and constraints. General-purpose applications

tend to have multiple types of parallelism in loop nests, and different goals and

constraints.

9.2 Compiler and User-level Run-time Systems

Most work on automatic parallelization at compile-time (e.g., [3, 55, 75, 95, 104]) or

run-time [18, 20, 21, 23, 35, 46, 68, 70, 72, 74, 76, 80, 92, 103] is primarily concerned with

parallelism discovery and extraction. Parcae addresses the complementary problem

of parallelism optimization.

Little attention has been given so far to compiling general-purpose applications

with flexible execution capabilities in mind. Ko et al. describe a system that uses a

simple heuristic to find the right DoP for each level (inter-node, intra-node) in a clus-

ter environment, focusing on applications with MPI/OpenMP parallelizations [45].

To reduce search time, their compiler creates a program slice, a small code segment

isolated from a program that represents its performance behavior. Wang et al. use

machine learning to predict the best number of threads for a given program on a

particular hardware platform [97]. They apply their technique to a single loop in

isolation. Luk et al. use a dynamic compilation approach and curve fitting to find the

optimal distribution of work between a CPU and GPU [52]. Adaptive Thread Man-

agement throttles the number of threads allocated to compiler-parallelized DOALL

loops at run-time, as their measured speedup exceeds or falls short of the expected

speedup [32]. The ADAPT dynamic optimizer applies loop optimizations at run-time

105

to create new variants of code [96]. Parcae employs multiple parallelization schemes

prepared at compile-time to support efficient optimization at run-time, and opti-

mizes multiple programs co-scheduled on a system. Diniz and Rinard implemented

“dynamic feedback” in the context of a parallelizing compiler to determine the best

synchronization policy from among those exposed by the compiler [29]. Using com-

mutativity analysis, the compiler parallelizes a code region, applies multiple synchro-

nization schemes with varying costs, and exposes each code version with a particular

synchronization scheme to the run-time system. At run-time, the system measures

the performance of each synchronization scheme during the “sampling phase”, and

uses the best performing scheme during the “production phase”. Parcae differs from

this system in various respects. First, Parcae addresses the more general problem of

determining optimal parallelism configurations. The Parcae compiler parallelizes a

code region in multiple ways (employing different forms of parallelism such as pipeline

parallelism and data parallelism, potentially using different synchronization schemes)

and exposes them to the run-time system. Second, “dynamic feedback” employs fixed,

user-specified durations of the sampling and production phases, and employs a single

sampling phase and a single production phase. This strategy fails to detect phase

changes. By contrast, the Parcae run-time system periodically monitors execution

to detect phase changes. Third, “dynamic feedback” operates on a single program

in isolation, whereas Parcae optimizes multiple programs co-scheduled on a system.

Fourth, “dynamic feedback” uses synchronous switching between program configu-

rations, which can be quite expensive (as Diniz and Rinard remark [29]). Parcae

addresses this by a novel mechanism for efficient pausing of one set of communicating

tasks, followed by the resumption of the parallel region’s execution by a different set

of communicating tasks.

Auto-tuning is an approach for optimizing performance-impacting parameters.

In linear algebra algorithms, a very important parameter is the blocking or tiling

106

factor, which directly effects the data cache utilization. Such parameters can be

provided as compile-time variables in order to support performance portability across

different platforms [5, 10, 43]. However, not all important architectural variables can

be handled by such parameterized adaptation (e.g. choice of combined or separate

multiply and add instructions); some choices require changing the underlying source

code. This type of adaptation involves generating distinct implementations for the

same operation [5]. Frameworks such as PetaBricks [4] and Elastin [62] leverage

alternative code implementations exposed by programmers. Parcae automatically

generates multiple versions of a parallel region from standard source code, and selects

and tunes them at run-time based on performance feedback.

9.3 Operating Systems

Bird and Smith outline the need to revamp operating system schedulers for the multi-

core era [15]. Specifically, they too emphasize the need for performance aware convex

optimization for resource allocation. Parcae is a real implementation of a parallelism

optimization and resource allocation manager that uses convex optimization con-

cepts. The number of threads active in an application’s thread-pool is determined

across runs of an application by the operating system [42]. Parcae optimizes paral-

lelism as applications are executing, not across invocations alone. Peter et al. outline

design principles for future operating systems for multicores including the need for

tighter integration between parallel application run-time systems and operating sys-

tem schedulers [67]. Parcae demonstrates the benefits of such an integration. Parcae’s

monitoring service could serve as the application and platform monitoring module,

while its resource management daemon could serve as the parallel resource alloca-

tion and management module in operating systems for manycore processors such as

Barrelfish [11] and fos [100].

107

9.4 Hardware

CoreFusion [39] consists of a hardware design that can dynamically adjust itself to

best match the parallelism configuration of the program that it executes. In this

approach, a group of relatively thin cores dynamically morphs into a larger processor

with more micro-architectural resources to balance throughput and latency. Wells

et al. propose hardware techniques for multicore virtualization to enable resource

management applications for improving performance and reliability [98]. Ding et al.

propose use of helper threads that monitor hardware events and use curve fitting to

determine the ideal number of cores to employ in order to minimize the energy-delay

product (EDP) when the availability of cores varies [28]. Curtis-Maury et al. employ

an IPC prediction scheme to determine the right balance between the number of

SMT threads/core and number of cores to be used by an application for near-optimal

energy-efficient performance [25]. Chen et al. proposed network-driven processing

(NDP) for chip multiprocessors that dynamically maps threads to cores at run-time

using hardware thread management mechanisms [22].

108

Chapter 10

Future Directions and Conclusions

This dissertation introduced a framework for enabling performance portability of

parallel programs. This chapter discusses potential avenues of future research opened

by the research presented in this dissertation, and summarizes the conclusions of the

research described in this dissertation.

10.1 Avenues of Future Research

1. Port to restricted shared-memory processors: Future multicore or manycore

processors may have restricted shared-memory domains [44, 100]. The data

structures and optimization algorithms used by the Morta run-time system may

need to be re-factored appropriately for non-shared memory execution in order

to use Morta to control execution of parallel programs on such processors.

2. Orchestrate execution on heterogeneous processors: Future processors may be

heterogeneous with a few powerful cores and many smaller cores [36,48]. They

may share the same instruction set architecture. Morta can be extended rela-

tively easily to schedule heavyweight tasks (determined via application feature

monitoring) on to powerful cores.

109

Cooperative CPU-GPU parallelizations have demonstrated significant perfor-

mance gains over CPU-only or GPU-only parallelization [41]. For best per-

formance across CPUs and GPUs that have differing strengths, applications

should be parallelized at multiple granularities. Depending on the cluster ar-

chitecture, different parallelizations will be more or less efficient. Adapting to

varying resources dynamically is especially important for large scientific clus-

ters, where the number of nodes available for computation varies dramatically

over time. Parcae can be extended to manage execution on such CPU-GPU

clusters. More generally, on large-scale datacenters, Parcae can be scaled up to

maximize utilization and minimize power consumption of clusters of multicore

processors.

3. Enable flexible parallel execution on embedded platforms: Morta can be used as

a lightweight run-time system for embedded multicore processors. On devices

such as smartphones, Parcae with its ability to optimally trade performance and

power can switch parallel program execution between performance-optimal and

energy-optimal according to the state of the battery. Code-size optimizations

that involve sharing parts of code across multiple parallel versions can be useful

to reduce the negative performance impact on the instruction cache behavior of

multi-versioned code.

4. Optimize for more complicated user-specified fitness functions: Interactive ap-

plications can have sophisticated fitness functions [15]. As an example, consider

image search. Humans perceive system response as “instantaneous” provided

top search results are returned within 100 milliseconds [19, 63]. User satisfac-

tion begins to suffer when the latency increases above the threshold of 100

milliseconds. In other words, the fitness function is constant up to a latency of

100 milliseconds and falls, perhaps linearly, beyond latency of 100 milliseconds.

110

Morta can be made aware of such complicated fitness functions that may give

it more slack to re-allocate resources.

5. Incorporate quality of service (QoS) metric: QoS can be added as another

dimension in the performance-power-energy trade-off space in which Parcae de-

termines the optimal operating point, given specific performance goals. Existing

QoS auto-tuning frameworks can be incorporated into Parcae [9, 37].

6. Orchestrate speculative parallel execution: Speculation is a key enabler of par-

allelism in general-purpose programs [18, 69, 72, 92, 104]. Previous studies have

shown that excessive speculation can lead to wasted computation as more trans-

actions are aborted, resulting in energy-inefficient execution [78]. Speculation

can be throttled dynamically at run-time, depending on observed misspecu-

lation rates. Parcae can be extended such that the Nona compiler exposes

misspeculation frequency as an application feature that Morta can monitor,

and Morta can throttle the DoP to reduce misspeculation. This may improve

energy efficiency since the amount of computation that is discarded is reduced.

In the extreme, Parcae could choose a parallel version that employs pessimistic

synchronization using locks, for example, as opposed to a parallel version that

employs optimistic synchronization via transactions.

10.2 Conclusions

Parallel applications must execute robustly across a variety of execution environments

arising out of variability in workload characteristics, platform characteristics, and per-

formance goals. For this, a separation of concerns of parallel application development,

its optimization, and use, is required. Parcae, introduced in this dissertation, enables

such a separation. Using the Parcae API, the application developer can specify all

of the potential parallelism in loop nests just once; the mechanism developer can

111

implement mechanisms for parallelism adaptation; and the administrator can select

a suitable mechanism that implements a performance goal of system use. As a result

of Parcae, they can be confident that the specified performance goals are met in a

variety of application execution environments. Parcae improved the response time

characteristics of four web service type applications to dominate the characteristics

of the best static parallelizations. The throughputs of two batch-oriented applications

were improved by 136% (geomean) over their original implementations. Throughput

was also maximized under both number of cores and power consumption constraints.

Applications developed in the sequential programming model (including legacy

applications) are automatically enhanced to execute flexibly on multicore platforms

by the Nona compiler. The Parcae run-time system, comprising the Decima monitor

and the Morta executor, optimizes the execution of multiple flexible programs run-

ning on a shared parallel platform. The Parcae run-time system determines optimal

degrees of parallelism for each parallelization scheme, as well as selects the optimal

parallelization scheme from among multiple schemes prepared by the Nona compiler

or programmer for each parallel region. Compared to conventional parallel execution

of seven benchmarks, Parcae reduced execution time by -1.39% (a small slowdown)

to 41.94% with concomitant energy savings of 23.9% to 83.9%.

Use of the Parcae API and consequent performance improvements suggest that

the ability to expose and optimize parallelism across multiple levels in a loop nest,

the ability to express multiple types of parallelism simultaneously, and the ability to

expose application features to the run-time system are all crucial to maximize parallel

program performance. An optimization schema consisting of trying a new parallelism

configuration, measuring its fitness vis-à-vis the specified performance goal, and trig-

gering reconfiguration if the current configuration is unfit, enables the specification of

different, complex performance goals. The process of online parallelism reconfigura-

tion is an essential component of performance optimization in the face of variability

112

in the execution environment, and is complicated by inter-task communication. This

dissertation described means for low-overhead online parallelism reconfiguration while

respecting original program semantics. For performance guarantees, such as minimum

throughput requirement or maximum power consumption constraint, this dissertation

demonstrated that online closed-loop control is key. Finally, platform-wide experi-

ments with the Parcae run-time system suggest that cooperative use of parallel re-

sources, as orchestrated by a platform-wide resource manager in concert with each

application’s run-time system, is essential to maximize platform utilization. Tighter

integration between the application-level run-time system and the operating system’s

scheduler yields significant performance gains compared to when the two operate in

isolation.

The Parcae software system is designed to support additional, new parallelization

optimizations and different, potentially adaptive platform-level optimization objec-

tives. With the introduction of architectures with more cores, heterogeneous cores,

complex memory hierarchies and communication fabrics, and sophisticated perfor-

mance goals demanded by users, a holistic, automatic, dynamic, and generally appli-

cable parallelism tuning system will only become more relevant.

113

Bibliography

[1] The OpenMP API specification. http://www.openmp.org.

[2] K. Agrawal, Y. He, and C. E. Leiserson. Adaptive work stealing with parallelism

feedback. In Proceedings of the 12th ACM SIGPLAN Symposium on Principles

and Practice of Parallel Programming (PPoPP), pages 112–120, 2007.

[3] R. Allen and K. Kennedy. Optimizing Compilers for Modern Architectures: A

Dependence-based Approach. Morgan Kaufmann Publishers Inc., 2002.

[4] J. Ansel, C. Chan, Y. L. Wong, M. Olszewski, Q. Zhao, A. Edelman, and

S. Amarasinghe. PetaBricks: A language and compiler for algorithmic choice. In

Proceedings of the 30th ACM SIGPLAN Conference on Programming Language

Design and Implementation (PLDI), 2009.

[5] C. W. Antoine, A. Petitet, and J. J. Dongarra. Automated empirical optimiza-

tion of software and the ATLAS project. Parallel Computing, 27:2001, 2000.

[6] APC metered rack PDU user’s guide. http://www.apc.com.

[7] Apple Open Source. md5sum: Message Digest 5 computation.

http://www.opensource.apple.com/darwinsource.

[8] N. S. Arora, R. D. Blumofe, and C. G. Plaxton. Thread scheduling for multipro-

grammed multiprocessors. In Proceedings of the 10th Annual ACM Symposium

on Parallel Algorithms and Architectures (SPAA), pages 119–129, 1998.

114

[9] W. Baek and T. M. Chilimbi. Green: A framework for supporting energy-

conscious programming using controlled approximation. In Proceedings of the

31st ACM SIGPLAN Conference on Programming Language Design and Im-

plementation (PLDI), pages 198–209, 2010.

[10] M. M. Baskaran, N. Vydyanathan, U. K. R. Bondhugula, J. Ramanujam,

A. Rountev, and P. Sadayappan. Compiler-assisted dynamic scheduling for

effective parallelization of loop nests on multicore processors. In Proceedings

of the 14th ACM SIGPLAN Symposium on Principles and Practice of Parallel

Programming (PPoPP), pages 219–228, 2009.

[11] A. Baumann, P. Barham, P.-E. Dagand, T. Harris, R. Isaacs, S. Peter,

T. Roscoe, A. Schüpbach, and A. Singhania. The multikernel: A new OS ar-

chitecture for scalable multicore systems. In Proceedings of the ACM SIGOPS

22nd Symposium on Operating Systems Principles (SOSP), pages 29–44, 2009.

[12] L. Bergstrom, M. Rainey, J. Reppy, A. Shaw, and M. Fluet. Lazy tree splitting.

In Proceedings of the 15th International Conference on Functional Programming

(ICFP), pages 93–104, 2010.

[13] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The PARSEC benchmark suite:

Characterization and architectural implications. In Proceedings of the 17th In-

ternational Conference on Parallel Architectures and Compilation Techniques

(PACT), 2008.

[14] O. Bilgir, M. Martonosi, and Q. Wu. Exploring the potential of CMP core

count management on data center energy savings. In Proceedings of the 3rd

Workshop on Energy Efficient Design (WEED), 2011.

115

[15] S. L. Bird and B. J. Smith. PACORA: Performance aware convex optimization

for resource allocation. In Proceedings of the 3rd USENIX Workshop on Hot

Topics in Parallelism (HotPar: Posters), 2011.

[16] F. Blagojevic, D. S. Nikolopoulos, A. Stamatakis, C. D. Antonopoulos, and

M. Curtis-Maury. Runtime scheduling of dynamic parallelism on accelerator-

based multi-core systems. Parallel Computing, 33(10-11):700–719, 2007.

[17] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, K. H. Randall,

and Y. Zhou. Cilk: An efficient multithreaded runtime system. In Proceedings

of the 5th ACM SIGPLAN Symposium on Principles and Practice of Parallel

Programming (PPoPP), 1995.

[18] M. Bridges, N. Vachharajani, Y. Zhang, T. Jablin, and D. August. Revisiting

the sequential programming model for multi-core. In Proceedings of the 40th

Annual IEEE/ACM International Symposium on Microarchitecture (MICRO),

pages 69–84, 2007.

[19] J. D. Brutlag, H. Hutchinson, and M. Stone. User preference and search engine

latency. In JSM Proceedings, Quality and Productivity Research Section, 2008.

[20] P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra, K. Ebcioglu,

C. von Praun, and V. Sarkar. X10: An object-oriented approach to non-uniform

cluster computing. In Proceedings of the 20th Annual ACM SIGPLAN Con-

ference on Object-Oriented Programming Systems Languages and Applications

(OOPSLA), pages 519–538, 2005.

[21] D.-K. Chen, J. Torrellas, and P.-C. Yew. An efficient algorithm for the run-time

parallelization of DOACROSS loops. In Proceedings of the 1994 ACM/IEEE

Conference on Supercomputing (SC), pages 518 –527, Nov. 1994.

116

[22] J. Chen, P. Juang, K. Ko, G. Contreras, D. Penry, R. Rangan, A. Stoler, L.-S.

Peh, and M. Martonosi. Hardware-modulated parallelism in chip multipro-

cessors. In Proceedings of the 2005 Workshop on Design, Architecture, and

Simulation of Chip Multi-Processors, 2005.

[23] M. K. Chen and K. Olukotun. The Jrpm system for dynamically parallelizing

java programs. In Proceedings of the 30th Annual International Symposium on

Computer Architecture (ISCA), pages 434–446, 2003.

[24] C. B. Colohan, A. Ailamaki, J. G. Steffan, and T. C. Mowry. Optimistic intra-

transaction parallelism on chip multiprocessors. In Proceedings of the 31st In-

ternational Conference on Very Large Data Bases (VLDB), pages 73–84, 2005.

[25] M. Curtis-Maury, J. Dzierwa, C. D. Antonopoulos, and D. S. Nikolopoulos. On-

line power-performance adaptation of multithreaded programs using hardware

event-based prediction. In Proceedings of the 20th International Conference on

Supercomputing (ICS), pages 157–166, 2006.

[26] R. Cytron. DOACROSS: Beyond vectorization for multiprocessors. In Proceed-

ings of the 1986 International Conference on Parallel Processing (ICPP), pages

836–884, 1986.

[27] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck. Ef-

ficiently computing static single assignment form and the control dependence

graph. ACM Transactions on Programming Languages and Systems, 13(4):451–

490, October 1991.

[28] Y. Ding, M. Kandemir, P. Raghavan, and M. J. Irwin. Adapting application

execution in CMPs using helper threads. Journal of Parallel and Distributed

Computing, 69(9):790 – 806, 2009.

117

[29] P. Diniz and M. Rinard. Dynamic feedback: An effective technique for adap-

tive computing. In Proceedings of the 18th ACM SIGPLAN Conference on

Programming Language Design and Implementation (PLDI), 1997.

[30] J. Ferrante, K. J. Ottenstein, and J. D. Warren. The program dependence graph

and its use in optimization. ACM Transactions on Programming Languages and

Systems, 9:319–349, July 1987.

[31] GNU Image Manipulation Program. http://www.gimp.org.

[32] M. W. Hall and M. Martonosi. Adaptive parallelism in compiler-parallelized

code. In Proceedings of the 2nd SUIF Compiler Workshop, 1997.

[33] N. Hardavellas, I. Pandis, R. Johnson, N. Mancheril, A. Ailamaki, and B. Fal-

safi. Database Servers on Chip Multiprocessors: Limitations and Opportunities.

In Proceedings of the Biennial Conference on Innovative Data Systems Research

(CIDR), 2007.

[34] J. L. Hellerstein, V. Morrison, and E. Eilebrecht. Applying control theory in

the real world: Experience with building a controller for the .NET thread pool.

Performance Evaluation Review, 37:38–42, 2010.

[35] B. Hertzberg and K. Olukotun. Runtime automatic speculative parallelization.

In Proceedings of the Annual International Symposium on Code Generation and

Optimization (CGO), pages 64–73, 2011.

[36] M. D. Hill and M. R. Marty. Amdahl’s law in the multicore era. IEEE Computer,

2008.

[37] H. Hoffmann, S. Sidiroglou, M. Carbin, S. Misailovic, A. Agarwal, and M. Ri-

nard. Dynamic knobs for responsive power-aware computing. In Proceedings of

118

the Sixteenth International Symposium on Architectural Support for Program-

ming Languages and Operating Systems (ASPLOS), pages 199–212, 2011.

[38] The Intel C/C++ Compiler. http://www.intel.com/software/products/compilers.

[39] E. Ipek, M. Kirman, N. Kirman, and J. F. Martinez. Core fusion: Accommo-

dating software diversity in chip multiprocessors. ACM SIGARCH Computer

Architecture News, 35(2):186–197, 2007.

[40] C. Isci, A. Buyuktosunoglu, C.-Y. Cher, P. Bose, and M. Martonosi. An analysis

of efficient multi-core global power management policies: Maximizing perfor-

mance for a given power budget. In Proceedings of the 39th Annual IEEE/ACM

International Symposium on Microarchitecture (MICRO), pages 347–358, 2006.

[41] T. B. Jablin, P. Prabhu, J. A. Jablin, N. P. Johnson, S. R. Beard, and D. I. Au-

gust. Automatic CPU-GPU communication management and optimization. In

Proceedings of the 32nd ACM SIGPLAN Conference on Programming Language

Design and Implementation (PLDI), 2011.

[42] T. Karcher and V. Pankratius. Run-time automatic performance tuning for

multicore applications. In Proceedings of the International Euro-Par Conference

on Parallel Processing (Euro-Par), pages 3–14, 2011.

[43] A. Kejariwal, A. Nicolau, A. V. Veidenbaum, U. Banerjee, and C. D. Poly-

chronopoulos. Efficient scheduling of nested parallel loops on multi-core sys-

tems. In Proceedings of the 2009 International Conference on Parallel Process-

ing (ICPP), pages 74–83, 2009.

[44] H. Kim, A. Raman, F. Liu, J. W. Lee, and D. I. August. Scalable specula-

tive parallelization on commodity clusters. In Proceedings of the 43rd Annual

IEEE/ACM International Symposium on Microarchitecture (MICRO), 2010.

119

[45] W. Ko, M. N. Yankelevsky, D. S. Nikolopoulos, and C. D. Polychronopoulos.

Effective cross-platform, multilevel parallelism via dynamic adaptive execution.

In Proceedings of the 16th International Parallel and Distributed Processing

Symposium (IPDPS), page 130, 2002.

[46] M. Kulkarni, K. Pingali, B. Walter, G. Ramanarayanan, K. Bala, and L. P.

Chew. Optimistic parallelism requires abstractions. In Proceedings of the 28th

ACM SIGPLAN Conference on Programming Language Design and Implemen-

tation (PLDI), pages 211–222, 2007.

[47] A. Kumar, L. Shang, L.-S. Peh, and N. K. Jha. HybDTM: A coordinated

hardware-software approach for dynamic thermal management. In Proceedings

of the 43rd ACM/IEEE Design Automation Conference (DAC), pages 548–553,

2006.

[48] R. Kumar, D. M. Tullsen, P. Ranganathan, N. P. Jouppi, and K. I. Farkas.

Single-ISA heterogeneous multi-core architectures for multithreaded workload

performance. In ISCA ’04: Proceedings of the 31st Annual International Sym-

posium on Computer Architecture, ISCA ’04, pages 64–, Washington, DC, USA,

2004. IEEE Computer Society.

[49] C. Lattner and V. Adve. LLVM: A compilation framework for lifelong pro-

gram analysis & transformation. In Proceedings of the Annual International

Symposium on Code Generation and Optimization (CGO), pages 75–86, 2004.

[50] C. E. Leiserson. The Cilk++ concurrency platform. In Proceedings of the 46th

ACM/IEEE Design Automation Conference (DAC), pages 522–527, 2009.

[51] LLVM Test Suite Guide. http://llvm.org/docs/TestingGuide.html.

[52] C.-K. Luk, S. Hong, and H. Kim. Qilin: Exploiting parallelism on heterogeneous

multiprocessors with adaptive mapping. In Proceedings of the 42nd Annual

120

IEEE/ACM International Symposium on Microarchitecture (MICRO), pages

45–55, 2009.

[53] Q. Lv, W. Josephson, Z. Wang, M. Charikar, and K. Li. Ferret: A toolkit for

content-based similarity search of feature-rich data. ACM SIGOPS Operating

Systems Review, 40(4):317–330, 2006.

[54] J. Mars, N. Vachharajani, M. L. Soffa, and R. Hundt. Contention aware ex-

ecution: Online contention detection and response. In Proceedings of the An-

nual International Symposium on Code Generation and Optimization (CGO),

Toronto, Canada, 2010.

[55] M. Mehrara, J. Hao, P.-C. Hsu, and S. Mahlke. Parallelizing sequential applica-

tions on commodity hardware using a low-cost software transactional memory.

In Proceedings of the 2009 ACM SIGPLAN Conference on Programming Lan-

guage Design and Implementation, 2009.

[56] D. Meisner, B. T. Gold, and T. F. Wenisch. PowerNap: eliminating server idle

power. In Proceedings of the Fourteenth International Symposium on Architec-

tural Support for Programming Languages and Operating Systems (ASPLOS),

pages 205–216, 2009.

[57] G. Memik, W. H. Mangione-Smith, and W. Hu. NetBench: A benchmarking

suite for network processors. In Proceedings of the 2001 IEEE/ACM Interna-

tional Conference on Computer-Aided Design (ICCAD), 2001.

[58] C. C. Minh, J. Chung, C. Kozyrakis, and K. Olukotun. STAMP: Stanford

Transactional Applications for Multi-Processing. In Proceedings of the IEEE

International Symposium on Workload Characterization (IISWC), 2008.

[59] A. Moreno, E. Csar, A. Guevara, J. Sorribes, T. Margalef, and E. Luque. Dy-

namic pipeline mapping (DPM). In Proceedings of the International Euro-Par

121

Conference on Parallel Processing (Euro-Par), volume 5168, pages 295–304.

2008.

[60] R. Narayanan, B. Ozisikyilmaz, J. Zambreno, G. Memik, and A. Choudhary.

Minebench: A benchmark suite for data mining workloads. 2006.

[61] A. Navarro, R. Asenjo, S. Tabik, and C. Cascaval. Analytical modeling of

pipeline parallelism. In Proceedings of the 18th International Conference on

Parallel Architecture and Compilation Techniques (PACT), pages 281–290,

2009.

[62] I. Neamtiu. Elastic executions from inelastic programs. In Proceedings of the

6th International Symposium on Software Engineering for Adaptive and Self-

Managing Systems (SEAMS), 2011.

[63] J. Nielsen. Usability Engineering. Academic Press, 1993.

[64] G. Ottoni. Global Instruction Scheduling for Multi-Threaded Architectures. PhD

thesis, Department of Computer Science, Princeton University, Princeton, New

Jersey, United States, 2008.

[65] G. Ottoni, R. Rangan, A. Stoler, and D. I. August. Automatic thread ex-

traction with decoupled software pipelining. In Proceedings of the 38th Annual

IEEE/ACM International Symposium on Microarchitecture (MICRO), pages

105–118, 2005.

[66] D. A. Penry. Multicore diversity: A software developer’s nightmare. ACM

SIGOPS Operating Systems Review, 43:100–101, 2009.

[67] S. Peter, A. Schüpbach, P. Barham, A. Baumann, R. Isaacs, T. Harris, and

T. Roscoe. Design principles for end-to-end multicore schedulers. In Proceedings

122

of the 2nd USENIX Workshop on Hot Topics in Parallelism (HotPar), pages

10–10, 2010.

[68] C. D. Polychronopoulos. The hierarchical task graph and its use in auto-

scheduling. In Proceedings of the 5th International Conference on Supercom-

puting (ICS), pages 252–263, 1991.

[69] M. K. Prabhu and K. Olukotun. Using thread-level speculation to simplify

manual parallelization. In Proceedings of the 9th ACM SIGPLAN Symposium

on Principles and Practice of Parallel Programming (PPoPP), pages 1–12, 2003.

[70] M. K. Prabhu and K. Olukotun. Exposing speculative thread parallelism in

SPEC2000. In Proceedings of the 10th ACM SIGPLAN Symposium on Princi-

ples and Practice of Parallel Programming (PPoPP), pages 142–152, 2005.

[71] P. Prabhu, S. Ghosh, Y. Zhang, N. P. Johnson, and D. I. August. Commutative

set: A language extension for implicit parallel programming. In Proceedings of

the 32nd ACM SIGPLAN Conference on Programming Language Design and

Implementation (PLDI), 2011.

[72] A. Raman, H. Kim, T. R. Mason, T. B. Jablin, and D. I. August. Speculative

parallelization using software multi-threaded transactions. In Proceedings of the

Fifteenth International Symposium on Architectural Support for Programming

Languages and Operating Systems (ASPLOS), 2010.

[73] A. Raman, H. Kim, T. Oh, J. W. Lee, and D. I. August. Parallelism orches-

tration using DoPE: the degree of parallelism executive. In Proceedings of the

32nd ACM SIGPLAN Conference on Programming Language Design and Im-

plementation (PLDI), 2011.

[74] A. Raman, G. Yorsh, M. Vechev, and E. Yahav. Sprint: Speculative prefetching

of remote data. In Proceedings of the 26th Annual ACM SIGPLAN Conference

123

on Object-Oriented Programming Systems Languages and Applications (OOP-

SLA), pages 259–274, 2011.

[75] E. Raman, G. Ottoni, A. Raman, M. Bridges, and D. I. August. Parallel-

stage decoupled software pipelining. In Proceedings of the Annual International

Symposium on Code Generation and Optimization (CGO), 2008.

[76] L. Rauchwerger, N. M. Amato, and D. A. Padua. A scalable method for

run-time loop parallelization. International Journal of Parallel Programming

(IJPP), 26:537–576, 1995.

[77] J. Reinders. Intel Threading Building Blocks. O’Reilly & Associates, Inc., 2007.

[78] J. Renau, K. Strauss, L. Ceze, W. Liu, S. R. Sarangi, J. Tuck, and J. Torrellas.

Energy-efficient thread-level speculation. IEEE Micro, 26:80–91, 2006.

[79] A. Robison, M. Voss, and A. Kukanov. Optimization via reflection on work

stealing in TBB. In Proceedings of the 22nd International Parallel and Dis-

tributed Processing Symposium (IPDPS), pages 1–8, 2008.

[80] J. Saltz, R. Mirchandaney, and R. Crowley. Run-time parallelization and

scheduling of loops. IEEE Transactions on Computers, 40, 1991.

[81] P. Selinger. potrace: Transforming bitmaps into vector graphics.

http://potrace.sourceforge.net.

[82] G. Semeraro, G. Magklis, R. Balasubramonian, D. H. Albonesi, S. Dwarkadas,

H. Dwarkadas, and M. L. Scott. Energy-efficient processor design using multiple

clock domains with dynamic voltage and frequency scaling. In Proceedings of

the 8th International Symposium on High-Performance Computer Architecture

(HPCA), pages 29–40, 2002.

124

[83] J. C. Spall. Introduction to Stochastic Search and Optimization. Wiley-

Interscience, 2003.

[84] Standard Performance Evaluation Corporation (SPEC).

http://www.spec.org.

[85] M. A. Suleman, M. K. Qureshi, Khubaib, and Y. N. Patt. Feedback-directed

pipeline parallelism. In Proceedings of the 19th International Conference on

Parallel Architecture and Compilation Techniques (PACT), pages 147–156,

2010.

[86] M. A. Suleman, M. K. Qureshi, and Y. N. Patt. Feedback-driven threading:

Power-efficient and high-performance execution of multi-threaded workloads on

CMPs. In Proceedings of the Thirteenth International Symposium on Architec-

tural Support for Programming Languages and Operating Systems (ASPLOS),

pages 277–286, 2008.

[87] H. Sutter. The free lunch is over: A fundamental turn toward concurrency in

software. Dr. Dobb’s Journal, 30(3), 2005.

[88] Sybase adaptive server. http://sybooks.sybase.com/nav/base.do.

[89] J. Tellez and B. Dageville. Method for Computing the Degree of Parallelism in

a Multi-user Environment. United States Patent No. 6,820,262. Oracle Inter-

national Corporation, 2004.

[90] The IEEE and the Open Group. The Open Group Base Specifications Issue 6

IEEE Std 1003.1, 2004 Edition. 2004.

[91] W. Thies, V. Chandrasekhar, and S. Amarasinghe. A practical approach to

exploiting coarse-grained pipeline parallelism in C programs. In Proceedings

125

of the 40th Annual IEEE/ACM International Symposium on Microarchitecture

(MICRO), pages 356–369, 2007.

[92] C. Tian, M. Feng, V. Nagarajan, and R. Gupta. Copy or discard execution

model for speculative parallelization on multicores. In Proceedings of the 43rd

Annual IEEE/ACM International Symposium on Microarchitecture (MICRO),

pages 330–341, 2008.

[93] A. Tzannes, G. C. Caragea, R. Barua, and U. Vishkin. Lazy binary-splitting:

A run-time adaptive work-stealing scheduler. In Proceedings of the 15th ACM

SIGPLAN Symposium on Principles and Practice of Parallel Programming

(PPoPP), pages 179–190, 2010.

[94] G. Upadhyaya, V. S. Pai, and S. P. Midkiff. Expressing and exploiting con-

currency in networked applications with Aspen. In Proceedings of the 12th

ACM SIGPLAN Symposium on Principles and Practice of Parallel Program-

ming (PPoPP), pages 13–23, 2007.

[95] H. Vandierendonck, S. Rul, and K. De Bosschere. The Paralax infrastructure:

Automatic parallelization with a helping hand. In Proceedings of the 19th In-

ternational Conference on Parallel Architecture and Compilation Techniques

(PACT), pages 389–400, 2010.

[96] M. J. Voss and R. Eigenmann. ADAPT: Automated de-coupled adaptive pro-

gram transformation. In Proceedings of the 1999 International Conference on

Parallel Processing (ICPP), pages 163–170, 1999.

[97] Z. Wang and M. F. O’Boyle. Mapping parallelism to multi-cores: A machine

learning based approach. In Proceedings of the 14th ACM SIGPLAN Symposium

on Principles and Practice of Parallel Programming (PPoPP), pages 75–84,

2009.

126

[98] P. M. Wells, K. Chakraborty, and G. S. Sohi. Dynamic heterogeneity and the

need for multicore virtualization. ACM SIGOPS Operating Systems Review,

43:5–14, 2009.

[99] M. Welsh, D. Culler, and E. Brewer. SEDA: An architecture for well-

conditioned, scalable internet services. ACM SIGOPS Operating Systems Re-

view, 35(5):230–243, 2001.

[100] D. Wentzlaff and A. Agarwal. Factored operating systems (fos): The case for a

scalable operating system for multicores. SIGOPS Operating Systems Review,

43:76–85, 2009.

[101] T. Wiegand, G. J. Sullivan, G. Bjontegaard, and A. Luthra. Overview of the

H.264/AVC Video Coding Standard. 13(7):560–576, 2003.

[102] M. Wolfe. DOANY: Not just another parallel loop. In Proceedings of the 4th

International Workshop on Languages and Compilers for Parallel Computing

(LCPC), 1992.

[103] E. Yardimci and M. Franz. Dynamic parallelization and mapping of binary exe-

cutables on hierarchical platforms. In Proceedings of the 3rd ACM International

Conference on Computing Frontiers (CF), pages 127–138, 2006.

[104] H. Zhong, M. Mehrara, S. Lieberman, and S. Mahlke. Uncovering hidden loop

level parallelism in sequential applications. In Proceedings of the 14th Interna-

tional Symposium on High-Performance Computer Architecture (HPCA), 2008.

127

