
PIPELINED MULTITHREADING

TRANSFORMATIONS AND SUPPORT

MECHANISMS

RAM RANGAN

A DISSERTATION

PRESENTED TO THE FACULTY

OF PRINCETON UNIVERSITY

IN CANDIDACY FOR THE DEGREE

OF DOCTOR OF PHILOSOPHY

RECOMMENDED FOR ACCEPTANCE

BY THE DEPARTMENT OF

COMPUTER SCIENCE

JUNE 2007

c© Copyright by Ram Rangan, 2007.

All Rights Reserved

Abstract

Even though chip multiprocessors have emerged as the predominant organization for

future microprocessors, the multiple on-chip cores do not directly result in improved appli-

cation performance (especially for legacy applications, which are predominantly sequential

C/C++ codes). Consequently, parallelizing applications to execute on multiple cores is es-

sential to their success. Independent multithreading techniques, like DOALL extraction,

create partially or fully independent threads, which communicate rarely, if at all. While

such strategies keep high inter-thread communication costs from impacting program perfor-

mance, they cannot be applied to parallelize general-purpose applications which are char-

acterized by difficult-to-break recurrences. Even though cyclic multithreading techniques,

such as DOACROSS, are more applicable, the cyclic inter-thread dependences created by

these techniques cause them to have very low tolerance to rising inter-core latencies.

To address these problems, this work introduces a pipelined multithreading (PMT)

transformation called Decoupled Software Pipelining (DSWP). DSWP, in particular, and

PMT techniques, in general, are able to tolerate inter-core latencies, while still handling

codes with complex recurrences. They achieve this by enforcing an acyclic communication

discipline amongst threads, which allow threads to use inter-thread queues to communicate

in a pipelined fashion. This dissertation demonstrates that DSWPed codes not only toler-

ate inter-core communication costs, but also effectively tolerate variable latency stalls in

applications better than single-threaded execution on both in-order and out-of-order issue

processors with comparable resources. It then performs a thorough analysis of the perfor-

mance scalability of automatically generated DSWPed codes and identifies the conditions

necessary to achieve peak PMT performance.

Next, the dissertation shows that even though PMT applications tolerate inter-core la-

tencies well, the high frequency of inter-thread communication (once every 5 to 20 dynamic

instructions) in these codes, makes them very sensitive to the intra-thread overhead imposed

by communication operations. In order to understand the issues surrounding inter-thread

iii

communication for PMT applications, this dissertation undertakes a methodical exploration

of the design space of communication support options for PMT. Three new communica-

tion mechanisms with varying cost-performance tradeoffs are introduced and are shown to

perform 38% to 200% better than the state of the art.

iv

Acknowledgments

I owe this work to my advisor, David August. I thank him for believing in me. I thank him

for supporting me every step of the way, from recommending my admission to Princeton

to feeding me for a whole three and a half years (with liberal grants from NSF Grant No.

0133712, NSF Grant No. 0305617, and Intel Corporation)1, from showing me how to use

gdb during my first summer to helping improve my writing skills over the years, from

celebrating every small research success I had to consoling and encouraging me every

single time I was not able to make a paper deadline or had a paper rejected, and so on.

His tonic was definitely bitter many a time, but in hindsight, there appears to have been a

method to the madness and the many situations I sulked about originally, have ultimately

worked out to my benefit. His take-the-bull-by-the-horns approach to research and hard

work will always be an inspiration for me.

The central idea of this dissertation, decoupled software pipelining (DSWP), was born

out of discussions with Neil Vachharajani, my primary collaborator, and David August. I

would like to thank Margaret Martonosi, George Cai, Li Shiuan Peh, and Jaswinder Pal

Singh for serving on my thesis committee. Their collective wisdom has made this disserta-

tion more complete in terms of providing an in-depth understanding of various aspects of

DSWP behavior. I thank my advisor and my readers, George Cai and Margaret Martonosi,

for carefully reading through my dissertation and suggesting fixes. Special thanks to Mar-

garet Martonosi for her impressive turnaround time that enabled the timely scheduling of

my final defense. As collaborator, George Cai’s expert inputs helped improve the quality

of the DSWP communication support work.

I would like to thank HP Labs and Intel for providing me with valuable internship

opportunities. I had great fun during these internships and learned a lot from working

closely with Shail Aditya and Scott Mahlke (at HP) and Shubu Mukherjee, Arijit Biswas,

Paul Racunas, and Joel Emer (at Intel).
1Opinions, findings, conclusions, and recommendations expressed in this dissertation are not necessarily

the views of the NSF or Intel Corporation

v

I would probably not be in computer architecture if not for my undergraduate advisor,

Ranjani Parthasarathi. Her classes and exams gave me a good understanding of the basics.

By allowing her students complete freedom and by being available for discussions, she

enabled the exploration of research-quality ideas for class projects. For all this and more, I

am deeply indebted to her.

My heartfelt thanks to all past and current members of the Liberty group. I thank

Manish Vachharajani, David Penry, and Neil Vachharajani for developing the Liberty Sim-

ulation Environment; it really made microarchitecture modeling a straightforward process

and helped me reason about and truly understand the innards of various hardware blocks.

The cache, in particular! Thanks to David Penry for developing a robust IA64 emulator and

a cycle-accurate Itanium 2 core model. Many thanks to Spyridon Triantafyllis, Matthew

Bridges, Easwaran Raman, and the entire VELOCITY compiler team for their hard work.

Guilherme Ottoni and Neil Vachharajani implemented the automatic DSWP algorithm used

in this dissertation in the VELOCITY compiler. I had great fun working with Jonathan

Chang, George Reis, Adam Stoler, Jason Blome, and Bolei Guo on various projects. The

random discussions, jokes, movies, literati, text twist, tennis, and squash games with my

lab mates kept me sane through graduate school.

Outside of my lab, Lakshmi and Mani, Easwar, Logo, the Shivakumar and the Mahesh

families, Julia Chen, Kevin Ko, Ge Wang, Margaret and Bob Slighton, Steve Wallitt, Neal

Kaufmann, the entire PUTTC crowd, and several others cheered me up so much that I

almost never missed home. Close relatives and friends from school and college, Alwyn,

Anusha, Arun, Arundhati, Kasturi athai, Mani, Ravi, Robs, Satish, Siva, Subha, and others

have always provided great encouragement and support.

I thank Nitya for her unconditional love and friendship. A big thank you to my little

sister, Ramya, for her love and affection over the years. I thank my grandparents for their

blessings and prayers. I salute their indefatigable spirit that made them take great interest in

my progress towards thesis completion, despite their myriad age-related problems. I thank

vi

all four grandparents for loving me so much and for all that they have taught me. Finally,

words cannot express my love and gratitude for my parents who have given their all for

both their children. Their innumerable sacrifices, their selfless love, and their keen interest

in my success, are what have gotten me to this point. I am indeed fortunate to have such a

wonderful family and I wish to dedicate my life’s work (well, at least, five and a half years

of it) to my parents and my grandparents for everything they have given me and done for

me.

vii

Contents

Abstract . iii

Acknowledgments . v

List of Tables . xi

List of Figures . xii

1 Introduction 1

1.1 Thread Level Parallelism Paradigms . 2

1.1.1 Independent Multithreading (IMT) 2

1.1.2 Cyclic Multithreading (CMT) . 4

1.1.3 Pipelined Multithreading (PMT) 5

1.2 Contributions . 6

1.3 Overview . 9

2 Decoupled Software Pipelining 11

2.1 Limitations of single-threaded execution 11

2.2 Overview of DSWP . 17

2.3 RDS Loops and Latency Tolerance . 18

2.4 RDS Parallelization . 21

2.5 Decoupled Software Pipelining . 24

2.6 Automatic DSWP . 25

2.7 Summary . 27

viii

3 Communication Support for PMT 29

3.1 High-Frequency Streaming . 31

3.2 Design Space . 36

3.2.1 Communication Operation Sequences 36

3.2.2 Dedicated Interconnects . 39

3.2.3 Pipelined Interconnects . 40

3.2.4 Synchronization . 41

3.2.5 Queue Backing Store . 43

3.3 The Synchronization Array . 49

3.3.1 Operation . 50

3.3.2 Handling Control Speculation . 55

3.3.3 Performance Scalability . 56

3.3.4 Integrating with the Itanium R© 2 pipeline 57

3.4 The Snoop-Based Synchronization technique 63

3.5 Summary . 66

4 Evaluation Methodology 67

4.1 Benchmarks and Tools . 67

4.2 Performance Measurement . 69

4.3 Sampling Methodology . 72

4.4 Summary . 74

5 Performance Evaluation of DSWP 75

5.1 Performance of 2-thread DSWP . 75

5.1.1 Balancing Threads Better . 76

5.1.2 Latency tolerance through decoupling 80

5.2 Performance scalability of DSWP . 84

5.2.1 Linear and non-linear thread pipelines 89

ix

5.2.2 Performance under ideal communication behavior 95

5.3 Summary . 102

6 Evaluation of Communication Support 104

6.1 Systems Studied . 104

6.2 Experimental Setup . 106

6.3 Results and Analysis . 107

6.4 Sensitivity Study . 113

6.5 Summary . 116

7 Communication Support Optimizations 117

7.1 Amortizing Overhead Costs for Software Queues 117

7.1.1 Analysis . 119

7.1.2 Code Generation . 124

7.1.3 Evaluation . 125

7.1.4 Discussion . 125

7.2 Hardware Enhancements to Snoop-Based Synchronization 129

7.3 Summary . 132

8 Conclusions and Future Directions 134

x

List of Tables

2.1 Multi-core techniques to improve single-threading performance 17

4.1 Loop Information . 68

4.2 Baseline Simulator. 69

4.3 Baseline Out-Of-Order Simulator. 69

5.1 Dual-Core Out-Of-Order Issue Configuration. 80

xi

List of Figures

1.1 Example loops. The loop in (a) can be parallelized using IMT. The loop

in (b) can be parallelized with CMT or PMT. Sample parallelizations are

shown in Figure 1.2 . 2

1.2 Execution schedules of the loops in Figure 1.1 using IMT, CMT, and PMT.

Solid lines represent intra-iteration dependences. Dashed lines represent

loop-carried (critical path) dependences. IR is the initiation rate, the num-

ber of iterations started per cycle. 3

2.1 RDS loop traversal illustrating misprioritized instruction execution 19

2.2 Splitting RDS Loops . 22

3.1 Transit and COMM-OP delays. 32

3.2 A PMT example. 33

3.3 Effect of transit and COMM-OP delays on streaming codes. 34

3.4 Produce and consume code sequences for shared-memory based software

queues. 37

3.5 Two queue layouts for memory backing stores. 45

3.6 Synchronization Array structure . 53

3.7 Synchronization Array State Machine . 53

xii

3.8 Dual-core CMP configuration with Synchronization Array. The individual

cores are Itanium R© 2 cores. Shaded pipeline stages indicate extensions to

the Itanium R© 2 datapath to support synchronization array instructions. The

dark arrows indicate new datapaths added. The SAR/POT → SAA data-

path carries speculative SA accesses. The DET → SAA datapath carries

non-speculative SA accesses. The SAA → SAR signal carries synchro-

nization over notifications from the SA to the cores and the SAA → DET

datapath carries the queue value read by consume instructions from the SA. 58

4.1 Raw performance of single-threaded code on baseline models 70

5.1 Speedup of fully automatic 2-thread DSWP with 32-entry inter-thread queues. 76

5.2 Performance improvement from feedback-driven load rebalancing. 78

5.3 Traversal loop in mcf . 79

5.4 Speedup from DSWP execution on in-order and out-of-order processors. . . 80

5.5 Distribution of iteration time. S=single-threaded, P=producer, C=consumer. 81

5.6 Synchronization array occupancy of mcf illustrates importance of decoupling 83

5.7 DSWPQ32 : DSWP performance when moving from 2 to 4, 6, and 8 threads

with 32-entry inter-thread queues and a bus interconnect. Note, a missing

bar for a particular number of threads for a benchmark means the compiler

was not able to partition the chosen loop for that benchmark into that many

number of threads. 85

5.8 Normalized execution time breakdown of individual benchmarks when mov-

ing to more threads with 32-entry queues and bus interconnect 87

5.9 Thread dependence graphs for loop from wc. 89

5.10 Linear and non-linear thread pipeline execution with inter-core delay of 10

cycles and per-thread iteration computation time of 40 cycles. 92

xiii

5.11 DSWPQ∞ : Performance of DSWP with 2, 4, 6, and 8 threads with in-

finitely long queues and a bus interconnect, relative to DSWPQ32 (top)

and single-threaded in-order execution (bottom). 96

5.12 Normalized execution time breakdown of individual benchmarks when mov-

ing to more threads with infinitely long queues and bus interconnect. 97

5.13 DSWPQ∞+BW∞ : Performance of DSWP with 2, 4, 6, and 8 threads with

infinitely long queues and infinite communication bandwidth relative to

single-threaded in-order execution. 98

5.14 Normalized execution time breakdown of individual benchmarks when mov-

ing to more threads with infinitely long queues and infinite communication

bandwidth. 99

5.15 Relative performance of DSWP with 2, 4, 6, and 8 threads under different

communication scenarios. 100

6.1 Effect of transit delay on streaming codes. 107

6.2 Overall performance comparison across all design points. 109

6.3 Normalized execution time breakdown for producer (above) and consumer

(below) threads for each design point. 110

6.4 Ratio of the # of dynamic communication instructions to application in-

structions for producer and consumer threads. 112

6.5 Normalized execution time breakdown with transit delay = 4 cycles. 114

6.6 Effect of increased increased interconnect bandwidth (transit delay = 4 cy-

cles, bus width = 128 bytes). 115

7.1 Algorithm to find maximal single-entry single-exit loop regions 122

7.2 Coalescing at the outer loop. 123

7.3 Coalescing at loop entry and exits. 123

7.4 Control inequivalent ACQUIRE and RELEASE. 124

xiv

7.5 Performance of software queues before and after overhead amortization,

with and without write-forwarding support. 125

7.6 Example illustrating how the single-entry single-exit algorithm fractures

acyclic regions in the presence of side-exits and side-entrances. 126

7.7 Algorithm to find maximal single-entry multiple-exit loop regions 127

7.8 Application of the single-entry multi-exit algorithm to the loop from Fig-

ure 7.6. There are three single-entry multi-exit regions - region ABC with

node A as entry and edges
→

BD and
→

CE as exit edges, region D with node

D as entry and the outgoing edge from D as exit edge and finally region

E with node E as entry and edges
→

EE and
→

ED as exit edges. The exit

edges will need to be split during code generation in order to insert release

operations. 128

7.9 Effect of streaming cache and queue size on producer (top) and consumer

(bottom). 131

xv

Chapter 1

Introduction

For years, steady clock rate improvements and aggressive instruction level parallelism (ILP)

techniques have sustained application performance improvements. However, this trend is

not sustainable. On the one hand, aggressive clocking leads to diminishing power [61] and

performance [23] returns, power delivery and heat dissipation problems. On the other hand,

aggressive exploitation of ILP in single-context execution [12, 43, 56] uses disproportion-

ately more hardware and consumes more power, since it involves excessive speculation

and/or additional bookkeeping (for example, checkpointing of processor state) to imple-

ment large logical instruction windows. Further, design and verification costs for large

uniprocessor designs also become prohibitively expensive.

These trends have led the microprocessor industry to move away from traditional de-

signs to multi-core architectures or chip multiprocessors (CMPs). IBM Power5, Intel Core-

Duo, AMD Dual-Core Opteron, Sun Niagara, and STI Cell are all examples of current

generation CMPs. CMPs replace a single large monolithic core with multiple smaller pro-

cessing cores on the same die area. Besides greatly simplifying design and verification

tasks, such designs overcome the clock speed, power, thermal, and scalability problems

plaguing aggressive uniprocessor designs while continuing to provide additional comput-

ing power using additional transistors provided by technology scaling. While additional

1

for(i=1; i<=N; i++) // C
a[i] = a[i] + 1; // X

(a) Loop with no loop-carried dependences
(DOALL)

while(ptr = ptr->next) // L
ptr->val = ptr->val + 1; // X

(b) Pointer chasing loop with a loop-carried depen-
dence

Figure 1.1: Example loops. The loop in (a) can be parallelized using IMT. The loop in (b)
can be parallelized with CMT or PMT. Sample parallelizations are shown in Figure 1.2

processors on the chip improve the throughput of many independent tasks, they, by them-

selves, do nothing to improve the performance of individual tasks. Worse still for task

performance, processor manufacturers are considering using simpler cores in CMPs to im-

prove power/performance. This trend implies that single task performance will not im-

prove, and may actually degrade. Thus, performance improvement on a CMP requires

programmers or compilers to parallelize individual tasks into multiple threads and expose

thread-level parallelism (TLP).

1.1 Thread Level Parallelism Paradigms

The major challenge in parallelizing a single task into multiple threads is handling the

dependences between threads. Parallelization techniques must insert synchronization be-

tween threads to communicate these dependences. Unfortunately, if not handled carefully,

synchronization for inter-thread dependences can eliminate parallelism by serializing exe-

cution across threads. Depending on the kind of inter-thread dependences they create, TLP

techniques can be categorized into three principle paradigms: independent multithread-

ing (IMT), cyclic multithreading (CMT), and pipelined multithreading (PMT). Figures 1.1

and 1.2 summarize the differences between these three paradigms.

1.1.1 Independent Multithreading (IMT)

In IMT, no inter-thread dependences exist. Independent threads execute concurrently to

provide thread-level parallelism (TLP). DOALL loop parallelization [34] is a prime exam-

2

Core 1 Core 2Core 1 Core 2Core 1 Core 2

X:5

C:5

X:3

C:3

X:1

X:6

C:6

X:4

C:4

X:2

X:5

X:4

X:3

X:1

X:2

L:6

X:4

L:4

L:2

X:2

X:5

X:3

L:5

L:3

X:1

L:6

L:4

L:5

L:3

L:2

L:1 L:1C:1 C:2

IR = 1 IR = 1 IR = 1

Cross−thread Dependences Wide Applicability

5

4

3

2

1

0

5

4

3

2

1

0

5

4

3

2

1

0

IMT PMT CMT

(a) Communication Latency = 1

5

4

3

2

1

0

5

4

3

2

1

0

5

4

3

2

1

0

X:6

C:6

X:4

C:4

X:2

C:2

X:5

C:5

X:3

C:3

X:1

C:1

L:2

X:2

X:1

L:1

L:3

X:3L:6

L:4

L:5

L:3

L:2

L:1

X:1

X:2

X:3

X:4

IR = 1 IR = 1 IR = 0.5

Thread−local Recurrences Fast Execution

(b) Communication Latency = 2

Figure 1.2: Execution schedules of the loops in Figure 1.1 using IMT, CMT, and PMT.
Solid lines represent intra-iteration dependences. Dashed lines represent loop-carried (crit-
ical path) dependences. IR is the initiation rate, the number of iterations started per cycle.

3

ple of IMT. For example, consider the loop in Figure 1.1(a). When parallelized into two

threads, it would execute according to the schedule shown in the IMT column of Figure 1.2,

initiating, on average, one iteration per cycle and achieving a speedup of 2 over the sequen-

tial code. Unfortunately, while the parallelism achieved by IMT is often significant, its

applicability to general-purpose codes is low. For example, DOALL parallelization could

not be applied to the code in Figure 1.1(b) because of the pointer-chasing dependence. In

general, the highly interdependent nature of code blocks in general-purpose programs rou-

tinely create such recurrences, resulting in few, if any, large, independent pieces of code for

IMT.

1.1.2 Cyclic Multithreading (CMT)

CMT techniques handle programs with recurrences. Threads from CMT are characterized

by one or more inter-thread dependence cycles. To better understand CMT, consider ap-

plying DOACROSS parallelization [13] to the loop in Figure 1.1(b). The pointer-chasing

recurrence is mapped across threads such that independent code blocks from different loop

iterations (for example, LD2 and X3) execute concurrently to provide TLP, as shown in the

CMT column of Figure 1.2. Notice that the bi-directional communication between the two

threads creates a cyclic dependence between threads.

By handling codes with recurrences, CMT enjoys significantly more applicability in

general purpose codes than IMT. However, by mapping recurrences, which are on the

critical path of a program’s execution, across threads, CMT causes program performance

to be highly sensitive to inter-thread communication latencies. Therefore, such techniques

suffer a serious setback in the face of high inter-thread communication latencies in current

and future generation CMPs. In the DOACROSS example shown in Figure 1.2, the rate at

which loop iterations can be initiated (and thus the execution time for the loop) is limited by

the communication latency. As the communication latency increases from 1 to 2, the rate

of iteration initiation drops from 1 to 0.5, thus highlighting the sensitivity of CMT program

4

performance to communication latency. In reality, as more and more cores are integrated

on the same die, increased wire delays and contention in the shared memory subsystem

may cause inter-core operand communication latencies to vary from few tens of cycles to

even few hundreds of cycles, leading to poor CMT performance.

1.1.3 Pipelined Multithreading (PMT)

It is in this context that the relatively unheard of DOPIPE parallelization technique [41]1 or

more generally, pipelined multithreading, assumes significance. PMT, like CMT, handles

codes with recurrences, but differs in that the resulting inter-thread dependences do not

form a cycle, but rather a pipeline (more precisely an arbitrary directed-acyclic graph). By

parallelizing codes with recurrences, PMT achieves the wide applicability of CMT, and by

avoiding cyclic cross-thread dependences, PMT parallelized codes can tolerate long inter-

thread communication latencies. Application of PMT to the loop in Figure 1.1(b) produces

threads whose execution schedule is shown in the PMT column in Figure 1.2. Notice that

the cross-thread dependences are acyclic; they only flow from thread 1 to thread 2. There-

fore, the initiation rate does not change as the communication latency increases; one loop

iteration can be initiated each cycle regardless of the communication latency. Communi-

cation latency only affects the pipeline “fill time” which is a one-time cost amortized over

the entire execution of the loop.

The compelling advantages of PMT make it a strong candidate for use in program

parallelization for current and future multi-core architectures. This dissertation presents a

non-speculative PMT loop transformation called decoupled software pipelining (DSWP).

It shows that the acyclic dependence flow property of PMT can not only enable DSWPed

1DOPIPE was originally proposed as a multithreading technique alongside DOACROSS to handle sci-
entific codes with recurrences. Since the loop body of threads produced by DOACROSS remains identical
across all threads, it enables DOACROSSed codes to spawn enough threads to match the available processor
count. DOPIPE, on the other hand, splits the original loop’s body among multiple threads and as a result the
number of threads is essentially fixed at compile-time. The run-time scalability requirements of the scientific
computing community resulted in DOACROSS becoming the preferred parallelization strategy.

5

applications to tolerate inter-core latencies, but also to effectively insulate critical path code

from stalls due to variable latency instructions or code blocks in the off-critical path. This

work then studies the performance scalability of DSWP in general-purpose applications

and the communication support requirements for DSWP.

1.2 Contributions

• Decoupled Software Pipelining (DSWP) transformation: The performance of a pro-

gram is limited by its critical path performance. Ideally, this critical path consists of

only program dependences. However, single program counter (PC), limited dynamic

scope and sequential commit requirements in traditional single-threaded processors

lead to false resource dependences among instructions, prevent processors from un-

derstanding global instruction criticality and cause misprioritized instruction fetch

and execution. For example, a TLB miss for an output-producing store can clog a

pipeline, stalling progress down a pointer-chase dependence chain. Though a static

compiler has much wider scope, the presence of variable latency instructions (e.g.

loads) or code blocks (e.g. if-then-else hammocks) prevents single-threaded static

code transformations like software pipelining from correctly identifying and opti-

mally scheduling the global critical path.

The decoupled software pipelining transformation presented in this work addresses

the problem of prioritizing the execution of global critical path by statically splitting

a given program loop into critical path and off-critical path instructions and exe-

cuting them as concurrent threads on a CMP, or in general, on any multi-context

architecture. Inter-thread dependences always flow from the critical path thread to

the off-critical path thread. The unidirectional dependence in the resulting PMT code

facilitates the use of a decoupling queue to buffer inter-thread values. While multi-

context execution enables prioritized fetch and execution of critical path instructions,

6

the decoupling buffer insulates either thread from variable latency stalls in the other

thread and thus provides latency tolerance. This creates a non-contiguous logical in-

struction window that ensures that even though one of the contexts may be stalled,

the other context(s)/thread(s) can continue to make forward progress by executing

independent instructions from earlier loop iterations. In effect, they create a large

effective instruction window, enabling DSWP to effectively tolerate variable latency

stalls.

• Performance Scalability: The dissertation then presents a scalability analysis of DSWP,

as a general-purpose multithreading strategy, by studying its performance when go-

ing up to 8 threads using an automatic DSWP framework [40]. The analysis identi-

fies thread pipelines as being of two types - linear and non-linear. Linear pipelines

are characterized by strict pairwise interactions amongst threads, i.e. each thread in

the pipeline consumes from at most one upstream thread and produces to at most

one downstream thread. Non-linear thread pipelines, on the other hand, are directed

acyclic graphs. Even though, in principle, there are no cyclic inter-thread depen-

dences in a PMT transformation such as DSWP, the use of finitely sized queues cre-

ates cyclic inter-thread dependences called synchronization cycles. Synchronization

cycles require a producer of a queue item to block until the queue is non-empty. For

reasonably sized queues (for example, 8 entries and above) and linear pipelines, syn-

chronization cycles never lead to performance bottlenecks, since the slack provided

by the queue sizing is sufficient to tolerate them. However, it will be shown that, for

similarly sized queues, the synchronization cycles for non-linear pipelines have such

high latencies that the slack provided by queue sizing is not sufficient to tolerate the

long delays. While this was a major cause of performance degradation, for a few

applications, increased coherence misses was determined to be the source of perfor-

mance loss. The analysis concludes that a more communication-aware DSWP par-

titioning algorithm, possibly involving code duplication among threads, could avoid

7

communication bottlenecks by generating only linear pipelines.

• Inter-Thread Operand Communication Support: While pipelined inter-thread com-

munication tolerates inter-core or transit delay naturally, the intra-core overhead from

fetching and executing communication operations, COMM-OP delay, is a recurring

cost and application performance is highly sensitive to this overhead. In particular,

threads in DSWPed programs communicate very frequently (once every 5-20 dy-

namic instructions) and are very sensitive to COMM-OP delay. In designing support

mechanisms to sustain such high-frequency pipelined communication, also referred

to as high-frequency streaming communication, it is important to optimize for per-

formance, hardware cost, operating system overhead and hardware and OS design

and modification effort.

Based on a methodical design space exploration of several communication mech-

anisms, this dissertation presents three novel high-performance solutions for high-

frequency PMT communication, with varying levels of hardware and OS impact.

They are:

1. Synchronization Array: This design uses a simple software interface, produce

and consume instructions to write and read data to and from an inter-thread

queue respectively, and uses dedicated hardware for synchronization and operand

transport to deliver high inter-thread communication performance. The syn-

chronization array, while conceptually a collection of queues, separates storage

for synchronization information from storage for queue data and has the former

distributed across cores. This enables produce and consume instructions to

test queue fullness or emptiness locally (i.e. within a core), thereby enabling fast

local processing and avoiding contention for any shared structure. A detailed

design of the synchronization array, including handling of predicated produce

and consume instructions, dealing with control speculative accesses and guar-

8

anteeing memory consistency, is presented.

2. Snoop-based synchronization This design maps produce and consume in-

structions to shared memory queues and includes extra logic in the cache con-

troller to provide efficient inter-thread synchronization to deliver low-cost low-

overhead communication between threads. Hardware enhancements to the ba-

sic snoop-based synchronization design that use a special stream cache and

longer queue sizes are also discussed and evaluated.

3. Synchronization coalescing: This is a compiler technique to amortize synchro-

nization and queue pointer update overhead across multiple communication op-

eration sequences for shared memory based software queue implementations.

It achieves significant performance improvement over existing shared memory

software queue implementations.

1.3 Overview

The remainder of this dissertation is organized as follows. Chapter 2 highlights the mis-

prioritization of program critical path in traditional single-threaded execution and presents

the decoupled software pipelining (DSWP) transformation to effectively tolerate stalls due

to variable latency instructions or code blocks. Chapter 3 presents a qualitative discussion

on the importance of efficient inter-thread communication in PMT, identifies four essential

components for any streaming communication support, and discusses the pros and cons of

various design points along each axes in a detailed design space description. Subsequent to

the design space description, this chapter introduces the high-performance synchronization

array design and the snoop-based synchronization design as a low-cost alternative to the

former. Based on the qualitative arguments presented in the design space description, it

argues for why the snoop-based synchronization technique should perform almost on par

with the synchronization array design.

9

Information about the evaluation infrastructure, the benchmarks used, analysis and per-

formance measurement methodology is provided in Chapter 4. Evaluation of variable la-

tency tolerance property of DSWP as well as the performance scalability study is presented

in Chapter 5. While the experiments in Chapter 5 use the synchronization array com-

munication architecture on account of its high performance design, Chapter 6 evaluates

existing shared memory software queue implementations, alongside the synchronization

array and the snoop-based synchronization mechanisms, to identify the key performance

bottlenecks in each design point. Chapter 7 presents the synchronization coalescing and

the stream cache optimizations which alleviate the bottlenecks identified in Chapter 6 and

improve the performance of existing shared memory implementations and the snoop-based

synchronization technique respectively. Chapter 8 summarizes key results from this work,

highlights the relevance of this work to current trends in the microprocessor industry, and

provides pointers to future research directions.

10

Chapter 2

Decoupled Software Pipelining

This chapter first presents background material and highlights the key problems in dealing

with variable latency stalls in modern processors. Next, it argues for a multithreading so-

lution to the above problem, not because processors ship with multiple cores these days,

but more so to overcome the fundamental limitations of traditional single-threaded proces-

sors. In fact, besides power and thermal issues and difficulty in scaling up the clock rate,

diminishing performance returns from single-threaded execution is also a key reason for

the current paradigm shift. The decoupled software pipelining (DSWP) PMT transforma-

tion presented in this chapter addresses these fundamental limitations. Finally, this chapter

alludes to how this transformation can be generalized and used as a general-purpose multi-

threading technique.

2.1 Limitations of single-threaded execution

Performance of any region of code, be it a whole program, a procedure, a loop, or a basic

block, is limited by the performance of its dynamic critical path. Ideally, the critical path

would contain only program dependences, including register, memory and control depen-

dences and all non-critical instructions would be scheduled and executed completely in the

“shadow” of the critical path (i.e. overlapped with the critical path).

11

Unfortunately, conventional microprocessors seldom achieve this overlap in practice.

Traditional compilers take into account resource constraints and schedule all instructions,

critical and non-critical, according to some heuristic and present a unified instruction stream

to the underlying machine. The compiler assumes a fixed latency for each instruction as

it generates this schedule. The hardware fetches and commits instructions in the order de-

termined by the compiler. At runtime, single-threaded execution requires all instructions,

regardless of their criticality, to uniformly compete for and share available resources (for

example, fetch resources, register file ports, functional units, reorder buffer slots, etc.). The

sequential fetch and commit necessarily creates a tight coupling between instruction execu-

tion on the critical and off-critical paths. This tight coupling combined with the fact that the

compiler had to assume a fixed latency for all instructions while generating the instruction

schedule leads to performance bottlenecks in the presence of variable latency instructions.

While static scheduling is very effective at hiding fixed latencies by placing indepen-

dent instructions between a long latency instruction and its consumer, unfortunately, the

compiler does not know how many instructions must be placed between a variable latency

instruction and its consumer. Assuming best, average, or worst case latency for schedul-

ing variable latency instructions can detrimentally affect overall run-time performance of

the code. Out-of-order (OOO) execution mitigates this problem to an extent. Rather than

stalling when a consumer, whose dependences are not satisfied, is encountered, the OOO

processor will execute instructions from after the stalled consumer. However, since criti-

cal and non-critical instructions are fetched and executed with equal priority in traditional

single-threaded execution, not only does it cause non-critical instructions to take up valu-

able machine resources causing resource hazard stalls for critical instructions, but it also

prematurely exhausts the supply of independent instructions whose execution could have

been overlapped with stalls on the critical path. As Section 2.3 will show, even an OOO

processor will fall short of independent instructions to overlap with long stalls of variable

latency instructions due to the sequential fetch and commit policy of traditional single-

12

threaded execution. The problem can be reduced to that of maintaining a steady supply

of independent instructions to overlap with periods of long stalls due to variable latency

instructions. This situation calls for a more flexible instruction scheduling that will not

tightly couple execution of critical and off-critical paths and instead, will allow each of

them to make forward progress independent of stalls in the other path.

The predominant type of variable latency instructions, memory loads, have worst case

latencies (i.e., cache-miss latencies) so large that it is often difficult to find sufficiently

many independent instructions after a stalled consumer. Despite these limitations, static and

dynamic instruction scheduling combined with larger and faster caches have been largely

successful in improving instruction-level parallelism (ILP) for many programs. However,

the problems described above become particularly pronounced in certain programs that

have unpredictable memory access patterns and few independent instructions near long

latency loads. Loops that traverse recursive data structures (e.g., linked lists, trees, graphs,

etc.) exhibit exactly these characteristics. Data items are not typically accessed multiple

times and subsequent data accesses are referenced through pointers in the current structure,

resulting in poor spatial and temporal locality. Since most instructions in a given iteration

of the loop are dependent on the pointer value that is loaded in the previous iteration, these

codes prove to be difficult to execute efficiently.

To address these concerns, software, hardware, and hybrid prefetching schemes have

been proposed [33, 53, 54]. These schemes increase the likelihood of cache hits when

traversing recursive data structures, thus reducing the latency of data accesses when the data

is actually needed. Software techniques insert prefetching load instructions that attempt to

predict future accesses using information statically available to the compiler [33]. Hard-

ware techniques dynamically analyze memory access traces and send prefetch requests to

the memory subsystem to bring data into the processor caches [53]. Dependence-graph-

based prefetching constructs dependence graphs leading to loads with poor locality and

pre-execute these graphs to do prefetching [4]. Despite these efforts, the performance of

13

recursive data structure loop code is still far from ideal. Since prefetching techniques are

speculative, they may not always end up fetching the right addresses at the right time.

Achieving good coverage (i.e., the ratio of the number of useful addresses prefetched to the

total number of addresses accessed) without performing an excessive number of loads is

extremely difficult. The prefetching of useless data (i.e., poor prefetch accuracy) not only

does not help performance but may in fact hinder it by causing useful data to be evicted

from the cache and by occupying valuable memory access bandwidth. Consequently, the

accuracy of prefetchers is extremely important. Achieving high coverage and accuracy is

very difficult in these speculative frameworks.

Besides failing to efficiently handle variable latency stalls, single-threaded execution

also cannot efficiently handle variable trip count loops. This inefficiency arises due to a

single PC architecture, which prevents the processor from fetching and overlapping execu-

tion of pre-loop and post-loop code with loop execution. While fixed trip count loops can

be fully unrolled and statically scheduled alongside pre-loop and post-loop code, the same

cannot be done for variable trip count loops. Dynamically, when such a loop is encoun-

tered on the off-critical path, no critical path instructions can be fetched until all iterations

of this loop have been fetched. Alternately, when such a loop is encountered on the critical

path, no off-critical path instructions can be fetched and this results in missed overlap op-

portunities. While this problem is quite similar to the variable latency problem described

above, a solution to this problem not only requires decoupling the execution of critical and

off-critical paths, but also requires the ability to fetch and commit instructions out of order.

Stated simply, scope restrictions in single-threaded processors prevent them from finding

useful independent instructions for parallel execution and prioritizing execution of critical

path instructions. The single-threaded execution model forces critical and off-critical paths

to compete for and share processor fetch and execute resources with the same priority.

Researchers have proposed ways to address the scope restriction problem. Slipstream

processors achieve larger effective instruction windows by executing a compressed, albeit

14

speculative, version of a program. This is called the advance or A-stream. A redundant or

R-stream, that is sped up by the control flow and operand value information from the A-

stream, serves as a checker thread, validates A-stream computations and triggers recovery

as needed [46]. Zilles and Sohi use master/slave speculative parallelization to extend this

to beyond two threads and show that the validation of the advance or master thread can be

carried out in parallel by multiple redundant or slave threads [75].

Barnes et al. used two in-order processing cores coupled by a queue [5]. During long

latency events, the “advance” pipeline does not stall on use. Instead it continues instruction

fetch, executes independent instructions and defers execution of instructions dependent on

resolution of the long-latency event. Instructions flow through the queue from the advance

pipeline to the second “backup” pipeline. The backup pipeline resolves the long latency

dependences and commits instructions. The inter-core queue in effect provides a large ef-

fective instruction window, enabling in-order processing cores to execute around stall-on-

use conditions. Barnes et al.’s multipass pipelining technique achieves the same effect by

recirculating instructions within a single core [6]. The Kilo-Instruction Processors [12] and

Checkpoint Processing and Recovery [2] techniques remove commit restrictions through

checkpointing of architectural and microarchitectural state to achieve large effective in-

struction windows and the TRIPS [56] project uses distributed processing across multiple

small processing elements to achieve the same effect.

In the last decade or so, several thread-level speculation (TLS) techniques [19, 59, 62,

68, 72] have been proposed to enable single-threaded programs to run faster on multi-core

processors. These techniques build larger logical instruction windows by speculatively

spawning threads/tasks/traces on available processor cores, typically based on a control

flow or value predictor’s predictions. At any given point, the oldest thread in sequential

program order is the non-speculative thread and all other threads are speculative. Threads

commit in sequential program order. The techniques differ in the exact manner in which

they identify these coarse-grained regions for spawning and parallel execution. In the multi-

15

scalar [59] and superthreaded [68] architectures, statically partitioned program control flow

graph (CFG) regions called tasks are speculatively spawned off to execute on available pro-

cessing elements. The superthreaded execution model also includes a rudimentary form of

thread pipelining. The communication and computation parts of each thread are separated

out to allow maximal execution overlap among all threads. However, thread spawning and

commit are done strictly in sequential program order. Trace processors [72] dynamically

construct instruction traces and employ a trace predictor to determine which trace to fetch

and execute. Other TLS techniques [19, 62] break data dependences by statically and/or

dynamically speculating on data values and spawn new threads with predicted input values.

The predictions are validated at run time.

Other techniques use speculative or subordinate execution threads to run ahead of the

original program thread and trigger branch mispredictions and cache misses earlier than

the original thread [9, 10]. The work performed by these speculative pre-execution threads

mainly serves to warm up microarchitectural structures like caches and branch predictors,

thereby improving the performance of the primary non-speculative thread. Mutlu et al.’s

run-ahead execution technique avoids spawning extra threads and instead uses checkpoint-

ing of architectural state to achieve the same effect [38]. Techniques like register integration

can be used to incorporate the execution results in the non-speculative thread’s architectural

state [55].

Despite the abundance of innovative microarchitectural techniques presented above and

summarized in Table 2.1, a common problem across all these techniques is that they were

evolved to operate under the constraints of the traditional sequential single-threaded exe-

cution model. Instruction fetch and commit are still serialized. In a bid to overcome the

fundamental restrictions imposed by the execution model, architects have gone to great

lengths to build copious amounts of buffering in the processing core to hold un-issued or

un-committed instructions or to hold speculative architectural state updates of executed-

but-uncommitted instructions.

16

Name Category Key Idea
SlipStream [46],Master/Slave
Speculative Parallelization [75]

IW size in-
crease

Compressed approximate instruction stream gets to performance
critical loads/branches faster. One or more trailing threads or
streams validate the execution of the compressed stream.

Flea-Flicker [5, 6] IW size in-
crease

Unresolved instructions are held in intra- or inter-core queues for
deferred processing. Routine sequential commit upon resolution.

Kilo-Instruction Processors [12],
Checkpoint Processing and Re-
covery [2]

IW size in-
crease

Checkpoint of arch and µarch state saved on blocked ROB condi-
tions to continue instruction retirement past the blocked instruction.
Restored if blocked instruction excepts/interrupts.

TRIPS [56] IW size in-
crease

Static mapping of instructions to distributed grid of OOO processing
elements.

TLS [19, 59, 62, 68, 72] IW size in-
crease

Input dependences of dynamically far apart regions speculated and
regions spawned as speculative threads on available cores. Commit-
ted in program order upon validating speculation.

Run-ahead execution [38] µarch
warmup

Architectural state checkpointed on blocked instruction. Instruction
fetch and execution continue past blocked instruction in “run-ahead”
mode and serve to prefetch data and instructions. Upon resolution of
blocked instruction, pipeline is flushed and normal mode execution
is resumed.

Subordinate microthreading [9] µarch
warmup

Micro-coded threads spawned off at strategic points from main
thread. They issue prefetches or update branch predictors.

Speculative pre-computation [10,
55]

µarch
warmup

p-thread slices warmup caches. Results can be optionally register
integrated with the main thread.

Table 2.1: Multi-core techniques to improve single-threading performance

The decoupled software pipelining transformation, presented in this chapter, overcomes

these limitations. The next section presents an overview of the transformation and its salient

characteristics.

2.2 Overview of DSWP

To tolerate variable latency and to overcome scope restrictions imposed by single PC ar-

chitectures, a program transformation called decoupled software pipelining (DSWP) is pre-

sented in this chapter. DSWP avoids heavy hardware usage by attacking the fundamental

problem of working within a single-threaded execution model, and moving to a multi-

threaded execution model. Only useful, about-to-execute instructions are even brought into

the core. The rest are conveniently left in the instruction cache or their results committed

and retired from the processor core. Unlike the single-threaded multi-core techniques pre-

sented in Table 2.1, DSWP is an entirely non-speculative technique. Each DSWP thread

performs useful work towards program completion. In other words, DSWP does not require

any speculative thread spawns nor does it have to throw away work done by any thread.

17

DSWP threads are typically long-running and do not require frequent thread spawns.

The concurrent multithreading model of DSWP means that each participating thread

commits its register and memory state concurrently and independently of other threads.

Since, the exact input-output relationship among the threads is known statically, only

operand values corresponding to inter-thread dependences are communicated through queues.

The concurrent model avoids buffering or communication of all other thread-local results

which are committed independently. These factors make the amount of inter-thread queue

storage for DSWP insignificant, compared to the speculative storage in techniques like TLS

and other single-threaded multi-core techniques.

The remainder of this chapter is organized as follows. Section 2.3 examines the pat-

tern of recursive data structure traversals and illustrates why current static and dynamic

scheduling techniques are not effective in identifying parallelism. Section 2.4 describes

how DSWP parallelizes single-threaded pointer-chasing loops in the context of a simul-

taneous multithreading (SMT) core or a chip multiprocessor (CMP). While this chapter

focuses on the DSWP transformation, Chapter 3 provides a detailed discussion on various

communication support options for DSWP.

2.3 RDS Loops and Latency Tolerance

As was mentioned earlier, recursive data structure loops suffer from poor cache locality,

requiring aggressive strategies to tolerate latency. Figure 2.1 illustrates a typical RDS loop.

Each iteration of the loop processes a node in the data structure and contains code to fetch

the next node to be processed. The diagram below the program code illustrates the data

dependences that exist among the instructions in the program. As is evident from the

figure, the critical path in this loop’s execution is the chain of load instructions resulting

from the loop-carried dependence of r1. Ideally, all of the loop’s computation could be

overlapped with the computation along this critical path.

18

Critical Path

Higher Priority
Off Critical Path
Instructions

1

2

3

4

5

6

7

8

9

10

11

12

13

15

14

16

20

17

19

18

25

21

22

23

24

26

27

28

29

30

r1 = M[r1]

r2 = r1 + 4

r3 = M[r2]

r4 = r3 + 1

M[r2] = r4 M[r2] = r4

r4 = r3 + 1

r3 = M[r2]

r2 = r1 + 4

r1 = M[r1]

Iteration 1 Iteration 2

 ptr−>val = ptr−>val + 1;
}

while(ptr = ptr−>next) {

Figure 2.1: RDS loop traversal illustrating misprioritized instruction execution

19

Unfortunately, modern single-threaded processors, both in-order and out-of-order, im-

plement a sequential fetch and dispatch policy. Thus, rather than attempting to execute

along the loop’s critical path, the processor fetches sequential instructions, delaying the ex-

ecution of the next critical path instruction. In the figure, this in-order fetch policy results

in the 24 instructions inside the dashed box to be fetched and dispatched to allow the fetch

and dispatch of six instructions on the critical path. This misappropriation of resources to

instructions off the critical path is not restricted to fetch. Dynamic schedulers typically give

priority to the oldest instruction in the dynamic scheduling window. Thus, even during ex-

ecution in an out-of-order processor, priority is given to relatively unimportant instructions

rather than those on the critical path.

This misprioritization of instructions can result in lost opportunities for overlapping

latency. Consider, for example, the choice between executing instruction 6 or instruction 2

following the completion of instruction 1. If instruction 2 is selected in favor of instruction

6, and instruction 6, when executed, would miss in the cache, then executing instruction 2

first will not only delay this miss by one cycle but will also consume an instruction (i.e.,

itself) whose execution could have been overlapped with the miss. Even if instruction 6

were to hit in the cache, executing down the 2-3-4-5 path of instructions would delay the

execution of instruction 6, which ultimately will delay a cache miss on one of the critical

path loads. Each instruction executed preferentially over a ready critical-path instruction

is an instruction that delays the occurrence of a future critical-path cache miss and one

that removes an opportunity for latency tolerance by decreasing the pool of independent

instructions.

Note that the delays incurred by executing off-critical-path instructions need not be

short. For example, as the length of a loop increases, the number of cycles required to

fetch a subsequent copy of the loop-carried load may become significant. Alternatively,

cache misses off the critical path could cause chains of dependent instructions to collect

in the machine’s issue window thus forcing the system to stall until the load returns from

20

the cache. For example, if, in Figure 2.1, instructions 3 and 8 miss in the cache, a nine

instruction reorder buffer (ROB) would be necessary to start the next critical path load. A

smaller ROB would result in the subsequent critical path load being delayed until the cache

misses resolve.

Avoiding such delays is possible in aggressive out-of-order processors but would re-

quire the addition of significant resources. In the tiny example loop shown in Figure 2.1,

promptly bringing a critical-path load into the instruction window would cost five instruc-

tions of issue/dispatch width and five entries in the ROB. While possibly not impractical

for loops of size five, as loop lengths increase, the cost of tracking all instructions between

consecutive critical-path instructions will become excessive.

The same effect can be achieved without requiring excessive resources in the pipeline.

In a multi-threaded architecture, it is possible to partition the loop into multiple threads such

that one thread is constantly fetching and executing instructions from the critical path, thus

maximizing the potential for latency tolerance. The next section presents the Decoupled

Software Pipelining (DSWP) transformation to create these threads from a sequential loop.

2.4 RDS Parallelization

As illustrated in the previous section, RDS loops typically consist of two relatively indepen-

dent chains of instructions. The first, which makes up the critical path of execution, is the

traversal code. The second is the chain of computations performed on each node returned

by the traversal. While the data dependence of these sequences is often unidirectional (i.e.,

the computation chain is dependent on the traversal chain, but not vice-versa), variable

latency instructions coupled with processor resource limitations create artificial dependen-

cies between the two chains. While the resulting stalls are more pronounced in in-order

processors, they can cause prolonged stalls even on aggressive out-of-order machines.

To overcome this, it is necessary for the processor architecture to allow for a more

21

1 while(ptr = ptr->next) {
2 ptr->val = ptr->val + 1;
3 }

(a) Recursive Data Structure Loop

1 while(ptr = ptr->next) {
2 produce(ptr);
3 }

(b) Traversal Loop

1 while(ptr = consume()) {
2 ptr->val = ptr->val + 1;
3 }

(c) Computation Loop

Figure 2.2: Splitting RDS Loops

decoupled execution of the two RDS loop pieces. Ideally, variable latency instructions from

one piece should not impact code from the other piece unless the instructions from the two

pieces are in fact dependent. To achieve decoupled fetch and execution, this dissertation

proposes decoupled software pipelining (DSWP) which statically splits the original RDS

loop into two distinct threads and executes the threads on a thread-parallel processor such as

an SMT [69] core or chip-multiprocessor (CMP) [20] system. By enforcing uni-directional

dependences amongst threads, this technique facilitates the use of inter-thread queues to

buffer values and provide pipelined communication. More importantly, the queue doubles

up as a decoupling buffer and insulates either thread from variable latency stalls in the

other thread. Thus, DSWPed execution will allow the traversal code to run unhindered by

computation code. Further, since the traversal code defines the longest data dependence

chain in the loop, executing instructions from this piece as quickly as possible is critical to

obtaining maximum performance in RDS traversal loops.

Consider the loop shown in Figure 2.1, reproduced in Figure 2.2a. The traversal slice

consists of the critical path code, ptr=ptr->next and the computation slice consists

of ptr->val=ptr->val+1. A natural way to thread this loop into a traversal and

22

computation thread is shown in Figure 2.2. In the figure, the produce function enqueues

the pointer onto a queue and the consume function dequeues the pointer. If the queue

is full, the produce function will block waiting for a slot in the queue. The consume

function will block waiting for data, if the queue is empty. In this way, the traversal and

computation threads behave as a traditional decoupled producer-consumer pair.

The above parallelization lets the traversal thread make forward progress even in the

event of stalls in the computation thread, and thus the traversal thread will have an op-

portunity to buffer data for the computation thread’s consumption. The buffered data also

allows the computation thread to be relatively independent of the stalls in the traversal

thread since its dependence on the traversal thread is only through the consume function,

and its dependences will be satisfied by one of the buffered values. Thus, this paralleliza-

tion effectively decouples the behavior of the two code slices and allows useful code to

be overlapped with long variable-latency instructions without resorting to speculation or

extremely large instruction windows.

In addition to tolerating latency in the computation slice, the proposed threading also al-

lows the traversal thread to execute far ahead of the corresponding single-threaded program

due to the reduced size of the traversal loop compared to the original loop. On machines

with finite issue width, this reduced size translates into more rapid initiation of the RDS

traversing loads provided that the previous dynamic instance of the loads have completed.

Thus, the reduced size loop allows the program to take better advantage of traversal cache

hits to initiate traversal cache misses early. From an ILP standpoint, this allows for an

overlap between traversal and computation instructions from distant iterations.

This threading technique is called decoupled software pipelining to highlight the par-

allel execution of the threads. The decoupled flow of data from the traversal to the work

threads “stages” through the inter-thread queue, which can be implemented with any of the

designs presented in Chapter 3.

23

2.5 Decoupled Software Pipelining

Thus far, it was assumed that the hardware would be provided with properly parallelized

code. This parallelization is a tedious process and should be performed in the compiler.

This section presents a decoupled software pipelining algorithm suitable for inclusion in a

compiler.

Although RDS loop parallelization would be typically performed at the assembly code

level, this process is illustrated here in C for clarity. Consider the sample code of Fig-

ure 2.2a. As was mentioned previously, this loop structure is typical of recursive data

structure access loops. Line 1 fetches the next data item for the computation to work on,

and line 2 performs the computation in the loop. In order to parallelize the loop, the pieces

of the code that are responsible for the traversal of the recursive data structure must first

be identified. Since a data structure is recursive if elements in the data structure point to

other instances of the data structure, either directly or indirectly, RDS loops can be iden-

tified by searching for this pattern in the code. Specifically, load instructions that are data

dependent on previous instances of the same instruction must be identified. These induc-

tion pointer loads (IPL) form the kernel of the traversal slice [39]. IPLs can be identified

using augmented techniques for identifying induction variables [16, 39]. In the example in

Figure 2.2a, the assignment within the while condition expression on line 1 is the IPL.

Once the IPL is identified, the backward slice of the IPL forms the base of the traversal

thread. In Figure 2.2a, the backward slice of the IPL consists of the loop (i.e., the back-

ward branch), the IPL, and the initialization of ptr. To complete the thread, a produce

instruction is inserted to communicate the value loaded by the IPL and, if initialization code

exists, an instruction to communicate this initial value. Figure 2.2b illustrates the traversal

thread code that would arise from applying this technique to the loop shown in Figure 2.2a.

The computation thread is essentially the inverse of the traversal thread. Both loops

share identical structure. Those instructions that are not part of the backward slice of the

IPL but within the loop being split are inserted into the computation thread. In place of

24

the IPL, a consume instruction is inserted. Just as in the traversal thread, it is necessary

to include consume instructions to account for loop initialization. Figure 2.2c shows the

code computation thread corresponding to the original loop shown in Figure 2.2a. For each

data dependent pair of instructions split across the two threads, a dependence identifier is

assigned to the corresponding producer-consumer pair.

In order for this algorithm to be effective, the compiler must be able to identify the

traversal slice, including dependent memory operations. Existing memory dependence

analysis techniques identify if there are stores in the loop that will affect later traversals (i.e.,

loops that modify the RDS). DSWP must handle these loops appropriately or exclude them

from optimization. In cases where memory analysis is too conservative, not enough in-

structions will be placed in the computation thread and the benefits of the technique will

be negated. Further, the compiler must balance the work of the original loop between the

traversal and computation thread to realize optimal performance.

While memory dependence analysis is important for decoupled software pipelining,

existing analysis used to compute load-store dependences is sufficient. DSWP does not

attempt to identify completely independent code to split into threads. The analysis required

for a general parallelization technique is much more sophisticated. Indeed, that problem

has been heavily studied and has proved extremely difficult to solve. Instead, DSWP builds

two threads that operate in a pipelined fashion, where the traversal thread feeds information

to the computation thread.

2.6 Automatic DSWP

While the technique outlined in the previous section is specific to RDS codes, Ottoni et

al. [40] present an automatic technique to apply DSWP to generic program loops. The au-

tomatic technique makes a departure from the notion of identifying critical and off-critical

paths of regions targeted for DSWP. Instead, it focuses on identifying more generic pro-

25

gram recurrences and achieves acyclic dependence flow among threads by ensuring that no

single recurrence crosses thread boundaries. This approach enables the automatic DSWP

algorithm to be a truly general-purpose multithreading technique. The algorithm is de-

scribed below.

The automatic DSWP technique (autoDSWP for short) takes a loop’s dependence graph,

which contains all register, memory and control dependences, as input. In order to create an

acyclic thread dependence graph for pipelined parallelism, it first identifies strongly con-

nected components (SCCs) in the input dependence graph. The graph formed by these

SCCs, by definition, will be a directed acyclic graph (DAGSCC). The algorithm then

partitions the DAGSCC into the requisite number of threads while making sure that no

cyclic inter-thread dependences are created. In this manner, autoDSWP parallelizes pro-

gram loops into pipelined threads.

The current thread model for DSWP is as follows. Execution begins as a single thread,

called primary thread. It spawns all necessary auxiliary threads at the beginning of a

program. When the primary thread reaches a DSWPed loop, auxiliary threads are set up

with necessary loop live-in values. Similarly, upon loop termination, loop live-outs from

auxiliary threads have to be communicated back to the primary thread. While this does

create a cycle in the thread dependence graph, any dynamic cost due to this once-per-loop-

invocation event, will be rendered negligible by long-running pipelined multithreaded loop

bodies. However, this cycle can become a significant overhead for short-running loops,

which are not good candidates for DSWP in the first place.

Performance improvement is obtained from coarse-grained overlap among pipelined

threads and from improved variable latency tolerance provided by decoupled execution.

The amount of overlap is, of course, limited by the performance of the slowest thread. Since

the granularity of scheduling is a single SCC, the maximum theoretical speedup attainable

from autoDSWP is 1
Weight of heaviest SCC . Thus, there is an upper bound to the performance

obtainable from merely scheduling and balancing the SCCs across available threads. Opti-

26

mizations that may be needed to further break or parallelize the individual SCCs to expose

more parallelism are interesting avenues for future research.

This dissertation uses code produced by an autoDSWP implementation in the VELOC-

ITY compiler framework [67] to demonstrate variable latency tolerance of DSWP, to study

the performance scalability of DSWP when moving to beyond two threads and to explore

various communication support options for PMT.

2.7 Summary

This chapter has presented the decoupled software pipelining (DSWP) transformation,

which, through concurrent execution of statically partitioned threads, exposes coarse-grained

thread-level parallelism. Decoupled execution of these threads, enabled by PMT, will en-

able DSWP to tolerate variable latency stalls. The variable latency stall tolerance property

of DSWP was first demonstrated on manually parallelized RDS codes in [51]. This pre-

sentation of DSWP in this dissertation includes an improved evaluation with automatically

generated DSWP codes, more benchmarks, and a modern simulator with a validated core

model and a detailed memory hierarchy.

Before proceeding to describe the various factors affecting the design of communication

support for PMT in the next chapter, it is important to understand the distinction between

the storage required to hold non-speculative inter-thread queue operands in DSWP and the

storage required for techniques such as TLS. As mentioned in Section 2.2, DSWP, on

account of its multithreaded execution model, is able to commit instructions from each

thread independently of other threads. This enables DSWP to free up thread-local storage

independently of other threads and only operands for true inter-thread dependences need

to be buffered in inter-thread queues. This is in stark contrast to TLS techniques, wherein,

the need to achieve single-threaded execution semantics, forces the system to buffer results

of each and every operation of speculative threads, until they become non-speculative. The

27

mulithreaded execution model of DSWP obviates the need for such copious storage.

The next chapter discusses various factors affecting communication support design, in-

cluding design options for queue storage and queue access operations and introduces two

novel communication designs - the synchronization array and the snoop-based synchro-

nization mechanisms. The evaluation of the latency tolerance and scalability aspects of

DSWP is performed with the best-performing synchronization array design and is pre-

sented in Chapter 5.

28

Chapter 3

Communication Support for PMT

Proper architectural support mechanisms are key to the success of any compiler technique.

Chapters 1 and 2 motivated PMT, introduced the decoupled software pipelining (DSWP)

loop transformation as an instance of PMT, showed that it has very desirable latency tol-

erance properties, and also discussed its applicability as a general-purpose multithreading

technique. While PMT techniques show promise, current architectures are without suffi-

cient architectural and operating system support to allow efficient streaming communica-

tion of data from one thread to another. It is important to understand various aspects of

inter-thread communication in DSWP, before undertaking a full-fledged performance eval-

uation of DSWP. Accordingly, this chapter will highlight key aspects of pipelined inter-

thread communication and will qualitatively discuss cost-performance tradeoffs of various

communication support mechanisms.

Dedicated hardware structures like hardware FIFOs [58], and scalar operand networks

(SONs) [65] result in sub-optimal use of hardware, since they are used exclusively for

inter-thread operand transfers. Memory traffic, for instance, cannot be multiplexed on these

dedicated interconnects. Besides resulting in sub-optimal use of hardware, such dedicated

structures (interconnect and storage) consume extra power, demand chip redesign effort,

and often necessitate complex operating system modifications to handle context switches

29

and virtualization. In spite of these numerous concerns, dedicated hardware solutions offer

the best performance. But it is important for architects to understand the cost-performance

tradeoffs of such dedicated solutions vis-à-vis more cost-efficient, but low-performing, so-

lutions.

This chapter takes a top-down approach to describing the design tradeoffs and how the

choice of various design components influence these tradeoffs. The chapter argues that even

though dedicated hardware solutions may have the best performance, by letting application

behavior guide the design of underlying support mechanisms, it is possible to obtain low-

cost low-complexity solutions that perform almost as well as high-performance solutions.

It observes that even though pipelined multithreaded applications can tolerate inter-core la-

tency or transit delay by pipelining communication through inter-thread queues, their high

communication frequency makes them very sensitive to the recurring intra-thread overhead

imposed by communication, referred to as COMM-OP delay. An empirical characteriza-

tion of pipelined streaming applications, presented in Chapter 6, reveals that DSWPed

threads communicate at the rate of once every 5 to 20 dynamic instructions. Such high-

frequency communication entails that individual communication operations be as efficient

as possible.

Armed with this understanding of the application behavior, this chapter then provides a

detailed design space characterization that describes the various tradeoffs in implementing

inter-thread queues for high-frequency streaming communication. It identifies four es-

sential ingredients for any streaming mechanism: communication operation sequences to

specify architectural reads and writes to inter-thread queues, a synchronization mechanism

to prevent read (write) operations on empty (full) queues, intermediate storage for queue

data (queue backing store) before they are consumed, and an interconnect fabric connect-

ing processors and various backing stores. Although the design choice for each of these

axes is orthogonal, certain design possibilities fit together more naturally than others.

Finally, this chapter describes two of the three novel communication designs presented

30

in this dissertation - the synchronization array design, a dedicated hardware solution, and

the snoop-based synchronization design, a low-cost alternative to the former. While the

synchronization array design optimizes on all of the design axes, the snoop-based syn-

chronization design relies on hardware support only for synchronization and uses low-cost

design options for other components. The presentation of the third technique, synchroniza-

tion coalescing, and the stream cache optimization to snoop-based synchronization will

be motivated by the experimental evaluation in Chapter 6 and hence, will be deferred to

Chapter 7.

The current chapter is organized as follows. The importance of reduced COMM-OP

delay is qualitatively demonstrated in Section 3.1. Section 3.2 presents a detail characteri-

zation of the design space of streaming communication mechanisms. Sections 3.3 and 3.4

present detailed designs of the synchronization array and the snoop-based synchronization

techniques respectively.

3.1 High-Frequency Streaming

This section first provides more precise definitions for transit delay and communication

operation (COMM-OP) delay. Then, it characterizes streaming communication in PMT

codes and illustrates why transit delays are tolerated and why reducing COMM-OP delays

can increase application performance. It extends Taylor, et al.’s treatment [65] of com-

munication latency components with a discussion of their respective impact on streaming

communication.

Transit delay refers to the amount of time necessary to communicate a data value from

one processor core to another. This delay is exclusive of all the time necessary to produce

a value or to initiate communication, but rather measures the effects of signal propagation

delay, bus contention, network routing latency, and the like. This delay will tend to increase

with the physical separation between cores or as wire delay increases.

31

P:2

P:1

C:1

C:2

In
te

r−
co

re
D

el
ay

E
X

E
D

el
ay

S
yn

ch
ro

ni
za

tio
n

D
el

ay

In
tr

a−
co

re
 D

el
ay

P:3

0

10

20

30

40

60

50

110

120

80

70

90

100

130

140

150

Thread BThread A

Figure 3.1: Transit and COMM-OP delays.

COMM-OP delay, on the other hand, is a measure of the overhead experienced by a

single core due to communication. More formally, the COMM-OP delay for a particular

thread is the difference between the execution time of the thread with communication op-

erations and the execution time of the same thread when communication operations have

0-latency and consume no resources.

For shared memory communication, for example, COMM-OP delay is caused by the

execution of additional instructions necessary for communicating values and synchronizing

threads. Depending on the code containing the communication operations and the imple-

mentation details of the memory subsystem, these extra instructions can slow down a thread

by occupying valuable processor resources such as fetch bandwidth, functional units, and

memory ports, and by causing execution stalls due to memory fences and interconnect

contention.

Figure 3.1 illustrates how COMM-OP delay and transit delay affect the execution of a

32

L

X

P C

P: produce(ptr);

C: while(ptr = consume()) {

X: ptr−>val = ptr−>val + 1;

 }

 }

Producer Thread A

Consumer Thread B

L: while(ptr = ptr−>next) {

Figure 3.2: A PMT example.

pair of threads communicating via a single shared buffer (e.g. a shared-memory variable).

To send a value from thread A to thread B, thread A executes a code sequence which

ensures that the shared buffer is empty, then fills the shared buffer with the value to be

communicated. The time during which this happens is labeled the COMM-OP delay or

intra-core delay for thread A. Thread B will observe the value after the transit delay has

elapsed. Thread B executes a code sequence that ensures the shared buffer is full, reads

the value from the buffer, and finally marks the buffer empty. Only after the consumption

notification from thread B reaches thread A, can another value be transferred using the same

shared buffer (The notification is shown as a dashed edge from the consume operation of

thread B to the producer operation of thread A in Figure 3.1).

Recall, pipelined multithreaded codes execute as concurrent, long-running, communi-

cating threads. Figures 3.2 shows a two-thread pipeline and its control-flow graph along

with its inter-thread dependence. Figure 3.3 illustrates the execution schedule of produce

and consume operations of the program from Figure 3.2 under three different scenarios

with progressively better communication behavior. In all three cases, the “L” and “X” op-

erations are each assumed to take 10 cycles. Produce and consume operations are denoted

by P:n and C:n respectively, where ’n’ indicates the iteration number of the corresponding

communication operation. To start with, the produce and consume operations will each be

assumed to take 20 cycles to perform the necessary synchronization and initiate communi-

33

P:2

P:1

C:1

C:2

130

150

140

0

10

20

30

40

60

50

110

120

80

70

90

100

P:1

P:2

P:3

P:4

P:5

C:1

C:2

C:3

C:4P:3

P:1

P:2

P:3

P:4

P:5

P:6

P:7

P:8

C:1

C:2

C:3

C:4

C:5

C:6

1

1

1

1

2

3

1

1

2

3

1

2

3

1

2

3

3

3

2

1

1

1

2

(b) (c)(a)

Figure 3.3: Effect of transit and COMM-OP delays on streaming codes.

cation with the other thread. The inter-thread dependence edges going from the producer

to the consumer is shown as a solid arrow, while edges going the other way are shown as

dashed arrows. The number on each edge indicates which queue slot the corresponding

communication operation is accessing.

First, Figure 3.3a shows the execution schedule of the program using only a single

shared buffer. Notice that the application is able to complete only two iterations in the 150-

cycle snapshot shown. In this case, because of the nature of the communication support

i.e. a single shared buffer, the transit delay becomes part of the COMM-OP delay for the

produce and consume operations. This clearly is a bad design, since it negates the main

benefit of PMT - that of tolerating transit delay.

However, if, instead of a single buffer, a queue of buffers is used for communication,

the threads can execute more efficiently. This is illustrated in Figure 3.3b. With a queue

of buffers, there are two prominent improvements - first, the COMM-OP delay of a thread

34

can now be overlapped with the computation delay and the COMM-OP delay of the other

thread and useful work can be done during transit delays and second, the extra buffering

provides enough slack that transit delays are not part of COMM-OP delay anymore.

Other than the initial time taken for the first value to arrive in thread B, transit delays

do not affect the timing of the system. Compared to the non-pipelined situation with only

a single buffer location, the throughput (measured as iterations per time unit) has increased

by a factor of 2.5. In Figure 3.3b, 5 iterations are executed in 150 cycles. (For computing

throughput, the producer’s performance shall be used since the consumer is affected by the

one-time fill delay.)

The time taken to complete one loop iteration is given by the sum of computation time

and COMM-OP delay. While pipelining can remove transit delays from the critical path by

overlapping it with useful computation, the 20-cycle intrinsic COMM-OP delay continues

to be a recurring overhead for every loop iteration and serves to prolong the loop iteration

time. Unlike transit delays COMM-OP delays cannot be wished away altogether since

every loop iteration involves communication from one thread to another. Therefore, the

best one can hope for, is to minimize the overhead for individual communication operations

as much as possible to improve the performance of PMT codes, especially for PMT codes

with high-frequency streaming behavior. Figure 3.3c shows that 8 loop iterations can be

completed in 150 cycles by reducing the COMM-OP delay from 20 to 10 cycles.

Notice that this is accomplished with exactly 3 inter-thread buffer locations, as was the

case with Figure 3.3b. The performance improvement is entirely due to reduced COMM-

OP delay.

Recognizing the distinction between COMM-OP delay and transit delay will serve as

a guide when exploring the design space of communication mechanisms. Section 3.2 dis-

cusses the pros and cons of several streaming communication design points and how each

of them deal with the two different latency aspects of inter-thread communication.

35

3.2 Design Space

In designing high-frequency streaming support for future CMPs, architects will have to

make trade-offs between hardware (area) costs, design effort, and OS costs to come up

with the best design to meet desired performance goals. Any streaming support mecha-

nism has four essential ingredients: communication operation sequences to specify archi-

tectural reads and writes to inter-thread queues, a synchronization mechanism to prevent

read (write) operations on empty (full) queues, intermediate storage for queue data (queue

backing store) before they are consumed, and an interconnect fabric connecting processors

and various backing stores. For exposition purposes, interconnects will be split into two

sub-axes dedicated interconnects and pipelined interconnects. Although the design choice

for each of these axes is orthogonal, certain design possibilities fit together more naturally

than others.

3.2.1 Communication Operation Sequences

To avoid oversubscribing a processor core’s fetch and execution resources, the communi-

cation operation sequences cannot be too long. Additionally, to avoid extending the loop

critical path, the dependence height of the sequence must also remain relatively short. Fi-

nally, to enable decoupling between producer and consumer loops, the code sequences must

allow queuing behavior; sequences that use only a single buffer location for communication

should be avoided.

Software Queues Using Shared Memory

• Description: Producer/consumer communication and synchronization can be im-

plemented on conventional shared memory multiprocessors using software queues.

Code for such an implementation is shown in Figure 3.4. The queue is composed of

a head index, a tail index, and a shared memory array of condition variable, data item

36

void produce(int value) {
// spin until tail empty
while(q[tail].full);
// q[tail].full == 0
q[tail].data = value;
q[tail].full = 1;
tail = (tail+1)%q_size;

}

int consume() {
// spin until head full
while(!q[head].full);
// q[head].full == 1
value = q[head].data;
q[head].full = 0;
head = (head+1)%q_size;
return value;

}

Figure 3.4: Produce and consume code sequences for shared-memory based software
queues.

pairs. The tail (head) index is updated exclusively by the producer (consumer). To

access the queue, the producer (consumer) spins until the condition variable for the

tail (head) queue slot indicates the slot is empty (full). Once the queue slot becomes

available, the producer (consumer) can write (read) the data to (from) the queue and

signal the condition variable that the slot is now full (empty). Once the data item is

written (read), the tail (head) index should be updated to point to the new tail (head)

slot. Since only a single thread will produce data into each queue and only a single

thread will consume data from each queue, the head and tail pointers can be stored

locally on the consumer and producer cores respectively. Additionally, no mutexes

are required to protect the queue (although, the appropriate memory fence instruc-

tions are required to enforce the correct ordering of operations). Use of fine-grained

condition variables allow an efficient implementation of software queues [63].

• Advantages: The key advantage of this methodology is that it requires no modi-

fications to existing instruction set architectures (ISA) or microarchitectures. Con-

ventional shared memory mechanisms (cache coherence and memory consistency)

provide the complete foundation for this software implementation.

• Shortcomings: Its main drawback is that the code sequences to produce and con-

sume a single datum are quite lengthy. The C code shown in Figure 3.4 will likely

expand into many instructions. The COMM-OP delay overhead resulting from these

additional instructions and dependences may offset any gains obtained by partition-

ing the original code among multiple threads. Further, the presence of uncounted

37

loops in these code sequences make static ILP techniques inapplicable, and the pres-

ence of memory fence operations limit dynamic ILP and leave very little scope for

performance improvements.

Produce and Consume Instructions

• Description: Producer/consumer communication can also be implemented by aug-

menting an existing ISA with special produce and consume instructions [15, 45].

The produce instruction has a source operand identifying a particular hardware

queue, and a source operand to produce. Similarly, the consume instruction has a

source operand to identify the queue to consume from and a destination operand to

hold the read value. The hardware is responsible for delivering values between cores

and for blocking the pipeline when attempting to either write to full queues or read

from empty queues. In a system with more than two cores, application registers could

be used to configure the target core for each hardware queue. The specific hardware

used to implement this is independent of the ISA as long as the queue semantics are

guaranteed.

• Advantages: This methodology overcomes many of the shortcomings experienced

by software queue implementations. The produce and consume instruction sequences

are reduced from tens of instructions down to a single instruction, resulting in smaller

COMM-OP delays. This reduces both the resource over-subscription and the depen-

dence height in the application code, thereby improving COMM-OP delays.

• Shortcomings: The principal shortcoming of this methodology is the need to aug-

ment the ISA and the core microarchitecture. However, a concise expression of pro-

duce and consume semantics may be well worth the incremental core design and

verification costs.

38

Register-Mapped Queues

• Description: The instruction and dependence height overhead of produce and con-

sume operations can be further reduced using register-mapped queues [18, 64]. Rather

than modifying the ISA by adding produce and consume operations, a certain portion

of the register address space is reserved to refer to inter-core queues rather than tra-

ditional registers. The microarchitecture is free to implement the underlying operand

network [65] using any mechanism.

• Advantages: The main benefit is that, since any instruction can deposit its result

into a communication queue and any instruction can read an operand from the com-

munication queues, loops will contain fewer instructions and have lower dependence

height than the corresponding loops with produce and consume operations. This re-

duced instruction count and dependence height may prove critical in resource-bound

loops.

• Shortcomings: On the flip side, this methodology shares its shortcomings with the

explicit produce and consume instruction methodology described earlier. It addition-

ally creates increased architectural register pressure since the register address space

needs to be split between architectural registers and register-mapped queues. For

loops with a large number of live values, register pressure may prove to be a domi-

nant factor in loop performance. Consequently, for loops with a large number of live

values, decreased performance due to additional spill and fill code may outweigh the

advantages of eliminating produce and consume instructions.

3.2.2 Dedicated Interconnects

Good interconnect design is key to streaming performance. For operations consuming

data or synchronization information over the interconnect, any time spent stalled due to

interconnect contention adds directly to the COMM-OP delay for that operation. Similarly,

39

for operations producing data or synchronization information, interconnect contention may

cause operations to backup in the processor pipeline, adding to the COMM-OP delay of

those operations. Streaming data could either share on-chip interconnects with regular data

accesses or could use dedicated interconnects. This is an important design consideration

given the impact on chip area of routing resources. As Kumar et al. [29] identified, on-chip

interconnects occupy large areas, which may force designers to reclaim some area from on-

chip caches, often with adverse impact. Ideally, high-frequency streaming support should

not require new routing resources, but rather, should be efficiently multiplexed with other

requests on existing interconnects. However, depending on the application being run, high

contention for the shared interconnect may cause communication operations to stall more

often (increasing COMM-OP delays) than on a dedicated interconnect.

3.2.3 Pipelined Interconnects

While the transit delay of the interconnect is not important, the rate at which it can accept

new requests directly affects COMM-OP delay. Pipelined interconnects increase the rate

at which new requests can be serviced by the interconnect. For a non-pipelined intercon-

nect with an N cycle latency, only one request can be carried by the interconnect every

N cycles. However, an M -stage pipelined interconnect can initiate a new request every

N
M

cycles. This increased throughput reduces contention for the interconnect, thereby re-

ducing COMM-OP delay (and also improving the performance of other operations sharing

the interconnect). This disparity between pipelined and non-pipelined interconnect will be-

come more pronounced as larger scale CMPs become more commonplace. Of course, this

improved performance does not come for free. Pipelined interconnects are more complex

to build than non-pipelined interconnects. Furthermore, memory systems using pipelined

interconnects must use coherence protocols more sophisticated than simple snoop-based

protocols to deal with multiple inflight requests in the interconnect.

40

3.2.4 Synchronization

Concurrently executing threads require a synchronization mechanism to determine when

it is permissible to read from or write to a queue entry. The time from when a produce

(consume) operation begins execution to when it can actually write (read) data to (from)

the queue entry is called synchronization delay. Since every communication operation has

to synchronize before reading or writing data, this delay directly affects the COMM-OP

delay. The key to reducing synchronization delay for a communication operation is to en-

sure that the necessary synchronization information is delivered to its processor core well

ahead of the operation’s execution. Recall from Section 3.1 that pipelining communication

(i.e. communicating using a queue of buffer locations rather than a single buffer location)

increases the time between successive synchronizations on a single buffer location. This

pipelining offers synchronization mechanisms the necessary slack to deliver synchroniza-

tion information before it is read by a synchronization operation. The synchronization

design options, discussed in this section, vary in the amounts of software and hardware

logic, the backing store used for synchronization data and the level of OS support.

Software Techniques

A detailed description of software synchronization was given in Section 3.2.1. The syn-

chronization data consists of an array of full-empty (FE) condition variables that are set

and reset by produce and consume operations respectively. Since both produce and con-

sume operations modify the same memory locations, with traditional caching mechanisms,

synchronization delays will be significantly increased due to frequent cache misses; the

first access to a particular queue slot will incur a compulsory miss and subsequent opera-

tions will incur coherence misses. (The producer and consumer may benefit from spatial

locality if multiple queue entries are located in a single cache line.) This latency will be

directly observed by both the producer and consumer since each must read the condition

variable before being able to proceed. To avoid such penalties, the condition variables for

41

a queue slot should be moved from the core that writes it to the core that reads it well

ahead of the read operation. Prefetching and other microarchitectural optimizations like

write-forwarding (described below) may be able to mitigate these shortcomings.

Other software queue implementations that track global queue occupancy rather than

individual slot occupancy are possible. However, such mechanisms require a coarse-grain

lock that guards access to the entire queue data structure. Consequently, produce and con-

sume operations cannot occur simultaneously even if they are accessing separate portions

of the queue. Such implementations will incur costly synchronization delays, since signifi-

cant contention for the queue lock will exist and cache lines that store the queue occupancy

must ping-pong between the producing and consuming cores. The ping-ponging can be

minimized by using lazy pointer updates, valid bits and sense reversal, as described by

Mukherjee et al. [37].

Hardware Techniques

Just as in software techniques, the key to low synchronization delay is to ensure that syn-

chronization data is maintained as close as possible to the processor core in which it is

read. For example, maintaining full-empty (FE) bits close to the consumer core may re-

duce consume synchronization delay, but will increase produce synchronization delay by

forcing produce operations to go all the way to the consumer core to read FE bits. Keep-

ing the bits in a centralized location will affect both produce and consume synchronization

delays. Instead, if the FE bits are replicated and one copy is maintained at the producer

and consumer cores, low produce and consume synchronization delays can be achieved. In

such a replicated setup, the two copies may be out of step with each other due to delays in

propagation of updates from one core to another. However, such delays will not affect cor-

rectness (since the out-of-date information is conservative), nor will it affect performance

provided there are enough empty (full) queue slots to write (read) data to (from).

Quite a few implementations for such mechanisms exist, and they are often influenced

42

by the choice of queue backing store. For example, StreamLine [7] uses distributed oc-

cupancy counters to track memory accesses to special stream pages. The synchronization

array (to be presented in Section 3.3), for instance, maintains distributed head and tail

pointers to a dedicated circular buffer. By using dedicated synchronization storage special-

ized for streaming communication, these techniques avoid problems that stem from using

the generic memory subsystem. However, in these schemes, the additional hardware syn-

chronization state has to be added to the OS context and needs to be saved and restored

on context switches. Additionally, special ISA and microarchitectural extensions and/or

OS support may be needed to identify queue read/write operations to the synchronization

hardware.

3.2.5 Queue Backing Store

The time from when a consume operation requests data from the backing store to when

it receives the data contributes directly to COMM-OP delay. Just as with synchroniza-

tion, this delay can be minimized by ensuring that data is stored as close as possible to the

processor core that will consume the data and by ensuring that the backing store is not over-

subscribed. Conversely, adding new, dedicated backing stores to a CMP design increases

both the amount of die area dedicated to streaming communication and the amount of OS

support required for context switches and virtualization. This section will discuss various

design choices for the queue backing store in the context of this trade-off. Note, while

this section discusses design options for queue data storage, the issues and mechanisms

described here apply equally to synchronization storage.

Shared Memory Store

The memory subsystem serves as a natural store for data being communicated between

threads. Architectures and operating systems already provide mechanisms to share data

through memory, and most memory systems are equipped with caches to buffer data close

43

to a processor core reducing access time. Streaming communication, however, does not

exhibit the same locality as traditional memory accesses. Consequently, designers must

decide how streaming accesses should interact with the traditional memory hierarchy. Since

streaming accesses exhibit poor temporal locality (producing and consuming threads stride

across the queue, rather than access the same element multiple times), certain caches in the

hierarchy may want to avoid caching streaming data since caching streaming accesses may

lead to eviction of useful data.

While there is poor temporal locality within a core, writes to queue locations are soon

followed by reads to the same location by other cores. Consequently, caching lines for

queue storage in private caches increases coherence traffic between cores producing and

consuming values. Worse still, the delay introduced by these coherence requests contribute

directly to COMM-OP delay since the request is demand initiated by the consume oper-

ation. Unfortunately, avoiding caching in private caches requires that every produce or

consume operation access a shared level of the memory hierarchy creating contention for

its ports. Since access times to centralized caches are already typically quite large, forc-

ing all produce and consume operations to contend for few ports will likely lead to large

COMM-OP delay in addition to affecting normal memory accesses.

Streaming accesses do, however, exhibit spatial locality. Streaming produce and con-

sume operations stride across the queue data. Consequently, caching queue storage in a

core’s private cache can reduce COMM-OP delay. For a consumer thread, the first access

to a line will incur a large access delay, but successive consumes will be cache hits. Fur-

thermore, if there is sufficient decoupling between a producer thread and consumer thread

(i.e. they are writing to and reading from distinct cache lines), then coherence traffic occurs

at the cache line granularity rather than for each produce and consume operation.

Unfortunately, in situations with little or no decoupling, false cache-line sharing occurs

since the producer and consumer threads will be accessing nearby queue entries that fall in

a single cache-line. This false sharing can create significant coherence traffic and signifi-

44

Queue
Slot 6

Queue
Slot 4

Queue
Slot 2

Queue
Slot 7

Queue
Slot 5

Queue
Slot 3

Queue
Slot 0

Queue
Slot 1

Queue
Slot 0

Queue
Slot 1

Queue
Slot 2

Queue data item

Lock byte padded to 8−bytes 8 bytes
Queue Layout Unit: 8

Queue Layout Unit: 1

Cache line (128 bytes)

Figure 3.5: Two queue layouts for memory backing stores.

45

cantly increase COMM-OP delay. Different cache-line layouts can mitigate this problem at

the expense of wasted space in the caches. Two possible layouts are shown in Figure 3.5. In

the figure, synchronization and queue data are co-located to improve locality of accesses.

The layout at the top of the figure places 8 queue entries on a single cache line and can

suffer from false sharing. The queue layout on the bottom of the figure, conversely, pads

the size of each queue entry so that there is only entry per cache line. By construction, this

layout will not experience any false sharing, but wastes large portions of the cache. The

layout can be made as dense or sparse as desired. The number of queue entries per cache

line is referred to as the queue layout unit (QLU).

Prefetching and Write-forwarding. Typically, consume operations (at least ones

accessing the first queue entry on a cache line) miss in the local cache and have to fetch

data from a remote cache. Such remote data fetches increase the consume COMM-OP

delay compared to a local cache hit. In order to bring down this latency, two mechanisms

have been proposed in the literature - remote prefetching and write-forwarding. In remote

prefetching, the consumer thread issues prefetch instructions before it actually needs the

data and tries to overlap the remote data fetch latency with other useful work. The con-

sumer, however, must determine when to issue the prefetch, as overly eager prefetchers

may prematurely steal cache lines from the producer’s cache. This may cause the pro-

ducer to slow down appreciably. The second technique, write-forwarding [1, 32, 44, 48],

addresses this problem by making the producer thread forward shared cache lines to the

consumer’s cache after it is done producing its data. This way, the timing of inter-core data

transfer can be optimized so that neither thread suffers any unnecessary slowdown. Write-

forwarding could either be implemented with special completers on store instructions or

in processors (e.g. MIPS) that support software-installable TLBs, the OS could mark cer-

tain pages as “streaming” and the memory subsystem could be modified to appropriately

deal with accesses to such pages. Other mechanisms have been proposed to eagerly transfer

lines from a producer’s cache to a consumer’s cache [47], however, the short time spans be-

46

tween lock access and data access present in high-frequency streaming codes makes them

inappropriate for this domain.

Next, a streaming-specific optimization to standard write-forwarding schemes is pre-

sented. Stream instructions exhibit strong locality when accessing a cache line since ac-

cesses are made to consecutive stream locations. The optimization ensures that this spatial

locality is not damaged by write-forwarding. Rather than forwarding the cache-line after

each queue entry is filled, the cache controller forwards a line after N queue entries on the

line are filled. Typically, the parameter N is set equal to the QLU so that a line is forwarded

only after all queue entries on the line are filled. The implementation cost within the cache

controller is minimal since it need only be parameterized with the value N and the size of

each queue entry. Since accesses to successive queue entries will occur in order, accesses

to certain regions of each line will initiate write-forwarding. This optimization will help

reduce the average COMM-OP delay by ensuring the maximum number of cache hits pos-

sible to a line before forwarding it. For example, for a layout that has only one queue slot

per cache line (QLU 1), N is equal to 1. However, for a denser layout scheme that packs

8 data items onto a cache line (QLU 8), forwarding will be done on detecting a write to

the last 8th segment (N=1/8th) of the cache line and so on. If the queue slots are equally

spaced out on a cache line, WFF is equal to 1/QLU.

Dedicated Store

A backing store implemented with dedicated hardware is another possibility. Having a

dedicated backing store is advantageous as it does not pollute the memory subsystem with

short-lived streaming data. It also helps avoid all streaming related coherence traffic. By

ensuring that streaming traffic does not contend with shared memory requests, dedicated

stores can prevent normal memory traffic from increasing COMM-OP delays (or streaming

operations from decreasing the performance of normal memory operations).

While dedicated stores can potentially improve performance, they do not come without

47

a cost. Dedicated stores consume valuable die area possibly reducing available on-chip

cache memory and negatively impacting the performance of non-streaming sections of ap-

plications. Additionally, the contents of the dedicated store become part of the OS context

for a process. As such, OS and hardware support is necessary to context switch and virtu-

alize these resources.

• Centralized Dedicated Store: A centralized dedicated store adds a single streaming-

specific memory to the CMP. With this design all cores can share all the storage

added to the CMP. Unfortunately, this design suffers from scalability problems as

more cores try to access the single structure. Additionally, since the structure is cen-

trally located, for all but the smallest CMPs, the structure will be farther from cores

than the local caches. Consequently, the time required to access the store will likely

be larger than a local cache hit. This translates to a comparatively larger COMM-OP

delay.

• Distributed Dedicated Store: Alternatively, streaming-specific memories can be

added to each core in the CMP, rather than adding a single central structure. This de-

sign scales better than the centralized dedicated store since a single common structure

does not need to be accessed by all cores. Additionally, each piece of the distributed

store can be located close to the consuming processor reducing the COMM-OP de-

lay for consume operations (recall that a distant backing store does not increase the

COMM-OP delay for produce operations). Unfortunately, this design prevents cores

from sharing the added storage. Consequently, more die area may be consumed for

the dedicated store.

Network Backed Queues

Intermediate nodes in an on-chip network, often buffer data to implement pipelined in-

terconnects. By preserving data ordering they act as effective FIFOs [65]. They inherit

48

all the advantages of dedicated stores. Their distributed nature also makes them scalable.

Unfortunately, the amount of decoupling available to the executing threads is directly pro-

portional to the physical separation of their cores on the chip. The larger the separation

the more the available decoupling. Relying solely on this storage can affect performance

as threads executing on nearby cores will not get sufficient decoupling to tolerate variable

latency stalls in the individual threads. Additionally, when network buffers are the sole

carriers of inter-thread architectural state, the OS overhead for context switches becomes

more pronounced. While switching out a consumer thread, the OS has to check network

buffers along the paths from every producer to this consumer before doing the switch. Al-

ternatively, every time data arrives at a node for a thread that has been switched out, an

interrupt could be triggered to make the OS append the incoming data to the swapped out

context state. The reason why conventional memory networks do not have this problem is

because in network-backed queues the network holds the sole copy of the inter-thread data

and thus any in-flight data must be explicitly saved and restored. However, for conventional

memory networks, there is always a safe copy of the data somewhere in the memory sub-

system, so that, even if a thread is context-switched, it can perfectly replay its computation

by re-requesting the data from memory.

3.3 The Synchronization Array

The synchronization array design draws upon the arguments made in the design space de-

scription and optimizes on all design axes to achieve high performance. In particular, the

synchronization array design uses special produce and consume instructions to reduce

instruction overhead, uses dedicated backing store to avoid contention with memory ac-

cesses, uses distributed hardware synchronization and uses a dedicated network to carry

inter-thread queue operand traffic.

This section expands upon the original discussion of the synchronization array, pre-

49

sented in [51]. It first motivates the design of the synchronization array and describes its

functionality and operation. Then, it discusses synchronization array scalability issues and

finally shows how the synchronization array can be integrated with a commodity processor

pipeline such as that of the Itanium R© 2.

3.3.1 Operation

The instruction set architecture (ISA) abstraction of the synchronization array is a set of

blocking queues accessed via produce and consume instructions. The produce in-

struction takes an immediate dependence number and a register identifier as operands. The

value in the register is enqueued in the virtual queue identified by the dependence number.

The consume instruction dequeues data in a similar fashion. The compiler introduces

produce and consume instructions at the source and destination of any dependence

going from one thread partition to another. While ordinary produce and consume in-

structions suffice to communicate register and control dependences from one thread to an-

other, communicating memory dependences require special memory fence semantics on the

produce and consume instructions to guarantee correct memory consistency. Variants

of produce and consume instructions - produce.rel and consume.acq instruc-

tions respectively - are used to communicate memory dependences. A produce.rel in-

struction has release semantics with respect to memory stores. It will execute only after all

prior stores have committed (i.e. made their effects visible) in its thread. On the other hand,

a consume.acq has acquire semantics with respect to memory loads. An uncommitted

consume.acq instruction will prevent any subsequent memory load instructions in that

thread from issuing. In order to correctly synchronize a memory dependence between a

store in one thread and a load in another thread, the compiler inserts a produce.rel

instruction (to some queue) after the store in the first thread and a consume.acq instruc-

tion (to the same queue) before the load in the second thread. This will guarantee correct

memory semantics.

50

Correct synchronization and communication between a produce-consume pair in-

volves two main operations - which queue location to access and when to access this lo-

cation. In the past, FIFO channels have been used to implement inter-core queues [58].

FIFO channels are organized as an array of latches and data is shifted from one latch to

the next in consecutive cycles. In such implementations, determining which queue loca-

tion to access is straightforward. The producer (consumer) thread writes to (reads from)

the latch at the producing (consuming) end of the FIFO channel. The second question of

when to access this location is also resolved by looking at the fullness/emptiness of the

end latch. While the implementation of the basic operations is straightforward with FIFOs,

such implementations suffer from two limitations.

• FIFOs serialize all communication through a queue at the producer and consumer

ends preventing out-of-order issue processors from speculatively writing to and read-

ing from queue locations. While speculative writes are not useful in practice1, spec-

ulative out-of-order reads from a queue is key to good performance on out-of-order

issue processors with large instruction windows.

• FIFO channels are not scalable. Since the produce and consume instructions are

exposed at the ISA level, any thread on any core can execute these instructions. Thus,

in order to support dedicated queues among any two threads, a FIFO implementation

necessarily has to have FIFO channels running between every pair of cores or should

have logic to efficiently multiplex and demultiplex data coming from and going to

various cores.

The synchronization array microarchitecture is designed to address these concerns. Un-

like FIFO channels, the synchronization array separates the determination of which queue

location to access and when to do the access into two different entities.
1They are useful only at times when a queue is empty. However, if the queue is empty most of the time,

then it calls for a redistribution of work amongst communicating threads.

51

The task of determining which queue location to access is handled by a special syn-

chronization array rename logic. The compiler and rename logic together ensure that both

sides of a communicating pair of produce and consume instructions are mapped to the

exact same queue slot or dependence array slot. For each dependence number d, the re-

namer maintains a count of the number of outstanding mappings and a next mapping field

that indicates which queue slot the next produce or consume instruction to dependence

number d will be mapped to. The next mapping for d is incremented (with wrap around)

after a successful rename operation.

Through careful code generation, the compiler ensures that dynamically there is a one-

to-one correspondence between produce and consume instructions across communi-

cating threads for each dependence number. This guarantee combined with the fact that

the produce and consume instructions flow through the rename stage in program or-

der in their respective cores, ensures that both instructions of every produce-consume

dependence-pair are renamed to the same unique dependence array slot. The renamer also

reclaims dependence array slots after a successful synchronization. This is very similar

to the rename logic in modern out-of-order processors. However, free-list maintenance is

simplified in the SA rename logic, since there is only one unique produce and consume

instruction per allocated slot.

Queue data storage and the full/empty bit for a queue slot is maintained in the synchro-

nization array itself. Figure 3.6 shows the structure of the SA in more detail. The state

machine in each dependence array entry, shown in Figure 3.7, ensures that the consume

instruction reads the data value only after the corresponding produce instruction is done

producing. When the produce instruction executes, it writes the data into the data field,

writes the producer tag field with its own tag and updates other architectural state as shown

in Figure 3.7. When a consume is ready to execute, the SA checks to see if data is avail-

able for read (i.e. checks to see if the Full bit is set). If it is, it immediately returns the

data and frees the entry. If not, the SA remembers the tag of the consume instruction

52

N

Read

1 1

Data

W

Producer Tag Consumer Tag

Tag−Width Tag−Width

Full

Number Dependence Arrays

Static Dependence

0

1

2

Dependence Array Entry

Figure 3.6: Synchronization Array structure

Empty (Deliver Data

Update Prod/Cons

Rename Tables)Producer Arrives

Consumer Arrives

(D
eli

ve
r D

ata

Upd
ate

 P
ro

d/C
on

s

Ren
am

e T
ab

les
)

Con
su

mer
Arri

ve
s

Pro
du

ce
r A

rri
ve

s

Buffered
Read Data

Available

Full=0
Read=0

Read=0
Full=1Full=0

Read=1

Figure 3.7: Synchronization Array State Machine

53

in the consumer tag field. In such cases, consume instructions take multiple cycles and

any dependent instructions will stall the corresponding pipeline. Overall, there is a def-use

latency of at least one cycle between a consume instruction and any dependent instruc-

tions. When the corresponding produce instruction arrives, the SA delivers the data to

the writeback stage of the processor along with the consumer tag. This simple protocol

ensures correct synchronization between two communicating instructions.

Since queues have space enough to buffer exactly one produce and one consume

instruction per slot, the renamer stalls the pipeline whenever the outstanding mappings

count for any dependence number d becomes equal to the number of slots per queue. The

SA notifies the producer and consumer core with the tag of the produce and consume

instructions, respectively, whenever an array slot reverts to the Empty state. This allows

the renamer to reclaim dependence array slots and mark them as available for future allo-

cations. In this way, the synchronization array and rename logic preserve the illusion of

a queue. Once past the rename stage, the instructions can execute out-of-order with re-

spect to each other. This removes the serialization bottleneck seen with FIFOs. Scalability

concerns will be addressed in Section 3.3.3.

While the decentralized hardware avoids lookups into the SA, in the absence of global

broadcasts of issue and completion activity from all other cores, the rename logic of a core

can only deliver accurate information about slots allocated to and accessed by dependence

numbers for which this core is the exclusive producer or consumer. As a result, for a given

dependence number, there must be a unique core that produces data and a unique core that

consumes it. The designated producer-consumer pair of cores for a particular dependence

number is allowed to change only after all issued produce and consume instructions

corresponding to that dependence number have retired. In order to support multiple depen-

dencies between the two threads, the SA is organized as an array of dependence arrays as

shown in Figure 3.6. This provides the compiler with a lot of scheduling flexibility with

respect to produce and consume instructions in each thread. For example, by allo-

54

cating a unique dependence number to every true inter-thread dependence, produce and

consume instructions in a program control block can be moved to any location within that

block. The compiler can also constrain SA instruction movement by assigning them the

same dependence number.

3.3.2 Handling Control Speculation

All modern processors use control speculation as a standard mode of operation to achieve

high instruction throughput, in the presence of frequent branching instructions. Support for

control speculation in a processor pipeline demands that any microarchitectural element,

whose state is essential for program correctness, be able to recover from misspeculation

events. There are two basic issues that arise when handling control speculation in a syn-

chronization array implementation. First, can produce and consume instructions be

renamed speculatively? Second, what does it mean for produce and consume instruc-

tions to execute speculatively?

Renaming

The rename logic described above is quite similar to register renaming in traditional out-of-

order processors. Thus, similar recovery mechanisms can be used to recover the synchro-

nization array renamer, upon misspeculation, to a correct prior state. In this dissertation, an

Alpha 21264 [11, 25] style checkpointing scheme is used to save the renamer’s state upon

encountering a branch instruction and restoring the renamer to the corresponding check-

pointed state on a branch misspeculation.

Synchronization array access

Consume instructions, like load instructions, are at the head of dependence chains and will

greatly benefit from speculative synchronization array access, instead of having to wait un-

til they commit, to access the synchronization array. Speculative read access can drastically

55

lower the average def-to-use latency between a consume instruction and an instruction de-

pendent on it. The only thing to watch out for in handling speculative consumes is that the

synchronization array should not reclaim a slot on a speculative access and instead should

wait for the core to signal to it that the instruction has successfully committed and that the

slot can be reclaimed. While conceptually, consume instructions are in charge of reading

the synchronization array as well as initiating slot reclamation, the two actions will have

to be performed at different time steps during the lifetime of a consume instruction, in

order to support speculative consume instructions. Produce instructions, on the other

hand, being at the bottom of dependence chains, do not really benefit from speculative

write access. Further, if another thread consumed a value written by a control speculative

produce instruction from one thread, it causes the speculation to “leak” from the produc-

ing core to the consuming core. Thus, any misspeculation recovery should be a multi-core

recovery mechanism and is expensive. Besides, as mentioned earlier in footnote 1, specu-

lative produce operations are useful only when the queues are empty most of the time, a

situation the compiler/partitioner should strive to avoid.

3.3.3 Performance Scalability

The above description simply places the synchronization array between two cores and takes

advantage of the physical proximity to enable fast core-to-synchronization array communi-

cation. As the number of on-chip cores increase, depending on the location of the synchro-

nization array, the access latencies may vary, perhaps even non-uniformly across cores.

Increased latency will affect the transfer delay of four different types of signals from/to

the synchronization array. Given a producer and a consumer core, the four different types of

signals are: a request signal from the producer core to the SA, a consume signal from the SA

to the consumer core, a slot reclamation signal from the consumer core to the SA to enable

it to reclaim queue items after successful synchronization and a similar “synchronization

over” signal from the SA to the producer core to inform it about slot reclamations.

56

Placing the synchronization array closer to a producing core would enable the former to

quickly notify the producing core of queue slot reclamations. Three different organizations

are possible for the synchronization array when moving to larger multi-core processors. It

can either be located on the producer side, on the consumer side or in some central location.

Empirical results indicate that placing the synchronization array on the consumer side of-

fers the best performance. The second best performance is obtained from the organization

that locates the synchronization array midway between communication producer and con-

sumer cores. The worst organization is locating the synchronization array on the producer

side. The reason for this bias towards locating the synchronization array closer to the con-

sumer side is that, such an organization lowers consume-to-use latency which improves

the consumer thread’s performance. This in turn initiates recovery of slots at a faster rate,

thereby improving the producer thread’s performance. Moving SA closer to the producer

core slows down the consumer which ultimately slows down the overall execution. Exper-

imental evaluation confirms this intuition and indicates that locating the SA storage closer

to the consumer core yields better performance than locating it closer to the producer core.

3.3.4 Integrating with the Itanium R© 2 pipeline

This section explains how the synchronization array can be easily integrated with a pro-

cessor pipeline. The Itanium R© 2 pipeline is chosen as an example for exposition purposes.

This section first presents a brief description of the main pipeline of an Itanium R© 2 pro-

cessor [24] before explaining how synchronization array renaming and access logic is inte-

grated into the processor pipeline.

The Itanium R© 2 is an implementation of the Intel IA64 Architecture that can fetch and

issue up to 6 instructions per cycle. Its main pipeline has 8 stages, split into a front end

and a back end. Figure 3.8 shows the processor’s integer pipeline along with the logic and

datapaths added for synchronization array integration.

The front-end of the Itanium R© 2 pipeline consists of two stages, Instruction Pointer

57

SAA

DETEXEREGRENEXP

BACK END

ROTIPG

FRONT END

WRB

IPG

FRONT END

ROT

BACK END

EXP REN REG EXE DET WRB

SAR
POT

POT
SAR

Itanium 2 Core 0

ALU ExecutionEXE

REG Register file access

REN Physical register renaming

EXP

ROT Instruction rotation

IPG IP generation and fetch

DET Misspeculation detection and
deferred exception handling

Sync array rename

WRB Writeback

Predicate Off Tracking
Sync array access

SAR

POT
SAA

Template decode, expand, disperse

Itanium 2 Core 1

In
st

ru
ct

io
n

B
uf

fe
r

(I
B

)

Instruction B
uffer (IB

)

Figure 3.8: Dual-core CMP configuration with Synchronization Array. The individual
cores are Itanium R© 2 cores. Shaded pipeline stages indicate extensions to the Itanium R© 2
datapath to support synchronization array instructions. The dark arrows indicate new dat-
apaths added. The SAR/POT → SAA datapath carries speculative SA accesses. The
DET → SAA datapath carries non-speculative SA accesses. The SAA → SAR signal
carries synchronization over notifications from the SA to the cores and the SAA → DET
datapath carries the queue value read by consume instructions from the SA.

58

Generation (IPG) and Bundle Rotation (ROT), that prepare instructions for execution and

feed them into the Instruction Buffer (IB). The back-end fetches instruction groups from

the IB and organizes the individual instructions into issue groups that are guaranteed to

consist of independent instructions (EXP). Structural hazard detection for functional units

and register file ports is performed in EXP as well. Register names are then coordinated

with the Register Stack Engine and renamed accordingly (REN). The register values are

then fetched from the appropriate register file (REG). It is at this stage that the normal

in-order pipeline stalls an issue group if all source operands are not ready. Instructions

then continue through execution (EXE), exception detection and branch resolution (DET),

and finally write their results back to the register file (WRB). Floating point and memory

instructions have extra execution stages between DET and WRB.

In the SAR stage, produce and consume instructions are renamed to the correct

SA slots and they proceed to access the synchronization array in the SAA stage. Con-

ceptually, the renaming has to happen at least a cycle before the synchronization array is

accessed. While renaming for produce instructions can be delayed until past the DET

stage, consume instructions must be renamed no later than the REG stage since they must

access the synchronization array in the EXE stage to provide a 1 cycle consume-to-use

latency. Renaming cannot be done before the REN stage since the Itanium R© 2 pipeline ex-

plodes bundles into instructions only in the EXP stage. Thus, renaming can be done either

in parallel with REG stage or in parallel with REN stage without any performance penalty.

This dissertation models the synchronization array renaming logic in the REG stage as

shown in Figure 3.8. However, detailed timing measurements and critical path analysis of

the processor pipeline will be needed to determine which stage such logic should go into.

A produce instruction is considered done after it writes to its SA slot. A consume

instruction returning from the SA writes back its value to the register file in the WRB

stage, even though the read value is available on the bypass logic after the EXE stage. The

consuming core informs the SA whenever a consume instruction commits. Upon being

59

notified of consume commits, the SA informs the SAR logic of both the producing and

consuming cores so that both cores can reclaim the corresponding SA slot.

Supporting Predication

Supporting predicated produce and consume instructions is important for several rea-

sons. Predication [3, 36] allows compilers to eliminate hard-to-predict branches and com-

pile two or more control flow paths into a straight line code sequence. Dynamically, predi-

cation eliminates pipeline flushes caused by such branches. Statically, it provides compiler

with increased scheduling flexibility. In the IA64 architecture, predication and rotating

registers can be combined to achieve very tight software-pipelined [30, 52] loops.

However, predication support for produce and consume instructions presents chal-

lenges for the design and implementation of the rename logic and integrating it with the

main processor pipeline without affecting processor cycle time. Recall that the compiler

guarantees that dynamically, exactly one produce instruction writes to a slot and that

exactly one consume instruction reads that value from that slot. Allowing predicated

produce and consume instructions means that the compiler can generate multiple static

produce or consume instructions for the same queue, but predicate them so that dynam-

ically there is a one-to-one correspondence between produce and consume instructions.

Execution for predicated-off instructions is short-circuited and they do not access the

synchronization array. On the other hand, true produce and consume instructions, i.e.

unpredicated or predicated-on instructions, access the synchronization array and update

state as described above. In the current design, the SAR logic hands out consecutive map-

pings from a modulo-N space, where N is the number of queue or dependence array en-

tries, on both the producer and consumer sides. Suppose a sequence of six predicated

produce instructions to queue 1 is presented to the SAR logic. Assume that only the

sixth instruction is a true produce instruction and the five preceding produce instruc-

tions are predicated off. Without special support for predication, the first true produce

60

instruction will be renamed to queue slot 5, whereas it should have been renamed to queue

slot 0 since all prior produce instructions to queue 1 were predicated off.

Conceptually, the rename logic should also be made aware of predicated off instruc-

tions so that it can ensure appropriate dynamic one-to-one correspondence between true

produce and consume instructions. However, predicate values are known only in the

REG stage. Doing conditional renaming based on the predicate value in REG stage will,

in effect, serialize the SAR logic behind the baseline REG logic. This is so, because the

SAR logic will now have to wait for scoreboarding and register file access before proceed-

ing with synchronization array renaming. Such a design can greatly increase the critical

path of the processor pipeline and affect the cycle time. Optionally, if a latch separates the

SAR logic from the REG stage, then the bypass logic will be affected, since back-to-back

operand bypass will no longer be possible for source operands coming from the synchro-

nization array and will consequently degrade performance. What is needed is a mechanism

that will not affect the cycle time nor instruction throughput.

To guarantee correct queue semantics in the presence of predication without impacting

performance or processor cycle time, extra logic, called the predicate-off tracker (POT),

is added to the REG stage alongside the SAR logic. The POT logic maintains d coun-

ters, where d is the total number of queues or dependence arrays. Each counter keeps

track of the number of predicated off produce or consume instructions to the corre-

sponding queue. Upon branch misspeculation, each predicate-off counter will have to be

restored along with the restoration of the SA renamer’s state. Since the SAR logic hands

out new mappings unconditionally to all produce and consume instructions, for a given

produce or consume instruction, subtracting the predicate-off count from its mapping

will yield the correct physical queue slot number that ought to be accessed by the instruc-

tion. The POT logic tags each produce or consume instruction, upon entry into the

REG stage, with the appropriate physical slot number by subtracting the current predicate-

off counter value of the queue being accessed from the SAR mapping of that instruction.

61

For example, suppose a sequence of six predicated produce instructions are presented to

the SAR logic. And also suppose that all except the sixth instruction are predicated off. The

sixth instruction is given a mapping of 5 by SAR, the five produce instructions before

it are all predicated off which causes the predicate-off count to be raised to 5. And when

the sixth produce instruction passes through the REG stage, it gets tagged with 0 as the

physical slot number (physical slot number is mapping minus predicate-off count modulo

queue size). The subtractor logic will happen in parallel with scoreboarding and register

file access of the REG stage. So, it will not prolong the cycle time for the REG stage.

Note, the subtraction operation is also performed in the modulo-N space, where N is the

number of entries in a queue. Since predicate values are known by the end of the REG

stage, the POT logic updates the counters corresponding to any predicated off produce

or consume instructions at the end of the REG stage, as instructions make their way into

the REG-EXE stage latch. Also, note that the subtractor logic need only be dlog2Ne bits

wide and therefore, is unlikely to affect the processor’s critical path timing for reasonable

queue sizes (32, 64, etc.).

To summarize, the POT logic tags communication instructions with their absolute phys-

ical slot number by performing a simple subtraction operation during the cycle, in parallel

with regular REG stage operations and it updates the POT counters themselves as instruc-

tions enter the REG-EXE latch. Note that the cycle time arguments presented here are

based on intuition about the relative timing of the various pieces of logic. Low-level tim-

ing measurements have to be carried out before any of these can be incorporated into real

designs.

Implementing Acquire and Release Semantics

As mentioned before, the produce.rel and consume.acq instructions are used to

guarantee correct semantics when synchronizing for memory dependences. Scoreboarding

for both types of instructions is done in the REG stage of the pipeline. The REG stage

62

maintains two counters, one to track the number of outstanding store instructions and the

other to track the number of outstanding consume.acq instructions.

The store count is incremented when a true store instruction (i.e. not predicated off) is

issued. If a true store is canceled due to misspeculation, the store count is decremented.

Similarly, if a true store commits in the memory subsystem, the REG stage is informed

and the outstanding store count is decremented. A produce.rel instruction cannot

issue from REG unless the outstanding store count is zero. The consume.acq count

is also incremented when a true consume.acq instruction (i.e. not predicated off) is

issued. The count is decremented if a true consume.acq instruction is canceled or if

a true consume.acq instruction commits. A load instruction cannot issue so long as

the outstanding consume.acq count is not zero. With these two counters and relevant

datapaths to update them, produce release and consume acquire semantics can be added

easily to the Itanium R© 2 microarchitecture.

3.4 The Snoop-Based Synchronization technique

This is a low-cost design that attempts to combine the positive aspects of a dedicated

hardware technique like the synchronization array with the low hardware and OS cost

advantages of shared-memory based software-only techniques. In effect, it provides an

efficient message passing implementation atop a shared-memory CMP. Others have pro-

posed mechanisms to implement efficient message passing in shared-memory multiproces-

sors [7, 15, 21, 28, 48]. However, message setup overhead in these designs make them in

appropriate for PMT applications with high-frequency streaming. It improves Mukherjee

et al. [37]’s cachable queue design in that snoop-based synchronization includes logic to

update head and tail pointers (kept in both the producer and the consumer cores) based

on the read/write messages snooped from the bus. This avoids unnecessary bus traffic for

occupancy pointer updates. By piggybacking queue pointer-updates on cache line write

63

forwarding, snoop-based synchronization is able to achieve efficient data transfers as well

as queue pointer updates.

In the snoop-based synchronization technique, produce and consume instructions

are dynamically renamed to unique memory addresses. Special microarchitectural stream

address logic assigns consecutive stream addresses (in a modulo space) for all accesses to

a queue. Per-queue hardware occupancy counters maintained at the L2 controller pro-

vide synchronization. Although the proposed implementation assumes produce and

consume instructions, the same behavior can be obtained with conventional store and

load instructions as well. One possible implementation is to for the compiler to make

stores and loads to a particular queue to always generate the same unique effective address.

Prior to this, during program loading time, the TLB must be initialized with certain vir-

tual memory areas as being “streaming pages”. Dynamically, when a store or a load to a

streaming page is encountered, it is handled differently from conventional stores and loads.

Streaming stores and loads go through the stream address logic and special synchronization

before accessing the correct memory location. This design has not been evaluated, but is

mentioned here as another potential design option.

A producer (consumer) core updates its occupancy counters after successfully execut-

ing a produce (consume) instruction or after snooping occupancy updates from the

bus. A produce (consume) instruction is allowed to access the L2 cache if and only if

the occupancy counter corresponding to its stream does not indicate a full (empty) queue.

Write-forward messages are used by the consumer core to update its occupancy counters.

When the last queue item (“last” depends on the queue layout) from a given streaming line

is read by a consume instruction, the consumer core sends out a message on the bus to

inform the producer’s occupancy-tracker of how many consume instructions were ser-

viced from that particular line. When a streaming cache line is evicted from an L2 cache,

then the cache once again puts out on the bus the number of queue items produced into

(or consumed from) the line for its counterpart to update its occupancy counters. When the

64

producer thread wraps around, it is stalled until all queue items from the corresponding line

have been consumed by the consumer, to avoid damaging spatial locality in the consumer.

Finally, since no write-forward messages will be sent when a stream terminates midway

through a cache line, consume requests initiate an L3 access after a time-out to elicit a

writeback from the producer core, to obtain the remaining queue items and avoid deadlock.

Although the proposed implementation is a bus-based one, through simple modifications

to the occupancy update protocol, this can be adapted to network-based interconnects of

future CMPs.

In order to cope with increased inter-thread streaming traffic due to multiple threads or

more complex communication patterns (for example, scatter-gather), the memory network

arbiter can be modified to favor application memory requests over inter-thread operand

traffic (a simple way to do this is to just look at the memory area being accessed). While

application memory performance remains unaffected, pipelined inter-thread communica-

tion helps tolerate delays due to increased contention.

In the case where the producer thread races ahead of the consumer thread, has wrapped

around and is trying to write to the same cache line that the consumer is still trying to

read from, it will steal the cache line from the consumer to do the write, which could in

turn adversely impact the performance of an already slow consumer. The solution is to

stall all produce requests to a cache line until all queue items have been consumed from

that line in the remote core. So basically, with a queue layout unit of 8, a 32-sized queue

takes up four cache lines. To start with, all cache lines are empty and the producer can

immediately produce 32 data items, 8 each to lines 0, 1, 2, and 3. However, in order to

continue producing further, the producer has to wait until the occupancy counter for the

queue reaches 24, which indicates that the consumer is done consuming all data items in

line 0. The producer can then go ahead and write to line 0 and so on. The queue layout

unit (QLU) should be chosen carefully by taking into account these considerations as well

as the overall memory system performance desired, since very low QLUs mean queues

65

take up more cache lines and hence more lines have to be transferred between caches.

Relying solely on the write-forward messages for occupancy counter updates has the risk

of leading to deadlocks if stream termination is not dealt with carefully. A time-out based

forced-writeback mechanism is used to deal with such situations. No write-forwarding

happens if a stream terminates midway through a cache line, short of the segment of the

line corresponding to the write-forward fraction. Consequently, the consumer side will

never update its occupancy counters. In such situations, in order to ensure correctness and

forward progress, the waiting requests on the consumer side will time out and try to go

to the L3. This will elicit a writeback from the producer core (along with the occupancy),

which the consumer core then uses to update its occupancy counters and satisfy the pending

consume requests.

3.5 Summary

This chapter identified four orthogonal aspects of any streaming communication design and

discussed the pros and cons of several design points for each of these basic components in

a detailed design space characterization. Based on this characterization, this chapter then

presented two techniques - the synchronization array and the snoop-based synchronization

technique. While the synchronization array is optimized for performance at a steep hard-

ware and OS cost, the snoop-based synchronization design minimizes hardware and OS

cost by using shared memory based queues.

Latency tolerance and scalability of DSWP are first evaluated with the best-performing

communication support, the synchronization array, in Chapter 5. Following that, a quanti-

tative evaluation of various communication designs is presented in Chapter 6.

66

Chapter 4

Evaluation Methodology

Before taking a look at the performance evaluation in Chapters 5 and 6, it is important to

understand the experimental environment. This chapter presents details about the applica-

tions, compiler, simulator and performance analysis methodology used in this dissertation.

4.1 Benchmarks and Tools

All quantitative evaluation presented in this dissertation used code produced by the VE-

LOCITY [67] compiler framework. A diverse set of applications drawn from several

publicly available benchmark suites is used for evaluating the various techniques. The

benchmarks studied include art, mcf, equake, ammp, and bzip2 from the SPEC-

CPU2000 benchmark suite, epicdec and adpcmdec from the MediaBench [31] suite,

mst, treeadd, em3d, perimeter, and bh from the Olden suite, ks from the Pointer-

Intensive benchmark suite, and the Unix utility wc. A key loop in each of these applica-

tions is targeted for DSWP. A short description of each application and details about the

loop chosen from each benchmark are provided in Table 4.1. All the Olden benchmarks

except for em3d, which were originally recursive implementations, were rewritten to be

iterative procedures, since the DSWP compiler can handle only regular loops at the time

of this writing. The different code versions for all benchmarks were generated with all the

67

%
Benchmark Function Exec. Benchmark Description

Time
mst BlueRule 100% Minimal spanning tree
treeadd TreeAdd 100% Binary tree addition
perimeter perimeter 100% Quad tree addition
bh walksub 100% Barnes-Hut N-body simulation
em3d traverse nodes 100% 3D electromagnetic problem solver
wc cnt 100% Word count utility
ks FindMaxGpAndSwap 99% Kernighan-Lin graph partitioning
adpcmdec adpcm decoder 98% Adaptive differential PCM sound decoder
equake smvp 68% Earthquake simulation
ammp mm fv update nonbon 57% Molecular mechanics simulation
mcf refresh potential 30% Combinatorial optimization
epicdec read and huffman decode 21% Image decoder using wavelet transforms and

Huffman tree based compression
art match 20% Neural networks based image recognition
bzip2 getAndMoveToFrontDecode 17% Burrows-Wheeler compression

Table 4.1: Loop Information

classical optimizations turned on. In all cases, instruction scheduling for control blocks

was done both before and after register allocation.

The generated codes were then run on a cycle-accurate multi-core performance simula-

tor constructed with the Liberty Simulation Environment [70, 71]. The multi-core simulator

was derived from a validated core model, which was shown to be within 6% of the perfor-

mance of native Itanium R© 2 hardware [42]. This framework does not model a hardware or

a software thread scheduler. Therefore, an N -core configuration can run at most N threads.

Details of the baseline in-order model are given in Table 4.2. The out-of-order pro-

cessor model is identical to the in-order model for the most part. The REG stage of the

in-order model is augmented with a register update unit (RUU) [60] to allow out-of-order

scheduling. The out-of-order model has an additional pipeline stage ahead of the REG

stage for RUU dispatch. The baseline out-of-order model had 256 RUU entries, and twice

the number of issue ports, cache ports, and cache lines compared to the baseline in-order

issue model. The baseline out-of-order model’s parameters are given in Table 4.3. Note,

the baseline out-of-order simulator was deliberately configured to model a very aggres-

sive, albeit optimistic and perhaps impractical OOO design. As will be seen in Chapter 5,

DSWP on less aggressive, more practical designs, is able to outperform even such highly

aggressive designs.

68

Core Functional Units - 6-issue, 6 ALU, 4 Memory, 2 FP, 3 Branch
Misprediction pipeline - 7 stages
L1I Cache - 1 cycle, 16 KB, 4-way, 64B lines
L1D Cache - 1 cycle, 16 KB, 4-way, 64B lines, Write-through
L2 Cache - 5,7,9 cycles, 256KB, 8-way, 128B lines, Write-back
Maximum Outstanding Loads - 16

Shared L3 Cache > 12 cycles, 1.5 MB, 12-way, 128B lines, Write-back
Main Memory latency 141 cycles
Coherence Snoop-based, write-invalidate protocol
L3 Bus 16-byte, 1-cycle, 3-stage pipelined, split-transaction bus with round robin arbitration

Table 4.2: Baseline Simulator.

Core Functional Units - 12-issue, 12 ALU, 8 Memory, 4 FP, 6 Branch
Misprediction pipeline - 8 stages
RUU Entries - 256
L1I Cache - 1 cycle, 32 KB, 4-way, 64B lines
L1D Cache - 1 cycle, 32 KB, 4-way, 64B lines, Write-through
L2 Cache - 5,7,9 cycles, 512KB, 8-way, 128B lines, Write-back
Maximum Outstanding Loads - 128

L3, memory and coherence model Same as in-order configuration (refer Table 4.2)

Table 4.3: Baseline Out-Of-Order Simulator.

Tables 4.2 and 4.3 only provide details of the core model and the memory subsystem.

The actual number of cores used varied depending on the experiment performed. This will

become obvious from the context.

The raw performance in terms of the effective instructions per cycle (IPC) of the base-

line single-threaded code for the above benchmark loops on the in-order and out-of-order

simulator models used in this dissertation is given in Figure 4.1. Note, the effective IPC cal-

culation uses only useful application instruction counts and excludes no-ops and predicated-

off instructions.

4.2 Performance Measurement

As will be seen in the remainder of the dissertation, several different combinations of code

types and microarchitectural features are evaluated in tandem and in isolation. Since ag-

gregate statistics like instructions per cycle (IPC) or clocks per instruction (CPI) will not

suffice to capture performance improvements across code changes, execution time has to

be used to compare performance over different configurations (across code and microarchi-

tecture changes). However, pure execution time does not yield any insight into the run-time

69

out-of-orderin-order

0

1

2

3

E
ff

ec
tiv

e
IP

C

wc art mcf

eq
ua

ke

am
mp

bz
ip2

ep
icd

ec

ad
pc

mde
c

mst

tre
ea

dd
em

3d

pe
rim

ete
r bh ks

Geo
M

ea
n

Figure 4.1: Raw performance of single-threaded code on baseline models

behavior of codes and analysis becomes difficult.

To overcome the limitations of plain execution time measurements, this work uses a

simple yet powerful bottleneck analysis methodology to determine instruction bottlenecks

as well as microarchitectural bottlenecks. By determining the overall percentage contribu-

tion of individual instructions to the total execution time, it is possible to identify instruction

bottlenecks. This knowledge can then be used to efficiently partition instructions among

threads so as to ease the bottlenecks identified. Similarly, identifying microarchitectural

bottlenecks, parts of the processor pipeline wherein the most of the critical path time is

spent, is equally important, so that the architect can try and avoid any spurious stalls or

devise microarchitectural optimizations to reduce stalls.

The analysis works as follows. In the simulator, every instruction flowing through

the processor pipeline is annotated with the timestamp of when the instruction leaves a

particular pipeline stage. The analysis then aims to attribute every cycle of execution to

stalls experienced by the oldest dynamic instruction, program instruction in terms of the

number of stall cycles experienced by that instruction in various processor pipeline stages.

The analysis maintains a last accounted cycle (LAC) variable, which, as the name sug-

gests, tracks the last execution cycle that has been accounted for. When an instruction

70

commits, the analysis first computes the number of bubbles introduced in each stage of

the pipeline. The number of bubbles introduced in a particular stage Si is computed by

subtracting the timestamp of Si from the timestamp of the previous stage S(i−1). Since any

stage is expected to take 1 cycle by default, 1 cycle is subtracted from the difference ob-

tained above to obtain the number of bubbles introduced. Next, the different timestamps ac-

cumulated by the committing instruction are processed in pipeline order. For each stage Si,

its timestamp is compared with the lastAccountedCycle variable and if found to be greater

than lastAccountedCycle, the difference between the timestamp and the lastAccountedCy-

cle value are new cycles that need to be accounted for somehow. The analysis accounts

for these new cycles by scanning the bubble array backwards, starting at the current stage.

If the number of bubbles introduced in Si is greater than the number of new cycles that

need to be accounted for, the analysis subtracts new cycles from bubbles[i]. Otherwise, the

analysis decrements the cycles to be accounted for by bubbles[i], sets bubbles[i] to 0, and

moves on to stage S(i−1). This is repeated until the cycles to be accounted for becomes 0.

At that point, the analysis advances lastAccountedCycle to the timestamp of Si and is done

processing the current instruction.

The non-overlappable stalls determined by the above procedure are organized into a

two-dimensional matrix with instructions as rows and pipeline stages as columns. A row

represents the non-overlappable stall contribution of an individual instruction to the over-

all execution time and can help identify instruction bottlenecks. A column represents the

non-overlappable time spent in a given pipeline stage during the entire execution and is

useful to identify microarchitectural bottlenecks. The underlying philosophy of this analy-

sis approach is to provide the automatic partitioner (in the case of instruction bottlenecks)

or the architect (in the case of microarchitectural bottlenecks) feedback about only those

stalls that actually end up contributing to the overall execution time and avoid red-flagging

instructions or pipeline parts whose stalls are completely overlapped by other, more critical

stalls.

71

4.3 Sampling Methodology

Application of DSWP to a program loop leaves the pre-loop and post-loop code almost

untouched1. As a result, their performance is the same across all single-threaded and multi-

threaded executions for a given hardware configuration (modulo minor differences due to

cache state differences). Therefore, detailed simulation and performance measurement is

done only for DSWPed loops across various threading versions.

However, highly detailed modeling of core as well as memory architecture and large

input set sizes of benchmarks, preclude the possibility of simulating all iterations of each

and every invocation of a given loop in a reasonable time. Popular strategies to reduce

simulation time include fast-forwarding (functional simulation) a few billion instructions

into the program and then simulating in detail for several million instructions, running ap-

plications to completion albeit with reduced input sets [26] and sampling only select pro-

gram regions [57]. In recent years, sampling techniques based on statistics theory such as

SMARTS [74] have demonstrated that it is possible to estimate whole program behavior to

desired confidence levels by doing detailed simulation for only a small number of discrete

chunks chosen from across the entire dynamic execution trace and doing only functional

simulation for the rest of the execution. The TurboSMARTS [73] methodology drives down

simulation time even further by checkpointing architectural and select microarchitectural

(caches, branch predictors, etc.) state through functional simulation at select points of

execution and initiating SMARTS-style sampling in parallel from all the checkpoints.

This dissertation uses a similar methodology, albeit with some key variations. First, the

above sampled simulation techniques work fine only across microarchitectural changes,

since they rely on sampling a specific number of instructions across various simulator con-

figurations. That, clearly, is unsuitable for evaluating both code and microarchitecture

changes, when going from single-threaded execution to DSWPed execution. The strategy

1The only modification to pre-loop and post-loop code in multithreaded code versions are a few additional
instructions to communicate loop live-in information to auxiliary threads and to communicate loop live-outs
from auxiliary threads back to the main thread

72

used in this dissertation is as follows. Given the manner in which DSWP partitions a loop,

the only thing that is constant across single-threaded and multi-threaded versions of a loop

is the total work done per loop iteration and the number of loop iterations executed. Thus,

instead of an instruction being used as the smallest logical unit of work during sampling,

a loop iteration is used as the smallest unit. Several discretely chosen chunks from the

loop iteration space are sampled for a particular invocation of the loop. Like in SMARTS,

statistical sampling, including warmup, is done at specific periodicity for a given loop.

Second, TurboSMARTS-style checkpoints of architectural and microarchitectural state are

collected at the beginning of randomly chosen loop invocations and the loop iteration gran-

ular SMARTS sampling is initiated from these checkpoints.

While some loops have high trip counts (i.e. invocation counts) but execute only few

iterations per invocation, others have low trip counts but execute many many iterations for

each of those invocations. Given the varied nature of benchmark behavior, there is no clear

strategy to determine the sizing of the iteration chunks for sampling, the probability for

collecting checkpoints and the number of such checkpoints. For this work, the above num-

bers were arrived at on a trial-and-error basis. A general rule of thumb that was used to

set the checkpoint probability and the statistical sampling interval was to make sure that a

total of at least 10000 loop iterations are simulated across all checkpoints. For example,

for high trip count loops, checkpoint collection probability was decreased to obtain wider

coverage across the entire program execution. However, if a high trip count loop has low

iteration count per invocation, then in order to sample 10000 loop iterations, a large number

of checkpoints were collected. Benchmarks 188.ammp, and ks are the only exceptions

to this rule. Both these benchmarks had an outermost loop DSWPed. Unfortunately, the

outermost loop does not execute sufficiently many times, resulting in smaller sample sets.

The 10000 figure is not large enough to estimate the performance of an individual code-

model configuration (for example, single-thread execution on baseline machine model) to

a desired confidence level with a narrow enough confidence interval. However, perfor-

73

mance comparison metrics (e.g. speedup of one technique relative to another) for a given

application across code/architecture changes tend to demonstrate strong correlation during

various phases of program execution and have been shown to require much lower number

of samples to yield tight confidence intervals [35]. The performance comparisons in this

dissertation are given at a 95% confidence level and the accompanying error bars are shown

in all speedup graphs. The accompanying error bars, computed as per Luo and John’s for-

mula [35], confirm that the sample set size chosen is sufficient to yield narrow enough

confidence intervals.

4.4 Summary

This chapter presented a detailed description of the experimental methodology used in

this dissertation, including information on the benchmarks used for evaluation, sampling

methodology, baseline simulation models, and performance analysis methodology. The

next chapter presents results and analysis from a detailed evaluation of the latency tolerance

and scalability characteristics of DSWP.

74

Chapter 5

Performance Evaluation of DSWP

The first part of this chapter focuses on understanding the run-time behavior of 2-thread

DSWP and presents empirical data that highlights the variable latency tolerance property of

DSWP. The second part presents a performance scalability study of the automatic DSWP

implementation in the VELOCITY compiler and analyzes the performance and bottlenecks

for DSWP when moving from 2 threads to 4, 6, and 8 threads. This chapter uses the

high performance synchronization array communication support presented in Chapter 3

to evaluate the latency tolerance and scalability aspects of DSWP. Chapter 6 is devoted

to evaluating the performance of different types of communication support for DSWPed

codes.

5.1 Performance of 2-thread DSWP

The speedup of automatically generated 2-thread DSWP codes over single-threaded ex-

ecution on the baseline in-order processor is shown in Figure 5.1. The geometric mean

loop speedup achieved with the automatic partitioner is 1.20X. Performance improvement

is achieved due to two main reasons - multi-threaded scheduling exposes more parallelism

and better latency tolerance is achieve through decoupled execution.

75

1.0

1.2

1.4

L
oo

p
Sp

ee
du

p

wc art mcf

eq
ua

ke

am
mp

bz
ip2

ep
icd

ec

ad
pc

mde
c

mst

tre
ea

dd
em

3d

pe
rim

ete
r bh ks

Geo
M

ea
n

Figure 5.1: Speedup of fully automatic 2-thread DSWP with 32-entry inter-thread queues.

5.1.1 Balancing Threads Better

Since the speedup achievable from pipelined multithreading is directly correlated to the

amount of overlap achieved among concurrently executing threads, the dynamic execution

weights of the individual threads must be as well-balanced as possible to achieve the best

overlap and hence the best speedup. In order to determine the balance among the automat-

ically generated partitions, an experiment that simulates ideal communication behavior1 is

set up to measure the relative performance of the individual partitions. With non-blocking

communication operations, the performance of an individual thread is determined solely2

by the execution latency of its operations and is not influenced by the execution of other

threads.

In theory, the optimal partitioning of the DAGSCC can be demonstrated to be NP-

complete through a reduction from bin packing [40]. In this section, a straightforward

feedback-driven iterative approach is used to re-balance instructions among automatically

generated DSWP threads to obtain better load balance and also to understand the efficacy

of the compiler’s partitioning heuristic. This approach is a heuristic; it does not methodi-

1Communication operations are made non-blocking by simulating queues with 10000 elements. This size
is large enough to allow non-blocking produce and consume instructions.

2Well, this is not exactly true. Cache interference behavior is changed in such ideal communication
experiments, since memory accesses from temporally far apart iterations could now happen simultaneously
leading to different memory subsystem behavior than simulations with more realistic queue sizes.

76

cally explore the entire space of possibilities, nor is it provably optimal. It comprises the

following steps:

• First, the iteration completion rates of individual threads, under ideal communication

behavior, are used to determine the slowest thread. In 2-thread DSWP, a better bal-

ance can be obtained by moving operations from the slowest thread (source thread)

to the other thread (destination thread).

• Second, the execution latency (Ltarget) for ideal DSWP performance is computed

as the average of the execution latencies of all the individual partitions. The goal,

then, is reduced to determining the operations that need to be moved from the source

thread to the destination thread to strike the desired balance i.e. to move the execution

latency of the individual threads as close as possible to the ideal execution latency,

Ltarget.

• Third, using the bottleneck analysis presented in Section 4.2, key bottleneck instruc-

tions and their contributions to the overall execution time (after taking into account

all possible intra-thread stall overlaps) are identified. However, only a subset, S, of

these instructions are moved from the source thread to the destination thread, such

that the absolute difference in the execution latency of the source thread and the sum

of the latency contributions of the individual instructions in the set, S, is as close to

Ltarget as possible. The difference should also be smaller than the absolute difference

between the execution latency of the source (or the destination) thread and Ltarget.

• Fourth, the compiler is fed the new partition (source thread minus instructions in S,

and destination thread with instructions in S). If the compiler finds the new partition

untenable (due to the creation of cyclic inter-thread dependences), then the procedure

stops. Otherwise, the above steps are repeated with the newly generated partition,

since the run-time effects of the new partition may be different from the old partition

77

hand-balancedautomatic

1.00

1.25

1.50

1.75

L
oo

p
Sp

ee
du

p

wc art mcf

eq
ua

ke

am
mp

bz
ip2

ep
icd

ec

ad
pc

mde
c

mst

tre
ea

dd
em

3d

pe
rim

ete
r bh ks

Geo
M

ea
n

Figure 5.2: Performance improvement from feedback-driven load rebalancing.

and hence it becomes necessary to rerun the ideal communication experiments to

determine the new bottleneck instructions.

For each benchmark, the above steps were applied iteratively. All but mcf required

exactly 1 iteration to attain their peak performance. While the compiler was not able

to repartition threads for benchmarks treeadd, perimeter, and bh, since the sug-

gested partition was untenable, it was able to successfully repartition threads for all the

other benchmarks and deliver peak performance. mcf’s performance continued to improve

through 5 successive repartitionings before stabilizing at 1.61X speedup. Its original per-

formance speedup was 1.36X. Similarly, the performance of benchmarks wc, equake,

and bzip2 improves from 1.06X to 1.13X from 1.4X to 1.42X and from 1.38X to 1.43X

respectively. Benchmark epicdec’s DSWP performance improves from a slowdown to

a zero speedup situation. The baseline was single-threaded execution running on an in-

order issue processor configuration. Figure 5.2 shows the performance improvement from

manual repartitioning for all benchmarks. The results indicate that while rebalancing does

help improve performance by a lot in a few cases, for a majority of the cases the com-

piler’s heuristic suffices to strike the correct balance among partitions. These partitions

will henceforth be called rebalanced partitions.

78

1 while(node != root) {
2 while(node) {
3 if(node->orientation == UP)
4 node->potential = node->basic_arc->cost +
5 node->pred->potential;
6 else {
7 node->potential = node->pred->potential -
8 node->basic_arc->cost;
9 checksum++;

10 }
11 tmp = node;
12 node = node->child;
13 }
14
15 node = tmp;
16 while(node->pred) {
17 tmp = node->sibling;
18 if(tmp) {
19 node = tmp;
20 break;
21 } else
22 node = node->pred;
23 }
24 }

Figure 5.3: Traversal loop in mcf

As can be seen from the graph, 2-thread DSWP with rebalanced partitions provides

speedups ranging from 6% to 61% over single-threaded execution. These results are ob-

tained by achieving an out-of-order scheduling effect on an in-order processor.

For example, consider the traversal loop for mcf shown in Figure 5.3. The calcula-

tion to identify the next node to visit in the tree often involves traversing not just a child

pointer (line 12) in the innermost computation loop, but also sibling and predecessor point-

ers (lines 17 and 22 respectively) in a loop following the computation loop. Each iteration

of the innermost computation loop performs two pairs of dependent loads (lines 4-5 and

7-8). Cache misses in these instructions followed by subsequent uses force the in-order

processor to delay the execution of the sibling pointer traversal in the loop following the

computation loop. Subsequent misses in the sibling traversal are taken after the load-use

stalls, rather than being overlapped with the stalls. Static scheduling techniques fail to al-

low the sibling traversal loads to be overlapped with the computation loads because the

79

DSWP-OOOSingle Threaded-OOODSWP-INO

1.0

1.5

2.0

2.5

3.0

L
oo

p
Sp

ee
du

p

wc art mcf

eq
ua

ke

am
mp

bz
ip2

ep
icd

ec

ad
pc

mde
c

mst

tre
ea

dd
em

3d

pe
rim

ete
r bh ks

Geo
M

ea
n

Figure 5.4: Speedup from DSWP execution on in-order and out-of-order processors.

Number of Cores 2
Core Functional Units - 6-issue, 6 ALU, 4 Memory, 2 FP, 3 Branch

RUU Entries - 128
L1I Cache - 1 cycle, 16 KB, 4-way, 64B lines
L1D Cache - 1 cycle, 16 KB, 4-way, 64B lines, Write-through
L2 Cache - 5,7,9 cycles, 256KB, 8-way, 128B lines, Write-back
Maximum Outstanding Loads - 64

L3, memory and coherence model Same as in-order configuration (refer Table 4.2)

Table 5.1: Dual-Core Out-Of-Order Issue Configuration.

loads exist in two independent loops. In the multithreaded implementation, the child and

predecessor/sibling traversal loads are moved into the traversal thread. Stalls incurred in

the computation loop do not affect the traversal thread, allowing the misses incurred in both

loops to be overlapped. This is similar to what would occur in an out-of-order processor.

Independent instructions that occur logically after the stalled instruction can be executed

while stalled instructions wait for their source operands.

5.1.2 Latency tolerance through decoupling

Since DSWP achieves an out-of-order effect on in-order processors, it is only logical to

compare this technique with out-of-order execution. Figure 5.4 compares the performance

of single-threaded execution on an out-of-order core to the execution of rebalanced DSWP

partitions on dual-core CMPs with in-order and out-of-order cores. The graph indicates that

80

0.00

0.25

0.50

0.75

1.00

N
or

m
al

iz
ed

E
xe

cu
tio

n
T

im
e

S P C S P C S P C S P C S P C S P C S P C S P C S P C S P C S P C S P C

wc
mcf

eq
ua

ke
bz

ip2

ep
icd

ec

ad
pc

mde
c

mst

tre
ea

dd
em

3d

pe
rim

ete
r bh ks

EXE

DEP

FE

Figure 5.5: Distribution of iteration time. S=single-threaded, P=producer, C=consumer.

in some benchmarks (wc, equake, and mst) the out-of-order scheduling effect of DSWP

on in-order cores is able to expose more coarse-grained thread level parallelism (TLP) from

far apart loop iterations than traditional single-threaded execution on an aggressive out-

of-order core, which can only expose local instruction level parallelism (ILP). However,

as the rightmost bar in the figure shows, for all benchmarks except treeadd, DSWPed

execution on dual-core CMPs, with out-of-order cores, can take advantage of aggressive

cores to expose local ILP in addition to exposing coarse-grained TLP to yield an addi-

tive performance improvement over both DSWPed execution on in-order cores as well as

single-threaded execution on aggressive uniprocessor out-of-order cores. The aggressive

uni-processor out-of-order core (Table 4.3) had twice the resources (including functional

units, load-store units, RUU entries, cache size, and cache ports) compared to a single core

of the dual-core CMP configuration (Table 5.1) used to execute DSWPed codes.

To understand how DSWPed execution on out-of-order cores exposes more parallelism

than single-threaded execution on a more aggressive out-of-order core, it is important to

understand what happens to the program critical path in both cases. Figure 5.5 presents

a bottleneck analysis of the critical path for the DSWP and single-threaded out-of-order

executions for all benchmarks except for loops from art and ammp, which did not have

clearly identifiable critical paths. One or more critical path instructions are identified in

81

each benchmark loop and the time between two consecutive executions of critical path

instructions is accounted for as front-end stall FE, (includes non-overlapped cycles when

the second critical path instruction has not even entered the pipeline or is stuck in the front-

end of the pipeline), dependence stall DEP (accounts for non-overlapped cycles the second

instruction spends waiting in the RUU for its dependences to be resolved) and execution

stall EXE (cycles spent by the second instruction in execution that are non-overlappable

with the lifetime of a preceding critical path instruction).

As can be seen, FE stalls account for a major portion of the iteration time in single-

threaded execution in most of the benchmarks. In comparison, the producer thread in the

DSWPed version spent far less time in the front end of the machine despite the fact that

its width and instruction window size are half that of the single-threaded core. This occurs

for reasons described in Section 2.3. DSWPed execution dramatically reduces the FE stalls

on the critical path which directly contributes to the improved performance in almost all

the benchmarks. In wc, the FE stalls reduce only marginally due to the very small size

of the loop as well as the fact that the byte load instruction that reads the input character

stream almost always hits in the cache leading to fewer misses and hence the latency does

not vary by much through the loop’s entire execution. In treeadd, the FE stalls actually

increase leading to a slowdown over single-threaded out-of-order execution. The reason for

treeadd’s poor FE behavior in DSWP execution is that the partitioner ends up putting the

majority of the original single-threaded loop’s instructions in the producer thread. However,

to supply control flow information to the consumer thread, the partitioner must also insert

quite a few produce instructions. Dynamically, the producer thread must only fetch

about 90% of the number of instructions the single-threaded program has to fetch. Since

the producer thread has only half the width, this leads to increased FE stalls. Overall,

this analysis demonstrates how prioritized execution of critical path instructions allows for

more rapid completion of the loop’s critical path by avoiding stalls due to limited resource

availability.

82

0

10

20

30

40

O
cc

up
an

cy

1.8 · 105 1.9 · 105 2 · 105 2.1 · 105 2.2 · 105 2.3 · 105

Time

Figure 5.6: Synchronization array occupancy of mcf illustrates importance of decoupling

For example, consider the stall breakdown of mcf. Decoupled execution of critical

path and off-critical path instructions means that the FE stalls experienced by the pointer-

chasing load in the producer thread and the consume instruction that receives the pointer

value in the consumer thread are cut in half when compared to the execution of pointer-

chasing load in single-threaded execution. Misses in the off-critical path arising from the

multiple loads required to compute node->potential (refer to Figure 5.3) delay ini-

tiation of pointer-chasing loads in single-threaded execution, whereas they do not affect

pointer-chasing load initiation in DSWPed execution.

In order to illustrate the effect of decoupling more clearly, the changes in the inter-

thread queue occupancies over time for a randomly chosen window of execution of the

refresh potential function in mcf is shown in Figure 5.6. A ramp-up indicates a

producer thread run-ahead while a ramp-down indicates a consumer thread catch-up, either

due to a stalled producer or because the producer thread has completed all its loop itera-

tions. Negative occupancy in the graph indicates that consumer instructions have issued

prior to their corresponding produce instructions and are waiting for data. Data buffered

in the synchronization array decouples the behavior of the critical path thread and the off-

critical path thread, allowing misses in each thread to be overlapped with work in the other

thread. Note from the figure that there are periods of time when the occupancy of the

synchronization array dips by as many as 8 entries. This drop indicates that the consumer

was able to execute more iterations than the producer. To avoid stalling in this situation, it

83

is necessary that at least 8 instances of the pointer-chasing load have completed ahead of

the computation code. Since in a single-threaded processor only one copy of the pointer-

chasing load appears in the instruction window per iteration of the loop, 8 entire copies

of the loop would have to appear in the instruction window to avoid a stall. This loop in

mcf contains 71 instructions, which means that avoiding this stall would require an out-

of-order processor to be able to hold at least 568 instructions in its reorder buffer/RUU. To

put this in perspective, the microarchitecture of the Intel Pentium R© 4 processor, one of the

most aggressive out-of-order processors built to date, can support only 126 in-flight micro-

ops [22]. To conclude, these experiments have demonstrated that DSWP can provide the

same amount of latency tolerance as aggressive out-of-order execution on processor con-

figurations that are very difficult to build in practice.

5.2 Performance scalability of DSWP

This section examines the performance scalability of DSWP when moving from 2 threads

to 4, 6 and 8 threads. Automatically generated partitions from the compiler were used for

these experiments (i.e. no feedback-driven repartitioning was performed). The compiler

created the requested number of threads, N , only if it could heuristically determine that

it was profitable to partition the loop’s SCCs among N threads, taking into account com-

putation and communication costs. These experiments used N -way multi-core simulator

models with in-order Itanium R© 2 like cores to run the respective multithreaded code ver-

sions i.e. applications with 2, 4, 6, and 8 threads were simulated on multi-core simulator

configurations with the corresponding number of cores. All simulation parameters were

maintained the same as in the baseline model described in Chapter 4. Notably, the bus

latency was fixed at 1 cycle for all the experiments. The synchronization array access la-

tency for produce and consume instructions was 1 cycle. A pipelined bus interconnect

carries traffic from the cores to the synchronization array and back. Cache coherence was

84

8 threads6 threads4 threads2 threads

1.00

1.25

1.50

1.75

2.00

L
oo

p
Sp

ee
du

p

wc art mcf

eq
ua

ke

am
mp

bz
ip2

ep
icd

ec

ad
pc

mde
c

mst

tre
ea

dd
em

3d

pe
rim

ete
r bh ks

Geo
M

ea
n

Bes
t-G

eo
M

ea
n

Figure 5.7: DSWPQ32 : DSWP performance when moving from 2 to 4, 6, and 8 threads
with 32-entry inter-thread queues and a bus interconnect. Note, a missing bar for a partic-
ular number of threads for a benchmark means the compiler was not able to partition the
chosen loop for that benchmark into that many number of threads.

provided by bus-based baseline snoopy mechanism for all multi-core configurations.

Figure 5.7 shows the speedup provided by automatically generated DSWP threads rel-

ative to single-threaded in-order execution, when moving from 2 threads to 4, 6, and 8

threads. This performance graph will be referred to as DSWPQ32 . Note that the graph

shows two geometric means - a plain geometric mean (denoted “GeoMean” in the graph)

and a best geometric mean (denoted “Best-GeoMean” in the graph). When calculating the

plain geometric mean for N -thread code versions, if a certain benchmark did not have an

N -thread code version (for example, equake does not have 6 and 8-thread versions), then

for that benchmark, the speedup of the version with the next highest number of threads

is used. For example, when calculating the plain geometric mean across all 8-thread ver-

sions, the speedup of equake from the 4-thread version is used since it does not have a

code version with more than 4 threads. On the other hand, the best geometric mean for an

N thread version represents the mean of the best speedups across all benchmarks for all

code versions with number of threads fewer than or equal to N . It represents the speedup

that can be achieved with code generated by an intelligent compiler that will generate the

best multithreaded version for each benchmark for a given number of cores, even if it means

generating fewer threads than available cores. The analysis presented here primarily uses

85

the plain geometric mean to compare DSWP’s performance in the presence and absence of

bottlenecks. The best geometric mean is also provided to highlight the maximum speedup

achievable through careful selection of multithreaded code versions.

To understand the performance of DSWPQ32 , recall that the autoDSWP technique par-

titions the DAGSCC such that there are no backward dependences among partitions. Since

the performance of pipelined multithreading is limited by the performance of the slowest

running thread, the maximum performance can be achieved by placing the “heaviest” SCC

in a partition of its own and by making sure that no other partition is heavier than the

partition with the heaviest SCC. This can be done by either load-balancing the remaining

partitions in such a way so as to not exceed the weight of the heaviest SCC or if that’s not

possible, then, each SCC can be placed in its own thread. The heaviest thread is called

the bottleneck thread. Often times, application loops contain a few large SCCs and many

small, mostly single-instruction SCCs. Once the heaviest SCC has been placed in a thread

of its own and no other partition is heavier (including ones with more than one SCC), the

heaviest SCC thread becomes the bottleneck thread and it is no longer possible to obtain

more performance improvement by partitioning the remaining SCCs among more threads.

This trend is clearly seen in Figure 5.7, which shows that even for benchmarks that yield

more than 2 threads, no performance improvement is seen beyond 6 threads.

On the contrary, a performance slowdown is seen for some application loops when

moving to more threads, which is somewhat counter-intuitive. The theoretical performance

improvement expected when moving to more threads no longer holds. Since autoDSWP

virtually does no code duplication, the above slowdown, when moving to more threads,

cannot be due to differences in the amount of computation. While the total computation

remains constant across the four different multithreaded partitionings, the amount of com-

munication varies. Figure 5.8 provides the normalized execution time breakdown of each

thread for the different multithreaded partitionings for all benchmarks. The figure shows

how the execution time of each benchmark for each thread configuration is spent in dif-

86

PostEXEEXEREGRENEXPPreEXP

0.00

0.25

0.50

0.75

1.00

wc-1T wc-2T wc-4T wc-6T wc-8T
0.00

0.25

0.50

0.75

1.00

art-1T art-2T art-4T art-6T

0.00

0.25

0.50

0.75

1.00

mcf-1T mcf-2T mcf-4T mcf-6T mcf-8T

0.00

0.25

0.50

0.75

1.00

equake-1T equake-2T equake-4T

0.00

0.25

0.50

0.75

1.00

ammp-1T ammp-2T ammp-4T ammp-6T ammp-8T
0.00

0.25

0.50

0.75

1.00

bzip2-1T bzip2-2T bzip2-4T bzip2-6T

0.00

0.25

0.50

0.75

1.00

adpcmdec-1T adpcmdec-2T adpcmdec-4T adpcmdec-6T adpcmdec-8T
0.00

0.25

0.50

0.75

1.00

epicdec-1T epicdec-2T epicdec-4T

0.00

0.25

0.50

0.75

1.00

mst-1T mst-2T mst-4T mst-6T mst-8T
0.00

0.25

0.50

0.75

1.00

treeadd-1T treeadd-2T treeadd-4T

0.00

0.25

0.50

0.75

1.00

em3d-1T em3d-2T em3d-4T em3d-6T

0.00

0.25

0.50

0.75

1.00

perimeter-1T perimeter-2T perimeter-4T perimeter-6T

0.00

0.25

0.50

0.75

1.00

bh-1T bh-2T bh-4T
0.00

0.25

0.50

0.75

1.00

ks-1T ks-2T ks-4T ks-6T ks-8T

Figure 5.8: Normalized execution time breakdown of individual benchmarks when moving
to more threads with 32-entry queues and bus interconnect

87

ferent stages of the processor pipeline. For this breakdown, the detailed stall breakdown

provided by the analysis described in Section 4.2 is collapsed into the following six differ-

ent aggregate stall groups - PreEXP (comprises stalls in the instruction fetch stages of the

Itanium R© 2 pipeline), EXP (stalls in the decode stage), REN (stalls in the register renaming

stage), REG (stalls in the scoreboarding and register access stage and synchronization array

renamer), EXE (stalls in the execution stage which accounts for all execution time including

memory access, synchronization array access, etc.), and PostEXE (comprises stalls in the

DET and WRB stages of the Itanium R© 2 pipeline). The x-axis of each graph in Figure 5.8

represents the various code partitionings - bench-1T, bench-2T, bench-4T, bench-6T and

bench-8T - of each benchmark bench. Within a cluster, for example bench-6T, the normal-

ized execution time breakdown of each thread of that configuration is shown. Absence of a

cluster for a benchmark means that the particular benchmark was not partitionable into the

corresponding number of threads. Within a cluster, the bars corresponding to “upstream”

threads appear to the left and the bars corresponding to “downstream” threads appear to

the right. Benchmark epicdec shows a high PreEXP component in all the code config-

urations. This is because the stall analysis is made to account for stalls only in the loop

being optimized. As a result, any time spent executing instructions outside the loop (for

e.g. floating point library calls made my epicdec) is reported as PreEXP stall time.

The breakdowns show that when moving to more threads, the EXE component increases

dramatically compared to the 1 or 2 thread configurations. A fine-grained breakdown of the

stalls on a per instruction basis revealed that consume instructions were the main reason

that led to the increased EXE component. For example, in the graph for wc, note that, while

the first thread has a large REG component, due to frequent stalls by produce instructions

in the synchronization array renamer due to queue full conditions, the second and third

threads have large EXE components, due to frequent stalls by consume instructions on

queue empty conditions. Given the classical notion of pipelined execution, this is very

counter-intuitive. To explain this performance anomaly when moving to more threads, it is

88

(a) 2 threads. (b) 4 threads. (c) 6 threads.

(d) 8 threads.

Figure 5.9: Thread dependence graphs for loop from wc.

important to understand the actual communication pattern among threads and their run-time

behavior.

5.2.1 Linear and non-linear thread pipelines

Given a linear chain of producer-consumer threads (i.e. thread 2 consuming from thread

1, thread 3 consuming from thread 2 and so on), the communication rate in the chain will

be determined by the slowest thread and all threads will produce and consume at the exact

same rate as the slowest thread. Such thread pipelines will be called linear pipelines. As

mentioned before, the maximum performance attainable by such thread pipelines is S
DH

,

where S is the single-threaded execution time, Di is the execution time of thread i of the

89

pipeline and H is the slowest thread in the pipeline. This expression does not say anything

about the communication requirements of such pipelines. In particular, if a linear pipeline

had insufficient queue buffering, then the factor DH will increase to include the time the

slowest thread spends waiting for data arrival, thereby adding inter-core communication

delays to the overall thread execution time. But, such a situation can be avoided if inter-

thread queues are sized appropriately. In particular, if the time taken to communicate a

data item or a synchronization token from one thread to another is C cycles, it takes a

total of 2 × C cycles for a producer thread to communicate a value to a consumer thread

and for the consumer to communicate its acknowledgment to the producer. This round-trip

communication will be called a synchronization cycle. Since all threads in the pipeline

need only communicate at the same rate as the slowest thread H i.e. once every DH cycles,

all inter-thread queues need only be as big as the queues leading into and out of thread

H . If the synchronization cycle delay, 2 × C, is less than DH , then DH is the limiting

factor and only one entry is needed in all inter-thread queues (no buffering is needed if

communication happens instantaneously, i.e. C equals 0). On the other hand, if the round-

trip time is greater than DH , then the number of loop iterations the slowest thread can

execute in that time is 2×C
DH

. Consequently, there needs to be at least these many queue slots

to keep the slowest thread continuously busy. Thus, the minimum3 queue size necessary

to prevent inter-core communication delays from being added to thread execution times is

given by d2×C
DH

e.4

As long as the inter-core communication latency is less than or equal to the computation

time, queue sizes of 1 or 2 will suffice to provide peak throughput. Increase in computation

time will only reduce the demand for more queue entries. This is a very desirable property

of linear pipelines as it helps place reasonable bounds on inter-thread queue sizes, enabling

optimal communication support design.

3This is the minimum queue size without accounting for variability in data production and consumption
rates.

4This can be easily augmented to account for different communication costs between different pairs of
threads.

90

However, in practice, general-purpose applications, often do not yield linear pipelines.

As SCCs are partitioned among more threads, more inter-thread dependences are created

amongst threads, since previously local (inter-SCC but intra-thread) dependences may now

need to be communicated between threads. The communication pattern among constituent

threads is quite varied and the partitioner ends up creating dependences between almost

every pair of upstream and downstream threads. Such thread pipelines will be referred

to as non-linear pipelines. Consider the example of wc shown in Figure 5.9. The fig-

ure shows the thread dependence graphs of different partitionings of the wc loop. It also

shows the number of operations (compiler intermediate representation operations, not ma-

chine operations) in each thread and the label on each edge indicates the number of queues

running between a pair of threads. Except for the 2 threads case (Figure 5.9a), the depen-

dence graphs for the other cases (4, 6 and 8 thread cases in Figure 5.9b, 5.9c and 5.9d

respectively) do not turn out to be linear pipelines. Such non-linear thread pipelines, while

still providing PMT parallelism, experience certain communication bottlenecks that lead to

below par performance.

To understand the communication bottlenecks in such pipelines, consider the thread

dependence graphs and the execution schedules of a 4-thread linear pipeline, ABCD, and a

4-thread non-linear pipeline, A’B’C’D’, in Figures 5.10a and 5.10b respectively.

The dashed arcs in the backward direction in the thread dependence graphs represent

synchronization dependences going from consumer threads back to their producers. These

arcs indicate to the producer when it is permissible to write to a particular queue location.

When a consumer thread is slower than the corresponding producer thread, the latter has to

block after filling up the queue, until the consumer thread frees up a queue slot, to produce

the next data item. These arcs become relevant when inter-thread queue buffering is not

sufficient to tolerate inter-core communication delays or the variability in data production

and consumption rates.

For illustration purposes, suppose one iteration of the original single-threaded loop

91

0

20

40

60

100

120

140

160

180

200

220

240

260

280

300

80

A B C D

(a) A linear pipeline and its execution schedule.

0

20

40

60

100

120

140

160

180

200

220

240

260

280

300

80

B’ C’ D’A’

(b) A non-linear pipeline and its execution schedule.

Figure 5.10: Linear and non-linear thread pipeline execution with inter-core delay of 10
cycles and per-thread iteration computation time of 40 cycles.

92

takes 120 cycles and the individual threads each take 40 cycles, in both ABCD as well

as A’B’C’D’, for executing one iteration of the loop in question. Let the inter-thread com-

munication latency be 10 cycles. Even though, in practice, the compiler is free to schedule

the communication instructions anywhere in a thread, for this example, assume that all

produce instructions are executed at the end of thread’s loop iteration and all consume

instructions, at the beginning. Finally, for simplicity, all produce instructions in a thread

will be blocked if any one produce blocks. A similar all-or-none behavior will be as-

sumed for consume instructions as well. In the execution schedules shown in the above

figure, a solid inter-thread arrow means a data value communication from the producer

thread to its consumer. A dashed inter-thread arrow in the reverse direction denotes an

acknowledgment signal from a consumer to a producer, indicating a queue entry is free to

be reused. Dotted straight lines in a thread’s schedule indicate periods of no activity in the

thread, because it is blocked on a produce or a consume operation.

As the execution schedule in Figure 5.10a shows, the linear pipeline ABCD is able to

finish a loop iteration once every 40 cycles. Notice that because the per-iteration time

is 40 cycles and the synchronization cycle delay (round-trip time) is only 20 cycles, the

acknowledgment for a queue entry arrives well before a producer thread is ready to produce

the next data item. Therefore, a producer will never block on a queue full condition and the

performance of the linear pipeline attains the theoretical maximum speedup of S(120cycles)
DH(40cycles)

i.e. 3X. The important point to note here is that the linearity of the pipeline enables it to

achieve this speedup with just 1 entry per inter-thread queue.

Now, consider the non-linear pipeline A’B’C’D’’s execution schedule in Figure 5.10b.

This schedule has been drawn assuming 1-entry inter-thread queues to compare and con-

trast its performance with the linear pipeline from above. Notice that A’B’C’D’ is able to

complete only 1 loop iteration every 120 cycles (the first iteration of thread D′ completes

in cycle 190, and the second iteration in cycle 310) resulting in no speedup at all over

single-threaded execution. The reason for this abysmal performance is due to inadequate

93

queue sizing that leads to prolonged stalls, as can be seen by the long dotted lines in all

threads in Figure 5.10b. So, why do single-entry queues, which were adequate to deliver

peak throughput in the linear pipeline above, create performance bottlenecks here?

To answer that, observe that in Figure 5.10b, thread A′ sends values to both threads

B′ and D′. Consequently, in any given iteration, before producing a data item, thread A′

has to ensure that it can produce into the queues leading into both thread B′ and thread D′

before initiating both data sends (per assumptions stated above). In other words, whenever

it is blocked on queue full condition, thread A′ has to wait for acknowledgments from

both threads. This requirement leads to communication bottlenecks, thereby slowing down

multithreaded performance. In the execution schedule, notice that even though thread A′

is ready to produce data after its second iteration as early as cycle 80, it has, by that point

in time, received acknowledgment only from thread B′. It has to wait a further 80 cycles

before it receives acknowledgment from thread D′, at which point, it proceeds to produce

the data to both threads B′ and D′. And since thread A′ is the head of the pipeline, the rest

of the pipeline also stalls waiting for data from upstream threads. The fundamental problem

here is that queue sizes for executing such non-linear pipelines cannot be determined solely

from the inter-thread communication delay and the per-iteration computation time of the

slowest thread.

For non-linear pipelines, the synchronization cycle expands to include the computation

time of all intermediate threads as well as the one-way communication delays between

the intermediate threads. For example, for thread A′ above, the synchronization cycle

comprises the communication delay from thread A′ to thread B′, the computation time in

thread B′, the communication delay from thread B′ to thread C ′, the computation time

of thread C ′, the communication delay from thread C ′ to thread D′ and finally, the delay

for the acknowledgment to go from thread D′ to thread A′. More generically, the round-

trip communication delay of the new longer synchronization cycle can be expressed as

2×C+
∑Ns

i=1(Di+C), where Ns is the number of threads in the synchronization cycle s. By

94

a similar reasoning as from before, the queues should be large enough to tolerate this round-

trip delay, but only to the point of sustaining the maximum throughput. Thus, for non-linear

pipelines, the minimum queue size needed to provide maximum PMT performance is

d2× C + maxs,∀s∈S(
∑Ns

i=1(Di + C))

DH

e

where S is the set of all synchronization cycles in a given thread dependence graph. The

second term in the numerator causes non-linear pipelines to require longer queues to deliver

peak throughput. This term also makes non-linear pipelines unwieldy for communication

support design, since it is impossible to place an upper bound on the size of the inter-thread

queues. Synchronization cycles can be made arbitrarily long due to the computation costs

of intermediate threads, making it very difficult to design bottleneck-free communication

support. This explains the anomaly in Figure 5.8, wherein threads experienced increased

EXE stalls, due to the creation of non-linear thread pipelines, when moving to more threads.

5.2.2 Performance under ideal communication behavior

The 32-entry queue sizing was insufficient to tolerate longer synchronization cycles created

by non-linear thread pipelines. This phenomenon is aggravating, especially when moving

to 8 threads. To remedy the situation and evaluate the performance scalability potential

of DSWP when moving to more threads, a second set of simulations (labeled DSWPQ∞)

were run, once again on different multi-core configurations, with enough cores to match

the number of application threads. The only difference was that the queue sizes were set

to infinity 5. Figure 5.11 presents the speedup obtained from the different multithreaded

configurations relative to both single-threaded in-order execution (at the bottom) as well as

DSWPQ32 (at the top). Figure 5.12 shows the execution time breakdown of each thread

in the different multithreaded code versions with infinite queue sizes normalized to single-

threaded in-order execution.
5A size of 10000 was sufficient to ensure that no queue full/empty stalls occurred.

95

8 threads6 threads4 threads2 threads

1.0

1.2

1.4

L
oo

p
Sp

ee
du

p

wc art mcf

eq
ua

ke

am
mp

bz
ip2

ep
icd

ec

ad
pc

mde
c

mst

tre
ea

dd
em

3d

pe
rim

ete
r bh ks

Geo
M

ea
n

Bes
t-G

eo
M

ea
n

1.0

1.5

2.0

2.5

L
oo

p
Sp

ee
du

p

wc art mcf

eq
ua

ke

am
mp

bz
ip2

ep
icd

ec

ad
pc

mde
c

mst

tre
ea

dd
em

3d

pe
rim

ete
r bh ks

Geo
M

ea
n

Bes
t-G

eo
M

ea
n

Figure 5.11: DSWPQ∞ : Performance of DSWP with 2, 4, 6, and 8 threads with infinitely
long queues and a bus interconnect, relative to DSWPQ32 (top) and single-threaded in-
order execution (bottom).

96

PostEXEEXEREGRENEXPPreEXP

0.0

0.5

1.0

1.5

wc-1T wc-2T wc-4T wc-6T wc-8T
0.00

0.25

0.50

0.75

1.00

art-1T art-2T art-4T art-6T

0.0

0.5

1.0

1.5

mcf-1T mcf-2T mcf-4T mcf-6T mcf-8T

0.00

0.25

0.50

0.75

1.00

equake-1T equake-2T equake-4T

0.0

0.5

1.0

1.5

ammp-1T ammp-2T ammp-4T ammp-6T ammp-8T
0.0

0.5

1.0

1.5

bzip2-1T bzip2-2T bzip2-4T bzip2-6T

0.00

0.25

0.50

0.75

1.00

adpcmdec-1T adpcmdec-2T adpcmdec-4T adpcmdec-6T adpcmdec-8T
0.0

0.5

1.0

1.5

epicdec-1T epicdec-2T epicdec-4T

0.00

0.25

0.50

0.75

1.00

mst-1T mst-2T mst-4T mst-6T mst-8T
0.0

0.5

1.0

1.5

treeadd-1T treeadd-2T treeadd-4T

0.00

0.25

0.50

0.75

1.00

em3d-1T em3d-2T em3d-4T em3d-6T

0.00

0.25

0.50

0.75

1.00

perimeter-1T perimeter-2T perimeter-4T perimeter-6T

0.00

0.25

0.50

0.75

1.00

bh-1T bh-2T bh-4T
0.00

0.25

0.50

0.75

1.00

ks-1T ks-2T ks-4T ks-6T ks-8T

Figure 5.12: Normalized execution time breakdown of individual benchmarks when mov-
ing to more threads with infinitely long queues and bus interconnect.

97

8 threads6 threads4 threads2 threads

1.0

1.5

2.0

2.5

L
oo

p
Sp

ee
du

p

wc art mcf

eq
ua

ke

am
mp

bz
ip2

ep
icd

ec

ad
pc

mde
c

mst

tre
ea

dd
em

3d

pe
rim

ete
r bh ks

Geo
M

ea
n

Bes
t-G

eo
M

ea
n

Figure 5.13: DSWPQ∞+BW∞ : Performance of DSWP with 2, 4, 6, and 8 threads with
infinitely long queues and infinite communication bandwidth relative to single-threaded
in-order execution.

Several observations are in order. As expected, easing the queue size limitation does

alleviate the communication bottleneck imposed by non-linear pipelines and improves

DSWP performance for most benchmarks when moving to more threads. The geomet-

ric mean speedups of DSWPQ∞ with 2, 4, 6, and 8 threads are 1.25X, 1.36X, 1.41X, and

1.39X respectively, whereas, the geometric mean speedups of DSWPQ32 with 2, 4, 6, and

8 threads from Figure 5.7 were 1.20X, 1.29X, 1.31X, and 1.29X respectively.

Despite the overall improvement, there are several notable exceptions. Benchmarks wc,

mcf, ammp, perimeter, and ks continue to see a performance degradation when mov-

ing to more threads. A closer look at the execution revealed that the arbitration policy of

the bus interconnect carrying synchronization array traffic, always favored earlier threads.

This caused threads later in the pipeline to suffer arbitration stalls in 6 and 8 thread scenar-

ios. The removal of the bottleneck due to pipeline non-linearity with infinitely long queues

resulted in producer threads earlier in the pipeline being greatly sped up, causing instruc-

tions from threads later in the pipeline to suffer interconnect contention stalls. In particular,

when these stalls hit consume instructions, which were at the head of dependence chains,

of downstream threads, performance slowdown was inevitable. This slowdown in down-

stream threads eventually slowed down the upstream producer threads as well.

98

PostEXEEXEREGRENEXPPreEXP

0.00

0.25

0.50

0.75

1.00

wc-1T wc-2T wc-4T wc-6T wc-8T
0.00

0.25

0.50

0.75

1.00

art-1T art-2T art-4T art-6T

0.0

0.5

1.0

1.5

mcf-1T mcf-2T mcf-4T mcf-6T mcf-8T

0.00

0.25

0.50

0.75

1.00

equake-1T equake-2T equake-4T

0.0

0.5

1.0

1.5

ammp-1T ammp-2T ammp-4T ammp-6T ammp-8T
0.0

0.5

1.0

1.5

bzip2-1T bzip2-2T bzip2-4T bzip2-6T

0.00

0.25

0.50

0.75

1.00

adpcmdec-1T adpcmdec-2T adpcmdec-4T adpcmdec-6T adpcmdec-8T
0.0

0.5

1.0

1.5

epicdec-1T epicdec-2T epicdec-4T

0.00

0.25

0.50

0.75

1.00

mst-1T mst-2T mst-4T mst-6T mst-8T
0.0

0.5

1.0

1.5

treeadd-1T treeadd-2T treeadd-4T

0.00

0.25

0.50

0.75

1.00

em3d-1T em3d-2T em3d-4T em3d-6T

0.00

0.25

0.50

0.75

1.00

perimeter-1T perimeter-2T perimeter-4T perimeter-6T

0.00

0.25

0.50

0.75

1.00

bh-1T bh-2T bh-4T
0.00

0.25

0.50

0.75

1.00

ks-1T ks-2T ks-4T ks-6T ks-8T

Figure 5.14: Normalized execution time breakdown of individual benchmarks when mov-
ing to more threads with infinitely long queues and infinite communication bandwidth.

99

8 threads6 threads4 threads2 threads

1.00

1.25

1.50

1.75

2.00

L
oo

p
Sp

ee
du

p

wc art mcf

eq
ua

ke

am
mp

bz
ip2

ep
icd

ec

ad
pc

mde
c

mst

tre
ea

dd
em

3d

pe
rim

ete
r bh ks

Geo
M

ea
n

Bes
t-G

eo
M

ea
n

(a) Speedup with 32-entry queues with interconnect and port contention (baseline: single-thread).

1.0

1.2

1.4

L
oo

p
Sp

ee
du

p

wc art mcf

eq
ua

ke

am
mp

bz
ip2

ep
icd

ec

ad
pc

mde
c

mst

tre
ea

dd
em

3d

pe
rim

ete
r bh ks

Geo
M

ea
n

Bes
t-G

eo
M

ea
n

(b) Speedup with infinitely long queues with interconnect and port contention (baseline: DSWPQ32).

0.9

1.0

1.1

1.2

L
oo

p
Sp

ee
du

p

wc art mcf

eq
ua

ke

am
mp

bz
ip2

ep
icd

ec

ad
pc

mde
c

mst

tre
ea

dd
em

3d

pe
rim

ete
r bh ks

Geo
M

ea
n

Bes
t-G

eo
M

ea
n

(c) Speedup with infinitely long queues and infinite communication bandwidth (baseline: DSWPQ∞).

Figure 5.15: Relative performance of DSWP with 2, 4, 6, and 8 threads under different
communication scenarios.

100

In order to alleviate finite bandwidth limitations to the synchronization array, the bus

interconnect was replaced with a crossbar interconnect and the synchronization array was

allowed to have as many ports as required to cater to requests from all cores every cy-

cle. This configuration with infinite-sized queues and infinite communication bandwidth

is labeled DSWPQ∞+BW∞ . This idealization made the 8-thread versions of benchmarks

wc, mcf and ks perform no worse than the 6-thread versions. From Figure 5.13, which

presents the overall speedup obtained by DSWPQ∞+BW∞ relative to single-threaded in-

order execution, the geometric mean speedups of DSWPQ∞+BW∞ across 2, 4, 6, and 8

thread versions can be seen to be 1.25X, 1.37X, 1.42X, and 1.43X respectively. Figure 5.14

shows a thread-wise breakdown of the performance of multithreaded DSWP with infinitely

long queues and zero port contention while accessing the synchronization array. The main

difference between this and Figure 5.12 are the graphs for wc. In the latter, wc can be seen

to have a performance degradation when moving to more threads. The infinite inter-thread

queue (i.e. synchronization array) bandwidth remedies this situation and causes wc’s per-

formance to fall in line with theoretical expectations. Similar improvements can also be

seen for benchmarks mcf, adpcmdec, mst and ks.

Figure 5.15 presents the relative speedup graphs for all three communication scenarios

- DSWPQ32 , DSWPQ∞ , and DSWPQ∞+BW∞ . It highlights the incremental improve-

ment obtained by easing just the queue size bottleneck relative to DSWPQ32 (Figure 5.15b)

and by easing both the queue size as well as the interconnect contention bottlenecks (Fig-

ure 5.15c) relative to DSWPQ∞ .

Notice that ammp and perimeter continue to experience performance degradation

even after elimination of interconnect contention stalls. Detailed analysis revealed that in

perimeter, the best balance is reached with 2 threads, with thread 1 being the bottleneck

thread. Since thread 1 contained only 1 SCC, further parallelization is made possible only

by spreading thin the remaining SCCs among more threads. However, this leads to loss

of locality in data accesses leading to increased coherence activity, thereby increasing the

101

number of coherence-induced misses in the L2 caches. A similar problem is observed

in ammp as well when moving from 6 to 8 threads. The best balance is reached with 6

threads. Moving to 8 threads only results in the creation of more coherence traffic leading

to performance slowdown.

Finally, note that the best geometric mean speedup, which represents the maximum

speedup possible with N cores (with number of threads fewer than or equal to N), for 2, 4,

6, and 8 threads improves from 1.20X, 1.30X, 1.32X, and 1.33X in the DSWPQ32 config-

uration to 1.25X, 1.37X, 1.43X, and 1.43X respectively in the DSWPQ∞+BW∞ scenario.

This overall performance improvement serves to highlight that it is not enough for the

compiler to be intelligent enough to pick the best “code version” (i.e. multithreaded con-

figuration), but that it must also strive to eliminate non-linear pipelines during partitioning,

in order to achieve the best performance possible.

5.3 Summary

Through detailed simulations and performance analysis, this chapter first demonstrated the

latency tolerance property of DSWPed codes. The geometric mean speedup of DSWPed

execution on a 2-core CMP with in-order issue is 1.29X compared to single-threaded ex-

ecution on one core. More saliently, the geometric mean speedup of DSWPed execution

on a 2-core CMP with out-of-order issue from a 128-entry instruction window is 1.11X

faster than single-threaded execution on an out-of-order processor with a double the RUU

entries, cache ports and cache lines. Critical path stall analysis clearly demonstrated that

DSWP achieves this improvement by avoiding FE stalls through decoupled multithreaded

execution.

This chapter also analyzed and highlighted the various communication bottlenecks that

must be overcome for DSWP to achieve theoretically predicted performance. Without any

communication bottlenecks, DSWP delivers a geometric mean speedup of 1.25X to 1.46X

102

when going from 2 to 8 threads. An important lesson from the performance scalability

analysis is the need to make the compiler aware of the communication costs of linear and

non-linear thread pipelines so that it can generate code to avoid communication bottlenecks.

Performance loss due to false sharing can be avoided by using clever data layout schemes.

For example, false sharing due to read and write accesses to different fields of a structure

can be avoided by padding the structure with enough dummy bytes so that the relevant

fields are moved to different cache lines.

The next chapter presents an evaluation of a variety of mechanisms for pipelined inter-

thread communication. It quantitatively demonstrates the effect of each sub-component,

of the design space presented in Chapter 3, on DSWP performance and identifies the main

bottlenecks in the designs studied.

103

Chapter 6

Evaluation of Communication Support

This chapter evaluates four important communication support mechanisms that represent

design variants ranging from existing commercial processor designs to designs like the

synchronization array that leverage heavy-weight dedicated streaming hardware to max-

imize the performance of streaming codes. All selected design points ensure backward

compatibility with legacy software. Using these design points, it is empirically shown that

DSWPed codes do, in fact, tolerate transit delay. The results and analysis from this chap-

ter motivate light-weight communication support optimizations described and analyzed in

the next. Note that an evaluation of various communication support options for PMT was

first undertaken in [50]. The main differences between the evaluation presented in this

dissertation and the original work are the use of VELOCITY compiler framework in this

dissertation and an improved write-forwarding implementation.

6.1 Systems Studied

The four design points explored were:

EXISTING. This design point is representative of existing commercial CMPs. It

is a naı̈ve implementation of shared memory software queues that relies only on the base-

line coherence and consistency mechanisms. This design will serve as our baseline for

104

measuring the hardware cost and operating system impact of other designs.

MEMOPTI. This variant will illustrate the efficacy of EXISTING with write-

forwarding support, a low-impact memory subsystem optimization. This design requires

little additional hardware (cache modifications for write-forwarding). Write-forwarding is

limited to a core’s L2 cache, to avoid polluting the L1 cache with short-lived inter-thread

streaming data.

SYNCOPTI. This variant corresponds to the snoop-based synchronization design

presented in Section 3.4 of Chapter 3 and will illustrate the benefits of using dedicated

hardware to optimize communication operation sequences and synchronization, while still

relying on the memory subsystem for queue backing stores and core-to-core interconnect.

The design requires modifying core pipelines to execute produce and consume instruc-

tions, write forwarding logic (with the locality enhancements described in Section 3.2.5)

and synchronization counters in the processor caches, and OS support to context switch the

synchronization counters. Here too, write-forwarding does not propagate all the way to L1

and is terminated at the destination core’s L2.

While this design does introduce more hardware than the previous designs, it remains

fairly light weight. This design reuses the L2-L3 memory bus, a critical component of

CMP architectures, rather than introducing a new dedicated network like the synchroniza-

tion array. Such an approach makes optimal use of the available on-chip transistors; the

single on-chip network can be provisioned according to the total system bandwidth re-

quirements without regard to how such traffic is generated (application memory requests

or inter-thread operand requests). This generality makes the solution appealing since it has

potential to support various models of application parallelism. Additionally, use of memory

as a backing store avoids introducing new dedicated stores, allows flexible queue sizing,

and greatly reduces OS context-switch and virtualization costs.

HEAVYWT. This variant represents the performance achievable by hardware-heavy

mechanisms such as the FIFOs provided by the scalar operand networks in Raw [65] or the

105

synchronization array (SA). It combines the point along each design axis that should offer

greatest performance without regard for hardware cost or OS impact. In addition to core

modifications to execute produce and consume instructions, HEAVYWT introduces

additional dedicated distributed on-chip queue backing store and a new interconnect net-

work to connect processor cores to this backing store. The contents of the backing store and

in-flight data buffered in the network must be part of a process’s context. Consequently,

this design variant also requires OS modifications to context switch this state. Since this

state is concurrently updated by multiple threads belonging to the same process, the OS

implications will be more far reaching than for the other design variants.

6.2 Experimental Setup

The benchmarks used for this evaluation are the exact same workloads that were used to

evaluate DSWP in Chapter 5. The multithreaded workloads used here correspond to the

rebalanced partitions derived in Section 5.1.1. Two types of codes were automatically

generated - one with produce and consume instructions (same as the best-performing

code from Section 5.1.1) and the other with code sequences for shared-memory software

queue writes and reads.

The code sequences for the shared-memory software queue operations have been highly

tuned to contain the minimal number of instructions possible. Despite that, the software

overhead for a communication operation was 10 instructions (6, 1 and 3 instructions for

synchronization, data transfer and stream address update respectively) with a dependence

height of 4. The overhead for the produce-consume instructions based versions was just

the one instruction for data transfer. On an in-order machine such as the Itanium R© 2, these

overheads tend to contribute significantly towards the overall execution time, especially

for really tight loops. Code for software queue implementations was generated such that

the spin lock loop, and lock release and queue pointer update were part of existing control

106

HEAVYWT−lat10HEAVYWT

0.0

0.5

1.0

1.5

2.0

L
oo

p
Sp

ee
du

p

wc art mcf

eq
ua

ke

am
mp

bz
ip2

ep
icd

ec

ad
pc

mde
c

mst

tre
ea

dd
em

3d

pe
rim

ete
r bh ks

Geo
M

ea
n

Figure 6.1: Effect of transit delay on streaming codes.

blocks so as to enable more compact scheduling.

All designs used 256 queues of depth 32 unless otherwise mentioned (not all queues

were used by each application). For all designs using shared memory backing stores, the

queue layout unit was 8. For all designs using write-forwarding, lines were forwarded only

to the cores’ private L2 caches and forwarding was initiated only after all queue entries

on the line had been written. For the lone configuration with a dedicated backing store,

HEAVYWT, the backing store was located in the consumer core, but queue synchroniza-

tion counters were maintained at both the producer and consumer core. The dedicated

store could service 4 concurrent operations per cycle and was connected to remote cores by

a dedicated pipelined interconnect. Within a consuming core, the consume-to-use latency

was 1 cycle. If not otherwise mentioned, the interconnect latency was 1 cycle.

6.3 Results and Analysis

First, to understand the decoupling present in the applications and to see the effect of transit

delay on pipelined inter-thread communication, Figure 6.1 presents a performance com-

parison of three HEAVYWT variants. They differ only in the end-to-end latency of their

107

dedicated pipelined interconnects. The left bar corresponds to a 1-cycle end-to-end la-

tency (default HEAVYWT) and the right bar to a 10-cycle latency. All other parameters

are held constant.

As the figure shows, the performance difference across the three design points vary from

little to nothing. This is in line with the theoretical expectation that PMT codes tolerate

transit delays. That being said, there is a small performance dip for a few benchmarks,

namely, equake, bzip2, treeadd, and perimeter. These benchmark loops have

one or more nested loops inside the outermost loop that is DSWPed. Upon DSWPing such

loops, produce instructions in the outer loop can execute only after all iterations of its

inner loop(s) are done. And, in order for the producer to be done with all iterations of

its inner loop, either the queue size must be large enough compared to the number of loop

iterations or in the more likely scenario, wait for the consumer to drain the queue so that the

producer can keep producing to the queue. In the event the outer loop of the producer fails

to build sufficient decoupling (i.e. ensure that the queue occupancy is greater than or equal

to one), any consume instruction to that queue will be stalled until the queue occupancy

becomes greater than zero. Such stalls are exacerbated by the increased 10-cycle delay for

transferring a value from the producer core to the consumer core. This leads to the slight

performance dip for the above benchmarks.

Next, Figure 6.2 gives a performance comparison all four design points with respect to

baseline single-threaded execution. The speedup of each technique with respect to single-

threaded execution is given. The normalized execution times of the producer (above) and

consumer (below) threads for each of the four different mechanisms is given in Figure 6.3.

From left to right, for each benchmark, the bars correspond to single-thread execution,

HEAVYWT, SYNCOPTI, EXISTING and MEMOPTI respectively. Note, even though

the overall performance of the producer and consumer cores are the same, their breakdowns

look different due to different mix of communication and computation instructions and

additionally, in the case of HEAVYWT and SYNCOPTI, it is due to the differences in

108

HEAVYWTSYNCOPTIMEMOPTIEXISTING

0.0

0.5

1.0

1.5

2.0

L
oo

p
Sp

ee
du

p

wc art mcf

eq
ua

ke

am
mp

bz
ip2

ep
icd

ec

ad
pc

mde
c

mst

tre
ea

dd
em

3d

pe
rim

ete
r bh ks

Geo
M

ea
n

Figure 6.2: Overall performance comparison across all design points.

the stall behavior of produce and consume instructions.

As mentioned in Chapter 4, the component-wise breakdowns represent non-overlappable

stalls that contributed directly to the dynamic schedule height in the respective sections of

the machine. Since the study of the various communication mechanisms focuses primarily

on the memory subsystem, the component-wise breakdown used in this and next chapters

aggregates stalls before and after the memory access stages of the pipeline into PreL2 and

PostL2 components respectively and zooms into the memory system performance by split-

ting it into four components - L2, BUS, L3 and MEM. L2, L3 and MEM represent the time

spent in the L2, the L3 and the main memory respectively, BUS is the total time spent on

the shared bus (including arbitration, snoops, requests, and data transfers).

The figures show that HEAVYWT and SYNCOPTI perform better than MEMO-

PTI and EXISTING for all benchmarks. It is obvious from design why HEAVYWT

is the best overall (since it provides the lowest COMM-OP delay). SYNCOPTI closely

trails HEAVYWT across all the benchmarks. This is expected since SYNCOPTI and

HEAVYWT are identical in all respects, except in their queue backing stores. However,

there is still a considerable difference between the SYNCOPTI and HEAVYWT bars

across all benchmarks and in fact the difference is pretty significant in wc. A careful ex-

109

PostL2MEML3BUSL2PreL2

0.0

2.5

5.0

7.5

N
or

m
al

iz
ed

E
xe

cu
tio

n
T

im
e

12345 12345 12345 12345 12345 12345 12345 12345 12345 12345 12345 12345 12345 12345 12345

wc art mcf

eq
ua

ke

am
mp

bz
ip2

ep
icd

ec

ad
pc

mde
c

mst

tre
ea

dd
em

3d

pe
rim

ete
r bh ks

Geo
M

ea
n

0.0

2.5

5.0

7.5

N
or

m
al

iz
ed

E
xe

cu
tio

n
T

im
e

12345 12345 12345 12345 12345 12345 12345 12345 12345 12345 12345 12345 12345 12345 12345

wc art mcf

eq
ua

ke

am
mp

bz
ip2

ep
icd

ec

ad
pc

mde
c

mst

tre
ea

dd
em

3d

pe
rim

ete
r bh ks

Geo
M

ea
n

Figure 6.3: Normalized execution time breakdown for producer (above) and consumer
(below) threads for each design point.

(1 = SINGLE-THREADED, 2 = EXISTING, 3 = MEMOPTI, 4 = SYNCOPTI, 5 = HEAVYWT)

110

amination of the pipeline behavior of these benchmarks revealed the main reason for the

slowdown. The average consume-to-use latency in SYNCOPTI is at least 6 cycles (since

synchronization happens in L2 following a 2-cycle stream address generation), whereas it

is 1 cycle in HEAVYWT. The higher COMM-OP delay results in the consumer perform-

ing slower in SYNCOPTI than in HEAVYWT. This in turn delays freeing up of queue

slots, thereby ultimately slowing down the producer thread. For wc, the reason why SYN-

COPTI is almost twice as slow as HEAVYWT is because the streaming loop is very tight.

With three consume operations per loop iteration, the overhead turns out to be a significant

factor.

While HEAVYWT incurs no memory system overhead (by design), SYNCOPTI does

equally well too, as can be seen by the L2 and BUS components. Since synchroniza-

tion counters are efficiently maintained and updated in a distributed fashion, SYNCOPTI

avoids unnecessary cache line ping-ponging between cores; only the producer side writes to

a cache line, while the consumer reads the cache line. The only extra memory traffic stems

from uni-directional queue line transfers and bulk acknowledge notifications for synchro-

nization counter updates. However, since MEMOPTI and EXISTING have to explicitly

modify condition variables and communicate them in both directions, their memory system

performances are significantly poorer. Since SYNCOPTI, MEMOPTI and EXISTING

all effect data transfers through the memory subsystem, one might expect their breakdowns

to be somewhat similar. However, that is not the case, because, in MEMOPTI and EX-

ISTING, instructions recirculate through the OzQ1 when they cannot issue because of port

contention or to respect memory fence semantics. Further, when a produce operation tries

to produce into a full queue, the spin lock instructions keep flowing through the pipeline till

the produce happens. Whereas, in SYNCOPTI, a produce instruction takes up one OzQ

slot and remains dormant till it goes past the synchronization phase in its state machine.

Often, this causes the OzQ to fill up leading to back-pressure in the pipeline, resulting in a

1An ordered queue of outstanding transactions, in the Itanium 2’s L2 controller, whose entries also serve
as miss status holding registers (MSHRs).

111

consumer threadproducer thread

0.0

0.2

0.4

0.6

co
m

m
n.

:
ap

pl
n.

in
st

ru
ct

io
ns

wc art mcf

eq
ua

ke

am
mp

bz
ip2

ep
icd

ec

ad
pc

mde
c

mst

tre
ea

dd
em

3d

pe
rim

ete
r bh ks

Geo
M

ea
n

Figure 6.4: Ratio of the # of dynamic communication instructions to application instruc-
tions for producer and consumer threads.

larger preL2 component. Finally, the greater intrinsic schedule height for software queues,

causes MEMOPTI and EXISTING to have larger postL2 components than SYNCOPTI

since fewer instructions execute and writeback in SYNCOPTI. Hence the differences in

the breakdowns.

MEMOPTI performs better than EXISTING overall due to timely transfer of cache

lines from one core to another. This can be seen from the reduced BUS components for all

benchmarks for MEMOPTI, since the pre-emptive forwarding in MEMOPTI minimizes

the number of critical path cycles spent on bus transfers, as was the case with the on-

demand bus transfers in EXISTING.2

Overall, a major factor contributing to the improved performance of HEAVYWT and

SYNCOPTI over MEMOPTI and EXISTING is the postL2 component. MEMOPTI

and EXISTING simply commit many more instructions due to the software overhead for

synchronization and address generation and this directly causes them to perform worse than

HEAVYWT and SYNCOPTI. Figure 6.4, which has a plot of the ratios of the dynamic

counts of communication and synchronization instructions to application instructions for

2This result is slightly at odds with the result reported in [50], wherein, for a lot of benchmarks, EXIST-
ING performed better than MEMOPTI, due to differences in the implementation of write-forwarding.

112

both the producer and consumer threads for codes with produce-consume instructions,

shows that on the average, a communication is required once every 5 to 20 dynamic ap-

plication instructions. Given this high communication frequency, the 10 instruction soft-

ware queue sequence, required per communication, proves to be a significant overhead

and detrimentally affects software queue performance. The performance of SYNCOPTI

is in between that of the HEAVYWT mechanism and the EXISTING and MEMOPTI

mechanisms. As seen in Figure 6.2, SYNCOPTIhas 1.56X and 2.1X speedup over MEM-

OPTI and EXISTING respectively and a relatively modest 38% slowdown relative to

HEAVYWT. This, however, is not good enough since the speedup of HEAVYWT over

single-threaded codes for the optimized loops is 25%. This means the communication over-

head for the other mechanisms actually negates parallelization benefits and causes multi-

threaded execution to perform worse than single-threaded execution. These basic experi-

ments demonstrate the importance of efficient communication support for high-frequency

pipelined inter-thread communication.

6.4 Sensitivity Study

In order to evaluate the sensitivity of the four techniques to increased wire delays of fu-

ture CMPs, the basic performance experiments were repeated with a bus latency equal to

4 CPU cycles. For HEAVYWT, the end-to-end latency of the dedicated interconnect was

increased to 4 cycles as well. The execution time breakdown is presented in Figure 6.5

and is normalized to single-threaded execution with the same 4 cycle bus latency. EXIST-

ING, MEMOPTI and SYNCOPTI are all affected by the increased bus latency and have

significantly larger BUS components. This is not a surprise, since these communication

mechanisms use the bus to transfer inter-thread streaming data and any increase in bus la-

tency will consequently have a negative impact on the overall performance. Given that it

takes 8 (linesize(128)
buswidth(16)

) bus cycles for a line to be transferred on the bus, with a bus latency

113

PostL2MEML3BUSL2PreL2

0

5

10

15

20

N
or

m
al

iz
ed

E
xe

cu
tio

n
T

im
e

12345 12345 12345 12345 12345 12345 12345 12345 12345 12345 12345 12345 12345 12345 12345

wc art mcf

eq
ua

ke

am
mp

bz
ip2

ep
icd

ec

ad
pc

mde
c

mst

tre
ea

dd
em

3d

pe
rim

ete
r bh ks

Geo
M

ea
n

0

5

10

15

20

N
or

m
al

iz
ed

E
xe

cu
tio

n
T

im
e

12345 12345 12345 12345 12345 12345 12345 12345 12345 12345 12345 12345 12345 12345 12345

wc art mcf

eq
ua

ke

am
mp

bz
ip2

ep
icd

ec

ad
pc

mde
c

mst

tre
ea

dd
em

3d

pe
rim

ete
r bh ks

Geo
M

ea
n

Figure 6.5: Normalized execution time breakdown with transit delay = 4 cycles.
(1 = SINGLE-THREADED, 2 = EXISTING, 3 = MEMOPTI, 4 = SYNCOPTI, 5 = HEAVYWT)

114

PostL2MEML3BUSL2PreL2

0.0

2.5

5.0

7.5

10.0

N
or

m
al

iz
ed

E
xe

cu
tio

n
T

im
e

12345 12345 12345 12345 12345 12345 12345 12345 12345 12345 12345 12345 12345 12345 12345

wc art mcf

eq
ua

ke

am
mp

bz
ip2

ep
icd

ec

ad
pc

mde
c

mst

tre
ea

dd
em

3d

pe
rim

ete
r bh ks

Geo
M

ea
n

0.0

2.5

5.0

7.5

10.0

N
or

m
al

iz
ed

E
xe

cu
tio

n
T

im
e

12345 12345 12345 12345 12345 12345 12345 12345 12345 12345 12345 12345 12345 12345 12345

wc art mcf

eq
ua

ke

am
mp

bz
ip2

ep
icd

ec

ad
pc

mde
c

mst

tre
ea

dd
em

3d

pe
rim

ete
r bh ks

Geo
M

ea
n

Figure 6.6: Effect of increased increased interconnect bandwidth (transit delay = 4 cycles,
bus width = 128 bytes).

(1 = SINGLE-THREADED, 2 = EXISTING, 3 = MEMOPTI, 4 = SYNCOPTI, 5 = HEAVYWT)

of 4 CPU cycles, it takes 32 CPU cycles for line transfers. This not only causes increased

time for line transfers but also causes requests to backlog leading to large arbitration delays

within cores. Further, benchmarks like mcf and equake are memory-intensive applica-

tions and tend to access the L3 cache frequently, making them sensitive to bus delays.

To see if interconnect bandwidth is the problem, another set of experiments was run

with a bus width of 128 bytes (equal to cache line size) holding the latency at 4 CPU cycles

(peak bandwidth of 32 bytes per cycle). This change significantly eases contention leading

to lower arbitration delays as seen from the BUS components in Figure 6.6. This highlights

the importance of interconnect bandwidth for high-frequency streaming. Although building

115

a 128-byte-wide interconnect can be expensive, the same benefits can be had by using a

pipelined interconnect with equal bandwidth.

6.5 Summary

To conclude, the key observations from the performance evaluation in this chapter are:

• The main source of performance loss for software queues is the huge instruction over-

head required to implement synchronization and queue pointer update in software for

every communication operation. This is chiefly responsible for the poor performance

of EXISTING and MEMOPTI with respect to SYNCOPTI and HEAVYWT.

• Even though SYNCOPTI performs better than EXISTING and MEMOPTI,

HEAVYWT performs better than SYNCOPTI because of its smaller consume-to-

use delays.

The next chapter will present alternate designs that will seek to alleviate the bottlenecks

identified in this chapter.

116

Chapter 7

Communication Support Optimizations

This chapter develops optimizations that seek to address the main reasons for performance

loss identified in Chapter 6. Two types of optimizations are proposed and evaluated.

The first is a software-only optimization that minimizes synchronization and queue

pointer update overhead for shared memory software queue implementations. The sec-

ond comprises simple hardware enhancements to snoop-based synchronization (i.e. SYN-

COPTI) that enable it to almost equal the performance of the synchronization array (i.e

HEAVYWT) by reducing consume-to-use latency, albeit without the associated hard-

ware and OS costs.

7.1 Amortizing Overhead Costs for Software Queues

As discussed in Section 3.2, software queues obviate the need for special hardware sup-

port for inter-thread communication. Further, no OS modification is necessary. The default

memory consistency and cache coherence implementation of any machine provide the com-

plete hardware support needed for software queue based communication. However, they

come with a heavy performance cost. As shown in the previous chapter and summarized at

the beginning of this chapter, software queue implementations suffer from heavy instruc-

tion overhead required to implement synchronization and queue pointer update functional-

117

ity. Even highly tuned code sequences have significant recurring intra-thread overhead and

tend to negate any benefits from PMT parallelization. While synchronization and queue

pointer update are necessary evils which cannot be wished away entirely, the optimiza-

tion presented in this section seeks to coalesce such overhead instructions into one per

group of queue accesses instead of one per individual queue access, so as to amortize the

synchronization and queue pointer update overhead across multiple queue accesses. The

optimization comprises of a compiler analysis to automatically identify queue operations

for which synchronization and queue pointer update can be coalesced and a subsequent

code generation pass to use analysis information to actually perform the coalescing. The

analysis is implemented as a pass after autoDSWP in the VELOCITY compiler framework.

The analysis was originally presented in [49] without any run-time evaluation results. In

addition to presenting run-time results for the original algorithm, this section also presents

a new algorithm to perform coalescing across larger code regions.

AutoDSWP implementations can either use a unique queue to handle each inter-thread

dependence or may choose to merge two or more dependencies into a single queue. Each

has its pros and cons. While the former leads to queue addressability concerns, the latter

constrains the scheduler by requiring the order of queue accesses be strictly the same in

all communicating threads. The analysis described in this section assumes a queue per

dependence implementation in this chapter. Further, it also assumes finite-sized queues

with equal number of entries in each queue.

Variants of the above approaches often use multiple queue buffers or coarser-grained

signaling to minimize cache line ping-ponging or amount of storage used for synchroniza-

tion or both. Regardless, the main drawback of software queues is that the code sequences

to produce and consume a single datum are quite lengthy. A naı̈ve use of any of the above

software queue implementations to handle communication in DSWP by reproducing the

entire code sequence (comprising synchronization, data transfer and queue pointer update

instructions) for every single communication operation to each queue will naturally lead

118

to performance inefficiencies. However, in code regions with two or more accesses to

“parallel” queues, the overhead arising from synchronization and queue pointer update in-

structions can be amortized across multiple accesses. Coalescing synchronization leads to

an increase in critical section size, which may be unacceptable in most conventional scenar-

ios. However, since DSWP pipelines communication and synchronization, increasing the

critical section size will at worst manifest itself as a one-time increased pipeline fill cost.

The next subsection expands upon this intuition and presents an analysis to automatically

identify parallel queue accesses for which synchronizations and queue pointer updates can

be coalesced.

7.1.1 Analysis

First, an intuitive algorithm is described to determine which queue accesses to coalesce syn-

chronization for. This algorithm is progressively refined to take into account various cor-

rectness constraints. The notation ACQUIRE n and RELEASE n will denote acquire and

release operations for a condition variable n. The term synchronization number will be used

to abstractly refer to a condition variable. The analysis operates on a machine-independent

intermediate representation (IR). While the exact code sequence for an ACQUIRE n or

RELEASE n operation may vary slightly depending on whether it synchronizes a produce

or a consume operation, for the discussion below, it suffices to know that ACQUIRE n is a

spinlock loop which will prevent the enclosing thread from making forward progress until

the spinlock succeeds. Since coalescing synchronization is inherently more complex than

coalescing queue pointer updates, the analysis is driven from a synchronization standpoint.

Section 7.1.2 will explain how queue pointer update coalescing can be piggybacked on

synchronization coalescing during code-generation.

A synchronization equivalence group (SEG) is defined as a group of queues for which

synchronization can be coalesced. To start with, only innermost loops in 2-thread DSWP

will be considered. For pipelined communication between two innermost loops, it can be

119

intuitively seen that by acquiring and releasing synchronization at the beginning and end

of the loop body respectively, all communication operations in the loop body can be cor-

rectly synchronized. However, in a two-deep loop nest that has been DSWP’ed such that

there are communication operations in both the outer and inner loops, the above simple

strategy will no longer work. All synchronization cannot be coalesced at the outer loop

boundaries as that will leave communication operations in the inner loop without any syn-

chronization. In Figure 7.2, notice that there is no ACQUIRE n or RELEASE n operation

for queue accesses in the inner loop. This can cause produce operations to run over the

allotted buffer space or consume operations to prematurely read stale data. Thus, upon

coalescing, ACQUIRE and RELEASE operations for a queue access can move to a less re-

strictive control flow condition (like outside an “if” statement), but cannot be hoisted out

of their original loops. This condition ensures that every dynamic queue access operation

is guarded by at least one ACQUIRE n and one RELEASE n operation.

But this condition is not sufficient. For example, in Figure 7.3, synchronization is

acquired and released at the beginning and end of each loop nest level. Even though this

satisfies the condition stated above, it fails to provide correct synchronization because,

assuming a queue to contain 32 entries, the producer thread’s ACQUIRE 1 will spinlock

trying to produce beyond 32 queue items. However, the consumer thread will spinlock in

ACQUIRE 0 in its outer loop, since the producer’s outer loop will never get a chance to

execute its synchronization release, RELEASE 0. Since the consumer is spinlocking in

ACQUIRE 0, it will never reach its inner loop, thus leading to a deadlock.

Figure 7.4 highlights another potential pitfall if ACQUIRE and RELEASE operations for

a synchronization number are not control-equivalent. In this example, if the loop were to

proceed down the “if” path, the RELEASE operation for synchronization number 0 would

never execute. This in turn would cause the consumer thread to spin loop in its ACQUIRE

operation and prevent it from making any progress.

To summarize, the necessary and sufficient conditions for correct synchronization coa-

120

lescing are:

1. For each synchronization number n, dynamically, there be a many-to-one or one-to-

one mapping of synchronization operations (ACQUIREs and RELEASEs) to queue

accesses, for each queue in its SEG(n)1.

2. There be no circular inter-thread dependence among overlapping critical sections in

any thread.

3. For each synchronization number, dynamically, there be a one-to-one correspon-

dence between ACQUIREs and RELEASEs.

To satisfy all the above conditions, a single-entry single-exit acyclic region with control

equivalent entry and exit points called a loop region is defined. ACQUIRE and RELEASE

operations for all queue accesses in this region can be coalesced at the region entry and exit

points. The acyclic clause satisfies conditions 1 and 2 and the control equivalence clause

satisfies condition 3.

The first step of the analysis is to form loop regions. Initial loop region entries are

defined as points in a loop’s static CFG where control flow is transferred into the loop,

including from inner loops and fall-through from loopback branches. Similarly, initial loop

region exits are points in a loop’s static CFG where control flow is transferred out of the

loop, including to inner loops. The source of a loop backedge is a special loop region exit

and likewise a loop header is a special loop region entry.

The algorithm starts by marking initial loop region entries and exits as defined above

as entry and exit nodes respectively in the given CFG. Then, for every node in the CFG

it computes its latest post-dominator and earliest dominator, taking into account the new

entry and exit nodes. All latest post-dominators are marked as exit nodes and all earliest

dominators are marked as entry nodes. Source nodes of in-edges into earliest dominators

1Note, to take into account coarse-grained signaling implementations, the condition can be modified
slightly to ensure a many-to-one or one-to-one mapping with every kth queue access, where k is the sig-
naling granularity.

121

1: Mark Initial Entries and Exits
2: repeat
3: Find each node’s latest post-dominator L and earliest dominator E
4: Mark each L as an exit, mark each E as an entry.

5: Mark D as entry, ∀ D, ∀ L, such that
→

LD is an edge and L is a latest post-dominator

6: Mark S as exit, ∀ S, ∀ E, such that
→

SE is an edge and E is an earliest dominator
7: until (entries and exits do not change for any node)

Figure 7.1: Algorithm to find maximal single-entry single-exit loop regions

are marked as exit nodes and destination nodes of out-edges from latest post-dominators

are marked as entry nodes. The algorithm iterates till no new entry and exits nodes are

marked on the CFG. This procedure yields maximal single-entry single-exit loop regions.

The algorithm is summarized in Figure 7.1. The set of queues accessed in each loop region

forms an SEG. The analysis also remembers the directionality (i.e. produce or consume)

of each SEG. If both produce and consume queue accesses occur in a particular loop

region, the analysis groups them into two different SEGs.

Now, all queue operations in a given loop region can theoretically have their ACQUIRE

and RELEASE operations coalesced at the region’s entry and exit nodes respectively. How-

ever, due to the inter-thread nature of synchronization, it is important to make sure cor-

responding queue accesses in other threads also fall into the same loop region in those

threads. The second step of the analysis compares SEGs across all communicating threads

and ensures that for each queue, the SEG it is a member of is exactly the same across all

threads accessing that queue. If this is not the case, the corresponding SEGs are split until

the condition is true. Once this is done, each globally unique SEG is assigned a globally

unique synchronization number.

For example, consider a three-way partitioning of a loop (with no inner loops) wherein

thread 1 produces into queues 1, 2, 3 and 4, thread 2 consumes from queues 3 and 4 and

produces to queues 5 and 6 and thread 3 consumes from queues 1, 2, 5, and 6. The first step

of the analysis creates SEG [1,2,3,4] for thread 1, SEGs [3,4] and [5,6] for thread 2, and

SEG [1,2,5,6] for thread 3. The second step of the analysis will split the SEGs such that

122

Producer Thread Consumer Thread

Outer: ACQUIRE 0
produce [4] = r5

Inner: Inner:

consume r5 = [4]
Outer: ACQUIRE 0

produce [7] = r6
r6 = r6 + 1
br r6 < 100, Inner
r5 = r5 + 1
produce [9] = r5

RELEASE 0
br r5 < 100, Outer

consume r6 = [7]
r6 = r6 + 1
br r6 < 100, Inner
r5 = r5 + 1
consume r5 = [9]

RELEASE 0
br r5 < 100, Outer

Figure 7.2: Coalescing at the outer loop.

Outer: ACQUIRE 0
produce [4] = r5 consume r5 = [4]

Outer: ACQUIRE 0

consume r6 = [7]
ACQUIRE 1Inner:

r5 = r5 + 1
produce [9] = r5

r6 = r6 + 1

br r6 < 100, Inner
RELEASE 1

RELEASE 0
br r5 < 100, Outer

produce [7] = r6
Inner: ACQUIRE 1

r5 = r5 + 1
consume r5 = [9]

r6 = r6 + 1

br r6 < 100, Inner
RELEASE 1

br r5 < 100, Outer
RELEASE 0

Producer Thread Consumer Thread

Figure 7.3: Coalescing at loop entry and exits.

thread 1 has [1,2] and [3,4], thread 2 has [3,4] and [5,6], and thread 3 has [1,2] and [5,6].

Now, there are three globally unique SEGs - [1,2], [3,4], and [5,6] and they are assigned

synchronization numbers 0, 1, and 2 respectively.

The first step of the analysis is a local analysis. The second step has to make a pass

over all threads to determine the correct mapping from each synchronization number to its

SEG and is a global analysis. For each procedure, the analysis outputs the synchronization

numbers used in the procedure, the direction of synchronization (i.e. produce or consume),

the ACQUIRE and RELEASE points for each synchronization number and its SEG.

123

Producer Thread Consumer Thread

Loop: ACQUIRE 0 Loop: ACQUIRE 0
br r4 == r5, If
produce [4] = r5

RELEASE 0
br Loop

If: br r5 > 0, Loop

consume r5 = [4]
br r4 == r5, If

RELEASE 0
br Loop

If: br r5 > 0, Loop

Figure 7.4: Control inequivalent ACQUIRE and RELEASE.

7.1.2 Code Generation

The code generation phase first creates memory locations for all synchronization numbers

handed out. Then, for each procedure, for each synchronization number used in that proce-

dure, it uses analysis information to insert ACQUIREs and RELEASEs for that synchroniza-

tion number at the specified points. It uses direction information for each synchronization

number to determine the exact condition variable values (or occupancy counter operations)

to use while generating the ACQUIREs and RELEASEs. Either concurrently or as a later

pass, produce and consume instructions can be converted into store and load in-

structions to memory locations.

A condition variable based synchronization scheme is used as the baseline software

queue implementation in this dissertation. The data layout of these per-entry condition

variables were similar to queue data layouts (i.e. each condition variable also took up 8

bytes and had 64 entries corresponding to each queue entry). This layout enabled the code

generator to coalesce queue pointer updates for all SEGs, by doing queue pointer updates

only for the condition variable queue corresponding to each synchronization number, and

using that offset as the offset for operand queue accesses as well.

124

AMORTSWQ+MEMOPTIAMORTSWQMEMOPTI

0

1

2

3

L
oo

p
Sp

ee
du

p

wc art mcf

eq
ua

ke

am
mp

bz
ip2

ep
icd

ec

ad
pc

mde
c

mst

tre
ea

dd
em

3d

pe
rim

ete
r bh ks

Geo
M

ea
n

Figure 7.5: Performance of software queues before and after overhead amortization, with
and without write-forwarding support.

7.1.3 Evaluation

The performance of software queues with synchronization and queue pointer update co-

alescing relative to naı̈vely implemented software queues is shown in Figure 7.5. The

baseline for this comparison is EXISTING. The geometric mean speedup of amortized

software queues over EXISTING is 38%. With write-forwarding support, the difference

between the two techniques narrows down to 26%, as can be seen from a comparison of

the performance of AMORTSWQ+MEMOPTI and MEMOPTI.

7.1.4 Discussion

As can be seen from the performance results, synchronization and queue pointer update

coalescing succeed in amortizing the instruction overhead of software queues. That being

said, there is still a lot of room for performance improvement through overhead amortiza-

tion. First, the current implementation always tries to coalesce synchronization and queue

pointer updates at the least restrictive control flow condition level, so as to cover as many

communication operations as possible. However, if a communication operation executes

only in a more restrictive condition and there are very few communication operations, then

125

B

D

B

C

E

A

C

(a) A basic−block CFG

D

A

E

(b) Single−entry single−exit
 regions; each node is an
 entry as well as an exit

Figure 7.6: Example illustrating how the single-entry single-exit algorithm fractures acyclic
regions in the presence of side-exits and side-entrances.

the above algorithm may actually cause the program to execute more instructions by acquir-

ing and releasing synchronization for loop iterations when the communication operations

themselves would not have executed. In such cases, the naı̈ve software queue implemen-

tation would execute fewer instructions and perform better. Therefore, the technique pre-

sented above, is at best, a heuristic. More work is necessary to make the analysis aware of

such issues and perform coalescing only when it is absolutely profitable.

Another drawback of the analysis technique presented above is that it does not guaran-

tee maximal loop regions for overhead amortization. It only guarantees maximal single-

entry single-exit loop regions. The presence of side-exits causes the analysis to quickly

degenerate to a much simpler basic block level coalescing algorithm. For example, ap-

plying the above analysis to the loop, whose basic block control flow graph is shown in

Figure 7.6a will result in the loop regions shown in Figure 7.6b. The loop header, and

hence an initial entry, is node A. The loop exits through the conditional branch in node

D and hence D is an initial exit. The loop regions are indicated by solid bounding boxes.

The dashed box around the inner loop E indicates that sources of any incoming arcs are

initial exits and destination nodes of any outgoing arcs are initial entries. Thus, D starts off

as an entry node along side A, thanks to the
→

ED edge. Likewise, node C starts off as an

126

1: Mark Initial Entries and Exits

2: ∀ n, Entry[n] =
{

n if n is an initial entry
∪ otherwise, where ∪ is the universal set

3: repeat

4: ∀ n, Gen[n] =
{

n if n is an entry
{} otherwise

5: ∀ n, Kill[n] =
{

n if n is an exit
{} otherwise

6: ∀ n, Entry[n] = (Gen[n] − Kill[n]) ∧
∧

S , ∀ n, where S = Entry[i], ∀ i such that
→
in is an

edge and ∧ is the set intersection operator
7: if Entry[n] is {} then
8: Mark n as a new loop region entry
9: end if

10: until (Entry[n] does not change for any node n)
11: Group all nodes n into a loop region with entry E such that, Entry[n] equals E

12: Mark
→
nd as loop region exit edge for a region with entry E, if

→
nd is an edge such that Entry[d]

is not equal to E.

Figure 7.7: Algorithm to find maximal single-entry multiple-exit loop regions

initial exit in addition to node D. This causes node A to become its latest post-dominator.

Next, B, having an incoming edge from a latest post-dominator is marked as an entry node.

Further, since node D is its earliest dominator, the sources of its incoming edges
→

BD and
→

ED must be marked as exits. In this way, every node becomes an entry and an exit and

will serve as acquire and release points for communication operations, if any, in the respec-

tive blocks. In this extreme example, the single-entry single-exit regions detected by the

analysis degenerate to basic blocks. This drastically reduces the scope for synchronization

coalescing. For example, communication operations in basic blocks A and B cannot be

coalesced as each of them are their own loop regions.

Ideally, synchronization should be acquired upon entry into a maximal acyclic region

and released when going from one maximal acyclic region to another. A simple dataflow

analysis to detect such maximal regions is shown in Figure 7.7. This procedure detects

maximal single-entry multiple-exit regions. Note that the region exits are provided in the

form of edges. In order to be able to insert synchronization release operations correctly

along all region exits, it is necessary to split the region exit edges and add new “exit” control

127

A

B

C

D

E

Figure 7.8: Application of the single-entry multi-exit algorithm to the loop from Figure 7.6.
There are three single-entry multi-exit regions - region ABC with node A as entry and

edges
→

BD and
→

CE as exit edges, region D with node D as entry and the outgoing edge

from D as exit edge and finally region E with node E as entry and edges
→

EE and
→

ED as
exit edges. The exit edges will need to be split during code generation in order to insert
release operations.

blocks along the split edges. While this approach guarantees maximal coalescing, the extra

control blocks created due to edge splitting, can detrimentally affect instruction scheduling.

Run-time performance evaluation for the single-entry multiple-exit scheme was not per-

formed since static schedule height comparisons showed the single-entry multiple-entry to

have longer schedule heights than codes generated with the single-entry single-exit scheme

presented earlier in this section, thanks to the new blocks introduced from edge splitting.

Figure 7.8 shows the regions formed with the single-entry multi-exit algorithm for the con-

trol flow graph shown in Figure 7.6b.

With extra effort, it seems like it would be possible to obtain automatic software queue

implementations that deliver high performance by amortizing overhead across multiple

queues. Until first class support becomes available for high-frequency streaming inter-core

communication, software queues will be the sole means of communicating from one thread

to another and will definitely benefit from research along the direction presented in this sec-

128

tion. While the performance analysis in this dissertation uses many small application loops,

which are responsible for the poor showing of software queues versus other communica-

tion mechanisms, for larger loops the overhead due to inter-thread communication may be

masked by application instruction execution and techniques such as the one just presented

may pave the way for software queues being a really attractive communication mechanism

for such applications.

7.2 Hardware Enhancements to Snoop-Based Synchroniza-

tion

This section describes simple enhancements to SYNCOPTI to bring its performance as

close as possible to HEAVYWT. As seen in Section 6.3 of the previous chapter, SYN-

COPTI trails the performance of HEAVYWT primarily due to the large consume-to-use

latency that slowed down the iteration initiation rate of the consumer thread, in turn causing

the producer thread to eventually stall. These basic observations motivate two optimiza-

tions to SYNCOPTI.

First, in order to avoid frequent producer thread stalls due to queue-full conditions, the

queue size is increased to 128 entries (up from 32 entries), and increased the QLU to pack

16 8-byte queue items per cache line (Q128). While this may seem like a straightforward

thing to do, it is important to realize that increasing the queue sizes is a luxury that a

dedicated hardware technique like HEAVYWT cannot afford due to the sheer hardware

costs. Even for SYNCOPTI, one cannot increase the queue size indefinitely. Queue sizes

can grow only so long as the bit width of the occupancy counters (used for synchronization)

can represent the queue size. However, since the queue size grows exponentially with

respect the bit width of the counters, SYNCOPTI can easily scale up to large queue sizes.

Second, in order to reduce the average consume-to-use latency, the use of a special

fully associative 16KB stream cache (SC) was evaluated. Improving consumer perfor-

129

mance indirectly improves producer performance by avoiding frequent queue full stalls.

While the stream cache does add additional storage to each processor core, this storage

amounts to only 15% of the storage used for the dedicated queue backing store.

The proposed stream cache works as follows. When cache lines mapped to queues

are forwarded from the producer’s L2 cache to the consumer’s L2 cache, after filling the

consumer’s L2 cache, the memory address is reverse mapped to a queue address (a two-

tuple of queue number and queue slot) that is used to fill into the stream cache. By using a

different address space, consume instructions are now able to access queue data, without

going through TLB lookup, memory address generation, etc. Stream cache entries are

invalidated by consume instructions that hit. If the stream cache is full, then fill requests to

the stream cache are ignored. In this modified SYNCOPTI design, consume instructions

continue to go to the L2, even if they are serviced by the stream cache, to ensure the

synchronization counters are updated and the producer core is informed of these updates.

If a consume instruction misses in the stream cache, then it is handled in the L2, just as it

was in the original snoop-based synchronization design.

Note that this optimization requires stream address generation logic in the processor

pipeline (akin to HEAVYWT) to rename consume instructions to the correct queue ad-

dresses to index into the stream cache. However, this is still better than HEAVYWT, since

SYNCOPTI shares the L3 bus, while HEAVYWT requires extra interconnects connecting

the cores to the synchronization array, which can be expensive [29].

Both these optimizations were evaluated in isolation and together. Figure 7.9 presents

the breakdown for the producer (above) and consumer (below) cores. From right to left,

SYNCOPTIQ128 improves the producer by reducing stalls (smaller preL2) and improves

the consumer by providing improved cache locality (smaller L2) through a denser queue

layout. Next, SYNCOPTISC lowers consume-to-use latency and improves the perfor-

mance of both cores. SYNCOPTISC+Q128 combines the benefit of both by further reducing

stalls in the producer and lowering the consumer’s L2 component. It is able to achieve per-

130

PostL2MEML3BUSL2PreL2

0

1

2

N
or

m
al

iz
ed

E
xe

cu
tio

n
T

im
e

12345 12345 12345 12345 12345 12345 12345 12345 12345 12345 12345 12345 12345 12345 12345

wc art mcf

eq
ua

ke

am
mp

bz
ip2

ep
icd

ec

ad
pc

mde
c

mst

tre
ea

dd
em

3d

pe
rim

ete
r bh ks

Geo
M

ea
n

0

1

2

N
or

m
al

iz
ed

E
xe

cu
tio

n
T

im
e

12345 12345 12345 12345 12345 12345 12345 12345 12345 12345 12345 12345 12345 12345 12345

wc art mcf

eq
ua

ke

am
mp

bz
ip2

ep
icd

ec

ad
pc

mde
c

mst

tre
ea

dd
em

3d

pe
rim

ete
r bh ks

Geo
M

ea
n

Figure 7.9: Effect of streaming cache and queue size on producer (top) and consumer
(bottom).

(1 = HEAVYWT, 2 = SYNCOPTISC+Q64 , 3 = SYNCOPTISC , 4 = SYNCOPTIQ64 , 5 = SYNCOPTI)

131

formance equaling HEAVYWT at times even performing better, achieving a 2X speedup

over EXISTING and MEMOPTI mechanisms and bridging the gap with HEAVYWT to

just 8%.

7.3 Summary

This chapter introduced and evaluated two communication support optimizations.

The first is synchronization coalescing, a static analysis and code-generation technique.

It amortizes synchronization and queue pointer update overhead of conventional software

queues by coalescing these operations across multiple parallel queue accesses. When ap-

plied with naı̈ve heuristics, this technique has been shown to outperform existing software

queue implementations by 38% on the average. Sophisticated heuristics to carefully apply

this technique can yield higher performance.

The second is the stream cache, a simple hardware optimization to reduce consume-

to-use latency in snoop-based synchronization implementations (SYNCOPTI). The use of

longer queue sizes was also evaluated. Longer queues along with the stream cache opti-

mization enabled SYNCOPTI to perform almost as fast as the heavy weight techniques

represented by HEAVYWT. In practice, a 16KB stream cache was found to be sufficient to

yield high performance. The main benefit with a cache design is that, unlike a dedicated pri-

mary storage design (such as the synchronization array), a cache design need not be made

large enough to handle the worst-case inter-thread traffic scenario and instead, can be made

small enough to meet cycle-time requirements. Using the memory hierarchy as backing

store allows more flexible queue sizing than dedicated backing store techniques. Further,

it obviates the need to save the contents of the stream cache during context-switches since

the data in the memory hierarchy is handled automatically by the operating system.

While the experiments presented in this chapter and Chapter 6 did not require very

long queues, long queues may be needed to support DSWP programs with non-linear

132

pipelines (refer to Chapter 5). As mentioned in Chapter 3, accesses to long queues may

stride through the entire cache repeatedly and can result in poor locality for non-stream

cache accesses. This can degrade overall performance. One solution to this problem is to

reserve one “way” of large multi-way caches exclusively for stream accesses. This will

entail modifying the cache access logic to ensure that all stream accesses go to the reserved

way. By confining stream accesses to one way, this strategy can use the remaining ways of

the cache to preserve locality for non-stream accesses.

133

Chapter 8

Conclusions and Future Directions

Multi-core processors or chip multiprocessors (CMPs) represent the biggest paradigm shift

in recent years in the microprocessor industry. While these multi-core processors are great

for throughput computing, they do not automatically improve the performance of legacy

codes, highly sequential codes and single-threaded codes. Exposing thread-level paral-

lelism (TLP) is critical to obtaining continued performance improvements for these appli-

cations on multi-core processors. This dissertation is a step in that direction.

Moving to TLP means one has to efficiently handle rising inter-core communication

costs, lest they negate any benefits from parallelization. From this standpoint, this disserta-

tion identifies pipelined multithreading (PMT) as an attractive multithreading strategy. In

PMT, programs are partitioned into threads such that there are no cycles in the inter-thread

dependence graph. Acyclic dependences among PMT threads allows pipelining of inter-

thread communication and thus enables PMT programs to tolerate transit delays efficiently.

This dissertation introduced a non-speculative PMT loop transformation called Decou-

pled Software Pipelining (DSWP). In its simplest form, DSWP partitions a given single-

threaded program loop into a critical path loop and an off-critical path loop, which exe-

cute as concurrent threads and communicate through a decoupling queue. The decoupling

queue insulates the execution of the critical path thread from stalls in the off-critical path

134

thread and vice-versa. This work demonstrates how decoupled execution in DSWP can

be leveraged to effectively tolerate variable latency stalls in an application. With detailed

cycle-accurate simulation and analysis, DSWP has been shown to tolerate variable latency

stalls better than both in-order and out-of-order issue processors.

The dissertation then studied the performance scalability of DSWP as a general-purpose

multithreading strategy. It presented a thorough evaluation and analysis of the performance

of automatically generated DSWP codes across 2, 4, 6 and 8 threads. Initial results with 32-

entry inter-thread queues turned out to be quite counter-intuitive, since most of the bench-

marks showed a performance degradation when moving to more threads. Careful analysis

revealed that the cause for this degradation was the non-linearity of thread pipelines when

moving to greater number of threads. While linear thread pipelines contain a simple linear

chain of dependences from one thread to another, non-linear pipelines can have arbitrary

acyclic inter-thread dependences. Small queue sizes lead to communication bottlenecks in

non-linear pipelines. It was shown that, for non-linear pipelines, the minimum queue size

needed for bottleneck-free communication depends not just on the transit delay, but also on

the loop iteration times of the threads in the pipeline. This makes it difficult to pre-design

hardware with sufficiently long queues.

Under ideal communication (i.e. no bottlenecks due to insufficient queue sizing or due

to bandwidth constraints), the performance scalability of DSWP is in line with theoretical

expectations. Except for two benchmarks, wherein increased coherence misses caused

performance to go down, the performance for all the other benchmarks uniformly increased

until the bottleneck SCC was put in a thread of its own and remained steady at the same

performance level upon further partitioning. This analysis concluded that the compiler

should strive to avoid generating non-linear thread pipelines.

Work presented in this dissertation and elsewhere [8, 14, 17, 66] have established PMT

as a viable technique for parallelizing general-purpose programs. However, its success

hinges on efficient underlying communication support. While designers are striving [27]

135

to include new, fast interconnects to add value to future CMPs, these enhancements offer

little to latency-agnostic PMT programs, which have a streaming communication behav-

ior. To meet the streaming requirements of PMT programs, this dissertation has presented

three novel communication mechanisms with contrasting cost-performance tradeoffs - the

synchronization array hardware, SYNCOPTI with stream cache, and synchronization co-

alescing. The first two techniques require ISA enhancements in the form of produce and

consume instructions. The third technique is a software-only technique to automatically

generate software queue implementations with amortized overhead.

Synchronization array performs the best, but it requires dedicated hardware, for inter-

thread queue storage and inter-thread operand transfer network. It requires a lot of OS

support to save queue state on context switches and queue virtualization. SYNCOPTI

with stream cache lowers the hardware cost and OS impact of the synchronization array

by using the memory subsystem for inter-thread data transfers. Only synchronization is

done with hardware counters. Through the design of SYNCOPTI, the dissertation shows

that application properties can be successfully leveraged to implement new low-overhead

communication primitives with minimal redesign effort, hardware costs, and OS costs,

thus presenting an attractive value proposition to designers of future multi-core processors.

Finally, even though synchronization coalescing performs the worst of the three, its per-

formance is still approximately 1.4X better than the performance of existing techniques. It

incurs no hardware cost and has no OS impact.

The DSWP transformation, which started as a mechanism to tolerate variable latency

stalls [51], has been shown to be a general-purpose multithreaded scheduling technique [40].

Going forward, a lot of exciting research possibilities exist in exploring the interaction of

DSWP with other scheduling techniques (for example, CMT or IMT techniques), with

and without dependence speculation. Speculative PMT transformations will entail design

of novel hardware, software and/or hybrid support for misspeculation detection and re-

covery. Synergistic interactions with single-threaded performance improvement strategies

136

mentioned in Chapter 2 need to be studied and understood.

Incorporating better communication cost models into the automatic DSWP partitioner

will enable it to generate highly optimized codes. Careful code duplication may avoid ex-

cessive communication without unduly increasing schedule height. Evolving high perfor-

mance software queue implementations will play a crucial role in the widespread commer-

cial use of DSWP and other PMT techniques. The synchronization coalescing technique

will serve as a starting point for such research. Light-weight hardware mechanisms like

SYNCOPTI will need to be adapted to provide efficient inter-core streaming communica-

tion in non-bus based memory networks.

Early calculations with simple power models reveal that DSWP can achieve substantial

energy-delay-product savings through dynamic voltage and frequency scaling. The initial

results are definitely exciting enough to warrant a more detailed exploration.

To conclude, the future is bright for research on improving general-purpose program

performance on multi-core processors. While there is no doubt that this is a very hard

problem, this dissertation has shown that a purely non-speculative technique like DSWP

can record significant performance gains. Hopefully, future research can build on this work

and take it to the next level by improving its applicability and scalability.

137

Bibliography

[1] H. Abdel-Shafi, J. Hall, S. V. Adve, and V. S. Adve. An evaluation of fine-grain

producer-initiated communication in cache-coherent multiprocessors. In Proceedings

of the 3rd IEEE Symposium on High-Performance Computer Architecture, pages 204–

215, February 1997.

[2] H. Akkary, R. Rajwar, and S. T. Srinivasan. Checkpoint processing and recovery:

Towards scalable large instruction window processors. In Proceedings of the 36th

Annual ACM/IEEE International Symposium on Microarchitecture. IEEE Computer

Society Press, 2003.

[3] J. R. Allen, K. Kennedy, C. Porterfield, and J. Warren. Conversion of control depen-

dence to data dependence. In Proceedings of the 10th ACM Symposium on Principles

of Programming Languages, pages 177–189, January 1983.

[4] M. M. Annavaram, J. M. Patel, and E. S. Davidson. Data prefetching by dependence

graph precomputation. In Proceedings of the 28th International Symposium on Com-

puter Architecture, pages 52–61, 2001.

[5] R. D. Barnes, E. M. Nystrom, J. W. Sias, S. J. Patel, N. Navarro, and W. W. Hwu.

Beating in-order stalls with ‘Flea-Flicker’ two-pass pipelining. In Proceedings of the

36th International Symposium on Microarchitecture, December 2003.

138

[6] R. D. Barnes, S. Ryoo, and W. W. Hwu. “Flea-Flicker” multipass pipelining: An

alternative to the high-powered out-of-order offense. In Proceedings of the 38th In-

ternational Symposium on Microarchitecture, pages 319–330, December 2005.

[7] G. T. Byrd. Communication Mechanisms in Shared Memory Multiprocessors. PhD

thesis, Department of Electrical Engineering, Stanford University, Stanford, CA,

1998.

[8] E. Caspi, A. DeHon, and J. Wawrzynek. A streaming multi-threaded model. In Pro-

ceedings of the Third Workshop on Media and Stream Processors, December 2001.

[9] R. S. Chappel, J. Stark, S. P. Kim, S. K. .Reinhardt, and Y. N. Patt. Simultaneous

subordinate microthreading. In Proceedings of the 26th International Symposium on

Computer Architecture, pages 186–195, May 1999.

[10] J. D. Collins, H. Wang, D. M. Tullsen, C. Hughes, Y.-F. Lee, D. Lavery, and J. P.

Shen. Speculative precomputation: Long-range prefetching of delinquent loads. In

Proceedings of the 28th International Symposium on Computer Architecture, July

2001.

[11] Compaq Computer Corporation. Alpha 21264 Microprocessor Hardware Reference

Manual, July 1999.

[12] A. Cristal, O. J. Santana, M. Valero, and J. F. Martı́nez. Toward kilo-instruction

processors. ACM Transactions on Architecture and Code Optimization, 1(4):389–

417, 2004.

[13] R. Cytron. DOACROSS: Beyond vectorization for multiprocessors. In Proceedings

of the International Conference on Parallel Processing, pages 836–884, 1986.

[14] J. Dai, B. Huang, L. Li, and L. Harrison. Automatically partitioning packet process-

ing applications for pipelined architectures. In Proceedings of the ACM SIGPLAN

139

Conference on Programming Language Design and Implementation, pages 237–248,

2005.

[15] M. I. Frank and M. K. Vernon. A hybrid shared memory/message passing parallel ma-

chine. In Proceedings of the 1993 International Conference on Parallel Processing,

pages 232–236. CRC Press, August 1993.

[16] M. P. Gerlek, E. Stoltz, and M. Wolfe. Beyond induction variables: Detecting and

classifying sequences using a demand-driven SSA form. ACM Transactions on Pro-

gramming Languages and Systems, 17(1):85–122, January 1995.

[17] M. I. Gordon, W. Thies, M. Karczmarek, J. Lin, A. S. Meli, A. A. Lamb, C. Leger,

J. Wong, H. Hoffmann, D. Maze, and S. Amarasinghe. A stream compiler for

communication-exposed architectures. In Proceedings of the 10th International Con-

ference on Architectural Support for Programming Languages and Operating Sys-

tems, pages 291–303, 2002.

[18] T. Gross and D. O’Halloron. iWarp, Anatomy of a Parallel Computing System. MIT

Press, 1998.

[19] L. Hammond, B. A. Hubbert, M. Siu, M. K. Prabhu, M. Chen, and K. Olukotun. The

Stanford Hydra CMP. IEEE Micro, 20(2):71–84, 2000.

[20] L. Hammond, B. A. Nayfeh, and K. Olukotun. A single-chip multiprocessor. IEEE

Computer, September 1997.

[21] J. Heinlein, K. Gharachorloo, S. Dresser, and A. Gupta. Integration of message pass-

ing and shared memory in the Stanford FLASH multiprocessor. In Proceedings of the

Sixth International Conference on Architectural Support for Programming Languages

and Operating Systems, pages 38–50. ACM Press, 1994.

140

[22] G. Hinton, D. Sager, M. Upton, D. Boggs, D. Carmean, A. Kyker, and P. Roussel.

The microarchitecture of the Pentium R© 4 processor. Intel Technology Journal, 01(2),

2001.

[23] M. S. Hrishikesh, N. P. Jouppi, K. I. Farkas, D. C. Burger, S. W. Keckler, and P. Shiv-

akumar. The optimal logic depth per pipeline stage is 6 to 8 FO4 inverter delays. In

Proceedings of the 29th International Symposium on Computer Architecture, pages

12–24, May 2002.

[24] Intel Corporation. Intel Itanium 2 Processor Reference Manual: For Software Devel-

opment and Optimization. Santa Clara, CA, 2002.

[25] R. Kessler. The Alpha 21264 microprocessor. IEEE Micro, 19(2):24–36, March/April

1991.

[26] A. KleinOsowski, J. Flynn, N. Meares, and D. Lilja. Adapting the SPEC 2000 bench-

mark suite for simulation-based computer architecture research. In Proceedings of

the International Conference on Computer Design, September 2000.

[27] M. Kobrinsky, B. Block, J.-F. Zheng, B. Barnett, E. Mohammed, M. Reshotko,

F. Roberston, S. List, I. Young, and K. Cadien. On-chip optical interconnects. pages

129–142, May 2004.

[28] D. Kranz, K. Johnson, A. Agarwal, J. Kubiatowicz, and B.-H. Lim. Integrating

message-passing and shared-memory: Early experience. In Proceedings of the Fourth

ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming,

pages 54–63. ACM Press, May 1993.

[29] R. Kumar, V. Zyuban, and D. M. Tullsen. Interconnections in multi-core architec-

tures: Understanding mechanisms, overheads and scaling. In Proceedings of the

32nd Annual International Symposium on Computer Architecture, pages 408–419.

IEEE Computer Society, June 2005.

141

[30] M. S. Lam. Software pipelining: An effective scheduling technique for VLIW ma-

chines. In Proceedings of the ACM SIGPLAN Conference on Programming Language

Design and Implementation, pages 318–328, June 1988.

[31] C. Lee, M. Potkonjak, and W. Mangione-Smith. Mediabench: A tool for evaluating

and synthesizing multimedia and communications systems. In Proceedings of the 30th

Annual International Symposium on Microarchitecture, pages 330–335, December

1997.

[32] D. Lenoski, J. Laudon, K. Gharachorloo, W.-D. Weber, A. Gupta, J. Hennessy,

M. Horowitz, and M. S. Lam. The Stanford Dash multiprocessor. Computer,

25(3):63–79, 1992.

[33] C.-K. Luk and T. C. Mowry. Compiler-based prefetching for recursive data structures.

In Proceedings of the seventh international conference on Architectural support for

programming languages and operating systems, pages 222–233. ACM Press, 1996.

[34] S. F. Lundstorm and G. H. Barnes. A controllable MIMD architecture. In Proceedings

of the International Conference on Parallel Processing, pages 19–27, 1980.

[35] Y. Luo and L. K. John. Efficiently evaluating speedup using sampled processor sim-

ulation. Computer Architecture Letters, September 2004.

[36] S. A. Mahlke. Exploiting Instruction Level Parallelism in the Presence of Conditional

Branches. PhD thesis, University of Illinois, Urbana, IL, 1995.

[37] S. S. Mukherjee, B. Falsafi, M. D. Hill, and D. A. Wood. Coherent network interfaces

for fine-grain communication. In Proceedings of the 23rd International Symposium

on Computer Architecture, pages 247–258, 1996.

[38] O. Mutlu, J. Stark, C. Wilkerson, and Y. N. Patt. Runahead execution: An alternative

to very large instruction windows for out-of-order processors. In Proceedings of the

142

9th International Symposium on High Performance Computer Architecture, February

2003.

[39] E. M. Nystrom, R. D. Ju, and W. W. Hwu. Characterization of repeating data access

patterns in integer benchmarks. In Proceedings of the 28th International Symposium

on Computer Architecture, September 2001.

[40] G. Ottoni, R. Rangan, A. Stoler, and D. I. August. Automatic thread extraction with

decoupled software pipelining. In Proceedings of the 38th IEEE/ACM International

Symposium on Microarchitecture, November 2005.

[41] D. A. Padua. Multiprocessors: Discussion of some theoretical and practical problems.

Technical Report UIUCDCS-R-79-990, Department of Computer Science, University

of Illinois, Urbana, IL, November 1979.

[42] D. A. Penry, M. Vachharajani, and D. I. August. Rapid development of a flexible val-

idated processor model. In Proceedings of the 2005 Workshop on Modeling, Bench-

marking, and Simulation, June 2005.

[43] M. Pericàs, R. González, A. Cristal, D. A. Jiménez, and M. Valero. A decoupled

kilo-instruction processor. In Proceedings of the Twelfth International Symposium on

High Performance Computer Architecture, February 2006.

[44] D. Poulsen. Memory Latency Reduction via Data Prefetching and Data Forwarding

in Shared-Memory Multiprocessors. PhD thesis, University of Illinois, Urbana, IL,

1994.

[45] B. R. Preiss and V. C. Hamacher. A cache-based message passing scheme for a shared-

bus multiprocessor. In Proceedings of the 15th Annual International Symposium on

Computer Architecture, pages 358–364. IEEE Computer Society Press, 1988.

143

[46] Z. Purser, K. Sundaramoorthy, and E. Rotenberg. A study of slipstream processors.

In Proceedings of the 33rd Annual ACM/IEEE International Symposium on Microar-

chitecture, pages 269–280. ACM Press, 2000.

[47] R. Rajwar, A. Kagi, and J. R. Goodman. Inferential queueing and speculative push

for reducing critical communication latencies. In Proceedings of the 17th Annual In-

ternational Conference on Supercomputing, pages 273–284. ACM Press, June 2003.

[48] U. Ramachandran, G. Shah, A. Sivasubramaniam, A. Singla, and I. Yanasak. Ar-

chitectural mechanisms for explicit communication in shared memory multiproces-

sors. In Proceedings of the 1995 ACM/IEEE Conference on Supercomputing, page 62.

ACM Press, 1995.

[49] R. Rangan and D. I. August. Amortizing software queue overhead for pipelined inter-

thread communication. In Proceedings of the Workshop on Programming Models for

Ubiquitous Parallelism (PMUP), pages 1–5, September 2006.

[50] R. Rangan, N. Vachharajani, A. Stoler, G. Ottoni, D. I. August, and G. Z. N. Cai. Sup-

port for high-frequency streaming in CMPs. In Proceedings of the 39th International

Symposium on Microarchitecture, pages 259–269, December 2006.

[51] R. Rangan, N. Vachharajani, M. Vachharajani, and D. I. August. Decoupled software

pipelining with the synchronization array. In Proceedings of the 13th International

Conference on Parallel Architectures and Compilation Techniques, pages 177–188,

September 2004.

[52] B. R. Rau. Iterative modulo scheduling: An algorithm for software pipelining loops.

In Proceedings of the 27th International Symposium on Microarchitecture, pages 63–

74, December 1994.

[53] A. Roth, A. Moshovos, and G. S. Sohi. Dependence-based prefetching for linked data

structures. In Proceedings of the 8th International Conference on Architectural Sup-

144

port for Programming Languages and Operating Systems, pages 115–126, October

1998.

[54] A. Roth and G. S. Sohi. Effective jump-pointer prefetching for linked data structures.

In Proceedings of the 26th International Symposium on Computer Architecture, May

1999.

[55] A. Roth and G. S. Sohi. Speculative data-driven multithreading. In Proceedings of the

7th International Symposium on High Performance Computer Achitecture, January

2001.

[56] K. Sankaralingam, R. Nagarajan, H. Liu, C. Kim, J. Huh, D. Burger, S. W. Keckler,

and C. R. Moore. Exploiting ILP, TLP, and DLP with the polymorphous TRIPS ar-

chitecture. In Proceedings of the 30th Annual International Symposium on Computer

Architecture, 2003.

[57] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder. Automatically characterizing

large scale program behavior. In Proceedings of the 10th International Conference on

Architectural Support for Programming Languages and Operating Systems, October

2002.

[58] J. E. Smith. Decoupled access/execute computer architectures. In Proceedings of the

9th International Symposium on Computer Architecture, pages 112–119, April 1982.

[59] G. S. Sohi, S. Breach, and T. N. Vijaykumar. Multiscalar processors. In Proceedings

of the 22th International Symposium on Computer Architecture, June 1995.

[60] G. S. Sohi and S. Vajapeyam. Instruction issue logic for high-performance interrupt-

able pipelined processors. In Proceedings of the 14th Annual Symposium on Com-

puter Architecture, pages 27–34, June 1987.

145

[61] V. Srinivasan, D. Brooks, M. Gschwind, P. Bose, V. Zyuban, P. N. Strenski, and P. G.

Emma. Optimizing pipelines for power and performance. In MICRO 35: Proceedings

of the 35th annual ACM/IEEE international symposium on Microarchitecture, pages

333–344. IEEE Computer Society Press, 2002.

[62] J. G. Steffan, C. Colohan, A. Zhai, and T. C. Mowry. The stampede approach to

thread-level speculation. ACM Transactions on Computer Systems, 23(3):253–300,

2005.

[63] M. Takesue. Software queue-based algorithms for pipelined synchronization on mul-

tiprocessors. In Proceedings of the 2003 International Conference on Parallel Pro-

cessing Workshops, October 2003.

[64] M. Taylor, J. Kim, J. Miller, D. Wentzlaff, F. Ghodrat, B. Greenwald, H. Hoffman,

P. Johnson, J. Lee, W. Lee, A. Ma, A. Saraf, M. Seneski, N. Shnidman, V. Strumpen,

M. Frank, S. Amarasinghe, and A. Agarwal. The Raw microprocessor: A com-

putational fabric for software circuit and general-purpose programs. IEEE Micro,

22(2):25–35, March 2002.

[65] M. B. Taylor, W. Lee, S. P. Amarasinghe, and A. Agarwal. Scalar operand networks.

IEEE Transactions on Parallel and Distributed Systems, 16(2):145–162, February

2005.

[66] W. Thies, M. Karczmarek, and S. Amarasinghe. StreamIt: A language for stream-

ing applications. In Proceedings of the 12th International Conference on Compiler

Construction, 2002.

[67] S. Triantafyllis, M. J. Bridges, E. Raman, G. Ottoni, and D. I. August. A framework

for unrestricted whole-program optimization. In ACM SIGPLAN 2006 Conference on

Programming Language Design and Implementation, pages 61–71, June 2006.

146

[68] J.-Y. Tsai, J. Huang, C. Amlo, D. J. Lilja, and P.-C. Yew. The superthreaded processor

architecture. IEEE Transactions on Computers, 48(9):881–902, 1999.

[69] D. Tullsen, S. Eggers, and H. Levy. Simultaneous multithreading: Maximizing on-

chip parallelism. In Proceedings of the 22nd International Symposium on Computer

Architecture, June 1995.

[70] M. Vachharajani, N. Vachharajani, and D. I. August. The Liberty Structural Specifica-

tion Language: A high-level modeling language for component reuse. In Proceedings

of the ACM SIGPLAN 2004 Conference on Programming Language Design and Im-

plementation (PLDI), pages 195–206, June 2004.

[71] M. Vachharajani, N. Vachharajani, D. A. Penry, J. A. Blome, and D. I. August. Mi-

croarchitectural exploration with Liberty. In Proceedings of the 35th International

Symposium on Microarchitecture, pages 271–282, November 2002.

[72] S. Vajapeyam and T. Mitra. Improving superscalar instruction dispatch and issue by

exploiting dynamic code sequences. In Proceedings of the 24th annual International

Symposium on Computer Architecture, pages 1–12. ACM Press, 1997.

[73] T. F. Wenisch, R. E. Wunderlich, B. Falsafi, and J. C. Hoe. TurboSMARTS: Accu-

rate microarchitecture simulation sampling in minutes. Technical Report 2004-003,

Computer Architecture Lab at Carnegie Mellon, November 2004.

[74] R. E. Wunderlich, T. F. Wenisch, B. Falsafi, and J. C. Hoe. SMARTS: Accelerating

microarchitecture simulation via rigorous statistical sampling. In Proceedings of the

30th Annual International Symposium on Computer Architecture (ISCA), pages 84–

97, June 2003.

[75] C. Zilles and G. Sohi. Master/slave speculative parallelization. In Proceedings of

the 35th annual International Symposium on Microarchitecture, pages 85–96. IEEE

Computer Society Press, 2002.

147

