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Abstract

Now that parallel architectures are common, software must exploit multiple cores to fully

utilize hardware resources and achieve efficient execution. Restructuring applications for

explicit parallelism requires developers to reason about low-level details to avoid concur-

rency bugs and achieve parallel performance. Automatic thread extraction relieves devel-

opers of this arduous task.

This dissertation presents a compiler middle-ware for automatic thread extraction—

analyses and transformations that allow the compiler to deliver parallel performance for

sequentially-specified input programs. This middle-ware reconsiders the compilation in-

frastructure to present alternative technologies better suited to the needs of automatic thread

extraction. Specifically,

Collaborative Dependence Analysis: Since no analysis algorithm can precisely de-

cide all analysis facts, this dissertation combines simple analysis algorithms into a col-

laborative ensemble algorithm: the ensemble algorithm can disprove dependence queries

which no member disproves alone. Collaboration enables factored development, which

prescribes the development of small, orthogonal analysis algorithms tailored to the needs

of analysis clients. Results demonstrate independently-developed analysis algorithms col-

laborating to solve complex, multiple-logic queries. Further, results demonstrate a large

impact on performance: for some benchmarks, analysis strength is the difference between

11× slowdown and 28× speedup on 50 cores.

Scaling Analysis to Larger Scopes: The infrastructure builds around Parallel-Stage

Decoupled Software Pipelining (PS-DSWP) thread extraction. PS-DSWP targets large, hot

program scopes to overcome the non-recurring overheads of parallel execution. However,

as scopes grow, the burden of analysis becomes prohibitive. This dissertation contributes a

faster algorithm to compute a dependence graph to drive PS-DSWP. This algorithm identi-

fies dependence edges which cannot affect PS-DSWP. It skips dependence analysis queries

pertaining to unimportant edges, reducing analysis time—or allowing more expensive anal-
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ysis algorithms—for the remaining, important queries. Evaluation demonstrates that the

algorithm computes the DAGSCC twice as fast using half as many dependence analysis

queries without sacrificing analysis precision.

Incorporating Speculation into the Compilation Pipeline: A parallelization system

may speculate various properties to enable thread extraction. This dissertation presents

design patterns to simplify development of novel speculation types.

The dissertation integrates these contributions into a robust and flexible middle-ware

upon which many works are built.
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Chapter 1

Introduction

“If I’d asked customers what they wanted,

they would have said ‘a faster horse.”’

—Henry Ford.

This dissertation presents a middle-ware for automatic parallelization. This infras-

tructure features novel components spanning dependence analysis and thread extraction

transformations, and has proved flexible and general enough to support many research

projects [36, 37, 38, 45, 65, 69, 57]. A primary motivation for this work is automatic

thread extraction, wherein this infrastructure identifies (or creates) independence among

program statements and schedules them for concurrent execution. Combined, these ele-

ments contribute to drastic performance improvements by extracting threads from sequen-

tial, general-purpose applications.

1.1 The Need for Automatic Thread Extraction

Presently, the microprocessor industry invests in increasingly parallel architectures rather

than improvements to sequential application performance. Before the “multicore era,” ap-

plication developers could rely on advancements in micro-architecture to deliver a steady

1
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Figure 1.1: Performance results for the SPEC CPU92, CPU95, CPU2000, and CPU2006
benchmark suites over the last 20 years as reported on the SPEC website [78]. Architectures
are more parallel yet sequential applications do not benefit.

performance improvement. Although multicore processors provide additional computa-

tional resources, sequential applications do not benefit from these resources unless they are

restructured for parallelism.

Figure 1.1 illustrates the difference caused by multicore through the reported perfor-

mance on the SPEC benchmark suites over the last twenty years. Performance (vertical

axis) is normalized log-scale. Micro-architectural improvements deliver exponential per-

formance improvement. However, that growth does not continue at the same rate after

2004, coinciding with multicore architectures. Although newer architectures provide more

parallel resources, they do not deliver the same performance scaling unless applications are

restructured for parallelism.

In 2011, the Liberty Research Group surveyed 114 computational scientists from Prince-

ton University [66]. The results from this survey confirm that architectures commonly used

by computational scientists are parallel. Figure 1.2a shows that more than half of the com-

putational scientists routinely use clusters in their research. More than half of the respon-
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(a) Types of architectures employed.
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(b) Types of parallelism employed.
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(c) Common performance optimizations employed.

Figure 1.2: Results from a 2011 Survey of Princeton University Scientists [66].

dents use desktop computers, most of which include multicore processors. The community

has a great deal of parallel resources.

Nearly half of surveyed scientists wait days for program completion and 15% wait

months. These researchers would benefit from faster computation; 85% reported that faster

computation would “profoundly change” the way they do research. Nonetheless, nearly

half of researchers perform no optimization of their codes (Figure 1.2c), and more than

30% of researchers do not use parallelism (Figure 1.2b), saying that existing abstractions

for parallelism are “hard,” “look complex,” or have “big learning curves” [66]. Indeed, all

systems which rely on explicit parallelization (via annotations or library-level primitives)

have a learning curve which distracts from the main goals—application correctness and

feature development.
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1.2 Speculative Automatic Thread Extraction

A promising alternative to explicit parallelism is the extraction of threads via an automatic

parallelization system. At a high level, automatic parallelization addresses two problems:

identifying independence among the operations in a Program-Under-Optimization (PUO)

and scheduling independent work for concurrent execution. This dissertation primarily

concerns the identification of independent work through static analysis and enabling trans-

formations such as speculation.

Classical compiler transformations use the results of static analysis to avoid unsound

optimizations. For instance, if analysis reports that one operation from the PUO depends

on another operation, the compiler avoids any transformation which may reorder those op-

erations and thereby violate the dependence. By preserving all dependences, the compiler

preserves observable program behavior [34]. However, imprecise static analyses fail to dis-

prove certain spurious dependences, and the compiler conservatively limits transformation

accordingly. The quality of analysis directly limits the compiler’s freedom to transform the

code, encouraging the development of more precise analysis algorithms.

Improving the precision of static analysis increases the number of sound program trans-

formations available to the compiler [15, 27, 71, 74, 88]. However, this approach has

limitations. Static may-alias analysis (a building block of dependence analysis) is undecid-

able [49]: although a dependence analysis algorithm may be precise enough to support par-

ticular sound optimizations on a fixed set of PUOs, there will always be a counterexample

PUO for which the algorithm is so imprecise as to inhibit an otherwise-sound optimization.

Second, since static analysis has no knowledge of the PUO’s intended execution envi-

ronment (e.g. its run time input set), static analysis must report conservative results which

generalize across all program behaviors induced by any execution environment. These gen-

eralized results prevent optimizations that are sound for realistic program inputs because

the optimizations are unsound for some antagonistic input that never occurs in practice.

Consequently, compilers which rely solely on static analysis fail to extract threads from a
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broad range of PUOs.

Speculative optimization has emerged in response to these limitations [20, 40, 45, 46,

58, 68, 76, 81, 93]. Through speculation, an optimization system simplifies static anal-

ysis problems by making assumptions about the PUO. Under these assumptions, certain

worst-case program behaviors are impossible, allowing speculative dependence analysis to

report optimistic results which more precisely reflect expected-case program behavior and

thus grant the optimizer additional freedom. To preserve program behavior, speculative

transformation generates additional code to validate those assumptions during speculative

execution and signal misspeculation if those assumptions fail. Speculative execution recov-

ers from misspeculation by rolling back program state and re-executing code which does

not include optimizations based on the faulty assumption.

Speculative optimizations improve applicability by re-casting transformation soundness

as a performance concern. The net running time of a speculative execution is a mixture of

two cases: the assumptions hold or they do not. For sake of discussion, net running time is

approximated as an affine combination of these cases:

(Net Time) = (1−Misspec Rate) × (

Overhead︷ ︸︸ ︷
Checkpoint + Validation +Optimized Time)

+ (Misspec Rate) × (Roll Back + Re-Execution Time︸ ︷︷ ︸
Overhead

)

Speculation is a net win when the improvement due to optimization outweighs the over-

heads. Modern speculative optimization systems pursue high-confidence speculation to

minimize the misspeculation rate and effectively eliminate the overheads of rollback and

non-speculative re-execution. Several proposals use the operating system’s copy-on-write

facility to reduce checkpointing overheads to insignificance [45, 47, 68]. Even if misspecu-

lation never occurs, speculative execution incurs validation overheads in the common case.

Certain designs of speculative transformation impose high validation overheads which
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are difficult to eliminate [13, 45]. Speculative parallelization often uses transactional mem-

ory systems to achieve validation and recovery. In transactional memory systems, valida-

tion must observe the actual sequence of memory updates performed by all transactions to

determine whether loads within each transaction see a value consistent with a valid sequen-

tial execution. The parallelization system emits additional instructions into the parallelized

application which observe every store and certain load instructions so they may be

replayed to discover conflicts [13, 45, 47, 68].

A conservative quantitative estimate of validation overheads places the overheads of

such transactional memory systems in perspective. The replay operations can be offloaded

to another core [45, 47, 68], thus only those instructions which were inserted to observe

and communicate memory accesses slow the progress of a speculative worker process. On

commodity hardware, these communications can be implemented via a queue data struc-

ture, and the enqueue operation must consist of at least one store operation. In other

words, an instrumented store becomes two stores (or worse). If we estimate that 9–

13% of dynamic instructions are store instructions [30, 64], then validation imposes at

least a 9–13% overhead. Separately, these additional stores increase memory bandwidth

requirements. Even with a small number of worker processes, communications for valida-

tion can easily exceed 1 GBps [45]. When validation bandwidth exceeds the hardware’s

communication bandwidth, speedup is impossible.

Although speculative dependence analysis frequently enables thread extraction, the

overheads of transactional validation may negate performance gains from concurrency.

Stronger analysis can eliminate or reduce those overheads either by allowing non-speculative

parallelization or by reducing the number of speculative assumptions needing validation.

Thus, transactional validation benefits tremendously from precise static analysis.
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1.3 Stronger Analysis from a Diversity of Logics

Program analysis algorithms uncover important facts about an input program. These facts

drive compiler optimization, bug finding tools, and many other applications. Decades of

research have uncovered a broad array of analysis algorithms. For instance, algorithms for

pointer analysis (including points-to analysis and alias analysis) judge whether two point-

ers within a program may reference the same memory location [4, 10, 11, 52, 55, 80, 91].

Algorithms for shape analysis (including heap reachability analysis) model how a program

links its memory objects into data structures in order to answer questions of disjointness

or cyclicity of data structures as a whole [26, 28, 77]. These shape analysis facts may an-

swer certain classes of pointer aliasing, in turn. Algorithms for loop dependence analysis

determine whether memory accesses from different iterations of a loop must happen in se-

quential program order, or if they can execute out of order [7, 67]. Research continues since

these problems are difficult and not solved; the general cases are undecidable, and various

abstractions are decidable though intractable [33, 60]. Each proposal is an approximation

and occupies a distinct niche in the trade-off between precision and scalability [31], but no

algorithm dominates all others.

Each analysis algorithm represents one logic for dependence reasoning. Each logic

precisely recognizes a certain restricted case of dependence analysis but yields imprecise

results in other cases. These restricted cases often have an interpretation in the source

language. For example, the Omega Test compares pointers that are affine functions of loop

induction variables [67]. However, developers compose disparate language features into

their programs, resulting in dependence queries which exceed any one analysis’ region of

precision. To analyze such programs, several logics are necessary.

More concretely, consider an example code which manipulates a non-trivial data struc-

ture. Figure 1.3 demonstrates how the “array-of-row-vectors” Matrix data structure ad-

heres to a simple acyclic shape. Figure 1.4 demonstrates code which traverses and updates

the matrix according to a regular (affine) iteration pattern.
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1 / / Array o f row v e c t o r s .
2 t y p e d e f s t r u c t
3 { f l o a t c e l l s [M] ; } Row ;
4
5 t y p e d e f s t r u c t
6 { Row ∗ rows [N ] ; } Ma t r ix ;

7 / / Cr ea t e a new Ma t r i x
8 Ma t r i x ∗ new mat r ix ( ) {
9 Ma t r i x ∗m =

10 ma l lo c ( s i z e o f ( Ma t r i x ) ) ;
11
12 / / each row a s e p a r a t e o b j e c t
13 f o r ( i n t i =0 ; i<N; ++ i )
14 m→rows [ i ] =
15 ma l lo c ( s i z e o f ( Row ) ) ;
16 re turn m;
17 }

Figure 1.3: (above) Type definition and initialization routine for a linked, “array-of-row-
vectors” representation of an N ×M Matrix; (bottom) Such Matrix structures take only
certain “shapes” in any program execution.

8



18 / / I n p u t s : m i s an NxM Ma tr i x ; I , J i s a f i x e d c e l l i n m.
19 / / A l g o r i t h m : l e t m[ I , J ] = min {J<k<M} m[ I , k ]
20 / / Row , Ma t r i x d e f i n e d i n F i gu re 1.3 .
21
22 / / l oad 1:
23 Row ∗ tmp1 = m→rows [ I ] ;
24 / / l oad 2:
25 f l o a t c i j = tmp1→ c e l l s [ J ] ;
26
27 f o r ( i n t k=J +1; k<M; ++k ) {
28 / / l oad 3:
29 Row ∗ tmp2 = m→rows [ I ] ;
30 / / l oad 4:
31 f l o a t c i k = tmp2→ c e l l s [ k ] ;
32
33 i f ( c i j > c i k ) {
34 / / l oad 5:
35 Row ∗ tmp3 = m→rows [ I ] ;
36 / / s t o r e 1 :
37 tmp3→ c e l l s [ J ] = c i k ;
38 c i j = c i k ;
39 }
40 }

Figure 1.4: Example code traverses a linked Matrix data structure in a regular pattern. It
updates matrix cell m[I, J ] with the minimum element among m[I, k] for J < k < M .

To analyze this example code, the compiler must determine whether there is a depen-

dence (flow of information) among its memory accesses. In particular, Figure 1.5 shows a

proof that there is no flow dependence from store 1 to load 4 across iterations of the

inner loop. Through two sub-goals, the proof argues that the pointers cannot alias. The first

sub-goal establishes that store 1 does not alter any pointers to Row objects—i.e. that

the shape of the matrix data structure is invariant—and is built from a heap-reachability

argument [77, 26, 28]. The second sub-goal, which establishes that the loop iterates mono-

tonically across one row, is built from Linear Integer Arithmetic (LIA). Both logics are re-

quired for this one dependence query. Although there are decision procedures for LIA [67],

the first sub-goal cannot be proved within LIA.
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Claim: There is no dependence from store 1 (line 37) to load 4 (line 31) across
iterations of the inner loop (line 27).
Proof: (by disproving aliasing)

1. Sub-goal: tmp1 = tmp2 and tmp1 = tmp3.

(a) Initially, each element of m→ rows refers to a Row object (line 14).

(b) No store instruction in the loop mutates any Matrix object; the Matrix ob-
ject is loop-invariant. (Although store 1 mutates a Row object (line 14),
those are disjoint from Matrix objects (line 9)).

By (a) and (b), load 1, load 3 and load 5 observe the same invariant element
of m→ rows.

Thus tmp1 = tmp2 and tmp1 = tmp3.

2. Sub-goal: tmp2→ cells[k] > tmp3→ cells[J].
(by induction on k)

Base k0 = J + 1, thus,
tmp2→ cells[k0] = tmp1→ cells[J + 1]
> tmp1→ cells[J] = tmp3→ cells[J].

Ind. ki+1 = 1 + ki, thus,
tmp2→ cells[ki+1] > tmp2→ cells[ki]
> tmp3→ cells[J].

By (2), store 1 and load 4 must access non-aliasing pointers, thus there is no depen-
dence. �

Figure 1.5: A proof corresponding to a negative result of a non-trivial dependence query
on operations from the example code. This proof employs two types of reasoning: the first
sub-goal relies on an heap reachability argument and the second sub-goal relies on a Linear
Integer Arithmetic (LIA) argument.
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To address both sub-goals, we need logics for each and a means to combine them. One

means to combine these two logics would be to build a rich model of the analysis prob-

lem which supports both types of reasoning, and then design procedures which apply those

logics to the combined model. However, this quickly becomes unwieldy since each addi-

tional analysis logic must be considered in relation to all others. Instead, this dissertation

proposes a design whereby each analysis implementation is restricted to one logic, accept-

ing that some premises of a query cannot be analyzed within that specific logic. Those

simple implementations combine through a property called collaboration. Two algorithms

collaborate if—while maintaining composability—the combination disproves dependences

which neither algorithm disproves in isolation. Each analysis algorithm may then recruit

other analysis algorithms to solve their foreign premises.

Once collaboration is established, developers may modularize the development of anal-

ysis algorithms through factorization. Instead of increasingly complicated algorithms which

incorporate additional types of reasoning, factorization achieves precision through many

simple algorithms. Each algorithm disproves queries within its core competence and as-

sumes other algorithms provide the necessary diversity of logic to solve its premises. Fac-

tored algorithms are developed independently without requiring knowledge of others. Fac-

torization enables developers to easily extend algorithm precision according to the needs

of a client.

1.4 Compiler Scalability

Users desire compilers to be fast; one study [83] indicates that programmer productiv-

ity drops when compilation takes more than a few seconds. If the benefit of aggressive

optimizations does not outweigh the cost of long compile times, users will avoid those op-

timizations. This effect is observed in the development of real-world compilers: the GCC

Development Mission Statement lists “faster debug cycles” as one of its six design and
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development goals [25], and the GCC manual states that GCC will “refuse to optimize

programs when the optimization itself is likely to take inordinate amounts of time” [23].

However, several aspects of aggressive optimization dilate compilation time. Analysis

precision drastically affects optimization quality [15, 27, 71, 74, 88], and precise anal-

yses tend to be more expensive than their less-precise counterparts [22, 32] and scale

poorly [33, 60]. Similarly, Amdahl’s Law [3] suggests that the benefit of advanced com-

piler optimizations is greatest when applied to hot program scopes. Such hot scopes of-

ten span large regions of program execution, thus exaggerating the scalability of a com-

piler’s underlying algorithms. Consequently, aggressive optimizing compilers tend to run

slowly, making them a less appealing tool for developers. Despite the performance poten-

tial of state-of-the-art transformations, common compilers optimize small, intra-procedural

scopes, instead favoring short compilation times. If optimization takes too much time, de-

velopers evict it from their development cycle.

To extend the benefits of aggressive optimization to the wider community, we must

first address scalability of precise analysis. We envision a future where common compilers

feature aggressive optimizations such as automatic parallelization [17, 58, 71, 74, 76, 84,

88] by default. The critical path to this end is the precise analysis of large program scopes.

Many compiler techniques are formulated around the Program Dependence Graph (PDG) [21]

(Figure 1.6(a)). Many of those techniques (clients of the PDG) focus primarily on de-

pendence cycles, identified as the Strongly Connected Components (SCCs) of the PDG

(Figure 1.6(b)).

The Directed Acyclic Graph of the SCCs (DAGSCC) or condensation of the PDG is a

representation that makes dependence cycles explicit (Figure 1.6(c)). The DAGSCC con-

tains enough information to support a broad class of compiler techniques. For instance,

automatic parallelization [17, 58, 71, 74, 76, 84, 88] must determine whether two opera-

tions can execute concurrently without races, or if synchronization is needed. The DAGSCC

conveys this relationship: synchronization is necessary if those operations are assigned to
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Figure 1.6: (a) Example PDG; (b) Strongly Connected Components; (c) Condensation of
the example.

the same component or if their components are ordered with respect to one another. Simi-

larly, program slicing tools [35, 90, 92] report a “backwards program slice” of an operation

by enumerating those operations assigned to the same component1 as the operation of in-

terest as well as operations assigned to components ordered before it. in the DAGSCC. The

loop fission transformation splits a loop into two or more parts [6, 43], and is valid when it

preserves components and the ordering of components visible in the DAGSCC.

The DAGSCC holds less information than the PDG and should be cheaper to compute.

Yet, standard practice wastefully builds the full PDG before condensing it to a DAGSCC.

The number of potential PDG edges grows quadratically with the scope size (in vertices).

Each potential edge adds a quantum of analysis effort (a query) to determine whether that

edge exists. The running times of these queries sum to make DAGSCC construction pro-

hibitively expensive, especially since precise analyses are costly [22, 32, 33, 60].

Compiler authors should not sacrifice analysis precision for cost since imprecision lim-

its optimization [15, 27, 71, 74, 88]. Instead, they should use the most precise analyses and

1We use component to refer to a strongly connected component; in contrast, component refers to a pro-
gram statement in the program slicing literature.
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reduce compilation time by exploiting the reduced information of the DAGSCC.

This dissertation presents a technique that computes the DAGSCC more efficiently than

finding SCCs of the full PDG. Using partial dependence information, the algorithm identi-

fies dependence edges which cannot affect the clients of the DAGSCC. Next, the algorithm

uses a Demand-Driven [29, 79, 96] analysis framework to elide those analysis queries and

thus expend effort only on important analysis queries rather than the whole program. This

improvement is orthogonal to reducing the latency of each query; it reduces DAGSCC con-

struction time yet maintains high analysis quality since no analysis algorithms change.

With these savings, compiler authors may pursue more aggressive and costlier analyses

while providing the same quality of service to compiler end-users.

1.5 Dissertation Contributions

These points represent the largest contributions of this dissertation:

Collaborative Dependence Analysis Framework (CAF): This dissertation first pro-

vides a novel means to compose several analysis algorithms into an ensemble algorithm

which features the strengths of each member while servicing queries as fast as the fastest

member in the expected case. Next, this dissertation enhances the composition mecha-

nism to support collaboration, allowing several simple analysis algorithms to solve queries

which none can solve alone. With collaboration established, one may factor analysis al-

gorithms into small, orthogonal pieces to reduce development effort while maintaining the

precision of a single all-encompassing algorithm. Chapter 3 describes CAF.

The Fast DAGSCC Algorithm: Analyzing larger program scopes presents a scalability

challenge. Fortunately, many compiler optimizations are driven by the Strongly Connected

Components of the Program Dependence Graph (DAGSCC) rather than the whole PDG.

Since the DAGSCC contains less information than the PDG, this dissertation presents an

adaptive algorithm to compute the DAGSCC using fewer dependence analysis queries. Av-
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eraged across the SPEC 2006 suite, this algorithm reduces analysis time by half while

maintaining equivalent analysis precision, thus performing aggressive program analysis in

a reasonable execution time. Chapter 4 describes the Fast DAGSCC Algorithm.

Integrating Speculation: This dissertation presents a design pattern wherein various

types of speculation are designed and implemented modularly, and can be plugged in to

the compiler without modifying other parts of the compilation framework. These imple-

mentations of speculation naturally compose with one another, and may collaborate with

state analysis in the CAF. Chapter 5 describes how speculation integrates with analysis and

transformation in a modular way.

1.6 Assembling an Infrastructure

This dissertation demonstrates an end-to-end integration of these techniques into an auto-

matic parallelization system, and presents a modular design of the claimed contributions

(and many other pieces). Pieces from this infrastructure have supported the research needs

of the Liberty Group [36, 37, 38, 45, 57, 65, 69].

Figure 1.7 illustrates the training and planning phase of the compiler infrastructure.

(1) The developer provides sequential source code and a representative input set. This is

compiled to (2) LLVM’s intermediate representation. During the training phase (3) one or

more profilers instrument the IR and collect dynamic execution information.

The compiler loads those profiling results, and speculation managers (4) interpret the

results to identify a set of high-confidence assumptions about program behavior—that is,

assumptions which will likely hold true at run time. The system does not yet commit to

those assumptions because it does not yet know whether these assumptions are necessary

to enable transformation.

The Fast DAGSCC algorithm (5) analyzes the program to compute the strongly con-

nected components of the program dependence graph. In this process, all memory de-
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Figure 1.7: The Infrastructure’s Training and Planning Phases.

pendences are resolved by the CAF (6). To support speculation, one or more speculation

adapters (7) are inserted into CAF. These adapters may report independence according to

the high-confidence limits identified by the speculation managers (4), and record which

assumptions are actually used while analyzing the program into speculative assumption

manifests (10).

The PS-DSWP thread partitioning heuristic (8) assigns the SCCs from the DAGSCC

to pipeline stages while trying to balance those stages to maximize concurrency. Thread

partitioning may identify several loop parallelization opportunities (9).

Finally, the speculation managers report speculative assumption manifests (10) which

enumerate the speculative assumptions that must be validated to ensure correctness of the

parallelization transformation (9).

Figure 1.8 illustrates the second half of the compiler infrastructure: transformation.

Earlier passes have identified one or more loop parallelization opportunities in the sequen-

tial IR (9) subject to zero or more speculative assumption manifests (10). What remains is

to insert validation checks for each type of speculation, and to parallelize the code.

Each speculative assumption manifest (10) corresponds to a different type of specula-

tion, e.g., control speculation, silent store speculation, or transactional serializability. The
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Figure 1.8: The Infrastructure’s Transformation Phase.

compiler inserts validation for each in turn. First, it inserts additional instructions to the

sequential IR to perform validation of each assumption listed in the manifest (11). Next,

it updates the loop parallelization opportunities (12) so that the new validation instructions

are assigned to the appropriate pipeline stage at runtime. This results in new versions of

the IR and loop parallelization opportunities which are still sequential, yet are speculative

(13). After validation has been inserted for all types of speculation, the speculative se-

quential IR and loop parallelization strategies (14) are fed into the Multi-Threaded Code

Generation algorithm [63] (15) to produce a speculative parallel IR. This IR can be lowered

to a machine-binary.

1.7 Dissertation Outline

Chapter 2 reviews background information on dependence analysis, dependence graphs,

and speculation. Chapter 3 explores CAF (Figure 1.7, point 6). Chapter 4 explores the Fast

DAGSCC Algorithm (Figure 1.8, point 5). Chapter 5 explores the integration of speculation

with the framework (Figures 1.7–1.8, points 2–4, 7, and 11–15). Chapter 6 presents an

experimental evaluation of these contributions.
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Chapter 2

Background on Dependence

Identification

“It’s much more interesting to live not knowing

than to have answers which might be wrong.”

—Richard Feynman.

Through dependence identification, an optimization system quantifies its degrees of

freedom for rescheduling the operations (statements, instructions, etc.) within a program

under optimization (PUO). This chapter introduces the pieces of dependence identification,

including the notions of a dependence among a PUO’s operations, dependence graphs, and

using speculation to safely ignore unlikely dependences.

Our interest in dependences stems from the compiler’s goal of preserving observable

program behavior through transformation. Dependences constitute an “adequate” represen-

tation of program behavior, i.e., provided that optimization respects all dependences in the

input program, the optimized output is strongly equivalent to the original [34]. Adequacy

established, dependence graphs are additionally a convenient representation for scheduling

problems in general and for automatic thread extraction in particular.
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Informally, a dependence among operations represents any constraint which would pre-

vent said operations from executing in an order other than source program order, i.e., the

order in which they appear in the sequential input code. Two language features introduce

these constraints: control flow and data flow. Control dependences arise when control flow

operations may cause or prevent another operation from executing; for instance, a for-

loop controls the statements within its body. Data dependences arise when one statement

computes some value which is used by and affects the operation of another statement.

2.1 Control Dependence

This dissertation adopts the definition of control dependence from [18]:

Definition 1 (Control Dependence among CFG Nodes (Cytron et al. [18])). Let X and Y

be two nodes in a control-flow graph. We say Y is control dependent on X iff X is in the

post-dominance frontier of Y .

Note that this definition is equivalent to the definition from [21].

Following LLVM [51], this dissertation employs control flow graphs drawn over basic

blocks as opposed to individual operations. Operations which have more than one successor

in the control-flow graph appear only at the end of basic blocks. Thus, this dissertation lifts

the definition of control dependence to accommodate operations in basic blocks:

Definition 2 (Control Dependence among Instructions). Let x be a multiple-successor op-

eration at the end of basic block X , and let y be an operation in basic block Y . We say that

y is control dependent on x—or, that x controls y—iff Y is control dependent on X .

Note that the control dependences relation is not symmetric, reflexive, nor transitive.
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Figure 2.1: (top) Loads (ld) and stores (st) access memory via pointers. Pointers alias if
they reference a common location. A footprint lists resources which an operation accesses.
(bottom) Intra-iteration path from st p to ld q; Some loop-carried paths from st p to
ld q; Operation st r kills loop-carried flows from st p to ld q; but, operation st
p does not kill all loop-carried flows from st r to ld q; (F)low, (A)nti, and (O)utput
dependences, (L)oop-carried.
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2.2 Data Dependence

Data dependences represent execution ordering constraints due to the flow of values among

operations or due to the reuse of storage resources. This dissertation employs the following

definition of data dependence.

Definition 3 (Data Dependence). Let t, u be two operations and M a storage location. We

say there is a data dependence from t to u iff

1. (alias) both t and u read or write M ;

2. (update) at least one of t or u writes M ; and

3. (path) there is a feasible path of execution P that visits t before u such that,

4. (no kill) no operation between t and u in P overwrites M .

To emphasize M , we sometimes say there is a dependence from t to u via M .

Note that the data dependence relation is not symmetric, reflexive, or transitive. Fig-

ure 2.1 illustrates all the key parts of this definition, including pointer aliases, paths of

execution, and killed flows.

Data dependences are further classified according to the cause of that constraint.

• Flow dependences—also “true” or “read-after-write”—relate an operation which writes

(“defines,” “updates,” “assigns,” “mutates,” or “stores”) a value to any operation

which reads (“uses,” “inspects,” or “loads”) that value. We will sometimes say t

flows (through M ) to u meaning that there is a flow dependence from t to u (through

the shared resource M ).

• Anti dependences—also “write-after-read”—relate an operation which reads a value

to subsequent operations that overwrite said value.

• Output dependences—also “write-after-write”—relate an operation which writes a

value to subsequent operations that overwrite said value.
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Note that condition 2 of Definition 3 excludes “read-after-read” or “input” dependences.

Most clients ignore read-after-read dependences since few memory models experience an

observable effect upon reading memory.

Most authors mark a distinction between data dependences carried via registers1 (regis-

ter dependences) and those carried through memory (memory dependences). This distinc-

tion corresponds to the worst-case hardness of problems to compute dependences among

operations which manipulate storage locations in these classes. Simple and complete

analyses—such as def-use and use-def chains [5] or the more efficient Static Single-Assignment

(SSA) form [18]—conservatively summarize flow dependences through registers. How-

ever, indirect reference allows non-obvious accesses to a storage location, thus necessitat-

ing deeper analysis to conservatively account for all accesses.

This dissertation assumes that the compiler’s intermediate representation is in SSA

form [18], hence computing register data dependences is trivial. Registers in SSA can-

not induce output dependences since each register has exactly one definition. Registers in

SSA cannot induce anti dependences since register definitions dominate all uses.

2.2.1 Observable Program Behavior and Side-Effects

Beyond branching and accessing memory, programs may issue system calls to achieve

effects which are visible outside the program’s execution context. Compiler transformation

should not re-order such side-effects. This suggests the need for some form of side-effect

dependence to order side-effecting operations. Observing that the adequacy of dependence

graphs [34] is proved over memory states in a programming model that lacks side-effects,

this dissertation models side-effect dependences as memory dependences.

1Here, “register” denotes a storage location that must be accessed directly through a unique and consistent
name, i.e., pointers cannot access the location indirectly. This is consistent with machine registers on most
architectures and with virtual registers in most compiler intermediate representations.
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2.3 Loop-Carried vs Intra-Iteration Dependence

Until this point, dependence has been discussed as a relation among the static operations

within a program under optimization. However, those static instructions may represent

several dynamic instances during program execution, and it is sometimes important to con-

sider dependences among some yet not all dynamic instances of a static instruction. The

dynamic instances created via loop iteration are of particular importance to thread extrac-

tion techniques, and there are many ways to disambiguate those instances.

The most expressive representation of dynamic instances, conceptually, is to completely

unroll the loop as to consider each dynamic instance separately. Iteration dependence

graphs [7] draw dependences among dynamic iterations of a loop, or among the dynamic

instances of each operation corresponding to each loop iteration. However, these represen-

tations are difficult to compute when iteration bounds cannot be determined statically.

Dependence distance and direction vectors [7] exploit regularity and symmetry to suc-

cinctly represent the dependence between two operations in a loop nest. Distance vectors

have one distance element di corresponding to each enclosing loop Li, indicating that the

dependence occurs every di-th iteration of Li. Although expressive, distance and direc-

tion vectors are generally limited to loops with regular iteration patterns and are difficult to

employ for general purpose applications.

This dissertation employs a simplification of dependence distances; given a loop L,

a dependence may be intra-iteration (zero distance) or loop-carried2 (non-zero distance)

with respect to L [63, 71, 88]. The bottom of Figure 2.1 illustrates loop-carried and intra-

iteration paths. Although less expressive than dependence distance, the loop-carried classi-

fication is more easily recognized in irregular PUOs yet is still powerful enough to support

thread extraction techniques. More formally,

Definition 4 (Loop-carried, Intra-iteration Dependences). A dependence from t to u is loop-

2Loop-carried dependences are also called inter-iteration. To ease reading, this dissertation favors the
distinction of “intra-iteration” vs “loop-carried.”
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carried with respect to loopL iff there is a dynamic instance ti of twhich executes during the

i-th iteration of L and a dynamic instance uj of u which executes during the j-th iteration

of L with i 6= j such that there is a dependence from ti to uj .

Similarly, a dependence from t to u is intra-iteration with respect to L iff there are

dynamic instances ti, ui of t, u, respectively, which both execute during the i-th iteration of

L such that there is a dependence from ti to ui.

Note that the loop-carried designation at loop L has no relation to the loop-carried des-

ignation at parent loops of L nor at child loops of L. When context implies a unique loop,

this dissertation simply uses “loop-carried dependence” and “intra-iteration dependence”

without specifying the loop.

2.4 Dependence Graphs

A program dependence graph (PDG) [21, 48] of a program scope identifies each static

instruction from that scope with a vertex, and identifies each control and data dependence

among those instructions with a directed edge. Program dependence graphs provide a

convenient representation for program transformations.

The PDGs employed in this dissertation differ from Ferrante et al. [21] in two ways.

First, Ferrante et al.’s formulation includes region nodes to summarize the common control

dependences among control-equivalent blocks. Instead, we follow Ottoni [62] by includ-

ing only regular nodes in the PDG, drawing control dependence directly to other instruc-

tion vertices. Second, dependence edges in this dissertation are annotated as loop-carried

or intra-iteration (see Section 2.3), and memory dependences are annotated as flow, anti,

and/or output dependences.
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2.4.1 Equivalence, Communication, and Synchronization

Horwitz et al. prove that if two programs have isomorphic PDGs, the programs are strongly

equivalent [34]. This adequacy result suggests a simple transformation correctness crite-

rion: a transformation must “respect” every dependence to generate an isomorphic PDG.

One argues the correctness of an automatic thread extraction system by arguing how it re-

spects each dependence despite threaded execution. Scheduling dependent operations to

the same thread of execution in the same relative control-flow position naturally preserves

the dependence among them. However, when dependent operations are assigned to dif-

ferent threads, the compiler must insert additional communication or synchronization op-

erations to simulate the dependence across thread boundaries. Communication primitives

simulate register data dependences by carrying values that would otherwise flow through

a register. Synchronization primitives delay memory accesses to prevent data races corre-

sponding to violated memory data dependences.

At an architectural level, communication and synchronization are generally costly op-

erations. Commodity x86 multicore systems provide no specialized core-to-core commu-

nication channels; thus, inter-thread communication passes through the memory hierarchy

and competes for memory bandwidth with the rest of the application. Synchronization is

inherently costly, since it forces some threads to stall thereby reducing utilization.

Communication and synchronization latencies are necessary for correctness, and cannot

be eliminated. However, choice of parallel schedule determines whether those latencies pe-

nalize the application’s critical path. When possible, a parallelization system should choose

a parallel schedule in which no communication or synchronization is necessary between

threads. Unfortunately, such embarrassingly parallel applications are rare in practice.

2.4.2 Pipeline Execution, Dependence Cycles, and the DAGSCC

The pipeline execution model allows a restricted case of inter-thread communication and

synchronization which hides those latencies in the steady state, instead paying these la-
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tencies once during pipeline fill. The key to pipeline execution is acyclic communication

and synchronization. This communication pattern allows a pipeline stage to perform useful

work while subsequent stages stall for communication or synchronization.

To achieve pipeline execution, a thread extraction system partitions operations into or-

dered pipeline stages such that dependences follow pipeline order. More formally a pipeline

partition features acyclic communication if there is an ordering of the stages si such that

whenever there is a dependence from operation t ∈ si to operation u ∈ sj , we have i ≤ j.

Note that, in the absence of dependence cycles, a topological sort of the PDG consti-

tutes a valid pipeline partition. Techniques such as DSWP [63] and PS-DSWP [71] extract

threads from general PDGs by identifying dependence cycles as the unit of scheduling. To

find these cycles, the DSWP-family techniques compute the Strongly-Connected Compo-

nents (SCCs) of the PDG and condense the components to vertices. The resulting graph is

called the DAGSCC or the condensation of the PDG. Components from the DAGSCC are

scheduled across pipeline stages to minimize imbalance. Figure 2.2 illustrates this process,

showing a CFG, PDG, DAGSCC, and finally parallel execution.

2.5 Dependence Analysis

Dependence analysis algorithms disprove dependence between a pair of operations or con-

servatively report that those operations may depend. Algorithms to accomplish this goal

generally focus on one of the conditions of data dependence (Definition 3): disproving

aliasing, disproving a feasible path, or proving a killing operation exists along all feasi-

ble paths. Each of these conditions has been studied independently.Many algorithms ex-

ist for alias (or points-to) analysis [4, 11, 55, 80, 52, 91]. The related problem of shape

analysis computes a description of the connectedness or cyclicity of linked data struc-

tures [26, 28, 77]; interpreting these shape descriptions answers some alias or points-to

queries. Array dependence analysis algorithms focus on the restricted case of pointers
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whose values evolve as affine functions of loop induction variables [7, 67]. Several invoca-

tions of the must-alias judgment determine whether a store operation kills a flow.

In general, dependence analysis is undecidable [49]. Practically, this means that no

analysis algorithm precisely determines the presence or absence of dependences on every

input. Instead, algorithms deliver precise results only for restricted classes of inputs—

their region of precision—and deliver conservative results otherwise. Different analysis

algorithms potentially feature different regions of precision.

Different analysis algorithms deliver different regions of precision for different costs [32].

Many have observed that more precise analysis algorithms tend to run more slowly than less

precise algorithms [22, 32] or that precise algorithms must scale poorly [33, 60], thus dis-

couraging the use of precise yet slow analysis algorithms. On the other hand, high-precision

analysis algorithms enable aggressive optimization [15, 27, 71, 74, 88]. This creates a de-

sign trade-off: a slow compiler generating fast code, or a fast compiler generating slow

code.

2.5.1 Demand-driven: Algorithm and Interface

Classical “all-at-once” analysis algorithms are devised as a minimum fixed-point computa-

tion over a set of simultaneous equations [5]. Such algorithms iteratively refine a value for

all statements in the program until the convergence. Consequently, determining this value

for any statement is as expensive as determining the value for all statements.

Precise analysis can be slow. To reduce compilation times, some authors observe that

optimization relies upon only a fraction of analysis facts. Consequently, computation spent

on other analysis facts constitutes wasted effort. Those authors propose demand-driven

analysis algorithms which expend effort only as necessary to answer specific analysis

queries, thus saving time by not considering the rest of the program [29, 79, 96]. In-

deed, Chapters 4 and 6 demonstrate than only about half of all memory dependences are

necessary for pipeline parallelization.
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This thesis relies on a demand-driven interface to analysis algorithms (see Chapter 3),

but does not require that analysis implementations be demand-driven. Several implementa-

tions are wholly all-at-once, several are wholly demand-driven, yet the balance are a hybrid

(see Appendix A).

2.6 Speculative Dependence Identification

A thread extraction system must view the PUO through the lens of dependence identifica-

tion. Fundamental limitations of static dependence analysis mean that the view will con-

servatively approximate the PUO’s ideal dependence structure. Speculative dependence

identification allows an optimization system to refine that approximation to better reflect

the expected-case program behavior.

Figure 2.2 illustrates the parallelization of a simple loop. The top half demonstrates

non-speculative parallelization. In contrast, the bottom half employs speculative depen-

dence identification to extract a more efficient parallel schedule from the same loop.

Central to speculative dependence identification is the notion of a simplifying assump-

tion of program behavior. A speculative assumption is a true or almost-always true property

of the PUO which is difficult or impossible to determine through static analysis.

A speculative optimization system may assume various properties of the PUO. For ex-

ample, if there is reason to believe that a certain conditional branch in the PUO is heavily

biased, the optimization system may speculate that the branch transitions unconditionally

to its more likely destination (bottom of Figure 2.2). Under this assumption, the conditional

branch if(rare) does not source any control dependences (because it is speculatively

unconditional), and the array update array[*]=0 does not source any memory depen-

dences (because it is speculatively unreachable). To validate this assumption at execution

time, the speculative transformation inserts code to signal misspeculation at the less likely

destination of the speculated branch.
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Figure 2.2: Speculative assumptions remove several dependences from a program’s depen-
dence graph. (above, left to right) The CFG of a loop body either uses or updates an array.
The PDG includes a loop-carried memory dependence edge, ordering updates before sub-
sequent uses, even though updates are unlikely. In the DAGSCC, the uses are assigned to
a Sequential component because of the loop-carried constraints from the update. Parallel
execution improves throughput over sequential execution. (below) By assuming that the
heavily-biased branch is unconditional, certain unlikely operations become speculatively
dead and thus cannot source dependences. The elimination of such dependences cascades
through the PDG and DAGSCC, ultimately allowing more efficient sequential and parallel
schedules. (Not shown) these execution diagrams omit validation overheads.
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More broadly, speculation is applied to various classes of assumptions: that certain load

instructions always read the same value [40]; that transactions are serializable [45, 46, 68,

84]; that pointers reference a restricted class of objects [40]; that certain load instructions

read values defined by a store in the same iteration [20, 40, 76, 93]; that certain memory

objects are short-lived [41, 45]; or that the elements within a linked data structure change

infrequently [72]. None of these assumption classes is perfect or complete; each offers

various enabling effects, validation costs, and misspeculation rates.

2.7 A Brief Overview of the LLVM IR

This dissertation builds on the LLVM Compiler Infrastructure [51], which provides front-

ends for several popular languages, an intermediate representation (IR), robust implemen-

tations of “textbook” optimizing transformations, and back-ends for several common ar-

chitectures.

The LLVM IR organizes each compilation unit as a module which contains global sym-

bols: constant byte sequences, global variables, and functions. Functions are organized as

control-flow graphs (CFGs) of basic blocks, and each basic block contains virtual instruc-

tions. These instructions are “low-level” in the sense that most are trivially mapped onto

few machine instructions. For example, the LLVM IR includes instructions representing

load, store, add, and call with the usual meanings. The LLVM IR largely follows

a load-store design. The few exceptions, such as LLVM intrinsic instructions repre-

senting atomic compare-and-swap or POSIX memcpy, can be treated, conservatively, as

procedure calls with known, axiomatized behavior.

Instructions in the LLVM IR are normalized to Static Single Assignment (SSA) form [18];

every named value in the program has precisely one static definition. We will often use a

static instruction’s name to specify all dynamic values computed by that instruction; con-

text should indicate whether we are referring to the instruction or to values it computes.
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Values within the LLVM IR are typed, and operations must be compatible with types

of their operands. However, the LLVM IR is not strongly typed: the bitcast instruction

changes a value’s type thereby allowing operations inconsistent with the value’s declared

type. Still, these types have merit. LLVM type checking facilitates compiler develop-

ment by detecting a broad class of invalid code generated by buggy transformations. Also,

LLVM types abstract architectural details such as address alignment constraints and aggre-

gate layout constraints. In particular, LLVM features type-safe pointer arithmetic via the

getelementptr instruction. Rather than manipulating pointers with integer arithmetic,

getelementptr offsets a base pointer with integer indices scaled by target-specific ag-

gregate layout constants.

The LLVM memory model is not fully specified, but a partial specification can be in-

ferred from “reasonable” transformations performed by stock optimizations. The Vellvm

project observes [95] that the LLVM memory model is consistent with the CompCert mem-

ory model. CompCert models each distinct allocation unit as a contiguous block of bytes

which is separate from all other blocks; storage locations within each block retain their

last-stored value during their lifetime, and block lifetimes are delineated by allocation and

deallocation routines [54]. These properties are consistent with the few guarantees provided

by the C11 memory model, as outlined in Sections 6.2.4, 6.5.6, and 7.22.3 of ISO/IEC

9899-201x [1]. When necessary, this dissertation defers to the CompCert memory model

to compensate for underspecified behavior in LLVM.
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Chapter 3

The Collaborative Dependence Analysis

Framework

“Gettin’ good players is easy.

Gettin’ ’em to play together is the hard part.”

—Casey Stengel

Precise dependence identification enables greater transformation freedom [15, 27, 71,

74, 88]. However, dependence analysis is undecidable [49], and various simplifications

of the problem are intractable [33, 60]. Speculation enables transformation despite limita-

tions of dependence analysis [76, 20, 58, 68, 81, 46, 45, 40, 93] yet suffers from validation

overheads. These validation overheads may exceed hardware capacity and negate perfor-

mance improvements [13, 45]. Improving the precision of dependence analysis reduces

validation overheads or obviates the need for speculation entirely. This dissertation posits

that both speculation and strong dependence analysis are necessary for modern, aggressive

optimizations such as thread extraction.

This chapter presents the Collaborative Dependence Analysis Framework (CAF). CAF

allows a compiler developer to improve the precision of dependence analysis gradually

by adding simple and modular analysis implementations to an ensemble. Beyond simple
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composability, CAF offers a design pattern wherein disparate modular analysis algorithms

combine their strengths to solve mixed-logic queries (see Figure 3.3). Consequently, each

additional dependence analysis algorithm yields a multiplicative improvement to overall

ensemble precision, rather than additive improvements from simple composability.

We call this type of composition collaboration. To achieve collaboration, each analysis

algorithm is structured in a non-conventional manner. Using an understanding of each

algorithm’s partiality (Section 3.1.3) and decomposition (Section 3.1.4), these algorithms

isolate foreign premises—facts about the program which the analysis algorithm needs in

order to make further derivations, yet which cannot be derived by this algorithm alone.

A collaborative analysis formulates foreign premises in the native query language. The

ensemble delegates those foreign premise queries to other analysis algorithms to combine

the strengths of its members.

Collaboration is a powerful tool for compiler developers who wish to achieve depen-

dence analysis precision. Instead of pursuing precision through increasingly complicated

analysis algorithms, collaboration allows the developer to decompose the problem of anal-

ysis into many simple implementations which are developed independently. Redundancies

in the deductive rules of disparate analysis algorithms can be eliminated and instead be

serviced via foreign premise queries. Under this development model, the developer seeks

diversity among the set of analysis logics in the ensemble. The CAF allows the compiler

developer to achieve dependence analysis precision through many small and simple analy-

sis algorithms rather than a large and complicated algorithm.

3.1 Background

Analysis algorithms for the dependence relation attempt to disprove one or more of the con-

ditions of dependence (Definition 3). This section presents two examples to better illustrate

dependence analysis and collaboration between algorithms. These algorithms are named
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Array of Structures and Unique Access Paths. Neither algorithm is all-encompassing; in

fact, the design of each assumes that each will serve as part of a larger ensemble.

3.1.1 Example: Array of Structures

The Array of Structures (AoS) algorithm disproves dependences between memory opera-

tions by proving that certain pointers to nested aggregate types cannot alias one another.

To service a dependence query, AoS examines the expressions which compute those point-

ers to determine whether the expressions match a schema. AoS is inapplicable to queries

which access pointers that do not match that schema, and cannot give a precise answer in

those cases.

Query Schema: suppose that AoS receives a query comparing two operations. Suppose

that the first operation accesses a pointer of the form A=&a[i1][i2]...[in] and that the

second operation accesses a pointer with similar construction B=&b[j1][j2]...[jm].1

If a = b, and if pointers a and b have the same type, and if there exists a position k such

that indices ik 6= jk, then the pointers cannot alias. In that case, AoS reports no dependence

since the first condition of Definition 3 cannot hold. Otherwise, AoS cannot give a precise

answer.

AoS includes simple induction variable and arithmetic reasoning to prove ik 6= jk.

When applicable, AoS is simple yet powerful: it disproves aliasing even if indices iq, jq at

other positions q 6= k are non-affine or otherwise incomparable. However, AoS does not

contain any logic to test whether a = b. Instead, this will be handled as a foreign premise

query (described in Section 3.4).
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1 i n t a = 0 , b = 0 ;
2 i n t ∗p = &b , ∗q = &b ;
3 i f ( −− )
4 p = &a ;
5
6 / / s t o r e 1
7 a = 1 ;
8
9 / / l oad 1

10 use ( ∗p ) ;
11
12 / / l oad 2
13 use ( ∗q ) ;

Points-to sets:
P (&p) = {&b,&a}
P (&q) = {&b}

Query: does load 2 depend on store 1?
. . . only if &a may-alias q [by Def 3]. . .
. . . only if &a may-alias &b [by UAP]. . .
Foreign premise query: may &a alias &b? ⇒ No.
Response: No, there can be no dependence.

Query: does load 1 depend on store 1?
. . . only if &a may-alias p [by Def 3]. . .
. . . only if (&a may-alias &b or &a may-alias &a) [by
UAP]. . .
Foreign premise query: may &a alias &b? ⇒ No.
Foreign premise query: may &a alias &a? ⇒ Yes.
Response: Unknown, there may be a dependence.

Figure 3.1: (above left) Locations &a, &b are captured on lines 2 and 4. Locations &p, &q
are never captured throughout the program. (below left) UAP accumulates a points-to set
of values stored into each of the non-captured locations. (above right) UAP decomposes
the query into a simpler premise and issues a foreign premise query. An unspecified other
analysis algorithm disproves the foreign premise query. UAP reports a result which relies
on three logics: Def 3, UAP, and something else. (below right) UAP decomposes the query
into simpler premises and issues foreign premise queries. No other analysis algorithm
disproves the foreign premise queries. UAP reports unknown.
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3.1.2 Example: Unique Access Paths

The Unique Access Paths (UAP) algorithm disproves dependences between memory oper-

ations by disproving a certain class of aliasing between pointers loaded from memory. At

initialization, it performs a linear scan over the entire module to collect points-to sets for

certain load instructions. It then services dependence queries which match its schema.

UAP is inapplicable to queries that do not match the query schema.

Initialization scan: by scanning the entire module, UAP identifies a subset of global,

stack, or heap storage locations whose addresses are never captured, i.e., never stored into

memory and never passed to an externally defined function (see Figure 3.1). Without cap-

tures, pointers to such storage locations can only propagate via virtual registers—never

through memory. Consequently, the compiler may easily enumerate every load from or

store to non-captured storage locations by tracing register data flow. This is a significant

simplification over the general case, in which pointers to those storage locations may prop-

agate through memory.

Next, UAP considers every store instruction which writes a value into a non-captured

storage location. UAP accumulates the set P (L) of values stored into each non-captured

storage location L (see the bottom left of Figure 3.1).

Query Schema: suppose that UAP receives a query comparing two operations. Suppose

that the first operation accesses a pointer A and the second accesses a pointer B. Further,

suppose that pointer A is computed as A=load L, where L is a pointer to a storage

location which the initialization scan identifies as non-captured. UAP reasons that A may-

alias B only if there is some p ∈ P (L) such that p may-alias B. Further, if p is the unique

member of P (L), and if p must-alias B, then A must-alias B.

For example, when considering Figure 3.1, load 1 dereferences the pointer p. The

storage location at &p is non-captured, and the initialization-scan determines that two val-

1The bracket notation represents adding the pointer expression on its left to a multiple of the quantity
within the brackets; it does not access memory. It corresponds to LLVM’s getelementptr instruction
(see Section 2.7). “Aggregate” refers to C’s array and structure types, but not union types.
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ues are stored into &p: the pointer &b on line 2, and the pointer &a on line 4. Thus, the

expression *p dereferences either the pointer &a or the pointer &b. A query comparing

load 1 with store 1 is rewritten as two premises, one comparing &b with &a, and the

other comparing &a with &a. These premises are easier to resolve than the original query.

When applicable, UAP is powerful since it provides a means to trace the flow of pointers

through simple data structures. UAP contains logic that equates a value loaded from a

storage location with the set of values stored into that storage location. However, UAP

does not contain any logic to test whether p may-/must-alias with B for all p ∈ P (L).

Instead, this is handled as a foreign premise query (described in Section 3.4).

3.1.3 Partiality and Algorithmic Diversity

Many logics have been applied to the related problems of alias analysis and dependence

analysis. Each implementation has limitations, but a diversity of logics will often hide

those limitations.

Since dependence analysis is vital for a myriad of compiler optimizations and other ap-

plications, the literature is rich with algorithms that compute conservative approximations

of dependence analysis. Each algorithm is designed to give satisfactory results for certain

restricted cases of the greater problem [31]. For example, research projects which study

the optimization of programs which regularly traverse multidimensional arrays discover

dependence analysis algorithms which precisely analyze linear integer arithmetic (LIA),

yet which are imprecise for other inputs [67]. In general, we say that each analysis logic

has a region of precision (RoP), that is, a subset of all dependence queries for which the

logic derives a precise dependence result.

The RoP describes the limitations of a single dependence analysis algorithm. However,

RoPs help us understand the relative strengths of algorithms in an ensemble. Consider three

hypothetical analysis algorithms with different RoPs. Figure 3.2 presents a visual analogy.

In the example, the first analysis algorithm has a smaller RoP than the third algorithm
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Figure 3.2: Regions of Precision in the space of all dependence queries. (RoP 1, 2 and
3) Three hypothetical logics precisely recognize only a subset of all dependences, termed
their regions-of-precision (RoP). (Union) The three RoPs may partially overlap, in which
case we say that the logics are non-orthogonal. (Best-of-N) A best-of-N ensemble logic
chooses the most precise dependence result from any member logic. The RoP for a best-
of-N ensemble is the union of the RoPs of its member logics. (Collaborative) A collabora-
tive ensemble logic additionally recognizes queries which no member analysis recognizes
alone.
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(compare sizes of RoP 1 and RoP 3). Superficially, one may claim that the third algorithm

is more precise than the first. However, the union of these three RoPs demonstrates that

algorithm 1 disproves certain queries which algorithm 3 cannot. Thus, there is no strict

dominance relationship among these algorithms.

In general, a demand-driven dependence analysis algorithm receives queries and re-

sponds with an answer indicating the definite absence or the possible presence of a mem-

ory dependence. “Possible presence” is the conservative, external representation of two

cases: definite presence of a dependence, or unknown. Internally, certain analysis logics

can distinguish these cases. Indeed, this distinction enables best-of-N collaboration.

Example algorithms AoS (Section 3.1.1) and UAP (Section 3.1.2) illustrate partiality

concretely. Both logics report unknown if the query does not match its respective query

schema. AoS also reports unknown if it cannot prove a pair of indices unequal, and UAP

if it cannot compare the loaded pointers. These unknown cases are fundamentally different

than proving the existence of a dependence.

3.1.4 Decomposition and Multi-Logic Queries

Some analysis logics “decompose” an input query into one or more premises. The example

AoS may decompose a query between large pointer expressions A and B into a premise

concerning the simpler pointer expressions a and b (Section 3.1.1). Similarly, the example

UAP may decompose a query between a pointer A=load L and a pointer B into several

premises concerning each value p loaded by A and the pointer B. Such decomposition is

fundamental to proving any statement and is not unique to CAF.

CAF uses decomposition as a means of structuring analysis algorithms and as a cri-

terion for modularization. Beyond simple decomposition, CAF encourages analysis algo-

rithms to isolate these premises as foreign premise queries (Section 3.4) and thus achieve

collaboration (Section 3.4). Critically, this allows the CAF to disprove multi-logic queries.

Figure 3.3 illustrates a proof with statements as circles and derivational rules as arrows.
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Figure 3.3: Why do multi-logic queries exist? Circles represent various statements about
the program, ranging from facts directly observed in the IR to the final dependence
judgment. Analysis logics (arrows) allow us to derive new statements from established
premises. Two hypothetical dependence logics are shown here, corresponding to the solid
and dashed arrows. The solid-arrow logic derives three statements, yet cannot derive the
final statement since the foreign premise cannot be established using only solid arrows. The
dashed-arrow logic establishes the foreign premise, yet cannot establish other statements.
By combining both, a collaborative ensemble establishes the final statement.

The top-most statements codify facts directly observable in the IR, for instance, the con-

crete sequence of static instructions that compute a pointer. The bottom-most statement

asserts the independence of two operations, i.e., that there is no feasible execution which

satisfies the definition of a memory dependence. The final judgment is derived from the

IR through a series of derivational steps, where each derivational step is drawn from an

analysis logic.

In the multi-logic query scenario, an analysis logic derives some statements yet is un-

able to derive all statements. For instance, if an analysis logic provides the solid arrows in

Figure 3.3, it can only derive those statements marked with a check; the final judgment can-

not be derived. Multi-logic queries arise as a consequence of undecidability; any analysis

algorithm—no matter how elaborate—fails to prove some true statements.

By adding another algorithm which provides the dashed arrows in Figure 3.3, the final

judgment is established through the collaboration of two algorithms. Collaboration allows

an ensemble to disprove multi-logic queries, where simple best-of-N composition fails.
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3.1.5 Combining Analysis Implementations

Given a diversity of analysis logics, there are several ways to combine them into an ensem-

ble. This section briefly reviews some other methods.

Nelson and Oppen present an algorithm to combine decision procedures for several

logics into single decision procedure for the combined logic [61]. Their method separates

a multi-logic expression into several single-logic expressions and links each to a boolean

satisfiability query using the equality operator common to all logics. A decision procedure

for boolean satisfiability processes these constraints in tandem with decision procedures

for each logic.

Click and Cooper [16] study combinations of monotone analysis frameworks. Given

two abstract domains, they solve both problems simultaneously as usual, but additionally

introduce interaction functions which carry knowledge across domains. The tandem algo-

rithm still computes the greatest fixed point in each domain provided that the interaction

functions are monotonic. However, the tandem analysis only improves precision when the

analysis developer creates interaction functions. This technique requires the analysis devel-

oper to devise interaction functions for each pair of abstract domains, resulting in manual

work quadratic in the number of analysis implementations. In contrast, the CAF allows the

analysis developer to specify how each analysis instigates interaction with other analysis

implementations, hence manual work proportional to the number of implementations.

Lerner et al. [53] present an algorithm to combine monotone analysis frameworks while

reducing the manual costs. Observing that compiler developers often introduce analy-

sis implementations to support particular code transformations, Lerner et al.’s method re-

purposes the code transformation as an implicit communication among analysis algorithms.

Specifically, as analysis algorithms discover new facts about the input code, they replace

regions of the IR with a simpler, equivalent IR fragment. Other analysis implementations

recompute their results for simplified regions of code, thus incorporating facts from peer

analysis algorithms into their own conclusions.
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IR replacement obviates the need for manual specification of interaction functions pre-

scribed by Click and Cooper [16]. Further, Lerner et al. argue that IR replacement requires

less manual effort than interaction functions because the compiler developer must already

implement code transformation corresponding to the analysis. This presupposes that each

analysis implementation is strongly-coupled with an optimizing transformation. Further, it

assumes that these optimizing transformations produce an equivalent IR which is simpler

or otherwise more amenable to analysis. This assumption is not necessarily true for heroic

transformations, such as automatic thread extraction. For instance, thread extraction may

replace simple register data-flow with inter-process communication, which is generally

more difficult to analyze. Hoopl [73] provides (among other things) a concrete implemen-

tation of Lerner et al.’s approach in Haskell.

The CAF combines arbitrary analysis algorithms, not simply decision procedures or

monotone frameworks. The CAF specifies interaction among the implementations with-

out coupling analysis to transformation and without overburdening the developer with

quadratically-many interaction functions.

3.2 Structure of an Analysis Implementation in Isolation

A traditional dependence analysis algorithm can be viewed as a black box: queries come

in, responses go out, as in the leftmost diagram of Figure 3.4. The CAF refines this view in

two critical ways which correspond to the notions of partiality (Section 3.1.3) and decom-

position (Section 3.1.4).

Partiality dictates that any analysis algorithm gives precise results for queries within its

RoP and imprecise results for queries outside its RoP. Acknowledging partiality as funda-

mental, the CAF provides a means for analysis algorithms to distinguish precise results.

The central diagram in Figure 3.4 refines the traditional by adding a “chain” port; when-

ever an analysis algorithm is unable to give a precise result, it instead passes the unmodified
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Figure 3.4: (left to right) Traditional dependence analysis algorithms accept queries Q and
return responses R, yet do not distinguish precise and imprecise answers. A “chain” port
allows an algorithm to declare that it cannot give a precise answer for the given query, and
instead delegate it to some other analysis algorithm. Stringing such analyses end-to-end
achieves best-of-N composition. A “top” port provides an path for foreign premise queries.

query to its chain port, and reports whatever response it receives from its chain port.

Decomposition into foreign premise queries means that the ultimate derivation may

branch into several simpler derivations. The rightmost diagram in Figure 3.4 refines the

central diagram by adding a “top” port. As the analysis algorithm generates foreign premise

queries, it passes these along its top port, and incorporates the corresponding responses into

its ultimate derivation.

The distinction between the chain and top ports is important. The chain port ensures

that every analysis algorithm, in turn, has a chance to consider any unsolved queries, and

implicitly indicates that earlier analysis algorithms on the chain cannot determine a precise

result. The top port, however, indicates that the query is new and that there is no indication

of which analysis algorithms may solve it. This distinction will become more clear in

Section 3.4 and evaluated in Section 6.1.2.

More concretely, Figure 3.5 shows the example AoS (Section 3.1.1) in terms of the

three-port interface from Figure 3.4. Each analysis algorithm is implemented as a separate
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Figure 3.5: Flowchart depicting the internal operation of a generic analysis algorithm,
showing a specific trace of the example AoS (Section 3.1.1).

class featuring methods corresponding to each type of query (see Section 3.3). To pass

a query along the chain port, an analysis implementation retrieves a reference to the next

analysis and invokes the appropriate query method on it. Similarly, to pass a query along

the top port, an analysis implementation retrieves a reference to the top analysis and invokes

the appropriate query method on it.

3.3 Informal Semantics of the Query Language

Each analysis implementation accepts queries and possibly generates new queries. To

achieve composability among implementations despite their various internal models, the

collaborative analysis framework defines a simple language of queries and requires that
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each implementation accept queries of that form. This section informally describes the

query language employed by CAF. The formal semantics of this query language are de-

scribed in Section 3.7.

Figure 3.1 summarizes the three types of analysis queries used in CAF. These query

types correspond to methods of the analysis implementations. modref * queries deter-

mine whether a contextualized operation modifies (Mod) or reads (Ref) some set of re-

sources, returning None, Mod, Ref, or ModRef (modifies and reads). A target parameter

implicitly specifies a set of target resources. In modref ii, the set of resources is the

resource footprint of a target operation i2 whereas in modref ip the set of resources is

the set of memory locations referenced by a s2-byte access to target pointer pointer p2.

The mod-ref relation is similar to the may-depend relation, as illustrated in Figure 3.6.

One determines if there is a memory dependence from operation i1 to i2 within a single

iteration of loop L, by issuing two queries: modref ii(i1, Same, i2, L) and modref ii(i2,

Same, i1, L). Similarly, one determines if there is a memory dependence from operation

i1 to i2 across iterations of loop L, by issuing the queries: modref ii(i1, Before, i2, L)

and modref ii(i2, After, i1, L). The results of both queries determine if there is a flow

dependence, an anti dependence, and an output dependence. A pair of operations may have

more than one type of dependence because some operations both read and write memory,

for instance, a call site.

3.4 Foreign Premise Queries, Topping, and Ensembles

Some analysis logics decompose a query into one or more premises. If it can establish all

of those premises, then the analysis logic is able to derive new facts about the program

under analysis. The compiler developer then chooses how and where to establish these

premises—either as additional derivation rules within the same analysis implementation,

or as foreign premise queries delegated to other analysis algorithms.
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Semantics Query Context and Path Qualifiers

May instruction i1 write to
(Mod) or read from (Ref)
the resource footprint of
target operation i2? Re-
turn None, Mod, Ref, or
ModRef.

modref ii(i1, Before, i2, L)

i1 executes in iteration τ1
of loop L and i2 executes
in some later iteration τ2 >
τ1.

modref ii(i1, Same, i2, L)
i1 and i2 both execute in
the same iteration of L.

modref ii(i1, After, i2, L)

i1 executes in iteration τ1
of loopL and i2 executes in
some earlier iteration τ2 <
τ1.

May instruction i1 write to
(Mod) or read from (Ref)
the resource footprint of
target pointer p2 of length
s2? Return None, Mod,
Ref, or ModRef.

modref ip(i1, Before, p2, s2, L)

i1 executes in iteration τ1
of loop L and values of p2

are computed in later itera-
tions τ2 > τ1.

modref ip(i1, Same, p2, s2, L)
i1 executes in the same it-
eration as p2.

modref ip(i1, After, p2, s2, L)

i1 executes in iteration τ1
of loop L and p2 com-
putes pointers in earlier it-
erations τ2 < τ1.

May any memory loca-
tion which is referenced by
a dynamic pointer value
computed by operation p1

of length s1 alias with
the resources referenced
by target pointer p2 of
length s2? Return No
Alias, May Alias, or
Must Alias.

alias pp(p1, s1, Before, p2, s2, L)

p1 is computed in iteration
τ1 of loop L and p2 is com-
puted in some later itera-
tion τ2 > τ1.

alias pp(p1, s1, Same, p2, s2, L)
p1 and p2 are computed
during the same iteration of
L.

alias pp(p1, s1, After, p2, s2, L)

p1 is computed in iteration
τ1 of loop L and p2 is com-
puted in some earlier itera-
tion τ2 < τ1.

Table 3.1: Types of queries: modref ii compares the footprint of the first instruction to
the footprint of the target instruction; modref ip compares instead to the resources refer-
enced by a target pointer; alias pp compares the resources referenced by two pointers.
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Intra-iteration queries
modref ii(i2, Same, i1, L)

None Mod Ref Mod-Ref
m
o
d
r
e
f
i
i
(i

1
,S
a
m
e
,i

2
,L

) N
o
n
e

– – – –
M
o
d

– O T T, O

R
e
f

– A F F, A

M
o
d
-
R
e
f

– A, O T, F T, F, A, O

Loop-carried queries
modref ii(i2, After, i1, L)
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Figure 3.6: Using two modref ii queries to decide a dependence between operations i1
and i2. (left) Intra-iteration queries use the temporal relation Same. (right) Loop-carried (or
inter-iteration) queries use temporal relations Before and After, respectively. The keys T,
F, A, O correspond to true (read-after-write), false (read-after-read), anti (write-after-read),
and output (write-after-write) dependences.

A broad class of premises can be represented as foreign premise queries. Applicability

is limited to the types of queries listed in Section 3.3; it is not always possible to for-

mulate the premise as a foreign premise query. However, when possible, this dissertation

encourages the latter approach, since it simplifies ensemble development and contributes to

collaborative performance. Under the prescribed development strategy, each implementa-

tion should consider “topping” a foreign premise query as a call into an oracle. Even if the

oracle is imperfect, it improves with time, and topping analysis implementations receive

these improvements automatically.

Topping delegates a query to the entire strength of the ensemble. This is achieved

by forming an ensemble: each algorithm is composed such that one algorithm’s chained

queries feed the next. The chain ends with a null algorithm which always reports the most

conservative answer. Client-generated queries enter the ensemble’s top-most member, and

visit each analysis in turn until a precise answer is found or the null algorithm admits defeat.

If an algorithm generates foreign premise queries, it “tops” those queries by feeding them
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into the top-most algorithm (see Figure 3.7).

Without topping, composition by chaining alone resembles the means of composition

in LLVM [51]. Topping can significantly improve an ensemble’s performance as evaluated

in Section 6.1.2.

3.4.1 Example: Solving a Mixed-Logic Query with AoS and UAP

To illustrate collaboration, this section traces through a multi-logic query that is solved

through collaboration of AoS (Section 3.1.1) and UAP (Section 3.1.2).

In the example code from Figure 3.8, an allocation is captured into two pointers src

and dst during program initialization. Elsewhere, the procedure MacGuffin traverses

src linearly, computing some function of its elements, and writes results into dst. Al-

though the programmer wrote compound expressions ... = src[i] and dst[i] =

..., the example lists multiple load and store operations as expanded by the compiler

front-end.

Note that this example looks trivial only because it is contrived to seem so. Since the

initialization and use of pointers src and dst are separated by procedural boundaries,

interprocedural analysis techniques are required to establish that p1 and p2 are equivalent

during the first iteration of loop H . In fact, the compiler cannot even hoist loads L1 and

L3 out of the loop until it establishes that store S1 never modifies src or dst, and thus

pointers p1 and p2 are loop invariant.

One may wish to parallelize the loop in the example. To prove that parallelizing this

loop (and potentially re-ordering its iterations) will not change observable program behav-

ior, the compiler must first prove that every iteration is independent of all others. Assuming

that the function f is pure (i.e., neither accesses memory nor issues side effects), the com-

piler uses seven queries to establish independence of iterations.

1. modref ii(S1, Before, S1, H) tests whether store S1 writes a value that S1 will over-

write in later iterations, i.e., whether there is a loop-carried output dependence.
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Figure 3.7: (top) Several algorithms comprise an ensemble. Premise queries re-enter at
the top of the ensemble. Chained queries pass to the next algorithm in the ensemble. The
ensemble ends with a terminator which returns the conservative answer. (bottom) Path of
a query Q over time. t = 1: Algorithm 2 deconstructs Q into a foreign premise query Q′.
t = 2: Algorithm N solves Q′ and returns the R′. t = 3: Algorithm 2 receives R′ and
combines it with other information to yield the result R for Q.
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1 / / g l o b a l scope
2 i n t myArray [N] = {0} ;
3 s t a t i c i n t ∗ s r c , ∗ d s t ;
4
5 i n t main ( ) {
6 s r c = myArray ;
7 d s t = myArray ;
8 . . .
9 work ( ) ;

10 }
11 . . .
12 void MacGuffin ( ) {
13 f o r ( i =0 ; i<N; ++ i ) { / / Loop H
14 / / The programmer wro te ’ . . . = s r c [ i ] ; ’
15 / / which r e s u l t s i n two l o a d s :
16 r e g i s t e r i n t ∗p1 = ∗ &s r c ; / / Load L1
17 r e g i s t e r i n t tmp = p1 [ i ] ; / / Load L2
18
19 / / The programmer wro te ’ d s t [ i ] = . . . ’
20 / / which r e s u l t s i n a load and a s t o r e :
21 r e g i s t e r i n t ∗p2 = ∗ &d s t ; / / Load L3
22 p2 [ i ] = f ( tmp ) ; / / S t o r e S1
23 }
24 }

Figure 3.8: Example code uses both affine iteration and storage of pointers into memory.
Understanding this code requires a theory of linear integer arithmetic and a theory of the
reachability.

50



2–4. For each of L1, L2, and L3: the query modref ii(Li, Before, S1, H) tests whether

load Li reads values that S1 will overwrite in later iterations, i.e., whether there is a

loop-carried anti dependence.

5–7. For each of L1, L2, and L3: the query modref ii(S1, Before, Li, H) tests whether

store S1 writes a value that Li will read in later iterations, i.e., whether there is a

loop-carried flow dependence.

Ideally, each of those queries returns NoModRef, thus proving that parallelization is

safe. If any query returns otherwise, reordering iterations introduces a race condition. The

compiler would either avoid parallelization or introduce synchronization.

Finally, suppose that our collaborative ensemble contains four analysis implementa-

tions. In order from top to bottom, the ensemble contains:

• AoS: the example algorithm from Section 3.1.1;

• UAP: the example algorithm from Section 3.1.2;

• Basic: a trivial algorithm codifying the knowledge that a named global variable

aliases itself; and,

• Null: the terminator analysis, which always reports the least-precise result.

Discussion will focus on the query modref ii(S1, Before, L2, H). Servicing this query

proceeds as follows:

1. AoS receives the query modref ii(S1, Before, L2, H).

2. AoS determines that S1 accesses the pointer &p2[i] which matches the schema

&a[i1] where a ≡ p2 and i1 ≡ i.

3. AoS determines that L2 accesses the pointer &p1[i] which matches the schema

&b[j1] where b ≡ p1 and j1 ≡ i.
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4. AoS establishes that i1 6= j1 by observing that i is an induction variable of loop H ,

and that this query refers to dynamic instances of S1, L2 from different iterations of

H (parameter Before).

5. AoS formulates a foreign premise query, and tops it: alias pp(p2, Before, p1, H).

(a) AoS receives the query alias pp(p2, Before, p1, H). This query does not

match the AoS query schema. AoS chains the query.

(b) UAP receives the query alias pp(p2, Before, p1, H).

(c) UAP determines that p2 is computed as p2 = load &dst, and that dst

refers to a non-captured storage location.

(d) UAP determines that p1 is computed as p1 = load &src, and that src

refers to a non-captured storage location.

(e) UAP looks up the points-to sets for dst and src. P (&dst) = {myArray}.

P (&src) = {myArray}.

(f) UAP issues a foreign premise query for each pair in P (&dst) × P (&src). In

this case, it tops alias pp(myArray, Before, myArray, H).

i. AoS receives the query alias pp(myArray, Before, myArray, H). This

query does not match the AoS query schema. AoS chains the query.

ii. UAP receives the query alias pp(myArray, Before, myArray, H). This

query does not match the UAP query schema. AoS chains the query.

iii. Basic receives the query alias pp(myArray, Before, myArray, H).

iv. Basic reports MustAlias = alias pp(myArray, Before, myArray, H).

v. UAP relays the chained result.

vi. AoS relays the chained result.

(g) UAP receives the result: MustAlias = alias pp(myArray, Before, myArray, H).

(h) UAP reports: MustAlias = alias pp(p2, Before, p1, H).
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(i) UAP relays the chained result.

(j) AoS relays the chained result.

6. AoS receives the result: MustAlias = alias pp(p2, Before, p1, H).

7. AoS reports: NoModRef = modref ii(S1, Before, L2, H).

3.5 Scheduling Priority

Queries visit each analysis algorithm in an ensemble until a precise result is found. Several

analysis algorithms may be able to solve a query, potentially via different independence

arguments. The order of analysis algorithms is unimportant from a correctness or precision

perspective. Although reordering analysis algorithms may change which algorithm pro-

vides the precise result, the precise results must concur assuming that all ensemble mem-

bers are sound. Said another way, sound analysis algorithms in an ensemble commute.

Although order does not affect correctness, order may have a large impact on perfor-

mance. When several algorithms can provide a precise result via different independence

arguments, it is likely that certain arguments are more efficiently formulated, resulting in a

performance discrepancy. Suppose, for instance, that an analysis implementation A spends

1ms per query and decides 90% of all queries. Independently, implementation B spends

100ms per query and decides 10% of all queries. An ensemble of A above B services

queries in 90%× 1ms + 10%× (1ms + 100ms) = 11ms on average. On the other hand,

an ensemble of B above A services queries in 10%× 100ms+ 90%× (100ms+ 1ms) =

100.9ms on average.

This effect is particularly pronounced in analysis logics which rely on foreign premise

queries. Thus, there is an opportunity to improve query latency in the expected case by

controlling the relative position (or, height) of analysis algorithms in the ensemble.

The CAF uses the notion of a scheduling priority to order algorithms in an ensemble.
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Most analysis algorithms use a default scheduling priority, which means that their relative

positions are arbitrary. The developer may assign higher or lower priorities to more or less

efficient algorithms to place them higher or lower in the ensemble.

Algorithms with low priority receive queries only after high-priority analysis algorithms

have chained the queries. Consequently, the low priority algorithms never consider the

queries which are easily and efficiently solved by those algorithms higher in the ensem-

ble. This reduces the computational load on slower algorithms, in essence using the more

efficient algorithms as a filter.

3.5.1 Ensuring Termination

Topping a premise query introduces a cycle into the ensemble. Developers must ensure

that cycles do not cause infinite recursion. Such assurances resemble familiar termination

arguments: define a query-metric with a lower bound and demonstrate that premises have

a lower query-metric than the original query. The metric depends on the particular analysis

algorithm, though a few examples clarify the approach.

AoS (example from Section 3.1.1) must terminate. Consider this query-metric: index-

ing operations (LLVM’s getelementptr instruction) have a metric one greater than

their base operand; all other operations have a metric of zero. AoS strips one layer of ar-

ray indexing before issuing a premise query, thus decreasing the metric toward the lower

bound. Infinite topping is impossible.

Several analysis algorithms substitute base pointers for address expressions to generate

premise queries. For example, the underlying objects of the C expression c ? &p[i]

: &q.f are p and q. At the IR level, use-lists witness the relationship between com-

pound expressions and their operands. In the absence of Φ-nodes use-lists are an acyclic

relation. We construct a metric by treating this relation as a partial order. Tracing a pointer

to its underlying objects (while avoiding cycles on Φ-nodes) traverses the partial order

monotonically, thus decreasing the metric.
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When several algorithms generate premise queries, the termination argument must con-

sider all algorithms to rule-out compositional infinite loops. The single-algorithm termina-

tion arguments can be extended to the multiple-algorithm scenario either by using a single

metric universally, or by demonstrating that no algorithm’s premises increase another algo-

rithm’s termination metric. Admittedly, neither of these approaches is particularly compos-

able, yet the latter is easy in practice. Indeed, the latter seems conceptually natural; if you

interpret a termination metric as a measure of a query’s complexity, it’s difficult to imagine

two analysis implementations whose models employ opposite notions of complexity.

3.6 Analysis Implementations

The Liberty Research Group has implemented many analysis algorithms in this framework

which cover a broad range of reasoning types. Table 3.2 briefly summarizes the analysis

implementations. Appendix A describes each in depth.

Several of our analysis implementations reason about the semantics of particular in-

structions or other IR features (Basic Loop, Auto-Restrict, Φ-Maze, Semi-Local Function).

SMT-AA reduces many dependence analysis queries into a SMT theorem to be solved

by CVC3 [8]; it uses the theories of Linear Integer Arithmetic (LIA), Non-linear Integer

Arithmetic (NIA), and Uninterpreted Functions (UF). Other implementations support re-

stricted cases of LIA more efficiently (Array of Structures, SCEV). Two analyses reason

about intermediate operations which kill a flow dependence (Kill-Flow, Callsite Depth-

Combinator). Quite a few implementations reason about heap reachability, i.e., restrict-

ing the classes of objects referenced by a pointer field of another object (Global Malloc,

No-Capture Global, No-Capture Source, Disjoint Fields, Sane Type, No-Capture Fields,

Acyclic, Unique Access Paths, Field Malloc). These reachability implementations were

developed in response to the linked-data structures common in general purpose applica-

tions.
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Sensitivity
Analysis

Algorithm
Memory

-flow
Control
-flow

Array/
field

Calling-
context

Demand-
driven?

Foreign-premise
queries

Array of Structures × × X × Fully 1
Auto-restrict × × × X Partially 0
Basic Loop × × X × Fully Many

Callsite X X × X Fully Many
Global Malloc X × × × Partially 0

Kill Flow X X × × Fully Many
No-Capture Global × × × × Fully 0
No-Capture Source × × × × Fully 0

PHI Maze × × × × Fully 0
Semi-Local × × × × Partially Many

Unique Paths X × X X Partially Many
Disjoint Fields × × X × Partially 0
Field Malloc × × X × Partially 1
Sane Types X × × × Partially 1

No-captured Fields X × X × Partially 1
Acyclic × × X × Partially 0

Table 3.2: Summary of analysis algorithms implemented in CAF.

Independently, one can classify analysis implementations as either base or functor im-

plementations. Functor implementations (Array of Structures, Kill Flow, Callsite Depth-

Combinator, Semi-Local Function, Unique Access Paths, Field Malloc, Sane Typing, Non-

captured Fields) are designed to generate foreign premise queries, thus initiating collabo-

ration with other implementations.

3.7 Formal Semantics

This section formalizes the semantics of the query language. This formalization builds

upon a formalization of the small-step semantics of the compiler IR. At a high level, this

formalization will,

• extend the small-step semantics into an instrumentation semantics which tracks a

loop context stack and def-use metadata on each memory location;
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• define notions of feasible paths and restricted feasible paths from the small-step re-

lation; and,

• define the behavior of a sound analysis implementation in terms of the above.

The formalization starts with the Vellvm formalization of the semantics of the LLVM

IR [95, 94]. Vellvm defines a small-step non-deterministic semantics called LLVMND.

LLVMND relates subsequent program states under a given program configuration:

mod, g, θ `M,Σ −→ND M ′,Σ
′

The context mod, g, θ captures the static portion of an execution. The module mod lists

the LLVM bitcode representation of the program, g assigns a distinct identifier value to

each global variable, and θ assigns a distinct identifier value to each function. The program

state M,Σ captures the dynamic portions of an execution. A memory state M represents

a set of memory allocations (or, blocks), each implemented as a contiguous array of bytes.

Σ represents a stack of invocation frames. Among other things, each frame includes a list

(c0, c) representing the current instruction c0 (i.e., program counter) and a continuation c

(i.e., the remaining instruction in the block), and an assignment ∆ of dynamic values to

each of the frame’s register temporaries (i.e., the register set).

The LLVMND semantics are non-deterministic; the step relation potentially relates a

single machine state to multiple successor states. Vellvm introduces this non-determinism

to deal with undefined program behaviors, such as LLVM’s undef value. Otherwise,

LLVMND semantics contain no big surprises. The model of memory is byte-oriented, and

the semantics employ a flattening algorithm to marshal multi-byte values into and out of

memory blocks. Memory cells retain their last-stored value. LLVMND represents memory

addresses as a pair: a block identifier and an offset within that block.

57



3.7.1 The Instrumentation Semantics

This dissertation presents an instrumentation semantics as an extension of the LLVMND

semantics. The instrumentation semantics builds upon Vellvm’s formalization and addi-

tionally tracks loop context li and resource usage metadata du along program executions.

We call it “instrumentation semantics” because this formalization codifies a loop-aware

memory profiler very similar to LAMP [59].

The instrumentation semantics introduces a small-step relation of the form:

mod, g, θ `M,Σ, li, du −→CAF M
′,Σ
′
, li
′
, du

′

Where li denotes a loop context stack and du denotes def-use metadata for each byte of

allocated memory, both described below.

To track loop context and def-use metadata, the instrumentation semantics defines a

non-deterministic step relation for memory operations (allocation, deallocation, load, store)

and for control flow operations (conditional branch, unconditional branch, return). Other

instructions do not affect the loop context or resource usage metadata; the rules correspond-

ing to other instructions are lifted from the LLVMND semantics as follows:

mod, g, θ `M,Σ −→ND M ′,Σ
′

mod, g, θ `M,Σ, li, du −→CAF M ′,Σ
′
, li, du

CAF LIFT DEFAULT

Loop Context Stacks

The loop context stack captures an ordered sequence of loop contexts, representing the

nested invocation of zero or more loops. Each loop context contains a loop (specified

as a loop header basic block H) and an iteration number (specified as a monotonically

increasing integer i):

li ::= li, li|[]
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li ::= (H, i)

A few functions manipulate these stacks. We use length(li) to denote the length of a

context stack li. Function innermost(H, li) finds the position of the innermost invocation

of a loop H in the context stack, where position 0 is the bottom of the stack:

innermost(H, []) = ⊥

innermost(H, ((H, i), li)) = length(li)

innermost(H, ((H ′, i), li)) = innermost(H, li) [H 6= H ′].

Function loopAt(d, li) determines the loop active at position d in the loop stack li:

loopAt(d, li) = loopAtRev(length(li)− d− 1, li)

loopAtRev(d, []) = ⊥

loopAtRev(0, ((H, i), li)) = H

loopAtRev(d, ((H, i), li)) = loopAtRev(d− 1, li) [d > 0].

Function iterationAt(d, li) determines the iteration number at position d in li:

iterationAt(d, li) = iterationAtRev(length(li)− d− 1, li)

iterationAtRev(d, []) = ⊥

iterationAtRev(0, ((H, i), li)) = i

iterationAtRev(d, ((H, i), li)) = iterationAtRev(d− 1, li) [d > 0].

These loop context stacks disambiguate dynamic instances of static instructions. By

combining a static instruction identifier with a loop context stack, we form a contextualized

operation:
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cop ::= c, li

Memory def-use Metadata

A resource represents either the location of a single byte of memory or an externally visible

resource (i.e., operating system side effect). Per Vellvm’s construction, a memory location

is a memory block identifier and an offset within that block:

rc ::= blkid, offset|IO

The instrumentation semantics will track the last definition of each resource, as well as

a set of uses for each resource. A definition is simply a contextualized operation, indicating

the last instruction to define that resource, or a bottom value indicating that the resource

has not yet been defined:

def ::= cop|⊥

The set of uses is a set of contextualized operations which have used a resource:

use ::= use, use|[]

use ::= cop

Finally, metadata represents a map from resources to definitions and use sets. The map

is implemented as a list of associations du,

du ::= du, du|[]

du ::= (rc, def, use)
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Semantics of Memory Operations

The instrumentation semantics updates the loop context stack and def-use metadata in re-

sponse to memory allocation and deallocation, memory loads and stores, control flow, and

procedure invocations. Memory operations affect the def-use metadata, but do not affect

the loop context stack. Figure 3.9 defines the small-step semantics for load, store,

malloc, and free operations.

A memory load instruction accepts a pointer operand valp. Rule CAF LD evaluates

valp with respect to the machine state to determine a set of possible dynamic values Vp.

It chooses vp ∈ Vp non-deterministically. It updates metadata to record that the dynamic

instance (c0, li) of the load instruction uses the resources located at vp through vp +

sizeof(typ)− 1.

A memory store instruction accepts two operands: a pointer valp and a value to be

stored vals. Like load, it evaluates valp and non-deterministically chooses a dynamic

pointer vp. It updates metadata to record that the dynamic instance (c0, li) of the store

instruction defines the resources located at vp through vp + sizeof(typ)− 1. It also clears

the use-sets for those resources.

Allocation and deallocation are modeled as store instructions which overwrite the

entire memory block. Figure 3.9 shows the semantics for malloc and free. Similar rules

are necessary for alloca and the implicit deallocation of stack variables upon function

return; those rules are not shown here.

Semantics of Control-Flow Operations

To maintain the loop context, the instrumentation semantics updates the loop context in

response to control flow instructions: conditional branchs, unconditional branches, and

return instructions. Figure 3.10 presents rules to maintain loop context upon reaching a

branch instruction. Listed here are only those updated rules for a conditional branch that

take its true successor. Other cases are very similar and are omitted.
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mod, g, θ `M,Σ −→ND M,Σ
′

Σ = (fid, l, (c0, c), tmn,∆, α) c0 = (id = load typ valp align)
evalND(g,∆, valp) = bVpc vp ∈ Vp

du
′
= update ld(du, vp, sizeof(typ), (c0, li))

mod, g, θ `M,Σ, li, du −→CAF M,Σ
′
, li, du

′ CAF LD

mod, g, θ `M,Σ −→ND M ′,Σ
′

Σ = (fid, l, (c0, c), tmn,∆, α) c0 = (store typ valp vals align)
evalND(g,∆, valp) = bVpc vp ∈ Vp

du
′
= update st(du, vp, sizeof(typ), (c0, li))

mod, g, θ `M,Σ, li, du −→CAF M ′,Σ
′
, li, du

′ CAF ST

mod, g, θ `M,Σ1 −→ND M,Σ2

Σ1 = ((fid, l0, (c0, c), tmn,∆, α),Σ) c0 = (id = malloc typ val align)
evalND(g,∆, val) = bVsc vs ∈ Vs

evalND(g,∆, id) = bVpc vp ∈ Vp

du
′
= update st(du, vp, vs, (c0, li))

mod, g, θ `M,Σ1, li, du −→CAF M,Σ2, li, du
′ CAF MALLOC

mod, g, θ `M,Σ1 −→ND M,Σ2

Σ1 = ((fid, l0, (c0, c), tmn,∆, α),Σ) c0 = (free typ val)
evalND(g,∆, val) = bVpc vp ∈ Vp

du
′
= update st(du, vp, sizeof(typ), (c0, li))

mod, g, θ `M,Σ1, li, du −→CAF M,Σ2, li, du
′ CAF FREE

Figure 3.9: Instrumentation semantics for memory operations.

62



mod, g, θ `M,Σ1 −→ND M,Σ2

Σ1 = ((fid, l0, [], br v l1 l2,∆, α),Σ) Σ2 = ((fid, l1, c1, tmn1,∆
′, α),Σ)

Edge 〈l0, l1〉 enters loop H

mod, g, θ `M,Σ1, li, du −→CAF M,Σ2, ((H, 0), li), du
CAF BR ENTER

mod, g, θ `M,Σ1 −→ND M,Σ2

Σ1 = ((fid, l0, [], br v l1 l2,∆, α),Σ) Σ2 = ((fid, l1, c1, tmn1,∆
′, α),Σ)

Edge 〈l0, l1〉 is a backedge of loop H

mod, g, θ `M,Σ1, ((H, i), li), du −→CAF M,Σ2, ((H, i+ 1), li), du
CAF BR BACKEDGE

mod, g, θ `M,Σ1 −→ND M,Σ2

Σ1 = ((fid, l0, [], br v l1 l2,∆, α),Σ) Σ2 = ((fid, l1, c1, tmn1,∆
′, α),Σ)

Edge 〈l0, l1〉 exits loop H

mod, g, θ `M,Σ1, ((H, i), li), du −→CAF M,Σ2, li, du
CAF BR EXIT

Figure 3.10: Instrumented semantics for the conditional branch br v l1 l2 when v = true.
Similar rules exist for the case when v = false, for unconditional branches, and for return
instructions that exit one or more loops.

Suppose execution reaches a branch instruction br v l1 l2 in basic block l0, and suppose

the branch transitions to successor block l1. When the control flow edge 〈l0, l1〉 enters a

loop H , rule CAF BR ENTER pushes the new loop context (H, 0) onto the loop context

stack. When the 〈l0, l1〉 traverses the backedge of loop H , rule CAF BR BACKEDGE

increments the iteration number from (H, i) to (H, i+ 1). When the 〈l0, l1〉 exits a loop H ,

rule CAF BR EXIT pops the loop context from the stack.

3.7.2 Feasible Paths and Loop-Restrictions on Paths

The step relation −→CAF computes the effect of executing a single LLVM instruction. By

extension, its transitive closure −→∗CAF relates machine states corresponding to endpoints

of feasible paths. Figure 3.11 defines the −→∗CAF multistep relation as one or more single

steps.

A loop H and an integral position d within the loop context stack specify a loop invo-
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cation.2 For any fixed loop invocation, we construct the−→within(H,d) relation: a restriction

of the −→CAF relation that disallows any transition that would exit the invocation of loop

H at height d in the loop context stack. Figure 3.12 provides a formal definition of this

restriction. Specifically, −→within(H,d) requires that the before and after states both feature

a loop context that includes an invocation of loop H at position d.

The transitive closure −→∗within(H,d) relates machines states corresponding to endpoints

of those feasible paths which remain within an invocation of loop H at position d in the

loop context stack. −→∗within(H,d) is derived from −→within(H,d) in a manner similar to how

Figure 3.11 derives −→∗CAF from −→CAF .

Next, we build some high-level multistep operators. For any fixed loop H and any two

fixed instructions i1, i2, Figure 3.13 constructs the connects-to-in relation. Connects-to-in

relates machine states found along feasible paths of execution which visit i1 and then i2

within an invocation d of loop H . Its definition is straightforward:

1. Execution starts from an initial state and reaches (via−→∗CAF) a dynamic instance of

instruction i1;

2. after executing i1 (via −→within(H,d)), the machine is in state

Safter1 = (Mafter1,Σafter1, liafter1, duafter1);

3. execution continues (via −→∗within(H,d)) to a dynamic instance of instruction i2; and,

4. after executing i2 (via −→within(H,d), the machine is in state

Safter2 = (Mafter2,Σafter2, liafter2, duafter2).

Figure 3.14 constructs−→same(H,i1,i2) and−→cross(H,i1,i2). Both of these operators relate

machine states Safter1 and Safter2 which occur on certain paths of execution. The difference

is whether the path from i1 to i2 stays within the same iteration of H (as in −→same(H,i1,i2))

or crosses the loop backedge of H (as in −→cross(H,i1,i2)).

2Because of recursive procedures, one loop H may experience several simultaneous invocations. This
semantics employs the position d to distinguish these cases.

64



mod, g, θ `M1,Σ1, li1, du1 −→CAF M2,Σ2, li2, du2

mod, g, θ `M1,Σ1, li1, du1 −→∗CAF M2,Σ2, li2, du2

CAF TC1

mod, g, θ `M1,Σ1, li1, du1 −→∗CAF M2,Σ2, li2, du2

mod, g, θ `M2,Σ2, li2, du2 −→CAF M3,Σ3, li3, du3

mod, g, θ `M1,Σ1, li1, du1 −→∗CAF M3,Σ3, li3, du3

CAF TC2

Figure 3.11: The multistep relation −→∗CAF denotes one or more execution steps and is
defined as one or more single steps. It relates machine states corresponding to the endpoints
of feasible paths.

mod, g, θ `M1,Σ1, li1, du1 −→CAF M2,Σ2, li2, du2

loopAt(d, li1) = H loopAt(d, li2) = H

mod, g, θ `M1,Σ1, li1, du1 −→within(H,d) M2,Σ2, li2, du2

CAF WITHIN

Figure 3.12: The Path-restricted small-step operator −→within(H,d) relates machine states
such that execution remains within the same invocation of loop H at depth d.

3.7.3 The modref ii(i1, Same, i2, H) Query

Figure 3.15 defines the semantics of the modref ii(i1, Same, i2, H) query.

All rules follow a common form. The first hypothesis selects intra-iteration paths of

execution. Subsequent hypotheses handle specific cases. The first two rules test whether

instruction i1 defines a resource that instruction i2 will read (CAF MRS MOD1) or write

(CAF MRS MOD2). The second two rules test whether instruction i1 uses a resource that

instruction i2 will read (CAF MRS REF1) or write (CAF MRS REF2).

3.7.4 The modref ii(i1, Before, i2, H) Query

Figure 3.16 defines the semantics of the modref ii(i1, Before, i2, H) query. The struc-

ture of these definitions corresponds to those for modref ii(i1, Same, i2, H), substituting

−→cross(H,i1,i2) for −→same(H,i1,i2).

The first two rules test whether instruction i1 defines a resource that instruction i2

will read (CAF MRB MOD1) or write (CAF MRB MOD2). The second two rules test

65



mod, g, θ ` S0 −→∗CAF S1

mod, g, θ ` S1 −→within(H,d) Safter1

mod, g, θ ` Safter1 −→∗within(H,d) S2

mod, g, θ ` S2 −→within(H,d) Safter2

S1 = M1,Σ1, li1, du1

Σ1 = ((fid1, l1, (i1, c1), tmn1,∆1, α1),Σ
′
1)

S2 = M2,Σ2, li2, du2

Σ2 = ((fid2, l2, (i2, c2), tmn2,∆2, α2),Σ
′
2)

mod, g, θ ` (S1, Safter1, S2, Safter2) connect i1 to i2 in H, d
CAF CONNECT

Figure 3.13: (above) Rule CAF CONNECT defines the connects-to-in relation. For any
fixed instructions i1, i2 and any fixed loop invocation H, d, this relates relates four machine
states along feasible paths that include i1 and i2. State 1 occurs immediately before in-
struction i1, and state After1 immediately follows i1. State 2 occurs immediately before
instruction i2 and state After2 immediately follows i2. All four states occur within loop
invocation (H, d). (below) An illustration of the rule CAF CONNECT, showing machine
states as circles and arrows representing multistep (−→∗CAF, −→∗within(H,d)) and single step
(−→within(H,d)) relations.
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mod, g, θ ` (S1, Safter1, S2, Safter2) connect i1 to i2 in H, d
S1 = M1,Σ1, li1, du1; Safter1 = Mafter1,Σafter1, liafter1, duafter1

S2 = M2,Σ2, li2, du2; Safter2 = Mafter2,Σafter2, liafter2, duafter2

iterationAt(d, li1) = iterationAt(d, li2)

d = minli∈{li1,liafter1,li2,liafter2} innermost(H, li)

mod, g, θ ` Safter1 −→same(H,i1,i2) Safter2

CAF SAME

mod, g, θ ` (S1, Safter1, S2, Safter2) connect i1 to i2 in H, d
S1 = M1,Σ1, li1, du1; Safter1 = Mafter1,Σafter1, liafter1, duafter1

S2 = M2,Σ2, li2, du2; Safter2 = Mafter2,Σafter2, liafter2, duafter2

iterationAt(d, li1) < iterationAt(d, li2)

d = minli∈{li1,liafter1,li2,liafter2} innermost(H, li)

mod, g, θ ` Safter1 −→cross(H,i1,i2) Safter2

CAF CROSS

Figure 3.14: Two restricted multistep relations. −→same(H,i1,i2) relates machine states
which along feasible paths that visit instruction i1 and i2 within a common iteration of
the innermost invocation of loop H . −→cross(H,i1,i2) relates machine states along feasible
paths that visit instruction i1 and i2 within different iterations of the innermost invocation
of loop H .

whether instruction i1 uses a resource that instruction i2 will read (CAF MRB REF1) or

write (CAF MRB REF2).

3.8 Discussion

This chapter introduced collaboration, factored development, details of several implemen-

tations, and a formalization of the query language.

3.8.1 Development of Factored Analysis Algorithms

Because ensembles support collaboration, developers may modularize the development of

analysis algorithms through factorization. Instead of increasingly complicated algorithms

which incorporate additional types of reasoning, factorization achieves precision through

many simple algorithms. Each algorithm disproves queries within its core competence
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mod, g, θ ` Safter1 −→same(H,i1,i2) Safter2

Safter2 = Mafter2,Σafter2, liafter2, duafter2

(rc2, def2, use2) ∈ duafter2

def2 = (i1, li1)

(i2, li2) ∈ use2
modref ii(i1, Same, i2, H) responds Mod or ModRef.

CAF MRS MOD1

mod, g, θ ` Safter1 −→same(H,i1,i2) Safter2

Safter1 = Mafter1,Σafter1, liafter1, duafter1

(rc1−2, def1, use1) ∈ duafter1

def1 = (i1, li1)

Safter2 = Mafter2,Σafter2, liafter2, duafter2

(rc1−2, def2, use2) ∈ duafter2

def2 = (i2, li2)

modref ii(i1, Same, i2, H) responds Mod or ModRef.
CAF MRS MOD2

mod, g, θ ` Safter1 −→same(H,i1,i2) Safter2

Safter1 = Mafter1,Σafter1, liafter1, duafter1

(rc1−2, def1, use1) ∈ duafter1

(i1, li1) ∈ use1
Safter2 = Mafter2,Σafter2, liafter2, duafter2

(rc1−2, def2, use2) ∈ duafter2

(i2, li2) ∈ use2
modref ii(i1, Same, i2, H) responds Ref or ModRef.

CAF MRS REF1

mod, g, θ ` Safter1 −→same(H,i1,i2) Safter2

Safter1 = Mafter1,Σafter1, liafter1, duafter1

(rc1−2, def1, use1) ∈ duafter1

(i1, li1) ∈ use1
Safter2 = Mafter2,Σafter2, liafter2, duafter2

(rc1−2, def2, use2) ∈ duafter2

def2 = (i2, li2)

modref ii(i1, Same, i2, H) responds Ref or ModRef.
CAF MRS REF2

Figure 3.15: The semantics of modref ii(i1, Same, i2, H).
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mod, g, θ ` Safter1 −→cross(H,i1,i2) Safter2

Safter2 = Mafter2,Σafter2, liafter2, duafter2

(rc2, def2, use2) ∈ duafter2

def2 = (i1, li1)

(i2, li2) ∈ use2
modref ii(i1, Before, i2, H) responds Mod or ModRef.

CAF MRB MOD1

mod, g, θ ` Safter1 −→cross(H,i1,i2) Safter2

Safter1 = Mafter1,Σafter1, liafter1, duafter1

(rc1−2, def1, use1) ∈ duafter1

def1 = (i1, li1)

Safter2 = Mafter2,Σafter2, liafter2, duafter2

(rc1−2, def2, use2) ∈ duafter2

def2 = (i2, li2)

modref ii(i1, Before, i2, H) responds Mod or ModRef.
CAF MRB MOD2

mod, g, θ ` Safter1 −→cross(H,i1,i2) Safter2

Safter1 = Mafter1,Σafter1, liafter1, duafter1

(rc1−2, def1, use1) ∈ duafter1

(i1, li1) ∈ use1
Safter2 = Mafter2,Σafter2, liafter2, duafter2

(rc1−2, def2, use2) ∈ duafter2

(i2, li2) ∈ use2
modref ii(i1, Before, i2, H) responds Ref or ModRef.

CAF MRB REF1

mod, g, θ ` Safter1 −→cross(H,i1,i2) Safter2

Safter1 = Mafter1,Σafter1, liafter1, duafter1

(rc1−2, def1, use1) ∈ duafter1

(i1, li1) ∈ use1
Safter2 = Mafter2,Σafter2, liafter2, duafter2

(rc1−2, def2, use2) ∈ duafter2

def2 = (i2, li2)

modref ii(i1, Before, i2, H) responds Ref or ModRef.
CAF MRB REF2

Figure 3.16: The semantics of modref ii(i1, Before, i2, H).

69



and assumes other algorithms provide the necessary diversity of logic to solve its foreign

premises. Factored algorithms are developed independently without requiring knowledge

of others. Factorization enables developers to easily extend algorithm precision according

to the needs of a client.

While developing compiler transformations, one often observes the compiler acting

conservatively due to analysis imprecision. Such cases indicate a deficiency of the ensem-

ble, and represent an untapped niche in the design space for a new algorithm. This section

describes a process to develop new algorithms which are precise in these cases without

requiring developer knowledge of the rest of the ensemble.

Developing algorithms in the proposed framework is no more complicated than de-

veloping a monolithic algorithm because composability allows the developer to remain

largely ignorant of other algorithms in the ensemble. This proposal frequently simplifies

the process by addressing smaller algorithms in isolation. This proposal does not simplify

termination arguments, though in practice they are simple.

The developer first enumerates dependence queries with imprecise results, either man-

ually or by using an automated tool to compare static analysis to profiling. The developer

confirms that each query is imprecise by arguing why its corresponding dependence can-

not manifest. The developer generalizes this argument into an algorithm to recognize such

queries and report independence. Algorithms discovered through this process target queries

which affect the client, focus on common programming idioms instead of the general case,

and are largely orthogonal (see Section 6.1.3) to the ensemble.

3.8.2 Generalization to other Analysis Problems

The problem of dependence analysis primarily motivates the design of the CAF. However,

the CAF is general enough to accommodate different undecidable problems by employing

alternative query languages. Other details, such assembly of analysis implementations into

an ensemble, topping and chaining, and termination guarantees extend to new problem
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domains without change.

3.8.3 Marrying Dependence Analysis with Speculation

This dissertation believes that speculation and dependence analysis are so intertwined that

they should be considered together. Chapter 5 extends CAF to support collaboration with

speculation modules to achieve speculative dependence identification.
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Chapter 4

The Fast DAGSCC Algorithm

“I don’t care how much power, brilliance or energy you have,

if you don’t harness it and focus it on a specific target, and hold it there

you’re never going to accomplish as much as your ability warrants.”

–Zig Ziglar

Users expect compilers to be fast [83] and to generate efficient machine code. How-

ever, aggressive compiler optimizations are sensitive to the quality of dependence iden-

tification [15, 27, 71, 74, 88], and precise dependence identification tends to be expen-

sive [22, 32] and scale poorly [33, 60]. These constraints are mutually detrimental.

This chapter presents the Fast DAGSCC Algorithm which reduces analysis time while

maintaining the same analysis precision. Specifically, the Fast DAGSCC Algorithm allows

the compiler to compute the DAGSCC from a demand-driven dependence identification

framework, such as the CAF presented in Chapter 3. By excluding certain dependence

queries which cannot affect the DAGSCC structure, and which consequently have no effect

on optimizing transformations, the Fast DAGSCC Algorithm halves analysis burden and

achieves a comparable reduction in compilation time.

To be clear, the Fast DAGSCC algorithm is not an improvement over Tarjan’s Algorithm.

In fact, Tarjan’s algorithm is optimal when a graph is known a priori. In a compiler, the
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graph is not known until dependence analysis has computed the graph. Fast DAGSCC is

actually an improved algorithm for graph discovery while of computing the DAGSCC.

4.1 Background

In a Program Dependence Graph (PDG), each instruction in the scope is represented as a

vertex. Edges represent control and data dependences. Figure 4.3(a) shows an example of

a PDG.

The Directed Acyclic Graph of the Strongly Connected Components (DAGSCC) is sim-

plification the PDG which represents dependence cycles explicitly. The DAGSCC partitions

the scope’s instructions into strongly connected components: sets of instructions which are

bi-connected by a dependence cycle, or singleton sets of instructions which do not partake

in a dependence cycle. The DAGSCC represents each block of that partition as a vertex and

DAGSCC edges relate components c1, c2 iff they contain instructions i1 ∈ c1, i2 ∈ c2 such

that (i1, i2) is an edge in the PDG. The DAGSCC contains less information than the PDG

since it does not represent the many PDG edges among instructions assigned to a com-

mon component. The DAGSCC is an ideal representation for certain scheduling algorithms

including the DSWP-family of thread extraction techniques [71, 74, 87].

To construct the DAGSCC of a loop, a naı̈ve compiler considers the presence or absence

of a dependence edge between every pair of vertices (operations) to compute a PDG, then

identifies cycles in the PDG and condenses them into a DAGSCC. However, not all depen-

dences in the PDG contribute equally to the structure of the DAGSCC. Once a PDG is par-

tially computed, some edges have no marginal value since they do not affect the structure of

the DAGSCC and thus cannot affect the answer to optimization questions. By eliminating

these redundant dependence edges, a compiler computes the DAGSCC with fewer depen-

dence queries in less time. Compiler authors may spend these savings on costlier analyses

in pursuit of aggressive optimization.
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An ideal algorithm would perform queries only for those edges found in a transitive

reduction of the PDG (to join components), as well as queries to ensure the absence of back

edges (to separate components). This, however, leads to a problem: the compiler does not

know the PDG a priori, and so it cannot distinguish redundant edges from constructive

ones. Instead, this dissertation proposes an approximation of that ideal.

The top half of Figure 4.1 illustrates one class of redundant dependences: edges that

order two vertices whose components are already ordered. This is a large class of de-

pendences, which grows quadratically in the number of components and quadratically in

component size. Across SPEC CPU2006, empirical study indicates that two-thirds of all

loops have 5–968 SCCs and two-thirds of all components have 8.4–1118.0 vertices.

Another class of redundant dependences are illustrated in the bottom half Figure 4.1:

edges within a component other than a minimum cycle that spans the component. This

class grows quadratically in component size and linearly in the number of components.

The only dependences which contribute to finding the condensation graph are the class

which join separate components, demonstrated in Figure 4.2. These grow quadratically in

the size of components and quadratically in the number of components. Although this is

a large class, any one dependence between a pair of components will constrain the entire

component. Conversely, the absence of these dependences also has value, since only af-

ter analysis returns negative results can the algorithm confidently report that the separate

components are separate.

By periodically interrupting PDG construction to recompute strongly connected com-

ponents, the proposed algorithm identifies dependence edges and eliminates dependence

queries which are definitely in classes (d) and (e) while focusing on those dependence

queries which seem to be within class (f). This approach is informed by the following

heuristic: if the compiler can build large components quickly, it can safely exclude more

edges. Further, this technique performs more computation to actively search for opportu-

nities to elide queries. This strategy will not be faster in the worst case since the overhead
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Figure 4.1: (above) The new red edges redundantly order components. They do not change
the condensation, thus have no marginal value; (below) The new red edges remain within a
component. They do not change the condensation, thus have no marginal value

Figure 4.2: The new red edges violate the previous topological ordering. They are valuable
since they invalidate the topological ordering and may change the condensation.
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of recomputing components may overwhelm the benefits for loops with a very low average

component size. However, the common case is more amenable to this strategy; experiments

show that the proposed method is faster for all but 14 of 366 loops.

Control dependences represent cases where one instruction may prevent another in-

struction from executing; for instance, an if-statement controls its then- and else-

clauses. Data dependences represent the flow of data between instructions. We distinguish

register data dependences from memory data dependences. Register and control depen-

dences are computed quickly in practice.

Query(v1.inst, v2.inst, type) denote a demand-driven dependence analysis query into

the collaborative analysis framework. It determines whether there is a memory dependence

from the instruction associated with vertex v1 to the instruction associated with vertex v2;

type is either Loop-Carried or Intra-Iteration.

In the algorithms below, TarjanSCC refers to Tarjan’s Algorithm for Strongly Con-

nected Components [82]. Tarjan’s algorithm reports SCC structure as well as a topological

sort of those components and runs in time linear in the number of vertices and edges.

4.2 Baseline Algorithm

The baseline algorithm (Algorithm 1) builds a full PDG, including all register, control

and memory dependences. To find memory dependences, it queries every pair of vertices

(corresponding to instructions in the IR) which access memory to determine if there is a

loop-carried or intra-iteration memory dependence. It then invokes Tarjan’s algorithm to

find the strongly connected components of that PDG, and condenses those components into

a DAGSCC.
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Algorithm 1: Baseline computeDagScc(V)
let E := computeRegisterDeps(V ) ∪ computeControlDeps(V );
foreach vertex vsrc ∈ V which accesses memory do

foreach vertex vdst ∈ V which accesses memory do
if Query(vsrc.inst, vdst.inst,Loop-Carried) then

let E := E ∪ {〈vsrc, vdst,Loop-Carried〉};
end
if Query(vsrc.inst, vdst.inst, Intra-Iteration) then

let E := E ∪ {〈vsrc, vdst, Intra-Iteration〉};
end

end
end
return TarjanSCC(V,E);

4.3 Client-Agnostic Algorithm

Algorithm 2 lists the client-agnostic version of the Fast DAGSCC algorithm. The client-

agnostic method starts by computing register and control dependences. This yields a

PDG which is only partially computed since it lacks memory dependences. Next, it per-

forms queries only between the vertices of select components in withTheGrain and

againstTheGrain. These queries correspond to those dependence edges which most

quickly merge components into larger components. This leads to a savings in the number of

memory dependence queries since dependences between vertices in a common component

cannot further constrain the DAGSCC.

The routine withTheGrain (Algorithm 3) considers pairs of components cearly and

clate where cearly appears before clate in the topological sorting of components. withTheGrain

exploits the feature that Tarjan’s algorithm provides a topological sorting of the components

with no additional computation. Figure 4.3(a) shows a topological sort. withTheGrain

only performs queries that flow along topological order (i.e. from cearly to clate), and only

between components that are not already immediately ordered. Such queries neither cause

separate components to merge, nor invalidate the topological sorting of components, as

illustrated in Figure 4.3(b).
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Algorithm 2: Client-Agnostic computeDagScc(V)
let E := computeRegisterDeps(V ) ∪ computeControlDeps(V ) ;
let TopSort0 := TarjanSCC(V,E) ;
• // (Point X)
let E0 := E ∪ withTheGrain(E,TopSort0) ;
for i = 1 to∞ do
• // (Point Y)
let E′ := againstTheGrain(TopSorti−1) ;
if E′ = ∅ then

return TopSorti−1 ;
end
let E′i := Ei−1 ∪ E′ ;
let TopSorti := TarjanSCC(V,E′i) ;
let Ei := E′i ∪ withTheGrain(E′i,TopSorti) ;

end

Figure 4.3: A partially computed PDG. (a) Topological sort (grey lines) imposes a total
order on the partially ordered components. (b) withTheGrain (Algorithm 3) performs
queries to discover edges between components with increasing position in the topolog-
ical sort. Such edges neither cause SCCs to merge nor invalidate the topological sort.
Here, a new edge is discovered from component three to six. (c) againstTheGrain
(Algorithm 4) performs queries to discover edges between components with decreas-
ing position. Here, a new edge is discovered from component five to three. (d) When
againstTheGrain discovers new edges the topological sort is invalidated and compo-
nents may merge.
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Algorithm 3: withTheGrain(E0, TopSort)
let E′ := ∅;
let N := size(TopSort);
for i = N-1 down to 0 do

let clate := TopSort(i);
for j = i-1 down to 0 do

let cearly := TopSort(j);
if ¬hasEdge(cearly, clate,E0) then

let E′ := E′ ∪ findOneEdge(cearly, clate);
end

end
end
return E’ ;

The routine againstTheGrain (Algorithm 4) searches for dependences between

pairs of components. Unlike withTheGrain, againstTheGrain only performs queries

which may add edges that violate topological sort order, i.e. those from a vertex in a com-

ponent clate to a vertex in a topologically-earlier cearly. The rationale is that such queries

quickly form larger components (Figure 4.3(c)). Large components have a compound-

ing effect, further reducing the number of queries performed later. This routine performs

enough queries to test every absence of an edge if none exists, allowing the algorithm to

report that two components are separate.

Algorithm 4: againstTheGrain(TopSort)
let E := ∅;
let N := size(TopSort);
for i = N-1 down to 0 do

let clate := TopSort(i);
for j = i-1 down to 0 do

let cearly := TopSort(j);
let E′ := findOneEdge(clate, cearly);
let E := E ∪ E′;
if E′ 6= ∅ then

break;
end

end
end
return E;
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The routine findOneEdge (Algorithm 5) performs queries from a source component

to destination component. It stops after it finds the first edge between them since additional

edges would order those two components redundantly.

Algorithm 5: findOneEdge(csrc, cdst)
foreach vertex vsrc ∈ csrc which accesses memory do

foreach vertex vdst ∈ cdst which accesses memory do
if Query(vsrc.inst, vdst.inst,Loop-Carried) then

return {〈vsrc, vdst,Loop-Carried〉};
end

end
end
foreach vertex vsrc ∈ csrc which accesses memory do

foreach vertex vdst ∈ cdst which accesses memory do
if Query(vsrc.inst, vdst.inst, Intra-Iteration) then

return {〈vsrc, vdst, Intra-Iteration〉};
end

end
end
return ∅;

4.4 Extensions for PS-DSWP

The DAGSCC guides clients such as DSWP [74] or loop fission [6, 43]. Some clients

want more information than the DAGSCC offers. The proposed algorithm may be extended

to needs of particular clients. Despite these additional requirements, one can implement

these extensions while achieving comparable performance improvements over the base-

line. Two dimensions characterize client-specific extensions of the algorithm: additional

requirements of dependence information and opportunities to abort early.

Parallel Stage Decoupled Software Pipelining (PS-DSWP) is an illustrative example

of such a client. PS-DSWP is an automatic thread-extraction technique with great per-

formance potential [71, 88]. PS-DSWP partitions the DAGSCC into pipeline stages such

that all communication and synchronization flow forward in pipeline order (i.e. forbidding
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cyclic communication among worker threads). PS-DSWP delivers scalable speedups when

a large parallel stage is available; conversely, PS-DSWP does not transform the code when

no significant parallel stage is present.

PS-DSWP requires slightly more dependence information than is present in the DAGSCC.

Beyond the DAGSCC , PS-DSWP classifies each SCC as either DOALL or Sequential ac-

cording to the absence or presence of loop-carried dependences. Parallel stages are as-

sembled from the DOALL SCCs such that no loop-carried dependence exists among any

instruction assigned to the parallel stage. Algorithm 2 does not guarantee that sufficient

queries will be performed to discriminate DOALL and Sequential SCCs. To support PS-

DSWP, the algorithm must perform additional queries to classify each SCC as DOALL or

Sequential. These additional queries are still fewer than the full PDG and DAGSCC guides

the compiler to search for such queries. As a further optimization, DAGSCC construction

may abort early if the DAGSCC becomes so constrained that PS-DSWP cannot extract a

significant parallel stage.

We extend Algorithm 2 for the needs of PS-DSWP in Algorithm 6. The routine check-

ReflexiveLC checks for loop-carried dependences from any operation in a candidate

DOALL SCC to itself, stopping after it finds one. checkWithinSccLC checks for loop-

carried dependences from any operation located in a candidate DOALL SCC to any other

operation in the same SCC. The latter contains the former, but experience suggests that pri-

oritizing reflexive queries tends to exclude many components from the parallel stage after

only a linear number of queries, whereas querying in checkWithinSccLC is quadratic.

At the end, the algorithm invokes checkWithinSccLC again since components have

grown, potentially including more loop-carried dependences. These checks are cheaper

than full PDG construction since they only query among candidate DOALL SCCs, not all

SCCs.

In PS-DSWP parallelization, loop-carried dependences between DOALL SCCs pre-

vent the mutual assignment of those components to a parallel stage [71]. The routine
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Algorithm 6: PS-DSWP-Aware computeDagScc(V)
let E := computeRegisterDeps(V ) ∪ computeControlDeps(V );
let TopSort := TarjanSCC(V,E);
abortIfPsInsubstantial(V,E,TopSort);
let E := E ∪ checkReflexiveLC(V );
abortIfPsInsubstantial(V,E,TopSort);
let E := E ∪ checkWithinSccLC(TopSort) ;
abortIfPsInsubstantial(V,E,TopSort);
let E := E ∪ withTheGrain(E,TopSort);
while true do

let E′ := againstTheGrain(TopSort);
if E′ = ∅ then

break;
end
let E := E ∪ E′;
let TopSort := TarjanSCC(V,E);
abortIfPsInsubstantial(V,E,TopSort);
let E := E ∪ withTheGrain(E,TopSort) ;

end
let E := E ∪ checkBetweenDoallSccs(TopSort) ;
abortIfPsInsubstantial(V,E,TopSort);
let E := E ∪ checkWithinSccLC(TopSort) ;
return TopSort ;
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checkBetweenDoallSccs performs queries to find such dependences. These checks

are cheaper than full PDG construction, since they only consider pairs of DOALL SCCs.

abortIfPsInsubstantial cancels construction if no substantial parallel stage is

present whenever the upper bound on the parallel stage may change. For evaluation, we

say a stage is “substantial” if it contains memory accesses or calls.

4.5 Proof of Correctness

We present a proof that our proposed method (Algorithm 2) produces a DAGSCC that is

equivalent to the one produced by the baseline method (Algorithm 1), both in terms of

partitioning the set of vertices V into the same SCCs, and in terms of drawing the same

edges between SCCs.

Both algorithms partition the same set of vertices V . Let CB, CP represent the com-

ponents returned by the baseline and proposed algorithms, respectively. Each algorithm

computes its own set of edges EB and EP , respectively, between pairs of vertices in V .

Two components in the DAGSCC are connected with an edge if there exists an edge be-

tween members of those components: for any components c1, c2 ∈ CB, we write c1 →B c2

iff there is an edge 〈v1, v2〉 ∈ EB such that v1 ∈ c1 and v2 ∈ c2. Similarly, for any compo-

nents c1, c2 ∈ CP , we write c1 →P c2 iff there is an edge 〈v1, v2〉 ∈ EP such that v1 ∈ c1

and v2 ∈ c2.

Let B(v) ∈ CB denote the strongly connected component which contains vertex v

as reported by the baseline algorithm. Let P (v) ∈ CP denote the strongly connected

component which contains v as reported by the proposed algorithm.

We state our equivalence in Theorems 1 and 2.

Theorem 1 (CB and CP induce the same partition of V ). For every t, u ∈ V , B(t) = B(u)

iff P (t) = P (u).

Proof. Follows immediately from Lemmas 3 and 5.
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Theorem 2 (〈CB,→B〉 is isomorphic to 〈CP ,→P 〉). For every t, u ∈ V , B(t) →B B(u)

iff P (t)→P P (u).

Proof. We construct the correspondence Ψ = B(v) 7→ P (v) for all v ∈ V .

Lemmas 3 and 5 show that Ψ is a bijective function.

Lemmas 4 and 6 show that t→B u iff Ψ(t)→P Ψ(u).

We prove both Theorems using the following lemmas.

Lemma 1 (Forward Preservation of Edges, Simplified). Ignoring the break in Algo-

rithm 4, if 〈t, u〉 ∈ EB then P (t)→P P (u).

Proof. During an invocation of the proposed method (Algorithm 2), execution will neces-

sarily reach Point Y.

Components evolve during the execution of the proposed algorithm; to avoid confusion

we refer to specific versions of the components. Let Pi(v) denote the strongly connected

component which contains vertex v at Point Y in the i-th iteration of the loop. In other

words, Pi(v) finds the component that contains v within the variable TopSorti−1. Note that

P (v) is the value of Pi(v) during the final iteration.

We consider three cases based on the relative positions of Pi(t) and Pi(u) in the topo-

logical sort of components reported by TarjanSCC, observed at Point Y.

Case 1: During any iteration i, Pi(u) appears before Pi(t) in the topological sort.

During that iteration, the invocation of againstTheGrain (Algorithm 4) necessar-

ily reaches an iteration during which clate = Pi(t). It visits every earlier component cearly,

invoking findOneEdge on each until an edge is discovered. Ignoring the break state-

ment in Algorithm 4, we will reach an iteration in which cearly = Pi(u).

againstTheGrain: cearly
findOneEdge←− clate

↓ ↓

TopSorti−1: · · · Pi(u) · · · Pi(t) · · ·
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findOneEdge (Algorithm 5) will perform queries between the elements of Pi(t) and

Pi(u) until an edge is found.

During the execution of the baseline algorithm, the call to Query(t.inst, u.inst, f) re-

turns true given that 〈t, u〉 ∈ EB. Note that Query depends only on its arguments, so it

behaves the same during the execution of the proposed algorithm.

If findOneEdge reaches the iteration where (vsrc, vdst) = (t, u), then Query(t.inst, u.inst, f)

will again return true, thus adding the edge 〈t, u〉. The only case it may not reach that

iteration is when findOneEdge finds some other edge between those components. Thus,

Pi(t)→P Pi(u).

Case 2: During any iteration i, Pi(t) appears at the same position as Pi(u) in the

topological sort. That is, Pi(t) = Pi(u).

TopSorti−1: · · · Pi(v1), Pi(v2) · · ·

By reflexivity, Pi(t)→P Pi(u).

Case 3: Pi(u) never appears before or at the same position as Pi(t) in the topological

sort during any iteration.

P1(t) appears before P1(u) in the topological sort of components during the first itera-

tion of the loop. The topological sort is not updated between Point X and Point Y in the first

iteration, so P1(t) appears before P1(u) in the topological ordering before the invocation

of withTheGrain (Point X in Algorithm 2).

withTheGrain: cearly
findOneEdge−→ clate

↓ ↓

TopSorti−1: · · · P1(v1) · · · P1(v2) · · ·

The algorithm withTheGrain necessarily reaches an iteration during which cearly =

P1(t) and clate = P1(u). If there is not already an immediate ordering relationship P1(t)→P

P1(u), withTheGrain passes those components to findOneEdge. Since 〈t, u〉 ∈ EB,
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we know that Query(t.inst, u.inst, f) returned true. Thus, findOneEdge must find an

edge (either 〈t, u〉 or an earlier one) between these components: P1(t)→P P1(u).

In all cases, we have Pi(t)→P Pi(u) for some i.

Observe that the proposed algorithm may add edges to the graph, but never removes

edges from the graph. Adding edges may cause two separate components to merge into

one, but never splits a component. Thus, for any vertex v and iteration i: Pi−1(v) ⊆ Pi(v).

Since P (v) is the value of Pj(v) in the final iteration j, it follows that P (t)→P P (u).

Lemma 2. Considering the break in Algorithm 4, if 〈t, u〉 ∈ EB then P (t)→P P (u).

Proof. The only difference between the simplified and proposed algorithms occurs in Lemma 1,

Case 1: during iteration i, Pi(u) appears before Pi(t) in the topological sort.

The invocation of againstTheGrain (Algorithm 4) necessarily reaches an iteration

during which clate = Pi(t). It visits every earlier component cearly invoking findOneEdge

until an edge is discovered.

Suppose there is an intervening component Pi(x) 6= Pi(u) such that findOneEdge

discovers an edge 〈w, x〉 from w ∈ Pi(t) to x ∈ Pi(x). This edge causes the loop to break

before visiting cearly = Pi(u).

againstTheGrain: cearly
findOneEdge←− clate

↓ ↓

TopSorti−1: · · · Pi(u) · · · Pi(x) · · · Pi(t) · · ·

← break

After the new edge is found, the algorithm recomputes components and may change

their relative positions. Either Pi+1(u) precedes Pi+1(t) in the topological sort TopSorti+1,

or they merge, or Pi+1(t) precedes Pi+1(u). In the latter case, the subsequent invocation

of withTheGrain immediately detects an edge from a vertex in Pi+1(t) to a vertex in

Pi+1(u). Thus we need only consider the case in which they maintain their relative topo-

logical order.
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We argue inductively that such an iteration of Algorithm 2 will be followed by an-

other iteration that falls into Case 1, yet has one fewer intervening component. Assume

that Pi+1(u) precedes Pi+1(t). Observe that the component Pi+1(x) cannot appear before

Pi+1(t) because of the newly discovered edge 〈w, x〉. Consequently, there is one fewer

intervening component that could cause an later invocations of againstTheGrain to

break. As a new edge 〈w, x〉 was found, the loop in Algorithm 2 will perform at least one

more iteration. Thus, in the next iteration againstTheGrain will be one break closer

to Lemma 1. After sufficient iterations, all intervening components have been eliminated

and Lemma 1 Case 1 applies.

Lemmas 1 and 2 demonstrate that edges in EB will order components in CP . We

next strengthen this statement to show that edges between components in CB will order

components in CP in Lemma 4, but first we prove the following.

Lemma 3 (Wholeness of Components, Forward). For any vertices t, u ∈ V , if B(t) =

B(u) then P (t) = P (u).

Proof. Vertices t and u belong to the same strongly connected component of CB, so there

is a path from t to u:

〈t, t1〉 , 〈t1, t2〉 , . . . , 〈tj−1, tj〉 , 〈tj, u〉 ∈ EB

and a path from u to t:

〈u, u1〉 , 〈u1, u2〉 . . . , 〈uk−1, uk〉 , 〈uk, t〉 ∈ EB.

By Lemma 2 this implies that there is a cycle across the corresponding components of

CP : P (t) →P P (t1) →P . . . →P P (tj) →P P (u) →P P (u1) →P . . . →P P (uk) →P

P (t).
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This, in turn, implies that P (t) = P (t1) = . . . = P (tj) = P (u) = P (u1) = . . . =

P (uk).

Lemma 4 (Preservation of Structure, Forward). For any vertices t, u ∈ V , if B(t) →B

B(u) then P (t)→P P (u).

Proof. By definition of→B, there is an edge 〈x, y〉 ∈ EB such that x ∈ B(t) and y ∈ B(u).

By Lemma 2 we know P (x)→P P (y).

Since components are a partition of all vertices, x ∈ B(t) implies B(t) = B(x). Simi-

larly, B(u) = B(y).

By Lemma 3, P (t) = P (x) and P (u) = P (y).

Thus, P (t)→P P (u).

Lemma 5 (Wholeness of Components, Reverse). For any two vertices t, u ∈ V , if P (t) =

P (u) then B(t) = B(u).

Proof. Vertices t and u belong to the same strongly connected component of CP , so there

is a path from t to u:

〈t, t1〉 , 〈t1, t2〉 , . . . , 〈tj−1, tj〉 , 〈tj, u〉 ∈ EP

and a path from u to t:

〈u, u1〉 , 〈u1, u2〉 . . . , 〈uk−1, uk〉 , 〈uk, t〉 ∈ EP .

Since the baseline performs all queries, EP ⊆ EB, and the same a cycle connects the

corresponding components of CB: B(t) →P B(t1) →P . . . →P B(tj) →P B(u) →P

B(u1)→P . . .→P B(uk)→P B(t).

This, in turn, implies that B(t) = B(t1) = . . . = B(tj) = B(u) = B(u1) = . . . =

B(uk).
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Lemma 6 (Preservation of Structure, Reverse). For any vertices t, u ∈ V , if P (t)→P P (u)

then B(t)→B B(u).

Proof. By definition of →P , there is an edge e = 〈x, y〉 ∈ EP such that x ∈ P (t) and

y ∈ P (u). Since components are a partition of vertices, P (x) = P (t) and P (y) = P (u).

By Lemma 5, it follows that B(x) = B(t) and B(y) = B(u). Since EP ⊆ EB, e ∈ EB

and therefore B(x) →B B(y). By substitution we obtain that B(t) →B B(u) as desired.

4.6 Engineering Considerations

As scopes of optimization grow large, so too must graph representing that scope. Large

graphs often present performance challenges since their representations do not fit into a

processor’s cache and graph access patterns are rarely cache-friendly. This section de-

scribes engineering considerations and the design of graph data structures for the PDG and

the DAGSCC.

4.6.1 Compact Representation of the Set of Vertices

A program scope is fixed prior to DAGSCC construction. This scope generally com-

prises a set of N instructions syntactically contained within a program loop. To sim-

plify data structures, we first assign each instruction i a unique integer ID VID(i) in the

range [0, N). A sorted array of pointers to llvm::Instruction objects represents

the mapping between instructions and their IDs. Given an ID, we find the pointer to the

llvm::Instruction in O(1) time; given a pointer to the llvm::Instruction

object, we find its ID in O(logN) time.

Note that this instruction-ID mapping is non-deterministic since the relative ordering of

pointers will vary across program runs. This non-determinism cascades through subsequent

data structures and ultimately makes the Fast DAGSCC Algorithm non-deterministic as
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s t r u c t P a r t i a l E d g e
{

/ / Loop−c a r r i e d , i n t r a− i t e r a t i o n c o n t r o l dependence
bool l c c t r l : 1 ;
bool i i c t r l : 1 ;

/ / Loop−c a r r i e d , i n t r a− i t e r a t i o n r e g i s t e r da ta dependences
bool l c r e g : 1 ;
bool i i r e g : 1 ;

/ / Loop−c a r r i e d , i n t r a− i t e r a t i o n memory da ta dependences
bool lc mem : 1 ;
bool lc mem known : 1 ;
bool i i mem : 1 ;
bool i i mem known : 1 ;

} ;

Figure 4.4: Eight bits characterize the dependences between two vertices.

well. Alternatively, one could construct a deterministic vertex numbering scheme which

would result in a deterministic algorithm. A deterministic vertex numbering scheme is

easily derived from a total order on the instructions in the loop: sort the vertices and number

them in order. A natural choice of total order on vertices is to order them by their instruction

opcodes and operands.

4.6.2 Compact Representation of Edges

Control and register data edges are computed eagerly, however memory data edges are

computed lazily. Thus, the edge representation must treat memory dependences as three-

valued: absent edge, present edge, or edge not yet queried. Eight bits represent the depen-

dence relationship between a pair of vertices in Figure 4.4.

During the execution of the Fast DAGSCC Algorithm, edges may be added to the graph.

However, edges will never be removed from the graph.

Recall that dependence graphs are not transitive, reflexive, or symmetric. These prop-

erties preclude many simplified graph representations, such as union-find or triangular bit-
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Figure 4.5: A sorted adjacency list representation of the PDG. Each row v encodes all
dependences from the instruction i where VID(i) = v. Each adjacency object contains a
destination VID d and aggregates four 8-bit edges. Those four edges correspond to de-
pendences from instruction i to instructions with VIDs d + 0, d + 1, d + 2, and d + 3.
Packing several edges into an adjacency object reduces wasted space and improves cache
performance.

matrices. Dependence graphs are huge yet sparse. Bit-matrices are wasteful and so large

as to incur poor cache performance. Hash-table based graph representations lack spatial

locality, and thus are hard on the memory hierarchy.

This work uses a sparse, sorted adjacency list representation for the set of partially

known dependence edges. Figure 4.5 illustrates this representation. The graph maintains

an array of pointers to adjacency lists, and each adjacency list is a resizable array (a C++

std::vector) of adjacency objects sorted by their vertex ID fields. Consider a depen-

dence from an instruction with vertex ID v to an instruction with vertex ID w. To find an

edge, we select the adjacency list at row v, and then we binary search within that list for an

adjacency object matching w. Overall look-up time is O(log n). Insertion time is linear in
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the size of an adjacency list, but in practice, insertion is efficient because the vast majority

of adjacency lists are short and cache performance is good.

Notice that an adjacency object contains four edges rather than one. This is a cache

optimization. If, alternatively, each adjacency object contained simply a 32-bit vertex ID

and a single 8-bit edge, the adjacency object would require 40 bits yet data alignment rules

would force the adjacency object to occupy 64 bits. Consequently, 37.5% of the memory

used to represent an adjacency list would be wasted, reducing cache efficiency.

Instead, an adjacency object packs four edges. The adjacency’s vertex ID field is con-

strained to a multiple of four. The look-up operation is updated to binary search the adja-

cency list for vertex w − (w mod 4) and then select the (w mod 4)-th edge within the

adjacency object. Overall look-up time is still O(log n) but with improved cache perfor-

mance and a decreased constant factor.

4.7 Discussion

Performance of the Fast DAGSCC Algorithm is presented in Chapter 6. The Fast DAGSCC

Algorithm compares favorably to the baseline algorithm, which constructs a full PDG and

then condenses its components.

4.7.1 Determinism

All proposed algorithms are deterministic, modulo the order in which they iterate over sets

of vertices or over components.

In particular, different iteration orders in the four foreach loops in Algorithm 5 af-

fects which dependence is discovered first. Similarly, Algorithms 4 and 3 iterate over com-

ponents in topological order. However, components are only partially ordered, so several

topological sorts are possible. The topological sort chosen in these algorithms is precisely

the topological sort returned by Tarjan’s algorithm, which, in turn, depends upon the order
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in which Tarjan’s algorithm iterates over vertices and over successors of a vertex.

One can force the algorithm to behave deterministically by choosing a graph representa-

tion which supports deterministic iteration orders for all of these cases. The data structures

employed here do not offer determinism, specifically the bidirectional map between vertex

IDs and pointers to llvm::Instruction objects. They could be made deterministic

by using a perfect hash function instead of pointer addresses.

4.7.2 Antagonistic Graphs

Tarjan’s algorithm to compute the SCCs of a graph is optimal. The performance benefits

of the Fast DAGSCC Algorithm do not represent an improvement to Tarjan’s algorithm.

Instead, they stem from an improvement PDG construction time. These improvements are

heuristic; there are some antagonistic PDGs for which Fast DAGSCC will not improve over

the baseline or potentially run more slowly.

We will examine two different notions of an antagonistic PDG. The first is constructed

to maximize the number of dependence analysis queries performed by the Fast DAGSCC

Algorithm. The second is constructed to maximize the number of invocations of Tarjan’s

Algorithm.

Maximum Dependence Analysis Queries

The Fast DAGSCC Algorithm’s performance improvements over baseline are primarily at-

tributed to a decrease in the number of dependence analysis queries. Thus, one notion of an

antagonistic graph is that in which the number of dependence analysis queries approaches

that performed by the baseline. Note that our graph representation (see Section 4.6) tracks

memory dependence edges as a three-valued quantity; no pair of vertices will be queried

more than once, and consequently the worst-case number of memory dependence queries

is precisely the number performed by the baseline: n2
m, where nm is the number of instruc-

tions in the scope which access memory.
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To achieve this worst-case quadratic behavior, imagine the degenerate graph which

features no register dependences, no control dependences, and no memory dependences.

Following Algorithm 2, such a graph will invoke TarjanSCC once to compute TopSort0,

invoke withTheGrain once to computeE0, and invoke againstTheGrain once dur-

ing the first iteration of the loop to compute E ′. Since the graph contains no edges of any

kind, E ′ = ∅ and thus the algorithm terminates.

withTheGrain issues queries for every pair 〈cearly, clate〉 of components, and against-

TheGrain issues queries for every pair 〈clate, cearly〉. As there are no edges in this graph,

every vertex belongs to its own singleton component in TopSort0. Hence, these algorithms

together will issue queries among every pair of vertices and achieve the worst-case n2
m

queries.

Maximum Invocations of TarjanSCC

The Fast DAGSCC Algorithm uses a topological sort of the partially-constructed graph to

identify and cull redundant edges. However, only the final invocation of TarjanSCC is

returned as a result, and all earlier invocations can be considered overhead of the algorithm.

Thus, another notion of the antagonistic graph is one which causes the maximum number

of invocations of TarjanSCC. Note that the running time of TarjanSCC is small in

comparison to the cost of dependence analysis queries, and so this notion of antagonistic

graph is more theoretical than practical.

Algorithm 2 invokes TarjanSCC once at the onset and once every time the call to

againstTheGrain finds additional dependence edges.

Consider a graph of vertices v1, v2, . . . , vn which has no register and no control depen-

dences, yet which features a “backbone” of memory dependence edges 〈vi+1, vi〉 for all

1 ≤ i < n. In the absence of edges (and thus, absence of cycles), TarjanSCC parti-

tions those vertices to singleton components ci = {vi} and provides an arbitrary1 order of

1Here, arbitrary means that there are several valid topological sorts. The actual order is determined by
the iteration order from the underlying graph representation. This analysis assumes that TarjanSCC and
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those components. Assume that order is c1, c2, . . . , cn. Further, assume that TarjanSCC

delivers a consistent relative ordering of unordered components across every invocation.

Algorithm 2 proceeds as follows. During each iteration i = 1, 2, . . ., the call to against-

TheGrain discovers the edge 〈vn−i, vn−i−1〉 and then TarjanSCC computes the next

topological sort. This continues until all n edges are discovered, thus causing a total of

n+ 1 invocations of TarjanSCC.

4.7.3 Integrating Speculation

Speculation is an important part of a parallelization system. Prior work has integrated

speculation into a parallelization system by “cutting” speculatively non-existent edges from

the PDG and sometimes “de-speculating”—i.e., adding back—those edges when they do

not effect the applicability or performance of speculative thread extraction [86]. However,

the Fast DAGSCC Algorithm is not guaranteed to compute a full PDG data structure. Thus,

prior approaches of modifying the PDG to achieve speculation are incompatible with the

Fast DAGSCC Algorithm. Chapter 5 discusses an elegant means to incorporate speculation

into both the CAF and the Fast DAGSCC Algorithm.

the graph representation conspire to deliver the particular order that induces this worst-case behavior.
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Chapter 5

Speculative Dependence Identification

“When all you have is a hammer,

everything looks like a nail.”

—Law of the Instrument,

attributed to either Abraham Kaplan or Abraham Maslow.

Speculation allows optimistic transformation despite the unlikely or spurious depen-

dences which analysis conservatively reports. Through speculation, a thread extraction sys-

tem makes simplifying assumptions about the program’s expected-case behavior to enable

an optimistic parallel schedule. Such optimistic schedules may alter observable program

behavior in some cases. To preserve behavior in the worst case, the speculative transfor-

mation additionally inserts validation code which tests those assumptions at runtime and

triggers a recovery routine if those assumptions fail [9, 14, 56, 19, 87]. Instead of incorrect

behavior, the speculative application experiences a performance decrease upon misspec-

ulation. Thus, speculation recasts the consideration of transformation correctness as the

consideration of transformation performance.

There are many types of speculation; each asserts different classes of speculative as-

sumptions, requires different validation overheads, and offers different enabling effects.

The infrastructure in this dissertation introduces a design pattern that makes speculation
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transparent to the optimizing transformation. Consequently, different types of speculation

can be selected at compile time. These speculation modules can be combined arbitrarily:

their effects compose. The Liberty infrastructure implements several types of speculation.

This chapter explores design constraints on a speculative optimization system and de-

scribes the speculation module pattern and how it fits into the greater infrastructure. At a

high level, the pattern separates the planning phase—during which no changes are made to

the IR—from the action phase. This separation allows the compiler to select the appropriate

speculative assumptions before committing to those assumptions via transformation.

5.1 Background

A program dependence graph (PDG) represents a program’s statements (or instructions)

as vertices and relates those statements via control and data dependence edges (see Chap-

ter 2). Note, however, the distinction between a program’s precise dependence structure

and a PDG data structure. The former is an ideal, whereas the latter is a computationally-

feasible, conservative approximation of that ideal. This approximation is sometimes quite

conservative, including many dependence edges which have no semblance to real execu-

tions of the program.

A speculative optimization system makes simplifying assumptions about the program-

under-optimization (PUO) with the goal of enabling a transformation which is not other-

wise provably correct. These simplifications preclude certain impossible or unlikely be-

haviors; this restricted set of admissible program behaviors is mirrored in the PDG as the

removal of certain dependence edges. The goal is twofold: to refine the conservative PDG

to the program’s precise dependence structure, and, more aggressively, to refine the PDG

to the program’s expected case behavior.

Many types of speculation exist. Each assumes a different class of assumptions. Each

class of assumptions has different enabling effects on optimizing transformations and in-
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curs a different validation cost. No one type of speculation dominates all others. As such,

this dissertation proposes composition of speculation modules, so that the speculative opti-

mization system may meet a desired trade-off or so that developers can easily explore new

and novel types of speculation.

To plan and then perform a speculative optimization, a compiler juggles the enabling

effects and overheads of speculative assumptions in relation to the applicability and per-

formance benefits of the transformation. Additional speculative assumptions may enable

increasingly beneficial optimizations. Beyond that, additional assumptions may incur val-

idation overheads that overwhelm the benefit of optimizations. In other words, a specula-

tive optimization system strives to make enough simplifying assumptions to enable opti-

mization yet avoid excessive assumptions that may introduce unnecessary overheads. This

creates an awkward inter-dependence between planning speculation and planning transfor-

mation: the appropriate set of speculative assumptions depends on the desired optimization

yet the desired optimization is only possible under certain speculative assumptions.

Prior work “breaks” this inter-dependence with a three-phase scheduling [86]. The

compiler first identifies a safe upper-bound on the set of speculative assumptions by pruning

those PDG edges which are unlikely to occur. It then plans its transformation with respect to

the speculative PDG, resulting in a concrete transformation strategy. Finally, the compiler

“de-speculates” the PDG by adding back those speculatively-removed dependences which

are not necessary to enable to the concrete strategy. This dissertation introduces a variant

of the three-phase approach that does not use the PDG as a primary IR.

5.2 Design Constraints and Design Rationale

Since no type of speculation is perfect, this infrastructure opts to postpone the choice of

speculation type. A first design constraint is that each type of speculation can be encoded in

a module that is optionally included into the compilation pipeline. These modules should
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be, at worst, loosely coupled with the rest of the compilation system, i.e., no part of the

compilation system should assume that a particular type of speculation is employed. Fur-

ther, these modules must be structured in such a way that the compiler may employ several

speculation modules as easily as it would one, implying the need for composition.

Prior work represents speculative assumptions in the PDG by removing their respective

dependence edges, yielding a speculative PDG [86]. Such an approach treats the PDG

as a primary intermediate representation (IR) and equates speculative assumptions with

the dependences they remove. When considering a suite of several types of speculation

(each employing different classes of assumptions), there is a many-to-many relationship

between speculative assumptions and dependence edges. Certain dependence edges can be

obviated by any of several speculative assumptions; the choice of assumption depends on

the relative misspeculation rates and validation costs. Simply removing these edges from

the PDG creates an ambiguity that is difficult to reconcile later.

Chapter 4 presented the Fast DAGSCC Algorithm. This algorithm provides significant

reductions in compilation time while maintaining the highest analysis precision. The key

insight to these speedups is that the compiler does not need to construct a full PDG in order

to construct a DAGSCC. However, if the compiler never constructs the full PDG, it cannot

serve as a repository of speculatively removed edges.

This dissertation proposes instead to represent speculative assumptions separately from

the PDG, while ensuring that the PDG is consistent with the set of speculative assumptions.

Under this model, the PDG is merely an intermediate result used during compilation rather

than the primary compiler intermediate representation.

5.3 The Speculation-Module Pattern

Recall from Section 1.6 that the proposed infrastructure consists of a training phase that

collects profile information, a planning phase that analyzes profile data and the program
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source to choose a parallelizaton strategy, and a transformation phase during which the

compiler modifies the program. Implementing a new type of speculation generally re-

quires changes to each of these phases. For example, that type of speculation might require

the collection of additional information during profiling, novel interpretation of that infor-

mation during planning, and emission of validation instructions during the transformation

phase. This section presents the speculation-module pattern that modularizes the changes

to each phase.

In the proposed system, a speculation module is implemented as four pieces: a manager,

a dependence analysis adapter, a validation generator, and a runtime support library. Each

piece fits a particular role yet is specialized to the particular type of speculation. The

managers and dependence analysis adapters fit into the planning phase (see Figure 5.1),

the validation generators fit into the transformation phase (see Figure 5.2), and the runtime

support library is linked against the compiler output.

In essence, the dependence analysis adapters replace dependence identification with

speculative dependence identification. The optimizing transformation uses dependence in-

formation as before, unaware of speculation. Validation generators patch the transforma-

tion so that it produces correct transformations.

To illustrate this design, the subsequent sections explore each piece in relation to the

concrete example of control speculation, also known as biased-branch speculation.

Control speculation allows the optimization system to ignore unlikely behaviors, such

as error handling conditions. Automatic parallelization often speculates that long running

loops never take their exit branch, i.e., are infinite. This assumption allows later loop iter-

ations to begin before earlier iterations check their exit condition [12]. One might expect

such an assumption to incur huge misspeculation overheads since it must always fail. How-

ever, note that this assumption fails only once per loop invocation and hence frequently

succeeds in long-running loops.

Under control speculation, certain unlikely targets of conditional branches are assumed
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Figure 5.1: A detail of Figure 1.7 showing the roles of speculation managers (4) and anal-
ysis adapters (7) in the compiler’s planning phase.

Figure 5.2: A detail of Figure 1.8 showing the role of a validation generator. The gener-
ator updates the IR (9) by inserting code (11) which validates all necessary assumptions
recorded in the manifest (10) to produce a speculative IR (13). Similarly, generators up-
date the loop parallelization opportunity (12) so that the parallelization transformation dis-
tributes these new validation instructions to the appropriate threads.
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to be impossible. This assumption simplifies several aspects of the control flow graph.

The unlikely target has one fewer predecessor; this reduces the number of feasible in-

coming values for the Φ-nodes in that block and possibly renders that block unreachable.

The speculatively dead instructions in such unreachable blocks can neither source nor sink

dependences (see the third condition of Definition 3). Additionally, if the speculated con-

ditional branch has only one feasible successor, it cannot source any control dependences.

5.3.1 Speculation Manager

The speculation manager’s role is to determine which speculative assumptions from its

class of assumptions can be made with minimal risk of misspeculation (the set of likely-

safe assumptions), and to track a subset of those assumptions that are necessary to support

a specific transformation plan (the set of necessary assumptions). These sets are recorded

in the speculative assumption manifest.

The design pattern does not specify how the speculation manager should determine

the set of likely-safe assumptions. Generally, a speculation manager finds these through

approximate or probabilistic analysis [14, 19], user annotations to relax program semantics,

or by interpreting the behavior observed during a profiling run. All examples in Section 5.5

rely on profiling results to identify high-confidence speculative assumptions.

In control speculation, each speculative assumption takes the form 〈b, k〉, representing

the assumption that a conditional branch b never traverses its k-th successor. To identify

likely-safe assumptions for control speculation, A lightweight edge-weight profile mea-

sures branch bias on a representative input. The speculation manager interprets the profile

to identify branches which exhibit significant bias over sufficient samples. Special care is

taken when speculating loop exits: although the compiler may speculate with high confi-

dence that the target loop is infinite, speculating that sub-loops are infinite results in mis-

speculation during every iteration of the target loop; such frequent misspeculation prevents

speedup.
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The control speculation manager additionally tracks consequences of its speculative

assumptions. After selecting biased branches, it performs a depth-first search over the

residual CFG to identify reachable blocks; it records all other blocks as speculatively dead.

Additionally, it identifies those blocks which have multiple predecessors in the original

CFG yet have a unique predecessor in the residual CFG. The manager records such blocks

to speculatively simplify their Φ-nodes.

Runtime validation of control speculation is inexpensive; a program only experiences

this validation overhead when a control misspeculation occurs. Consequently, the control

speculation manager does not distinguish between the set of necessary assumptions and the

set of likely-safe assumptions. For speculation types whose validation costs are higher, the

speculation manager is designed to communicate with the analysis adapter to record a more

precise subset of necessary assumptions, as described in the next section.

5.3.2 Speculative Dependence Analysis Adapter

A speculative dependence analysis adapter provides an interpretation of likely-safe specu-

lative assumptions (identified by the speculation manager) in terms of dependence analysis.

These adapters implement the interface of a dependence analysis (see Section 3.3). Such

adapters can be inserted into an ensemble of dependence analysis algorithms, and may

collaborate with the other members.

Note that adding speculative adapters to the CAF changes the semantics of all results re-

turned by the CAF and obligates additional bookkeeping. Without an adapter, CAF reports

a conservative summary of all possible program executions. Once a speculative adapter

is added, the results represent a conservative summary of all possible program executions

which satisfy the speculative assumption. The speculation manager must track this mod-

ified semantics by promoting likely-safe assumptions as necessary assumptions whenever

an assumption enables the analysis adapter to report no dependence. Later, the validation

generator patches the transformation according to these necessary assumptions in order to
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preserve program behavior through speculative transformation. While they answer depen-

dence analysis queries, analysis adapters tell the speculation manager that certain likely-

safe assumptions are necessary assumptions, i.e., that the reported dependence analysis

results rely upon those assumptions.

The additional bookkeeping obligations are implemented as follows. Whenever the

adapter can employ a likely-safe speculative assumption a to report NoModRef, it first

checks its respective manager to determine whether a is already in the set of necessary

assumptions. If not, the adapter may choose either to report a precise speculative result and

incur the validation cost of a, or fall back to result provided by the rest of the ensemble

(which may include other analysis adapters). This choice is obvious: the adapter should

rely on a only if assuming a increases the precision over the rest of the ensemble.

To test whether the assumption increases precision, the adapter chains the query (see

Section 3.4) to determine whether subsequent analysis implementations can disprove the

query without assuming a. Note that this chaining does not increase query latency when

compared to an ensemble that does not contain the adapter. If the chained query reports

no-dependence, assumption a is unnecessary: the adapter relays the no-dependence result

and does not add a to the set of necessary assumptions. Otherwise, the no-dependence

result is predicated on a: the adapter instructs the manager to add a to the set of necessary

assumptions and returns no-dependence. Thus, the manager accumulates the subset of

likely-safe assumptions which affect the reported dependences.

Note that the set of queries processed by speculative adapters is the subset of queries

which the Fast DAGSCC Algorithm identifies as constructive (see Section 4.1). Conse-

quently, speculative assumptions are never marked as necessary assumptions unless they

disprove dependences that affect the DAGSCC and in turn affect thread extracting transfor-

mations. This restriction, combined with the set of necessary assumptions accumulated in

the manager, select the appropriate amount speculation to support a given parallelization.

This pattern of identifying necessary assumptions allows us to prioritize some classes
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of speculative assumptions over others. Given two types of speculation S1 and S2, it may

be that validating assumptions from S1 is less costly than validating assumptions from S2.

Thus, if there is a dependence which is disproved by either an assumption from S1 or a

different assumption from S2, the compiler should preferentially rely on the assumption

from S1. For instance, if a certain dependence is disproved using either control speculation

or transactional memory, the compiler should use control speculation to reduce overheads.

To institute this preference, the compiler developer controls the relative position of spec-

ulative adapters in the ensemble (see Section 3.5) to place the adapter for S1 lower in the

ensemble than the adapter for S2. Thus, S2 accumulates speculative assumptions only when

subsequent analyses (including the adapter for S1) cannot disprove a dependence.

This criterion for scheduling priority does not conflict with the criterion described in

Section 3.5. In general, analysis adapters service queries very quickly because they are

merely lightweight abstractions over the speculation managers. A high scheduling priority

is consistent with both scheduling criteria.

In terms of the example control speculation, the dependence analysis adapter asserts

that several classes of dependences do not manifest. A data dependence from operation t to

operation u requires a feasible path of execution that visits t and then u (see third condition

of Definition 3). Such a path is impossible if either t or u never executes. Thus, if either

is located within a block that the manager identifies as speculatively dead, then no data

dependence is possible.

To implement this interpretation, an analysis adapter named EdgeCountOracle

presents the speculative assumptions through the CAF interface. In particular, it reports

NoModRef for any modref ii query for which one or both of the instruction operands

is located within a speculatively dead basic block.

As noted in the previous section, validation of control speculation is inexpensive. Thus,

control speculation’s analysis adapter is simpler than the general case: it does not dis-

tinguish likely-safe assumptions from necessary assumptions, instead assuming that the
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manager reports all assumptions as necessary assumptions.

5.3.3 Validation Generator

After the compiler planning phase has determined a plan for optimization (a loop par-

allelization opportunity) and the speculative managers and adapters have identified the

set of necessary speculative assumptions (speculative assumption manifests), the compiler

progresses to the transformation phase. Unlike a non-speculative optimization system,

a speculative optimization system must additionally insert code that validates speculative

assumptions at runtime.

Although inserting validation instructions is generally straightforward, these additional

instructions must be considered in relation to the parallelizing transformation. If validation

is inserted before parallelization, then the parallelizing transformation must know where

(i.e. which pipeline stage) to place these additional instructions. If inserted after, the

validation generator must understand the structure of the code after parallelization, thus

strongly coupling speculation to a particular type of transformation. Finally, if validation

is inserted by the parallelizing transformation itself, then the parallelizing transformation

must be strongly coupled to the types of speculation employed.

To avoid strong coupling, the validation generator takes the approach of inserting val-

idation on the sequential IR, and then updating the loop parallelization opportunity to

include these additional instructions. This pattern is very similar to the approach taken

by [86]. Specifically, a parallelization strategy object represents a partition of the loop’s

instructions into pipeline stages. After inserting validation instructions into the IR, the

validation generator additionally assigns them to stages in the same strategy object.

To apply validation for control speculation to the sequential IR, its validation generator

creates new basic blocks along every speculated control flow edge. It inserts code to trigger

misspeculation in these blocks: a call instruction referencing the procedure Misspec,

which is implemented in the runtime support library.
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To update the loop parallelization opportunity, validation generator must instruct the

parallelizing transformation how to treat validation instructions. Validation instructions for

control speculation consist of calls to Misspec which are placed at the unlikely target

of speculated branches. These call instructions are assigned to the pipeline stage which

contains the speculated branch instruction.

5.3.4 Runtime Support Library

Each type of speculation includes a runtime support library. At a minimum, this library in-

cludes some means to roll back speculative modifications of application state. Several roll

back mechanisms are possible. One of the simplest exploits the copy-on-write semantics

of the fork system call to capture non-speculative state in a separate address space. Al-

ternatively, the runtime support library may maintain a log of reversible memory updates,

so that each may be undone upon misspeculation.

Additionally, the runtime support library may contain complicated logic to detect in-

valid speculative assumption. Because the bulk of this logic can be implemented in the

runtime support library, the validation generator may emit simpler validation code, i.e.,

simple call instructions referencing the runtime library.

Control speculation’s runtime support library provides only the roll back capability.

5.4 Composability

The Speculation-Module pattern provides clean composability for speculation managers

and dependence analysis adapters for free. However, achieving composability for the run-

time support library (and consequently, in the validation generator) is not automatic. It

is possible that two types of speculation require mutually-incompatible modifications to

achieve their respective validation. In the worst-case, this may be a fundamental incompat-

ibility, though more often, the incompatibility is the result of few composability hazards
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which result from poor design. Careful design achieves composability of the runtime li-

braries, which in turn provides composability of validation generators.

This section describes a few approaches to refactor runtime libraries for composability:

mechanism-not-policy, instrumentation-over-replacement, and idempotency.

5.4.1 Mechanism, not Policy

The first approach favors mechanism over policy. Several types of speculation insert

validation instructions for semantically similar yet mechanically different goals. For in-

stance, several types of speculation may feature notions of transactions. As a mechanism

to achieve the semantic notion of a transaction, for instance, validation generators insert

call instructions referencing support library procedures begin tx and commit tx.

Note that the call instructions are abstract until the speculatively-optimized program is

linked against a concrete runtime library. By deferring the choice of policy until link time,

this mechanism-not-policy design translates a composability hazard in the validation gen-

erators into a composability hazard in the runtime library.

5.4.2 Instrumentation over Replacement

The second approach is to favor instrumentation over replacement. A runtime support

library’s design prescribes replacement if applying speculation entails replacing certain

speculated operations with a call instruction referencing the runtime library. In contrast,

a runtime support library’s design prescribes instrumentation if applying speculation en-

tails adding call instructions referencing the runtime library adjacent to those speculated

operations.

For instance, the runtime library and validation generator for control speculation exhibit

the instrumentation design because they insert calls to Misspec along speculatively dead

control flow edges. In contrast, a replacement design would speculatively assert the branch

condition before the speculated conditional branch, and then replace the branch with an

108



unconditional branch. The instrumentation design strives to leave the majority of the IR

unchanged while applying speculation, thus introducing fewer hazards to composability.

Separation Speculation (Section 5.5.4) represents a more complicated example of the

instrumentation-over-replacement design. Validation of separation speculation requires

special allocation routines which force the placement of dynamically allocated objects into

specific ranges of the virtual address space. To enforce this, the validation generator re-

places the dynamic allocation routine malloc with a custom implementation. If done in

the obvious manner, this presents a hazard to composability with any other speculation that

also wants to replace allocation routines.

Instead, when a validation generator wants to replace an allocator, it replaces it with

a parameterized allocator. In particular, separation speculation (or any other validation

generator) replaces call malloc(k) with call modified malloc(k,props)

and initializes the property object props = call default properties(). The

parameterized allocator modified malloc is not specific to any particular type of spec-

ulation, and is an instance of the mechanism-not-policy design. Each validation generator

may then modify the properties object props by inserting calls to set property ac-

cording to the instrumentation-over-replacement design.

5.4.3 Idempotency

The third approach is idempotency. Several types of speculation may, for instance, demar-

cate transaction boundaries via call instructions referencing the runtime library. If the

validation generators of each type of speculation redundantly insert these transaction mark-

ers, a naı̈ve implementation would attempt to enter nested transactions instead of entering a

single transaction. By defining idempotent semantics for such operations, the speculatively

optimized program performs the correct behavior. As a further optimization, the compiler

may eliminate redundant validation instructions using simple peephole optimizers, though

this is unnecessary for correctness.
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5.5 Implementations of Speculation

This section briefly describes several types of speculation that are implemented in this

speculation module pattern. They are presented here to demonstrate the generality of the

speculation module pattern and to encourage discussion of novel types of speculation.

5.5.1 Control Speculation

Control speculation is used extensively by speculative parallelization [12, 40, 45, 86] and is

one of the simplest types of speculation. Control speculation is the running example from

the previous section.

A control-flow edge counting profiler (LLVM’s stock -insert-edge-profiling)

measures the traversal count of every basic block and control-flow edge under a represen-

tative input set. The manager (class ProfileGuidedControlSpeculation) inter-

prets this information to estimate branch bias and populates the set of likely-safe assump-

tions from those branches with significant bias. It calculates a residual control flow graph

under those assumptions. Blocks unreachable in the residual CFG are speculatively dead.

Since validation is essentially free, the speculation manager does not track a set of neces-

sary assumptions, instead assuming it identical to the set of likely-safe assumptions.

The dependence analysis adapter (class EdgeCountOracle) asserts the absence of

memory dependences to or from any operations located in a speculatively dead basic block.

Following the instrumentation-over-replacement design (Section 5.4.2), the validation

generator (class ApplyControlSpec) inserts calls to the support library routine Misspec

at the speculatively-dead targets of conditional branch instructions. This routine signals

misspeculation to initiate recovery. The validation generator updates the parallelization

strategy so that these new validation instructions are assigned to the same pipeline stage as

the speculated branch.

110



5.5.2 Loop-Invariant Loaded-Value Prediction

Some load instructions always read a single, predictable value from memory [24]. Nor-

mally, instructions which depend on that predictable value cannot issue until the load

instruction completes. Value prediction allows such instructions to execute earlier, thus

granting the compiler greater freedom of scheduling. Automatic parallelization exploits

this increased scheduling freedom for greater concurrency [12, 40, 86]. This section de-

scribes a particular type of value prediction [40].

Loop-invariant loaded-value prediction speculates that certain load instructions lo-

cated within loops will read the same value from memory during every iteration of the loop.

Under this assumption, such load instructions are equivalent to a constant expression and

do not require a load from memory. Consequently, these instructions neither source nor

sink memory dependences.

A memory profiler (class liberty::SpecPriv::MallocProfiler) collects statis-

tics on the set of distinct values read by each load instruction located within a loop.

Specifically, the profile identifies the subset of load instructions whose pointers can be

rematerialized in the loop preheader, i.e., loop-invariant pointers. It then observes the

values loaded from those pointers in the loop header. The manager (class Profile-

GuidedPredictionSpeculator) interprets profiling results to identify those load

instructions that experienced a unique loaded-value over a significant number of observa-

tions. These assumptions are tabulated on a per-loop basis, since a load may be invariant

within one loop, yet variant for a parent loop. The manager populates the set of likely-safe

assumptions with the subset of invariant loads whose pointer operand can be faithfully

rematerialized at the loop preheader. This rematerializability constraint is necessary for

proper generation of validation instructions. Similar to control speculation, validating the

invariant-loaded-value assumption is inexpensive. Thus, the set of necessary assumptions

is identical to the set of likely-safe assumptions.

The dependence analysis adapter (class PredictionAA) presents these speculative

111



assumptions in dependence analysis interface. The adapter responds NoModRef to modref ii

queries where one or both instruction operands is a load instruction which the manager

identifies as loop-invariant (i.e., in the set of likely-safe assumptions). Without these de-

pendences, optimization may schedule loop-invariant load instructions earlier.

The validation generator (class ApplyValuePredSpec) transforms every loop-invariant

load instruction in the manager’s necessary assumption set, as shown in Figure 5.3. Fol-

lowing the instrumentation-over-replacement design (Section 5.4.2), it rematerializes the

load’s pointer operand in the loop preheader and reads the assumed-invariant value from

it. The validation applicator adds new store instructions at the beginning of a loop iter-

ation which enforce this prediction by writing the assumed-invariant value into the storage

location. The speculated load instruction inside the loop will read the assumed-invariant

value. Finally, it inserts a validation test on every loop back edge which compares the

assumed-invariant value to the result of loading the value at the end of the iteration. This

test ensures that the predicted value is correct during the next iteration, and, inductively,

that the predicted value is correct across all loop iterations.

The validation generator must additionally update the parallelization strategy. The re-

materialized pointer and the initial load of the assumed-invariant value are outside of the

loop and are not recorded in the parallelization strategy. The new store instruction in

the loop header are assigned to the earliest pipeline stage that contains the speculatively-

invariant load instruction. The end-of-iteration validation checks are assigned to the latest

pipeline that contains the speculatively-invariant load instruction.

5.5.3 Memory Flow Speculation

Memory flow speculation assumes the absence of flow dependences between select mem-

ory operations. It is quite similar to transactional serializability as speculated by trans-

actional memory systems. This section describes a speculation-module implementation

of memory flow speculation which targets the Multi-threaded Transaction (MTX) abstrac-
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p r e h e a d e r :
. . .

b r h e a d e r

h e a d e r :
. . .
p t r = . . .
v = l o a d p t r
. . .
u se ( v )
. . .
b r cond , header , e x i t

e x i t :
. . .

p r e h e a d e r :
. . .
p t r r e m a t e r i a l i z e d = . . .
v i n v a r i a n t = l o a d p t r r e m a t e r i a l i z e d
b r h e a d e r

h e a d e r :
. . .
/ / O r i g i n a l l o a d i s unused and
/ / removed v i a dead−code e l i m i n a t i o n .
. . .
u se ( v i n v a r i a n t )
. . .
b r cond , backedge , e x i t

backedge :
v t e s t = l o a d p t r r e m a t e r i a l i z e d
v a l i d = icmp v i n v a r i a n t , v t e s t
b r v a l i d , header , m i s s p e c u l a t e

m i s s p e c u l a t e :
c a l l Misspec ( )
u n r e a c h a b l e

e x i t :
. . .

Figure 5.3: Validation of loop-invariant loaded-values. (left) Original IR. The value
from instruction v = load ptr is invariant with respect to the loop. (right) Specula-
tive IR. ApplyValuePredSpec rematerializes the pointer ptr in the loop preheader
ptr rematerialized and loads the assumed invariant value v invariant. It re-
places all uses of v inside the loop with v invariant. Along the backedge it triggers
misspeculation if the assumed invariant value does not match the immediate value..
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tion [47, 68, 86], though the implementation is newer [45]. Because memory flow assump-

tions take a very general form, memory flow speculation provides as much or more an

enabling effect than many other types of speculation. However, this generality can lead to

expensive validation for certain benchmarks or workloads [13, 45].

Profiling information guides memory flow speculation. A loop-aware memory flow

profiler [59] measures the frequency of flow dependences among all memory operations

under a representative training input set. A manager (class liberty::SpecPriv::-

SmtxManager) interprets these results. It populates its set of likely-safe assumptions

with all pairs of store or load instructions such that no flow dependence was observed

during profiling. The set of necessary assumptions is initially empty.

The dependence adapter responds NoModRef to every modref ii query whose operands

are assumed independent in the manager’s set of likely-safe assumptions. It then promotes

those assumptions to the necessary assumption set.

The validation generator (class liberty::SpecPriv::ApplySmtxSpec) wraps

each loop iteration with instructions to open and close a sub-transaction, following the

idempotency (Section 5.4.3) and mechanism-not-policy (Section 5.4.1) designs. The val-

idation generator updates the parallelization strategy so that these transaction boundary

calls will appear in each stage of the pipeline. The validation generator also inserts checks

on every store and select loads located in the transaction. loads are checked only

when they appear within the set of necessary assumptions. Following the instrumentation-

over-replacement design (Section 5.4.2), the validation generator applies these checks by

inserting calls to mtx write and mtx read before the speculated memory operations.

In the parallelization strategy, these new validation instructions are assigned to the same

pipeline stage as the memory accesses they guard.

The runtime support library discussed extensively elsewhere [47, 68, 86]. In brief,

the runtime library replays all store instructions and speculated load instructions in

a private address space, thus either computing the final, validated version of memory or
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detecting misspeculation.

5.5.4 Separation Speculation

Separation speculation partitions a program’s allocations into a few “families”1 of objects

and speculatively assumes that every pointer in the program refers exclusively to objects

in one family [40]. These families are disjoint; no object belongs to more than one family.

Under this assumption, if two pointers reference distinct families, they cannot alias. The

pointer-family relation is a coarse approximation of the classical points-to relation, which

associates a pointer with the set of objects it may reference. Runtime validation of the

pointer-family relation is inexpensive if the number of families is small.

A memory profiler (class liberty::SpecPriv::MallocProfiler) tracks ev-

ery memory allocation and tracks points-to information for every pointer expression in the

program. The manager (class liberty::SpecPriv::Classify) interprets profiling

results to assign each memory allocation to a family. Five families are used, and objects

are assigned to families according to secondary criteria discussed in the following sections.

The manager then composes each pointer’s points-to set with each memory allocation’s

family assignment to determine the pointer-family relation. The set of likely-safe assump-

tions contains a pointer-family relation for each loop in the program. Validation is cheap,

and so the set of necessary assumptions is identical to the set of likely-safe assumptions.

The dependence adapter (class liberty::SpecPriv::LocalityAA) responds

to modref ii queries identifying which families the operations will access and reporting

NoModRef if no family is accessed by both operations. Conversely, if both operations

access a common family, the assumed pointer-family relation is insufficient to disprove a

dependence among the operations.

Separation speculation uses several tricks to reduce validation costs. At a high level, it

modifies allocation so that objects from each family are allocated within a family-specific

1The original paper refers to these families and their respective memory arenas as “logical heaps” [40].
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region of memory (an arena). The runtime system places the arenas at chosen virtual ad-

dresses so that the higher-order bits of their virtual addresses carry a family-specific tag

value. These tag values survive any well-defined address arithmetic such as array index-

ing. At runtime, validation instructions use cheap bitwise-arithmetic to extract tags from

pointers; one can test whether a pointer references a particular arena in constant time and

without requiring any additional bookkeeping or communication among concurrent pro-

cesses. This scheme of arenas and tagged virtual addresses is similar to segments and

segment identifiers used for software fault isolation [89].

To achieve the allocation-family relationship, the validation generator (class liberty::-

SpecPriv::ApplySeparationSpec) replaces all memory allocation and dealloca-

tion routines with custom implementations from a runtime library. These implementations

allocate objects from the arena corresponding to the desired family. Beyond malloc or

alloca, the validation generator emits code that runs before main so that global variables

can be reallocated in an arena. Replacing the allocator follows the mechanism-not-policy

(Section 5.4.1) and instrumentation-over-replacement (Section 5.4.2) designs.

To validate a pointer-family relationship, the validation generator inserts guard instruc-

tions before load or store instructions. These guard instructions extract a family-tag

from the pointer, compare the dynamic tag to the pointer-family assumption, and signal

misspeculation upon mismatch. A peephole optimizer proves many of these guards unnec-

essary or redundant and eliminates them. These checks follow the instrumentation-over-

replacement design (Section 5.4.2).

The validation generator also updates the parallelization strategy so that validation

instructions will execute in the appropriate pipeline stage after parallelization. Arena-

de/allocation instructions are assigned to the same stage as the de/allocation instructions

they replace. The per-access guard instructions are assigned to the same stage as the mem-

ory accesses they guard.

Separation speculation allows efficient dynamic validation that many spurious memory
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dependences do not exist. Additionally, arena memory-management aggregates all ob-

jects from one family into a compact, contiguous memory region. This “bonus feature”

simplifies a program’s memory layout to such an extent that the compiler can statically

enumerate a speculatively-complete list of operations which access objects from each fam-

ily/arena. The next sections describe four types of secondary speculation built on top of

separation speculation: read-only speculation, speculative accumulator expansion, spec-

ulative privatization, and object-lifetime speculation. These secondary speculation types

define the aforementioned inclusion-criteria for separation speculation’s families.

Read-only Speculation

In many programs, some memory objects are never modified throughout a scope of opti-

mization. The values of such objects are invariant in that scope, and thus accesses of these

objects are independent of all other memory operations in the scope (see condition 2 of

Definition 3). Static dependence analysis is sometimes unable to determine this property,

so speculating this property is beneficial.

Read-only speculation encodes the assumption that certain objects are invariant through-

out the scope. It builds on separation speculation. By aggregating these speculatively read-

only objects into a dedicated read-only family, separation speculation’s default validation

ensures that read-only objects are only accessed through the expected pointer expressions.

Ready-only speculation uses the same memory profiler results as separation specula-

tion. The manager (class liberty::SpecPriv::Classify) interprets these results

to identify speculatively read-only objects. The manager scans the optimization scope to

visit every memory update operations. Using the points-to sets (collected during profiling),

it identifies the set of objects modified by each update. It marks such objects as muta-

ble. Every object not marked mutable is a read-only object and is assigned (per separation

speculation) to the read-only family.

Recall that separation speculation validates the pointer-family assumption. In this con-
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text, the pointer-family assumption establishes that objects in the read-only family are only

accessed by those memory operations identified as read-only. By construction, the this

set of operations includes no store operations. Consequently, speculatively read-only

memory operations never experience flow, anti or output dependences.

With this inclusion criterion for the read-only family, the separation assumption implies

the read-only assumption. Thus, the manager does not maintain its own assumption sets.

Read-only speculation does not need a specific analysis adapter or validation generator.

Read-only speculation is strongly-coupled with separation speculation, but introduces no

further hazards to composability.

Speculative Accumulator Expansion

Accumulator expansion reorders certain associative and commutative operations so that

later loop iterations may execute earlier. For example, the left side of Figure 5.4 shows a

loop that is almost parallel except for an accumulator variable sum. During each iteration,

the value of sum is computed using its previous value, resulting in a loop-carried data

dependence which serializes iterations. The right side of Figure 5.4 demonstrates a variant

of the same program in which the accumulator sum is expanded into two accumulators and

the final value is resolved after the loop. Expansion forms two independent tasks: the even

iterations and the odd iterations.

Accumulator expansion is so important to parallelization that it has earned keyword-

status in the OpenMP [2] language extensions. Many automatic parallelization systems

rely on accumulator expansion [12, 20, 40, 70, 76, 86].

Generally, the compiler identifies accumulators as values which are repeatedly updated

with an associative and commutative operator (a reduction) but whose intermediate values

are otherwise unused within the loop. Although quite effective, accumulator expansion

can be difficult in practice. If the accumulator is located in memory instead of a register

temporary, the compiler may fail to prove that every access to that storage location is a
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1 sum = 0 ;
2 f o r ( i =0 ; i<N; ++ i ) {
3 o u t [ i ] = work ( i n [ i ] ) ;
4
5 sum += . . . ;
6
7
8 }
9

10 use ( sum ) ;

1 sum even = 0 , sum odd = 0 ;
2 f o r ( i =0 ; i<N; ++ i ) {
3 o u t [ i ] = work ( i n [ i ] ) ;
4 i f ( ( i %2)==0 )
5 sum even += . . . ;
6 e l s e
7 sum odd += . . . ;
8 }
9 sum = sum even + sum odd ;

10 use ( sum ) ;

Figure 5.4: Accumulator expansion. (left) Each instance of the statement sum += ...
uses the value of sum computed in the previous iteration. This loop-carried data depen-
dence serializes the iterations and inhibits concurrent execution, even though intermediate
values of sum are otherwise unused. (right) Exploiting the associativity and commuta-
tivity of the + operator, the accumulator variable sum is expanded into two halves which
are updated independently. This allows the even iterations and the odd iterations to run
concurrently and independently. The final value is resolved after the loop.

reduction or that intermediate values are never used. Speculative accumulator expansion

benefits this situation [20, 40, 76]. This section describes a particular notion of speculative

accumulator expansion [40].

Speculative accumulator expansion encodes the assumption that certain memory ob-

jects are only accessed through reduction operations such as addition, multiplication, max-

imum or minimum. This assumption is built on top of separation speculation. By aggre-

gating the objects which hold accumulators into a dedicated reduction family, separation

speculation’s default validation ensures that reduction objects are only accessed by reduc-

tion operators.

Speculative accumulator expansion uses the same memory profiler results as separation

speculation. The manager (class liberty::SpecPriv::Classify) interprets these

results to identify accumulator objects. The manager scans the optimization scope to visit

every load-reduce-store sequence (i.e., instruction sequences that look like *p += v).

Using the points-to sets (collected during profiling), it identifies the set of objects updated

by these reduction sequences, and marks them as reduction. Next, it visits every other
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memory accesses in the scope, identifies the objects they access, and remove the reduction

marker from those objects if present. Every object marked reduction is a reduction object

and is assigned (per separation speculation) to the reduction family.

Recall that separation speculation validates the pointer-family assumption. In this con-

text, the pointer-family assumption establishes that objects in the reduction family are only

accessed by load-reduce-store sequences and consequently that intermediate values

cannot be otherwise observed or modified. Thus, it is safe to reorder the reduction opera-

tions so long as the speculative assumptions are valid. With this inclusion criterion for the

reduction family, the separation assumption implies the reduction assumption. Thus, the

manager does not maintain its own assumption sets.

A dependence adapter (class liberty::SpecPriv::LocalityAA) asserts that

reduction operations can be reordered by asserting the absence of loop-carried dependences

among them. Specifically, it reports NoModRef to modref ii queries when either oper-

ation is a load-reduce-store sequence and its pointer-family is the reduction family.

Speculative accumulator expansion does not need a specific validation generator. How-

ever, it does require support from the runtime system. In particular, the runtime system

must replace the physical page backing of the reduction arena so that each concurrent

worker uses an independent copy. Upon entering a parallel invocation, these arenas must

be initialized to the reduction operator’s identity value (i.e., 0 for +i32, −∞ for maxf32,

etc.). After all workers have finished the parallel invocation, these arenas must be merged

after the parallel invocation to deliver the final result.

Speculative accumulator expansion is strongly-coupled with separation speculation.

However, it uses features of the virtual memory system to transparently replace the physical

backing of the reduction arena; no pointer values change during a parallel invocation. Spec-

ulative accumulator expansion does not introduce any additional hazards to composability

beyond separation speculation.
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Speculative Privatization

In many programs, each iteration of a loop manipulates a data structure, yet that data struc-

ture never carries information from one iteration to the next. This reuse does not contribute

to the program’s semantics but causes anti or output dependences which impose a total

order on loop iterations and prevent parallelization. Alternatively, if each iteration uses

a private copy of that data structure, each iteration accesses its copy independently. Pri-

vatization enables parallelization by transforming the code such that each iteration deals

with a private copy of the data structure [75, 85]. Privatization of scalars and arrays is so

important that it has earned keyword-status in the OpenMP [2] and Parallax [88] language

extensions. However, static analysis misses many opportunities for privatization, prompt-

ing the development of speculative privatization [20, 40, 76, 93]. This section describes

one particular notion of speculative privatization [40].

Speculative privatization encodes the assumption that loads from certain private ob-

jects never read values stored during earlier iterations of the loop. To validate this as-

sumption, speculative privatization builds on separation speculation and introduces a pri-

vate family for all such objects. This guarantees, speculatively, that the compiler can stati-

cally enumerate a complete list of memory operation that accesses private objects. Further,

speculative privatization instruments such private memory accesses with validation checks

which detect any violations of this privatization criterion.

The manager (class liberty::SpecPriv::Classify) uses a loop-aware flow

dependence profiler [59] in addition to the separation speculation profiler. It populates its

likely-safe assumption set with private objects: those objects which lack loop-carried flow

dependences. It assigns those objects (per separation speculation) to the private family.

A dependence adapter (class liberty::SpecPriv::LocalityAA) asserts that

private operations are independent from private operations in other loop iterations. Specifi-

cally, it reports NoModRef to modref ii queries when either operation accesses pointers

which reference only the private family.
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Following the instrumentation-over-replacement design (Section 5.4.2), the validation

generator (class liberty::SpecPriv::ApplySeparationSpec) inserts calls to

private write and private read before every private store or load instruc-

tion, respectively. These calls allow the runtime library to trace the sequence of stored

and loaded addresses to determine whether a privacy violation occurs. These validation

instructions are assigned to the same pipeline stages as the memory operations they guard.

The runtime support library implements the privacy check. Additionally, the runtime

support library modifies the physical page backing of the private arena such that that each

worker process uses a separate physical baking. Additional facilities ensure that the correct

final version of private memory is installed after the parallel invocation.

Speculative privatization is strongly-coupled with separation speculation, however it

introduces no further hazards to composability.

Object Lifetime Speculation

Object lifetime speculation is inspired by an observed pattern in general purpose codes:

some objects allocated within a loop iteration are always deallocated before the end of that

same iteration [40, 45]. loads from or stores to such objects cannot depend on memory

accesses in other iterations. However, dependence analysis often fails to identify this case.

Short-lived objects represent a special case of privatization since they cannot carry flow

dependences across iterations. The are handled separately from general privatization be-

cause validation can be achieved very efficiently for short-lived objects.

Object lifetime speculation encodes assumptions that certain allocation sites are always

freed before the end of the iteration. To validate this assumption, object lifetime speculation

builds on separation speculation and introduces a short-lived family for all such objects.

A memory profiler (class liberty::SpecPriv::MallocProfiler) tracks ev-

ery allocation with respect to loop iterations. Upon traversing a backedge or loop-exit

edge of a loop L, the profiler records that all live objects escape L. The manager (class
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liberty::SpecPriv::Classify) interprets profiling results to identify for each

loop a set of allocation sites whose objects never escape the loop. The manager populates

its set of likely-safe assumptions with these short-lived object sets. Validation is cheap, and

so the set of necessary assumptions is identical to the set of likely-safe assumptions.

The dependence adapter (class liberty::SpecPriv::LocalityAA) responds

NoModRef to loop-carried queries modref ii(i1, Before, i2, L) where instructions i1 and/or

i2 reference any object that is assumed short-lived.

Beyond the validation provided by separation speculation, object lifetime speculation

must validate that short-lived objects never outlive their iteration. The custom allocator

and deallocator for the short-lived arena increment and decrement a per-iteration counter,

corresponding to the number of live objects in the short-lived arena during that iteration.

The validation generator inserts checks at loop back edges which trigger misspeculation if

the counter is non-zero. These checks are assigned to the final pipeline stage. The runtime

system replaces the short-lived arena’s physical page backing so that every worker sees a

different arena.

5.5.5 Pointer-Residue Speculation

Separation speculation disambiguates references to different objects, but does not disam-

biguate references within the same object. Pointer-residue speculation complements sep-

aration speculation by working at the sub-object level. It disambiguates different fields

within an object and in some cases recognizes different regular strides across an array.

Specifically, it characterizes each pointer expression in the program according to the pos-

sible values of its four least-significant bits. To the best of my knowledge, pointer-residue

speculation has never been published, however, it shares the key insight of address congru-

ence analysis [50].

A memory profiler (class liberty::SpecPriv::MallocProfiler) observes

the virtual address accessed by memory operations instruction in the program. It tabu-

123



1 s t r u c t { i n t x , y ; } p a i r ;
2 char c h a r s [N ] ;
3 i n t i n t s [N ] ;
4
5 f o r ( i =0 ; i<N; ++ i ) {
6 / / R e s i d u e s e t : { 00002 }
7 use ( p a i r . f i r s t ) ;
8
9 / / R e s i d u e s e t : { 01002 }

10 use ( p a i r . second ) ;
11
12 / / R e s i d u e s e t : a l l v a l u e s
13 use ( c h a r s [ i ] ) ;
14
15 / / R e s i d u e s e t :
16 / / { 00002, 01002, 10002, 11002 }
17 use ( i n t s [ i ] ) ;
18
19 / / R e s i d u e s e t : { 00002, 10002 }
20 use ( i n t s [ 2∗ r and ( ) ] ) ;
21
22 / / R e s i d u e s e t s : { 01002, 11002 }
23 use ( i n t s [ 2∗ r and ( ) + 1 ] ) ;
24 }

/ / O r i g i n a l IR :
. . .
/ / Res idue s e t : { 01002, 11002 }
v = l o a d p
. . .

/ / IR wi th v a l i d a t i o n :
. . .
/ / b i t−v e c t o r encodes 4 , 12
mask = 00010000000100002

/ / e x t r a c t t h e r e s i d u e
p i = p t r t o i n t p
r e s i d u e = and pi , 0 x0f
/ / member o f r e s i d u e s e t ?
e l e m e n t = s h l 1 , r e s i d u e
t e s t = and mask , e l e m e n t
f a i l u r e = icmp t e s t , 0
b r f a i l u r e , f a i l , s u c c e s s

f a i l :
c a l l Misspec ( )
u n r e a c h a b l e

s u c c e s s :
v = l o a d p
. . .

Figure 5.5: (left) Different access patterns induce different pointer-residue sets. Disjoint
pointer-residue sets contraindicate aliasing. (right) Validation of an assumed residue set
using bitwise arithmetic.

lates, for each memory access operation, a set of distinct values observed in the four least-

significant bits of the pointer. For some access patterns, these sets will contain fewer than

sixteen values (see Figure 5.5). Memory alignment constraints ensure that this character-

ization is consistent across program runs even though virtual addresses of allocations are

not. Pointer-residue speculation ensures that every allocation has 16-byte alignment, thus

the four least-significant bits of the base address of every object are zero.

The manager (class liberty::SpecPriv::PtrResidueSpeculationManager)

interprets profiling results. It populates the likely-safe assumption set with pointer-residue
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sets if the residue set has fewer than sixteen elements and if the characterization was drawn

from sufficiently many observations. The set of necessary assumptions is initially empty.

The dependence adapter (class liberty::SpecPriv::PtrResidueAA) receives

modref ii(i1, R, i2, L) queries and checks whether it can determine pointer-residue sets

for operations i2 and i2. It then tests whether these residue sets are disjoint with respect

to the size of the memory accesses. If the residues are disjoint, the adapter will ultimately

report NoModRef and install assumed values of the pointer-residue sets into the set of

necessary assumptions.

The validation generator (class liberty::SpecPriv::ApplyPtrResidueSpec)

transforms every memory access operation listed in the manager’s set of necessary as-

sumptions to ensure the dynamic pointer values have expected residues. The right side

of Figure 5.5 illustrates the new validation instructions. Following the instrumentation-

over-replacement design (Section 5.4.2), the new validation instructions consist of bitwise

operations to extract a residue and test whether that residue is a member of a statically-

encoded bit-vector. These validation instructions are assigned to the same pipeline stage as

the speculated memory access.

5.6 Discussion

Speculation augments static dependence identification, but does not replace it. When used

sparingly, it eliminates spurious dependences that inhibit optimization. However, the costs

speculative validation may prevent net performance gain [13, 45], and so speculation cannot

replace static dependence identification.

5.6.1 Speculative Assumptions with Efficient or Scalable Validation

Transactional memory and memory flow speculation require expensive validation. Even

though validation can be offloaded to a separate core or itself parallelized, merely logging
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the dynamic addresses of every memory access is prohibitive for some workloads [45].

One may reduce validation costs by speculating different properties of the program.

Section 5.5 describes many types of speculation whose validation costs are cheaper than

memory flow speculation: control speculation, invariant loads, pointer-residue, and separa-

tion speculation (including read-only, accumulator expansion, and object-lifetime). These

validation techniques are cheaper because they do not introduce additional memory ac-

cesses, thread synchronizations, or communications in the common case.

Still, memory flow speculation can remove some dependences which none of these

cheaper speculation types can remove. This discrepancy means that memory flow specula-

tion enables more optimizing transformations than all of the cheaper types combined. Fur-

ther research should investigate additional properties that enable parallelization yet which

do not require costly validation.

A different means to reduce validation costs is to reduce the problem size. For instance,

speculative privatization (as discussed in Section 5.5.4) is equally expensive as memory

flow speculation, but can be cheaper in practice since it validates only memory operations

which access objects in the private heap rather than all memory operations in the transac-

tion. Future research should explore hybrids between memory flow speculation and these

cheaper speculation types.

5.6.2 Speculation without Profiling

All implementations of speculation in the Liberty Infrastructure (Section 5.5) rely on pro-

filing results to derive high-confidence speculative assumptions. This is not ideal. Spec-

ulation imposes several burdens on the developer: the effort to identify a “representative”

input set; the time to perform profiling; and, the time to repeat profiling as software evolves.

Consequently, reliance on profiling impedes the adoption of speculative optimization.

Some prior work replaces profiling results with probabilistic analysis algorithms [14,

19]. Such algorithms relax the semantics of dependence analysis by imposing a bound
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on how frequently an incorrect dependence response would trigger misspeculation. This

bound is subtly different than bounding the fraction of incorrect dependence responses, and

is difficult to achieve.

Alternatively, some techniques perform an online search for the appropriate speculative

assumptions. Adaptive speculation [39] generates multiple versions of the code optimized

under varying speculative assumptions, and uses an online adaptation system to switch

between these and find the most profitable version.
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Chapter 6

Evaluation

“Science without results is just witchcraft.”

—First pillar of Aperture Science, Portal.

This chapter presents empirical evaluation of the dissertation’s techniques. Section 6.1

evaluates the collaborative analysis framework, first in terms of its overall effects on spec-

ulative parallelization and then dissecting each design decision. Section 6.2 evaluates the

Fast DAGSCC algorithm’s performance benefit.

6.1 The Collaborative Analysis Framework

This section evaluates the Collaborative Analysis Framework (CAF) described in Chap-

ter 3. First, Section 6.1.1 determines that even speculative optimization systems are sensi-

tive to the quality of static dependence analysis and that the CAF is strong enough to turn

slowdowns into speedups. Subsequent sections delve deeper. Section 6.1.2 measures ab-

solute analysis precision when compared to a profiling-based “oracle.” Section 6.1.2 uses

absolute metrics to determine the importance of context-qualifiers in the query language.

Section 6.1.2 measures absolute performance with respect to a client of interest: the PS-

DSWP thread extraction technique [71] as implemented by the Fast DAGSCC Algorithm
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(Chapter 4). Section 6.1.2 measures the importance of foreign premise queries and top-

ping to overcome limitations of the best-of-N composition. Section 6.1.3 demonstrates

that several analysis algorithms collaborate to disprove multi-logic queries.

6.1.1 Importance of Analysis to Speculative Parallelization

Kim’s ASAP System [44] is a speculative automatic thread extraction system that targets

clusters. ASAP consists of a compiler and a runtime system. The compiler uses a combi-

nation of static analysis and profile-driven speculation to identify and parallelize hot loops

from sequential applications. The runtime system provides a transactional memory ab-

straction to validate speculation and to provide a unified virtual address space among the

otherwise disjoint memories available to nodes in the cluster.

Speculation allows ASAP to extract parallelism despite weaknesses of static analysis,

but speculation incurs high runtime costs in terms of validation overheads. When more pre-

cise analysis is available, ASAP generates more efficient code with lower overheads. ASAP

avoids validation overheads completely when non-speculative parallelization is possible.

To analyze the sensitivity of a speculative thread extraction system to dependence anal-

ysis precision, I repeated the ASAP evaluation while varying the strength of the dependence

analysis subsystem.

To vary analysis strength, I create compiler configurations which employ subsets of all

analysis implementations while extracting threads. The total number of distinct configura-

tions is exponential in the number of analysis implementations, and so I selected only 44

configurations in order to estimate the relative importance of each analysis implementation

to ASAP’s performance on these benchmarks. Specifically, I chose (a) the full configura-

tion consisting of all analysis implementations; (b) 21 leave-one-out configurations, each

consisting of the full set of implementations with one implementation removed; (c) 21 sin-

gleton configurations, each consisting of a single implementation in isolation; and, (d) the

null configuration which includes no implementations. We expect (a) to be most precise,
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followed by configurations in (b), configurations in (c), and finally configuration (d).

Next, I ran the automatic thread extraction system under each configuration of analy-

sis. Although ASAP could produce 44 variants of each benchmark—one for each analysis

configuration—in practice the compiler generated at most two distinct outputs per bench-

mark.

Seven benchmarks were insensitive analysis precision and four were sensitive. Fig-

ure 6.1 summarizes the results of the ASAP analysis-sensitivity experiments for the bench-

marks 2mm, 3mm, covariance and correlation. With stronger analysis, ASAP

achieves a geomean speedup of 28× on 50 cores, however, when weak analysis is used,

those same benchmarks suffer an 11× slowdown. All slowdown measurements are bound

by a 24 hour timeout. I was unable to reproduce Kim’s results for two benchmarks that

crashed during evaluation.

6.1.2 Absolute Precision

We follow Hind’s recommendation [31] by evaluating with respect to clients of interest: a

PS-DSWP [71] client and a Program Dependence Graph (PDG) [21] client.

The PS-DSWP client queries dependence analysis to drive Parallel-Stage Decoupled

Software Pipelining thread extraction. PS-DSWP schedules the Strongly Connected Com-

ponents (SCCs) of the Program Dependence Graph across threads to produce a pipeline

execution model. We use a fast algorithm to compute SCCs [41]. Several metrics of PS-

DSWP are:

• %NoDep: percent of dependence queries for which the ensemble reports no flow,

anti, or output dependence. Larger %NoDep is consistent with higher precision.

• NumSCCs: number of SCCs in the loop’s PDG. More SCCs grant PS-DSWP greater

scheduling freedom. Imprecise dependence analysis conservatively merges SCCs.

• NumDoallSCCs: number of SCCs which lack loop-carried dependences. More is
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Figure 6.1: ASAP speedup is sensitive to static analysis precision. In four benchmarks,
precise analysis allows transformation without speculation or with less speculation, and
achieves scalable parallelism. Imprecise analysis forces the compiler to compensate with
more speculation on the same benchmarks. Increased validation overheads cause in appli-
cation slowdown.
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better as PS-DSWP schedules DOALL SCCs concurrently.

• %BailOut: percent of loops for which the SCC algorithm bails out [41]. Bail-out

indicates that PS-DSWP cannot parallelize the code. Smaller is better.

The PDG client performs an intra-iteration and a loop-carried dependence query on

each pair of memory operations within each hot loop. The PDG client’s %NoDep metric

is the fraction of queries which the ensemble disproves or reports only a read-after-read

dependence. Larger %NoDep is better. This metric values every dependence equally.

Both clients are limited to a 30 minute timeout. In the case of a timeout, results indicate

progress before a timeout.

We model an oracle from profiling information. We use a loop-sensitive memory flow

dependence profiler [59] to identify dependences in applications with its spec train input

set. If the profiler observes no memory flow dependence between a pair of operations,

the oracle asserts that there is no flow dependence. An analysis-adapter introduces these

assertions into the ensemble.

This is not a true oracle. Profiles are incomplete because the training input does not

induce 100% code coverage. The memory profiler detects only flow dependences and can-

not assert the absence of anti or output dependences. In these cases, the oracle degrades to

static analysis.

In some cases, the oracle is too precise because profiling information reflects input-

driven program behaviors, whereas static analysis algorithms compute a conservative es-

timate of program behavior over all possible inputs. We do not expect static analysis to

achieve oracle results. Despite limitations, this oracle provides a reference for comparison.

Importance of Context-Qualifiers in the Query Language

Recall from Section 3.3 that all CAF queries are qualified against a loop and a temporal re-

lation. These context qualifiers are important for achieving analysis precision by avoiding
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Figure 6.2: Context improves the PDG Client’s %NoDep metric for both oracle and full
ensemble.

unwanted generalization across many paths of execution. To evaluate the effect of con-

text and path qualifiers on precision, we create variants of the PDG and PS-DSWP clients

which issue context-blinded queries. We compare the performance of the contextualized

and context-blinded variants of the oracle and the full ensemble of static analysis.

Figure 6.2 presents the %NoDep metric of the PDG client. When context is removed,

oracle performance drops by 25.3% (geomean) and ensemble performance drops by 6.1%

(geomean). Figure 6.3 presents results with respect to the %NoDepmetric of the PS-DSWP

client which show a similar decrease in precision. Figure 6.4 shows the fraction of loops

within each benchmark for which PS-DSWP bails out (finds no DOALL SCCs). The loss

of precision incident on removing context from the queries increases the rate of bail-out by

29.7% for the Oracle and 40.0% for the ensemble, indicating degraded client performance.

133



 0

 20

 40

 60

 80

 100

400.perlbench

401.bzip2

403.gcc
429.mcf

433.milc
435.gromacs

444.namd

445.gobmk

447.dealII

450.soplex

453.povray

456.hmmer

458.sjeng

462.libquantum

464.h264ref

470.lbm
471.omnetpp

473.astar

482.sphinx3

geomean

 0

 20

 40

 60

 80

 100

%
 N

o 
de

p

% No dep for PS-DSWP Client

Oracle
Oracle, no Context

Full Ensemble
Full Ensemble, no Context

Figure 6.3: Context improves the PS-DSWP Client’s %NoDep metric for both oracle and
full ensemble.
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Precision with respect to PS-DSWP

Of the 169 hot loops found in 20SPEC CPU2006 benchmarks, 20 loops are so constrained

by register and control dependences that they have only one SCC. The PS-DSWP client

bails-out before it issues any memory query for such loops. Of the 149 hot loops for which

PS-DSWP issues queries, the oracle reports worst-case (1 SCC, 0 DOALL SCCs) for 84

hot loops (56.4%). The full ensemble reports the same in these cases.

Among 65 remaining loops, the oracle found more than one SCC. On these loops, the

full ensemble reported 27.4% as many SCCs as the oracle (geomean). The full ensemble

achieves zero DOALL SCCs for 39 loops. Excluding these loops, the full ensemble reports

66.5% of the DOALL SCCs of the oracle (geomean). Additional analysis algorithms could

reduce this difference.

Overall, the PS-DSWP client reports the same number of SCCs for 97 of 169 hot loops,

and reports the same number of DOALL SCCs for 98 hot loops, regardless of whether the

client employs the oracle or full ensemble.

Chaining and Topping

The proposal encourages development of factored algorithms, arguing that the pattern of

chaining and topping achieves precision. To demonstrate the value of chaining and topping,

this chapter evaluates alternative means of composition while using the same algorithms.

A naı̈ve alternative to chaining and topping is the best-of-N method which passes each

query to each algorithm in isolation and returns the most precise answer. This corresponds

to the composition pattern used in the LLVM static analysis framework. Figure 6.5a com-

pares the best-of-N method to our proposal. The chaining and topping method performs

better than best-of-N on the %NoDep metric of the Exhaustive client for all but 10 of 140

loops (timeouts excluded).

Another alternative composition method employs chaining but not topping. To model

this method, I modified the framework so that every attempt to top a query instead chains
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(b) Collaborative vs. no-topping composition.

Figure 6.5: Each point is a hot loop, excluding time-outs and loops without memory ac-
cesses. The collaborative approach performs better for loops above the diagonals. Cross-
hairs show the geometric mean of each dimension, excluding 24 loops with either x=0% or
y=0%.

the query, i.e., foreign premise queries are passed only to later members of the ensemble

instead of all. Figure 6.5b presents this comparison and demonstrates that chaining and

topping combined dominate no-topping.

6.1.3 Collaboration and Orthogonality

One may believe that disparate types of reasoning must be tightly coupled into a single

algorithm. This chapter presents results that demonstrate that factored algorithms work to-

gether despite strict modularity. These experiments evaluate the marginal benefit of adding

new algorithms to the ensemble. Marginal benefit is determined by orthogonality and col-

laboration.

A set of analysis algorithms is orthogonal if at most one member algorithm disproves

any one dependence query. If an algorithm is orthogonal to those in an ensemble, adding

it increases the ensemble’s precision by the precision of that algorithm in isolation. A

set of algorithms is non-orthogonal if there is a query which several member algorithms

disprove. If an algorithm is not orthogonal to the ensemble, adding it improves precision

by an amount less than its precision in isolation. Orthogonality is valued as a software
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Orthogonal
Q1 Q2 Q3 %No

All algorithms No No – 2/3
Algorithm X ,
isolated

– No – 1/3

All algorithms
except for X

No – – 1/3

Gain = 1/3 = Isolated

Non-orthogonal
Q1 Q2 Q3 %No

All algorithms No – – 1/3
Algorithm X ,
isolated

No – – 1/3

All algorithms
except for X

No – – 1/3

Gain = 0/3 < Isolated

Collaboration
Q1 Q2 Q3 %No

All algorithms No No No 3/3
Algorithm X ,
isolated

– No – 1/3

All algorithms
except for X

No – – 1/3

Gain = 2/3 > Isolated

Figure 6.6: Collaboration, orthogonality, non-orthogonality, and anti-collaboration can be
measured by differential analysis. For a fixed set of dependence queries, ensembles of
different sets of analysis will disprove different subsets of queries.

Analysis
Algorithm

Loss vs Isolated Performance (% of Loops)

Collab. Ortho? Anti-collab. Non-ortho.
Anti-collab?
Non-ortho?

gain > iso gain = iso gain < 0 < iso 0 = gain < iso 0 < gain < iso
Kill flow 40.7 44.3 2.1 3.6 9.3

Callsite combinator 32.1 57.1 0.0 0.0 10.7
Array of structures 31.4 50.0 13.6 0.7 4.3

Semi local fun 30.9 50.4 1.4 2.9 14.4
Basic loop 30.2 24.5 0.7 8.6 36.0

Field malloc 21.4 72.1 2.9 2.1 1.4
Unique access paths 13.7 86.3 0.0 0.0 0.0

Auto restrict 10.9 84.1 5.1 0.0 0.0
No capture global 6.4 57.9 3.6 15.7 16.4

Global malloc 1.4 89.9 4.3 2.9 1.4
Phi maze 1.4 56.8 2.9 28.8 10.1

No capture src 0.0 63.3 2.9 20.9 12.9
Disjoint fields 0.0 82.9 5.0 5.0 7.1

Table 6.1: Collaboration, orthogonality, anti-collaboration, and non-orthogonality are ob-
served in the relative strengths of the full, leave-one-out, and isolated ensembles. Each cell
is a percentage of hot loops which satisfy an inequality between gain (full - leave-one-out)
and isolated ensembles.
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Figure 6.7: These plots show the same data as Table 6.1 in visual form: collaboration
per loop of the Exhaustive %NoDep metric. The horizontal axis is isolated performance,
the vertical axis is gain (full - leave-one-out). Percentages in plot area count loops above,
along, or below the diagonal, or along or below the horizontal line. Points above the diag-
onal indicate collaboration. The parenthetical in each title counts non-timeout loops (total
points).
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engineering ideal since it is consistent with the minimal amount of software development

effort, but non-orthogonality is not detrimental to soundness or precision.

Algorithms in an ensemble collaborate if there is a class of dependence queries which

the ensemble disproves, yet which no single algorithm disproves in isolation. Conversely,

there may be a class of dependences which one algorithm disproves in isolation, but which

the ensemble cannot; such cases are anti-collaborative. Collaboration is valuable since it

indicates a great return on software-engineering effort, and anti-collaboration should be

avoided since it indicates a precision bug.

To evaluate collaboration, we compare the Exhaustive Client’s %NoDep performance

metric while varying the ensemble. The full ensemble consists of all 13 algorithms. We

define leave-one-out and isolated ensembles for each algorithm A: leave-one-out consists

of all algorithms except for A, and isolated consists of A alone. We define gain as the dif-

ference between the full ensemble and the leave-one-out ensemble of A. Informally, gain

represents the contribution of one algorithm to the ensemble. Orthogonality and collabora-

tion are observed by comparing gain to isolated precision.

Table 6.1 summarizes collaboration and orthogonality experiments by comparing full

ensemble, leave-one-out, and isolated performance of each algorithm. Columns present

the percentages of loops whose gain is greater than, equal to, or less than its isolated per-

formance. Each loop is an aggregation of queries, so all categories potentially represent

a mixture of collaboration, anti-collaboration, orthogonality and non-orthogonality. When

gain exceeds isolated, the algorithm contributes more in an ensemble than it does on its

own. Such loops are positive evidence of collaboration. Loops whose gain equals isolated

performance are consistent with orthogonality. Loops whose gain is zero indicate non-

orthogonality. Loops whose gain is less than isolated performance are inconclusive. Loops

with negative gains indicate anti-collaboration. Precision bugs in algorithms implementa-

tions cause anti-collaboration.

For further detail, we present loop-by-loop data for four select algorithms. The com-
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parisons in Table 6.1 correspond to the position of each loop with respect to the diago-

nals in Figure 6.7. Functor algorithms Array of Structures and Kill Flow show a trend

along the isolated=0 border, indicating that these algorithms disprove few queries alone

yet help other algorithms to disprove many. Basic Loop demonstrates many loops with

isolated>0. However, it also demonstrates collaborative loops where gain>isolated. Al-

though not designed as a functors, Basic Loop collaborates by solving other functors’ for-

eign premises. This also quantifies the degree of anti-collaboration. Array of structures

shows anti-collaboration on 13.6% of loops, but most of those are only slightly negative.

These cases of anti-collaboration indicate a precision bug that mildy impacts overall en-

semble performance.

6.2 The Fast DAGSCC Algorithm

To evaluate the Fast DAGSCC Algorithm, we implement the baseline (Section 4.2), client-

agnostic (Section 4.3), and PS-DSWP-aware (Section 4.4) algorithms in the LLVM infras-

tructure [51] revision 164307. Each algorithm is augmented with a 30 minute timeout.

Each algorithm uses the same data structures to represent the program dependence

graph and strongly connected components. Section 4.6 details the graph data structure.

In brief, the PDG data structure is a sorted adjacency-list representation, which performs

well since PDGs tend to be sparse graphs. The data structure is capable of representing

partial knowledge of memory dependences: between any pair of vertices, a memory de-

pendence is present, absent, or unknown. Thus, none of the algorithms will ever perform

the same query more than once. The cost of manipulating the data structure had negligible

effect on most experiments.

We evaluated these techniques on 20 SPEC CPU2006 benchmarks [78]. The exper-

iments exclude eight FORTRAN benchmarks because the front-end supports only C and

C++. Each benchmark was compiled under two optimization regimens. The less-optimized
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Less-Optimized Regimen More-Optimized Regimen
Hot Coverage Size Hot Coverage Size

Benchmark Loops Hottest Coldest Largest Smallest Loops Hottest Coldest Largest Smallest
400.perlbench 4 25.6% 5.5% 163 (#1) 9 (#4) 3 25.8% 11.1% 266 (#2) 66 (#3)
401.bzip2 9 73.5% 8.5% 597 (#7) 7 (#9) 9 71.5% 5.6% 2236 (#9) 7 (#8)
403.gcc 16 79.2% 5.0% 5800 (#1) 7 (#12) 11 79.8% 5.4% 11326 (#1) 40 (#2)
429.mcf 7 99.9% 6.3% 81 (#4) 26 (#1) 8 99.7% 8.6% 1352 (#1) 47 (#8)
433.milc 9 52.5% 7.5% 159 (#1) 12 (#9) 15 32.5% 5.4% 298 (#1) 19 (#7)
435.gromacs 5 99.9% 18.6% 671 (#1) 23 (#5) 8 99.4% 6.2% 10191 (#1) 72 (#7)
444.namd 16 99.9% 5.2% 1266 (#10) 9 (#2) 21 100.0% 6.1% 1271 (#14) 66 (#10)
445.gobmk 20 100.0% 5.0% 3868 (#7) 12 (#11) 20 99.9% 5.3% 3099 (#7) 39 (#13)
447.dealII 20 100.0% 5.5% 140 (#17) 10 (#10) 16 100.0% 5.6% 788 (#4) 6 (#6)
450.soplex 6 50.7% 6.4% 118 (#5) 15 (#6) 9 69.4% 5.5% 1034 (#4) 15 (#7)
453.povray 6 99.9% 28.8% 90 (#5) 23 (#6) 7 99.9% 5.6% 258 (#1) 13 (#7)
456.hmmer 6 100.0% 6.4% 277 (#2) 11 (#4) 6 100.0% 7.2% 240 (#1) 13 (#5)
458.sjeng 7 100.0% 9.5% 779 (#4) 147 (#1) 9 99.9% 5.4% 3359 (#7) 13 (#8)
462.libquantum 15 74.2% 4.9% 49 (#4) 5 (#6) 12 94.6% 5.7% 97 (#1) 9 (#11)
464.h264ref 8 100.0% 6.7% 680 (#8) 159 (#3) 8 100.0% 11.1% 1483 (#8) 128 (#3)
470.lbm 2 99.8% 99.1% 475 (#2) 23 (#1) 2 99.6% 99.0% 1175 (#1) 475 (#2)
471.omnetpp 2 100.0% 13.2% 23 (#1) 23 (#1) 2 100.0% 19.0% 37 (#2) 22 (#1)
473.astar 9 65.4% 5.8% 61 (#3) 9 (#9) 12 56.6% 6.7% 238 (#1) 17 (#6)
482.sphinx3 10 95.0% 6.6% 429 (#2) 12 (#10) 8 94.5% 5.0% 2170 (#2) 12 (#1)
483.xalancbmk 2 98.0% 7.2% 28 (#2) 12 (#1) 1 97.6% 97.6% 36 (#1) 36 (#1)

Table 6.2: Hot loops from SPEC CPU2006. “Coverage” is the percent of running time
spent in the loop. “Size” is the number of LLVM IR instructions contained in the loop.
“Largest” and “smallest” also contain the loop id, where #1 is the hottest loop, and #n is
the coldest.

regimen uses clang -O1. The more-optimized regimen is designed to create larger

scopes that are harder to analyze. Specifically, we apply internalization,1 devirtualization

of indirect calls, and -O3.

We profile each benchmark to identify 366 hot loops. Hot loops are those loops whose

running time consumes at least 5% of application running time, and which perform at least

five iterations per invocation, on average. The hot loops found among the benchmarks are

summarized in Table 6.2. It is not always possible to correlate hot loops between the less-

and more-optimized regimens; optimization may break a hot loop into several, or reduce

the execution time of a loop below the threshold.

Experiments run on an eight core 1.6GHz Xeon E5310. The machine has 8GB RAM

and runs 64-bit Linux 2.6.32. All benchmarks are compiled to 64-bit, little-endian code. In

this section, we use instruction to refer to an LLVM virtual instruction. All measurements
1Internalization asserts that the input program is the whole program, i.e. that no external libraries refer-

ence any of the program’s exported symbols. It is similar to marking all global symbols with C’s static
keyword.
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experienced negligible variance.

In these experiments, the Fast DAGSCC Algorithm use the CAF with an ensemble of

nineteen analysis implementations. These analyses are either purely demand-driven or are

largely demand-driven, i.e., a significant portion of analysis effort is performed in response

to a query, not ahead of time. This configuration of the CAF services most queries quickly:

half of all queries take less than 287.6µs (460K cycles); two thirds take less than 601.3µs

(962K cycles); 90% take less than 1.0ms (2M cycles). Differences in query running time

are due to differences in query complexity: for instance, analyzing a call site is generally

more expensive than analyzing a load instruction. Across multiple runs, the running time

of any one query exhibits negligible variance, suggesting that noise has minimal impact on

timing results.

6.2.1 Performance Improvement

The most direct impact of the proposed algorithm is a reduction in DAGSCC construction

latency.

Figure 6.8a shows the time required to construct a DAGSCC for both the client-agnostic

and PS-DSWP-aware algorithms. Each point represents a loop from the less- or more-

optimized regimen, normalized to the running time of the baseline algorithm (smaller is

better). The client-agnostic method is faster for all but 14 of 366 loops.

Performance improvements are due primarily to a reduction in the number of depen-

dence analysis queries. Empirical results concur with the claim that the client-agnostic

algorithm normalized running time is linear in the normalized number of queries. The

Pearson’s Correlation between the normalized construction time and normalized number

of queries is 0.63.

Figures 6.8b–6.8d show factors which contribute to the reduction in queries. The frac-

tion of queries performed by the client-agnostic method is related to both the average size

of SCCs as well as the number of SCCs, yet is only mildly affected by the size of the region.
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This is because the algorithm elides queries for a class of redundant edges that grows with

both average SCC size and number of SCCs (illustrated in Figure 1.6(d)–(e)). Empirical

results concur with the claim that the client-agnostic method elides a greater fraction of

queries in loops with fewer or larger components. The Spearman’s Rank2 between the av-

erage SCC size and normalized number of queries is -0.52. The Spearman’s Rank between

the number of SCCs and the normalized number of queries is 0.24.

One extreme outlier experiences more than 2× slowdown: the fourth-hottest loop from

458.sjeng, located in function std eval. In that loop, the proposed methods decrease

the number of queries and the time spent on analysis queries. The cost of computing

SCCs several times is less than the savings from fewer queries. However, the overhead of

manipulating the sparse graph data structure is exceptionally high for this loop, canceling

the savings. Further engineering work could reduce this overhead.

Figure 6.9 considers the largest sequences of loops that can be analyzed before varying

limits on analysis time (log scale). To simulate a very large application, this experiment

allows the compiler to select any of the loops from the entire benchmark suite. The client-

agnostic method analyzes more loops than the baseline under the same time constraints.

The PS-DSWP client-aware extensions cause a slight performance degradation from client-

agnostic yet are still more efficient than the baseline.

Not all loops are equally valuable. Amdahl’s law encourages compilers to ration their

time budget towards hot loops. Figure 6.10 explores how many hot loops (weighted by

coverage) each method analyzes by a certain time. The compiler considers each loop from

hottest to least-hot. The vertical axis is the number of loops analyzed, weighted by the

relative coverage of each loop. T50% shows the times when the Baseline, Client-agnostic,

and PS-DSWP Client-aware methods reach 50% of cumulative loop coverage or (30 min)

if they time out first. On average, the client-agnostic method analyzes 50% of cumulative

2Spearman’s Rank is a measure of statistical dependence [42]. We use Spearman’s Rank to support the
claim of a monotone relationship, which is strictly weaker than a linear relationship indicated by Pearson’s
Correlation.
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Figure 6.8: Improvement in running time and in number of queries, normalized to the
baseline method.

145



 0

 50

 100

 150

 200

 250

 300

 350

 0.001  0.01  0.1  1  10  100  1000  10000

N
um

be
r 

of
 H

ot
 L

oo
ps

 A
na

ly
ze

d 
B

ef
or

e 
T

im
e 

Li
m

it

Time Limit (seconds, logscale)

109

176

258

76

135

212

Baseline
Client-agnostic

PS-DSWP Client-aware

Figure 6.9: Largest sequence of hot loops analyzed before timeout.
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loop coverage 111.5s before the baseline, and the client-aware method achieves that 106.1s

before the baseline. The proposed methods allow an optimizing compiler to analyze the

code which most contributes to running time in shorter use cycles.
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Benchmark Less-Optimized Regimen T50% More-Optimized Regimen T50%

483.xalancbmk
6.1ms
1.8ms
1.3ms

41.1ms
2.8ms
2.9ms

471.omnetpp
120.7ms
10.5ms
10.8ms

3.8s
20.9ms
21.9ms

473.astar
306.3ms
139.3ms
195.5ms

3.4s
1.5s
1.6s

447.dealII
3.3s
166.3ms
168.2ms

4.0s
284.5ms
299.2ms

470.lbm
364.1ms
174.6ms
188.5ms

64.8s
29.8s
29.5s

450.soplex
493.4ms
223.4ms
228.2ms

214.5s
94.1s
95.2s

401.bzip2
778.0ms
333.4ms
346.7ms

33.9s
5.0s
5.3s

429.mcf
1.4s
665.6ms
678.5ms

204.7s
62.1s
62.1s

462.libquantum
799.2ms
764.2ms
60.0ms

1.7s
857.9ms
138.7ms

444.namd
43.1s
1.3s
67.8ms

142.3s
47.1s
49.3s

433.milc
15.6s
9.1s
9.5s

62.8s
33.8s
35.7s

456.hmmer
19.4s
14.0s
14.0s

11.9s
3.6s
3.8s

482.sphinx3
51.9s
26.8s
30.9s

428.3s
177.4s
175.8s

453.povray
582.8s
323.7s
459.1s

(30 min)
(30 min)
(30 min)

458.sjeng
1007.6s
383.8s
385.4s

(30 min)
1113.2s
1103.7s

445.gobmk
(30 min)
693.9s
773.3s

18.1s
2.3s
2.3s

435.gromacs
(30 min)
837.1s
839.0s

(30 min)
(30 min)
(30 min)

400.perlbench
(30 min)
(30 min)
(30 min)

(30 min)
(30 min)
(30 min)

403.gcc
(30 min)
(30 min)
(30 min)

(30 min)
(30 min)
(30 min)

464.h264ref
1ms 10ms 100ms 1 s 10 s 100 s 1ks

(30 min)
(30 min)
(30 min)

1ms 10ms 100ms 1 s 10 s 100 s 1ks

(30 min)
(30 min)
(30 min)

Baseline Client-agnostic PS-DSWP Client-aware

Figure 6.10: The client-agnostic, client-aware and baseline methods analyzing each bench-
mark. The horizontal axis measures time (s) from 1ms to 30 minutes on a log scale. The
vertical axis is the fraction of loops analyzed before a that time, weighted by coverage. The
client-agnostic method reaches 50% on average 111.5s earlier than baseline.
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Chapter 7

Conclusion and Future Directions

“Science invites; urg’d by the Voice divine,

exert thyself, ’till every Art be thine.”

—Mural at the Princeton Post Office.

This dissertation provides a middle-ware for automatic parallelization, including de-

pendence analysis, thread partitioning heuristics, and speculation. Many works have been

built upon this infrastructure [38, 65, 45, 69, 36, 37, 57] separately from a paper which

cover the infrastructure [40], demonstrating generality and robustness of the components.

7.1 Summary and Conclusions

A central idea of this thesis has been the importance of how a compiler analyzes, man-

ages, and simplifies a program’s dependence structure. Certain software architectures are

limited, preventing developers from using the appropriate analysis algorithms or specula-

tion types to achieve results in their domain of interest. To overcome these limitations,

this dissertation presents the Collaborative Analysis Framework (CAF) in Chapter 3 and

the Speculation-Module design pattern in Chapter 5. Another theme has been on compiler

scalability as an aspect of usability and adoption. Towards that goal, the CAF allows a
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developer to select any subset of dependence analysis algorithms which meet their perfor-

mance goals, and the Fast DAGSCC Algorithm in Chapter 4 reduces analysis time regardless

of the choice of analysis algorithms.

The CAF allows collaborative composition of varied dependence analysis algorithms.

Collaboration allows compiler developers to grow their dependence analysis infrastructure

according to the demands of their applications of interest while simplifying the burden of

developing each increment. Alternatively, its modularity allows compiler developers to

exclude certain analysis algorithms for performance considerations. Concrete implemen-

tations (detailed in Appendix A) demonstrate the generality of the framework and the ease

with which new implementations are added. Chapter 3 also presents a formalism of the

semantics of the query language.

The Fast DAGSCC Algorithm greatly reduces compilation times by heuristically elimi-

nating unnecessary work during the program analysis phase of compilation. In concert with

the CAF (or any demand-driven dependence analysis framework), the Fast DAGSCC Algo-

rithm identifies certain dependence relationship which cannot affect clients of the DAGSCC

and elides the dependence queries pertaining to those relationships. Chapter 4 also includes

a correctness proof.

Speculative dependence identification overcomes the fundamental limitations of static

dependence analysis while reducing the overheads of speculative optimization. This hy-

brid approach offers high transformation applicability and efficient parallel execution. This

dissertation presents the speculation-module design pattern, which simplifies design of the

optimizing transformation and allows the compiler developer agility in their use of specu-

lation. Compiler developers may mix and match various speculation types, or may rapidly

prototype new ones in a general compiler framework.
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7.2 Future Directions

This dissertation has not solved the multicore “crisis.” Much work remains.

7.2.1 Further Formalization of Dependence Analysis

Chapter 3 presents a formalization of the semantics of the CAF query language. This for-

malization is an important first step in the formalization of advanced dependence analysis

algorithms. This formalization is developed within the ontology defined by the Vellvm

project [95, 94], borrowing its definitions for the IR, program and memory states, and its

non-deterministic small-step semantics. Although Vellvm is implemented in the Coq proof

assistant, the formalization of the query language exists only on paper today.

Mechanizing these formalizations in Coq is a promising future direction. After tran-

scribing the query language’s semantics into Coq, various implementations of dependence

analysis could be proved correct. Further, collaborative composition itself could be proved

correct.

7.2.2 Tools to Aid Development of New Factored Analyses

As noted in Section 3.8.1, the CAF is a work in progress; new analysis algorithms as

needed. The process for developing them is driven by observed imprecision. However,

tracking this imprecision to a root cause is more difficult than it should be. There is room

for tools which automate this process by identifying cases where dependence analysis result

are less precise than an oracle.

The challenges then becomes the finding an appropriate oracle and to present the dis-

crepancies in a meaningful manner to the compiler developer. Fortunately, speculative

dependence identification serve as an oracle. Every necessary speculative assumption (see

Section 5.3.1) indicates a potential enhancement to the ensemble of static analysis algo-

rithms.
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Presenting enhancement opportunities to the user is more difficult. I envision a tool

which maintains a worklist of imprecise dependence queries, and which updates this list in

real time as new analysis algorithms disprove them. The tool should also offer some means

of regression testing, wherein overly optimistic algorithms can be detected and corrected

earlier in the development process.

7.2.3 Efficiently Validated Speculative Assumptions

The cost of speculative validation can overwhelm the benefits of speculative transforma-

tion. Much work is necessary to reduce validation overheads. This thesis posits that the

best way to reduce these overheads is two fold: using stronger analysis so that fewer specu-

lative assumptions need validation, and choose different classes of speculative assumptions

whose validation is more efficient or more scalable.

The dissertation presents several types of speculation that offer reduced validation costs:

control speculation, invariant load speculation, read-only speculation, object lifetime spec-

ulation, pointer-residue speculation, and speculative accumulator expansion. However, the

net enabling effect of all of these still lags that of general memory flow speculation.

More research is necessary into efficiently validated speculative assumptions.

7.2.4 Speculation without Profiling

Profiling imposes significant time and effort burdens on software engineers. Many software

engineers do not use profilers or apply profile-guided optimizations. This prevents the

adoption of profile-guided speculative transformation. Research on non-profiling means to

identify speculative assumptions is necessary.

152



Appendix A

Analysis Implementations

“All I really want is one sentence

with the word ‘conservatively’ in the right place.”

—Thomas B. Jablin,

Private correspondence, November 2013.

This appendix details the implementations of dependence analysis algorithms used

throughout this thesis and presents some high-level themes underlying their operation.

The data dependence relation summarizes the use of storage locations across program

executions. Recall from Definition 3 that data dependence between two operations neces-

sitates a common storage location, a feasible path of execution between those operations,

and the absence of any killing operations between then which disturbs the flow of data. De-

pendence analysis algorithms attack one or more of these criteria to disprove dependence.

Sections A.1–A.4 describe some recurring themes employed in dependence arguments.

Subsequent sections describe particular dependence analysis algorithms. Sections A.5–A.8

describe the simplest algorithms which address particular features of the IR and the C stan-

dard library. Sections A.9 and A.10 present flow killing algorithms that address condition 4

of Definition 3. Sections A.11–A.14 describe reachability algorithms, which reason about

which object addresses can be stored to particular memory locations. Sections A.15–A.17
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describe algorithms which reason about induction variables and the evolution of pointer

expressions with respect to loop iterations. Sections A.18–A.22 describe shape analysis

algorithms.

A.1 Theme: Lift May-Alias to May-Depend

The first condition of memory dependence (Definition 3) requires that both operations ac-

cess a common memory location. Consequently, one can lift alias analysis algorithms to

service dependence analysis queries in some common cases. Specifically, simple load or

store operations depend on one another only if their pointers may-alias. There are so

many alias analysis algorithms that this lifting process is common, and so an adapter was

created to simplify lifting.

Class ClassicLoopAA implements this lifting process. Subclasses of Classic-

LoopAA override a method ClassicLoopAA :: aliasCheck(p1, s1, T, p2, s2, L). Note that

aliasCheck is distinct from the query method LoopAA :: alias pp. The aliasCheck

is non-recursive: it does not chain queries when it cannot determine a precise answer,

relying instead on the ClassicLoopAA implementation to perform chaining in the usual

fashion.

Upon receiving the query modref ii(i1, T, i2, L) ClassicLoopAA checks whether

both i1 and i2 are load or store instructions. If so, it extracts pointer values p1, p2 from

those instructions, as well as access size s1, s2. It then invokes its method aliasCheck

(p1, s1, T, p2, s2, L) to determine an alias; subclasses overload this method to implement

an alias test. If these pointers cannot alias, ClassicLoopAA reports NoModRef. Other-

wise, ClassicLoopAA chains the original modref ii query.

Similarly, upon receiving the query modref ip(i1, T, p2, s2, L), ClassicLoopAA

checks whether i1 is a load or store instruction. If so, it extracts pointer value p1

and access size s1 from i1. it then invokes its method aliasCheck(p1, s1, T, p2, s2, L) to
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determine an alias. If these pointers cannot alias, ClassicLoopAA reports NoModRef.

Otherwise, ClassicLoopAA chains the original modref ip query.

The reader may wonder why ClassicLoopAA chains the modref ii or modref ip

queries instead of chaining an alias pp query. The modref * queries contain slightly

more information than alias pp queries by virtue of the instruction operands. These in-

struction operands not only specify a pointer access, but also a code position where that ac-

cess occurs. Consequently, by chaining modref * queries, ClassicLoopAA preserves

an option for subsequent analysis algorithms to exploit that additional information.

A.2 Theme: Conservativism

Human intuition often gives the mistaken impression that certain scenarios are simple.

Unless you prove otherwise, no scenario is as simple as it seems.

Rationale: the semantics of the query language generalize all possible executions and

all possible inputs. This includes counter-examples that are difficult to imagine.

Consequence: Type annotations have little meaning because some evil instruction per-

forms a reinterpretation cast. Tracing values through memory is difficult because some evil

instruction may use or define that memory indirectly through some unknown pointer. Call

graphs are inexact because instructions outside of this module call procedures other than

main. Externally defined procedures can do anything. Procedures will be recursive when

you don’t want them to be. There are many more.

A.3 Theme: You Cannot Guess an Address

A pointer may only access an object if there is some means for the object address to flow

from the allocation of that object. Disproving information flow disproves aliasing.

Rationale: Nothing guarantees that memory allocations occupy consistent addresses

across runs of the program. The only algorithm to reliably predict the address returned by
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an allocator is the allocator itself; all other algorithms will sometimes guess incorrectly.

Any attempt to dereference such an incorrect guess would result in undefined behavior.

Dependence analysis may liberally interpret this undefined behavior to its advantage.

Consequence: Two pointers alias only if they are both derived from the same alloca-

tion. If the compiler proves that an allocation’s address cannot flow beyond some boundary,

then pointers derived from values outside of that boundary cannot alias the allocation.

A.4 Theme: Simpler Data Flow on Non-Captured Storage

Similar to virtual registers, memory storage locations hold values. Unlike registers, storage

locations can be accessed indirectly through pointers. It is not always possible to enumerate

all uses of a storage location, and consequently, it is not always possible to enumerate all

definitions and uses of values stored within a given storage location.

Non-captured storage refers to storage locations whose address is never captured. Cap-

tures occur when the address is stored into memory by store instructions. Captures also

occur if the address is passed to an externally defined procedure, since we assume, conser-

vatively, that the procedure conceals capturing store instructions. Also, the linker creates

opportunities for captures of storage locations whose names are accessible beyond the cur-

rent unit of compilation; for example, an object file exports all global variables which are

not marked private (via C’s static keyword, C++’s anonymous namespaces, LLVM’s

InternalLinkage linkage type, or related mechanisms).

In the absence of captures, the storage location’s address flows only through virtual

registers and address computation instructions (see theme you cannot guess an address

in Section A.3). Using trivial register data flow analysis, an algorithm can enumerate a

complete set of load or store instructions which access a non-captured storage location.

For sake of analysis, a non-captured storage location can be treated like a register. Indeed,

this is the same reasoning that LLVM’s PromotePass uses to promote stack allocations
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into virtual registers.

Several analysis algorithms simplify information flow through memory by identifying

non-captured locations, such as “non-captured fields” (Section A.19) or “unique access

paths” (Section A.14).

A.5 Auto-Restrict

• Implementation: class AutoRestrictAA

• Tactic: disprove aliasing; foreign premise queries.

• Initialization costs: proportional to size of call graph.

• Cost / Query: proportional to number of call sites.

• Foreign Premise Queries / Query: proportional to number of call sites.

The “auto-restrict” algorithm simplifies queries among a function’s formal parame-

ters when that function’s call sites are statically known. Specifically, it formulates for-

eign premise queries by replacing formal parameter with concrete actual parameter values

drawn from each of the function’s call sites, in turn.

In essence, this adds C99’s restrict keyword to formals when appropriate.

A.6 Basic Loop

• Implementation: class BasicLoopAA

• Tactic: disprove aliasing.

• Initialization costs: none.

• Cost / Query: proportional to the size of a pointer expression’s derivation.
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• Foreign Premise Queries / Query: none.

The “basic loop” algorithm is a straightforward enhancement of LLVM’s BasicAA to

the CAF interface. It reasons about null pointers, as well as the derivation of pointer

expressions through cast instructions, Φ-nodes, select instructions, and address compu-

tations (LLVM’s getelementptr instruction). It asserts that stack allocations do not

alias global variables.

A.7 Φ-maze

• Implementation: class PHIMazeAA

• Tactic: disprove aliasing.

• Initialization costs: none.

• Cost / Query: linear in the number of instructions in a function.

• Foreign Premise Queries / Query: none.

The “Φ-maze” algorithm traces the definitions of pointers through Φ-nodes, pointer

casts, and address computations (LLVM’s getelementptr instruction) to identify a set

of allocation instructions. It reports no-alias between pointers when the source-sets corre-

sponding to both pointers are complete and it can demonstrate all sources are disjoint. The

Φ-maze algorithm reasons that allocations (stack or heap) are disjoint from one another,

from formal parameters, and from global variables. It cannot, however, disambiguate dy-

namic instances of a single allocation.

A.8 Pure and Semi-Local Functions

• Implementation: classes PureFunAA and SemiLocalFunAA
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• Tactic: knowledge of library functions.

• Initialization costs: linear in height of call graph; linear in size of program.

• Cost / Query: linear in number of callsite arguments.

• Foreign Premise Queries / Query: linear in number of callsite arguments.

The “pure functions” and “semi-local functions” algorithms employ knowledge of com-

mon functions from the C, C++, and POSIX standards. They codify knowledge that certain

functions are pure (i.e. their semantics do not require a memory access or an observable

side effect), that certain functions are local (i.e. they may read or write memory refer-

enced by their actual parameters or by a closed set of global variables), or semi-local (i.e.

local functions which may perform side effects). For example, the function sin is pure,

the function memset is local, and the function puts is semi-local. Additionally, these

algorithms annotate that certain pointer arguments are read though never written.

At initialization, these algorithms traverse the call graph from leaves to root. By con-

sidering all operations within a procedure or its callees, these algorithms infer the pure,

local, and semi-local properties of user-code.

Classes PureFunAA and SemiLocalFunAA respond to modref ii queries where

one or both operands is a callsite to a pure, local, or semi-local function. They report

NoModRef for calls to pure functions. It models calls to local functions as loads and

stores to the callsite’s actual parameters, issuing foreign premise queries for each case.

It models calls to semi-local functions similarly to local functions, but additionally reports

an order between semi-local functions and any other side-effecting operation.

A.9 Kill Flow

• Implementation: class KillFlow

• Tactic: flow killing; foreign premise queries.
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• Initialization costs: none.

• Cost / Query: linear in the number of instructions in any function times the height

of the call graph.

• Foreign Premise Queries / Query: linear in the number of instructions in an func-

tion times the height of the call graph.

The “kill flow” algorithm searches for killing operations along all feasible paths be-

tween source and destination operations. Since there may be infinitely many paths, it

restricts its search to blocks which post-dominate the source and dominate the destination.

This is a conservative approximation of those paths: these blocks appear on all feasible

paths between source and destination.

Among those blocks, it visits every intermediate store instruction. It issues foreign

premise queries to determine if the intermediate store’s pointer must-alias with the point-

ers accessed by the source or destination operations. If so, the kill flow algorithm reports

NoModRef.

Additionally, the kill flow algorithm may discover call sites between the source and

destination operations. These call sites may conceal flow killing operations, so the kill flow

algorithm searches inside the callee procedure as well. In particular, it performs a flow

killing search among those basic blocks which post-dominate the callee’s entry block. This

is a conservative approximation of all paths through the function.

Worst-case running time is high. To reduce expected-case running time, the kill flow

algorithm caches intermediate facts, for instance, that a given basic block kills a certain

set of pointers. Further, it searches intermediate basic blocks according to a breadth-first

traversal of the post-/dominator trees, hoping that this will improve performance of its

killing cache.
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A.10 Callsite Depth-Combinator

• Implementation: class CallsiteDepthCombinatorAA

• Tactic: callsite expansion; flow killing; foreign premise queries.

• Initialization costs: none.

• Cost / Query: quadratic in the height of the call graph; quadratic in the size of a

function.

• Foreign Premise Queries / Query: quadratic in the height of the call graph; quadratic

in the size of a function.

The “callsite depth-combinator” (CDC) algorithm codifies that the memory behavior of

a call site is the sum of the memory behaviors of operations within the callee procedure.

Upon receiving a query modref(i1, T, i2, L) where either i1 or i2 represents a procedure

call, class CallsiteDepthCombinatorAA expands the query into multiple foreign

premise queries—one for each discovered memory operation. It responds to the query with

the conservative join of the responses from each foreign premise query, and bails out early

if the worst-case answer is achieved.

To perform the expansion, class CallsiteDepthCombinatorAA uses subclasses

of InstSearch. Such iterators traverse the call graph lazily and track calling-context

for all returned instructions. Calling context allows the iterators to perform extensive flow

killing checks (per the kill flow algorithm in Section A.9) and exclude all but the downward-

exposed stores or upward-exposed loads. Further, calling context allows the iterators

to substitute actual parameters for formal parameters.

Figure A.1 illustrates the iteration pattern with an example. Subclass Reverse-

StoreSearch finds downward-exposed store instructions in callsites, starting from

the roots of the post-dominator tree and visiting “later” instructions before the instruc-

tions they post-dominate. Subclass ForwardLoadSearch finds upward-exposed load
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Figure A.1: Callsite depth-combinator searches for memory operations. Consider a query
from call foo to call bar. Class ReverseStoreSearch visits downward-
exposed stores in reverse order: store v,p2 (with p2 = b) in foo and store
v,p9 (with p9 = p3 = c) in baz. Class ForwardLoadSearch visits upward-exposed
loads in forward order: w = load p11 (with p11 = p5 = b) in baz. It excludes w =
load p4 in bar. because store v,p4 kills it. call foo flows to call bar only
if either of foo’s downward-exposed stores flow to bar’s upward-exposed load.

instructions in callsites, starting from the roots of the dominator tree and visiting “earlier”

instructions before the instructions they dominate. This iteration order is chosen to improve

the performance of class KillFlow’s internal killing cache.

A.11 Global Malloc

• Implementation: class GlobalMallocAA

• Tactic: disprove aliasing; reachability.
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• Initialization costs: linear in the number of instructions that use a global variable.

• Cost / Query: O(A logA), where A is the number of allocation sites captured into

global variables.

• Foreign Premise Queries / Query: none.

During initialization, the “global malloc” algorithm identifies the subset of global vari-

ables whose addresses are never captured (see theme simpler data flow on non-captured

storage in Section A.4). It also collects a set of values stored into non-captured global

variables. It further classifies non-captured globals according to their definition sets: (a) all

definitions come from an allocator routine (i.e. malloc), (b) no definitions come from an

allocator, or (c) all others.

Global malloc answers queries pertaining to pointers loaded from global values. It

reports no-alias between pointers when those pointers are loaded from a global in class (a)

and a global in class (b) (because global classes (a) and (b) are disjoint). Also, it reports no-

alias between pointers when both pointers are loaded from globals in class (a), and when

the respective definition sets are disjoint.

A.12 Non-captured global

• Implementation: class NoCaptureGlobalAA

• Tactic: disprove aliasing; reachability.

• Initialization costs: none.

• Cost / Query: linear in the number of uses of a global variable.

• Foreign Premise Queries / Query: none.
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The “non-captured global” algorithm reports no-alias between pointers when one pointer

is loaded from memory and the other references a non-captured global variable. It reasons

that non-captured globals are, by construction, those global variables whose address cannot

be found in memory, and hence are disjoint from the loaded value.

A.13 Non-Captured Source

• Implementation: class NoCaptureSrcAA

• Tactic: disprove aliasing; reachability.

• Initialization costs: none.

• Cost / Query: linear in the number of uses of a global variable or allocation site.

• Foreign Premise Queries / Query: none.

The “non-captured source” algorithm identifies global variables or allocators whose

address is never captured (see theme simpler data flow on non-captured storage in Sec-

tion A.4). The algorithm exhaustively enumerates the set S of all uses of such objects by

tracing intra-procedural register data flow.

The non-captured source algorithm reports no-alias among pointers when one pointer

is in S and the other is not. When both pointers are in S, it reports no-alias if they reference

different non-captured sources.

A.14 Unique Access Paths

• Implementation: class UniquePathsAA

• Tactic: disprove aliasing; reachability.

• Initialization costs: linear in size of program.
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• Cost / Query: linear in size of points-to sets

• Foreign Premise Queries / Query: linear in size of points-to sets.

Unique Access Paths (UAP) is the example from Section 3.1.2. It reasons about a

simple case of reachability, searching for global, heap, or stack objects whose address is

never captured (see theme simpler data flow on non-captured storage in Section A.4). It

collects points-to sets of values which are stored to those objects. The algorithm converts

queries on pointers loaded from such paths into premise queries among the values in the

points-to sets.

To improve performance, the sets of definitions are stored as move-to-front queues;

this prioritizes premise which are not disproved, producing fewer premises for subsequent

queries.

A.15 Array of Structures

• Implementation: class ArrayOfStructures

• Tactic: disprove aliasing; foreign premise queries.

• Initialization costs: none

• Cost / Query: effectively O(1), scales linearly with the complexity of types.

• Foreign Premise Queries / Query: 1.

“Array of Structures” (AoS) is the example from Section 3.1.1. Given indexing op-

erations &a[i1]...[in] and &b[j1]...[jn], it tries to prove ik 6= jk with arithmetic

and induction variable reasoning, tops a query to prove a = b, and if successful reports no

dependence.
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A.16 Scalar Evolution

• Implementation: class SCEVAA

• Tactic: disprove aliasing; induction variables.

• Initialization costs: none.

• Cost / Query: linear in size of function.

• Foreign Premise Queries / Query: none.

Class SCEVAA uses LLVM’s scalar evolution analysis to find a symbolic representation

of pointers as a function of loop induction variables. It subtracts these expressions and

reports no-alias when the symbolic difference can be proved greater than the size of the

memory access. Due to the design of LLVM’s scalar evolution analysis, this algorithm is

precise when both pointers are affine functions of induction variables.

A.17 SMTAA

• Implementation: class ModuleSMTAA

• Tactic: disprove aliasing; induction variables.

• Initialization costs: none.

• Cost / Query: linear in size of function plus an invocation of CVC3.

• Foreign Premise Queries / Query: none.

Class SMTAA reduces dependence analysis queries into Satisfiability-Modulo-Theories

(SMT) sentences. It delegates them to the CVC3 solver [8]. The reduction is straightfor-

ward; in most cases it employs only the theory of Linear Integer Arithmetic (LIA), though
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complicated queries will include statements from the theory of Non-Linear Integer Arith-

metic (NIA) and the theory of Uninterpreted Functions (UF).

The reduction represents LLVM pointers and integer values as CVC3’s unbounded INT

values rather than BITVECTOR(n) values. This allows CVC3 to use the LIA theory and

run faster in the common case. Unlike fixed-width LLVM integers, CVC3 INTs cannot

overflow. This difference is unimportant, however, since integer overflow is undefined in C

and the compiler is free to choose a behavior in response to undefined behavior.

The reduction models the allocation of global variables by choosing an arbitrary or-

dering of globals, and ASSERTing that their range of memory addresses do not overlap.

The reduction encodes some constraints drawn from the path-condition, for instance, that

earlier control flow has established that iteration bounds are non-zero before reaching the

loop header.

Finally, the reduction includes a query which asks the solver to refute the claim that the

pointers are disjoint.

A.18 Sane Typing

• Implementation: classes TypeSanityAnalysis and TypeAA

• Tactic: disprove aliasing; type sanity.

• Initialization costs: linear in size of module.

• Cost / Query: constant.

• Foreign Premise Queries / Query: 0 or 1.

The “sane typing” algorithm identifies cases where the input program obeys a strong

typing discipline, even though the C language or LLVM IR does not enforce such a dis-

cipline. In particular, it identifies a set S of types such that for all τ ∈ S, if a pointer
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expression p has declared type τ∗, then the value of p is either null or the address of

an object of declared type τ . It calls such types sane. Several analysis algorithms build

on sane typing analysis: “non-captured fields” (Section A.19), “acyclic” (Section A.20),

“disjoint fields” (Section A.21), and “field malloc” (Section A.22).

TypeSanityAnalysis scans the module searching for reinterpretation casts (also

called type-punning). The simplest examples of reinterpretation casts are LLVM’s bitcast,

ptrtoint, and inttoptr instructions. These instructions introduce differently-type-

annotated names for their operands. This initialization scan also visits any construct which

may conceal a reinterpretation cast. Code outside of the current compilation unit may rein-

terpret cast the values stored in non-static global variables, hence non-static globals

are treated as a reinterpretation cast. Similarly, an externally-defined function may contain

reinterpret casts, so externally-defined functions are treated as reinterpretation casts of their

formal parameters and return values. When the scan discovers a reinterpretation to or from

type τ , it marks type τ , and any types nested within τ , as insane.

After the scan, the set of sane types is represented implicitly as the complement of the

set of insane types.

Dynamic heap allocation must be treated specially. Although LLVM global variables

and stack allocations (LLVM’s alloca instructions) include a type specification for the

allocated storage, the LLVM IR does not include a first-order representation of heap alloca-

tion. Instead, calls to library routines such as malloc achieve heap allocation. In LLVM,

these routines do not declare a type for the allocated objects but instead return pointers of

type i8* (compare to C’s use of void* as the type of generic pointers). Each heap allo-

cation site is followed by a reinterpretation cast to the type as listed in the program’s source

code. Without special treatment, the types of all dynamically allocated objects would be

marked insane.

TypeSanityAnalysis overcomes this problem by recognizing a common idiom

generated by the compiler’s front end. If the IR includes a call to an allocation routine, and
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if the value returned by that allocation routine has a single use, and if that single use is a

reinterpretation cast to type τ∗, then the entire sequence is treated as the allocation of an

object with declared type τ instead of marking τ as insane.

Class TypeAA interprets sane types to service queries in two situations. The first sim-

ply codifies the observation that objects of different types are different. Although not true

in general, it holds for sane types. Let p, q be pointers with declared types τ∗ and υ∗, re-

spectively, where both τ and υ are sane types. p may-alias q only if τ = υ, or aggregate

type τ contains (transitively) a field of type υ, or aggregate type υ contains (transitively) a

field of type τ .

The second situation codifies the observation that objects of sane types do not partially

overlap themselves; either they are disjoint or they have the same base address. Let p, q be

pointers with declared types τ∗ and υ∗, respectively, where both τ and υ are sane types.

Consider indexing expressions P = &p[i1][i2] . . . [in] andQ = &q[j1][j2] . . . [jn]. P cannot

alias Q if τ = υ and indices ik = jk at all levels k of indexing and p does not alias

q. TypeAA compares index expressions using simple arithmetic reasoning and uses a

foreign premise query to determine whether p and q alias. Note that this rule is similar yet

complementary to the reasoning used by the array of structures algorithm (Sections 3.1.1

and A.15).

A.19 Non-Captured Fields

• Implementation: classes NonCapturedFieldsAnalysis and NoEscape-

FieldsAA

• Tactic: disprove aliasing; type sanity; reachability.

• Initialization costs: linear in size of program.

• Cost / Query: constant.
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• Foreign Premise Queries / Query: 0 or 1.

The “non-captured fields” algorithm extends type sanity analysis (Section A.18) by

identifying fields of sane types whose address is only used as an address for a load or

store instruction. Note that this condition is slightly stronger than requiring the address

is not captured. The algorithm uses a non-captured storage argument to reason about val-

ues loaded from such fields (see theme simpler data flow on non-captured storage in Sec-

tion A.4). To be clear, it treats these fields in an object-insensitive manner, i.e. abstracting

the given field within all objects of that type as a single storage location.

Class NonCapturedFieldsAnalysis scans the module to visit address computa-

tions of the form f = &b[k], where base pointer b has declared type τ∗. If τ is a sane type,

such address computations derive the address f of the k-th field of some object of type τ .

NonCapturedFieldsAnalysis considers all uses of f , either marking field τ :: k as

captured or accumulating a points-to set P (τ :: k) of values stored into field τ :: k via the

field pointer f . If the index k cannot be evaluated statically to a fixed field number, then all

fields of τ are conservatively marked as captured.

Unlike TypeSanityAnalysis, note that NonCapturedFieldsAnalysis does

not need to account for field-uses hidden in externally defined functions; the constraint that

τ is a sane type precludes use by externally defined functions.

Class NoEscapeFieldsAA interprets the results of NonCapturedFieldsAnalysis

to disprove aliasing. Consider two pointers constructed as p1 = &b1[f1] and p2 = &b2[f2],

where base pointers b1 and b2 have declared types τ1 and τ2, respectively. Suppose that

types τ1, τ2 are sane types, and that neither field τ1 :: f1 nor field τ2 :: f2 is captured.

NoEscapeFieldsAA disproves aliasing between p1 and p2 in three cases:

1. τ1 6= τ2: neither can be a subfield of the other because non-captured fields uses a

stronger non-capture criterion (above);

2. τ1 = τ2 and f1 6= f2: different fields are disjoint; or,
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3. τ1 = τ2 and f1 = f2: the same fields alias only if their base objects alias. Issue a

foreign premise query comparing b1 to b2.

A.20 Acyclic

• Implementation: class AcyclicAA

• Tactic: disprove aliasing; type sanity; reachability; shape analysis.

• Initialization costs: linear in size of input program.

• Cost / Query: linear in size of a function.

• Foreign Premise Queries / Query: none.

The “acyclic” algorithm extends type sanity (Section A.18) and non-captured fields

(Section A.19). It identifies acyclic data structures as cases where recursive, non-captured

fields are updated in a restricted manner. Specifically, it proves data structures acyclic via

an inductive argument: (base case) newly allocated nodes are acyclic data structures, and

(inductive case) assuming that a data structure is acyclic, attaching a new node at either end

produces an acyclic data structure. Once a data structure is proved acyclic, it asserts that

adjacent nodes in the data structure are disjoint.

A sane, aggregate type τ is recursive if it includes a non-captured field with declared

type τ∗. Said fields are called recursive fields. For instance, the next and prev pointers

in a textbook linked-list node are recursive fields; the left child and right child

pointers of a textbook binary tree node are also recursive fields.

Class AcyclicAA performs an initialization analysis to identify recursive fields and

then proves that certain recursive fields induce acyclic data structures. The proof verifies

the inductive case for all mutations of recursive fields.

Initialization visits every instruction sequence that mutates recursive fields. In C, these

sequences look like b.k = v. In LLVM IR, these sequences include a pointer expression
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to compute a field’s address f = &b[k] and an update store v, f . These sequences are

further constrained such that: base pointer b has declared type τ∗; τ is a sane type; field

τ :: k is a non-captured field; and field pointer f has declared type τ ∗ ∗. Observe that type

sanity and non-captured fields guarantee that the compiler identifies all such sequences.

Hence, this scan is equivalent to universal quantification over all mutations.

Next, class AcyclicAA verifies the inductive hypothesis on each mutation. Consider-

ing the mutation b.k = v, there are three cases which cannot introduce a cycle.

1. b is a newly allocated object: this mutation pushes a new node at the beginning of a

linked-list or at the root of a tree.

2. v is the unique use of a newly-allocated object: this mutation pushes a new node at

the end of a linked-list or at the leaf of a tree.

3. v is null: this mutation cuts a linked list or tree.

Any other mutation potentially introduces a cycle. Since class AcyclicAA cannot

validate the inductive proof for such case, it conservatively marks the field τ :: k as cyclic.

The acyclic algorithm uses this information to disprove aliasing among pointers to re-

cursive types when one pointer is derived from the other by traversing acyclic fields. Traver-

sals take a few forms:

• Immediate traversal: Suppose pointer p is declared with sane type τ∗ and is com-

puted from p = load f . Further, suppose that f = &q[k] where base pointer q is

declared with sane type τ∗ and the field τ :: k is an acyclic field. Then pointer p is

an immediately traversal of q.

• Intra-iteration traversal: Intra-iteration traversal is the transitive closure of the

immediate traversal relation. If p is an immediate traversal of q, then p is an intra-

iteration traversal of q. Further, if p is an intra-iteration traversal of q, and if q is an

immediate traversal of r, then p is an intra-iteration traversal of r.
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• Inductive traversal: Suppose that a loop L includes a Φ-node φ declared with sane

type τ∗. Further, suppose that φ’s incoming values along all backedges of L are

intra-iteration traversals of φ. Then φ is an inductive traversal in L.

• Loop-carried traversal: Suppose that φ is an inductive traversal in L, and that p is

an intra-iteration traversal of φ. Then p is a loop-carried traversal of φ in L.

When class AcyclicAA receives an intra-iteration may-alias query, it reports no-

alias if it demonstrates that one pointer is an intra-iteration traversal of the other. When

AcyclicAA receives a loop-carried may-alias query with respect to loop L, it reports

no-alias if it demonstrates that one pointer is a loop-carried traversal of the other in L.

A.21 Disjoint Fields

• Implementation: class DisjointFieldsAA

• Tactic: disprove aliasing; reachability; shape analysis.

• Initialization costs: linear in size of program.

• Cost / Query: linear in size of points-to sets.

• Foreign Premise Queries / Query: none.

The “disjoint fields” algorithm extends type sanity (Section A.18) and non-captured

fields (Section A.19). By collecting a points-to set of values stored into non-captured fields,

class DisjointFieldsAA asserts that pointers loaded from non-captured fields are dis-

joint if their respective points-to sets are disjoint.

A.22 Field Malloc

• Implementation: class FieldMallocAA
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• Tactic: disprove aliasing; reachability; shape analysis; foreign premise queries.

• Initialization costs: linear in size of program.

• Cost / Query: constant.

• Foreign Premise Queries / Query: 1

The “field malloc” algorithm extends type sanity (Section A.18) and non-captured fields

(Section A.19). It then considers every store into a non-captured field. If such stores are the

unique capture of another allocation, then said allocation can only be accessed by loading

from the non-captured fields. We call such a field the unique name for an allocation.

Class FieldMallocAA simplifies queries where both pointer operands are loads from

a unique name field. It reasons that the loaded pointers alias only if they are loaded from

the same object. Thus, it reports no alias if a foreign premise query establishes that the

base objects do not alias.
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