
THE VELOCITY COMPILER: EXTRACTING

EFFICIENT MULTICORE EXECUTION FROM

LEGACY SEQUENTIAL CODES

MATTHEW JOHN BRIDGES

A DISSERTATION

PRESENTED TO THE FACULTY

OF PRINCETON UNIVERSITY

IN CANDIDACY FOR THE DEGREE

OF DOCTOR OF PHILOSOPHY

RECOMMENDED FOR ACCEPTANCE

BY THE DEPARTMENT OF

COMPUTER SCIENCE

ADVISOR: PROF. DAVID I. AUGUST

NOVEMBER 2008

c© Copyright by Matthew John Bridges, 2008.

All Rights Reserved

Abstract

Multiprocessor systems, particularly chip multiprocessors, have emerged as the predomi-

nant organization for future microprocessors. Systems with 4, 8, and 16 cores are already

shipping and a future with 32 or more cores is easily conceivable. Unfortunately, multi-

ple cores do not always directly improve application performance, particularly for a single

legacy application. Consequently, parallelizing applications to execute on multiple cores is

essential.

Parallel programming models and languages could be used to create multi-threaded

applications. However, moving to a parallel programming model only increases the com-

plexity and cost involved in software development. Many automatic thread extraction tech-

niques have been explored to address these costs.

Unfortunately, the amount of parallelism that has been automatically extracted using

these techniques is generally insufficient to keep many cores busy. Though there are many

reasons for this, the main problem is that extensions are needed to take full advantage

of these techniques. For example, many important loops are not parallelized because the

compiler lacks the necessary scope to apply the optimization. Additionally, the sequen-

tial programming model forces programmers to define a single legal application outcome,

rather than allowing for a range of legal outcomes, leading to conservative dependences

that prevent parallelization.

This dissertation integrates the necessary parallelization techniques, extending them

where necessary, to enable automatic thread extraction. In particular, this includes an ex-

panded optimization scope, which facilitates the optimization of large loops, leading to

parallelism at higher levels in the application. Additionally, this dissertation shows that

many unnecessary dependences can be broken with the help of the programmer using nat-

ural, simple extensions to the sequential programming model.

Through a case study of several applications, including several C benchmarks in the

SPEC CINT2000 suite, this dissertation shows how scalable parallelism can be extracted.

iii

By changing only 38 source code lines out of 100,000, several of the applications were

parallelizable by automatic thread extraction techniques, yielding a speedup of 3.64x on 32

cores.

iv

Acknowledgments

First and foremost, I would like to thank my advisor, David August, for his assistance and

support throughout my years in graduate school at Princeton. He has taught me a great

deal about research, and I would not be here if not for his belief in me. Additionally, the

strong team environment and investment in infrastructure that he has advocated has been

a wonderful benefit. His continued expectation that I work to the best of my abilities has

lead to this dissertation, and for that I am grateful.

This dissertation was also made possible by the support of the Liberty research group,

including Ram Rangan, Manish Vachharajani, David Penry, Thomas Jablin, Yun Zhang,

Bolei Guo, Adam Stoler, Jason Blome, George Reis, and Jonathan Chang. Spyros Tri-

antafyllis, Easwaran Raman, and Guilherme Ottoni have contributed greatly to the VE-

LOCITY compiler used in this research and have my thanks for both their friendship and

support. Special thanks goes to Neil Vachharajani, both for the many contributions to VE-

LOCITY and this work, as well as for the many interesting discussions we have had over

the years.

I would like to thank the members of my dissertation committee, Kai Li, Daniel Lav-

ery, Margaret Martonosi, and Doug Clark. Their collective wisdom and feedback have

improved this dissertation. In particular, I thank my advisor and my readers, Kai Li and

Daniel Lavery, for carefully reading through this dissertation and providing comments. Ad-

ditionally, I thank my undergraduate research advisor, Lori Pollock, without whom I would

not have entered graduate research.

This dissertation would not be possible without material research support from the Na-

tional Science Foundation, Intel Corporation, and GSRC. Special thanks also goes to Intel

for summer internship that they provided and the guidance given to me by Daniel Lavery

and Gerolf Hoflehner.

Finally, I thank my friends and family. I thank my mother Betty, my father John, my

step-father Doug, my mother-in-law Janet, and my father-in-law Russell, for having sup-

v

ported me throughout this process with their love and encouragement. Above all, my wife

Marisa has my sincere thanks for putting up with everything involved in creating this dis-

sertation and for reading early drafts. She has seen me through the good times and the bad

and I would not have accomplished this with out her.

vi

Contents

Abstract . iii

Acknowledgments . v

List of Tables . x

List of Figures . xi

1 Introduction 1

2 Automatic Parallelization 7

2.1 Extracting Parallelism . 7

2.1.1 Independent Multi-Threading . 7

2.1.2 Cyclic Multi-Threading . 9

2.1.3 Pipelined Multi-Threading . 11

2.2 Enhancing Parallelism . 13

2.2.1 Enhancing IMT Parallelism . 13

2.2.2 Enhancing CMT Parallelism . 16

2.2.3 Enhancing PMT Parallelism . 19

2.3 Breaking Dependences with Speculation 21

2.3.1 Types of Speculation . 21

2.3.2 Speculative Parallelization Techniques 22

2.3.3 Loop-Sensitive Profiling . 27

2.4 Compilation Scope . 28

vii

2.5 Parallelization For General-Purpose Programs 30

3 The VELOCITY Parallelization Framework 33

3.1 Compilation and Execution Model . 33

3.2 Decoupled Software Pipelining . 34

3.2.1 Determining a Thread Assignment 34

3.2.2 Realizing a Thread Assignment 41

3.3 Parallel-Stage DSWP . 46

3.3.1 Determining a Thread Assignment 46

3.3.2 Realizing a Thread Assignment 50

3.4 Speculative Parallel-Stage DSWP . 56

3.4.1 Determining a Thread Assignment 56

3.4.2 Realizing a Thread Assignment 63

3.4.3 Loop-Aware Profiling . 70

3.5 Interprocedural Speculative Parallel-Stage DSWP 75

3.5.1 Determining a Thread Assignment 75

3.5.2 Realizing the Thread Assignment 78

4 Extending the Sequential Programming Model 85

4.1 Programmer Specified Parallelism . 85

4.2 Annotations for the Sequential Programming Model 87

4.2.1 Y-branch . 88

4.2.2 Commutative . 90

5 Evaluation of VELOCITY 94

5.1 Compilation Environment . 94

5.2 Measuring Multi-Threaded Performance 95

5.2.1 Emulation . 96

5.2.2 Performance . 96

viii

5.2.3 Cache Simulation . 99

5.2.4 Bringing it All Together . 99

5.3 Measuring Single-Threaded Performance 100

5.4 Automatically Extracting Parallelism . 100

5.4.1 256.bzip2 . 100

5.4.2 175.vpr . 104

5.4.3 181.mcf . 106

5.5 Extracting Parallelism with Programmer Support 109

5.5.1 164.gzip . 109

5.5.2 197.parser . 112

5.5.3 186.crafty . 113

5.5.4 300.twolf . 115

5.6 Continuing Performance Trends . 117

6 Conclusions and Future Directions 122

6.1 Future Directions . 123

ix

List of Tables

3.1 DSWP ISA Extensions . 42

3.2 PS-DSWP ISA Extensions . 51

3.3 SpecPS-DSWP ISA Extensions . 67

3.4 iSpecPS-DSWP ISA Extensions . 82

5.1 Cache Simulator Details . 99

5.2 Information about the loop(s) parallelized, the execution time of the loop,

and a description. 117

5.3 The minimum # of threads at which the maximum speedup occurred. As-

suming a 1.4x speedup per doubling of cores, the Historic Speedup column

gives the speedup needed to maintain existing performance trends. The

final column gives the ratio of actual speedup to expected speedup. 120

x

List of Figures

1.1 Normalized performance of the SPEC 92, 95, and 2000 integer benchmarks

suites. Each version of the suite is normalized to the previous version using

matching hardware. Only the highest performance result for each time

period is shown. The solid line is a linear regression on all points prior

to 2004, while the dashed line a linear regression on all points in or after

2004. Source data from SPEC [4]. 2

1.2 Transistor counts for successive generations of Intel processors. Source

data from Intel [37]. 3

2.1 Parallelization Types . 8

2.2 CMT Execution Examples . 10

2.3 PMT Execution Examples . 12

2.4 Reduction Expansion Example . 14

2.5 Array Privatization Example . 14

2.6 Loop Transformation Example . 15

2.7 Scheduling Example . 17

2.8 Parallel Stage Example . 20

2.9 TLS Example . 23

2.10 SpecDSWP Example . 26

2.11 Interprocedural Scope Example . 29

2.12 Choice of Parallelism Example . 31

xi

3.1 DSWP Example Code . 35

3.2 Communication Synchronization Example 38

3.3 Communication Optimization Example 39

3.4 Multi-Threaded Code after moving operations 42

3.5 Multi-Threaded Code after communication insertion 43

3.6 Multi-Threaded Code after redirecting branches 45

3.7 PS-DSWP Example Code . 47

3.8 Multi-Threaded Code after communication insertion 52

3.9 PS-DSWP Multi-Threaded Code after communication insertion 55

3.10 SpecPS-DSWP Example Code . 57

3.11 Single Threaded Speculation . 64

3.12 SpecPS-DSWP Parallelized Code without Misspeculation Recovery 68

3.13 Interaction of Parallel Code and Commit Thread 69

3.14 iSpecPS-DSWP Example Code . 76

3.15 Single Threaded Speculation . 79

3.16 Stack Code Example . 81

3.17 iSpecPS-DSWP Parallelized Code without Misspeculation Recovery 83

3.17 iSpecPS-DSWP Parallelized Code without Misspeculation Recovery (cont.) 84

4.1 Motivating Example for Y-branch . 88

4.2 Y-branch Example . 90

4.3 Motivating Examples for Commutative . 91

5.1 Parallel Performance Measurement Dependences 96

5.2 Conceptual Performance Run Execution Schedule 97

5.3 Simplified version of compressStream from 256.bzip2 101

5.4 Dynamic Execution Pattern . 102

xii

5.5 Speedup of multi-threaded (MT) execution over single-threaded (ST) exe-

cution for 256.bzip2 . 103

5.6 Simplified version of try place from 175.vpr 104

5.7 Speedup of multi-threaded (MT) execution over single-threaded (ST) exe-

cution for 175.vpr . 105

5.8 Simplified version of global opt from 181.mcf 106

5.9 Speedup of multi-threaded (MT) execution over single-threaded (ST) exe-

cution for 181.mcf . 107

5.9 Speedup of multi-threaded (MT) execution over single-threaded (ST) exe-

cution for 181.mcf (cont.) . 108

5.10 Simplified version of deflate from 164.gzip. 109

5.11 Speedup of multi-threaded (MT) execution over single-threaded (ST) exe-

cution for 164.gzip . 110

5.11 Speedup of multi-threaded (MT) execution over single-threaded (ST) exe-

cution for 164.gzip (cont.) . 111

5.12 Simplified version of batch process from 197.parser 112

5.13 Speedup of multi-threaded (MT) execution over single-threaded (ST) exe-

cution for 197.parser . 112

5.14 Simplified version of Search from 186.crafty 113

5.15 Speedup of multi-threaded (MT) execution over single-threaded (ST) exe-

cution for 186.crafty . 114

5.16 Simplified version of uloop from 300.twolf 115

5.17 Speedup of multi-threaded (MT) execution over single-threaded (ST) exe-

cution for 300.twolf . 116

xiii

5.18 The maximum speedup achieved on up to 32 threads over single threaded

execution. The Manual bar represents the speedup achieved using man-

ual parallelization [9], while the VELOCITY bar represents the speedup

achieved by VELOCITY. 118

5.19 The minimum number of threads at which the maximum speedup occurred.

The Manual bar represents the number of threads used by manual paral-

lelization [9], while the VELOCITY bar represents the number of threads

used by VELOCITY. 118

xiv

Chapter 1

Introduction

Until recently, increasing uniprocessor clock speed and microarchitectural improvements

generally improved performance for all programs. Unfortunately, as Figure 1.1 illustrates,

since approximately 2004, the performance of single-threaded applications is no longer

increasing at the same rate as it was prior to 2004. This change came about because of

several factors, though two predominant factors stand out. First, processor designers were

unable to increase processor frequency as they had in the past without exceeding power and

thermal design constraints. Second, even with a steady increase in transistors (Figure 1.2),

processor designers have also been unable to create new microarchitectural innovations

without exceeding power and heat budgets.

Instead, processor designers now use the continuing growth in transistor count to place

multiple cores on a processor die. This strategy has several microarchitectural benefits,

including more scalable thermal characteristics, better throughput per watt, and greatly

reduced design complexity. Because of this, processor manufacturers are already shipping

machines with four or eight cores per processor die and tomorrow’s machines promise

still more cores [36]. However, additional cores only improve the performance of multi-

threaded applications. The prevalence of single-threaded applications means that these

cores often provide no performance improvement, as shown in the post-2004 portion of

1

S
P

E
C

IN
T

C
P

U
P
er

f.
(l

o
g

sc
al

e)
S
P

E
C

IN
T

C
P

U
P
er

f.
(l

o
g

sc
al

e)

1992 1994 1996 1998 2000 2002 2004 2006 2008
YearYear

CPU92
CPU95
CPU2000
VELOCITY

Figure 1.1: Normalized performance of the SPEC 92, 95, and 2000 integer benchmarks

suites. Each version of the suite is normalized to the previous version using matching

hardware. Only the highest performance result for each time period is shown. The solid line

is a linear regression on all points prior to 2004, while the dashed line a linear regression

on all points in or after 2004. Source data from SPEC [4].

Figure 1.1.

One potential solution to achieving performance that gets back to pre-2004 historical

trends is to rewrite single-threaded applications as multi-threaded applications. Many new

languages have been proposed to ease the burden of writing parallel programs [12, 26, 29].

While parallel programming in these languages is easier than those of the past, the pro-

gramming effort involved in creating correct and efficient parallel programs is still far more

than that of writing the equivalent single-threaded version. Developers must be trained to

program and debug their applications with the additional concerns of deadlock, livelock,

race conditions, etc [16, 20, 23, 47, 68]. Converting a single-threaded application is con-

siderably more difficult than writing a new parallel application, as existing single-threaded

applications have not been developed with parallelization in mind. Therefore, even as

multi-core processors have become commonplace, the costs associated with parallel pro-

gramming languages have greatly limited the programming domains to which they are

applied.

Automatic parallelization techniques that extract threads from single-threaded programs

without programmer intervention do not suffer from these limitations and should be pre-

ferred over manual parallelization. Many automatic thread extraction techniques have been

2

1, 000

10, 000

100, 000

1, 000, 000

10, 000, 000

100, 000, 000

1, 000, 000, 000

10, 000, 000, 000

T
ra

n
si

st
o
r

C
o
u
n
t

T
ra

n
si

st
o
r

C
o
u
n
t

1970 1980 1990 2000 2010

YearYear

8008
8080

8088

286

386

486

Pentium

Pentium II
Pentium III

Pentium 4

Core 2 Duo

Core 2 Quad

Quad-Core I2

Figure 1.2: Transistor counts for successive generations of Intel processors. Source data

from Intel [37].

proposed, particularly loop parallelization techniques such as DOALL [48], DSWP [55],

and DOACROSS [72] (Chapter 2). In isolation, these techniques produce either scalable

parallelism on a narrow range of applications (e.g. DOALL on scientific applications), or

nonscalable parallelism on a broad range of applications (e.g. DOACROSS & DSWP). This

dissertation focuses on the problems that have prevented the automatic extraction of scal-

able parallelism in general purpose applications and constructs a parallelization framework

in the VELOCITY compiler to overcome these limitations.

Achieving scalable parallelism on a broad range of applications first requires an auto-

matic parallelization technique with broad applicability. To that end, this dissertation starts

with the DSWP technique. However, the base parallelization technique can extract only

small amounts of parallelism and must be extended with the ability to speculate depen-

dences and extract data-level parallelism. This dissertation integrates and extends several

existing DSWP based parallelization techniques that have not previously been combined to

achieve this (Chapter 3).

Beyond combining existing extensions, it is also necessary to give the parallelization

3

technique interprocedural scope [9, 32]. Existing DOALL parallelization techniques use

interprocedural array analysis, but have not needed other interprocedural analysis or the

ability to optimize interprocedurally. Existing DOACROSS and DSWP techniques rely

on inlining function calls to obtain loops with sufficient opportunity for parallelization.

Unfortunately, the limitations of inlining, its inability to handle recursion and its explosive

code growth, make it sufficient to extract parallelism only from inner loops or functions

at the bottom of the call tree. To extract more scalable parallelism, this dissertation also

develops a parallelization technique that can target any loop in the program, from innermost

to outermost or anywhere in between (Chapter 3).

Additional support, in the form of accurate compiler analysis, aggressive compiler op-

timization, and efficient hardware support, ensures that the parallelization technique can

extract significant parallelism. In particular, effectively applying additional optimizations

during parallelization, particularly for synchronization placement [54, 90] and specula-

tion [72, 82], requires accurate profile information about the loop being parallelized. Tra-

ditional profiling infrastructures, however, focus on profiling with respect to instructions,

or basic blocks, not loops. This limits the applicability of loop parallelization techniques

by conflating intra-iteration dependences with inter-iteration dependences, or worse with

dependences that occur outside the loop.

Finally, even many apparently easily parallelizable programs are unable to be paral-

lelized automatically. The dependences that inhibit parallelism are only rarely those re-

quired for correct program execution, more commonly manifesting from artificial con-

straints imposed by sequential execution models. In particular, the programmer is often

unable to specify multiple legal execution orders or program outcomes. Because of this,

the compiler is forced to maintain the single execution order and program output that a se-

quential program specifies, even when others are more desirable. This dissertation proposes

two simple sequential annotations to help the compiler overcome this limitation through

programmer intervention (Chapter 4).

4

Using the VELOCITY compiler, scalable parallelism can be extracted from many ap-

plications, yet simulating long running parallel loops can be hard. Existing parallelization

techniques have generally been evaluated using only 2 or 4 processors on loops with iter-

ations that take fewer than a million cycles, making them amenable to simulation. When

extracting scalable parallelism, it is not uncommon for each iteration to take billions of

cycles and for such parallelism to scale to 32 processors or beyond. As such, existing sim-

ulation environments are insufficient and a new evaluation infrastructure is required that

can measure the parallelism extracted from outermost loops (Chapter 5).

In summary, the contributions of this dissertation are:

1. The design and implementation of a novel parallelization framework for general-

purpose programs, VELOCITY, that can address the performance problem of legacy

sequential codes on modern, multi-core processors.

2. The design and implementation of a loop-aware profiling infrastructure and integra-

tion of several types of loop-aware profile information into the parallelization tech-

nique.

3. Extensions to the sequential programming model that enhance VELOCITY’s ability

to extract parallelism with out forcing the programmer to consider multi-threaded

concepts or execution.

4. The design and implementations of a performance evaluation methodology able to

handle parallelized loops with up to 32 threads that execute for billions of cycles.

5. An evaluation of the VELOCITY compiler on several applications in the SPEC

CINT2000 benchmark suite.

By bringing together these many techniques and extensions, both to compiler and

programming languages, this dissertation shows that parallelism can be extracted from

general-purpose applications. Using VELOCITY, seven benchmarks in the SPEC CINT2000

5

benchmark suite are automatically parallelized. Modifying only 38 out of 100,000 lines of

code, these applications show a 3.64x speedup, on up to 32 cores, over single-threaded exe-

cution, with a 20.61x maximum speedup on a single application. Overall, a 2.12x speedup

was achieved across the 12 benchmarks of the SPEC CINT2000 suite, even with no cur-

rent speedup on 5 of these benchmarks. The VELOCITY point in Figure 1.1 indicates the

expected SPEC CINT2000 score that could be obtained with VELOCITY, showing that

the performance trends of the past can be obtained now and in the future via automatic

parallelization.

6

Chapter 2

Automatic Parallelization

This chapter explores existing techniques in automatic parallelization of loops, discussing

their benefits and limitations. Techniques that spawn speculative threads along multiple

acyclic paths [5, 85] or to better utilize microarchitectural structures [6, 13, 15, 51, 60] are

orthogonal to this work and will not be discussed further.

2.1 Extracting Parallelism

There are three types of parallelism that can be extracted from loops [62]. Each type allows

or disallows certain cross-thread dependences to trade off applicability with performance.

2.1.1 Independent Multi-Threading

The first type of parallelism, Independent Multi-Threading (IMT), does not allow cross-

thread dependences and was first introduced to parallelize array-based scientific programs

The most successful IMT technique, DOALL parallelization [48], satisfies the condition

of no inter-thread dependences by executing loop iterations in separate threads that it can

prove have no inter-iteration dependences. A primary benefit of IMT parallelism is that it

scales linearly with number of available threads. In particular, this scalability has lead to

7

int i=0;

C: for (; i<N; i++)

X: work(i);

(a) Array Traversal

list *cur=head;

L: for (; cur!=NULL; cur=cur->next)

X: work(cur);

(b) Linked List Traversal

0

1

2

3

4

5

6

Core 1 Core 2

C1

X1

C2

X2

C3

X3

C4

X4

C5

X5

C6

X6

(c) IMT Execution Example

0

1

2

3

4

5

6

Core 1 Core 2

L1

X1 L2

X2L3

X3 L4

X4L5

X5 L6

(d) CMT Execution Example

0

1

2

3

4

5

6

Core 1 Core 2

L1

X1L2

X2L3

X3L4

X4L5

X5L6

(e) PMT Execution Example

Figure 2.1: Parallelization Types

the integration of DOALL into several compilers that target array-based, numerical pro-

grams [8, 32].

To see how DOALL would parallelize a loop, consider the loop in Figure 2.1a. When

parallelized into two threads, one potential dynamic execution is shown in Figure 2.1c.

Since this parallelization requires no communication between cores, it is insensitive to the

communication latency between cores and can scale to as many cores as there are iterations.

In the case of Figure 2.1c, this means that the overall speedup of the loop is 2.

IMT’s requirement that there are no cross-thread dependences within a loop is both

a source of scalable parallelism and limited applicability. While IMT techniques have

enjoyed broad applicability for scientific applications, they have not been used to paral-

8

lelize general purpose applications, which have many inter-iteration dependences. These

dependences arise both from complicated control flow and the manipulation of large, heap-

allocated data structures, particularly recursively defined data structures.

2.1.2 Cyclic Multi-Threading

Cyclic Multi-Threading (CMT) techniques, which allow cross-thread dependences to exist,

have been developed to solve the problem of applicability. To maintain correct execution,

dependences between threads are synchronized so that each thread executes with the proper

values. Though initially introduced to handle array-based programs with intricate access

patterns, CMT techniques can also be used to extract parallelism from general purpose

applications with complex dependence patterns.

The most common CMT transformation is DOACROSS [18, 57], which achieves par-

allelism in the same way as DOALL, by executing iterations in parallel in separate threads.

To maintain correct execution, the inter-iteration dependences that cross between threads

must be respected. These dependences are synchronized to ensure that later iterations re-

ceive the correct values from earlier iterations.

An example of a DOACROSS execution schedule is shown in Figure 2.1d for the loop

in Figure 2.1b. Notice that DOACROSS can extract parallelism even in the face of the

list=list->next loop-carried dependence. For the example shown, DOACROSS

achieves an ideal speedup of 2 when the work code takes the same amount of execution

time as the linked list traversal.

Unlike IMT transformations, CMT transformations do not always experience linearly

increasing performance as more threads are added to the system. In particular, when the

threads begin completing work faster than dependences can be communicated, the critical

path of a DOACROSS parallelization becomes dependent upon the communication latency

between threads. Because of this, DOACROSS parallelizations are fundamentally limited

in speedup by the size of the longest cross-iteration dependence cycle and the communica-

9

tion latency between processor cores [45, 73].

There are often many inter-iteration, cross-thread dependences in general purpose pro-

grams, which leaves little code to execute in parallel. Synchronizing these dependences

only decreases the number of threads where communication latency will become the lim-

iting factor. Additionally, variability in iteration execution time in one iteration can poten-

tially cause stalls in every other thread in the system, further adding to the critical path and

limiting the attainable speedup.

0

1

2

3

4

5

6

7

8

9

10

Core 1 Core 2 Core 3

L1

X1

L2

X2

L3

X3

L4

X4

L5

X5

L6

X6

L7

X7

L8

X8

L9

X9L10

F
ill

F
ill

(a) Comm. Latency = 1,

No Variability

0

1

2

3

4

5

6

7

8

9

10

Core 1 Core 2 Core 3

S
ta

ll

S
ta

ll

L1

X1

L2

X2

L3

X3

L4

X4

L5

X5

F
ill

F
ill

(b) Comm. Latency = 2,

No Variability

0

1

2

3

4

5

6

7

8

9

10

Core 1 Core 2 Core 3

S
ta

ll

S
ta

ll

S
ta

ll

L1

X1

L2

X2

L3

X3

L4

X4 L5

X5

L6

X6

L7

X7

L8

X8

F
ill

F
ill

(c) Comm. Latency = 1,

Variability

Figure 2.2: CMT Execution Examples

Figure 2.2 illustrates these problems. The parallelization shown in the CMT column of

Figure 2.1 assumed a 1 cycle communication latency between cores and no variability in

the time to perform work. Figure 2.2a shows a parallelization of the same code to 3 threads,

assuming work now takes 2 cycles per iteration, completing an iteration every cycle. As

the communication latency increases from 1 to 2 cycles, an iteration is completed every

10

other cycle, as shown in Figure 2.2b. Additionally, as variability occurs in the time to

perform work, stall cycles appear on the critical path and iterations are not completed

every cycle, as shown in Figure 2.2c.

2.1.3 Pipelined Multi-Threading

In order to achieve broadly applicable parallelizations that are not limited by communica-

tion latency, a parallelization paradigm is needed that does not spread the critical path of

a loop across multiple threads. Pipelined Multi-Threading (PMT) techniques have been

proposed that allow cross-thread dependences while ensuring that the dependences be-

tween threads flow in only one direction. This ensures that the dependence recurrences

in a loop remain local to a thread, ensuring that communication latency does not become

a bottleneck. This paradigm also facilitates a decoupling between earlier threads and later

threads that can be used to tolerate variable latency. The most common PMT transforma-

tion is Decoupled Software Pipelining (DSWP) [55, 63], an extension of the much earlier

DOPIPE [19] technique, allowing it to handle arbitrary control flow, complicated memory

accesses, and all other features of modern software.

As in CMT techniques, DSWP synchronizes dependences between threads to ensure

correct execution. However, instead of executing each iteration in a different thread, DSWP

executes portions of the static loop body in parallel, with dependences flowing only in a

single direction, forming a pipeline.

Figure 2.1e shows an example of a DSWP parallelization executing the loop in Fig-

ure 2.1b. In the example the first thread executes the pointer chasing code, while the sec-

ond thread performs the necessary work on each list element. However, the dependence

recurrence formed by the pointer chasing code is executed only on the first core, keeping it

thread local. The work portion of the loop executes in parallel on the other core, allowing

the parallelization to achieve an ideal speedup of 2, assuming the list traversal and work

have equal weight.

11

DSWP ensures that all operations in a dependence cycle execute in the same thread,

removing communication latency from the critical path. This has the additional benefit of

ensuring that dependences flow in only one direction, which allows DSWP to use commu-

nication queues [63] to decoupled execution between stage of the pipeline that can be used

to tolerate variable latency.

0

1

2

3

4

5

6

7

8

9

10

Core 1 Core 2 Core 3

L1

X1

L2

X2

L3

X3

L4

X4

L5

X5

L6

L7

L8

L9

L10

F
ill

(a) Comm. Latency = 1,

No Variability

0

1

2

3

4

5

6

7

8

9

10

Core 1 Core 2 Core 3

L1

X1

L2

X2

L3

X3

L4

X4

L5

L6

L7

L8

L9

L10

F
ill

(b) Comm. Latency = 2,

No Variability

0

1

2

3

4

5

6

7

8

9

10

Core 1 Core 2 Core 3

L1

X1

L2

X2

L3

X3

L4

X4

L5

X5

L6

L7

L8

L9

L10

F
ill

(c) Comm. Latency = 1,

Variability

Figure 2.3: PMT Execution Examples

Figure 2.3 illustrates these properties for the loop in Figure 2.1b. Figure 2.3a illus-

trates a DSWP execution similar to the one for the PMT column in Figure 2.1e, except

that the work now takes 2 cycles. For 3 threads, DSWP is only able to extract a 2-stage,

2-thread pipeline, leaving one thread unused. However, increasing the communication

latency, shown in Figure 2.3b, only increases the pipeline fill time. The steady state par-

allelism is unaffected, leading to an equivalent speedup as in Figure 2.3a. Because depen-

dence recurrence along the loops critical path are not spread across cores, variability also

12

does not dramatically affect the speedup of a DSWP partition, as shown in Figure 2.3c.

The speedup of a DSWP parallelization is limited by the size of the largest pipeline

stage. Because DSWP extracts parallelism among the static operations of a loop and must

keep dependence recurrences local to a thread, the largest pipeline stage is limited by the

largest set of intersecting dependence cycles in the static code. In practice, this means that

DSWP can often scale to only a few threads before performance no longer increases with

additional threads [61].

2.2 Enhancing Parallelism

Not surprisingly, many techniques have been proposed to overcome the limitations that

current parallelization techniques face. This subsection discusses the most prominent tech-

niques for each type of parallelism.

2.2.1 Enhancing IMT Parallelism

Because IMT techniques do not allow inter-iteration, cross-thread dependences to exist,

extensions to IMT techniques have focused on turning inter-iteration, cross-thread depen-

dences into thread-local dependences. In particular, many techniques have extended the

base DOALL technique to remove inter-iteration dependences, either through more accu-

rate analysis or program transformations.

Reduction Expansion

Dependences that form specific patterns are amenable to reduction transformations [49,

56, 64]. Though often used to expose instruction level parallelism for single-thread schedul-

ing, the same techniques hold merit when extracting thread level parallelism. These trans-

formations take accumulators, min/max reductions, etc., and make inter-iteration depen-

dences thread-local by creating local copies of the variable. The correct value is then

13

for (int i=0; i<N; i++)

sum += A[i];

(a) Reduction Code

int _sum[THREADS] = {0,...,0}

for (int i=0; i<N; i++)

_sum[TID] += A[i];

for (int i=0; i<THREADS; i++)

sum += _sum[i];

(b) Expanded Reduction

Figure 2.4: Reduction Expansion Example

calculated via appropriate cleanup code at the end of the loop’s invocation.

Figure 2.4 shows an example of reduction expansion applied to a simple array traver-

sal. The unoptimized code in Figure 2.4a summarizes the elements of an array A. The

cross-iteration dependence on the sum variable make a DOALL parallelization impossible.

However, since the expression computing sum is a reduction, it can be expanded to pro-

duce the code in Figure 2.4b. In the expanded version, each thread computes a thread-local

value for sum in the sum array. After the loop executes the sum is reduced into the sum

variable. So long as the number of iterations is much greater than the number of threads,

the execution time of the reduction code run after the loop finished is negligible.

Privatization

for (int i=0; i<N; i++) {

for (int j = 0; j < 10; j++)

B[j] = A[i] * j;

C[i] = max(B, 0, 10);

}

(a) Array Code

for (int i=0; i<N; i++) {

int _B[10];

for (int j = 0; j < 10; j++)

_B[j] = A[i] * j;

C[i] = max(_B, 0, 10);

}

(b) Privatized Array Code

Figure 2.5: Array Privatization Example

In array-based programs, the same static variable or array is often referenced in multiple

iterations, but can be proven, via compiler analysis, to always be written in the current

iteration. Lacking separate address spaces, the compiler can privatize the variable or array,

14

conceptually creating separate variables or arrays via memory renaming [32, 41, 42, 81].

Since each thread references a thread-local variable or array as opposed to a global variable

or array, there are no inter-iteration, and thus cross-thread, false memory dependences to

synchronize, enabling better parallelization.

Figure 2.5 shows an example of array privatization applied to a simple array traversal.

Without privatization, updates to to the B array in different iterations of the outer loop

would be forced to execute sequentially to ensure that earlier iterations do not overwrite

values already written by later iterations. However, since every read from the B array is

preceded by a write in the same iteration, the compiler can create an iteration-local version

of the array. This ensures that there is no potential for other iterations to write to the current

iteration’s version of B, removing the false memory dependences.

Loop Transformations

for (int i=1; i<N; i++) {

A[i] = A[i-1];

B[i] = f(A, 0, i);

}

(a) Array Code

for (int i=1; i<N; i++)

A[i] = A[i-1];

for (int i=1; i<N; i++)

B[i] = f(A, 0, i);

(b) Distributed Code

Figure 2.6: Loop Transformation Example

Should a inter-iteration dependence manifest itself even in the face of other techniques,

it is sometimes possible to change the loop so as to facilitate parallelization [38, 42]. One

particular transformation is to split the portion of the loop that contains the dependence into

a separate loop via Loop Distribution (aka. Loop Fission). In this case, Loop Distribution

creates several loops with each set of intersecting, inter-iteration dependence cycles iso-

lated into a separate loop that must execute sequentially. The remaining code is formed into

loops that can execute in parallel. This technique is generally limited to loops that operate

on statically sized arrays, as the compiler must be able to compute amount of state needed

to hold temporary values. Other transformations rearrange the loop hierarchy (Loop Inter-

15

change), fuse loops to create larger iterations (Loop Fusion), unroll loop iterations (Loop

Unrolling), etc., in order to create more optimal loops to parallelize.

Figure 2.6 shows an example of Loop Distribution applied to a simple array traversal.

The base code in Figure 2.6a has a loop-carried dependence on the update to the elements

of the A array. However, the A array updates can be isolated to their own loop that executes

sequentially before the original loop. The code to update the B array can then execute in

a parallelelized loop as there are no loop-carried dependences on the calculation used to

determine its value.

2.2.2 Enhancing CMT Parallelism

Even with the extensions that have been proposed for IMT techniques, it is usually im-

possible to extract purely DOALL parallelism from general purpose programs. However,

the extensions lend themselves just as readily to CMT techniques, such as DOACROSS, as

they do to IMT techniques. Using these extensions to break dependences expands the size

of parallel regions and reduces the amount of synchronization. CMT-specific extensions to

the DOACROSS technique focus on dealing with cross-thread dependences that cannot be

removed by IMT extension techniques.

In particular, IMT techniques still fail to alleviate late-iteration synchronization points,

which can greatly limit the speedup of CMT parallelizations. Figure 2.7c shows an example

of this problem, with the printf call synchronizing two otherwise parallelizable bodies of

work. The printf dependence is typical of dependences in general purpose code which

can not be removed. However, several extensions to CMT techniques have been proposed

to help deal with these dependences by limiting their influence.

Scheduling Dependences

The size of regions executing in parallel directly affects the amount of speedup obtained. As

a natural consequence of this, if a dependence that causes synchronization in two otherwise

16

list *cur=head

A: for(; cur!=NULL; cur=cur->next) {

B: work(cur);

C: printf(cur);

}

(a) List Code

list *cur=head

A: for(; cur!=NULL; cur=cur->next) {

C: printf(cur);

B: work(cur);

}

(b) Scheduled List Code

0

1

2

3

4

5

6

7

8

9

10

Core 1 Core 2 Core 3

S
ta

ll

A1

B1

C1

A2

B2

C2

A3

B3

C3

A4

B4 A5

B5

S
ta

ll

S
ta

ll

(c) Execution of Code in Fig-

ure 2.7a

0

1

2

3

4

5

6

7

8

9

10

Core 1 Core 2 Core 3

S
ta

ll

A1

C1

B1

A2

C2

B2

A3

C3

B3

A4

C4

B4

A5

C5

B5A6

C6

B6

A7

C7

(d) Execution of Code in Fig-

ure 2.7b

Figure 2.7: Scheduling Example

17

unsynchronized regions can be scheduled above or below the regions, then there is more

potential for parallel execution. This observation is particularly useful for CMT techniques

like DOACROSS [7, 18, 45, 57, 90], where scheduling synchronization to occur either

earlier or later increases the size of regions that can execute in parallel.

Figure 2.7 illustrates the value of scheduling. Before scheduling, the code in Figure 2.7a

is limited by the printf loop-carried dependence that must be synchronized. However,

with scheduling, the compiler can prove that it is legal to move this dependence to the top

of the iteration. This has the benefit of significantly reducing the size of the region that

DOACROSS must synchronize to ensure correct execution. For Figure 2.7a scheduling

moves the printf loop-carried dependence from the bottom of the iteration to the top, as

shown in Figure 2.7b. This scheduling transformation reduces the time each thread spends

waiting for communication, reducing the length of the loop’s critical path.

Dynamic Work Allocation

DOACROSS statically schedules each iteration to a specific processor, which is only opti-

mal when there is no variation in runtimes between iteration. Variance can cause a single

thread can to become the bottleneck even though free processors exist. Dynamically spawn-

ing threads onto idle processors [28] allows the processors to greedily consume work as it

becomes available rather than waiting for a statically determined iteration, more evenly

balancing the available work, leading to more parallelism.

Figure 2.7d illustrates dynamic scheduling and instruction scheduling combining to

produce better execution time than the base DOACROSS technique. Instruction scheduling

moves the print dependence cycle to the top of the loop, allowing it to be synchronized

before the variable length work is executed. Because of this, processors do not wait for

synchronization and can dynamically execute the next ready iteration.

18

2.2.3 Enhancing PMT Parallelism

The techniques used for IMT parallelizations are also applicable to PMT parallelizations

when they can break dependence recurrences. Unfortunately, the dependences recurrences

that these techniques break tend not to break large stages into smaller stages.

Parallel Stage

Rather than break large stages into smaller stages, it is sometimes possible to improve

the speedup of a DSWP parallelization by replicating the largest stage. A DSWP paral-

lelization is limited by the size of the largest stage because DSWP extracts only parallelism

among the static code of a loop. Large stages tend to be the result of inner loops whose

static code cannot be split among multiple pipeline stages. However, a pipeline stage that

contains no outer loop-carried dependence can be execute multiple outer loop iterations in

parallel. The Parallel-Stage DSWP (PS-DSWP) extension to DSWP uses this insight to

achieve data-level parallelism for such stages [57, 61, 75], essentially extracting IMT par-

allelism for that stage. For a sufficient number of threads, PS-DSWP can be used to reduce

the runtime of a replicable stage to the length of the longest single dynamic iteration.

Figure 2.8b shows a PS-DSWP parallelization for the code in Figure 2.8a. In this

example, the stage containing the call to work can be replicated. Conceptually, this is

equivalent to unrolling the loop by the replication factor, as shown in Figure 2.8b. All

operations corresponding to the non-replicable A stage remain in a loop-carried dependence

recurrence. However, there now exist two instances of the B stage that can be scheduled to

separate threads, increasing parallelism.

Dynamic Parallel Stage

PMT techniques, like CMT techniques, benefit from dynamic allocation of work to threads.

In particular, PS-DSWP can be extended so that each thread executing a replicated stage

dynamically pulls work off of a master work queue. Figure 2.8e illustrates the execution of

19

list *cur=head

A: for(; cur!=NULL; cur=cur->next) {

B: work(cur);

}

(a) List Code

list *cur=head

A: for(; cur!=NULL; cur=cur->next) {

B: work(cur);

A: cur=cur->next; if(!cur) break;

B: work(cur);

}

(b) Unrolled List Code

0

1

2

3

4

5

6

7

8

9

10

11

Core 1 Core 2 Core 3

A1

B1

A2

B2

A3

B3

A4

B4

A5

B5

A6

A7

A8

A9

A10

A11

(c) Execution of Code in Fig-

ure 2.8a

0

1

2

3

4

5

6

7

8

9

10

11

Core 1 Core 2 Core 3

A1

B1

A2

B2A3

B3

A4

B4A5

B5

A6

B6

A7

B7

A8

B8

A9

A10

A11

(d) Execution of Code in Fig-

ure 2.8b with Static Thread

Assignment

0

1

2

3

4

5

6

7

8

9

10

11

Core 1 Core 2 Core 3

A1

B1

A2

B2A3

B3

A4

B4A5

B5

A6

B6

A7

B7A8

B8

A9

B9

A10

B10A11

(e) Execution of Code in Fig-

ure 2.8b with Dynamic

Thread Assignment

Figure 2.8: Parallel Stage Example

20

a PS-DSWP parallelization that dynamically assigns work to threads.

2.3 Breaking Dependences with Speculation

The success of automatic parallelization techniques is inherently limited by dependences

in the region being parallelized. Since the compiler must be conservatively correct with

respect to all possible dependences, it will often be limited by dependences that cannot,

will not, or rarely manifest themselves dynamically. This section explores several types of

speculation and their use in breaking problematic dependences to enhance parallelism.

2.3.1 Types of Speculation

Many variables in a program have predictable values at specific points in the program [58].

In particular, variables that do not change in value, variables set by the command line, and

variables that have a constant update are easily predictable. Value Speculation [46, 59]

removes dependences using a predicted value instead of the actual value to satisfy the

dependence. Whenever the dependence executes and the actual value is not the predicted

value, misspeculation is flagged [28, 82].

The most common type of value speculation predicts that a biased branch will not take a

specific path(s) [82]. In particular, this type of speculation is often used to remove loop exits

and branches that control programmer assertions and other error checking code, as these

branches control, either directly or indirectly, the rest of the loop. This leads them to create

long loop-carried dependence chains that limit parallelization. Other value speculations

predict the value of loads [9] or that a store will be silent [40].

In general purpose programs, parallelization must be able to break dependences that

arise from code that manipulates arbitrarily complex heap-allocated data structures. Even

with aggressive memory analysis [14, 31, 53, 70] many loads and stores will potentially

accesses the same data. At runtime, many such conflicts will not manifest themselves,

21

either because they are not possible or are extraordinarily rare. Memory Alias Speculation

leverages this property to remove memory data dependences between loads and stores.

Memory Alias Speculation removes memory dependences by assuming that two mem-

ory operations will not accesses the same memory location. Unlike value speculations,

alias speculation only causes misspeculation when the destination of a dependence exe-

cutes before the source. Alias speculation only ensures that a dependence does not have

to be synchronized, but the dependence may be respected due to the timing of the threads

involved in the dependence.

Finally, Memory Value Speculation combines the benefits of memory alias speculation

with value speculation. Instead of checking that a load and store access the same memory

location in the correct order, it checks that the value loaded is correct, usually by performing

a second checking load that respects all memory dependences of the original load. Because

the speculation checks values and not locations, it is only effective for the speculation of

true memory dependences. However, unlike alias speculation, if a load happens to load the

correct value, even from a different store, the speculation will not fail.

2.3.2 Speculative Parallelization Techniques

All speculative loop parallelization techniques use speculation to break dependences. To

ensure that correct execution is always possible when speculating inter-thread dependences,

speculative threads conceptually maintain speculative state separately from non-speculative

state. This allows them to rollback to a known good state upon misspeculation.

Speculative IMT

Adding speculation to the IMT parallelization techniques allows them to parallelize loops

that would otherwise contain inter-iteration, cross-thread dependences. By speculating all

inter-iteration dependences, Speculative DOALL techniques [44, 64, 91] can parallelize

any loop. For most loops this involves breaking many dependences that are hard if not im-

22

list *cur=head

A: for(; cur!=NULL; cur=cur->next) {

B: cur->data = work(cur);

C: if (cur->data == NULL)

break;

}

(a) List Code

list *cur=head

A: for(; cur!=NULL; cur=cur->next) {

B: cur->data = work(cur);

C: if (cur->data == NULL)

MISSPECULATE;

}

(b) Speculated List Code

0

1

2

3

4

5

6

7

8

9

10

Core 1 Core 2 Core 3

A1

B1

C1

A2

B2

C2

A3

B3

S
ta

ll

S
ta

ll

(c) Execution of Code in Fig-

ure 2.9a

0

1

2

3

4

5

6

7

8

9

10

Core 1 Core 2 Core 3

S
ta

ll
A1

B1

C1

A2

B2

C2

A3

B3

C3

A4

B4

C4

A5

B5

C5A6

B6

C6

A7

B7

(d) Execution of Code in Fig-

ure 2.9b

Figure 2.9: TLS Example

possible to predict and which manifest often. This leads to excessive misspeculation which

in turn causes performance little better than their non-speculative counterparts. Where they

are profitable, more accurate analyses or other transformations can often mitigate the need

for speculation [44, 56].

Speculative CMT

Speculation is more useful in the domain of CMT techniques, which can use specula-

tion to break problematic dependences in a more controlled manner than Speculative IMT

23

techniques. There are many speculative CMT techniques that extend the basic DOACROSS

concept with speculation and shall be referred to as Thread-Level Speculation (TLS) [22,

33, 71, 72, 80, 83] techniques.

As in DOACROSS, TLS techniques execute multiple iterations of a loop in parallel

by executing each iteration in a separate thread. Unlike DOACROSS, only the oldest

thread in sequential program order is non-speculative, all other threads execute specula-

tively. Threads commit in the original sequential program order to maintain correctness.

Once a thread commits, the oldest speculative thread becomes non-speculative and the pro-

cess repeats.

TLS techniques generally checkpoint memory at the beginning of each iteration, storing

speculative writes into a separate version of memory space that is made visible to the rest of

the system when the iteration becomes non-speculative. These iteration specific versions of

memory closely resemble transactional memories in their semantics, but with a constrained

commit and rollback operations [28, 39, 65]. That is, the oldest iteration’s memory version

must commit before younger versions. When a conflict occurs that requires a rollback, the

younger iteration is always rolled back. To ensure that younger iterations do not commit

their state until all older iterations have completed, the younger iteration waits at the end of

its iteration to receive a commit token from the next oldest iteration.

Speculation in TLS techniques focuses on removing inter-iteration dependences. In

practice, this means that memory alias speculation is used to remove potential dependences

among load and stores. Control speculation is used to ensure that potential inter-iteration

register and control dependences either become unreachable or can be scheduled early in

the loop [90]. Detection of misspeculation can be performed in either hardware or software.

Misspeculation of control speculation is detected by the program. For alias speculation,

misspeculation is detected by the same hardware that maintains speculative memory ver-

sions. The separate memory versions also implicitly break inter-iteration false (anti- and

output-) memory dependences, giving more opportunity for parallelism.

24

Figure 2.9 shows how speculating a loop exit branch can unlock parallelism. The spec-

ulation removes the dependence cycle from the loop exit to the loop header that prevents

the extraction of any parallelism. When speculated, the branch can be executed in parallel,

with misspeculation used to indicate that the loop is finished.

TLS techniques have acknowledged that synchronization is the limiting factor in a CMT

parallelization, particularly when it occurs late in the iteration [90]. To avoid this limita-

tion, a TLS parallelization splits a loop iteration into two parts, delineated by a single

synchronization point. All inter-iteration dependences above the synchronization point are

respected and communicated to the next iteration at the synchronization point. All inter-

iteration dependences below the synchronization point are speculated away. In practice,

keeping the unsynchronized region of the iteration large enough to all for effective paral-

lelization while avoiding excessive misspeculation is difficult, requiring complicated mis-

speculation cost models [22] and runtime feedback to prune parallelizations that perform

poorly [28].

Speculative PMT

Since PMT techniques are not bound by inter-thread communication, speculation in

a PMT technique is generally aimed not at reducing inter-thread communication, but in

removing dependences that form large pipeline stages. The speculative PMT analogue of

DSWP is the Speculative DSWP (SpecDSWP) technique [82].

SpecDSWP uses speculation to break dependences that form large sets of intersecting

dependence recurrences, leading to many smaller pipeline stages from which better paral-

lelism can be extracted. Just as in DSWP, SpecDSWP executes stages to achieve pipelined

parallelism, using queues to buffer state and tolerate variability. Since SpecDSWP allows

intra-iteration speculation, no iteration executes non-speculatively. Instead each iteration

is speculative and is committed when all stages have executed without misspeculation. A

Commit Thread ensures that iterations commit in the proper order and manages the recov-

25

list *cur=head

A: for(; cur!=NULL; cur=cur->next) {

B: cur->data = work(cur);

C: if (cur->data == NULL)

break;

}

(a) List Code

list *cur=head

A: for(; cur!=NULL; cur=cur->next) {

B: cur->data = work(cur);

C: if (cur->data == NULL)

MISSPECULATE;

}

(b) Speculated List Code

0

1

2

3

4

5

6

7

8

9

10

11

Core 1 Core 2 Core 3

ABC1

ABC2

ABC3

(c) Execution of Code in Fig-

ure 2.10a with DSWP

0

1

2

3

4

5

6

7

8

9

10

11

Core 1 Core 2 Core 3

A1

B1

C1

A2

B2

C2

A3

B3

C3

A4

B4

A5

A6

A7

A8

A9

A10

A11

(d) Execution of Code in Fig-

ure 2.10b with SpecDSWP

0

1

2

3

4

5

6

7

8

9

10

11

Core 1 Core 2 Core 3

A1

BC1

A2

BC2

A3

BC3

A4

BC4

A5

BC5

A6

BC6

A7

BC7

A8

A9

A10

A11

(e) Execution of Code in Fig-

ure 2.10b with PS-DSWP and

SpecDSWP combined

Figure 2.10: SpecDSWP Example

26

ery process upon misspeculation detection.

As in TLS techniques, iterations in a SpecDSWP parallelization checkpoint state at the

beginning of each iteration. Unlike TLS techniques, an iteration does not stay local to a

single thread or processor. Instead, as it flows through the stages of the pipeline, it executes

on multiple threads, potentially at the same time, on multiple processors. Existing TLS

memory systems assume that the iteration executes in a single thread and cannot handle

multiple threads participating in a single memory version at the same time. To handle this,

SpecDSWP uses a version memory system that allows multiple threads to execute inside

the same version at the same time [82].

SpecDSWP implements speculation entirely in software, relying on the hardware only

for efficient execution of loads and stores in the versioned memory system. Control and

silent store speculation are used to break dependences that form large sets of dependence

recurrences, with misspeculation detection done in software. Though the initial implemen-

tation of SpecDSWP did not use speculation to break other memory dependences, memory

value speculation can also be added to the suite of possible speculation types as it easily

checked in software.

Figure 2.10 shows the result of applying SpecDSWP to the same loop as TLS was ap-

plied to in Figure 2.9, without showing the commit thread. Just as in TLS, the loop exit

branch creates a large dependence recurrence that prevents SpecDSWP from extracting par-

allelism. After the branch is speculated, SpecDSWP can extract a 3-stage DSWP partition

(Figure 2.10d). The power of SpecDSWP is greatly increased when it is combined with

PS-DSWP. Figure 2.10e shows a 2-stage speculative PS-DSWP partition with the second

stage replicated twice.

2.3.3 Loop-Sensitive Profiling

Many parallelization techniques use heuristics to guide them to profitable areas of the op-

timization space. Speculation in particular is highly dependent upon accurate profile infor-

27

mation to determine when a control edge is rarely taken, a memory alias rarely manifests,

or an operation usually computes the same value regardless of input. Many profiling tech-

niques and infrastructures have been built to extract this information from programs. How-

ever, the profiles extracted are often loop-insensitive. This is problematic for loop paral-

lelization techniques that want to speculate dependences relative to a specific loop header.

In particular, identifying intra-iteration versus inter-iteration dependences can allow the

compiler to more accurately determine how often a dependence will misspeculate [22].

2.4 Compilation Scope

Even an aggressive parallelization technique is of little use if it cannot parallelize loops

that contain large portions of a program’s execution time. In general-purpose programs,

these loops often exist at or close to the program’s outermost loop [9]. Consequently, it is

important that the parallelization framework be powerful enough to identify and leverage

parallelism that contains function calls and where dependences cross between many levels

of the call graph.

In Figure 2.11, interprocedural analysis and optimization are needed to effectively par-

allelize the loop in compute. If the various parallelization techniques are applied only

to the compute function (Figure 2.11b), the compiler cannot deal the cache insert

to cache lookup loop-carried dependence inside work. Therefor, the call to work has

inter-iteration dependences with itself that greatly limit the parallelism extractable by either

CMT or PMT parallelization techniques.

To achieve the larger scope necessary to parallelize loops like those in Figure 2.11, most

techniques remain intra-procedural. They rely on a pass of compiler inlining to expand a

procedure to the point where optimizations can be successful, but inlining cannot hope to

expose all the operations needed to parallelize effectively at the outermost loop levels. First,

for a program with recursion, it is impossible to fully inline such that all operations in the

28

int work(list_t *data) {

int result = cache_lookup(data);

if (result != 0)

return result;

if (data == NULL)

return -1;

result = real_work(data);

cache_insert(data, result);

}

int compute(list_t *list) {

int total = 0;

while (list != NULL) {

list_t *data = getData(list);

int result = work(data);

if (result == -1)

break;

printData(data);

total += result;

list = list->next;

}

return total;

}

(a) Code Example

int work(list_t *data) {

int result = cache_lookup(data);

if (result != 0)

return result;

if (data == NULL)

return -1;

result = real_work(data);

cache_insert(data, result);

}

int compute(list_t *list) {

int total = 0;

int __total[THREADS];

while (1) {

list_t *data = getData(list);

list = list->next;

printData(data);

int result = work(data);

if (result == -1)

MISSPECULATE;

__total[TID] += result;

}

total += sum(__total, THREADS);

return total;

}

(b) Code Example with Parallelization Optimizations

applied

Figure 2.11: Interprocedural Scope Example

loop are visible. Second, even when full inlining is possible, it leads to exponential code

growth and significant compile-time concerns [34]. Because of this, inlining can rarely

be applied aggressively enough to allow a parallelization technique to avoid synchronizing

large portions of a program’s runtime.

Whole program optimization [79] techniques can increase the compiler’s visibility

without requiring the modification of analysis or optimizations. Whole program optimiza-

tion removes procedure boundaries, merging all code into a single control flow graph (CFG),

so the compiler can both see and modify code regardless of its location in the program.

29

Through region formation, the compiler controls the amount of code to analyze and opti-

mize at any given time, with code from multiple procedures potentially in the same region.

This can achieve the effect of partial inlining [74, 87], without the associated code growth.

This flexability comes at a cost, as regions tend to be small, on the order of 500 operations,

in order to prevent a compile-time explosion. Additionally, it is not clear how to structure

optimizations that cross region boundaries, as any parallelization technique is bound to do

for any reasonable region size.

Previous work in parallelizing scientific programs has shown interprocedural analysis

to be useful [11, 32, 42] when parallelizing array-based programs. These analyses aim to

disambiguate the array accesses that occur in lower-level procedures. The results of this

analysis are used only to enhance the parallelism extracted in the current procedure, not

to facilitate an interprocedural parallelization. This has proved sufficient for array-based

programs because they extract non-speculative DOALL parallelizations, so beyond proving

a lack of dependence, there is no work to perform in lower-level procedures.

General-purpose programs, on the other hand, have dependences both in the loop be-

ing parallelized and buried deeply in lower-level functions. As such, it is important to

have a interprocedural parallelization technique that is able to operate across procedures,

synchronizing or speculating dependences across multiple levels of the call tree.

2.5 Parallelization For General-Purpose Programs

This dissertation focuses on building a parallelization framework that can extract scal-

able parallelism from the outermost loops of applications. Previous work has shown that

scalable parallelism exists and generally has the abstract structure shown in Figure 2.12a [9,

10]. In this code sequence the process function takes the majority (> 90%) of the

program’s runtime. The get data function contains loop-carried dependences to itself,

as does the emit function. Finally, the emit function is dependent upon the result of

30

void *data, *result;

A: while (data = get_data()) {

B: result = process(data);

C: emit(data, result);

}

(a) Code Example

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Core 1 Core 2 Core 3 Core 4

S
ta

ll

S
ta

ll

S
ta

ll
S
ta

ll

S
ta

ll

S
ta

ll

S
ta

ll

A1

B1

C1

A2

B2

C2

A3

B3

C3

A4

B4

C4

A5

B5

C5

A6

B6 A7

B7

A8

S
ta

ll

S
ta

ll

(b) Execution of Code in Figure 2.12a with

TLS

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Core 1 Core 2 Core 3 Core 4

S
ta

ll

A1

B1

C1

A2

B2

C2

A3

B3

C3

A4

B4

C4

A5

B5

C5

A6

B6

C6

A7

B7

C7

A8

B8

A9

B9

A10

B10

A11

B11

A12

A13

A14

A15

(c) Execution of Code in Figure 2.12a with

PS-DSWP and SpecDSWP

Figure 2.12: Choice of Parallelism Example

31

the process function. Though the process function may contain loop-carried depen-

dences, these can be broken though speculation, reduction expansion, etc.

Either a CMT (via TLS) or PMT (via SpecDSWP and PS-DSWP) technique with

interprocedural scope could extract parallelism from this type of loop. In general, the

SpecDSWP parallelization will offer better performance for a variety of reasons. First, as

mentioned earlier, communication latency is still added to the critical path for the synchro-

nized portion of a TLS parallelization. Additionally, TLS parallelizations generally do not

allow for an explicit second synchronized region to avoid variability in one iteration stalling

subsequent iterations. However, the commit token used by TLS implementations to ensure

speculative state is committed correctly implicitly creates a second synchronized region at

the end of every iteration.

SpecDSWP can better handle synchronizing dependences that occur anywhere in the

iteration. The overhead of the commit thread is relevant for small numbers of threads, but

as processors move to 8 or more cores, the overhead becomes smaller. Additionally, the

commit thread be can context switched out to further reduce the overhead. By integrating

the PS-DSWP and SpecDSWP extensions together, DSWP also gains the ability to extract

dynamic parallelism, a primary benefit of a TLS parallelization. Finally, by not putting

dependence recurrences across cores, DSWP is able tolerate long inter-core communica-

tion [55].

To handle the scope issues discussed in Section 2.4, the SpecDSWP technique also

needs to be able to operate interprocedurally. This can be accomplished through a com-

bination of interprocedural analysis and extensions to the way SpecDSWP represents and

transforms the code, for example, by building a program-wide System Dependence Graph

rather than a procedure-local Program Dependence Graph to represent depenedences.

32

Chapter 3

The VELOCITY Parallelization

Framework

This chapter discusses the components of VELOCITY’s aggressive automatic paralleliza-

tion framework. This framework includes a compiler infrastructure to identify parallelism

in sequential codes, hardware support to efficiently execute the parallelized code, interpro-

cedural analysis, interprocedural optimization, and a loop-sensitive profiling infrastructure.

All of these components will be discussed in the context of the Interprocedural Speculative

Parallel-Stage DSWP (iSpecPS-DSWP) parallelization technique that VELOCITY uses.

iSpecPS-DSWP will be formed by combining and extending the existing parallelization

techniques Decoupled Software Pipelining (DSWP), Parallel-Stage DSWP (PS-DSWP),

and Speculative DSWP (SpecDSWP).

3.1 Compilation and Execution Model

DSWP assumes a set of processors that each executes a single thread at a time. Each

processor contains registers used by executing instructions as well as a shared memory. In

the examples provided, a simple load/store architecture is assumed.

A program that has been DSWPed executes sequentially until in reaches the DSWPed

33

loop. Upon reaching the loop it conceptually spawns the necessary threads, executes in

parallel, and upon loop exit, the spawned threads conceptually terminate. In practice, the

threads can be prespawned and reused by successive invocations to mitigate the overhead

of spawning [55, 61].

For the sake of simplicity it is assumed that for the loop being DSWPed, all loop

backedges have been coalesced into a single backedge and preheaders and postexits ex-

ist. Additionally, all irreducible inner loops have been cloned to make reducible loops [50].

Finally, all indirect branches and all indirect calls have been expanded to direct, 2-way

branches and direct calls.

3.2 Decoupled Software Pipelining

Algorithm 1 DSWP

Require: Loop L, Threads T
1: Opportunity O = DetermineAssignment(L, T)

2: MultiThreadedCodeGeneration(L, O)

The Decoupled Software Pipelining (DSWP) algorithm consists of a thread assignment

analysis phase (line 1 of Algorithm 1) and a multi-threaded code generation transformation

that realizes a thread assignment (line 2 of Algorithm 1).

3.2.1 Determining a Thread Assignment

Algorithm 2 DetermineAssignment

Require: Loop L, Threads T
1: PDG = BuildPDG(L)

2: DAGSCC = FormSCCs(PDG)

3: ThreadAssignment A = AssignSCCs(DAGSCC , T)

4: Synchronization S = DetermineSynchronization(A, L)

5: return (A, S)

34

list *cur = head;

while (cur != NULL) {

list *item = cur->item;

while (item != NULL) {

sum += item->data

item = item->next;

}

cur = cur->next;

}

print(sum)

(a) Sequential C Code

START:

A: mov cur=head;

B: mov sum=0

BB1:

C: br.eq cur, NULL, END

BB2:

D: load item=[cur + offset(item)]

BB3:

E: br.eq item, NULL, BB5

BB4:

F: load t1=[item + offset(data)]

G: add sum=sum,t1

H: load item=[item + offset(next)]

I: jump BB3

BB5:

J: load cur=[cur + offset(next)]

K: goto BB1

END:

L: call print, sum

(b) Sequential Lowered Code

Register Dependence

Control Dependence

Memory Dependence

(c) PDG

(d) DAGSCC

Figure 3.1: DSWP Example Code

35

Step 1: Build PDG

Since the goal of DSWP is to extract PMT parallelism, the thread assignment algorithm

must extract threads that have no backwards dependences. To determine which depen-

dences are forward or backward, DSWP first builds a Program Dependence Graph (PDG) [25],

which contains all data and control dependences in the loop L. DSWP currently operates

on a low-level IR representation with virtualized registers. Data dependences among these

operations can come through registers or memory. Data dependences have three types:

Flow Dependence A dependence from a write to a read of either a register or a memory

location. This is the only true dependence; it cannot be broken by renaming.

Anti Dependence A dependence from a read to a write of either a register or a memory lo-

cation. This is a false dependence that can be broken making the write use a different

name than the read.

Output Dependence A dependence from a write to a write of either a register or a memory

location. This is a false dependence that can be broken by making one of the writes

use a different name.

The PDG used for thread partitioning contains all memory flow, anti, and output de-

pendences, control dependences, and register flow dependences. Both control and register

dependences can be computed using standard data-flow analysis algorithms [50]. Only

register flow dependences are inserted into the PDG. For any two false register dependent

operations, if they are in different threads, then they will use different register files and the

dependence is not violated. If they are in the same thread, the code generation algorithm

will maintain the original ordering, respecting the dependence.

Memory dependences are generally harder to determine than register dependences. Un-

like register dependences, memory operations can potentially reference many locations,

making it hard for an analysis to obtain accurate results. For array-based programs, mem-

ory analysis focuses on disambiguating bounds of array references. For general-purpose

36

programs that manipulate recursive data structures, more complicated analysis can dis-

ambiguate most non-conflicting memory accesses, even in type unsafe languages like C,

though this remains an area of active research [14, 31, 53].

Figure 3.1c shows the PDG formed for the sequential code in Figure 3.1b. Green arrows

represent register data dependences and are annotated with the register that the dependence

is on. Red arrows represent control dependences. Variables live into and out of the loop

being parallelized are also shown, though they will not take part in further steps unless

explicitly noted.

Step 2: Form SCCs

To keep dependence recurrences thread-local, DSWP relies on the formation of the DAGSCC

from the PDG. The DAGSCC contains the strongly connected components (SCC) [76] of

the PDG (i.e. the dependence recurrences) and has no cycles in it. The shaded boxes in Fig-

ure 3.1c illustrate the three strongly connected components, while Figure 3.1d illustrates

the DAGSCC itself, with nodes collapsed and represented by their containing SCC.

Step 3: Assign SCCs

Given sufficient threads, each SCC in the DAGSCC can be assigned its own thread and the

step is finished. However, the common case is to have more SCCs than threads. A thread

partitioner is used to find the allocation of SCCs to threads that maximizes parallelism by

creating equal weight threads, without creating backwards dependences.

Unfortunately, this problem is NP-Hard even for simple processors with scalar cores [55].

Heuristic partitioners have been proposed and used in practice to solve this problem [55,

61]. These partitioners attempt to merge SCCs until there are as many SCCs as threads.

Two nodes N1 and N2 in the DAGSCC can be merged so long as there is no node N3 6=

N1 6= N2 such that N1
∗

−→ N3 and N3
∗

−→ N2 or that N2
∗

−→ N3 and N3
∗

−→ N1. This

avoids creating cycles in the DAGSCC which would create CMT instead of PMT paral-

37

...

L1:

A: (1) br r1<MAX1, L5

L2:

B: (1) br r2<MAX2, L5

L3:

C: (1) br r3<MAX3, L5

L4:

D: (2) add r4=r4,1

E: (1) sub r5=r5,r2

L5:

...

(a) Sequential Code with Thread

Assignment in parenthesis

...

L1:

synchronize r1, T2

A: br r1<MAX1, L5

L2:

synchronize r2, T2

B: br r2<MAX2, L5

L3:

synchronize r3, T2

C: br r3<MAX3, L5

L4:

E: sub r5=r5,r2

L5:

...

(b) Thread 1

...

L1:

synchronize r1, T1

A’: br r1<MAX1, L5

L2:

synchronize r2, T1

B’: br r2<MAX2, L5

L3:

synchronize r3, T1

C’: br r3<MAX3, L5

L4:

D : add r4=r4,1

L5:

...

(c) Thread 2

Figure 3.2: Communication Synchronization Example

lelism.

DSWP uses a Load-Balance partitioner that attempts to create equal weight threads by

assigning operations to threads while minimizing the overhead of synchronization [54, 55].

In particular, because loads are often on the critical path, they are assigned a greater weight

than other operations.

Step 4: Determine Synchronization

For a given thread partitioning there are a set of dependences that must be synchronized to

ensure correct execution. Synchronization is implemented through cross-thread commu-

nication, as the terms will be used interchangeably. Synchronization can be broken down

into two steps, determining what to synchronize and deciding where to synchronize it.

For a given dependence S
dep
−→ D with S in thread TS and D in thread TD, if TS 6= TD,

then the dependence must be communicated from TS to TD. For data dependences, it is

sufficient to communicate the data value itself. For control dependences, DSWP assumes

the branch will be replicated in TD , meaning that only the branch’s operands must be syn-

38

(1) move r1 = 0

L1:

(1) add r1 = r1, r3

(1) br r1 < MAX1, L1

(1) r2 = 0

L2:

(2) add r2 = r2, r1

(2) br r2 < MAX2, L2

(a) Example Code

(1) move r1 = 0

L1:

(1) add r1 = r1, r3

synchronize r1, T2

(1) br r1 < MAX1, L1

(1) r2 = 0

L2:

(2) add r2 = r2, r1

(2) br r2 < MAX2, L2

(b) Naı̈ve Synchronization

(1) move r1 = 0

L1:

(1) add r1 = r1, r3

(1) br r1 < MAX1, L1

synchronize r1, T1

(1) r2 = 0

L2:

(2) add r2 = r2, r1

(2) br r2 < MAX2, L2

(c) Optimized Synchronization

Figure 3.3: Communication Optimization Example

crhonized as cross-thread data dependences. Alternatively, the source thread could com-

municate the direction of the branch along each path, which also introduces a cross-thread

data dependence on the direction’s data value.

However, this alone will not ensure proper control flow in TD because indirect control

dependences will not have been communicated. Figure 3.2 shows a simple 2 thread par-

titioning where all operations except the add assigned to T2 have been assigned to T1. If

indirect control dependences are not synchronized, only the direct control dependence on

branch C will have been communicated. Branches A and B will not exist and D will exe-

cute even when A and B jump to L5. The solution to this problem is to consider all indirect

control dependences to be cross-thread control dependences. Since the branch’s operands

can be synchronized in the same condition of execution as the branch itself, their control

dependences, both direct and indirect, do not need to be synchronized.

Once the set of dependences that must be synchronized is constructed, the algorithm

must determine where to place the synchronization. The naı̈ve approach to determining

the position at which to synchronize dependences does so at the source of the dependence.

Since TS has all branches needed to compute the condition of execution for S, in the worst

case it can communicate all branches related to the condition of execution for S to TD.

Thus, no backwards dependences can be created by this placement of synchronization [55].

39

While this placement is sufficient to ensure correctness, it can easily lead to excessive

communication, particularly in the case of memory dependences [54]. A better synchro-

nization placement algorithm can analyze the many paths between the source and destina-

tion to determine a more optimal placement. The communication optimization framework

proposed by Ottoni et al [54] optimizes the placement of each type of dependence for each

pair of threads, while ensuring that no new backwards dependences are created.

Register Dependence For each register r, all cross-thread register dependences are opti-

mized as a single unit. An effective solution can be found by modeling the problem

as max-flow/min-cut [17], where the nodes are control flow nodes and the edges are

control flow edges. The graph is the control flow subgraph that includes all nodes all

along paths from all definitions to all uses. If an edge is a legal placement for syn-

chronization, then its weight is set to the profile weight of the control edge, otherwise

it is set to ∞. In particular, edges that would result in backwards communication to

facilitate new conditions of execution are illegal. The min-cut of the graph produces

the points at which to synchronize r.

Memory Dependence Memory dependences are optimized similar to register dependences.

However, since memory dependences only communicate a token whose value does

not matter, memory dependences among unrelated groups of instructions can be op-

timized at the same time. Because disjoint sets of instruction can be optimized at

the same time, the max-flow/min-cut problem for memory dependences has multi-

ple sources and multiple sinks. While the multi-source, multi-sink max-flow/min-cut

problem is NP-hard [27] to separate each source from its corresponding sink, heuris-

tics exist that can achieve effective solutions [54].

Control Dependence Control dependences are not optimized by the framework. How-

ever, the arguments of the branch that is the source of the control dependence can be

optimized as cross-thread register or memory dependences.

40

Figure 3.3 shows how optimizing synchronization placement can improve performance.

The register r1 must be communicated from T1 to T2, however, there are two places at

which to communicate the variable. The naı̈ve placement inserts the synchronization at the

source of the dependence, inside the L1 loop, forcing the second thread to receive the value

every iteration of the L1 loop. A more optimal placement for the synchronization of r1

occurs just before the L2 loop so that the value only needs to be synchronized once.

3.2.2 Realizing a Thread Assignment

Algorithm 3 MultiThreadedCodeGeneration

Require: Loop L, (ThreadAssignment A, Synchronization S)

1: CreateThreadBlocks(L, A, S)

2: MoveInstructions(A)

3: InsertSynchronization(S)

4: CreateControlFlow(L, A)

DSWP leverages the Multi-Threaded Code Generation (MTCG) algorithm proposed by

Ottoni et al to generate correct multi-threaded code [55]. The code example from Figure 3.1

will be used to provide examples through this subsection, assuming a thread assignment of

{CDJ,EFHG} and an unoptimized synchronization placement.

Step 1: Create Thread Blocks

The first step of the MTCG algorithm is to create a new CFG CFGi for each thread Ti ∈ A.

The set of blocks to create in each new CFG is defined by the set of relevant basic blocks

from the original code. For each basic block, B, relevant to Ti, a new basic block B′ is

created in CFGi. A Relevant Basic Block for Ti is any block in the original CFG that

contains either an instruction assigned to Ti or the synchronization point for cross-thread

dependence that begins or ends in Ti. This ensures that any operation or synchronization

in Ti has a place to reside. In addition to the relevant basic blocks, special START and

END blocks are inserted at the loop’s preheader and postexits respectively.

41

Step 2: Moving Instructions

START:

A: mov cur=head;

B: mov sum=0

BB1:

C: br.eq cur, NULL, END

BB2:

D: load item=[cur + offset(item)]

BB5:

J: load cur=[cur + offset(next)]

K: goto BB1

END:

L: call print, sum

(a) Thread 1

START’:

BB1’:

C’: br.eq cur, NULL, END

BB2’:

BB3’:

E: br.eq item, NULL, BB5

BB4’:

F: load t1=[item + offset(data)]

G: add sum=sum,t1

H: load item=[item + offset(next)]

I: jump BB3

END’:

(b) Thread 2

Figure 3.4: Multi-Threaded Code after moving operations

Once the basic blocks for each thread have been created, the instructions assigned to

that thread can be moved into the thread. For a specific basic block BB from the original

thread, all operations in BB assigned to thread Ti are inserted into the newly created basic

block BB′ in Ti that represents BB. The order among the operations is maintained, in

order to preserve the intra-thread dependences that may exist. Figure 3.4 shows the results

of moving operations to the basic blocks created for them.

Step 3: Insert Synchronization

Queue Instructions

Instruction Arguments Description

produce [Q] = V Pushes value V onto the tail of queue Q if it is not full. If the queue is

full, the instruction stalls until room is available.

consume R = [Q] Pops a value off of the head of queue Q if there are values in the queue

and places the value in register R. If the queue is empty, the instruction

stalls until one is available.

Table 3.1: DSWP ISA Extensions

The MTCG algorithm then inserts synchronization between threads to ensure correct

42

START:

A: mov cur=head;

B: mov sum=0

produce [1]=sum

BB1:

produce [2]=cur

C: br.eq cur, NULL, END

BB2:

D: load item=[cur + offset(item)]

produce [3]=item

BB5:

J: load cur=[cur + offset(next)]

K: goto BB1

END:

consume sum=[4]

L: call print, sum

(a) Thread 1

START’:

consume sum=[1]

BB1’:

consume cur=[2]

C’: br.eq cur, NULL, END

BB2’:

consume item=[3]

BB3’:

E: br.eq item, NULL, BB5

BB4’:

F: load t1=[item + offset(data)]

G: add sum=sum,t1

H: load item=[item + offset(next)]

I: jump BB3

END’:

produce [4]=sum

(b) Thread 2

Figure 3.5: Multi-Threaded Code after communication insertion

execution. MTCG assumes the existence of a set of queues that can be accessed via pro-

duce and consume instructions. Table 3.1 gives the semantics of these instructions. The

queues used by these instructions are orthogonal to the memory and register systems. Syn-

chronization is achieved by producing a value in the source thread at the synchronization

point and consuming it in the destination thread, also a the synchronization point. Each

synchronization uses a separate queue, though later queue allocation phases can reduce the

number needed. There are three types of dependences that must be synchronized:

Register Dependence The register is pushed onto the queue by the producer thread and

popped off the queue by the consumer thread.

Control Dependence The registers that make up the condition of the branch are commu-

nicated as register dependences, while the branch is replicated on the consumer side.

Memory Dependence Since MTCG assumes a shared-memory model, the dependence

must be synchronized via write and read barriers that enforce a global memory order-

43

ing. A produce/consume pair is inserted where the produce is a global write barrier

and the consume is a global read barrier. A token value is sent by the produce to

indicate that the write barrier has occurred.

In addition to communicating values during execution, the live-ins and live-outs must

be communicated when moving from sequential to parallel execution and vice-versa.

For registers live into the loop, before each thread enters its copy of the DSWPed loop,

the main thread sends it the register live-ins that it needs to execute. On loop exit, the thread

then sends back the live-outs of its loop to the main thread. If there are multiple threads

that potentially define the same live-out register, extra synchronization is inserted to insure

that one of the threads always holds the correct value upon loop exit [55].

Memory live-ins do not need to be communicated specially, as the thread spawn that

conceptually starts the parallel region is assumed to be a write barrier in the spawning

thread and a read barrier in the spawned thread. Memory live-outs do require that a memory

synchronization occur in any thread that contains store instructions, ensureing that code

after the loop sees the latest computed values.

Figure 3.5 shows the results of inserting communication for the thread assignment

{CDJ,EFGH} assuming naı̈ve synchronization points. On entry to the loop, T1 com-

municates the live-in sum to T2. On every iteration of the outer loop, T1 communicates

cur to satisfy a cross-thread control dependence, and item to satisfy a cross-thread reg-

ister dependence. Finally, on loop exit, T2 sends the live-out variable sum back to T1.

Create Control Flow

Finally, with all the appropriate code for each thread inserted, it remains only to insert

control flow into each thread’s CFG. This consists of retargeting both conditional branches

assigned or copied into the thread and inserting unconditional control flow at the end of

basic blocks. All control flow must properly compensate for the fact that not all basic

blocks were copied into a thread. Thus, the mapping from target in the original code to

44

START:

A: mov cur=head;

B: mov sum=0

produce [1]=sum

BB1:

produce [2]=cur

C: br.eq cur, NULL, END

BB2:

D: load item=[cur + offset(item)]

produce [3]=item

BB5:

J: load cur=[cur + offset(next)]

K: goto BB1

END:

consume sum=[4]

L: call print, sum

(a) Thread 1

START’:

consume sum=[1]

BB1’:

consume cur=[2]

C’: br.eq cur, NULL, END’

BB2’:

consume item=[3]

BB3’:

E: br.eq item, NULL, BB1’

BB4’:

F: load t1=[item + offset(data)]

G: add sum=sum,t1

H: load item=[item + offset(next)]

I: jump BB3’

END’:

produce [4]=sum

(b) Thread 2

Figure 3.6: Multi-Threaded Code after redirecting branches

target in each thread is not direct.

MTCG ensures that the control dependences among basic blocks in the new thread,

Ti, mimic those of the original thread, T0. As control dependence is defined by post-

dominance, it is sufficient to redirect each branch’s target to the closest post-dominator in

T0’s post-dominance tree for which a block in Ti exists. This post-dominator is guaranteed

to exist, as in the worst case it is the END block that exits the loop. Ottoni et al [55] have

shown that this transformation ensures that control dependences among basic blocks in

each thread match the control dependences among the corresponding blocks in the original

thread.

Figure 3.6 illustrates the results of redirection. No redirection was needed in T1. In T2,

the C ′ and I branches have targets that directly map to basic blocks in T2. However, the

E branch has target BB5 which does not exist in T2, so it is redirected to its closest post

dominator BB1, which has an analogous basic block in T2.

45

3.3 Parallel-Stage DSWP

As discussed in Section 2.2.3, DSWP is limited in its ability to extract DOALL-like, data-

level parallelism. The Parallel-Stage extension to DSWP removes this limitation by allow-

ing pipeline stages with no inter-iteration dependences to be replicated an arbitrary number

of times [61]. This section discusses the alterations to the DSWP algorithm necessary to

achieve this end.

3.3.1 Determining a Thread Assignment

Parallel-Stage DSWP (PS-DSWP) changes a DSWP thread assignment to include not just

a set of stages and the synchronization amongst those stages, but also a replication count

for each stage.

Algorithm 4 Partition

Require: Loop L, Threads T
1: PDG = BuildPDG(L)

2: DAGSCC = FormSCCs(PDG)

3: ThreadAssignment A, Replications R = AssignSCCs(DAGSCC , T)

4: Synchronization S = DetermineSynchronization(A, R, L)

5: return (A, R, S)

Step 1: Build PDG

PS-DSWP changes the PDG built by the base DSWP algorithm to include information

about the loop-carriedness of each dependence arc. Specifically, each arc is identified as

only intra-iteration (INTRA), only inter-iteration (INTER), or either (EITHER). Note that

EITHER indicates that a dependence may be both INTRA and INTER, not that it must be

both. All dependences implicitly start as EITHER and analyzed to refine their type into

either INTRA or INTER. Prior implementations of PS-DSWP distinguished only INTER

from EITHER [61], but the utility of INTRA will become apparent once PS-DSWP is

extended with speculation.

46

list *cur=head;

while (cur != NULL) {

list *item=cur->item;

while (item != NULL) {

sum += item->data

item = item->next;

}

cur = cur->next;

}

print(sum)

(a) Sequential C Code

START:

A: mov cur=head;

B: mov sum=0

BB1:

C: br.eq cur, NULL, END

BB2:

D: load item=[cur + offset(item)]

BB3:

E: br.eq item, NULL, BB5

BB4:

F: load t1=[item + offset(data)]

G: add sum=sum,t1

H: load item=[item + offset(next)]

I: jump BB3

BB5:

J: load cur=[cur + offset(next)]

K: goto BB1

END:

L: call print, sum

(b) Sequential Lowered Code

Register Dep.

Control Dep.

Memory Dep.

Intra-Iteration Dep.

Inter-Iteration Dep.

Intra/Inter-Iteration Dep.

(c) PDG

(d) DAGSCC

Figure 3.7: PS-DSWP Example Code

47

For each dependence, a graph reachability analysis determines whether the dependence

must be INTER only. For a dependence S
dep
−→ D, if starting at S, D can only be reached

using control flow by traversing the loop backedge, then the dependence must be INTER.

Otherwise, more sophisticated analysis are used on a case-by-case basis as described below:

Register Dependence For a register dependence S
r

−→ D that writes r at S and reads it

at D, loop-carriedness is calculated by computing whether the dependence is carried

by the loop backedge. Specifically, if the definition of r at S does not reach the loop

header or there is not an upwards-exposed use of r at D at the loop header, then

the dependence is INTRA. Note these conditions only prove that dependence is not

loop-carried, and a failure to satisfy them does not prove the dependence is not also

intra-iteration.

Control Dependence For control dependences, the graph reachability analysis used to

prove INTER is also sufficient to prove INTRA. That is, if for S
cd
−→ D, D can

only be reached using control flow from S by traversing the loop backedge, then the

dependence must be INTER. Otherwise it is INTRA.

Memory Dependence Due to the issues involved in determining strong updates for heap

and function argument pointers in C-like languages, it is generally not possible to

determine if a store MUST write or a load MUST read a particular memory location.

As such, it is all but impossible to determine the set of reaching memory definitions

or upwards exposed memory uses. Thus, all memory dependences are considered

EITHER unless proven INTER by the graph reachability analysis.

Reusing the example code from Figure 3.1, Figure 3.7c shows the PDG that would

be built by PS-DSWP. INTRA edges are denoted by solid lines, while INTER edges a

represented by dashed lines; no EITHER edges exist in this PDG, but are represented in

later examples as dotted lines.

48

Step 2: Form SCCs

The DAGSCC is formed from the PDG just as in the base DSWP algorithm. However,

each SCC is marked as either SEQUENTIAL if a loop-carried edge exists among the nodes

in the SCC or DOALL if there is no such edge. Additionally, an SCC that is a set of

operations that create a min/max reduction or accumulator (addition or subtraction) is also

marked as DOALL. The SCC G in Figure 3.7c is an accumulator, thus its loop-carried

dependence does not cause it to be marked SEQUENTIAL. The code generation phase

will create thread-local reductions and insert the appropriate cleanup code to calculate the

global reduction. Though not discussed in this dissertation, PS-DSWP can also expand

induction variables [61] when optimizing array-based loops.

Step 3: Assign SCCs

The thread assignment process is augmented to provide a replication count for each stage.

Note that all DSWP thread assginments are implicitly PS-DSWP thread assignments with

a replication count of 1 for each stage. Because a DOALL node replicated N times has its

weight effectively reduced by a factor N , a new partitioner is needed that understands the

effects of replication on performance.

The simplest such partitioner, Single Parallel-Stage partitioner, attempts to extract a

single, large DOALL stage, potentially surrounded by a SEQUENTIAL stage on either

side [61]. It does so by aggressively merging DOALL nodes together until no further legal

merging possible. Higher weight DOALL nodes are merged together first. The largest

DOALL node formed by this merging is retained, while the other DOALL nodes are

marked SEQUENTIAL. The algorithm then aggressively merges SEQUENTIAL nodes

until 2 are left, one before the DOALL stage and one after. The DOALL stage is assigned

a replication factor of T − 2, while each of the SEQUENTIAL stages is assigned a repli-

cation factor of 1. The Single DOALL partitioner is simple, quick, and can often extract

good partitions when there are large blocks of code that can execute in parallel.

49

However, when no DOALL stage exists, the single parallel-stage partitioner can pro-

duce worse partitionings than the partitioners used by DSWP. To avoid this problem, the

Iterative DOALL partitioner attempts to balance the IMT parallelism of DOALL stages

with the PMT parallelism of SEQUENTIAL stages. This partitioner aggressively merges

DOALL SCCs just in the Single DOALL partitioner. However, after the largest DOALL

SCC nodes are formed, the partitioner explores the space of possible thread assignments,

potentially extracting a partitioning with several SEQUENTIAL stages, depending on whether

more IMT or PMT parallelism is available.

Step 4: Determine Synchronization

This step is unchanged.

3.3.2 Realizing a Thread Assignment

Algorithm 5 MultiThreadedCodeGeneration

Require: Loop L, (ThreadAssignment A, Replications R, Synchronization S)

1: CreateThreadBlocks(L, A, S)

2: MoveInstructions(A)

3: InsertSynchronization(S, R)

4: CreateControlFlow(L, A, R)

The subsection describes the changes to the MTCG algorithm needed to handle a PS-

DSWP thread assignment. The current PS-DSWP code generation algorithm assumes that

all DOALL stages have the same replication factor R and that at least one SEQUENTIAL

stage exists before and after each DOALL stage. Throughout this subsection, RS denotes

the replication factor of stage S, either 1 for SEQUENTIAL stages or R for DOALL stages,

and rT denotes the replication number of thread T . The code example from Figure 3.7 will

be used to provide examples throughout this subsection, assuming a thread assignment of

{(CDJ, 1), (EFHG, 2)} and naı̈ve synchronization.

50

Step 1: Create Thread Blocks

Basic block creation is essentially unchanged from the base DSWP algorithm. However,

for a DOALL stage, the loop header is required to be relevant for each new CFG so that

PS-DSWP can insert operations that must execute each iteration into it.

Step 2: Move Instructions

For SEQUENTIAL stages, operations are moved to the threads that they were assigned to,

just as in DSWP. For DOALL stages, to avoid code bloat, each thread that is assigned to the

stage will use the same code. To allow the code to distinguish which thread is executing

and perform thread specific actions, each spawned thread takes as an argument a unique

replication number in the range [0, RS) for a stage replicated RS times. SEQUENTIAL

stages have RS = 1 and rT = 0.

Any reduction expansion that occurs in a DOALL stage is expanded into thread-local

copies at this point. For register variables, no change is needed to the iteration’s code.

For memory variables, an array of size RS is created and each thread uses its replication

number rT to index into a separate element of the array. Buffers are placed between each

element to avoid false sharing effects in the cache.

Step 3: Inserting Communication

Queue Instructions

Instruction Arguments Description

set.qbase V Sets the queue base Base for a thread to the given value V.

produce [Q] = V Pushes value V onto the tail of queue Q + Base if it is not full. If the

queue is full, the instruction stalls until room is available.

consume R = [Q] Pops a value off of the head of queue Q + Base if there are values in

the queue and places the value in register R. If the queue is empty, the

instruction stalls until one is available.

Table 3.2: PS-DSWP ISA Extensions

For each iteration, dependences are synchronized among threads is the same way as in

the base DSWP algorithm. However, to enable each thread in a DOALL stage to execute

51

START:

A: mov cur=head;

B: mov sum=0

produce [1]=0

produce [6]=0

mov iter=rT

BB1:

mul qoff=iter,5

add iter=iter,1

mod iter=iter,2

set.qbase qoff

produce [3]=cur

C: br.eq cur, NULL, END

BB2:

D: load item=[cur + offset(item)]

produce [4]=item

BB5:

J: load cur=[cur + offset(next)]

K: goto BB1

END:

consume sum1=[5]

consume sum2=[10]

add sum=sum1,sum2

L: call print, sum

(a) Thread 1

START’:

mul qoff=5,rT

set.qbase qoff

consume sum=[1]

BB1’:

consume cur=[3]

C’: br.eq cur, NULL, END

BB2’:

consume item=[4]

BB3’:

E: br.eq item, NULL, BB1’

BB4’:

F: load t1=[item + offset(data)]

G: add sum=sum,t1

H: load item=[item + offset(next)]

I: jump BB3

END’:

produce [5]=sum

(b) Thread 2

Figure 3.8: Multi-Threaded Code after communication insertion

using the same code, the queues used to achieve this synchronization must be different

per iteration. PS-DSWP conceptually creates a new sequence of queues per iteration to

allow the threads that execute the iteration to synchronize. Each sequence of queues is

referred to as a queue set. All synchronization instructions in each stage refer to queue

numbers relative to the Base of a queue set, allowing PS-DSWP to change queue sets

without changing the synchronization instructions.

In an actual implementation, only a finite number of queue sets will exist, so they must

be reused. However, the parallelization must ensure that at no time is the same queue set

simultaneously being used for synchronization by two different iterations. Each pair of

stages uses a non-overlapping portion of an iteration’s queue set to ensure that each pair

52

of stages never violate this principle. Thus, PS-DSWP must ensure that stages with two or

more threads are not using the same queue set to synchronize two different iterations.

Since PS-DSWP allows only two replication factors to exist, 1 and R, a static allocation

of iterations to threads can be created with R queue sets, assigning each iteration I to queue

set I mod M . Each stage then executes the iteration on thread ((I mod M) mod RS) [61].

If RS = M , then queue set (I mod M) is always executed on the same thread ((I mod

M)modM = (I modM)). If RS = 1, every queue set is also executed on the same thread.

Figure 3.8 shows the implementation of a static allocation of iterations for the parti-

tioning ((CDJ, 1), (EFHG, 2)). Each thread computes the next iteration assigned to it in

the iter variable and then uses that variable to compute the proper queue set. Note that

in the static allocation scheme, DOALL stages do not need to update their queue set each

iteration, as they will always execute uisng the same one.

A dynamic allocation can also be achieved where threads of a DOALL stage dynam-

ically execute iterations instead of having them assigned a priori. In this situation, each

thread in a DOALL stage must receive the iteration it will execute, and use it to calculate

the value of (I mod M). To ensure that the same queue set is not reused by two differ-

ent threads in two different iterations, a queue set must be allocated for each potentially

outstanding iteration in the pipeline. The total number of potentially outstanding iterations

is bounded by the number of iterations that can be buffered between stages, calculated as

queue depth ∗ R ∗ |stages|.

The implementation of a dynamic assignment of iterations requires a change to the

DOALL stage as a method is needed for a DOALL stage to acquire the next iteration to

work on. Since the synchronization mechanism in DSWP assumes a single producer and

a single consumer, it is insufficient for multiple threads to consume from the same queue.

For this, PS-DSWP uses a lock to ensure that only one thread at a time consumes from

the queue that gives the iteration. All other synchronization in the stage is unchanged. To

amortize the overhead of the lock and reduce contention, a thread can consume several

53

iterations for each lock acquisition.

Beyond ensuring that iterations operate in the appropriate queue set, changes are needed

to live-in and live-out synchronization. For SEQUENTIAL stages, this synchronization is

unchanged from the base DSWP algorithm.

Live-ins to a DOALL stage defined both outside the loop and in a prior SEQUENTIAL

stage must be communicated at the loop header of the SEQUENTIAL stage every itera-

tion. Consider a definition of the register that dynamically occurred in iteration I . The

DOALL thread executing I would have the appropriate synchronization and execute cor-

rectly. However, other threads executing later iterations would not receive the value and

would execute incorrectly. By sending the value every iteration, all threads in the DOALL

stage are assured of having the proper value.

Live-outs from a DOALL stage also require that additional information be communi-

cated to the main thread. In particular, to allow the main thread to determine the last writer

of the live-out, a last written iteration timestamp is also sent back to the main thread, which

then compares the timestamps to determine the last thread to write the register. Addition-

ally, min/max reductions communicate the thread-local min/max and iteration timestamp

of the last update so that the main thread can determine the appropriate value. Finally,

accumulator expanded variables similarly communicate their thread-local value, which the

main thread accumulates into the proper value.

Step 4: Create Control Flow

Branches for PS-DSWP are redirected exactly as in the base DSWP algorithm. However,

DOALL stages require that an extra loop exit be introduced to ensure proper termination.

As only a single thread assigned to a DOALL stage is executing an iteration, if that iteration

exits, the other threads assigned to the DOALL stage will not know to exit. The solution is

to introduce a loop exit branch in the loop header before any other operations. The previous

SEQUENTIAL stage produces the value TRUE to that queue each iteration to indicate that

54

it can proceed to execute the iteration. On loop exit, the exiting thread for the DOALL

stages sends the value FALSE to every other thread assigned to the DOALL stage, causing

them to also exit and send their live-outs back to the main thread. Figure 3.9 illustrates the

final code produced after branches have been redirected and the extra DOALL stage exit

inserted.

START:

A: mov cur=head;

B: mov sum=0

produce [1]=0

produce [6]=0

mov iter=rT

BB1:

mul qoff=iter,5

add iter=iter,1

mod iter=iter,2

set.qbase qoff

produce [2]=TRUE

produce [3]=cur

C: br.eq cur, NULL, END

BB2:

D: load item=[cur + offset(item)]

produce [4]=item

BB5:

J: load cur=[cur + offset(next)]

K: goto BB1

END:

consume sum1=[5]

consume sum2=[10]

add sum=sum1,sum2

L: call print, sum

(a) Thread 1

START’:

mul qoff=5,rT

set.qbase qoff

consume sum=[1]

BB1’:

consume exec=[2]

br.eq exec, FALSE, END2

consume cur=[3]

C’: br.eq cur, NULL, END’

BB2’:

consume item=[4]

BB3’:

E: br.eq item, NULL, BB1’

BB4’:

F: load t1=[item + offset(data)]

G: add sum=sum,t1

H: load item=[item + offset(next)]

I: jump BB3’

END’:

add other=1,rT

mod other=other,2

mul qoff_exit=other,4

set.qbase qoff_exit

produce [2]=FALSE

set.qbase qoff

END2:

produce [5]=sum

(b) Thread 2

Figure 3.9: PS-DSWP Multi-Threaded Code after communication insertion

55

3.4 Speculative Parallel-Stage DSWP

Section 2.3.2 discussed how adding speculation can break dependences that inhibit paral-

lelism. Speculative PS-DSWP (SpecPS-DSWP) adds speculation to the PS-DSWP algo-

rithm and is heavily influenced by the Speculative DSWP work by Vachharajani et al [82],

which was built on top of DSWP, not PS-DSWP. By building on top of PS-DSWP, SpecPS-

DSWP can use speculation to remove inter-iteration dependences that prevent the extrac-

tion of data-level parallelism.

3.4.1 Determining a Thread Assignment

Algorithm 6 Partition

Require: Loop L, Threads T
1: PDG = BuildPDG(L)

2: Speculation C = DetermineSpeculation(L, PDG)

3: SPDG = BuildSpeculativePDG(L, C)

4: ThreadAssignment A, Replications R = FormAndAssignSCCs(SPDG, T)

5: C = DetermineNeededSpeculation(A, PDG, C)

6: SPDG = RebuildSpeculativePDG(L, C)

7: A, R = FormAndAssignSCCs(SPDG, T)

8: Versioning V = DetermineMemoryVersioning(A, C)

9: Synchronization S = DetermineSynchronization(A, L)

10: return (A, R, S, V , C)

SpecPS-DSWP removes dependences from the PDG before partitioning in order to

avoid complicating the already difficult problem of partitioning. Since speculation occurs

before partitioning, it can remove dependences that occur in a forward direction, given the

DSWP pipeline. This is unnecessary in SpecPS-DSWP, as the pipelined nature of a DSWP

parallelization means that the only cost of forward synchronization is the overhead of the

extra instructions. To avoid unnecessary misspeculation, after partitioning, only the set of

speculations that remove dependences that flow backward in the pipeline are applied. The

code is repartitioned after the set of needed speculations is computed, both to ensure that

previously unreachable code is assigned to a thread and to give the partitioner the chance

56

list *cur=head;

int temp;

A: while (cur != NULL) {

B: list *item=cur->item;

C: while (item != NULL) {

D: if (item->data < 0) abort();

E: temp = -item->data;

F: item->data = temp;

G: item = item->next;

}

H: cur = cur->next;

}

(a) Sequential C Code

Register Dep.

Control Dep.

Memory Dep.

Intra-Iteration Dep.

Inter-Iteration Dep.

Intra/Inter-Iteration Dep.

(b) Non-Speculative PDG (c) Speculative PDG (d) Speculative DAGSCC

Figure 3.10: SpecPS-DSWP Example Code

57

to better balance the effects of communication among threads. Steps related to forming the

DAGSCC and assigning SCCs to threads are unchanged from the PS-DSWP algorithm and

are combined into a single step.

Step 1: Build PDG

The PDG formed by SpecPS-DSWP is the same as that formed by PS-DSWP except that

false (anti- and output-) memory dependence are not inserted into the PDG. Any backward

false memory dependence will be removed through appropriate memory versioning in the

generated code. Figure 3.10b shows the PDG built for the example code in Figure 3.10a.

Note that even though flow memory dependences exist from F
flow
−→ D and F

flow
−→ E, the

false memory dependences F
anti
−→ D, F

anti
−→ E, and F

output
−→ F have not been included.

Step 2: Selecting Speculation

SpecPS-DSWP currently supports several speculation types. Three of these speculation

types, biased branch, infrequent block, and silent store come from SpecDSWP, while the

remaining two, memory value and loop-carried invariant, are novel to this dissertation. To

avoid overspeculation, each speculation type has a threshold limit, T . For the purposes of

this subsection, H represents the loop header.

Biased Branch Speculation A Biased Branch speculation predicts that a branch B with

targets D1 and D2 does not go to a certain target. For a control flow edge weight

function ω and operation weight function β, if ω(B −→ Di)/β(B) <= TLocalBias,

then the edge B −→ Di is speculated not taken. Unfortunately, SpecDSWP does

not distinquish how often a branch is taken relative to the loop header. This is not

sufficient for branches in inner loops, as they can often be heavily biased and yet still

traverse the unbiased path with high probability per outer loop iteration. Therefore,

in SpecPS-DSWP, a loop-sensitive control flow edge weight function δ is used as a

second filter. For a loop L, if δ(B −→ Di, L)/β(H) <= TLoopBias, then the edge

58

B −→ Di is allowed to be speculated. In practice, the loop threshold is set to the

same percentage as the bias threshold. A threshold of 10% is used for both TLocalBias

and TLoopBias in VELOCITY.

Infrequent Block Speculation An Infrequent Block speculation predicts that a basic block

is not executed. For a given basic block BB and a loop-sensitive basic block weight

function β, if β(BB)/β(H) < TFrequency, then BB is speculated to be unreachable.

A threshold of 1% is used in VELOCITY.

Silent Store Speculation A Silent Store speculation predicts that a value about to be stored

is the same as that already in memory. Silent store speculation relies on a loop-

sensitive value prediction function γ to predict how often the value being stored is the

same as already exists in memory. If γ(S) > TSilentStore then the store is speculated

as silent. A threshold of 1% is used in VELOCITY.

Memory Value Speculation In order to extract data-level parallelism, SpecPS-DSWP re-

quires a way to speculate inter-iteration memory flow dependences. Since SpecDSWP

avoids the use of hardware to detect misspeculation, memory value speculation is

used instead of memory alias speculation to break memory flow dependences. A

Memory Value speculation predicts that a load L will not be feed by a store S. The

speculation can predict that the store feeds the load only during an iteration (inter-

iteration speculation), except during an iteration (intra-iteration speculation), or ever

(both intra- and inter-iteration speculation). Memory value speculation relies on a

loop sensitive alias prediction function αINTRA to determine the probability of alias-

ing intra-iteration and αINTER to predict the probability of aliasing inter-iteration. If

αINTRA(L) <= TIntraAlias, then the intra-iteration portion is speculated not to exist.

If αINTER(L) <= TInterAlias, then the inter-iteration portion is speculated not to ex-

ist. A threshold of 10% for TInterAlias and 0% for TIntraAlias are used in VELOCITY.

The reason for the lack of intra-iteration memory value speculation will be explained

59

in Section 5.2.2.

Loop-Carried Invariant Speculation SpecPS-DSWP also introduce a new type of spec-

ulation, Loop-Carried Invariant. A loop-carried invariant speculation predicts that if

a load L obtains a value from outside the current iteration, then the value will be the

same as the one that existed in memory at the beginning of the last iterations. Loop-

carried invariant speculation is useful for removing memory flow dependences to

loads of global data structures that can change during an iteration, but are eventually

reset to the value that they had at the beginning of the iteration. Loop-carried invari-

ant speculation relies on a loop sensitive invariant prediction function λ to determine

the probability of a load getting the correct value from memory T iterations ago. If

λ(L) <= TV ariance, then L is speculated as loop-carried invariant. A threshold of

10% is use in VELOCITY.

Since memory value speculation and loop-carried invariant speculation can remove the

same dependences, but require different transformations, they cannot both be applied at the

same time. As the dependences removed by loop-carried invariant speculation subsume

those removed by memory value speculation, when choosing speculation, loop-carried in-

variant speculation is determined before memory alias speculation, thus avoiding the prob-

lem.

Statically determining the prediction functions has been attempted for a loop-insensitive

branch predictor [88]. In general, though, the compiler cannot easily predict the dynamic

effects that these functions seek to capture. Thus, profiling is used to gather the relevant

data for each function. The profiling infrastructure is described in Section 3.4.3.

For the example in Figure 3.10, biased branch speculation is applied to the loop exit

branch D, and memory value speculation is applied to the F
flow
−→ D and F

flow
−→ E memory

dependences. The speculative PDG and speculative DAGSCC formed by applying these

speculations to the non-speculative PDG are shown in Figure 3.10c and Figure 3.10d re-

spectively.

60

Step 3: Build Speculative PDG

The speculative PDG is built using the same process as step 1, except that a Speculative

CFG is used as the basis rather than the original, non-speculative CFG. The Speculative

CFG is formed by removing all control edges that have been speculated not taken by Biased

Branch and Infrequent Block speculation. After the Speculative PDG is formed from the

Speculative CFG, dependences are removed on a per speculation basis as follows:

Silent Store Speculation If a store S is speculated as silent, then all outgoing flow mem-

ory arcs from S are removed from the Speculative PDG.

Memory Value Speculation If a memory value speculation predicts that the intra-iteration

dependence will not manifest, then for an EITHER memory flow dependence, the

loop-carriedness is speculated to INTER, while for a INTRA memory flow depen-

dence, the dependence is removed from the Speculative PDG. If a memory value

speculation predicts that the inter-iteration dependence will not manifest, then for an

EITHER memory flow dependence, the loop-carriedness is speculated to INTRA,

while for a INTER memory flow dependence, the dependence is removed from the

Speculative PDG.

Loop-Carried Invariant Speculation If a load L is speculated as loop-carried invariant,

then all INTER memory flow dependences with destination L are removed from the

Speculative PDG. All EITHER memory flow dependences with destination L are

marked INTRA.

Step 4: Form and Assign SCCs

The DAGSCC is formed from the Speculative PDG and partitioned just as in PS-DSWP.

61

Step 5: Determine Needed Speculation

Once the Speculative PDG and Speculative CFG have been formed, the partitioning process

proceeds as normal to produce a thread assignment. For a given thread assignment, specu-

lation that only breaks forward dependences can be removed to reduce the misspeculation

rate.

Choosing the amount of speculation needed to produce a good parallelization is a hard

problem. Most existing techniques overspeculate to ensure that parallelism exists, using

feedback directed compilation to prune unprofitable parallelizations [22]. To give the par-

titioner as much freedom as possible, SpecPS-DSWP also speculates more dependences

than may be necessary to produce good parallelism. However, unlike speculative IMT and

CMT techniques, SpecPS-DSWP can undo any speculations that does not introduce back-

wards dependences. The details of how to unspeculate dependences are beyond the scope

of this dissertation, see Vachharajni et al [82] for more detail. The main point is that the

ability to unspeculate dependences allows SpecPS-DSWP to avoid unnecessary misspecu-

lation on an otherwise forward dependence. Additionally, in the case where a dependence

can be removed by multiple types of speculation, SpecPS-DSWP can choose to keep only

one speculation, again avoiding unnecessary misspeculation, if, for example, an alias spec-

ulation can be used instead of a biased branch speculation.

For Figure 3.10, if E and F are placed in the same SEQUENTIAL stage, then the

memory speculation that removed the F
flow
−→ E dependence can be unspeculated, as it

is no longer needed. If E and F are placed in the same DOALL stage, then only the

INTER portion of the dependence needs to be speculated, while the INTRA portion can be

unspeculated.

Step 6: Rebuild Speculative PDG

After dependences are unspeculated, particularly biased branch and infrequent block spec-

ulations, previously unreachable code may be made reachable and will need to be integrated

62

into the partition. Additionally, by unspeculating forward dependences, new inter-thread

communication may be inserted. To handle this, after unspeculation, the Speculative PDG

is reformed exactly as in Step 3, but with only the remaining needed speculation.

Step 7: Form and Assign SCCs

The same partitioner is used to repartition the code using the Speculative PDG and its

DAGSCC recreated by Step 6.

Step 8: Determine Memory Versions

Once a thread assignment has been established and the set of speculations is fixed, SpecPS-

DSWP must determine the memory version that each memory operation and external func-

tion call will execute in. At the outermost loop level, memory versions are used to manage

speculative state so that rollback can occur. Inside the loop, memory versions are used to

break false memory dependences. Additionally, because the SpecPS-DSWP code genera-

tor relies on software to detect misspeculation, memory versions are used to ensure that any

unanticipated, new memory flow dependences that occur in an iteration that misspeculates

do not prevent misspeculation from being detected. The details of determining memory

versions are beyond the scope of this dissertation and can be found in Vachharajani et

al[82].

Step 9: Determine Synchronization

This step is unchanged.

3.4.2 Realizing a Thread Assignment

A SpecPS-DSWP thread assignment is realized by first reifying the speculation and then

applying the PS-DSWP algorithm to the resulting code. After PS-DSWP multi-threaded

63

Algorithm 7 Speculative MultiThreadedCodeGeneration

Require: Loop L, (ThreadAssignment A, Replication R, Synchronization S, Versioning

V , Speculation C)

1: CopyCodeForRecovery(L)

2: ApplySpeculation(L, C)

3: Threads T = MultiThreadedCodeGeneration(L, A, S)

4: ApplyMemoryVersioning(V)

5: FinishRecoveryCode(L, T)

code generation is done, checkpoint and recovery code are inserted into each thread and

the Commit Thread.

Step 1: Copy Code For Recovery

Because SpecPS-DSWP can speculate intra-iteration dependences, it must have an unalter-

ated copy of the loop body to use upon misspeculation. In this step, the commit thread is

created, and a copy of the loop body is placed in it.

Step 2: Apply Speculation

list *cur=head;

int temp;

A: while (cur != NULL) {

B: list *item=cur->item;

C: while (item != NULL) {

D: if (item->data < 0) abort();

E: temp = -item->data;

F: item->data = temp;

G: item = item->next;

}

H: cur = cur->next;

}

(a) Sequential C Code

list *cur=head;

int temp;

(1) while (cur != NULL) {

(1) list *item=cur->item;

(2) while (item != NULL) {

(2) temp2 = item->data;

(3) if (item->data!=temp2)

MISSPEC;

(2) if (temp2 < 0) MISSPEC;

(2) temp3 = item->data;

(3) if (item->data!=temp3)

MISSPEC;

(2) temp = -temp3;

(2) item->data = temp;

(2) item = item->next;

}

(1) cur = cur->next;

}

(b) Single-Threaded Code with Speculation

(Thread Assignment in parenthesis)

Figure 3.11: Single Threaded Speculation

64

Each type of speculation is applied to the code as described below:

Biased Branch Speculation To realize a biased branch speculation, the compiler inserts

a new basic block on each control flow edge from the branch to each speculated

target. The block signals misspeculation and then waits to be redirected to recovery

code, either by consuming from any empty queue or other infinite length action. To

facilitate accurate analysis by the compiler, the block then branches to one of the

non-speculated targets if one exists, otherwise it is marked as an exit. This keeps the

branch from introducing more region exits or control dependences that would cause

conservative compiler analysis.

Infrequent Block Speculation To realize an infrequent block speculation, the compiler

has two options. It can replace the block with a misspeculation signal, followed by

the original fall through branch. Unfortunately, this retains control dependences in

non-speculated code. To avoid this, the infrequent block speculation can be mapped

to a set of biased branch speculations, one for each incoming control flow edge.

Silent Store Speculation To realize a silent store speculation, the compiler inserts a load

of the same memory and a branch to compare the loaded value with the one about to

be stored. If they are equal, the branch jumps around the store, otherwise it signals

misspeculation in the same way biased branch speculation does.

Memory Value Speculation To realize a memory value speculation from a store S to a

load L, the compiler creates a copy of the load L′, and updates the memory analysis

to remove the dependence from S to L′. The compiler then inserts code to compare

the value loaded from L′ to that loaded by L. If the values differ, the code branches

to a block that indicates misspeculation in the same way biased branch speculation

does.

Loop-Carried Invariant Speculation To realize a loop-carried invariant speculation, the

compiler employs the same methodology as Memory Value speculation. That is, the

65

copy of the load is made and all incoming memory flow dependences are removed.

A compare of the speculative load with the original load is used to determine if

misspeculation occurred.

To signify to the hardware the point at which a value should be read from commit-

ted state rather than traverse the memory hierarchy, two new instructions are added.

A set.lvp instruction is used at the beginning of each iteration to indicate where a

load.invariant should stop traversing the memory version hierarchy and proceed

directly to committed memory.

Figure 3.11 shows the result of applying biased branch speculation to branch D, and

memory value speculation to F
flow
−→ D and F

flow
−→ E. MISSPEC represents a general code

sequence that will send misspeculation to the commit thread and then infinite loop until

resteered by the commit thread.

Steps 3: Multi-Threaded Code Generation

Once speculation has been realized in the single-threaded code, the PS-DSWP code gener-

ation algorithm is applied to the loop.

Step 4: Apply Memory Versioning

SpecPS-DSWP relies upon a version memory system with hierarchical memory versions.

A parent MTX is a virtual container for many subTX memory versions which are ordered

from oldest to youngest. A subTX can contain at most one MTX or be used to execute a

sequence of memory operations. At any point in time each thread is executing in a spe-

cific memory version, denoted (MTX, subTX). The memory version (0, 0) is special and

represents nonspeculative memory. Stores are modified to store into the current memory

version. Loads are modified to load from the closest memory version older than or equal

to the current memory version. Thus, loads can potentially traverse all direct and indirect

66

Queue Instructions

Instruction Arguments Description

set.qbase V Sets the queue base Base for a thread to the given value V.

produce [Q] = V Pushes value V onto the tail of queue Q + Base if it is not full. If

the queue is full, the instruction stalls until room is available.

consume R = [Q] Pops a value off of the head of queue Q + Base if there are values

in the queue and places the value in register R. If the queue is empty,

the instruction stalls until one is available.

consume.poll P,R = [Q] For queue Q + Base, if there is a value in the queue, it is popped off

the queue and placed in register R and P is set to 1. If the queue is

empty, the instruction writes 0 into P and the value of R is undefined.

This instruction does not stall if the queue is empty.

queue.flush Q Flushes all values in the queue Q + Base, leaving it empty.

resteer Q, A Asynchronously resteer the thread that produced into queue Q +
Base to address A.

Version Memory Instructions

allocate (M, S) Returns an unused MTX ID setting its parent version to memory

version (M, S).

enter (M, S) Enter the specified MTX M and subTX S.

commit stx (M, S) Commit the subTX S into the parent MTX M.

commit mtx M Commit the MTX M into the parent (MTX, subTX) that it was cre-

ated under. If the parent memory version is (0, 0) then commit into

nonspeculative state. S emphmust be the oldest child of M.

rollback M All the stores from the specified MTX M and any subordinate sub-

TXs and MTXs will be discarded, and the MTX is deallocated.

Threads must issue an enter to enter a legitimate MTX or com-

mitted state.

set.lvp (M, S) Sets the load variant point register to the specified MTX M and

subTX S.

load.variant R = [Addr] Performs a load that respects the load variant point register, relative

to the current memory version.

Table 3.3: SpecPS-DSWP ISA Extensions

parents, older siblings, and older siblings children to find the oldest stored value. An effi-

cient implementation of version memory is beyond the scope of this dissertation, but as in

hardware transactional memory system, versioned memory can use extra bits in the caches

to hold version related information [82].

For each memory instruction and external function call, a memory version enter in-

struction is inserted ahead of it. Additionally, for any loop body with instructions in more

than 1 memory version, a new hierarchical memory transaction (MTX) is allocated. Its

parent is the last executing memory transaction and when it commits it will commit its

state into that transaction. The purpose of these hierarchical transactions is to allow all of

67

list *cur=head, item;

int mtx, stx;

mtx = allocate(0, 0);

stx = 0;

produce(4, mtx);

produce(5, mtx);

produce(6, cur);

produce(7, cur);

int iter = rT

while (cur != NULL) {

int qset = iter % 2;

int qoff = qset * 18;

set_qbase(qoff)

produce(17, TRUE);

produce_reg_chkpt();

enter(mtx, stx);

iter++;

item = cur->item;

produce(8, item);

produce(9, item);

cur = cur->next;

produce(10, cur);

produce(11, cur);

stx += 1;

produce(1, OK);

}

produce(1, EXIT);

(a) Thread 1

int mtx = consume(4)

int stx = 0;

set_qbase(rT * 18);

list *cur = consume(6);

while (cur != NULL) {

int exit = consume(17);

if (exit == TRUE) {

for (int i=0; i<R; i++) {

set_qbase(i * 18);

produce(17, FALSE);

}

break;

}

produce_reg_chkpt();

enter(mtx, stx);

mtxsave = mtx;

stxsave = stx;

mtx = allocate(mtx, stx);

stx = 0;

produce(12, mtx);

list *item = consume(8);

while (item != NULL) {

enter(mtx, stx);

int temp2 = item->data;

produce(13, temp2);

if (temp2 < 0) {

produce(2, MISSPEC);

wait();

}

int temp3 = item->data;

produce(14, temp3);

int temp = -temp3;

enter(mtx, stx+1);

item->data = temp;

item = item->next;

produce(15, item);

stx += 2;

produce(16, MEM_SYNC);

}

cur = consume(10);

mtx = mtxsave;

stx = stxsave;

stx += 1;

produce(2, OK);

}

produce(2, EXIT);

(b) Thread 2

int mtx = consume(5)

int stx = 0;

int iter = rT

list *cur = consume(7);

while (cur != NULL) {

int qset = iter % 2;

int qoff = qset * 18;

set_qbase(qoff)

produce_reg_chkpt();

enter(mtx, stx);

iter++;

mtxsave = mtx;

stxsave = stx;

mtx = consume(12);

stx = 0;

list *item = consume(9);

while (item != NULL) {

enter(mtx, stx);

int temp2 = consume(13);

if (item->data != temp2) {

produce(3, MISSPEC);

wait();

}

int temp2 = consume(14);

if (item->data != temp2) {

produce(3, MISSPEC);

wait();

}

item = consume(15);

int unused = consume(16);

commit_stx(mtx, stx);

commit_stx(mtx, stx+1);

stx += 2;

}

commit_mtx(mtx);

cur = consume(11);

mtx = mtxsave;

stx = stxsave;

stx += 1;

produce(3, OK);

}

produce(3, EXIT);

(c) Thread 3

Figure 3.12: SpecPS-DSWP Parallelized Code without Misspeculation Recovery

68

the memory versions inside the loop (subTXs) to be summarized by a single MTX, so that

all version numbers assigned to operations can be statically determined. If hierarchy were

not used, then the unbounded number of memory versions that the loop would use would

force the compiler to communicate memory versions between threads, potentially creating

backwards dependences [82].

Figure 3.12 shows the memory version code inserted for the code from Figure 3.11

after the PS-DSWP code generation algorithm has been applied. In the interests of space

the code is shown in high-level C-like code.

Step 5: Finish Recovery Code

while (true) {

move_to_next_memory_version();

send_checkpoint(commit_thread);

status = execute_loop_iteration();

produce(commit_thread, status);

if (status == EXIT)

break;

else if (status == MISSPEC)

wait_for_resteer();

else if (status == OK)

continue;

RECOVERY:

produce_resteer_ack(commit_thread);

flush_queues();

regs = receive_checkpoint(commit_thread);

restore_registers(regs);

}

(a) Worker Thread

do {

regs = receive_checkpoints(threads);

status = poll_worker_statuses(threads);

if (status == MISSPEC) {

resteer_threads(threads);

consume_resteer_acks(threads);

rollback_memory();

regs = execute_loop_iteration(regs);

send_checkpoints(threads, regs);

} else if (status == OK || status == EXIT)

commit_memory();

move_to_next_memory_version();

} while (status != EXIT);

(b) Commit Thread

Figure 3.13: Interaction of Parallel Code and Commit Thread

Once the code for each thread is finished, the only remaining step is to create code

necessary for recovery from misspeculation. Each worker thread will have the same basic

layout, shown in Figure 3.13a [82]. Essentially, at the beginning of an iteration, a memory

checkpoint is created by moving to the next memory version and a register checkpoint is

sent to the commit thread. The thread then executes the iteration normally. In the event of

misspeculation, the thread waits for the commit thread to resteer it to recovery code.

69

The commit thread, shown in Figure 3.13b never executes speculatively. After receiving

the register checkpoints at the beginning of each iteration, it waits for status updates from

the threads executing the current iteration. Status messages are sent using the queue system.

Since only one thread may detect misspeculation while others infinite loop, the Commit

Thread is not guaranteed to receive status message from all threads. The consume.poll

instruction is used by the commit thread to repeatedly poll the status queues for the threads

until all of them have sent an OK/EXIT status or any one has sent a MISSPEC status.

If a thread signals misspeculation the commit thread uses an asynchronous resteer in-

struction to direct each thread to statically created recovery code. The system returns to a

known good state by:

1. Discarding speculative writes by rolling back the version memory system via the

rollback instruction.

2. Flushing the queue system, via a queue.flush operation for each queue.

3. Restoring registers from an iteration checkpoint.

If misspeculation is not detected in an iteration, the commit thread commits the specu-

lative state to non-speculative memory via a sequence of commit instructions [82].

3.4.3 Loop-Aware Profiling

The ability to speculate a dependence requires the ability to predict how often a property of

the dependence occurs. For example, if a load always reads the same value, then the regis-

ter it defines can be speculated to always have that value. The general solution to creating

predictors is to profile the application, using the results of profiling to guide prediction func-

tions. While these profiles are useful in traditional optimizations, to be useful in loop paral-

lelization it is necessary that they be able to distinguish how often a dependence manifests

per loop iteration or whether a dependence is intra-iteration versus inter-iteration [22, 89].

70

VELOCITY relies on several profilers to create predictors for each type of speculation. Un-

like existing approaches that rely on path-profiles to obtain loop-sensitive results for alias

profiling [89], the VELOCITY compiler uses a novel methodology to maintain and collect

only loop-sensitive profile information needed for speculation.

To make the profilers loop-sensitive, the profiling framework keeps track of the set

of loops entered into in a stack so that it can use the loop stack to create loop-sensitive

profiles. On entry to a loop, its context is pushed onto the stack, while on exit from the

loop the top of the stack is popped off and discarded. In the current implementation, loops

inside recursive functions are not profiled. Thus, each loop exists at most once in the

loop context stack. Since DSWP cannot currently be applied to loops inside recursive

functions, this limitation does not adversely affect VELOCITY. To efficiently test whether

the profile event has occurred during a loop’s current iteration, a timestamp is maintained

by the profiling system and for each item in the loop stack. At every loop backedge, the

current timestamp counter is incremented by one and the timestamp at the top of the loop

stack is replaced with the current timestamp. Initially, the loop stack contains a pseudo-loop

that represent code that does not execute in any loop and a timestamp of 0.

SpecPS-DSWP relies on several profilers detailed below to give loop-sensitive results.

Branch Profile

A branch or edge profile gives the absolute number of times each control flow edge is tra-

versed. In an insensitive profiling environment, branches are instrumented to determine

their target, producing a set of (branch, target, count) tuples that guide many optimiza-

tions. In a loop-sensitive branch profile, the count for the (branch, target, count) tuple is

incremented for each loop in the loop stack, if it has not already been incremented during

for that loop’s current iteration.

When a branch executes, the loop stack is traversed from top to bottom checking to see

if the branch edge has been taken for the loop’s current iteration. This is accomplished by

71

maintaining a profile event (e.g. branch edge taken) to timestamp map for each loop that

indicates the last iteration the profile event was incremented. If the last timestamp is not

equal to the current timestamp, then the branch edge counter is incremented. This traversal

can exit on the first timestamp that is equal to the current timestamp, as it is guaranteed that

all outer containing loops lower in the stack also have the same timestamp. The final result

of the profiler is a set of (loop, branch, target, count) tuples. These tuples and maps can be

efficiently implemented using arrays by statically assigning unique, consecutive identifiers

to loops and (branch, target) pairs.

Silent Store Value Profile

A Slient Store Value Profile indicates the number of times that a store is silent [40]. That

is, the number of times the value being stored equals the value already in memory. It is

obtained by taking the value of each stored register value just before it is written to memory

and comparing it to the value in memory at the address being stored to. If they are equal,

the value profile increments an areEqual counter for the store, otherwise, it increments an

areDifferent counter.

To make the store value profile loop sensitive, essentially the same actions are per-

formed as in the branch profiling infrastructure. Instead of keeping track of a (branch, target)

count, the store value profile keeps track of (areEqual, areDifferent) counts. Addi-

tionally, two (loop, store) −→ Timestamp maps are used to ensure that areEqual and

areDifferent are incremented once per iteration. The final result of the profiler is a set of

(loop, store, areEqual, areDifferent) tuples. These tuples can be efficiently represented

with arrays by statically assigning unique consecutive identifiers to loops and stores.

Memory Alias Profile

A Memory Alias Profile indicates the number of times that a (store, load) memory flow

dependence manifests itself. Since a store or load may write or read multiple bytes, a

72

particular load may increment several (store, load) pairs, though this is rare in practice.

The profile is obtained by keeping a map from each address to the last store to write the

address. A store instruction updates the map entries for the addresses it write, while a load

instruction reads the set of last stores for addresses it reads. The load then increments the

set of unique (store, load) tuples.

To make the alias profile loop sensitive, the loop timestamp infrastructure from the

branch profiling is reused. However, besides keeping track of the last iteration’s timestamp,

the loop stack also keep’s track of the loop’s invocation timestamp. This will be used to

determine if an alias dependence is intra-iteration or inter-iteration.

The address to store map is changed to an address to (store, timestamp) map. A

store instruction updates the map with itself and the current timestamp. On a load, the

set of unique (store, timestamp) tuples is read out of the accessed addresses. For each

(store, timestamp) pair, the loop stack is traversed from top to bottom until the store’s

timestamp is greater than the loop’s invocation timestamp. This is the first loop which

contains both the store and the load instructions and is the loop around which the de-

pendence is either intra-iteration or inter-iteration. This is determined by comparing the

store’s timestamp with the loop’s current iteration timestamp. If they are equal, the de-

pendence is intra-iteration and the count for the (loop, store, load, INTRA) tuple is in-

cremented. A (loop, store, load) −→ Timestamp map is used to ensure this increment

occurs only once per iteration. Otherwise, the dependence is inter-iteration, represented

as (loop, store, load, INTER), which is also incremented if it has not already been incre-

mented this iteration.

The final result of the profiler is a set of (loop, store, load, INTRA|INTER, count)

tuples. These tuples can be efficiently represented with arrays by statically assigning unique

consecutive identifiers to loops, stores, and loads. In practice, the map from address to

(store, timestamp) can represented as a Hash Map of 4Kb pages, where each page ele-

ment is a 64-bit (store, timestamp) tuple with a 20-bit store identifier and 44-bit times-

73

tamp counter.

To determine the set of intra-iteration alias dependences, the compiler must consider

intra-iteration alias dependences of the loop itself, as well as both the intra- and inter-

iteration dependences of all loops contained, either directly or indirectly, by the loop.

Loop-Invariant Value Profile

A Loop-Invariant Value Profile is a purely loop sensitive profile. The purpose of the profile

is determine how often a load retrieves a value from memory that, if it is inter-iteration, is

the same as the previous iteration(s). If the load is feed by a store in the current iteration

of the loop that first contains both instructions, it is not counted. The profiler is essen-

tially the same as the alias profiler, except that the loop stack is modified to keep around

a loop specific version of memory (an address to value map) that corresponds to the pre-

vious iteration’s memory. On a load instruction feed by a store at least 1 iteration distant,

the previous iteration’s memory value for the address is compared to the current value in

memory. If they differ, the areDfiferent value is incremented, otherwise the areEqual

value is incremented.

Maintaining a separate copy of memory for each loop in the program is prohibitively

expensive, thus only loops that account for more than 30% of the program’s runtime and

that are at most 4 levels deep in the loop hierarchy are profiled for loop-invariance.

The final result of the profiler is a set of (loop, load, areEqual, areDifferent) tuples.

These tuples can be efficiently represented with arrays by statically assigning unique con-

secutive identifiers to loops and loads. To determine if a loop is invariant with respect to a

loop, the compiler must consider the invariance of the load in the loop itself, as well as in

all loops contained, either directly or indirectly, by the loop.

74

3.5 Interprocedural Speculative Parallel-Stage DSWP

Section 2.4 discussed how adding interprocedural scope was beneficial to the extraction

of parallelism. Interprocedural SpecPS-DSWP (iSpecPS-DSWP) is a novel technique that

adds both interprocedural analysis and optimization scope to the SpecPS-DSWP algorithm,

allowing it to optimize larger loops than existing parallelization techniques.

3.5.1 Determining a Thread Assignment

No additional steps are needed for iSpecPS-DSWP, however several existing steps change

to become aware of the interprocedural nature.

Steps 1, 3, & 6: Build PDG

To facilitate interprocedural scope, the PDG for not just the local loop, but any reachable

procedures must be formed and connected. The algorithm in this dissertation forms an

Interprocedural PDG (iPDG), a derivative of the System Dependence Graph (SDG) [35,

66], an interprocedural PDG representation originally used for program slicing. As in

the SDG, the iPDG contains all local dependences among operations in the loop and any

procedures called directly or indirectly from operations in the loop.

To represent interprocedural dependences, the SDG uses actual parameters at the call

site and formal parameters at the callee’s entrance and exit. Call sites are expanded so

that actual in parameters connect to formal in parameters and formal out parameters con-

nect to actual out parameters. To handle memory data dependences, references to memory

variables that are modified in the procedure or its descendants appear as separate formal

and actual arguments. To handle control dependences, a single call dependence is inserted

between the call and the entry node of the called procedure. The SDG forces all interpro-

cedural dependences to occur among these formal/actual pairings so that it can be used for

efficient slicing through the addition of transitive dependence edges. Transitive dependence

75

void main() {

list *cur=head;

A: while (cur != NULL) {

B: list *item=cur->item;

C: work(item);

D: cur = cur->next;

}

}

E: void work(list *item) {

F: while (item != NULL) {

G: if (item->data < 0) abort();

H: int temp = -item->data;

I: item->data = temp;

J: item = item->next;

}

}

(a) Sequential C Code

Perameter/Register Dep.

Call/Control Dep.

Memory Dep.

Intra-Iteration Dep.

Inter-Iteration Dep.

Intra/Inter-Iteration Dep.

(b) Non-Speculative PDG (c) Speculative PDG (d) Speculative DAGSCC

Figure 3.14: iSpecPS-DSWP Example Code

76

edges connect actual outs with only the actual ins that they are transitively dependent upon.

They are used by slicing algorithms to perform an accurate interprocedural slice using just

and up and down pass over the SDG, rather than iterating to convergence [35].

The iPDG uses the same formal to actual relation as the SDG to represent actual param-

eter dependences between call site and callee. In addition to adding the call dependence

from the call site to the procedure’s entry, the iPDG adds the call dependence from the

call site to every operation in the procedure. This is required so that later phases of the

DSWP algorithm can properly replicate the branches and calls so that each operation in a

thread can be executed in the correct condition of execution. Finally, DSWP does not use

transitive dependence edges and so does need them in the iPDG. Because of this, the iPDG

does not need to force memory dependences to indirect through pseudo formal/actual pairs,

instead allowing interprocedural memory dependences to connect directly. In particular,

memory dependences are calculated based on the separate results on an interprocedural

context-sensitive pointer analysis [14, 53].

Determining the loop-carriedness of each edge in the iPDG occurs as follows:

Register Dependence If the register dependence is in the DSWPed loop, then its loop-

carriedness is computed as in Step 1 of Section 3.3.1. Otherwise, it occurs in a called

procedure, and is marked as INTRA.

Parameter Dependence A parameter dependence is always marked as INTRA, since it

cannot be live around the loop backedge.

Control Dependence If the control dependence is in the DSWPed loop, then its loop-

carriedness is computed as in Step 1 of Section 3.3.1. Otherwise, it occurs in a called

procedure, and is marked INTRA.

Call Dependence Like a parameter dependence, a call dependence cannot involve the loop

backedge, so it is marked INTRA.

77

Memory Dependence The loop-carriedness of a memory dependence is computed as in

Step 1 of Section 3.3.1.

Figure 3.14 show the non-speculative and speculative PDG’s for the same code as in

Figure 3.10 except that the inner loop is now inside a function, requiring an interprocedural

scope to optimize.

Step 9: Determine Synchronization

First, the new types of dependences arcs must be synchronized properly. Parameter de-

pendences are treated just like register dependence for the purposes of synchronization.

Similarly, call dependences are treated just like control dependences for the purposes of

synchronization. In particular, just as all indirect control dependences become cross-thread

dependences, so do all indirect call dependences. This ensures that all necessary control

flow, both branches and calls, exists to allow for the correct condition of execution.

Ideally, communication could be optimized across the merged control flow graphs of

the reachable procedures, also called the supergraph [52]. Unfortunately, the algorithms

used to optimize communication are on the order of n3 [54], and the supergraph usually

contains tens of thousands of nodes. To avoid excessive compile times, each procedure is

optimized separately. That is, only the dependences that cross threads local to a procedure

are optimized together. In practice, this means that only register and control dependences

are optimized, as most memory flow arcs are interprocedural.

3.5.2 Realizing the Thread Assignment

A iSpecPS-DSWP thread assignment is realized by first reifying the speculation as in

SpecPS-DSWP and then applying the multi-threaded code generation algorithm locally

to each procedure. After PS-DSWP multi-threaded code generation is done, the SpecPS-

DSWP commit thread is created.

78

Figure 3.15 and 3.17 shows the results of applying iSpecPS-DSWP using essentially

the same thread assignment and speculation as used in Section 3.4.

Step 1: Create Recovery Code

To allow for proper execution of an iteration that misspeculates, all code in the loop and

reachable procedures is cloned. Procedure calls inside the cloned region are redirected

to cloned copies. This ensures that all code that a recovery iteration can execute remains

intact.

Step 2: Apply Speculation

void main() {

list *cur=head;

A: while (cur != NULL) {

B: list *item=cur->item;

C: work(item);

D: cur = cur->next;

}

}

E: void work(list *item) {

F: while (item != NULL) {

G: if (item->data < 0) abort();

H: int temp = -item->data;

I: item->data = temp;

J: item = item->next;

}

}

(a) Sequential C Code

void main() }

list *cur=head;

(1) while (cur != NULL) {

(1) list *item=cur->item;

(2) work(item);

(1) cur = cur->next;

}

}

(2) void work(list *item) {

(2) while (item != NULL) {

(2) temp2 = item->data;

(3) if (item->data!=temp2)

MISSPEC;

(2) if (temp2 < 0) MISSPEC;

(2) temp3 = item->data;

(3) if (item->data!=temp3)

MISSPEC;

(2) temp = -temp3;

(2) item->data = temp;

(2) item = item->next;

}

}

(b) Single-Threaded Code with Speculation

(Thread Assignment in parenthesis)

Figure 3.15: Single Threaded Speculation

All speculation requires only local changes to the IR, so this step is unchanged from

SpecPS-DSWP. Figure 3.15 shows the results of applying speculation to the unmodified

79

code from Figure 3.14.

Step 3: Multi-Threaded Code Generation

The first step of code generation is to create thread specific procedures for each parallelized

procedure. Multi-Threaded Code Generation then proceeds in turn on each procedure and

the DSWPed loop. For each procedure and the DSWPed loop, the local CFG is created just

as in Step 1 of Section 3.3.2. For the DSWPed loop, the CFG is created for it exactly as

in Step 1 of Section 3.3.2. For the procedures, the START and END blocks correspond to

procedure entry and exit respectively. Once the CFGs are created, the instructions in the

procedure are moved to the cloned basic blocks.

Synchronization is then inserted for the synchronization points that occur locally in

each procedure or the DSWPed loop. For register, control, and memory dependences this

is handled exactly as in Step 3 of Section 3.3.2. Parameter dependences are communicated

in the same way that register dependences are. Call dependences are handled similarly to

control dependences, in that they are cloned into the destination of the dependence.

Finally, control flow edges are redirected, just as in Step 4 of Section 3.3.2. However,

calls to procedures in the parallelized region must also be redirected. In particular, the target

of a non-external call is redirected to the thread-specific version of that procedure. iSpecPS-

DSWP ensures that every procedure exists in each thread, even if it empty, relying on a

subsequent pass of inlining to remove empty procedures. Additionally, a thread specific

procedure call may not pass all the parameters that the original did. The compiler can

set the unused parameters to dummy values or, more optimally, collapse the remaining

parameters by removing the unused ones as part of redirecting the call.

One complication to the DSWP MTCG alogorithm arises when the original sequential

code of a procedure uses a local stack variable and its operations are assigned to multiple

threads. This segments the live range of the local variable to span multiple threads. If the

memory continues to be allocated on the local stack of the first thread, it would need to

80

void f(list *item) {

int flag = false;

g(item, &flag);

h(item, &flag);

}

(a) Sequential Code

void f1(list *item) {

int *flagptr = malloc(4);

produce(1, item);

produce(2, flagptr);

g(item, flag);

produce(3, SYNCH);

}

(b) Thread 1

void f2() {

list *item = consume(1);

int *flagptr = consume(2);

h(item, flagptr);

consume(3);

free(flagptr);

}

(c) Thread 2

Figure 3.16: Stack Code Example

wait for later threads to communicate to it that they are done using the memory to avoid

later threads using memory that has been deallocated by the first thread. This introduces

an illegal backward communication into the DSWP pipeline. The alternative of having

the last thread allocate the memory on its stack avoids the problem of backwards depen-

dences, but encounters the same problem upon creating the memory, as the value of the

local memory must be communicated backwards to prior threads before they can reference

the segment. iSpecPS-DSWP solves this problem by changing stack allocated variables in

the local variable segment that are referenced across multiple threads into heap-allocated

variables. The first thread to use the segment will create a heap allocated memory location

(via a thread-safe call to malloc) whose value can be communicated to later threads. The

last thread to use the segment will destroy the heap allocated memory (via a thread-safe

call to free) after all prior threads have finished the function and send a token to the last

thread indicating that they will no longer access the memory.

Figure 3.16 illustrates a simple example for a function f. After partitioning, the flag

variable is split across multiple threads. To ensure that both threads can properly access it,

it is first malloced in Thread 1 and its address sent to Thread 2. When Thread 1 finishes

the function, it sends a synchronization token to Thread 2 to indicate that it is no longer

using the memory, allowing Thread 2 to free it.

81

Queue Instructions

Instruction Arguments Description

set.qbase V Sets the queue base Base for a thread to the given value V.

produce [Q] = V Pushes value V onto the tail of queue Q + Base if it is not full. If

the queue is full, the instruction stalls until room is available.

consume R = [Q] Pops a value off of the head of queue Q + Base if there are values

in the queue and places the value in register R. If the queue is empty,

the instruction stalls until one is available.

consume.poll P,R = [Q] For queue Q+Base, if there are is a value in the queue, it is popped

off the queue and placed in register R and P is set to 1. If the queue is

empty, the instruction writes 0 into P and the value of R is undefined.

This instruction does not stall if the queue is empty.

queue.flush Q Flushes all values in the queue Q + Base, leaving it empty.

resteer Q, A Asynchronous resteer the thread that produced into queue Q+Base

to address A.

Version Memory Instructions

allocate (M, S) Returns an unused MTX ID setting its parent version to memory

version (M, S).

enter (M, S) Enter the specified MTX M and subTX S.

commit stx (M, S) Commit the subTX S into the parent MTX M.

commit mtx M Commit the MTX M into the parent (MTX, subTX) that it was cre-

ated under. If the parent memory version is (0, 0) then commit into

nonspeculative state. S emphmust be the oldest child of M.

rollback M All the stores from the specified MTX M and any subordinate sub-

TXs and MTXs will be discarded, and the MTX is deallocated.

Threads must issue enter to enter a legitimate MTX or commit-

ted state.

set.lvp (M, S) Sets the load variant point register to the specified MTX M and

subTX S.

load.variant R = [Addr] Performs a load that respects the load variant point register, relative

to the current memory version.

get mtx R Sets R to the current MTX.

get stx R Sets R to the current subTX

Table 3.4: iSpecPS-DSWP ISA Extensions

Step 4: Apply Memory Versioning

The instructions that memory versioning inserts for each load, store, and external function

call are all local to a procedure. However, the current MTX and subTX are stored in

microarchitectural registers. To accesses these registers, two additional instructions are

addeed to the ISA (Table 3.4).

82

Step 5: Finish Recovery Code

This step proceeds as in SpecPS-DSWP. With the exception of the misspeculation recovery

code, Figure 3.17 shows the final code after the transformation is finished.

void main1() {

list *cur=head, *item;

int mtx = allocate(0, 0);

int stx = 0;

produce(4, mtx);

produce(5, mtx);

produce(6, cur);

produce(7, cur);

int iter = rT

while (cur != NULL) {

int qset = iter % 2;

int qoff = qset * 18;

set_qbase(qoff)

produce(17, TRUE);

produce_reg_chkpt();

enter(mtx, stx);

iter++;

item = cur->item;

produce(8, item);

cur = cur->next;

produce(9, cur);

produce(10, cur);

stx += 1;

produce(1, OK);

}

produce(1, EXIT);

}

(a) Thread 1: main

void main2() {

list *item, *cur;

int mtx = consume(4);

int stx = 0;

cur = consume(5);

set_qbase(rT * 18);

while (cur != NULL) {

int exit = consume(17);

if (exit == TRUE) {

for (int i=0; i<R; i++) {

set_qbase(i * 18);

produce(17, FALSE);

}

break;

}

produce_reg_chkpt();

enter(mtx, stx);

item = consume(8);

work2(item);

cur = consume(9);

stx += 1;

produce(2, OK);

}

produce(2, EXIT);

}

(b) Thread 2: main

void main3() {

list *cur;

int mtx = consume(5);

int stx = 0;

cur = consume(7);

int iter = rT

while (cur != NULL) {

int qset = iter % 2;

int qoff = qset * 18;

set_qbase(qoff)

produce_reg_chkpt();

enter(mtx, stx);

iter++;

work3();

cur = consume(10);

stx += 1;

produce(3, OK);

}

produce(3, EXIT);

}

(c) Thread 3: main

Figure 3.17: iSpecPS-DSWP Parallelized Code without Misspeculation Recovery

83

void work2(list *item) {

int temp, temp2, temp3;

int mtx = get_mtx();

int stx = get_stx();

produce(11, item);

int mtxsave = mtx;

int stxsave = stx;

mtx = allocate(mtx, stx);

stx = 0;

produce(12, mtx);

while (item != NULL) {

enter(mtx, stx);

temp2 = item->data;

produce(13, temp2);

if (temp2 < 0) {

produce(2, MISSPEC);

wait();

}

temp3 = item->data;

produce(14, temp3);

temp = -temp3;

enter(mtx, stx+1);

item->data = temp;

item = item->next;

produce(15, item);

stx += 2;

produce(16, MEM_SYNC);

}

mtx = mtxsave;

stx = stxsave;

enter(mtx, stx);

}

(d) Thread 2: work

void work3() {

int temp2, temp3;

int mtx = get_mtx();

int stx = get_stx();

list *item = consume(11);

int mtxsave = mtx;

int stxsave = stx;

mtx = consume(12);

stx = 0;

while (item != NULL) {

enter(mtx, stx);

temp2 = consume(13);

if (item->data!=temp2) {

produce(3, MISSPEC);

wait();

}

temp3 = consume(14);

if (item->data!=temp3) {

produce(3, MISSPEC);

wait();

}

item = consume(15);

int unused = consume(16);

commit_stx(mtx, stx);

commit_stx(mtx, stx + 1);

stx += 2;

}

commit_mtx(mtx);

mtx = mtxsave;

stx = stxsave;

enter(mtx, stx);

}

(e) Thread 3: work

Figure 3.17: iSpecPS-DSWP Parallelized Code without Misspeculation Recovery (cont.)

84

Chapter 4

Extending the Sequential Programming

Model

Even with the framework described thus far, some applications will defy automatic paral-

lelization. To extract parallel execution from these applications, this dissertation relies on

programmer intervention. However, unlike existing languages and frameworks that force

the programmer to begin thinking in terms of parallel execution, this dissertation relies

on extensions to the sequential programming model, reducing the burden on the program-

mer. Before looking at extensions to the sequential programming model in Section 4.2, this

chapter first gives an overview of programmer-specified parallelism in Section 4.1.

4.1 Programmer Specified Parallelism

Many parallel programming languages have been proposed over the years. The most popu-

lar ones extend existing sequential languages with parallel concepts, with the goal of allow-

ing existing code to be easily parallelized. Most existing languages, including C, have been

extended with threads and locks by threading libraries, notably pthreads. Unfortunately, by

exposing only the low-level concept of threads, these languages give the programmer little

if any help avoiding deadlock, livelock, or just plain incorrect execution [47]. Addition-

85

ally, even if the programmer can extract a correct parallelization, he must then perform a

round of performance debugging to achieve a parallelization that is faster than the equiva-

lent single-threaded program. Unfortunately, this performance rarely carries over to a new

processor architecture or even a new configuration of an existing processor architecture,

necessitating a new round of performance debugging that often leads to another round of

correctness debugging.

The OpenMP [2] and MPI [1] extensions to the C programming language attempt to

mitigate the performance debugging aspect of manual parallelization. Aimed at processor

and cluster level parallelism respectively, the extensions allow the programmer to indicate

the type of parallelism desired. However, the programmer is still responsible for find-

ing and appropriately dealing with any cross-thread dependences. Thus, these systems

still suffer from the problems of creating a correct parallel program. The use of memory

transactions [12] to express parallelism has recently been proposed, but often suffer from

correctness [30] and performance [92] issues.

Many new languages have been developed that use higher abstractions to expose paral-

lelism than threads and locks. If an application’s algorithm can be expressed in the form of

streams, languages such as StreamIt [78] ensure the correctness of the parallelism, while

also extracting good performance, but streams are not the natural formulation for many

problems. Several languages, such as Cilk [26], attempt to maintain C-like semantics while

giving the programmer the ability to express parallelism by making the concepts of closures

and continuations first-class features. Just as in language extensions for parallelism, these

new languages still force the programmer to understand and effectively use a new program-

ming model.

Beyond a purely programmer-centric approach to parallelism, several techniques in the

literature advocate an integrated approach to the extraction of parallelism, combining both

manual and automatic parallelization.

SUIF Explorer [43] is a tool for programmer specification of parallelism, which is then

86

assisted by tools support to ensure correctness. The Software Behavior-Oriented Paral-

lelization [21] system allows the programmer to specify intended parallelism. If the in-

tended parallelization is incorrect, the worst case is single-threaded performance at the cost

of extra execution resources.

Work proposed by Thies et al. [77] also extracts parallelism in conjunction with the

programmer. Through profiling the program’s dynamic behavior, their system extracts

pipelined parallelism and produces parallelizations for 197.parser and 256.bzip2

that are effectively the same as those in this dissertation. However, their system relies

upon the programmer to mark the potentially parallel regions and often to perform sev-

eral transformations to make the program amenable for parallelization, but that reduce

the software-engineering quality of the code. Additionally, their system does not produce

sound code, relying on the profiling phase to see the addresses of all potential dynamic

memory dependences.

4.2 Annotations for the Sequential Programming Model

Forcing the programmer to think in terms of parallel execution and then annotate the pro-

gram with this information imposes a large burden on the programmer. It would be better

for the programmer to remain in a sequential execution model and for the annotations used

to also fit into this sequential model. To this end, this dissertation proposes annotations

for a sequential execution model that inform the compiler about non-determinism without

forcing the programmer to think in terms of parallelism. By annotating non-determinism,

the programmer is indicating that there is no single required order of execution or even

a single correct output; rather a multitude of execution orders and outputs are correct,

though syntactically or semantically different. This subsection introduces two extensions

to a sequential programming model to present this information to the compiler, allowing

the extraction of parallelism.

87

4.2.1 Y-branch

dict = start_dictionary();

while ((char = read(1)) != EOF) {

profitable = compress(char, dict)

@YBRANCH(probability=.000001)

if (!profitable)

dict = restart_dictionary(dict);

}

finish_dictionary(dict);

(a) Y-branch

#define CUTOFF 100000

dict = start_dictionary();

int count = 0;

while ((char = read(1)) != EOF) {

profitable = compress(char, dict)

if (!profitable) {

dict = restart_dictionary(dict);

} else if (count == CUTOFF) {

dict = restart_dictionary(dict);

count = 0;

}

count++;

}

finish_dictionary(dict);

(b) Manual Choice of Parallelism

Figure 4.1: Motivating Example for Y-branch

Of those applications with many correct outputs, a large subset of these have outputs

where some are more preferable than others. When parallelized by hand, the developer

must make a choice that trades off parallel performance for output quality. Instead, this

flexibility should be given to the compiler, as it is often better at targeting the unique fea-

tures of the machine it is compiling for. To this end, this dissertation proposes the use of

a Y-branch in the source code. The semantics of the Y-branch are that, for all dynamic

instances, the true path can be taken regardless of the condition of the branch [86]. The

compiler is then free to generate code that pursues this path when it is profitable. In par-

ticular, this allows the compiler to balance the quality of the output with the parallelism

88

achieved.

Figure 4.1a illustrates a case where the Y-branch can be used. The code is a simplified

version of a compression algorithm that uses a dictionary. Heuristics are used to restart

the dictionary at arbitrary intervals. Rather than insert code to split the input into multiple

blocks, as is done in Figure 4.1b, the Y-branch communicates to the compiler that it can

control when a new dictionary is started, allowing it to choose an appropriate block size.

This gives the compiler the ability to break dependences on the dictionary and extract

multiple threads. A probability argument informs the compiler of the relative importance

of compression to performance. In the case of Figure 4.1a, a probability of .000001 was

chosen to indicate the dictionary should not be reset until at least 100000 characters have

been compressed. Determination of the proper probability is left to a profiling pass or

the programmer. Simple metrics, such as the minimum number of characters, are often

sufficient.

VELOCITY uses the Y-branch annotation [9] to extract more parallelism with iSpecPS-

DSWP by allowing the compiler to make the reset function happen at the beginning of a

predictable loop iteration. First, a new outer loop around the original loop containing the Y-

branch is created. The Y-branch branch is then transformed to break out of the original loop

after it has executed 1/probability times. The original loop is first called before entering the

new outer loop. An iteration of the new outer loop first calls the code originally controlled

by the Y-branch and then executes the next iteration of the original loop. Because the reset

logic executes at predictable intervals, the compiler can easily parallelize the new outer

loop. Figure 4.2 shows how the compiler transforms the Y-branch annotation to produce

code that can be parallelized. In Figure 4.2a the programmer has indicated that the compiler

can choose to taken the branch that controls the reset logic, and that it should not do so

more than once every 100,000 iterations. Prior to parallelization, the compiler translates

the loop containing the Y-branch to form a new outer loop, shown in Figure 4.2b, that can

be parallelized automatically.

89

char c;

dict = start_dictionary();

while ((c = read(1)) != EOF) {

profitable = compress(c, dict)

@YBRANCH(probability=.000001)

if (!profitable)

dict = restart_dictionary(dict);

}

finish_dictionary(dict);

(a) Sequential Y-branch Code

char c;

dict = start_dictionary();

...

while (c != EOF) {

int numchars = 0;

dict = restart_dictionary(dict);

while ((c = read(1)) != EOF) {

profitable = compress(c, dict)

if (numchars++ == 100000) break;

if (!profitable)

dict = restart_dictionary(dict);

}

}

(b) Transformed Y-branch Code

Figure 4.2: Y-branch Example

4.2.2 Commutative

Many functions have the property that multiple calls to the same function are inter-

changeable even though they maintain internal state. Figure 4.3a illustrates a code snippet

for the rand function, which contains an internal dependences recurrence on the seed

variable. Multiple calls to this function will be forced to execute serially due to this depen-

dence. The Commutative annotation informs the compiler that the calls to rand can occur

in any order.

In general, the Commutative annotation allows the developer to leverage the notion of a

commutative mathematical operator, which can facilitate parallelism by allowing function

calls to execute in any order. This annotation is similar to commutativity analysis [67];

90

int seed;

@Commutative

int rand() {

seed = seed * 2 + 1;

return seed;

}

(a) Rand Example

void * free_list;

@Commutative(memalloc, ROLLBACK, free, ptr)

void * malloc(size_t s) {

void *ptr = allocate(free_list, s);

return ptr;

}

@Commutative(memalloc, COMMIT, free, ptr)

void free(void *ptr) {

size_t size = allocated_size(ptr)

free_list = deallocate(free_list, ptr);

}

(b) Malloc Example

Figure 4.3: Motivating Examples for Commutative

both have the goal of facilitating parallelization by reordering operations. However, calls

to Commutative functions are generally not commutative in the way that commutativity

analysis requires. Commutativity analysis looks for sets of operations whose order can

be changed, but that result in the same data in the same location. Commutative functions

can be executed in an order that leads to different values in locations versus the sequential

version. The differences that may result are accepted by the programmer. Finally, the pro-

grammer annotates Commutative based on the definition of a function and not the many call

sites it may have, making it easy to apply. Commutative is also similar to the Cilk inlet di-

rective, as it ensures correct execution of code that executes in a non-deterministic fashion.

However, inlet is meant to serially update state upon return from a spawned function, while

Commutative is meant to facilitate parallelism by removing serialization. The annotation

is also similar to the async and race directives used by the IPOT system [84]. In IPOT,

the programmer annotates variables as races to indicate that a read can see a potentially

91

stale value of the variable without causing misspeculation. However, a variable can only be

marked race when the different data values that result are confined to internal state and are

not externally visible. IPOT can also mark code regions as async to allow them to execute

in an order that ignores data dependences inside the region, leading to non-determinisitic

orderings. Though this annotation can achieve similar effects to Commutative, it’s pur-

pose is to facilitate parallel execution, forcing the programmer to consider the execution

of multi-threads when applying it. Additionally, it is unclear how to use it in a speculative

parallelization.

The semantics of the Commutative annotation are that, outside of the function, the

outputs of the function call are only dependent upon the inputs to it. Additionally, there

must exist a well-defined sequential ordering of calls to the Commutative function, though

that order need not be determined a priori.

The Commutative annotation can also take an argument which indicates that groups of

functions share internal state. When parallelizing, any function in the group must execute

atomically with respect to every function in the group. For example, malloc and free

access the free list shown in Figure 4.3b, so both are part of the memalloc Commuta-

tive set.

The compiler uses the Commutative annotation to extract more parallelism by ignoring

internal dependence recurrences. Specifically, when building the iPDG, the Commutative

function is not added to the iPDG, just its call sites. Any memory flow dependence between

two call sites to the Commutative is removed from the iPDG. When generating code, the

Commutative function itself conceptually executes atomically when called and, inside the

function, dependences that are local to the function are respected. By ensuring that the

function executes atomically, a well-defined sequential sequence of calls to the Commuta-

tive function is guaranteed to exist in the absence of misspeculation.

The use of Commutative in a speculative execution environment requires additional

care. In particular, there must always be a well-defined sequential sequence of calls to

92

the Commutative function, particularly in the face of versioned memory and rollback or

commit of versioned state. A well-defined ordering is maintained by ensuring that Com-

mutative functions executed in non-transactional memory and that the effects of a call to

a Commutative can be undone by a rollback or are put off until commit, specified by the

ROLLBACK and COMMIT values in the Commutative annotation.

To handle ROLLBACK, the Commutative annotation takes a function as one of its argu-

ments. On each call to the function, the specified arguments and variables of the function

are appended to a list, and on rollback the function is called with these arguments. For

example, the rollback function for malloc is free and the ptr variable is appended to

a list for each call to malloc.

For COMMIT, the function is not executed. Instead its arguments are appended to a list.

Note that this is only a viable option for functions without return values that do not modify

state through pointers passed in as arguments. On commit of versioned memory to non-

speculative state, the function is executed for each element of the list. For example, free

is a COMMIT Commutative function. Were it a ROLLBACK Commutative function, a new

malloc function would need to be written that could malloc a specific pointer rather than

a size.

93

Chapter 5

Evaluation of VELOCITY

This chapter presents an evaluation methodology for the automatic parallelization frame-

work presented in Chapter 3 and Chapter 4 as implemented in the VELOCITY compiler.

Using several applications from the SPEC CINT2000 benchmark suite as case studies, the

chapter will also show how this framework enables the automatic extraction of parallelism.

5.1 Compilation Environment

An automatic parallelization framework based on the techniques discussed in Chapter 3 was

built in the VELOCITY [79] compiler. VELOCITY relies upon the IMPACT [69] compiler,

a research compiler developed at the University of Illinois at Urbana-Champaign, to read

in C code and emit assembly code for a virtualized Itanium R© 2 architecture. The IMPACT

compiler can perform many advanced analyses and optimizations designed to produce good

performing code for EPIC-like architectures [69]. Among these, VELOCITY only uses

IMPACT’s pointer analysis [14, 53] to identify both call targets of function pointers and

the points-to sets of load, stores, and external functions.

VELOCITY contains many traditional optimizations, including global versions of copy

propagation, reverse copy propagation, constant propagation, constant folding, dead code

elimination, unreachable code elimination, algebraic simplification, redundant load and re-

94

dundant store elimination, strength reduction, and partial-redundancy elimination, as well

as a local version of value numbering. When used, these optimizations are applied exhaus-

tively in a loop until there are no further optimization opportunities. Specialization opti-

mizations, including inlining, loop unrolling, and superblock formation, have also been im-

plemented, with the heuristic for them strongly influenced by IMPACT’s heuristics. Finally,

VELOCITY contains superblock-based scheduling and global register allocation routines,

whose heuristics are also strongly influenced by IMPACT’s. VELOCITY outputs assem-

bly code targeting the Itanium R© 2 architecture, however it does not currently produce code

to take advantage of several of Itanium R© 2’s more advanced features, including predica-

tion, single-threaded software pipelining, single-threaded control and data speculation, and

prefetching.

After reading in lowered C code from the IMPACT compiler, all code in the VELOC-

ITY compiler undergoes branch profiling on a training input set, traditional optimizations,

inlining, and another round of traditional optimizations. After this, there are two paths

that the code follows through the compiler. The standard non-parallelizing optimization

pass lowers the code to a machine specific Itanium R© 2 IR, performs register allocation and

scheduling, and then emits Itanium R© 2 assembly. This highly optimized single-threaded

code will form the baseline for the experimental results. The standard parallelizing pass

first runs multiple profiling passes, including loop-sensitive versions of branch, silent store,

alias, and loop-invariant value profiling. After this, the iSpecPS-DSWP automatic paral-

lelization technique is applied. Just as in the single-threaded path, the code is then lowered,

register allocated, and scheduled, before emitting as Itanium R© 2 assembly.

5.2 Measuring Multi-Threaded Performance

Obtaining the performance of the applications that have been parallelized is difficult. First,

many of the loops that will be parallelized encompass more than 95% of the execution

95

time of the program. Since the applications run for many tens of billions, if not hundreds

of billions of cycles, and each iteration can take upwards of a billion cycles, the use of

traditional simulation methodologies to target many-core processors is impractical at best.

A combination of native execution and simulation was used to efficiently measure parallel

performance, as shown in Figure 5.1.

Figure 5.1: Parallel Performance Measurement Dependences

5.2.1 Emulation

First, each parallel program is run in a multi-threaded emulation environment, where the

ISA extensions are replaced with function calls into an emulation library. Loads and stores

are also replaced since their semantics are dependent upon the memory version system.

The resulting binary is then run natively on a multi-processor Itanium R© 2 system. This

emulation serves several purposes. First, it can easily determine whether the benchmark

runs correctly, often in a few hours. Second, it can produce the set of misspeculations that

manifested during the application’s execution. Lastly, it can produce a memory trace for

each thread that will be used for a cache simulation.

5.2.2 Performance

While the emulation run is useful for correctness and other information, its utility as a

performance run is hindered by two factors. First, replacing every load and store with a

function call greatly reduces any ILP that may exist. Second, emulation must wrap external

function calls and emulate the effects in a library. Determining the proper number of cycles

for these functions is problematic at best. Thus, another run of the program is performed,

96

however, this time an ordering is enforced on the multi-threaded execution that allows loads

and stores to execute correctly without emulation.

0

1

2

3

4

5

6

7

8

9

10

11

12

13

Core 1 Core 2 Core 3 Core 4

A1

B1

C1

A2

B2

C2

A3

B3

C3

Figure 5.2: Conceptual Performance Run Execution Schedule

Figure 5.2 illustrates this execution order. Essentially, each iteration executes com-

pletely before the next iteration is allowed to run. That is, only when the last stage of an

iteration completes is the first stage of the next iteration allowed to execute. So long as

there is no intra-iteration memory value speculation, this execution plan is a legal multi-

threaded execution that respects all memory flow dependences and false memory depen-

dences without the use of versioned memory. Thus, loads and stores are not replaced and

memory version instructions become nops. However, for correct execution, produce, con-

sume, queue.set, and queue.flush are replaced with calls into the emulation library.

The multi-threaded application was run on an unloaded HP workstation zx2000 with

a 900MHz Intel Itanium 2 processor and 2Gb of memory, running CentOS 4.5. Run-

time numbers were gathered using HP’s pfmon tool version 3.0, which is based on ver-

97

sion 3.1 of the libpfm performance monitoring library [24]. The runtime of an appli-

cation was determined by running it under the pfmon tool with the CPU CY CLES,

BE EXE BUBBLE GRALL, and BE EXE BUBBLE GRGR events monitored.

CPU CY CLES represents the total number of cycles needed to execute the application.

BE EXE BUBBLE GRALL − BE EXE BUBBLE GRGR represents the num-

ber cycles spent stalling on an outstanding integer load. This number will be subtracted

from CPU CY CLES and a cache simulation’s performance measurement added back in.

To allow for an accurate performance measurement, performance counters are turned

off before entering into an emulated instruction and turned back on just after returning.

Itanium R© 2 contains single instruction support for turning performance counters on (sum)

and off (rum). While these instructions introduce bubbles into the pipeline, the cycles lost

because of this can be accurately measured via the BE EXE BUBBLE ARCR event

and subtracted from the CPU CY CLES measurement. Additionally, to avoid profiting

from the use of separate copies of each cache, branch predictor, and other microarchitec-

tural structures per core, the threads are constrained to execute on a single processor via

the sched setaffinity system call.

Because loads and stores are not replaced and memory versioning is not done, memory

state can not be undone in the event of misspeculation. To avoid the need to rollback state,

the performance run takes in the misspeculations that occurred during the emulation run

and proactively signals misspeculation and branches to recovery code for any iteration that

misspeculates.

While this execution completely avoids parallel execution, it produces an execution

time for each (iteration, stage) pair which can be used to produce a multi-threaded per-

formance number by a scheduler.

98

Private L1 Cache 16KB, 4-way, 64B line size, writeback, 1/1/1-cycle access/commit/merge latencies

Private L2 Cache 256KB, 8-way, 128B line size, writeback, 4/2/1-cycle access/commit/merge latencies

Shared L3 Cache 768KB, 12-way, 128B line size, writeback, 9/7/1-cycle access/commit/merge latencies

Shared L4 Cache 64MB, 256-way, 128B line size, writeback, 50/25/1-cycle access/commit/merge latencies

Main Memory 100 cycle access latency

Table 5.1: Cache Simulator Details

5.2.3 Cache Simulation

Since the stage performance run executed on a single processor, it did not benefit from

effectively larger branch predictors or caches, however, it also did not pay any penalty due

to cache coherence effects, particularly false sharing, or the use of versioned memory. To

model the cache effects, the memory trace from the emulation run is feed into a multi-

core cache simulator, the details of which are given in Table 5.1. The cache simulation

has a 4-level cache, with private L1 and L2 caches, and shared L3 and L4 caches. The

details of the version memory cache system can be found [82]. The output of the cache

simulator is a stall cycle count that each (iteration, stage) pair spent in the cache sys-

tem. The simulated stall cycle count is added to the (iteration, stage) cycle count from

Section 5.2.2 and the measured load stall cycle count (BE EXE BUBBLE GRALL −

BE EXE BUBBLE GRGR) is subtracted from it.

5.2.4 Bringing it All Together

To determine the performance of the application given the (iteration, stage) performance

counts, the set of misspeculating iterations, and the stage dependences of the iSpecPS-

DSWP pipeline, a scheduler is used to simulate the performance of multi-threaded execu-

tion. The scheduler simulates an 32-core Itanium R© 2 machine, but does not directly model

the microarchitectural effects of branch predictors or other microarchitectural state. Note

that cache effects are represented by the stall times incorporated into the (iteration, stage)

performance count from the cache simulator. The scheduler executes the multi-threaded

program assuming infinite length queues and respecting the dependences among pipeline

stages and misspeculating iterations. At the end, it outputs the cycle count of the last stage

99

of the last iteration. This is the performance number of the multi-threaded code.

5.3 Measuring Single-Threaded Performance

To evaluate the performance of the single-threaded baseline, the applications were run on

the same machine as the multi-threaded application. The integer load stalls were also sub-

tracted just as in the multi-threaded applications, yielding a performance number ignoring

the effects of data caches. To get the number of cycles spent stalling on the cache, the bi-

nary is instrumented to get a memory trace which is fed into the same cache simulator used

to measure the multi-threaded binary. The resulting penalty is added to CPU CY CLES

to get the final single-threaded performance number.

5.4 Automatically Extracting Parallelism

The automatic parallelization technique described in Chapter 3 can extract scalable paral-

lelism for several applications. This section shows the results of applying VELOCITY to

several benchmarks in the SPEC CINT2000 suite.

5.4.1 256.bzip2

To see how the many components of the framework extract parallelism, consider the

256.bzip2 application from the SPEC CINT2000 benchmark suite. 256.bzip2 com-

presses or decompresses a file using the Burrows-Wheeler transform and Huffman encod-

ing. This dissertation focuses only on the compression portion of the benchmark. Each

iteration of the compressStream function, shown in Figure 5.3a, compresses an in-

dependent block of data. The data from the file is run through a Run-Length Encoding

filter and stored into the global block data structure. Because of this, the block ar-

ray contains a varying number of bytes per data block, indicated by last. Assuming

100

compressStream(inStream, outStream) {

while (True) {

blockNo++;

initialiseCRC();

loadAndRLEsource(inStream);

if (last == -1) break;

doReversibleTransformation()

moveToFrontCodeAndSend();

}

}

(a) compressStream pseudo-code (b) compressStream

DAGSCC

Figure 5.3: Simplified version of compressStream from 256.bzip2

data bytes exist to compress, they are compressed by the doReversibleTransform

and generateMTFValues functions before being appended to the output stream by

sendMTFValues.

Versions of the bzip2 algorithm that compress independent blocks in parallel have been

implemented in parallel-programming paradigms [3]. The parallelization performed man-

ually with mutexes and locks decomposes the original loop in compressStream into

three separate loops, shown in Figure 5.3b. The first stage reads in blocks to compress,

followed by a stage to compress, finishing with a stage to print the compressed blocks in

order. Most of the parallelism extracted comes from executing multiple iterations of the

second stage in parallel.

The same pipelined parallelism extracted manually can also be extracted using the

DSWP [55, 63] technique. Unfortunately, the base technique cannot extract the DOALL

parallelism present in the manual parallelization, as it only partitions the static body of

a loop. In the case of 256.bzip2, DSWP could extract a 4 stage pipeline, placing

doReversibleTransform and generateMTFValues in their own pipeline stages.

However, this limits the speedup achievable to ∼2x in practice, as

101

T
im

e
T

im
e

Core 1 Core 2 Core 3 Core 4

Read1

Compress1

Print1

Read2

Compress2

Print2

Read3

Compress3

Print3

Read4

Compress4

Print4

Read5

Compress5

Read6

Compress6

Figure 5.4: Dynamic Execution Pattern

doReversibleTransform takes ∼50% of the loop’s runtime. Instead, since no loop-

carried dependences exist in the Compress stage, it can be replicated several times using

the PS-DSWP extension, allowing multiple iterations to execute in parallel [61].

Unfortunately, while there are no actual loop-carried dependences in the Compress

stage, the compiler is unable to prove this. In particular, the compiler cannot prove that the

accesses to block are limited by last, and must conservatively assume that writes from

a previous iteration can feed forward around the back edge to the next iteration. Adding

speculation to PS-DSWP allows the compiler to break these dependences [82]. To avoid

excessive misspeculation, the framework uses a memory profiler to find memory depen-

dences that rarely, or, in the case of block, never manifest themselves. Since breaking

loop-carried dependences is the key to PS-DSWP, the memory profiler must profile mem-

ory dependences relative to loops, allowing it to determine if a dependence manifests itself

intra-iteration or inter-iteration.

Memory locations reused across iterations, such as the block array, also present an-

102

1

2

3

4

5

6

S
p
ee

d
u
p

v
s.

S
in

g
le

T
h
re

ad
ed

S
p
ee

d
u
p

v
s.

S
in

g
le

T
h
re

ad
ed

4 8 16 32

ThreadsThreads

Figure 5.5: Speedup of multi-threaded (MT) execution over single-threaded (ST) execution

for 256.bzip2

other problem because the same memory location is read and written every iteration, lead-

ing to many loop-carried false memory dependences. To break these dependences, each

iteration is placed in a separate ordered version memory transaction.

Lastly, the parallelization technique must be able to parallelize not just a loop, but the

functions called, directly or indirectly, from the loop. In 256.bzip2, the read and print

phases are the bsR (bitstream Read) and bsW (bitstream Write) functions, respectively.

These functions are found deep in the call tree, making it hard to expose the code inside for

parallelization. Inlining until all calls to these functions are visible at the outermost loop

level is not a practical solution, as the loop quickly becomes too large to analyze. Thus,

iSpecPS-DSWP is needed to extract the expected parallelization.

The framework extracts a parallelization that executes according to the dynamic exe-

cution plan shown in Figure 5.4. As the number of Compress stage threads is increased,

performance increases as shown in Figure 5.5. Though the parallelization relies on specu-

lation to removes dependences, no misspeculation occurs, as no flow memory dependence

is actually loop-carried in the Compress stage. Thus, the speedup is limited by the input

file’s size and the level of compression used. Since the file size is only a few megabtyes

and the compression level high, only a few independent blocks exist to compress in parallel

and the speedup levels off after 14 threads.

103

5.4.2 175.vpr

try_swap() {

blk_from = rand();

ax = blk_from.x;

ay = blk_from.y;

do {

bx = rand(), by = rand();

} while ((ax != bx) && (ay != by));

blk_to = find_block(bx, by);

swap(blk_from, blk_to);

affected_nets = find_affected_nets(blk_from, blk_to);

if (assess_swap(affected_nets, blk_from, blk_to) {

update_nets(affected_nets);

reset_nets(affected_nets);

} else {

unswap(blk_from, blk_to);

reset_nets(affected_nets);

}

}

try_place() {

while (cond) {

for (iter=0; iter < limit; iter++) {

if (try_swap()) success++;

}

}

}

Figure 5.6: Simplified version of try place from 175.vpr

175.vpr is an application that performs FPGA place and route calculations. As in pre-

vious work [59], this dissertation focuses on the placement portion of the algorithm, which

is distinct from the routing portion. Placement consists of repeated calls to try swap

in the try place function. try swap, as its name implies, attempts to switch a block

to a random position, also switching the block at that position if one is already there. A

pseudo-random number generator is used to choose a block and an (x, y) position to move

the block to. If either coordinate is the same as the chosen block’s x or y value, then a

new random number is generated until they are distinct. The block’s coordinates are then

updated and the cost of updating the connecting networks is calculated. If the cost is below

a certain threshold, the swap is kept, otherwise, the block’s coordinates are reverted back

104

1.0

1.5

2.0

2.5

S
p
ee

d
u
p

v
s.

S
in

g
le

T
h
re

ad
ed

S
p
ee

d
u
p

v
s.

S
in

g
le

T
h
re

ad
ed

4 8 16 32

ThreadsThreads

Figure 5.7: Speedup of multi-threaded (MT) execution over single-threaded (ST) execution

for 175.vpr

to their previous values.

The calls to try swap can often be executed in parallel. Predicting dependences

among these iterations a priori is hard, to the point that an alias speculation rate of 90%

and control speculation rate of 30% are required to produce a good partition. However, in

many cases the value a the beginning of an iteration will be the same as it was in a previous

iteration. If a loop-carried invariant speculation rate of 10% is used, then a better partition-

ing can be achieved that has a much lower rate of misspeculation. The iteration invariant

misspeculation occurs when updates to the block coordinates and network structures are

not properly read by subsequent iterations, which happens, on average, every 10 iterations.

The overall performance of 175.vpr on up to 32-threads is shown in Figure 5.7. Inter-

estingly, misspeculation is highest in early iterations of the try place, with an average

of 6 iterations between misspeculations, loop where the swap is accepted more often. It

reduces to almost zero in later iterations, with an average of 30 iterations between misspec-

ulations, where few swaps are accepted. Thus, good parallel performance requires many

threads in later iterations, where the speculation succeeds more than 95% of the time, to

balance out the more serial performance of earlier iterations.

105

5.4.3 181.mcf

181.mcf is an application that solves the single-depot vehicle scheduling in public mass

transportation, essentially a combinatorial optimization problem solved using a network

simplex algorithm. The high-level loop occurs in global opt which calls both the

price out impl and primal net simplex functions.

Parallelizing the global opt loop in 181.mcf requires a large amount of specula-

tion that limits any speedup obtainable. However, the outer loops in the price out impl

and primal net simplex functions are parallelizable.

void primal_net_simplex(net) {

while (!opt) {

if (bea = primal_bea_mpp(m, arcs, stop_arcs, ...)) {

...

if (iterations % 20) { refresh_potential(); }

}

}

refresh_potential(net);

}

long price_out_impl() {

for (; i < trips; i++, arcout += 3) {

head = arcout->head;

arcin = first_of_sparse_list->tail->mark;

while (arcin) {

tail = arcin->tail;

red_cost = compute_red_cost(arc_cost, tail);

update_arcs(tail, head, new_arcs, red_cost)

arcin = tail->mark;

}

}

}

void global_opt() {

while (new_arcs) {

primal_net_simplex(net);

new_arcs = price_out_impl(net);

}

}

Figure 5.8: Simplified version of global opt from 181.mcf

106

1

2

3

4

S
p
ee

d
u
p

v
s.

S
in

g
le

T
h
re

ad
ed

S
p
ee

d
u
p

v
s.

S
in

g
le

T
h
re

ad
ed

4 8 16 32

ThreadsThreads

(a) primal net simplex Speedup

Figure 5.9: Speedup of multi-threaded (MT) execution over single-threaded (ST) execution

for 181.mcf

primal net simplex takes approximately 70% of the execution time and can be

parallelized by executing refresh potential in parallel with the rest of

primal net simplex. This is primarily accomplished by applying silent store spec-

ulation to the node->potential updates in refresh potential. Essentially, the

parallelization speculates that refresh potential will not change the actual potential of any

node in the tree, which is almost always the case. Speedup is limited not by misspeculation,

but by the largest stage, which contains approximately 40% of the runtime.

The other 30% of the runtime occurs in price out impl. The outer loop in

price out impl can be parallelized into three stages. The first stage is very small, 1%

of the runtime, and SEQUENTIAL. It contains a few branches that control continues

in the loop body and the arcout->head->firstout->head->mark update. The

second stage is DOALL and contains the majority of the runtime, 75%, and the majority of

the code. The third stage is SEQUENTIAL and contains the code from insert new arc

and replace weaker arc that inserts new arcs into a priority queue backed by a heap.

Misspeculation is not the limiting factor on speedup, as the parallelization utilizes specula-

tion to only break potential alias dependences that never manifest.

107

1

2

3

4

S
p
ee

d
u
p

v
s.

S
in

g
le

T
h
re

ad
ed

S
p
ee

d
u
p

v
s.

S
in

g
le

T
h
re

ad
ed

4 8 16 32

ThreadsThreads

(b) price out impl Speedup

1

2

3

4

S
p
ee

d
u
p

v
s.

S
in

g
le

T
h
re

ad
ed

S
p
ee

d
u
p

v
s.

S
in

g
le

T
h
re

ad
ed

4 8 16 32

ThreadsThreads

(c) Benchmark Speedup

Figure 5.9: Speedup of multi-threaded (MT) execution over single-threaded (ST) execution

for 181.mcf (cont.)

Figure 5.9 shows the speedup achieved when parallelizing the price out impl and

primal net simplex loops. Since the price out impl parallelization contains a

DOALL node, it is able to achieve some scalable parallelism and its speedup tops out

at 2.61x. The primal net simplex parallelization contains no DOALL nodes, so its

speedup is always 1.5x for 4 or more threads.

108

5.5 Extracting Parallelism with Programmer Support

Combining the parallelization technique of Chapter 3 with the programmer annotations

described in Chapter 4, VELOCITY can extract parallelism from several more benchmarks

in the SPEC CINT2000 suite.

5.5.1 164.gzip

deflate() {

while (lookahead != 0) {

match = find_longest_match();

if (match)

reset_needed = tally_match(match);

@YBRANCH

if (reset_needed)

reset();

while (lookahead < MIN_LOOKAHEAD)

fill_window();

}

}

void crc(short *s, int n) {

while (--n) {

int indx = (crc ˆ (*s++)) & 0xff;

crc = crc_32_tab[indx] ˆ (crc >> 8);

}

}

Figure 5.10: Simplified version of deflate from 164.gzip.

164.gzip is another compression and decompression application, which uses the

Lempel-Ziv 1977 algorithm. As with 256.bzip2, this dissertation focuses on the com-

pression portion of the benchmark. Each file is compressed by either the deflate or

deflate fast function, which have almost the same code. The implementation of

the algorithm uses a sliding window of 65536 characters to look for repeated substrings.

The compression itself is delineated by blocks, ended by calls to FLUSH BLOCK. Unlike

256.bzip2, the choice of when to end compression of the current block and begin a new

block is made based on various factors related to the compression achieved on the current

109

block. This dependence makes it impossible to compress blocks in parallel as it very hard

to predict the point at which a new block will begin.

5

10

15

20

25

S
p

ee
d

u
p

v
s.

S
in

g
le

T
h

re
ad

ed
S

p
ee

d
u

p
v

s.
S

in
g

le
T

h
re

ad
ed

4 8 16 32

ThreadsThreads

(a) deflate fast Speedup

5

10

15

20

S
p

ee
d

u
p

v
s.

S
in

g
le

T
h

re
ad

ed
S

p
ee

d
u

p
v

s.
S

in
g

le
T

h
re

ad
ed

4 8 16 32

ThreadsThreads

(b) deflate Speedup

Figure 5.11: Speedup of multi-threaded (MT) execution over single-threaded (ST) execu-

tion for 164.gzip

Manually parallelized versions of the gzip algorithm insert code to ensure that a new

block is started at fixed intervals. To allow the benchmark to be parallelized, a similar

change was made to the source code to always start a new block at a fixed interval. Upon

starting a new block, the sliding window is reset, avoiding cross-block matches. This code

is represented by the call to reset highlighted in Figure 5.10.

Unfortunately, this change can cause the application to achieve a lower compression

ratio than the single-threaded version. For the 32Mb input file, using the smallest block size

110

of 64Kb, the loss in compressions was less than .5% at the highest compression level. The

loss in compression decreased to less than .1% when 1Mb blocks were used. When there

are multiple processors, this tradeoff between compression and performance is acceptable.

However, this loss of compression should only occur if parallelization was achieved. In

particular, if only a single processor is available, the same compression level should be

achieved as the basic benchmark.

5

10

15

20

25

S
p

ee
d

u
p

v
s.

S
in

g
le

T
h

re
ad

ed
S

p
ee

d
u

p
v

s.
S

in
g

le
T

h
re

ad
ed

4 8 16 32

ThreadsThreads

(c) Benchmark Speedup

Figure 5.11: Speedup of multi-threaded (MT) execution over single-threaded (ST) execu-

tion for 164.gzip (cont.)

Figure 5.11 shows the speedup achieved on the 32Mb input file for a block size of

132Kb. Little speculation is needed, mostly alias speculation on various arrays as in

256.bzip2, and no misspeculation occurs in practice. Additionally, since the block size

is smaller than that in 256.bzip2 and the file size larger, there is is sufficient work to

keep more threads busy. The limiting factor for the speedup is the calculation of the Cycle

Redundancy Check (crc). The crc computation is isolated to its own thread, but takes

approximately 3-4% of the runtime for both the deflate and deflate fast loops.

The code is amenable to single-threaded optimizations that would reduce its execution

time, including software pipelining and load combining, that have not been implemented

in VELOCITY.

111

5.5.2 197.parser

while(1) {

sentence = read();

if (!sentence) break;

print(sentence);

err = parse(sentence);

errors += err;

if (err < 0)

exit();

}

print errors;

Figure 5.12: Simplified version of batch process from 197.parser

5

10

15

20

S
p

ee
d

u
p

v
s.

S
in

g
le

T
h

re
ad

ed
S

p
ee

d
u

p
v

s.
S

in
g

le
T

h
re

ad
ed

4 8 16 32

ThreadsThreads

Figure 5.13: Speedup of multi-threaded (MT) execution over single-threaded (ST) execu-

tion for 197.parser

197.parser is an application that parses a series of sentences, analyzing them to see

if they are grammatically correct. The loop in the batch process function comprises

the outermost loop, of which the parse function call dominates the runtime of each iter-

ation. As each sentence is grammatically independent of every other sentence, parsing can

occur in parallel for each sentence.

Previous work [21] has used speculation to break dependences between iterations. A

sentence may be a command for the parser rather than a sentence to parse, turning on or off

echo mode, for example. However, speculation is not required for this application if these

operations are placed into a SEQUENTIAL stage. The loss in parallelization is limited, as

a majority of the time is taken up by the parse call.

112

To achieve a parallelization that parses each sentence in parallel, the memory allocator

must also be dealt with. Upon startup, 197.parser allocates 60MB of memory, which it

then manages internally. To avoid dependences from the memory allocator interfering with

parallelization, the Commutative annotation is used once again. This allows the compiler

to break dependences across iterations arising from calls to the allocator.

The standard parallelization paradigm of SEQUENTIAL, DOALL, SEQUENTIAL, is

used as the parallelization. Its speedup is shown in Figure 5.13. The limiting factor on

speedup in the number of sentences to parse, and the high variance, up to 10x, that occurs

when parsing a particular sentence.

5.5.3 186.crafty

Search(alpha, beta, depth, white) {

initial_alpha = alpha;

while (move = NextMove(depth, white)) {

MakeMove(move, depth, white);

value = -Search(-alpha-1, -alpha, !white, depth+1);

if (value > alpha) {

if (value >= beta) {

UnMakeMove(depth, white);

return value;

}

alpha = value;

}

UnMakeMove(move, depth, white);

}

return alpha;

}

Figure 5.14: Simplified version of Search from 186.crafty

186.crafty is an application that plays chess. The high-level loop reads in a chess

board and a search depth n. For each iteration of this loop the Iterate function is called,

which executes repeated searches from a depth of 1 to n. To perform this, Iterate

calls the SearchRoot function which calls the recursive Search function to perform

an alpha-beta search. For each level of the search, several moves are computed, each of

which is recursively searched and evaluated to determine the most profitable path. The

113

1.00

1.25

1.50

1.75

2.00

S
p

ee
d

u
p

v
s.

S
in

g
le

T
h

re
ad

ed
S

p
ee

d
u

p
v

s.
S

in
g

le
T

h
re

ad
ed

4 8 16 32

ThreadsThreads

Figure 5.15: Speedup of multi-threaded (MT) execution over single-threaded (ST) execu-

tion for 186.crafty

most profitable move is then stored and the alpha value is returned.

The most obvious parallelization is to search each of the moves at one level of the

Search independently, similar to they way the application has been parallelized by hand.

Unfortunately, Search is recursive, a problem that has hindered previous work in paral-

lelization [59]. To solve this problem, the compiler conceptually peels of an iteration the

recursion. To allow parallelization, one level of the recursion is peeled off.

This parallelization requires that loads of the search variable, which contains many

fields related to the current search, be speculated as loop-carried invariant. This is al-

ways true, but is very hard for the compiler to predict as it requires understanding that

the UnMakeMove undoes the effects of MakeMove. Additionally, control speculation

is needed to prevent the presence of certain cutoff metrics related to timing and number

of nodes searched from preventing parallelization. In particular the next time check

variable branch in Search must be speculated not taken.

An additional problem also arises in the parallelization. Since the search reaches many

of the same boards, a large amount of caching is used to prune the search space and improve

performance. Unfortunately, these caches prevent parallelism, as the dependence from the

store into the cache to a load from the cache is hard to predict. Alias speculation can al-

low the parallelization to continue, but misspeculation still limits performance. Instead,

114

this dissertation relies on the programmer to mark each cache lookup and insertion func-

tion as Commutative. This includes references to the pawn hash table, trans ref,

history, and killer move caches.

Finally, reads of and updates to the alpha variable and largest positional score

are also marked as Commutative. Both of these variables are monotonically increasing and

marking them as Commutative only means that the search may explore a larger space than

it would have otherwise. In practice, the number of extra moves explored is negligible as

both variables are not updated often.

Unfortunately, even though the parallelization framework extracts a SEQUENTIAL,

DOALL, SEQUENTIAL parallelization where more than 99% of the runtime occurs in the

DOALL stage, the speedup is only 1.15x. This occurs not because of misspeculation, which

occurs only on loop exit, but because of the amount of time it takes to search a particular

move is highly variable due to the aggressive pruning performed during the search. In

particular, in most invocations of Search, a single iteration contains more than 90% of

the runtime.

5.5.4 300.twolf

while (attempts < attmax) {

a = rand();

do {

b = rand();

} while (a != b);

if (cond) {

ucxx2();

} else ...

}

Figure 5.16: Simplified version of uloop from 300.twolf

300.twolf is an application that performs place and route simulation. The innermost

loop that comprises most of the execution time is in the uloop function, which contains

many calls to ucxx2. The ucxx2 function takes up approximately 75% of the execution

115

1.00

1.25

1.50

1.75

2.00

S
p

ee
d

u
p

v
s.

S
in

g
le

T
h

re
ad

ed
S

p
ee

d
u

p
v

s.
S

in
g

le
T

h
re

ad
ed

4 8 16 32

ThreadsThreads

Figure 5.17: Speedup of multi-threaded (MT) execution over single-threaded (ST) execu-

tion for 300.twolf

time. Previous work has executed portions of the ucxx2 code in parallel via speculative

pipelining [59]. This paper instead parallelizes the calls to ucxx2 themselves by paral-

lelizing iterations of the loop in uloop.

Predicting which iterations can execute in parallel a priori is hard, so branch and

alias speculation are used to achieve the parallelization. However, the misspeculation rate

greatly limits the amount of parallelism extracted [59]. This misspeculation comes from

two sources, misprediction of the number of calls to the pseudo-random number generator

and memory dependence violations on the block and network structures.

The misspeculation for the random-number generator occurs because of the variable

number of calls to the random number generator. In previous work [59], this dependence

has been broken by manually speculating the number of calls to the generator and predict-

ing the next iteration’s seed. However, it is counterintuitive for parallelism to be limited

by the generation of random numbers. To avoid the misspeculation and allow the compiler

to see the parallelism, that the random number generator is marked as Commutative by the

programmer. For the pseudo-random number generator, this allows the calls to the genera-

tor to occur in any order and breaks the dependence that the generator has across iterations

on the randVarS variable. Though output changes as a result of this, the benchmark still

runs as intended.

116

With these changes, the parallelization is able to achieve a speedup of 1.10x, as shown

in Figure 5.17. Misspeculation occurs quite often, approximately every other iteration.

Because the pipeline is restarted on every misspeculation, pipeline fill time is on the critical

path and lowers the speedup attainable.

5.6 Continuing Performance Trends

This chapter has shown that VELOCITY can extract parallelism from applications in the

SPEC CINT2000 benchmark suite, even though these programs are generally considered

not to be amenable to automatic parallelization because of the number and complexity

of the dependences involved. This section summarizes the results of the dissertation and

compares them to aggressive manual parallelization.

Benchmark Loop Exec.

Time

Lines

Changed

Lines

Annotated

Description

deflate fast
30%

26 2 Gzip Compression
164.gzip (deflate.c:583-655)

(Compress) deflate
70%

(deflate.c:664-762)

175.vpr try place
100% 0 0 Processor Node Placement

(Place) (place.c:506-513)

181.mcf

price out impl
25%

0 0
Single-Source, Multi-Depot

Optimization Problem

(implicit.c:228-273)

primal net simplex
75%

(psimplex.c:50-138)

186.crafty
Search

98% 9 9 Chess Playing Program
(search.c:218-368)

197.parser
batch process

100% 2 2 English Grammar Checker
(main.c:1522-1779)

256.bzip2 compressStream
100% 0 0 Bzip2 Compression

(Compress) (bzip2.c:2870-2919)

300.twolf
uloop

100% 1 1 Processor Layout
(uloop.c:154-361)

Table 5.2: Information about the loop(s) parallelized, the execution time of the loop, and a

description.

Table 5.2 gives a summary of the applications from the SPEC CINT2000 suite that were

parallelized by VELOCITY, including the loop, its percent of execution, and a general de-

scription of the application. For these benchmarks, as well as the remaining C benchmarks

117

1x

2x

4x

8x

16x

32x

S
p

ee
d

u
p

(l
o

g
sc

al
e)

S
p

ee
d

u
p

(l
o

g
sc

al
e)

16
4.

gz
ip

17
5.

vp
r

17
6.

gc
c

18
1.

m
cf

18
6.

cr
af

ty

19
7.

pa
rs

er

25
3.

pe
rlb

m
k

25
4.

ga
p

25
5.

vo
rte

x

25
6.

bz
ip

2

30
0.

tw
ol

f

G
eo

M
ea

n

x
x
x
x

x xxx
x
x

x
x
xx
xx

Manual

VELOCITY

Figure 5.18: The maximum speedup achieved on up to 32 threads over single threaded ex-

ecution. The Manual bar represents the speedup achieved using manual parallelization [9],

while the VELOCITY bar represents the speedup achieved by VELOCITY.

1

2

4

8

16

32

T
h
re

ad
s

(l
o
g

sc
al

e)
T

h
re

ad
s

(l
o
g

sc
al

e)

16
4.

gz
ip

17
5.

vp
r

17
6.

gc
c

18
1.

m
cf

18
6.

cr
af

ty

19
7.

pa
rs

er

25
3.

pe
rlb

m
k

25
4.

ga
p

25
5.

vo
rte

x

25
6.

bz
ip

2

30
0.

tw
ol

f

A
rit

hM
ea

n

x
x
x
x

x
x
x

x
x
x

x
x
x

x
x
x
x

x
x
x

x
x
x
x
x
x

Manual

VELOCITY

Figure 5.19: The minimum number of threads at which the maximum speedup occurred.

The Manual bar represents the number of threads used by manual parallelization [9], while

the VELOCITY bar represents the number of threads used by VELOCITY.

in SPEC CINT2000, Figure 5.18 shows the maximum speedup achieved for each bench-

mark, while Figure 5.19 shows the minimum number of threads at which the maximum

speedup was achieved. The Manual bar represents the speedup achieved using via manual

application of the parallelization techniques in this dissertation, [9], while the VELOCITY

bar represents the speedup that was achievable automatically by the VELOCITY compiler.

For the benchmarks that were automatically parallelized, the parallelization obtained match

those that were simulated manually [9]. There are several reasons for the performance dif-

ferences:

118

1. The manual parallelizations used the gcc compiler which contains different optimiza-

tions and heuristics than the VELOCITY compiler.

2. The manual parallelization performance evaluation did not account for the effects of

multiple caches or cache coherence among the cores.

3. The manual parallelization performance evaluation was achieved by manually mark-

ing portions of the single-threaded binary that could execute in parallel and then

feeding these regions into a parallel execution simulator similar to that described in

Section 5.2. The VELOCITY performance evaluation uses real thread partitionings,

chosen automatically, that generate actual multi-threaded code and which contain

many overheads, including synchronization instructions and extra branches to ensure

proper control flow.

As in the manual parallelization work, 252.eon was not parallelized because it is

a C++ benchmark. 176.gcc, 253.perlbmk, 254.gap, and 255.vortex were not

parallelized by VELOCITY because of the difficulties, particularly with regards to memory

usage, in building the iPDG. The smallest of these benchmarks, 255.vortex, would

require the creation of a iPDG with a hundred thousand nodes and more than 25 million

edges. The vast majority of these edges are memory dependence edges, with less than

a million control or register edges. The iPDG can be made more scalable by selectively

expanding function calls, rather than all functions as the current iSpecPS-DSWP does. The

downside of not expanding all functions is that the summarization of call sites potentially

creates larger SCCs and forces the partitioner to allocate the entire function to a single

thread rather than among multiple threads. Techniques that summarize operations at a

granularity chosen by the compiler, particularly dependence chains, would also reduce the

number of edges in the iPDG, while the retaining information needed for parallelization.

Finally, even though the 186.crafty parallelization for the Search function is

the same, the performance extracted is much lower because VELOCITY does not cur-

119

rently support parallelizing loops inside loops that are already parallelized. Thus, only

one loop could be parallelized, leading to execution time that is heavily biased to only a

few iterations in the loop. This limitation also results in reduced performance potential in

181.mcf.

Even with these difficulties, targeting a 32 core system, a speedup of 3.64x was achieved

by changing only 38 out of more than 100,000 lines of code. As the manual parallelizations

show, the speedups obtained are not an upper bound. Indeed, there are many inner loops

that have not yet been parallelized.

Benchmark # Threads Speedup Historic Speedup Ratio

164.gzip 32 20.61 5.38 3.83

175.vpr 14 2.37 2.43 0.98

181.mcf 9 1.74 2.09 0.83

186.crafty 10 1.14 2.17 0.52

197.parser 32 13.98 5.38 2.60

256.bzip2 14 5.66 2.43 2.82

300.twolf 5 1.10 1.72 0.64

GeoMean 3.24 2.80 1.16

ArithMean 16.58 3.09

Table 5.3: The minimum # of threads at which the maximum speedup occurred. Assuming

a 1.4x speedup per doubling of cores, the Historic Speedup column gives the speedup

needed to maintain existing performance trends. The final column gives the ratio of actual

speedup to expected speedup.

Table 5.3 presents the actual VELOCITY numbers for Figure 5.18 and 5.19. Addition-

ally, the Historic Speedup is given, which details the expected performance increase for the

number of transistors used. While there are no statistics that directly relate the doubling

of cores to performance improvement, historically, the number of transistors on a chip has

doubled approximately every 18 months, while performance has doubled approximately

every 36 months. Assuming that all new transistors are used to place new cores on a chip,

each doubling of cores must yield approximately 1.4x speedup to maintain existing perfor-

mance trends. Thus, the Historic Speedup column represents the expected speedup for the

number of threads, calculated as 1.4log2(#Threads). The final column gives the ratio of the

actual performance improvement to that required to maintain the 1.4x speedup. The overall

120

performance improvement indicates that sufficient parallelism can be extracted to use the

resources of current and future many-core processors.

121

Chapter 6

Conclusions and Future Directions

Multi-core processors have already severely challenged computer architecture. Unless

compilers begin automatically extracting parallelism, multi-core processors also promise to

significantly increase the burden on programmers. Relying on the programmer to correctly

build large parallel programs is not a tenable solution as programming is already a complex

process and making it harder is not a way forward. Additionally, this solution does not

address the large body of legacy sequential codes. This dissertation shows that automatic

extraction of parallelism is possible for many of the benchmarks in the SPEC CINT2000

benchmark suite and is a viable methodology to continuing existing performance trends for

legacy sequential codes.

This dissertation has proposed and built a new parallelization framework, designed to

extract parallelism from general-purpose programs. It has combined existing Piplined-

Multi Threading techniques, including DSWP, PS-DSWP, and SpecDSWP along with a

novel interprocedural scope extension to form iSpecPS-DSWP. This technique, along with

existing analyisis and optimization techniques, can be used to extract large amounts of

parallelism. For those applications that are not parallelized by this framework, this disser-

tation proposes simple additions to the standard sequential programming model that allow

the framework to parallelize them. In particular, the SPEC CINT2000 benchmark suite

122

was used as a case study to show that this framework and programming model can be ap-

plied to many applications. This allows a software developer to develop in a sequential

programming model, but still obtain parallel performance. In an initial implementation, the

VELOCITY compiler obtained a speedup of 3.64x modifying only a few dozen lines out

of one hundred thousand.

6.1 Future Directions

Potential future research based on this dissertation is focused on making it easier for au-

tomatic tools to extract parallelism from larger regions, in both sequential and parallel

programs, while minimizing the burden placed on the programmer.

The ability to express non-determinism in a sequential programming language is a pow-

erful technique that can be leveraged to facilitate parallelism in many applications, not just

those in the SPEC CINT2000 benchmark suite. A base set of annotations useful across

a wide variety of application domains should be enumerated by studying more applica-

tions. While these non-deterministic annotations are simpler than the use of locks and

other parallel constructs, they still increase programmer overhead because they cannot be

statically checked for correctness. Additional research into program analysis and annota-

tions can help programmers identify how the non-determinism introduced by annotations

affects program output or other aspects of program execution.

In addition to static compilation frameworks that can extract parallelism using these

annotations, dynamic compilation frameworks can potentially extract more parallelism.

Dynamic compilation systems have many useful properties, particularly profile information

relevant to the current run and often better debugging information. The former is useful

to facilitate better speculation, which often relies on expensive and potentially inaccurate

static profiling. The latter is particularly important for automatic parallelization, as the

programmer may not realize that the compiler has parallelized the program and yet needs

123

to debug a multi-threaded program. As the number of cores on a processor grows, it also

becomes more feasible to set aside one (or even several) cores specifically for the purpose

of dynamically optimizing a program. Balancing this process with a running application

will be an interesting area of future research.

Beyond sequential programs and runtime systems, there are many parallel programs

that have and will continue to been written, both because the parallel programming paradigm

sometimes matches the programming domain, as in hardware simulation, or because pro-

grammers feel that that they can extract the parallelism. For the former, the conceptual

parallelism of the programming domain will only rarely match that of the underlying ar-

chitecture, making it necessary to re-parallelize the application to aggressively utilize the

underlying resources. For the latter, retargeting the program to a new architecture often

entails significant rewriting of code to extract equivalent performance on a new machine.

Finally, as multicore machines approach 10s or 100s of processors, even parallel program-

ming models will need to rely on automatic thread extraction techniques to enable good

performance. Because of these factors, research should continue into the application of

automatic thread extraction techniques not just to sequential programs, but also to parallel

programs as well.

124

Bibliography

[1] Message Passing Interface (MPI). http://www.mpi-forum.org.

[2] OpenMP. http://openmp.org.

[3] Parallel BZIP2 (PBZIP2) Data Compression Software. http://compression.

ca/pbzip2.

[4] Standard Performance Evaluation Corporation (SPEC). http://www.spec.

org.

[5] Haitham Akkary and Michael A. Driscoll. A Dynamic Multithreading Processor.

International Symposium on Microarchitecture, pages 226–236, Dallas, Texas, De-

cember 1998.

[6] Ronald D. Barnes, Shane Ryoo, and Wen-mei W. Hwu. “Flea-Flicker” Multipass

Pipelining: An Alternative to the High-Powered Out-of-Order Offense. International

Symposium on Microarchitecture, pages 319–330, Barcelona, Spain, November 2005.

[7] D. Baxter, R. Mirchandaney, and J. H. Saltz. Run-Time Parallelization and Schedul-

ing of Loops. Symposium on Parallel Algorithms and Architectures, pages 303–312,

Santa Fe, New Mexico, June 1989.

[8] William Blume, Ramon Doallo, Rudolf Eigenmann, John Grout, Jay Hoeflinger,

Thomas Lawrence, Jaejin Lee, David Padua, Yunheung Paek, Bill Pottenger,

125

Lawrence Rauchwerger, and Peng Tu. Parallel Programming with Polaris. Computer,

29(12):78–82, December 1996.

[9] Matthew J. Bridges, Neil Vachharajani, Yun Zhang, and David I. August. Revisit-

ing the Sequential Programming Model for Multi-Core. International Symposium on

Microarchitecture, Chicago, Illinois, December 2007.

[10] Matthew J. Bridges, Neil Vachharajani, Yun Zhang, and David I. August. Revisiting

the Sequential Programming Model for the MultiCore Era. IEEE Micro, January

2008.

[11] Michael Burke and Ron Cytron. Interprocedural Dependence Analysis and Paral-

lelization. Symposium on Compiler Construction, pages 162–175, Palo Alto, Califor-

nia, October 1986.

[12] Brian D. Carlstrom, Austen McDonald, Hassan Chafi, JaeWoong Chung, Chi Cao

Minh, Christos Kozyrakis, and Kunle Olukotun. The Atomos Transactional Program-

ming Language. Programming Language Design and Implementation, pages 1–13,

Ottawa, Canada, June 2006.

[13] R. S. Chappel, J. Stark, S. P. Kim, S. K. Reinhardt, and Y. N. Patt. Simultaneous

Subordinate Microthreading. International Symposium on Computer Architecture,

pages 186–195, Atlanta, Georgia, May 1999.

[14] Ben-Chung Cheng and Wen-mei W. Hwu. Modular Interprocedural Pointer Anal-

ysis Using Access Paths: Design, Implementation, and Evaluation. Programming

Language Design and Implementation, pages 57–69, Vancouver, Canada, June 2000.

[15] J. D. Collins, H. Wang, D. M. Tullsen, C. Hughes, Y. Lee, D. Lavery, and J. P. Shen.

Speculative Precomputation: Long-Range Prefetching of Delinquent Loads. Interna-

tional Symposium on Computer Architecture, Anchorage, Alaska, May 2002.

126

[16] James C. Corbett. Evaluating Deadlock Detection Methods for Concurrent Software.

IEEE Transactions on Software Engineering, 22(3):161–180, 1996.

[17] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. The

MIT Press and McGraw-Hill, 1990.

[18] R. Cytron. DOACROSS: Beyond Vectorization for Multiprocessors. International

Conference on Parallel Programming, pages 836–884, University Park, Pennsylvania,

August 1986.

[19] James Russell Beckman Davies. Parallel Loop Constructs for Multiprocessors. Mas-

ter’s Thesis, Department of Computer Science, Department of Computer Science,

University of Illinois, Urbana-Champaign, UIUCDCS-R-81-1070, University of Illi-

nois, Urbana, IL, May 1981.

[20] Claudio Demartini, Radu Iosif, and Riccardo Sisto. A Deadlock Detection Tool for

Concurrent Java Programs. Software: Practice and Experience, 29(7):577–603, John

Wiley & Sons, 1999.

[21] Chen Ding, Xipeng Shen, Kirk Kelsey, Chris Tice, Ruke Huang, and Chengliang

Zhang. Software Behavior Oriented Parallelization. Programming Language Design

and Implementation, San Diego, California, June 2007.

[22] Zhao-Hui Du, Chu-Cheow Lim, Xiao-Feng Li, Chen Yang, Qingyu Zhao, and Tin-

Fook Ngai. A Cost-Driven Compilation Framework for Speculative Parallelization

of Sequential Programs. Programming Language Design and Implementation, pages

71–81, Washington, D.C. June 2004.

[23] Perry A. Emrath and David A. Padua. Automatic Detection of Nondeterminacy in

Parallel Programs. Workshop on Parallel and Distributed Debugging, pages 89–99,

1988.

127

[24] Stephane Eranian. Perfmon: LInux Performance Monitoring for IA-64. http:

//www.hpl.hp.com/research/linux/perfmon, Hewlett-Packard Labo-

ratories, 2003.

[25] J. Ferrante, K. J. Ottenstein, and J. D. Warren. The Program Dependence Graph and

Its Use in Optimization. ACM Transactions on Programming Languages and Systems,

9:319-349, July 1987.

[26] Matteo Frigo, Charles E. Leiserson, and Keith H. Randall. The Implementation of

the Cilk-5 Multithreaded Language. Programming Language Design and Implemen-

tation, pages 212–223, Montréal, Canada, June 1998.

[27] Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to

the Theory of NP-Completeness. W. H. Freeman & Co. New York, NY, 1979.

[28] Marı́a Jesús Garzarán, Milos Prvulovic, José Marı́a Llaberı́a, Vı́ctor Viñals, Lawrence

Rauchwerger, and Josep Torrellas. Tradeoffs in Buffering Speculative Memory State

for Thread-Level Speculation in Multiprocessors. ACM Transactions on Architecture

Code Optimization, 2(3):247–279, 2005.

[29] Michael I. Gordon, William Thies, Michal Karczmarek, Jasper Lin, Ali S. Meli, An-

drew A. Lamb, Chris Leger, Jeremy Wong, Henry Hoffmann, David Maze, and Saman

Amarasinghe. A Stream Compiler for Communication-Exposed Architectures. In-

ternational Conference on Architectural Support for Programming Languages and

Operating Systems, pages 291–303, San Jose, California, October 2002.

[30] Dan Grossman, Jeremy Manson, and William Pugh. What Do High-Level Memory

Models Mean for Transactions? Workshop on Memory System Performance and

Correctness, pages 62–69, San Jose, California, 2006.

[31] Bolei Guo, Matthew J. Bridges, Spyridon Triantafyllis, Guilherme Ottoni, Easwaran

Raman, and David I. August. Practical and Accurate Low-Level Pointer Analysis.

128

International Symposium on Code Generation and Optimization, San Jose, California,

March 2005.

[32] Mary W. Hall, Saman P. Amarasinghe, Brian R. Murphy, Shih-Wei Liao, and Monica

S. Lam. Interprocedural Parallelization Analysis in SUIF. ACM Transactions on

Programming Languages and Systems, 27(4):662–731, 2005.

[33] Lance Hammond, Benedict A. Hubbert, Michael Siu, Manohar K. Prabhu, Michael

Chen, and Kunle Olukotun. The Stanford Hydra CMP. IEEE Micro, 20(2):71–84,

2000.

[34] Richard E. Hank, Wen-mei W. Hwu, and B. Ramakrishna Rau. Region-Based Com-

pilation: An Introduction and Motivation. International Symposium on Microarchi-

tecture, pages 158-168, Ann Arbor, Michigan, December 1995.

[35] Susan Horwitz, Thomas Reps, and David Binkley. Interprocedural Slicing Using

Dependence Graphs. ACM Transactions on Programming Languages and Systems,

12(1), 1990.

[36] Intel Corporation. Intel New Processor Generations. Intel Corpora-

tion. http://www.intel.com/pressroom/archive/releases/

Intel New Processor Generations.pdf.

[37] Intel Corporation. PRESS KIT – Moore’s Law 40th Anniversary. Intel Corpora-

tion. http://www.intel.com/pressroom/kits/events/moores law

40th.

[38] Ken Kennedy and Kathryn S. McKinley. Maximizing Loop Parallelism and Improv-

ing Data Locality Via Loop Fusion and Distribution. Workshop on Languages and

Compilers for Parallel Computing, pages 301–320, Ithaca, New York, August 1994.

129

[39] Hammond, Lance, Carlstrom, Brian D., Wong, Vicky, Chen, Mike, Kozyrakis, Chris-

tos, and Olukotun, Kunle. Transactional Coherence and Consistency: Simplifying

Parallel Hardware and Software. IEEE Micro, 24(6), Nov-Dec 2004.

[40] Kevin M. Lepak and Mikko H. Lipasti. Silent Stores for Free. International Sympo-

sium on Microarchitecture, pages 22–31, Monterey, California, December 2000.

[41] Zhiyuan Li. Array Privatization for Parallel Execution of Loops. International

Conference on Supercomputing, pages 313–322, Minneapolis, Minnesota, November

1992.

[42] Zhiyuan Li and Pen-Chung Yew. Efficient Interprocedural Analysis for Program Par-

allelization and Restructuring. Conference on Parallel Programming: Experience

with Applications, Languages and Systems, pages 85–99, New Haven, Connecticut,

July 1988.

[43] Shih-Wei Liao, Amer Diwan, Robert P. Bosch Jr., Anwar M. Ghuloum, and Monica

S. Lam. SUIF Explorer: An Interactive and Interprocedural Parallelizer. Symposium

on Principles and Practice of Parallel Programming, pages 37-48, Atlanta, Georgia,

May 1999.

[44] Hongtao Zhong, Steven A. Lieberman, and Scott A. Mahlke. Extending Multicore

Architectures to Exploit Hybrid Parallelism in Single-Thread Applications. Interna-

tional Symposium on High-Performance Computer Architecture, Phoenix, Arizona,

February 2007.

[45] J. T. Lim, A. R. Hurson, K. Kavi, and B. Lee. A Loop Allocation Policy for

DOACROSS Loops. Symposium on Parallel and Distributed Processing, pages 240–

249, New Orleans, Louisiana, October 1996.

[46] M. H. Lipasti and J. P. Shen. Exceeding the Dataflow Limit Via Value Prediction.

130

International Symposium on Microarchitecture, pages 226–237, Paris, France, De-

cember 1996.

[47] Glenn R. Luecke, Yan Zou, James Coyle, Jim Hoekstra, and Marina Kraeva. Dead-

lock Detection in MPI Programs. Concurrency and Computation: Practice and Ex-

perience, 14(11):911–932, John Wiley & Sons, 2002.

[48] S. F. Lundstorm and G. H. Barnes. A Controllable MIMD Architecture. International

Conference on Parallel Programming, pages 19–27, 1980.

[49] Scott A. Mahlke, W. Y. Chen, J. C. Gyllenhaal, Wen-mei W. Hwu, P. P. Chang, and T.

Kiyohara. Compiler Code Transformations for Superscalar-Based High-Performance

Systems. International Conference on Supercomputing, pages 808–817, Minneapolis,

Minnesota, November 1992.

[50] Steven S. Muchnick. Advanced Compiler Design and Implementation. Morgan-

Kaufmann Publishers, San Francisco, CA, 1997.

[51] O. Mutlu, J. Stark, C. Wilkerson, and Y. N. Patt. Runahead Execution: An Alternative

to Very Large Instruction Windows for Out-of-Order Processors. International Sym-

posium on High-Performance Computer Architecture, Anaheim, California, February

2003.

[52] Eugene W. Myers. A Precise Inter-Procedural Data Flow Algorithm. Symposium

on Principles of Programming Languages, pages 219–230, Williamsburg, Virginia,

January 1981.

[53] E. M. Nystrom, H.-S. Kim, and Wen-mei W. Hwu. Bottom-Up and Top-Down

Context-Sensitive Summary-Based Pointer Analysis. Static Analysis Symposium,

Verona, Italy, August 2004.

131

[54] Guilherme Ottoni and David I. August. Communication Optimizations for Global

Multi-Threaded Instruction Scheduling. International Conference on Architectural

Support for Programming Languages and Operating Systems, pages 222-232, Seattle,

Washington, March 2008.

[55] Guilherme Ottoni, Ram Rangan, Adam Stoler, and David I. August. Automatic

Thread Extraction with Decoupled Software Pipelining. International Symposium

on Microarchitecture, pages 105–116, Barcelona, Spain, November 2005.

[56] Guilherme Ottoni, Ram Rangan, Adam Stoler, Matthew J. Bridges, and David I. Au-

gust. From Sequential Programs to Concurrent Threads. IEEE Computer Architecture

Letters, 4, June 2005.

[57] David A. Padua. Multiprocessors: Discussion of Some Theoretical and Practical

Problems. Ph.D. Thesis, Department of Computer Science, Department of Computer

Science, University of Illinois, Urbana-Champaign, UIUCDCS-R-79-990, University

of Illinois, Urbana, IL, November 1979.

[58] J. R. C. Patterson. Accurate Static Branch Prediction By Value Range Propagation.

Programming Language Design and Implementation, pages 67-78, La Jolla, Califor-

nia, June 1995.

[59] Manohar K. Prabhu and Kunle Olukotun. Exposing Speculative Thread Parallelism in

SPEC2000. Symposium on Principles and Practice of Parallel Programming, pages

142–152, Chicago, Illinois, July 2005.

[60] Zach Purser, Karthik Sundaramoorthy, and Eric Rotenberg. A Study of Slipstream

Processors. International Symposium on Microarchitecture, pages 269–280, Mon-

terey, California, December 2000.

[61] Easwaran Raman, Guilherme Ottoni, Arun Raman, Matthew J. Bridges, and David I.

132

August. Parallel-Stage Decoupled Software Pipelining. International Symposium on

Code Generation and Optimization, Boston, Massachusetts, April 2008.

[62] Ram Rangan. Pipelined Multithreading Transformations and Support Mechanisms.

Ph.D. Thesis, Department of Computer Science, Princeton University, Princeton, NJ,

United States, June 2007.

[63] Ram Rangan, Neil Vachharajani, Manish Vachharajani, and David I. August. Decou-

pled Software Pipelining with the Synchronization Array. International Conference

on Parallel Architectures and Compilation Techniques, pages 177–188, Antibes Juan-

les-Pins, France, September 2004.

[64] Lawrence Rauchwerger and David Padua. The LRPD Test: Speculative Run-Time

Parallelization of Loops with Privatization and Reduction Parallelization. ACM SIG-

PLAN Notices, 30(6):218–232, 1995.

[65] Rajwar, Ravi and Goodman, James R. Transactional Execution: Toward Reliable,

High-Performance Multithreading. IEEE Micro, 23(6):117-125, Nov-Dec 2003.

[66] Thomas Reps, Susan Horwitz, Mooly Sagiv, and Genevieve Rosay. Speeding Up

Slicing. Symposium on Foundations of Software Engineering, pages 11–20, New

Orleans, Louisiana, December 1994.

[67] Martin C. Rinard and Pedro C. Diniz. Commutativity Analysis: A New Analysis

Framework for Parallelizing Compilers. Programming Language Design and Imple-

mentation, Philadelphia, Pennsylvania, May 1996.

[68] Stefan Savage, Michael Burrows, Greg Nelson, Patrick Sobalvarro, and Thomas An-

derson. Eraser: A Dynamic Data Race Detector for Multithreaded Programs. ACM

Transactions on Computer Systems, 15(4):391–411, 1997.

133

[69] John W. Sias, Sain-Zee Ueng, Geoff A. Kent, Ian M. Steiner, Erik M. Nystrom, and

Wen-mei W. Hwu. Field-Testing IMPACT EPIC Research Results in Itanium 2. In-

ternational Symposium on Computer Architecture, Munich, Germany, June 2004.

[70] Jeff Da Silva and J. Gregory Steffan. A Probabilistic Pointer Analysis for Speculative

Optimizations. International Conference on Architectural Support for Programming

Languages and Operating Systems, pages 416–425, San Jose, California, October

2006.

[71] Gurindar S. Sohi, Scott E. Breach, and T. N. Vijaykumar. Multiscalar Processors.

International Symposium on Computer Architecture, pages 414–425, S. Margherita

Ligure, Italy, June 1995.

[72] J. Gregory Steffan, Christopher Colohan, Antonia Zhai, and Todd C. Mowry. The

STAMPede Approach to Thread-Level Speculation. ACM Transactions on Computer

Systems, 23(3):253–300, 2005.

[73] Hong-Men Su and Pen-Chung Yew. Efficient DOACROSS Execution on Distributed

Shared-Memory Multiprocessors. International Conference on Supercomputing,

pages 842–853, Albuquerque, New Mexico, November 1991.

[74] Toshio Suganuma, Toshiaki Yasue, and Toshio Nakatani. A Region-Based Compi-

lation Technique for a Java Just-in-Time Compiler. Programming Language Design

and Implementation, pages 312–323, San Diego, California, June 2003.

[75] Motoyasu Takabatake, Hiroki Honda, and Toshitsugu Yuba. Performance Measure-

ments on Sandglass-Type Parallelization of DOACROSS Loops. International Con-

ference on High-Performance Computing and Networking, pages 663–672, Amster-

dam, The Netherlands, April 1999.

[76] Robert E. Tarjan. Depth-First Search and Linear Graph Algorithms. SIAM Journal

on Computing, 1(2):146-160, 1972.

134

[77] William Thies, Vikram Chandrasekhar, and Saman Amarasinghe. A Practical Ap-

proach to Exploiting Coarse-Grained Pipeline Parallelism in C Programs. Interna-

tional Symposium on Microarchitecture, Chicago, Illinois, December 2007.

[78] William Thies, Michal Karczmarek, and Saman Amarasinghe. StreamIt: A Language

for Streaming Applications. Symposium on Compiler Construction, Grenoble, France,

April 2002.

[79] Spyros Triantafyllis, Matthew J. Bridges, Easwaran Raman, Guilherme Ottoni, and

David I. August. A Framework for Unrestricted Whole-Program Optimization. Pro-

gramming Language Design and Implementation, pages 61–71, Ottawa, Canada, June

2006.

[80] Jenn-Yuan Tsai, Jian Huang, Christoffer Amlo, David J. Lilja, and Pen-Chung

Yew. The Superthreaded Processor Architecture. IEEE Transactions on Computing,

48(9):881–902, 1999.

[81] Peng Tu and David A. Padua. Automatic Array Privatization. Compiler Optimizations

for Scalable Parallel Systems Languages, pages 247-284, 2001.

[82] Neil Vachharajani, Ram Rangan, Easwaran Raman, Matthew J. Bridges, Guilherme

Ottoni, and David I. August. Speculative Decoupled Software Pipelining. Inter-

national Conference on Parallel Architectures and Compilation Techniques, Brasov,

Romania, September 2007.

[83] Sriram Vajapeyam and Tulika Mitra. Improving Superscalar Instruction Dispatch

and Issue By Exploiting Dynamic Code Sequences. International Symposium on

Computer Architecture, pages 1–12, Denver, Colorado, June 1997.

[84] Christoph von Praun, Luis Ceze, and Calin Caşcaval. Implicit Parallelism with Or-

dered Transactions. Symposium on Principles and Practice of Parallel Programming,

pages 79–89, San Jose, California, March 2007.

135

[85] Steven Wallace, Brad Calder, and Dean M. Tullsen. Threaded Multiple Path Execu-

tion. International Symposium on Computer Architecture, pages 238–249, Barcelona,

Spain, June 1998.

[86] Nicholas Wang, Michael Fertig, and Sanjay Patel. Y-Branches: When You Come to

a Fork in the Road, Take It. International Conference on Parallel Architectures and

Compilation Techniques, pages 56–67, New Orleans, Louisiana, September 2003.

[87] Tom Way, Ben Breech, and Lori Pollock. Region Formation Analysis with Demand-

Driven Inlining for Region-Based Optimization. International Conference on Paral-

lel Architectures and Compilation Techniques, pages 24, Philadelphia, Pennsylvania,

October 2000.

[88] Youfeng Wu and James R. Larus. Static Branch Frequency and Program Profile Anal-

ysis. International Symposium on Microarchitecture, pages 1–11, San Jose, Califor-

nia, November 1994.

[89] Antonia Zhai. Compiler Optimization of Value Communication for Thread-Level

Speculation. Ph.D. Thesis, School of Computer Science, Carnegie Mellon University,

Pittsburgh, PA, United States, January 2005.

[90] Antonia Zhai, J. Gregory Steffan, Christopher B. Colohan, and Todd C. Mowry.

Compiler and Hardware Support for Reducing the Synchronization of Speculative

Threads. ACM Transactions on Architecture Code Optimization, 5(1):1–33, 2008.

[91] Hongtao Zhong, Mojtaba Mehrara, Steve Lieberman, and Scott Mahlke. Uncovering

Hidden Loop Level Parallelism in Sequential Applications. International Symposium

on High-Performance Computer Architecture, Salt Lake City, Utah, February 2008.

[92] Craig Zilles and David Flint. Challenges to Providing Performance Isolation in Trans-

actional Memories. Workshop on Duplicating, Deconstructing, and Debunking, 2005.

136

