
ASAP: AUTOMATIC SPECULATIVE ACYCLIC

PARALLELIZATION FOR CLUSTERS

HANJUN KIM

A DISSERTATION

PRESENTED TO THE FACULTY

OF PRINCETON UNIVERSITY

IN CANDIDACY FOR THE DEGREE

OF DOCTOR OF PHILOSOPHY

RECOMMENDED FOR ACCEPTANCE

BY THE DEPARTMENT OF

COMPUTER SCIENCE

ADVISOR: PROFESSOR DAVID I. AUGUST

SEPTEMBER 2013

c© Copyright by Hanjun Kim, 2013.

All Rights Reserved

Abstract

While clusters of commodity servers and switches are the most popular form of large-scale

parallel computers, many programs are not easily parallelized for clusters due to high inter-

node communication cost and lack of globally shared memory. Speculative Decoupled

Software Pipelining (Spec-DSWP) is a promising automatic parallelization technique for

clusters that speculatively partitions a loop into multiple threads that communicate in a

pipelined manner. Speculation can complement conservative static analysis, making auto-

matic parallelization more robust and applicable. Pipelining allows Spec-DSWP to spec-

ulate only rarely occurring dependences while respecting the other dependences through

communication among threads. Acyclic communication patterns in pipelining make the

parallelized programs tolerant of high communication latency of clusters. However, since

Spec-DSWP partitions a loop iteration (a transaction) into multiple sub-transactions across

multiple threads according to the pipeline stages, a special runtime system is required that

supports multi-threaded transactions (MTXs).

This dissertation proposes the Automatic Speculative Acyclic Parallelization (ASAP)

system that enables Spec-DSWP for clusters without any hardware modification. The

ASAP system supports various speculation techniques that require different validation

and communication costs, and automatically parallelizes sequential loops using the Spec-

DSWP transformation with the optimal application of the speculation techniques. The

ASAP system efficiently supports MTXs to correctly execute the speculatively transformed

programs on clusters. With synergistic combination of speculation, acyclic communication,

and runtime system support, this approach achieves or demonstrates a path to achieve scal-

able performance speedup up to 109× for a wide range of applications on clusters without

any hardware modification.

iii

Acknowledgments

First and foremost, I sincerely thank my advisor, Prof. David August, for his assistance

and support throughout my years in graduate school at Princeton. He has taught me a great

deal about research from reading papers with critical thinking and picking my research

topics to conducting my research and presenting the results. In particular, his insightful

suggestions and encouragement made me continue my research especially when I felt dif-

ficulty in building the proposed system in this dissertation.

I sincerely thank the members of my dissertation committee, Prof. Kai Li, Prof. David

Wentzlaff, Prof. Shard Malik, and Prof. Jaswinder Singh. In particular, I thank my advisor

and my readers, Prof. Kai Li and Prof. David Wentzlaff, for carefully reading this disserta-

tion and providing insightful and detail comments. Their collective wisdom and feedback

have improved this dissertation. I thank Prof. Shard Malik and Prof. Jaswinder Singh for

serving on my committee and for their support and feedback.

This dissertation would not be possible without the support of the Liberty research

group, including Arun, Yun, Tom, Prakash, Jialu, Jack, Nick, Thomas, Feng, Stephen,

Taewook, Deep, Matt, Jordan, and Hao. Tom, Prakash, and Nick have greatly contributed to

the LLVM liberty compiler that is used in this research, and I thank for both their friendship

and support. I also specially and sincerely thank my closest collaborators, Arun, Nick, and

Jae. Many of the ideas described in this dissertation from the compiler to the runtime

system were made and refined through long discussions with them over the years. I thank

Taewook for many interesting discussions on my future research topics.

I would like to thank Intel Corporation and Siebel Scholars Foundation for supporting

my work with the Graduate Research Fellowship and the Siebel Scholars Program. I also

want to acknowledge that the evaluation in this dissertation was performed on computa-

tional resources supported by the PICSciE-OIT High Performance Computing Center and

Visualization Laboratory.

I have been fortunate to have had great administrative support from the entire staff of

iv

the Department of Computer Science and Princeton University. I especially thank Melissa

Lawson for her assistance on handling travel grants, fellowship applications, conference

organization, and a host of other things. She helped me be accustomed to Princeton, and

made my life in Princeton a lot easier.

Finally, I thank my friends and family. I thank my parents, my parents-in-law, my

sister Soowoo, and my brother-in-law Hyukmin for their support throughout this process

with their love and encouragement. I thank my parents again for their unconditional love,

encouragement, and confidence in me, since I was young. I cannot image how much they

sacrificed to allow me to achieve what I have today. Above all, my wife KyungSun has

my sincere thanks for her love, care, and understanding throughout not only writing of this

dissertation, but also most of my life.

v

For my lovely wife, KyungSun

vi

Contents

Abstract . iii

Acknowledgments . iv

List of Tables . x

List of Figures . xi

1 Introduction 1

1.1 Speculative Loop Parallelization with Communication Support 4

1.1.1 TLS and Spec-DSWP . 6

1.1.2 Multi-threaded Transaction . 8

1.2 Parallel Computers without Cache-Coherent Shared Memory 10

1.3 Contributions . 12

1.4 Dissertation Organization . 14

2 Related Work 15

2.1 ASAP Compiler . 15

2.2 ASAP Runtime System . 17

3 Overview of ASAP 22

3.1 ASAP Compiler . 22

3.2 ASAP Runtime . 25

3.2.1 The Execution Model . 25

3.2.2 The Runtime System Structure . 29

vii

4 ASAP Compiler 31

4.1 Profilers . 31

4.2 Parallelization Strategy Manager . 32

4.3 Speculation Manager . 33

4.4 Communication Optimizer . 36

4.5 Code Generator . 39

4.5.1 Speculative Code Generation . 39

4.5.2 Recovery Code Generation . 42

4.5.3 Pipeline Code Generation . 43

5 ASAP Runtime System 48

5.1 The MTX manager . 48

5.1.1 MTX Execution . 49

5.1.2 Recovery Overheads . 57

5.2 The Communication manager . 59

5.3 The Memory manager . 62

6 Evaluation 65

6.1 Performance Speedup . 67

6.1.1 Automatically Parallelized Benchmarks 67

6.1.2 Manually Parallelized Benchmarks 73

6.2 Comparison of Automatic and Manual Parallelization 75

6.2.1 Scalable automatic parallelization 76

6.2.2 Imprecise performance estimation 78

6.2.3 User annotation . 80

6.2.4 setjmp and longjmp . 84

6.2.5 Interprocedural partitioning . 84

6.2.6 Global variable localization . 87

viii

6.3 Comparison of DSWP and TLS . 87

6.4 Recovery Overhead . 93

6.5 Communication Overhead . 94

6.6 Tiling Optimization . 96

6.7 Energy Consumption . 96

7 Conclusion 102

ix

List of Tables

2.1 Comparison of automatic parallelization systems 17

6.1 Benchmark details . 66

6.2 Parallelization details: DOALL, Spec-DOALL, and Spec-DSWP show the

number of parallelized loops with the parallelization scheme. Mem is the

number of applied memory flow speculation, Ctrl is the number of specu-

lated branches, Obj is the number of memory flow dependences removed

by object lifetime speculation, and Read is the number of memory flow de-

pendences by read-only speculation. In communication optimization, P, B

and D stand for the number of promoted, batched and removed duplicated

function calls, respectively. Coverage shows the execution time ratio of

parallelized loops over the entire program. [A] and [M] in the benchmark

names stand for automatically and manually parallelized programs. 68

x

List of Figures

1.1 Sequential code example with three loops 2

1.2 Performance sensitivity due to memory analysis on a shared-memory ma-

chine. Details about each program are described at Chapter 6 3

1.3 PDG with profiling results and Spec-PDG based on the profiling results for

the example in Figure 1.1 . 5

1.4 DSWP keeps critical-path dependences thread-local and communication

unidirectional; thus it is tolerant to increase in communication latency. The

alphabets mean statements in Figure 1.1 and the numbers mean the iteration

counts. 8

1.5 The need for Multi-threaded Transactions (MTXs): Loop C in Figure 1.1

can be parallelized with TLS (a) and with Spec-DSWP (b). While an

atomic unit (shown as a lightly-shaded region) is confined to a single thread

in (a), it spans multiple threads in (b). The darkly-shaded regions cor-

respond to sub-transactions in an MTX. Spec-DSWP can help replicate

stages without any cross-iteration dependences to use additional cores (c). . 9

1.6 ASAP enables the widest variety of parallelization paradigms, while mak-

ing the fewest assumptions about the underlying hardware. 11

3.1 Overall ASAP system . 23

3.2 MTX execution model . 27

xi

4.1 An example of communication optimization for benchmark gemm 37

4.2 Code generation: DOALL (Loop A) . 38

4.3 Code generation: Spec-DOALL (Loop B) 41

4.4 Code generation: Spec-DSWP (Loop C) 46

5.1 MTX manager: Initial state . 49

5.2 MTX manager: Memory initialization . 50

5.3 MTX manager: Pipeline execution . 51

5.4 MTX manager: Validation . 52

5.5 MTX manager: Commit . 54

5.6 MTX manager: Rollback . 55

5.7 Misspeculation recovery overheads (ERM: Enter Recovery Mode, FLQ:

FLush Queue, SEQ: SEQuential execution, and RFP: ReFill Pipeline) . . . 58

5.8 Communication manager: Handling message queues 60

5.9 Communication manager: Handling page request 61

5.10 Communication manager: Handling signals 61

5.11 Memory layout: (a) Initial state: Only the page table of the master maps the

non-speculative pages while the others are uninitialized. (b) MTX execu-

tion: The page tables map accessed virtual address range to copied private

pages, or keep non-accessed page entry uninitialized. 63

6.1 Overall speedup on 120 core cluster (Benchmarks in the legend are ordered

from highest to lowest speedup) . 69

6.2 Performance Effect of Speculative Parallelization 70

6.3 Effects of communication optimization on 12 cores: The execution time

and the communication amount are normalized to non-optimized values.

Lower ratio means more optimized communication. 71

xii

6.4 Performance comparison between automatic parallelization and manual

parallelization for blackscholes and swaptions 77

6.5 Parallelization strategy for swaptions[A]. The white boxes are strongly

connected components (SCCs) that do not have any loop-carried depen-

dence, and the light gray box is a SCC that can be replicated across all

the threads. Each line between boxes means dependences, and blue dashed

lines are loop-carried dependences. 78

6.6 The outermost hot loop in 052.alvinn 79

6.7 Pipeline strategy for 052.alvinn[A]. All the boxes and lines have the

same meaning to Figure 6.5. The dark gray box means a SCC that has at

least one loop-carried dependence, so cannot be executed in parallel. 80

6.8 Performance comparison between automatic parallelization and manual

parallelization for 052.alvinn after modification 81

6.9 The outermost hot loop in crc32 . 81

6.10 Performance comparison between automatic parallelization with annota-

tions and manual parallelization for crc32 82

6.11 setjmp and longjmp in 130.li . 83

6.12 Hot loop in 256.bzip2 . 85

6.13 Performance speedups of Spec-DSWP and TLS using the ASAP runtime . 88

6.13 Performance speedups of Spec-DSWP and TLS using the ASAP runtime . 89

6.13 Performance speedups of Spec-DSWP and TLS using the ASAP runtime . 90

6.13 Performance speedups of Spec-DSWP and TLS using the ASAP runtime . 91

6.13 Performance speedups of Spec-DSWP and TLS using the ASAP runtime . 92

6.14 Speedup of blackscholes[A] with varying misspeculation rates 94

6.15 Bandwidth requirement for each application 95

6.16 Performance comparison between tiled and non-tiled, sequential and par-

allel programs . 97

xiii

6.17 Energy consumption of speculative parallel execution 98

6.17 Energy consumption of speculative parallel execution 99

6.17 Energy consumption of speculative parallel execution 100

xiv

Chapter 1

Introduction

Clusters of commodity servers and switches are one of the most popular large-scale parallel

computing forms to speed up the execution of programs beyond the performance achievable

on a single-board computer. While clusters provide scalable hardware resources such as

processor cores, memory, and I/O bandwidth, programs need to be parallelized to efficiently

utilize these parallel hardware resources for its performance improvement. As a result,

clusters are primarily used for scientific programs or web services, which consist of units

of work that are mostly independent.

However, extracting scalable parallelism from sequential programs on clusters is chal-

lenging for two main reasons. First, commodity clusters do not provide shared memory.

This requires the parallelizer (programmer or compiler) to identify shared data and explic-

itly insert communication primitives between producers and consumers. Second, clusters

have high inter-node communication latency. Without careful communication optimiza-

tion, the inter-node communication cost easily becomes a performance bottleneck.

There are two main strategies for scalable, efficient parallelization on clusters: parallel

programming methods and automatic parallelization methods. Explicit parallel program-

ming using a message passing protocol (e.g., MPI) is one potential solution to the problem,

but it can severely limit the programmer’s productivity by requiring a deep knowledge of

1

 a: Loop_A:
 b: for (int i=0; i<N; i++)
 c: regular[i] += foo(i);

 d: Loop_B:
 e: for (int i=0; i<N; i++) {
 f: irregular[idx[i]] += foo(i);
 g: if (irregular[idx[i]] > error)
 h: printf(“I/O operation!”);
 i: }

 j: Loop_C:
 k: while(node) {
 l: node = node->next;
 m: res = boo(node);
 n: printf(“result: %d”, res);
 o: }

Figure 1.1: Sequential code example with three loops

concurrency, domain expertise, and platform-specific performance tuning. Parallelization

APIs such as OpenMP [1] can help programmers parallelize sequential programs. Using

the APIs, the programmers annotate what and how to parallelize the sequential programs.

Then, the compiler generates parallel codes according to the annotation. However, the APIs

still require the programmers to analyze the data and control dependences of the program

to find effective parallelization strategies.

Automatic parallelization is an attractive alternative to the time-consuming, error-prone

manual parallelization. Parallelizing compilers can automatically parallelize affine loops [5,

12, 14, 47]. Loop A in Figure 1.1 shows such an example code. If a compiler proves that

all the memory variables in the body of the function foo do not alias the array regular

via inter-procedural analysis, the compiler can parallelize the loop. Therefore, the utility

of an automatic parallelizing compiler is largely determined by the quality of its memory

dependence analysis.

In some cases, static analysis may be imprecise. For example, within the function foo,

assume that there is a read from or write to the array element regular[i+M], (and the

size of the array is greater than (M+N)), where M is an input from the user. In this case,

Loop A may not be DOALL-able depending on the value of M. If M is greater than N, the

loop is DOALL-able; otherwise, it is not. Some research compilers such as SUIF [5] and

Polaris [12, 70] integrate low-cost run-time analysis capabilities to insert a small test code

to check the value of M at run-time to select either a sequential or parallel version of the

2

 10

2mm
3mm

correlation

covariance

doitgen

gramschmidt

jacobi−2d−imper

seidel
geomean

S
p

ee
d

u
p

 o
v

er
 O

ri
g

in
al

 S
eq

u
en

ti
al

Benchmark

Sequential on dynamic arrays
DOALL on static arrays
DOALL on dynamic arrays

 0

 2

 4

 6

 8

Figure 1.2: Performance sensitivity due to memory analysis on a shared-memory machine.
Details about each program are described at Chapter 6

loop accordingly. However, the coverage of these techniques is mostly restricted to the

cases when a predicate can be extracted outside the analyzed loop and a low cost run-time

test can be generated [70]. They cannot be applied to Loop B in Figure 1.1, for example,

where an index array is used to access the array irregular and a simple predicate cannot

be extracted outside the loop due to the if condition within the loop body.

Another issue with automatic parallelization is the fragility of static analysis. Fig-

ure 1.2 illustrates how fragile static analysis can be with a small change in the program. In

this example, the Liberty compiler [78] without speculation support can easily parallelize

the unmodified array-based PolyBench benchmarks [61] using static arrays. However, if

programmers replace the static arrays with dynamically allocated arrays, the replacement

does not only suppress some of the optimizations previously applied, but also blocks paral-

lelization for several benchmarks since heap objects are generally more difficult to analyze.

This shows that the optimization path and run-time performance are highly affected by how

a program is implemented.

3

Therefore, analysis-based approaches, both static and dynamic, are not sufficient for

parallelization of even array-based applications, let alone pointer-based ones, having ir-

regular memory accesses and complex control flows. Moreover, recursive data structures,

dynamic memory allocation, and frequent accesses to shared variables pose additional chal-

lenges. Imprecise, fragile static analysis has severely limited the applicability of conven-

tional automatic parallelization.

Automatic speculative parallelization [49, 52, 64, 76, 89] can overcome the limitations

of static compiler analysis. These compilers speculatively remove memory or control de-

pendences among instructions, and optimistically parallelize loops. In addition, the compil-

ers can speculatively remove irregular dependences that manifest infrequently at run-time.

Speculation complements the imprecision and the fragility of the conservative static anal-

ysis, and makes automatic parallelization more robust and applicable. For example, the

compiler can apply Speculative DOALL (Spec-DOALL) parallelization to Loop B in Fig-

ure 1.1, speculating that no cross-iteration dependence violation occurs via concurrent array

accesses and that the error condition in Line g does not happen at run-time. This approach

requires runtime support for misspeculation detection and recovery in either hardware or

software to ensure correctness.

1.1 Speculative Loop Parallelization with Communication

Support

Since misspeculation penalizes the performance, highly accurate speculation is crucial for

scalable performance. To increase speculation hit ratio, it is necessary to speculate only

rarely occurring dependences while respecting the other dependences through communica-

tion among threads.

DOALL and Spec-DOALL parallelizations partition the iteration space into groups that

are executed concurrently with no inter-thread communication. The Program Dependence

4

e

g f

h

b

c

100 100

0
0.1

100

0

100

k

m

l

n
100

100

100

100

100

100
0.1

100

Loop_A: Loop_B: Loop_C:

Control Dependence
Data Dependence
Profiling Results (%) ##

(a) PDG

e

g f

h

Control Dependence
Data Dependence

b

c

Loop_A: Loop_B:

Speculated

k

m

l

n

Loop_C:

(b) Spec-PDG

Figure 1.3: PDG with profiling results and Spec-PDG based on the profiling results for the
example in Figure 1.1

Graph (PDG) in Figure 1.3(a) shows control and memory data dependences between state-

ments for the code in Figure 1.1. Since statement c in Loop A is executed only when

the for loop condition at b is true, there is a control dependence from b to c. For the

same reason, there are control dependences from e to f and g in Loop B, and from k to

l, m and n in Loop C. Since statement h in Loop B can be executed only when the if

condition at g is true, there is a control dependence from g to h. Since different iterations

in Loop B can access the same memory address of the irregular array at f, there is a

loop carried data dependence on f. There is an intra-iteration data dependence from f to

g because g reads the updated irregular array at f in the same iteration. Due to the linked

list access, there are loop carried data dependences from l to k and l in Loop C, and an

5

intra-iteration data dependence from l to m. There is a loop carried data dependence on

m because function boo may touch the same memory space at different iterations. Due to

I/O operations, there is a loop carried data dependence on statements h and n.

If a PDG for a loop does not have inter-iteration dependences that indicated by cycles

in the graph, each iteration in the loop can be independently executed without communica-

tion, so the loop is DOALL-able. For example, Loop A is DOALL-able because its PDG

does not have inter-iteration dependences. Although Loop B is not DOALL-able due to the

two inter-iteration dependences, Loop B is Spec-DOALL-able because the inter-iteration

dependences rarely manifest according to profiling results, and compilers or programmers

can speculatively remove the dependences as shown in the Speculative PDG (Spec-PDG)

in Figure 1.3(b). Since f rarely touches the same memory space, and the if condition

at g is rarely true, the compilers or programmers can speculatively remove the depen-

dences assuming they will not occur at run-time. Loop A and Loop B can be parallelized

with DOALL and Spec-DOALL because their PDG and Spec-PDG do not have any inter-

iteration dependence.

However, not all inter-iteration dependences can be removed. Loop C in Figure 1.1 is

such an example. Speculating that boo does not modify the linked list can remove memory

dependences. However, predicting the values of node and the return values of boo on each

iteration is extremely difficult in general. The inter-iteration dependences on statement l

and statement n manifest every iteration according to the profiling results in Figure 1.3(a).

If the dependences are speculatively removed, misspeculation will occur every iteration.

The high misspeculation rate will degrade the performance, so the dependences should be

respected with communication.

1.1.1 TLS and Spec-DSWP

There are two prominent schemes in speculative parallelization that support communication

among threads: thread level speculation (TLS) [10, 58, 68, 75, 76, 90] and speculative

6

decoupled software pipelining (Spec-DSWP) [82]. Both schemes handle inter-iteration

dependences by means of communication among threads. TLS and Spec-DSWP break

only some of the inter-iteration dependences using speculation, while respecting the others.

The corresponding dependences are synchronized using communication. This approach

selectively breaks the inter-iteration dependences with high confidence, thereby resulting

in higher success rates.

Although the two techniques are comparable in applicability, Spec-DSWP provides

more robust performance than TLS because Spec-DSWP is more tolerant to increases in

inter-core communication latency. The difference is attributed to their inter-core commu-

nication patterns: TLS schedules the entire loop body iteration by iteration on alternate

threads, so it exhibits a cyclic communication pattern among threads. However, Spec-

DSWP partitions the loop body into multiple pipeline stages, and each thread executes

each stage over all iterations making an acyclic communication pattern. The pipeline orga-

nization of Spec-DSWP keeps dependence recurrences local to a thread, avoiding commu-

nication latency on the critical path of program execution.

Figure 1.4 illustrates respective execution plans and their performance on different

inter-core communication latency. Each node represents a dynamic instance of a state-

ment in Figure 1.1, where the number indicates the iteration to which it belongs. The

original sequential codes of Loop C take 4 cycles to execute an iteration. As Figure 1.4(a)

shows, ignoring the pipeline fill time, both TLS and Spec-DSWP execute the loop taking

2 cycles per iteration, so they yield a speedup of 2× using 2 threads in the steady state

when the inter-thread communication latency is one cycle. When the inter-core latency

increases from one to two cycles as in Figure 1.4(b), the speedup with TLS reduces to

1.33×, but the speedup with Spec-DSWP remains 2× in the steady state. TLS puts the

inter-core communication latency on the critical path thus negating most parallelism bene-

fits on multicore architectures, which have non-unit communication latency. In contrast to

TLS, the Spec-DSWP approach selectively allows those cycles that contain hard-to-predict

7

 n.4

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

Core 2Core 1 Core 2Core 1

k.1

m.1

n.1

m.2

m.1

n.1

m.2

m.3

1010

2 cycles/iter 2 cycles/iter
TLS Spec−DSWP

 l.1

 k.2

 l.2

 k.3

 l.3

 n.2

m.3

 n.3

m.4 m.4

 k.4

 l.4

 l.5

 k.5

 n.4 l.5

 k.5

 l.4

 k.4

 l.3

 k.3

 l.2

 k.2

 l.1

 k.1

 n.3

 n.2

(a) Comm. latency = 1 cycle

Spec−DSWP

1

0

2

3

4

5

6

7

8

Core 2Core 1 Core 1 Core 2

 k.1

 l.1

m.1

 n.1 k.2

 l.2

m.2

 n.2 k.3

 l.3

m.3

 n.3 k.4

 k.1

 l.1

 k.2

 l.2

 k.3

 l.3

 k.4

 l.4

 k.5

 l.5

m.1

 n.1

m.2

 n.2

m.3

 n.3

m.4

0

1

2

3

4

6

7

8

9

5

10

9

10

2 cycles/iter3 cycles/iter
TLS

(b) Comm. latency = 2 cycles

Figure 1.4: DSWP keeps critical-path dependences thread-local and communication uni-
directional; thus it is tolerant to increase in communication latency. The alphabets mean
statements in Figure 1.1 and the numbers mean the iteration counts.

edges to remain thread-local, and is thus not penalized by inter-core communication la-

tency [17, 41, 66, 82].

1.1.2 Multi-threaded Transaction

While Spec-DSWP shows more robust performance improvement, it requires a special run-

time system to support speculative execution. TLS and Spec-DSWP are iteration-centric

in that they remove inter-iteration dependences, so a loop iteration is the unit of atomic

work (transaction). In TLS, each loop iteration is executed by a single thread. Conse-

quently, the unit of atomic execution is single-threaded as shown as a lightly-shared box

8

0

2

3

4

5

Core 1 Core 3Core 2

l.1

m.1

n.1

l.4

m.4

l.2

m.2

n.2

l.5

l.3

m.3

n.3

1

(a) TLS

3

4

5

Core 1 Core 3Core 2

1

l.1

l.2

l.3

l.4

l.5

m.1

m.2

m.3

m.4

n.1

n.2

n.3

0

2

(b) Spec-DSWP

2

3

4

5

Core 1 Core 3Core 2 Core 4

l.1

l.2

l.3

l.4

l.5

m.1

m.3

m.2

m.4

n.1

n.2

1

0

(c) Spec-DSWP+[S, DOALL, S]

Figure 1.5: The need for Multi-threaded Transactions (MTXs): Loop C in Figure 1.1 can
be parallelized with TLS (a) and with Spec-DSWP (b). While an atomic unit (shown as
a lightly-shaded region) is confined to a single thread in (a), it spans multiple threads in
(b). The darkly-shaded regions correspond to sub-transactions in an MTX. Spec-DSWP
can help replicate stages without any cross-iteration dependences to use additional cores
(c).

in Figure 1.5(a). Conventional transactional memory or TLS runtime systems that guar-

antee single-threaded atomicity may be used to support TLS. However, in Spec-DSWP,

each loop iteration is executed in a staged manner by multiple threads, making the atomic

unit multi-threaded as shown in Figure 1.5(b). Therefore, the conventional transactional

memory systems cannot support Spec-DSWP.

To support the atomic units in Spec-DSWP, Multi-threaded Transactions (MTXs) [41,

66, 81] are required. An MTX represents an atomic set of memory accesses like its single-

threaded counterpart, but may contain many sub-transactions (subTXs) each of which is

executed by only one thread. In Figure 1.5(b), l.2, m.2 and n.2 are a MTX that has

three subTXs. The MTX runtime system executes subTXs in the original sequential pro-

gram order, and MTXs according to the sequential loop iteration order. Details about how

the ASAP system supports MTXs is described in Section 3.2. An MTX with only one

subTX degenerates to a single-threaded transaction. This allows the MTX runtime system

to implicitly support TLS in addition to Spec-DSWP.

Poor scalability of DSWP due to a limited number of and imbalance among pipeline

9

stages is not a problem. Huang et al. proposed DSWP+ that intentionally creates unbal-

anced pipeline stages to expose opportunities for scalable parallelization such as DOALL [36].

The example cannot be parallelized directly with DOALL due to the high misspeculation

rate and the poor performance. DSWP+ can extract a DOALL stage (Stage m) that accounts

for most of the execution time, and can exploit the scalability of DOALL. As more threads

are assigned to this stage, the pipeline balance naturally improves. The DSWP+[...] nota-

tion describes the hybrid parallelization technique. Within square brackets, parallelization

techniques applied to each stage are specified. The parallelized example in Figure 1.5(c) is

expressed as Spec-DSWP+[S, DOALL, S] because the loop is parallelized with the Spec-

DSWP scheme first, and then the second stage is parallelized with the DOALL scheme.

Here, S indicates a stage that is sequentially executed, whereas Spec- indicates speculation

between stages.

1.2 Parallel Computers without Cache-Coherent Shared

Memory

Despite the relative ease and simplicity of programming shared memory machines, com-

modity clusters dominate for large-scale parallel processing. A cluster node, with one or

more processor cores, typically has its own private physical memory address space and

constitutes an independent domain of cache coherence; multiple nodes communicate via

explicit message passing through I/O channels. Unlike Symmetric Multiprocessors (SMP),

clusters have scalable per-processor memory and I/O bandwidth. In addition, commod-

ity clusters have a cost advantage over cache-coherent Non-Uniform Memory Access (cc-

NUMA) multiprocessors whose cost for cache coherence in hardware increases dramat-

ically as the number of nodes increases. Because of their low cost, commodity clusters

are the most widespread example of large-scale parallel computers that enable network

services and high-performance computing today [60].

10

STM/TLS
 on

clusters

Software
TLS

TLS
Memory

Distributed
Software MTX

(This work)

Software MTX
(SMTX)

Hardware MTX
(HMTX)

Distributed IPC
Software DSM

MPI

Exploitable parallelism

DOALL DOALL,
TLS

DOALL, TLS,
Spec-DSWP

M
em

or
y

Sy
st

em
 A

ss
um

pt
io

n

Specialized
Memory

Cache-
Coherent
Shared
Memory

No
Assumptions

W
ea

ke
r a

ss
um

pt
io

n

Figure 1.6: ASAP enables the widest variety of parallelization paradigms, while making
the fewest assumptions about the underlying hardware.

Since the memory system of a cluster is physically distributed across multiple nodes

without a globally shared address space, remote data must be explicitly sent and received

between a producer-consumer pair using a message passing protocol such as MPI. The

difficulty of message passing-style programming, combined with high inter-node commu-

nication latency, has limited the use of clusters to applications such as scientific codes,

many of which have little communication and can be easily parallelized. Although dis-

tributed transactional memory systems [13, 24, 33, 42, 51, 87] can be modified to enable

TLS on clusters, they do not support MTXs and hence cannot be used by Spec-DSWP+.

Vachharajani et al. and Raman et al. proposed MTX runtime systems that support

Spec-DSWP [66, 81, 82]. However, the systems cannot run on commodity clusters be-

cause they require either hardware modification or cache-coherent shared memory. Un-

like the runtime systems, this dissertation proposes a new system that explicitly inserts

communication codes to share data between threads on distributed memory systems. To

11

overcome high communication costs of clusters, the system supports additional specula-

tion techniques that have low validation and communication overheads to achieve scalable

performance improvement.

In addition to clusters, there are emerging multicore architectures targeted for certain

workloads that discard even chip-wide cache coherence to minimize hardware cost and

maximize energy efficiency. For example, Intel’s 48-core architecture does not support

hardware cache coherence [35]. Such processors rely on explicit message passing for ef-

ficient inter-core communication and face the same programming challenges as clusters,

with the main difference being lower communication latency. A runtime system that ex-

poses additional parallelization opportunities adds great value to these platforms that lack

shared memory.

Figure 1.6 summarizes the motivation of this dissertation. This dissertation aims to

improve the applicability and scalability of parallelization technology by supporting the

widest variety of parallelization techniques while making the fewest assumptions about the

underlying hardware.

1.3 Contributions

To support MTXs on commodity clusters enabling scalable automatic parallelization, this

dissertation proposes the Automatic Speculative Acyclic Parallelization (ASAP) system

that consists of a speculative acyclic parallelizing compiler and a transaction runtime sys-

tem that supports MTXs. The ASAP compiler automatically identifies parallelizable loops

in a program via dynamic profiling runs and static dependence analysis at compile-time.

Speculation enabled by profiling and static analysis complement each other; speculation

allows the compiler to overcome the limitation of conservative static analysis while static

analysis reduces speculatively removed dependences and their validation overheads in the

transaction runtime system. The ASAP compiler provides different speculation techniques

12

that have low validation overheads, and transforms the sequential loops to Spec-DSWP

codes with optimized communication among threads.

The ASAP runtime system executes the Spec-DSWP codes on clusters without any

hardware modification. Like single-threaded transaction runtime systems, the ASAP run-

time system allows threads to speculatively execute iterations in a loop in advance, and

commit the speculative execution if they are well-speculated, or rollback the execution if

misspeculated. To support MTXs beyond single-threaded transactions, the ASAP runtime

system should provide two additional features; group transaction commit and uncommit-

ted value forwarding. Since a transaction is decomposed into multiple sub-transactions

across multiple threads in Spec-DSWP scheme, the sub-transactions must be committed

together (group transaction commit). In addition, since the sub-transactions execute multi-

ple pipeline stages on different threads as a transaction, updated values from a stage should

be forwarded to later stages on other threads (uncommitted value forwarding). With these

two additional features, the ASAP runtime system can support Spec-DSWP schemes.

With synergistic combination of speculation, acyclic communication, and runtime sys-

tem support, the ASAP system enables scalable performance improvement for a wide

range of applications on clusters without any hardware modification. The ASAP system

automatically parallelizes 17 sequential C programs for a 12-core 10-node (120 total core)

cluster without any annotation about parallelization, and achieves a geomean speedup of

8.91× with 109.5× maximum performance improvement. In addition, this dissertation

manually parallelizes 11 sequential C programs with the ASAP system, and demonstrates

a path to achieve scalable performance improvement for general-purpose applications.

This dissertation proposes the first fully automatic speculative acyclic parallelization

(ASAP) system for commodity clusters. The contributions of the dissertation are:

• The first fully automatic Spec-DSWP compiler for commodity clusters. The com-

piler supports new speculation techniques that have low communication and valida-

tion overheads, and automatically parallelizes sequential loops using the Spec-DSWP

13

scheme with the optimal application of the speculation techniques. The compiler in-

serts and optimizes communication between pipeline stages

• The first transaction runtime system that supports MTXs on clusters. The runtime

system supports group transaction commit and uncommitted value forwarding to ex-

ecute Spec-DSWP codes. The runtime system efficiently manages inter-process com-

munication and distributed memory accesses, thus enabling scalable performance for

clusters

• Synergistic combination of the ASAP compiler and the ASAP runtime system. The

co-design of the compiler and the runtime system enables various optimization tech-

niques that a stand-alone compiler or a runtime system cannot support, and realizes

scalable performance improvement for clusters with speculation techniques that have

low validation overheads.

1.4 Dissertation Organization

The dissertation introduces the ASAP system that speculatively parallelizes programs with

acyclic communication on clusters. Chapter 2 surveys related research of the ASAP sys-

tem. Chapter 3 illustrates the overall architecture and the execution model of the proposed

system. Chapter 4, in which automatic Spec-DOALL parallelization for clusters was pub-

lished in [40], describes speculation techniques and implementation of the ASAP compiler.

Chapter 5, published in [41], describes detail implementation of the ASAP runtime sys-

tem. Chapter 6 evaluates the ASAP system on a cluster and analyzes the results. Chapter 7

discusses the future work of this dissertation and summarizes the conclusion of this work.

14

Chapter 2

Related Work

The ASAP system consists of the ASAP compiler and the ASAP runtime. This chapter

describes related research of each component.

2.1 ASAP Compiler

Automatic Parallelization: Research about automatic parallelization has a long history.

Boulet et al. [15] surveys various parallelization algorithms [3, 25, 27, 28, 44, 48, 84] and

code generation techniques [7, 16, 22, 23, 37, 39, 46, 63]. The rest of this section presents

recent representative examples of automatic parallelizing compilers. Table 2.1 compares

this work with the automatic parallelization systems.

Rus et al. proposes Hybrid Analysis (HA), which exploits runtime support for depen-

dence analysis in statically indeterminate cases [70]. Although their system potentially

improves the applicability of automatic parallelization, heavyweight run-time analysis can

significantly slow down program execution because there is no overlap between the analy-

sis and the execution phases.

Campanoni et al. proposes HELIX, a new automatic loop parallelization technique

that assigns successive iterations of a loop to separate threads [19]. HELIX reduces com-

munication overheads with signal prefetching and code balancing, and achieves stable

15

performance speedups without any slowdown across thirteen C benchmarks from SPEC

CPU2000 [73] with a loop selection algorithm and a speedup model. However, its scalabil-

ity is limited to single shared memory machine, and its applicability is limited due to lack

of speculation support.

Automatic Speculative Parallelization: Traditional loop parallelization schemes such

as DOALL and DOACROSS rely on regular structure in a program [4]. These schemes

perform well for scientific programs but are less profitable for general-purpose applica-

tions, where irregular control flow and data access patterns are the norm. Some speculative

parallelization schemes, loosely classified as Thread-Level Speculation (TLS), have been

developed to mitigate this inherent irregularity [10, 68, 76, 89, 90].

There are research compilers that parallelize applications using speculation [29, 49,

52, 64, 89]. However, these compilers assume the availability of specialized hardware or

cache-coherent shared memory, and their performance is evaluated using a small number

of cores (typically fewer than 32). Software transactional memory systems have suffered

from large validation overhead [20]; consequently they may not scale to the large number of

cores. To achieve scalable performance on a large number of cores, it is crucial to optimize

communication because the commit bandwidth easily becomes a performance bottleneck.

For example, the POSH compiler [49] is capable of automatically parallelizing com-

plex, general-purpose programs, but it requires TLS hardware support; hence it cannot be

used on a commodity machines. STMlite [52, 89] is a speculative parallelization system

that consists of an automatic parallelizing compiler and a low-cost software transactional

runtime. Although STMlite can execute programs on real hardware, it is implemented and

evaluated on small-scale shared-memory machines with 8 cores, and its scalability with a

large number of cores has not been demonstrated. The ASAP system has fewer assump-

tions on the target system showing better scalability.

Automatic Parallelization for Clusters: Intel’s Cluster OpenMP [34] extends OpenMP,

a parallel programming API for shared-memory multiprocessors, to clusters with distributed

16

System Fully Applying Comm. Commodity Commodity Evaluated
Automatic Speculation b/w Threads Hardware Clusters # of Cores

Polaris [12, 70] Yes No No Yes No 8, 16
HELIX [19] Yes No Yes Yes No 6
POSH [49] Yes Yes Yes No No 4
STMlite [52, 89] Yes Yes No Yes No 8
OpenMP [1, 34] No No No Yes Yes -
SUIF [5] Yes No No Yes Yes 32
Cluster Spec-DOALL [40] Yes Yes No Yes Yes 120
ASAP [This work] Yes Yes Yes Yes Yes 120

Table 2.1: Comparison of automatic parallelization systems

memory systems. Although the Cluster OpenMP compiler transforms sequential programs

to parallel codes automatically, programmers are still required to specify what and how to

parallelize them with programmer annotations.

SUIF [5, 74] parallelizes a sequential program without any programmer annotation for

clusters. However, the applicability of SUIF is limited to array-based scientific applica-

tions, and SUIF relies on programmer hints to decompose shared data across multiple nodes

on a cluster [5]. In contrast, the ASAP system does not require any programmer annota-

tion for shared data since the ASAP runtime handles this via copy-on-access and unified

virtual address space, effectively hiding platform details. The SUIF project proposes auto-

matic speculative parallelization [57, 58], but the system requires special hardware systems

not supporting commodity clusters.

Cluster Spec-DOALL [40] speculatively parallelizes a sequential program without any

programmer annotation for clusters that have more than 100 cores. However, the compiler

does not allow communication between threads, so its applicability is limited.

2.2 ASAP Runtime System

Thread-Level Speculation (TLS): Runtime support for speculative parallelism has been

an active area of research, and there are a number of proposals including Transactional

Memories (TM) and TLS memory systems. The runtime systems track every specula-

tive memory operation within a transaction or task (i.e., region of code executed spec-

17

ulatively) to determine if any atomicity violation (in TM) or dependence violation (in

TLS) occurs at commit time. Proposals for TM or TLS memory systems can be divided

into two classes: hardware-based approaches [32, 53, 77, 85, 88] and software-only ap-

proaches [13, 24, 41, 42, 51, 52, 56, 66, 80]. Hardware-based approaches depend on special

hardware to buffer speculative state, detect misspeculation and recover from it. In contrast,

the ASAP runtime system is a software-only system that enables speculative paralleliza-

tion on commodity clusters. Software-only approaches can be further divided depending

on whether they require cache-coherent shared memory or not. Most existing proposals for

software-only speculative runtime systems target only small-scale shared-memory comput-

ers with tens of cores at most [52, 56, 66, 80].

Speculative Pipelining: Speculative pipelining schemes [17, 36, 79, 80, 82] have

many benefits over TLS. The execution model presented in this dissertation is inspired by

the success of similar models described in [17, 36, 79, 82]. Although they speculatively

remove dependences, create the pipeline structure, and extract DOALL-style parallelism in

some stages of the pipeline, they cannot be executed on most existing TM and TLS memory

systems because transactions (loop iterations) are split across multiple threads. This work

provides the runtime system that supports the speculative pipelining.

Tian et al. [80] proposed a Copy-Or-Discard (CorD) execution model for speculative

parallelization. They achieve excellent speedup (3.7× to 7.8× on 8 cores) on six bench-

marks. CorD does not support MTXs. CorD’s execution model is such that all the worker

threads and the main thread are synchronized on every iteration, putting the cross-thread

communication latency on the critical path. CorD uses a multi-threaded approach that

partitions the virtual address space. This penalizes every load and store operation by ne-

cessitating a table lookup to determine whether the object being accessed exists in the spec-

ulative worker’s memory partition. By maintaining the same virtual address space across

all workers, the ASAP runtime system can guarantee that the load/store addresses will be

valid across all of them.

18

Vachharajani et al. and Raman et al. proposed hardware MTX system (HMTX) and

software MTX systems (SMTX) to support Spec-DSWP execution [66, 81, 82]. Although

the MTX systems can execute parallelized programs with the Spec-DSWP scheme, they

cannot run on commodity clusters because they require either hardware modification or

cache-coherent shared memory. The ASAP system inserts and optimizes communication

codes for shared data, thus enabling Spec-DSWP codes to be executed on clusters. In ad-

dition, clusters have higher communication latency and lower communication bandwidth

than the MTX hardware system and cache-coherent shared memory systems, so naı̈ve ap-

plication of speculation causes high communication and validation overheads. The ASAP

system supports additional speculation techniques that have low validation and communi-

cation overheads to achieve scalable performance improvement on clusters.

Speculative Runtime Systems for Clusters: There have been proposals for TM and

TLS memory systems on clusters [13, 24, 31, 41, 42, 51, 71, 72], but only Cluster-STM [13],

DSMTX [41] and Snake-DSTM [71, 72] have demonstrated their scalability on platforms

with over 100 cores. None of these systems except DSMTX implements MTX semantics,

so they cannot execute Spec-DSWP codes. In addition, among the proposals, there is no

known automatic speculative parallelizing compiler targeting them. The ASAP system is

the first fully-automatic speculative parallelization system that supports Spec-DSWP and

scales to hundreds of cores without requiring hardware support or cache-coherent shared

memory.

Herlihy and Sun discuss a DSTM design based on global cache coherence [33], and

Zhang and Ravindran propose a location-aware distributed cache-coherence protocol [86,

87]. Their works are largely theoretical and lacks evaluation with a concrete implementa-

tion.

TM2C [31] is a distributed transactional memory system for a single machine with

non-coherent many-core processors. The system creates transactional memory threads that

grant a data access through the distributed locking to each application thread. The system

19

achieves the performance improvement on the many-core system, but it may not be scal-

able enough to support clusters beyond single machine because the system relies on low

network-on-chip communication latency.

D2STM [24] uses the Bloom Filter Certification (BFC) to reduce validation overheads

in transactional memory, but with an increase in the probability of transaction abort. The

ASAP runtime system reduces the validation overheads by keeping a separate validation

thread and comparing speculatively read and write values, so the ASAP runtime system

does not suffer from false-positive detection.

DiSTM [42] is a DSTM system which builds on Java Remote Method Invocation

(RMI). DiSTM detects and resolves conflicts at object granularity. In DiSTM, the main

node keeps the committed state of a program, and worker nodes execute transactions using

private cached data. The ASAP runtime system has a commit unit that keeps commit-

ted data, and workers which execute MTXs in their private physical memories. Although

DiSTM allows parallel commits using the multiple leases protocol, the workers are tightly

coupled through the validation/commit process because a worker cannot start the next trans-

action until the current transaction commits. By contrast, The ASAP runtime system de-

couples transaction execution from validation/commit, allowing a worker to start a new

transaction before the commit process of the current one finishes.

Distributed Multiversioning (DMV) [51] modifies a software distributed shared mem-

ory system (SDSM) to support transactions. DMV and the ASAP runtime system expose

a unified virtual address space to programs. DMV performs transaction validation and

commit at the page granularity by means of page diffing. This static batching of spatially

adjacent words may result in unnecessary diffs and excessive communication for memory

access patterns that access pages in a sparse fashion. The ASAP runtime system eliminates

this problem by performing transactional operations at the word granularity and batches up

the words according to dynamic access patterns.

Nested Parallelism in Transactional Memory: Like the ASAP runtime system, some

20

nested transactional memory [2, 9, 65, 83] can support nested speculative parallelism al-

lowing multiple threads in a transaction. In the nested transactional memory systems, write

sets in a sub-transaction are either updated directly to main memory (open nested trans-

action) or merged to their parent transaction (closed nested transaction). However, in the

ASAP runtime system, transactions are ordered, and the write sets are not only forwarded

to following sub-transactions in the same parent transaction in different threads, but also

optimistically forwarded to following sub-transactions in the same stage in different par-

ent transactions without updating main memory. Unlike closed nested transactions, the

ASAP runtime system allows that uncommitted values can be viewed by other threads

and transactions. This allows the ASAP runtime system to exploit pipeline parallelism

with sequential stages, which would be otherwise hidden. Programmers can locate fre-

quently occurring dependences into sequential stages to deliver partially updated values to

the following sub-transactions in the next iterations before commit. Unlike open nested

transactions, the ASAP runtime system can safely rollback all the misspeculated updates

in sub-transactions without causing any correctness problem because the write sets are not

updated to main memory until the parent transaction is committed.

Partitioned Global Address Space (PGAS) and Software Distributed Shared Mem-

ory (SDSM): The ASAP runtime system is influenced by PGAS [21, 26, 50] and SDSM [6].

Like PGAS and SDSM, the runtime system provides a unified virtual address space to all

threads. Like PGAS, the runtime system partitions the address space into several non-

overlapping regions each of which is associated with a different worker. However, while

PGAS is a language-based approach to concurrency in distributed systems, the runtime

system is a library-based approach which does not require code modifications. Compared

to SDSM, the runtime system is customized and optimized to support speculative parallel

execution by selectively supporting coherence through Copy-On-Access.

21

Chapter 3

Overview of ASAP

The ASAP system consists of a parallelizing compiler and a runtime system. The compiler

profiles a sequential program with a set of profilers, and parallelizes loops in the program

using the profiling results and dependence analysis. The runtime system executes the par-

allelized loops safely and efficiently on clusters.

3.1 ASAP Compiler

The compiler takes sequential C/C++ source codes as input to generate parallelized codes

targeting the ASAP runtime system. As Figure 3.1 illustrates, the compiler framework is

composed of the following components: a set of profilers, a parallelization strategy man-

ager with various dependence analyzers, a speculation manager, a communication opti-

mizer, and a code optimizer. The rest of this section briefly explains the functionality of

each component, which will be discussed in more detail in Chapter 4.

Profilers: The profilers gather dynamic information by executing the sequential code

with training input sets. More specifically, the ASAP compiler uses four profiles: control

flow profile, loop aware memory dependence profile, loop profile, and speculative priva-

tization profile. Dependence analyzers in the parallelization strategy manager use these

profiling results to apply various speculation techniques.

22

ASAP Runtime
System

Sequential
Code

Profiling Results

Speculative Pipeline Strategy

Parallelized
Loops

Inputs

Compiler

Outputs & Runtime

Loop Aware
Memory Profiler

Profilers

Control Flow Profiler

Loop Profiler Speculative Privatization
Profiler

Hot Loop Selector

Parallelization Strategy Manager

Pipeline Strategy Manager

Performance Estimator

Dependence Analyzer

Static Alias Analyzers

Speculative Alias Analyzers

Control Flow
Speculation `

Speculation Manager

Memory Flow
Speculation
Read Only
Speculation

Speculation Selector

Object Lifetime
Speculation TXIO Manager

Speculative Pipeline Strategy

Recovery Code Generator

Code Generator

Partition Code Generator

Speculative Pipeline Strategy

Communication
Batcher

Communication Optimizer

Communication
Promoter

Duplication
Remover

Figure 3.1: Overall ASAP system

23

Parallelization Strategy Manager: The parallelization strategy manager generates

speculative pipeline strategy with the dependence analyzer. The dependence analyzer cre-

ates a speculative program dependence graph (Spec-PDG) via static and speculative alias

analysis, which includes both data and control dependences. The parallelization strategy

manager controls speculative alias analyzers either to speculatively remove or to respect

inter-iteration dependences depending on target speculation hit ratio. If there is no inter-

iteration dependence without speculation in the Spec-PDG, the strategy manager makes

classical DOALL parallelization strategy. If the Spec-PDG has speculated dependence,

the strategy is speculative DOALL parallelization. If the Spec-PDG has an inter-iteration

dependence, the manager plans DSWP or Spec-DSWP parallelization for the target loop.

Speculation Manager: The speculation manager finds appropriate speculation for each

speculated dependence to reduce validation overheads. There can be various speculation

techniques to remove an inter-iteration dependence, which have different validation costs.

The speculation manager chooses the most efficient speculation technique for each spec-

ulated dependence in the Spec-PDG. If a speculated dependence is in the same stage or

does not affect the parallelization strategy due to other speculation, the manager removes

the unnecessary speculation because the speculation increases validation overheads.

Communication Optimizer: Clusters have high communication latency, so communi-

cation optimization is important to achieve scalable performance improvement. The com-

munication optimizer promotes and batches explicit message passing operations for live-

out and validation, and hoists them out from inner loops.

Code Generator: The code generator transforms the sequential loops to the speculative

parallel loops gathering all information; pipeline strategy, applied speculation techniques,

and optimized communication operations. The code generator makes partitions according

to the pipeline strategy, and inserts runtime function calls to validate speculated depen-

dences and to deliver messages between partitions. The code generator also generates

recovery codes to re-execute a misspeculated iteration, which is invoked after rollback.

24

3.2 ASAP Runtime

The parallelized loops, either with speculation or not, are executed on the ASAP runtime

system, which supports speculative memory accesses, misspeculation detection and recov-

ery, live-in and live-out handling, and process management. As a transaction runtime sys-

tem, the ASAP runtime system validates memory speculation, and manages rollbacks in

the event of misspeculation. Unlike other transaction runtime systems, the ASAP runtime

system needs to support not only Spec-DOALL and TLS, but also Spec-DSWP. The ASAP

runtime system provides two additional features; group transaction commit and uncommit-

ted value forwarding to support Spec-DSWP, in which a loop iteration (a transaction) is

partitioned into multiple partitions as sub-transactions (subTXs) forming a MTX [81].

Group Transaction Commit: All the subTXs within an MTX must commit together.

The subTXs originally belong to a transaction that is one atomic unit, so they should be

managed as one atomic unit. While each subTX should have its own private memory space

for speculative execution, all the updates should be committed together and merged as one

committed memory version.

Uncommitted Value Forwarding: Speculative stores in an earlier subTX must be visi-

ble in a later subTX within the same MTX. The runtime system should allow a later subTX

to load a stored value in an earlier subTX because the subTXs are partitioned from the

same loop iteration. Therefore, the value needs to be passed to the later subTX although

the value is not committed yet. This allows the subTXs to be synchronized, and reduces

misspeculation ratio by respecting some dependences across multiple subTXs.

3.2.1 The Execution Model

In order to support the simultaneous execution of multiple MTXs, the ASAP runtime sys-

tem creates worker processes that access to different physical memory spaces. To take

the overhead of speculation management off the critical path, the ASAP runtime system

25

creates separate commit units such as a “validator” that is responsible for validating trans-

actions and a “master” that is responsible for committing transactions. These also execute

in different physical memory spaces. The memory updates by a worker in an MTX are

forwarded to other workers that participate in the same MTX via communication channels.

Combined, the physical memories of the workers and the commit units, and the communi-

cation channel buffers allow each MTX to have the illusion of a private memory, and also

allow multiple MTXs to be outstanding in the system.

Figure 3.2 illustrates the life cycle of an MTX in the context of loop parallelization,

from initialization to commit.

MTX Initialization: The first MTX in the program is initialized with the non-speculative

memory state. This state is generated by the sequential, non-transactional code prior to the

parallel section. One option is to have each worker generate the state by redundant execu-

tion of the sequential code. However, this may result in replicated side effects. Another

option is that only the master executes the sequential, non-transactional code to generate

the initial non-speculative memory state. Each worker initializes its memory state referring

the memory of the master.

MTX Execution: All speculative loads and stores in an MTX happen in the private

memories of the workers. Stores by an earlier subTX in an MTX must be visible to loads

in a later subTX so that there is no intra-MTX misspeculation. Since subTXs are exe-

cuted by different worker processes in different memories, each worker must forward its

speculative stores to workers executing later subTXs. This uncommitted value forwarding

happens via the communication channels between processes. Since only those processes

that participate in the same MTX are connected, the number of communication channels

in the system does not grow quadratically in the number of processes. As Figure 3.2 shows

(communication boxes in workers), the uncommitted values are explicitly forwarded at the

end of a subTX. A later subTX refreshes its memory with the uncommitted values before

commencing execution.

26

Worker 2 Worker 3 Validator Master

Iter 1

Iter 2

Iter 3

Iter 4

Validate 1

Validate 2 Commit 1

Exec Execu&on	 Communica&on	

FLQ

Iter 5

Iter 3

Iter 4
Validate 3

Signaling	 Exec Misspeculated	

Worker 1

Iter 1

Iter 2

Iter 3

Iter 4

Iter 5

Iter 6

Iter 3

Iter 4

Iter 5

Iter 6

Iter 7

MTX Initialization

MTX Execution
(Iteration 1)

SEQ
Iter 2

Commit 3 Validate 4
Iter 5

MTX Validation

MTX Rollback
(Iteration 2)

MTX Committing

MTX Re-initialization

MTX Execution
(Iteration 3)

MTX Validation

MTX Committing

Figure 3.2: MTX execution model

27

The communication channels also serve to decouple the workers and the commit units.

Workers can simultaneously execute subTXs of different MTXs without waiting for valida-

tion and commit of the prior MTX. Figure 3.2 illustrates the decoupled execution. Worker

1 is executing a subTX of MTX5, while worker 2 is executing a subTX of MTX3, the

validator is validating MTX2, and the master is still committing MTX1.

MTX Validation: An MTX is deemed to be free of conflict by means of a unified value

prediction and checking mechanism. For control dependences, misspeculation is detected

if the predicted value of the branch condition does not match the actual value at run-time.

False memory dependences are automatically broken by means of memory versioning, so

there is no need to check for their manifestation. A true memory dependence between a load

and a store operation is checked by comparing the speculatively loaded value (predicted

value) with the actual value stored by the store operation when that store is ready to be

committed. This check is done by the validator. In all misspeculation cases, a signal is sent

to the master which orchestrates recovery.

MTX Committing: After all the subTXs in an MTX are deemed to be free of con-

flicts, the master commits the entire MTX atomically. Through the same mechanism as

uncommitted value forwarding, all stores in subTXs are forwarded from the workers to the

master. The master commits the subTXs in a transaction by updating its memory with the

forwarded values. The updates are done in order of subTX (which is the program order);

if a memory location is updated in two different subTXs, the last update takes effect. This

is how the MTX runtime system supports group transaction commit. Reiterating, since the

master’s operations are decoupled from the worker processes by means of the communica-

tion channels, the overhead of commit does not impact the workers’ execution.

MTX Rollback: When an MTX is detected to conflict with an earlier MTX, it must be

re-executed. Figure 3.2 illustrates how the ASAP runtime system recovers misspeculated

states. First, in the event of a conflict between MTXs, the master signals the workers to

restart the logically later MTX. After receiving the misspeculation signal, each process goes

28

into recovery mode and hits a barrier to ensure that the others have also entered recovery

mode. (Signaling in Figure 3.2) Second, each process flushes communication channels

than contains speculative state, and hit a barrier again. (FLQ in Figure 3.2) Third, all

the processes but the master discards the speculative state in their private memory spaces.

(Dashed boxes in Figure 3.2) The master executes the loop iteration corresponding to the

aborted MTX in single-threaded fashion. (SEQ in Figure 3.2) During the execution of this

iteration, the master may produce data via the communication channels to the workers; this

explains why the barrier in step two is necessary. Finally, all the processes hit a barrier to

ensure that parallel execution may recommence. The MTX runtime system is reinitialized

with the committed memory state as before, and speculative execution resumes.

3.2.2 The Runtime System Structure

The ASAP runtime system mainly consists of three components; MTX manager, commu-

nication manager, and memory manager. This section briefly introduces each component.

Detail description is presented in Chapter 5.

MTX manager: The MTX manager controls the life cycle of an MTX for each role,

from creation to commit as Figure 3.2 shows. The manager allows the workers to specu-

latively execute programs in advance, the validator to check if the speculative execution is

correct, and the master to update correctly speculated results on its memory. The manager

recovers the speculative execution if misspeculation occurs.

Communication manager: The communication manager controls all kinds of com-

munication between processes such as message passing, synchronizing processes and sig-

naling. The manager is implemented on top of MPI system [54]. Instead of directly using

MPI Send and MPI Recv, the manager batches data to transfer in local queues, and amor-

tizes the communication overheads.

Memory Manager: The memory manager handles memory related operations. First,

it provides the unified virtual address (UVA) space to each process on distributed memory

29

systems. The UVA space allows data communication without address translation. Second,

the manager supports copy-on-access (COA) mechanism that initializes a memory page

only which a worker process accesses at run-time, to reduce communication overheads

from memory initialization. For the first page access, the master copies the page from

the master to the worker. Third, the memory manager assists the MTX manager to validate

memory speculation and recovers misspeculated execution. The memory manager provides

shadow memory for speculative memory accesses that removes duplicated validation. The

MTX manager exploits the shadow memory, thus reducing validation overheads. Finally,

the manager tracks memory writes of the master process in the non-parallel region, and

checks dirty pages. At the next parallel execution, the memory manager initializes only the

dirty pages to reduce memory initialization overheads especially for nested loops.

30

Chapter 4

ASAP Compiler

The ASAP compiler automatically identifies parallelizable loops in sequential C/C++ pro-

grams, and transforms the loop to parallel codes with DOALL, Spec-DOALL, DSWP, and

Spec-DSWP parallelization scheme. The thesis implements the ASAP compiler on top

of Liberty compiler [78] and LLVM infrastructure [45]. The compiler is composed of the

following components: a set of profilers, a parallelization strategy manager that includes

various dependence analyzers, a speculation manager, a communication optimizer, and a

code optimizer. Among the components, this dissertation contributes parts of speculative

alias analyzers in parallelization strategy, speculation manager, communication optimizer,

and code generator. The dissertation uses the existing profilers and parallelization strategy

of the Liberty compiler with small modification. This section describes each component in

detail.

4.1 Profilers

The profilers execute the original sequential program with training input sets, and gathers

various dynamic information. The ASAP compiler uses four profilers in the Liberty com-

piler infrastructure; control flow profiler that collects the traversal count of every edge in

the control flow graph, loop aware memory profiler that observes the flow of values from

31

stores to loads, loop profiler that measures the execution time of each loop, and specula-

tive privatization profiler that tracks memory allocation and its usage.

4.2 Parallelization Strategy Manager

The parallelization strategy manager makes speculative pipeline strategy such as DOALL,

Spec-DOALL, DSWP, and Spec-DSWP for each loop based on profiling information and

speculative program dependence graph (Spec-PDG) from the dependence analyzer. The

ASAP compiler uses the parallelization strategy manager of the Liberty compiler infras-

tructure with additional speculative alias analyzers such as object lifetime analyzer, read

only analyzer, and TXIO analyzer that this thesis newly implements. The parallelization

strategy manager generates the strategy with four components; hot loop selector, depen-

dence analyzer, pipeline strategy manager, and performance estimator.

The hot loop selector finds hot loops that execute more than the minimum number of

iterations per invocation. The iteration number per invocation is important for the ASAP

compiler to generate a profitable parallel loop because a hot loop may suffer from huge

invocation overheads more than parallelism benefits if the loop is invoked many times but

iterates a small number of times per invocation. The hot loop selector relies on information

about loop execution time and iteration counts per invocation that the loop profiler and the

control flow profiler generate respectively.

The dependence analyzer creates Spec-PDG for the hot loops via static and specula-

tive alias analysis. Since the ASAP runtime system provides private memory spaces for

each worker process, the dependence analyzer ignores loop-carried anti- and output- depen-

dences in Spec-PDG. To support various speculation techniques, the ASAP compiler uses

three additional speculative analyzers beyond the existing analyzers such as object lifetime

analyzer for object lifetime speculation, read only analyzer for read-only speculation, and

TXIO analyzer for I/O operations in transactions.

32

The pipeline strategy manager generates pipeline plans for the hot loops using the

Spec-PDG. The pipeline strategy manager makes strongly connected components (SCCs)

from the Spec-PDG, and makes partitions for each loop [59, 82]. The SCC is a set of

instructions that participate in a dependence cycle of the Spec-PDG. A SCC is replicable

if all the instructions in the SCC do not have any side effect. If all the SCCs in a loop are

replicable, the pipeline strategy manager creates either DOALL or Spec-DOALL strategy

for the loop. If not, the manager allocates non-replicable SCCs to sequential stages, thus

making DSWP or Spec-DSWP strategy.

Finally, the performance estimator decides whether the parallelization strategy is prof-

itable or not. For example, if a two-stage pipeline strategy has a large sequential stage with

a small parallel stage, the pipeline strategy may not be scalable due to the large sequential

stage, or sometimes suffer from slowdown due to the communication costs. The perfor-

mance estimator removes the non-profitable parallelization strategies.

4.3 Speculation Manager

The speculation manager makes the optimal speculation plan for the speculative pipeline

strategy, and updates the strategy to be correctly validated and recovered without side ef-

fects. The ASAP system provides the four types of compile-time speculation techniques:

• Control Flow Speculation: The control flow profiler collects the traversal count

of every edge in the control flow graph. For each control flow edge, the profiler

computes the ratio of the number of taken times to total loop iterations. When the

ratio is smaller than a static threshold, the control flow speculation alias analyzer

marks the control flow edge as speculated, and all basic blocks that are dominated

by the edge as speculatively dead. Control speculation does not require any inter-

node communication except for misspeculation recovery, so the speculation manager

preferentially applies control speculation over the other forms of speculation.

33

• Memory Flow Speculation: Memory flow speculation relies on the loop aware

memory profiler which observes the flow of values from stores to loads. This in-

formation is stronger than alias information because two memory operations may

alias even when there is no flow between the operations. The memory flow specu-

lation alias analyzer identifies loop-carried memory flow dependences which occur

less frequently than a static threshold, and marks them as speculated. No speculation

is applied to intra-iteration memory flow dependences because such dependences do

not affect parallelism applicability. Inter-node communication must be inserted to

detect a memory flow misspeculation at run-time, so memory flow speculation has

higher overhead than other speculation. To reduce validation overheads, the specu-

lation manager avoids applying the memory flow speculation if another speculation

technique is available.

• Object Lifetime Speculation: Object lifetime speculation is guided by the specula-

tive privatization profiler to identify dynamic objects that are private to a single loop

iteration. The profiler reports allocation sites whose object is not freed in the same

iteration of a loop, and deallocation sites whose object is not allocated in the same

iteration. Since updates to iteration-private objects are independent across iterations,

the object lifetime speculation alias analyzer removes inter-iteration dependences on

the private objects. In addition, the updates on the private objects are not live-out

of the loop, so the speculation manager marks memory writes on private objects as

non-live-out, and reduces the amount of inter-node communication. Specialized ver-

sions of malloc and free automatically test for misspeculation without inter-node

communication.

• Read Only Speculation: The speculative privatization profiler also provides mem-

ory access patterns for a memory allocation unit. If a memory allocation unit is not

written at all in a loop, the read only speculation can assume that the allocated mem-

34

ory is not changed in the loop, and speculatively remove all the memory dependences

from and to the memory space. Speculation can be validated without inter-node com-

munication by tracking all the memory write addresses.

Speculation removes inter-iteration dependences that are unlikely to manifest at run-

time, to increase parallelism opportunities. Since the dependences are optimistically re-

moved without static proof, the ASAP runtime system should validate the speculated

dependences at run-time for correct execution, and the validation operation affects the

overall performance. An inter-iteration dependence can be removed with multiple spec-

ulation techniques that have different validation costs. Among the available speculation

techniques, the speculation selector chooses the most efficient speculation technique to

minimize the validation overheads, and makes the optimal speculation plan. For exam-

ple, since validation of the memory flow speculation is the most expensive among the four

available speculation techniques, the selector chooses other speculation techniques if ap-

plicable. Since control flow speculation can speculatively remove all the instructions that

are dominated by speculated control flow edge, the selector priorly applies control flow

speculation.

It addition, the selector removes unnecessary speculation. For example, although a

memory inter-iteration dependence between two instructions is speculatively removed, the

two instructions may be located in the same sequential stage due to other dependences. If

a speculation does not affect parallelization structure, the speculation selector removes the

dependences from speculation sets to reduce validation overheads.

The TXIO manager enables speculation on loops that may have side-effective instruc-

tions like I/O operations. If a loop has an instruction with side effects, it is difficult to apply

speculation to the loop because the side effects may not be recovered. The TXIO manager

resolves the problem and allows the ASAP compiler to speculatively parallelize the loop,

delaying the execution of the side effective instructions after commits.

35

4.4 Communication Optimizer

When scaling the ASAP system to a large number of cores, the limited communication

bandwidth becomes a bottleneck of the whole system. Minimizing the number of mes-

sages and volume of communication between processes is crucial for scalable performance.

In many programs, memory operations within inner loops of a parallelized loop claim the

largest portion of the communication bandwidth to handle live-out and speculative memory

accesses. To reduce the amount of communication generated by the inner loops, the com-

munication optimizer performs three optimizations: promotion, batching, and duplication

reduction.

When validating a memory access in a speculative iteration, the validator calls specStore

function to reflect the memory update to the validator’s memory version, and specLoad

function to check if the memory access reads the correct version. Within a single transac-

tion, multiple accesses to the same address cause redundant communication; only the first

load from and the last store to the address affect the validation result. Exploiting this fea-

ture, the communication promoter hoists function calls to specStore and specLoad

out of the inner loop to the loop preheader and loop exits respectively, if the target memory

address is loop-invariant. Unlike conventional store/load promotion, this optimization is

insensitive to the existence of other instructions that may overwrite or reload the same ad-

dress, because only the first load and the last store within a transaction matter for validation.

Similarly, calls to produce for live-outs can be moved to the inner loop’s exits.

The service bandwidth is limited not only by the communication volume in bytes but

also by the number of messages. Batching is optimization which gathers dense reads from

or writes to a chunk of memory into a single jumbo read or write. The communication

batcher is applicable to memory operations in a counted inner loop whose pointer operands

are induction variables of the inner loop. If applicable, the batcher removes the calls to

specStore (specLoad) from the inner loop, and places the calls to specStoreRange

(specLoadRange) after (before) the inner loop. In this way, the ASAP runtime system

36

for(i=0; i<ni; i++) { // Loop i
 for(j=0; j<nj; j++) { // Loop j
 specLoad(&C[i][j]);
 C[i][j] *= beta;
 specStore(&C[i][j]);
 for(k=0; k<nk; ++k) { // Loop k
 specLoad(&C[i][j]);
 C[i][j] += alpha*A[i][k]*B[k][j];
 specStore(&C[i][j]);
 }
 }
}

(a) Before Optimization

for(i=0; i<ni; i++) { // Loop i
 for(j=0; j<nj; j++) { // Loop j
 specLoad(&C[i][j]);
 C[i][j] *= beta;
 specStore(&C[i][j]);
 specLoad(&C[i][j]);
 for(k=0; k<nk; ++k) { // Loop k
 C[i][j] += alpha*A[i][k]*B[k][j];
 }
 specStore(&C[i][j]);
 }
}

(b) After Promotion

for(i=0; i<ni; i++) { // Loop i
 specLoadRange(&C[i][0], nj);
 specLoadRange(&C[i][0], nj);
 for(j=0; j<nj; j++) { // Loop j
 C[i][j] *= beta;
 for(k=0; k<nk; ++k) { // Loop k
 C[i][j] += alpha*A[i][k]*B[k][j];
 }
 }
 specStoreRange(&C[i][0], nj);
 specStoreRange(&C[i][0], nj);
}

(c) After Batching

for(i=0; i<ni; i++) { // Loop i
 specLoadRange(&C[i][0], nj);
 for(j=0; j<nj; j++) { // Loop j
 C[i][j] *= beta;
 for(k=0; k<nk; ++k) { // Loop k
 C[i][j] += alpha*A[i][k]*B[k][j];
 }
 }
 specStoreRange(&C[i][0], nj);
}

(d) After Removing Duplication

Figure 4.1: An example of communication optimization for benchmark gemm

can deliver the same number of bytes in fewer messages. A batched function call may be

further promoted higher in a loop nest in a way analogous to the promotion of a specu-

lative load or store. In other words, batching not only reduces the number of messages

but also exposes hidden opportunities for communication optimization by transforming

loop-variant specStore and specLoad into loop-invariant specStoreRange and

specLoadRange.

The compiler inserts validation function calls to specStore and specLoad for all

the speculative memory instructions. If multiple instructions access the same memory ad-

dress, the same values are delivered multiple times, thus increasing communication over-

heads without affecting the validation results. If one of the instructions dominates the

others, the duplication remover erases the duplicated function calls for the same memory

address. The duplication reduction is similar to promotion but different. The duplication

37

Loop_A:
// Master Process
beginInvocation(DOALL);
produceLiveIns();
consumeLiveOuts();
endInvocation();

// Worker Process
beginInvocation(DOALL);
consumeLiveIns();
for(int i=0; i<N; i++) {
 if(i%NP==tid) {
 regular[i]+=foo(i);
 produce(®ular[i]);
} }
endInvocation();

Figure 4.2: Code generation: DOALL (Loop A)

reduction erases duplicated static instructions, but the promotion moves a static instruc-

tion of an inner loop to the outer loop, and reduces duplicated dynamic instructions. The

duplication reduction removes batched or promoted function calls.

Figure 4.1 shows a real example about how the communication optimizer optimizes

communication in benchmark gemm through promotion, batching, and duplication reduc-

tion. Figure 4.1 (a) is the original codes before communication optimization. The depen-

dence analyzers cannot statically remove inter-iteration dependences on memory access

C[i][j], so they remove the dependences with memory flow speculation. The spec-

ulation manager inserted specLoad and specStore in Loop j and Loop k right

before loading and after storing C[i][j]. First, the communication promoter promotes

specLoad and specStore in Loop k to Loop j because C[i][j] is loop-invariant

to the induction variable k (Figure 4.1 (b)). Then, since j in C[i][j] is the induction

variable of Loop j, and the induction variable is increased by one, the communication

batcher batches specLoads and specStores in Loop j, and respectively changes

them to specLoadRanges and specStoreRanges with the loop iteration count nj

(Figure 4.1 (c)). Finally, the duplication remover removes duplicated validation codes on

C[i][j] because one of the validation codes dominates the others (Figure 4.1 (d)).

38

4.5 Code Generator

The code generator transforms the sequential loop to the parallel loop according to spec-

ulative pipeline strategy. The basic code generator parallelizes a loop without speculation

and partitioning. For example, Figure 4.2 shows how the basic code generator trans-

forms the example code in Figure 1.1. The parallelization strategy manager statically

proves the absence of loop-carried dependences, and creates DOALL parallelization strat-

egy for Loop A in Figure 1.1. The code generator wraps the loop with function calls

to beginInvocation and endInvocation that initialize and finalize the runtime

library for parallel execution, and inserts calls to produce and consume to explicitly

transfer register live-ins. The code generator does not initialize memory live-ins because

the ASAP runtime system initializes the memory live-ins with the copy-on-access mecha-

nism provided by the ASAP runtime. The code generator inserts communication codes for

register and memory live-outs to deliver them via inter-node communication queues.

4.5.1 Speculative Code Generation

If a loop is planned to be speculatively parallelized, the code generator transforms the se-

quential loop to the speculatively parallelized loop. While the code generator transforms

the sequential loop in the same way as the static parallel loop, it must also insert additional

codes to detect and recover misspeculated execution. Algorithm 1 shows how the code gen-

erator inserts validation and recovery codes for memory flow and control flow speculation.

This algorithm is for the worker processes. Section 4.5.2 describes details about recovery

code generation for the master process.

First, the code generator inserts recovery codes for the case of misspeculation (Lines 1–

7). The code generator creates a basic block named recoverBB, and inserts a function

call to waitRuntimeRecoverMemory() that makes all the worker processes wait for

the ASAP runtime system to restore memory status. Then, the code generator adds func-

39

Algorithm 1: makeSpeculative
Data: loop = a parallel loop
Data: controlSpeculationSet = control flow speculated branches
Data: memorySpeculationSet = memory flow speculated dependences
Result: spec loop = a parallel loop with validation and recovery codes
/* 1. Insert recovery codes */

1 let header = getLoopHeader(loop);
2 let recoveryBB = createBasicBlock();
3 recoveryBB← waitRuntimeRecoverMemory();
4 foreach lv ∈ loop carried local variables(loop) do
5 let lv idx = getLVIdx(lv);
6 recoveryBB← lv = loadLV(lv idx);
7 header← storeLV(lv idx, lv);
/* 2. Make an iteration a transaction */

8 header← if(TXBoundary() == isMisspec) goto recoveryBB ;
9 foreach exitBB ∈ loop exits(loop) do

10 exitBB← if(endInvocation() == isMisspec) goto recoveryBB;

/* 3. Redirect speculated branches */
11 foreach branchInfo ∈ controlSpeculationSet do
12 let branch = getBranchInst(branchInfo);
13 let branchOutBB = getUnlikelyBranchedBB(branchInfo);
14 let misspecBB = createBB();
15 redirectControl(branch, branchOutBB, misspecBB);
16 misspecBB← misspec();
17 misspecBB← goto recoveryBB;

/* 4. Insert validation for memory flow speculation */
18 foreach edge ∈ memorySpeculationSet do
19 let storeInst = getSrcInst(edge);
20 let loadInst = getDstInst(edge);
21 before(loadInst)← specLoad(getPointerAddr(loadInst));
22 after(storeInst)← specStore(getPointerAddr(storeInst));

40

// Worker Process
beginInvocation(Spec-DOALL);
consumeLiveIns();
executeForLoop();
return;

recoveryBB:
 waitRuntimeRecoverMemory();
 i = loadLV(idx_i);
 goto header;

executeForLoop(){
 for(int i=0; i<N; i++) {
 header:
 if(TXBoundary()==isMisspec)
 goto recoveryBB;
 if(i%NP==tid) {
 storeLV(idx_i, i);
 specLoad(&irregular[idx[i]]);
 irregular[idx[i]]+=foo(i);
 specStore(&irregular[idx[i]]);
 if(irregular[idx[i]] > error){
 misspec();
 goto recoveryBB;
 } } }
 if(endInvocation()==isMisspec)
 goto recoveryBB;
}

Loop_B:
// Master Process
beginInvocation(Spec-DOALL);
produceLiveIns();
commitProcess(recoveryFcn);
consumeLiveOuts();
endInvocation();

recoveryFcn:
recoveryFcn() {
 int i=loadLV(idx_i);
 irregular[idx[i]]+=foo(i);
 if(irregular[idx[i]]>error)
 printf(“I/O operation”);
 i++;
 storeLV(idx_i, i);
}

Figure 4.3: Code generation: Spec-DOALL (Loop B)

tion calls to loadLV that restore local variables because the ASAP runtime system sup-

ports rollbacks only for heap-located variables. For the same reason, the code generator

inserts calls to storeLV at the header of the loop to explicitly pass local variables in

each transaction to the master process. Here, the code generator handles only loop-carried

local variables in phi nodes; other local variables are either unchanged or unused across

iterations, so they do not need recovery support.

Then, the code generator isolates each loop iteration as a separate transaction by in-

serting calls to TXBoundary and endInvocation at the loop header and every loop

exit (Lines 8–10). These functions return whether the master process has sent a misspec-

ulation signal. The code generator inserts if statements to check the return value, and

41

branch instructions to recoveryBB for the worker process to initiate local recovery if the

functions return true. A worker process may finish earlier than others that may be mis-

speculated, so endInvocation blocks the worker process until all the workers finish

parallel execution.

To maximize performance improvement, the ASAP system applies different valida-

tion methods for different speculation. For control speculation (Lines 11–17), the compiler

redirects speculated branches to misspecBB, so the runtime system can catch misspecula-

tion early without validating memory accesses. For memory speculation (Lines 18–22),

the ASAP system instruments relevant memory operations by inserting specLoad and

specStore calls. These calls collect a transaction log, which is used for the runtime sys-

tem to detect misspeculation. The runtime system to validate speculated memory accesses

by looking at the logs.

Figure 4.3 shows how the code generator transforms Loop B in Figure 1.1 to a Spec-

DOALL loop. Inserting calls to TXBoundary and endInvocation, the code generator

makes an iteration an isolated transaction. Calls to storeLV and loadLV save and re-

store an induction variable i. The code generator inserts validation codes for speculated

dependences by inserting calls to specLoad and specStore for irregular, and

redirecting if statement to the recovery codes.

4.5.2 Recovery Code Generation

If misspeculation occurs, the ASAP runtime system squashes all the following speculative

iterations, and makes the master process execute the misspeculated iteration again with

committed program state honoring the semantics of the original program. For the master

process to execute only the misspeculated iteration, the code generator creates a recovery

function that includes a clone of the original loop, and redirects back edges of the loop to

a loop exit block. To restore register state, the code generator inserts codes to restore local

variables.

42

Algorithm 2: makeRecoveryCode
Data: loop = a sequential loop
Result: recovery = codes for misspeculation recovery which execute misspeculated

iteration sequentially
1 let recovery = copy(loop);
2 let header = getLoopHeader(recovery);
3 redirectBackEdgesToExit(recovery);
4 foreach lv ∈ loop carried local variables(recovery) do
5 let lv idx = getLVIdx(lv);
6 foreach exitBB ∈ loop exits(recovery) do
7 exitBB← storeLV(lv idx, lv);
8 header← newLV = loadLV(lv idx);
9 replaceUses(lv, newLV);

Algorithm 2 shows the detail process of the recovery code generation. Since the re-

covery code is executed only for one misspeculated iteration, makeRecoveryCode redirects

back edges to a loop exit block (Line 3). Since the ASAP runtime system recovers only

memory pages, the algorithm inserts recovery codes for register states (Line 4–4). The

recovery codes manage loop-carried local variables in phi nodes because the other local

variables are not changed nor used in the loop. For each loop-carried local variable, mak-

eRecoveryCode inserts calls to LoadLV function to restore the local variable at the begin-

ning of the recovery iteration, and inserts calls to StoreLV function to store and pass the

updated local variables to worker processes at the end of the loop. The generated recovery

codes for Loop B and Loop C in Figure 1.1 are located at Figure 4.3 and Figure 4.4.

4.5.3 Pipeline Code Generation

If a pipeline strategy has more than one stage, the code generator splits a loop iteration

into multiple partitions according to the pipeline strategy. The pipeline strategy has in-

formation only about instructions in each pipeline stage. While allocating instructions to

each partition, the code generator should find dependences between instructions in different

stages, and insert communication codes for them. Since the ASAP runtime system delivers

43

Algorithm 3: makePartitions
Data: loop = a sequential loop
Data: stages[] = instruction sets for each stage in the pipeline strategy
Result: partitions[] = pipelined loops
/* 1. Copy the whole loop to each partition, and make

remove sets for instructions not in each stage */
1 let removeSets[] = new instructionSets(size(stages));
2 for idx← 0 to size(stages) do
3 let stage = stages[idx];
4 let partitions[idx] = copy(loop);
5 foreach instruction ∈ partitions[idx] do
6 if instruction 6∈ stage then
7 removeSets[idx]← instruction;

/* 2. Insert communication between stages */
8 for idx← 0 to size(stages) do
9 let stage = stages[idx];

10 foreach instruction ∈ removeSets[idx] do
11 foreach use ∈ uses(instruction) do
12 if use ∈ stage then
13 let srcIdx = findSource(instruction, stages);
14 partitions[srcIdx]← produce(instruction, idx);
15 partitions[idx]← newValue = consume(srcIdx);
16 partitions[idx].replaceUses(instruction, newValue);
17 break;

/* 3. Remove instructions from each partition */
18 for idx← 0 to size(stages) do
19 let stage = stages[idx];

/* Refine control flow */
20 foreach basic block ∈ partitions[idx] do
21 if all the instructions in the basic block ∈ removeSets[idx] then
22 let succBB = findSuccessor(basic block);
23 foreach predBB ∈ pred(basic block) do
24 redirect(predBB, basic block, succBB);

25 else if branch instruction in the basic block ∈ removeSets[idx] then
26 let succBB = findSuccessor(basic block);
27 basic block← branch succBB;

28 foreach instruction ∈ removeSets[idx] do
29 remove instruction from partition[idx];

44

memory updates from prior stages to later stages, the code generator only respects register

dependences between local variables.

Algorithm 3, makePartitions, is about how the code generator transforms a sequential

loop to pipeline codes according to instruction sets for each stage. There are two ways to

make partitions; 1) copying only instructions in a stage to the partition, or 2) copying all the

instructions in the loop and removing instructions that are not in the stage. This algorithm

uses the second method. First, makePartitions copies the whole sequential loop for each

partition, and makes a remove set for instructions that do not belong to the stage (Line 2–5).

Then, makePartitions inserts communication codes for register dependences (Line 8–

10). If a value in a remove set is used in a stage, the value should be delivered from a

prior stage that generates the value. Function findSource finds the owner of the value

by iterating stages, and returns the index of the owner. makePartitions inserts calls to

produce and consume between the owner and the stage, and replaces all the uses of the

value in the partition to the consumed value.

Finally, makePartitions removes instructions in the remove set from each partition

(Line 18–28). While removing the instructions, makePartitions refines control flows. If

all the instructions in a basic block are in the remove set, makePartitions redirects all the

predecessors of the basic block to its successor before removing the basic block. makePar-

titions finds a transitive successor that will not be removed. There exists only one transitive

successor because all the successors are not control dependent to the basic block. If they

are control dependent to the basic block, the branch instruction of the basic block cannot

be removed, so the basic block is not empty. For the same reason, if a branch instruction of

a basic block is removed, makePartitions inserts a branch instruction to the non-removed

successor. After refining the control flow, makePartitions removes all the instructions in

the remove set from the partition.

Figure 4.4 shows partitioned codes for Loop C in Figure 1.1. The code generator places

the instructions to each partition, making three-stage pipelined parallel loops. For exam-

45

// Worker Process (Continued)
recoveryBB_stage2:
 waitRuntimeRecoverMemory();
 node = loadLV(idx_node);
 i = loadLV(idx_i);
 goto header2;

stage2_pll(){
 while(node, i++) {
 header2:
 if(TXBoundary()==isMisspec)
 goto recoveryBB_stage2;
 node = consume();
 if(i%(NP-2) == (tid-1)) {
 storeLV(idx_i, i);
 specLoad(&node);
 res = boo(node);
 produce(res, stage3);
 specStore(&node);
 }
 }
 if(endInvocation()==isMisspec)
 goto recoveryBB_stage2;
}

recoveryBB_stage3:
 waitRuntimeRecoverMemory();
 node = loadLV(idx_node);
 goto header3;

stage3_seq(){
 while(node) {
 header3:
 if(TXBoundary()==isMisspec)
 goto recoveryBB_stage3;
 node = consume(stage1);
 res = consume(stage2);
 printf(“result: %d”, res);
 }
 if(endInvocation()==isMisspec)
 goto recoveryBB_stage3;
}

Loop_C:
// Master Process
beginInvocation(Spec-DSWP);
produceLiveIns();
commitProcess(recoveryFcn);
consumeLiveOuts();
endInvocation();

recoveryFcn:
recoveryFcn() {
 node = loadLV(idx_node);
 i = loadLV(idx_i);
 node = node->next;
 res = boo(node);
 printf(“results: %d”, res);
 i++;
 storeLV(idx_node, node);
 storeLV(idx_i, i);
}

// Worker Process
beginInvocation(Spec-DSWP);
consumeLiveIns();
if(tid==0) stage1_seq();
else if(tid < NP-1) stage2_pll();
else stage3_seq();
return;

recoveryBB_stage1:
 waitRuntimeRecoverMemory();
 node = loadLV(idx_node);
 goto header1;

stage1_seq(){
 while(node) {
 header1:
 if(TXBoundary()==isMisspec)
 goto recoveryBB_stage1;
 storeLV(idx_node, node);
 produce(node, stage2);
 produce(node, stage3);
 specLoad(&node);
 node = node->next;
 specStore(&node);
 }
 if(endInvocation()==isMisspec)
 goto recoveryBB_stage1;
}

Figure 4.4: Code generation: Spec-DSWP (Loop C)

46

ple, the code generator allocates instruction node = node->next; to the first parti-

tion, res = boo(node); to the second, and printf("result: %d", res);

to the third. Since there is a dependence on node from the first partition to the others, the

code generator inserts produce(node, stage2) and produce(node, stage3)

to the first stage, and does node = consume(stage1) to the others. The code genera-

tor inserts calls to produce and consume for the dependence on res between the second

and the third stages. The code generator changes the second stage to a parallel stage like

the DOALL loop generation, and inserts validation and recovery codes for Loop C like the

Spec-DOALL loop generation in the previous sections.

The ASAP compiler automatically finds parallelism opportunities from sequential loops

via profiling runs and static dependence analysis, and generates optimized parallel codes

for the loops. To efficiently execute parallel programs on distributed memory systems of

clusters, the ASAP compiler explicitly inserts and optimizes communication codes for

share data. Moreover, to achieve high performance speedups on clusters that have high

communication overheads, the ASAP compiler supports additional speculation techniques

that require low validation and communication costs. With the careful application of specu-

lation techniques and communication optimization, the ASAP compiler generates efficient

parallel codes that have scalable performance improvement.

47

Chapter 5

ASAP Runtime System

The ASAP runtime system executes parallelized loops, either speculated or not, with three

main components; MTX manager, communication manager, and memory manager. The

MTX manager controls the life cycle of MTXs executing Spec-DSWP codes. The commu-

nication manager provides optimized communication channels to the MTX manager and

the memory manager. The memory manager assists the MTX manager to efficiently exe-

cute MTXs on distributed memory systems. This chapter introduces detail implementation

of the components.

5.1 The MTX manager

As Section 3.2.1 describes, there are three roles in the MTX execution; workers that specu-

latively execute parallel programs, a validator that validates transactions, and a master that

commits transactions. The MTX manager plays each role providing different features. The

MTX workers have a local variable set (LV Set) that tracks all the speculative updates of the

local variables, a read set and a write set that keep speculative memory loads and stores.

Instead of the LV set and the read set, the MTX validator has a validator that validates

speculative memory accesses of the MTX workers. The validator compares all the read

values in workers’ read set with local memory values in the validator, and detects memory

48

MTX	 Worker	 1	 MTX	 Worker	 2	 MTX	 Validator	 MTX	 Master	

Communica8on	
Manager	

	
	
	
	
	

Queue	

Signal	 Hander	

Barrier	

Communica8on	
Manager	

	
	
	
	
	

Queue	

Signal	 Hander	

Barrier	

Communica8on	
Manager	

	
	
	
	
	

Queue	

Signal	 Hander	

Barrier	

Communica8on	
Manager	

	
	
	
	
	

Queue	

Signal	 Hander	

Barrier	

MTX	 Manager	
	
	
	
	
	
	
	

Write	
Set	

Memory	

MTX	 Manager	
	
	
	
	
	
	
	

Read	
Set	

LV	
Set	

Write	
Set	

MTX	 Manager	
	
	
	
	
	
	
	

Read	
Set	

LV	
Set	

Write	
Set	

MTX	 Manager	
	
	
	
	
	
	
	

LiveIn	
Set	 dbFA

LV	
Set	 c	 ba

Memory	 Memory	

A
B FEDC
Memory	

Validator	

Commit	
Manager	

Figure 5.1: MTX manager: Initial state

misspeculation. The write set in the validator is the union of all the workers’ write sets.

The MTX master has a LV set that keeps the committed local variables, and a live-in set

that keeps live-in values for recovery codes. The commit manager executes commits or

rollbacks depending on the validation results.

5.1.1 MTX Execution

The MTX manager manages the life cycle of MTXs from initialization to commit. Accord-

ing to the roles, the MTX manager initializes, executes, validates and commits the MTXs

on distributed memory system. If one of the MTXs is misspeculated, the manager squashes

all the non-committed speculative execution, and does rollback to committed states for all

the MTX processes.

49

MTX	 Worker	 1	 MTX	 Worker	 2	 MTX	 Validator	 MTX	 Master	

Communica8on	
Manager	

	
	
	
	
	

Queue	

Signal	 Hander	

Barrier	

Communica8on	
Manager	

	
	
	
	
	

Queue	

Signal	 Hander	

Barrier	

Communica8on	
Manager	

	
	
	
	
	

Queue	

Signal	 Hander	

Barrier	

Communica8on	
Manager	

	
	
	
	
	

Queue	

Signal	 Hander	

Barrier	

MTX	 Manager	
	
	
	
	
	
	
	

Write	
Set	

A
B
Memory	

MTX	 Manager	
	
	
	
	
	
	
	

Read	
Set	 B

LV	
Set	

Write	
Set	

MTX	 Manager	
	
	
	
	
	
	
	

Read	
Set	

LV	
Set	

Write	
Set	

MTX	 Manager	
	
	
	
	
	
	
	

LiveIn	
Set	 dbFA

LV	
Set	 c	 ba

Memory	 Memory	

A
B FEDC
Memory	

Validator	

(1)	 Send	 page	 request	 (2)	 Copy	 the	 page	

(3)	 Send	 the	 page	

(4)	 Update	 memory	

Commit	
Manager	

Figure 5.2: MTX manager: Memory initialization

MTX Initialization: There are mainly two ways to initialize the memory state prior

to entering the parallel section. One way is that each process generates their own states

by redundantly executing the sequential codes, and the other way is that only one of the

processes executes the sequential codes. The MTX manager chooses the second option

because the first one may not be safe due to replicated side effects. Figure 5.1 shows the

MTX managers and memory states right before executing the parallel section. Since only

the master process executes the sequential codes of a program, the master has up-to-date

memory values while the others do not.

Each worker initializes its memory state referring the memory of the master at the first

memory access. When a worker accesses an uninitialized memory, the memory manager

causes a page fault signal, and sends a page request to the master. The master sends the

requested page to the worker, and the worker updates its memory. Since the MTX man-

50

MTX	 Worker	 1	 MTX	 Worker	 2	 MTX	 Validator	 MTX	 Master	

Communica8on	
Manager	

	
	
	
	
	

Queue	

Signal	 Hander	

Barrier	

Communica8on	
Manager	

	
	
	
	
	

Queue	

Signal	 Hander	

Barrier	

Communica8on	
Manager	

	
	
	
	
	

Queue	

Signal	 Hander	

Barrier	

Communica8on	
Manager	

	
	
	
	
	

Queue	

Signal	 Hander	

Barrier	

MTX	 Manager	
	
	
	
	
	
	
	

Write	
Set	

A
B DC
Memory	

MTX	 Manager	
	
	
	
	
	
	
	

Read	
Set	 DB

LV	
Set	 c	 a

Write	
Set	 CBA

MTX	 Manager	
	
	
	
	
	
	
	

Read	
Set	

LV	
Set	

Write	
Set	

MTX	 Manager	
	
	
	
	
	
	
	

LiveIn	
Set	 dbFA

LV	
Set	 c	 ba

A
B DC
Memory	 Memory	

A
B FEDC
Memory	

Validator	

(1)	 Send	 write	 set	

(2)	 Update	 memory	

Commit	
Manager	

Figure 5.3: MTX manager: Pipeline execution

ager copies the whole page only for the first access, the ASAP runtime can amortize the

initialization overheads if the same page is accessed again. In addition, the runtime sys-

tem does not initialize memory units that are not accessed, so it can reduce communication

overheads from the memory initialization. Figure 5.2 illustrates the process of the memory

initialization. When the worker 1 accesses B, the MTX manager copies the page from the

master to the local memory space. Since A is located in the same page, the worker 1 can

access A without additional initialization. Since E and F are not accessed by the worker 1,

the two pages are not copied from the master to the worker 1.

MTX Execution: Since each worker executes MTXs in different physical memory

spaces, all the memory updates by a worker in an MTX should be forwarded to other work-

ers that participate in the same MTX via the communication manager. The MTX manager

tracks all the speculative and non-speculative memory updates, and stores them in a write

51

MTX	 Worker	 1	 MTX	 Worker	 2	 MTX	 Validator	 MTX	 Master	

Communica8on	
Manager	

	
	
	
	
	

Queue	

Signal	 Hander	

Barrier	

Communica8on	
Manager	

	
	
	
	
	

Queue	

Signal	 Hander	

Barrier	

Communica8on	
Manager	

	
	
	
	
	

Queue	

Signal	 Hander	

Barrier	

Communica8on	
Manager	

	
	
	
	
	

Queue	

Signal	 Hander	

Barrier	

MTX	 Manager	
	
	
	
	
	
	
	

Write	
Set	 ECBA

A
B DC
Memory	

Read	
Set	 DB

LV	
Set	 c	 a

Write	
Set	 CBA

MTX	 Manager	
	
	
	
	
	
	
	

MTX	 Manager	
	
	
	
	
	
	
	

Read	
Set	 A

LV	
Set	 c	 b

Write	
Set	 EC

MTX	 Manager	
	
	
	
	
	
	
	

LiveIn	
Set	 dbFA

LV	
Set	 c	 ba

A
B EDC
Memory	

A
B EDC
Memory	

A
B FEDC
Memory	

Validator	

(1)	 Send	 read/write	 set	
(3)	 Validate	 	

read/write	 sets	

(2)	 Update	 memory	

Commit	
Manager	

(1)	 Send	 read/write	 set	

Figure 5.4: MTX manager: Validation

set. When a worker finishes a subTX, it delivers the write set to workers in later stages.

Figure 5.3 shows that the worker 1 sends the write set to the worker 2, and continues to

execute the next subTX. The worker 2 updates its private memory with the delivered write

set, and starts its subTX. Since queues among processes can keep multiple sets from mul-

tiple MTX versions, a process can be decoupled from other processes, executing a subTX

that is in several MTX versions ahead from others.

MTX Validation: The ASAP supports four types of speculation; control flow specula-

tion, object lifetime speculation, read-only speculation, and memory flow speculation.

For the control flow speculation, the ASAP compiler inserts validation codes that com-

pare predicted values with actual values on the speculated branch conditions. The ASAP

runtime system exposes a SignalMisspeculation function interface for worker pro-

cesses to invoke a recovery process from control misspeculation. The ASAP compiler

52

Algorithm 4: validation
Data: memorySets = read and write sets from workers
Result: isMisspec = validation result

1 let size = getWorkerProcessNumber();
2 for i = 0 to size do
3 let memorySet = memorySets[i];
4 foreach memoryOp ∈ memorySet do
5 let address = getAddress(memoryOp);
6 let value = getValue(memoryOp);
7 if isRead(memoryOp) then
8 if *address != value then
9 return true;

10 else
11 *address = value;

12 return false;

inserts calls to this function along all speculated control flow edges. If a speculated con-

trol flow occurs at run-time, the SignalMisspeculation function is called, and the

misspeculation signal is sent to the MTX validator or the MTX master.

Object lifetime speculation is applied to allocation and deallocation sites whose object

is likely to be private to one iteration of the loop. The ASAP compiler replaces calls

to malloc and free with specMalloc and specFree. The MTX manager in each

worker records a list of speculatively local objects that have been allocated. When a subTX

terminates, the manager checks whether the list is empty. If any speculatively local object

was not freed by the end of the subTX, the manager signals misspeculation to the validator

or the master. Note that this additional bookkeeping occurs locally at each worker node,

so inter-node communication is unnecessary to detect misspeculation. Speculatively local

objects are allocated in the private memory space of each worker and considered thread-

local, hence reducing overhead for validation and live-out communication.

For the read-only speculation and the memory flow speculation, one process is ded-

icated as a validator process. The validator tracks memory accesses and checks memory

versions. When a MTX (i.e., single iteration) is finished without misspeculation, the valida-

53

MTX	 Worker	 1	 MTX	 Worker	 2	 MTX	 Validator	 MTX	 Master	

Communica8on	
Manager	

	
	
	
	
	

Queue	

Signal	 Hander	

Barrier	

Communica8on	
Manager	

	
	
	
	
	

Queue	

Signal	 Hander	

Barrier	

Communica8on	
Manager	

	
	
	
	
	

Queue	

Signal	 Hander	

Barrier	

Communica8on	
Manager	

	
	
	
	
	

Queue	

Signal	 Hander	

Barrier	

MTX	 Manager	
	
	
	
	
	
	
	

Write	
Set	 ECBA

A
B DC
Memory	

Read	
Set	 DB

LV	
Set	 c	 a

Write	
Set	 CBA

MTX	 Manager	
	
	
	
	
	
	
	

MTX	 Manager	
	
	
	
	
	
	
	

Read	
Set	 A

LV	
Set	 c	 b

Write	
Set	 EC

MTX	 Manager	
	
	
	
	
	
	
	

LiveIn	
Set	 dbFA

LV	
Set	 c	 ba

A
B EDC
Memory	

A
B EDC
Memory	

A
B FEDC
Memory	

Validator	

(2)	 Send	 LV	 Set	
(2)	 Send	 the	 result	 	
and	 write	 set	

(3)	 Commit	 writes	

(1) Find	 no	 	
misspecula<on	

Commit	
Manager	

(4)	 Update	 LV	 set	

Figure 5.5: MTX manager: Commit

tor forwards all speculated stores to the master process which keeps the committed program

state. Figure 5.4 shows how the MTX manager manages validation of the read-only specu-

lation and the memory flow speculation. The workers track all the speculated reads and all

the speculated and non-speculate writes, and store the memory addresses and the values in

a read set and a write set. Here, the write set is the same write set in the MTX execution.

When each worker finishes its subTX in a MTX, the worker sends its read set and write set

to the MTX validator, and the validator validates the delivered sets.

Algorithm 4 shows how the validator validates the speculations. Because pipeline par-

allelism has an execution order among processes, the validator validates the read and write

sets from the first process to the last one. For each memory operation, the validator uses

its local memory as a scratch memory. The validator updates the values in the write sets

to the local memory at the same memory address, and compares the values in the read sets

54

MTX	 Worker	 1	 MTX	 Worker	 2	 MTX	 Validator	 MTX	 Master	

Communica8on	
Manager	

	
	
	
	
	

Queue	

Signal	 Hander	

Barrier	

Communica8on	
Manager	

	
	
	
	
	

Queue	

Signal	 Hander	

Barrier	

Communica8on	
Manager	

	
	
	
	
	

Queue	

Signal	 Hander	

Barrier	

Communica8on	
Manager	

	
	
	
	
	

Queue	

Signal	 Hander	

Barrier	

MTX	 Manager	
	
	
	
	
	
	
	

Write	
Set	

Memory	

MTX	 Manager	
	
	
	
	
	
	
	

Read	
Set	

LV	
Set	

Write	
Set	

MTX	 Manager	
	
	
	
	
	
	
	

Read	
Set	

LV	
Set	

Write	
Set	

MTX	 Manager	
	
	
	
	
	
	
	

LiveIn	
Set	 dbFA

LV	
Set	 c	 ba

Memory	 Memory	

A
B FEDC
Memory	

Validator	

(1)	 Find	 	
Misspecula1on	

Commit	
Manager	

(4)	 Send	 	
Misspecula1on	 Signal	

(6)	 Clean	 up	 	
memory	

(5)	 Clean	 up	 	
working	 sets	

(3)	 Enter	 	
recovery	 mode	 (2)	 Send	 the	 result	

Figure 5.6: MTX manager: Rollback

with the local memory values. If a delivered read value is different from the local memory

value, the validator returns the misspeculation result. The validator keeps a write set that

unions all the write sets of the workers, and sends the write set to the master if there is no

misspeculation.

MTX Committing: If there is no misspeculation detected during validation, the MTX

validator sends all the writes in the write set to the MTX master. The MTX workers already

sent their local variable updates when they finished subTXs in the same MTX. The MTX

master checks the misspeculation signal, and updates the local variable sets and write sets

to the local memory if there is no misspeculation delivered. Therefore, the master has only

committed values in its local memory. Since there is an execution order among processes

in pipeline parallelism, the master updates the local variable sets in order from the first

process one to the last one. Figure 5.5 shows how the MTX managers commit a MTX.

55

Algorithm 5: rollback
/* 1. Broadcast misspeculation signal */

1 master→broadcast(MISSPEC);
/* 2. Flush queues (producer part) */

2 flushAllQueues();
3 barrier();
/* 3. Clear queues (consumer part) */

4 clearMisspeculationSignal();
5 clearAllQueues();
6 barrier();
/* 4. Re-execute sequential codes */

7 master→execute recoveryFunction();
8 master→broadcastLocalVariables();
/* 5. Re-initialize memory */

9 workers→clearMemory();
10 worker→consumeLocalVariables();

MTX Rollback: If one of the MTX workers sends a misspeculation signal, or if the

validator detects a misspeculated memory operation, the MTX master starts the rollback

algorithm. Algorithm 5 shows how the MTX master and MTX workers recover misspecu-

lated execution. First, when the MTX master receives a misspeculation signal, the master

broadcasts the misspeculation signal to all the processes. This broadcast allows all the pro-

cess to enter recovery mode. Some of the worker may be waiting for others to produce

some values, so the master and workers flush all the data in their queues to prevent dead-

lock. After all the processes flush their queues, the processes clear their queues that may

have delivered data from misspeculated execution. They also clear the misspeculation sig-

nal for the next use. After all the processes clear their queues, the master starts to execute

the original sequential codes, and the workers clear their local memory that have misspec-

ulated results. Then, only the master has the committed values while the others do not,

like initial memory states. Finally, the master broadcasts correct local variables to workers,

workers consume and update the local variables, and all the processes resume the parallel

execution.

56

5.1.2 Recovery Overheads

Figure 5.7 shows the overheads of the ASAP runtime system when it executes a parallel

program and recovers misspeculated execution. In well-speculated cases, the communica-

tion cost between processes becomes overlapped with later communication, so the system

pays only one time cost for communication as pipeline fill time. In addition, since the

ASAP runtime system creates a validator and a master as separate processes, the overheads

of validation and commit are overlapped with computation work of worker processes, and

become off the critical path. Therefore, the ASAP runtime system can have low overheads

for communication and speculation management.

However, while the separate validator and master processes allow the ASAP runtime

system to have low overheads in speculation management, they can cause additional mis-

speculation penalty because more work is speculatively executed in advance in multiple

processes. As a result, the high accuracy of speculation is important for the ASAP runtime

system to achieve scalable performance improvement.

As Figure 5.7 illustrates, the misspeculation penalty of the ASAP runtime system con-

sists of four factors such as Enter Recovery Mode (ERM), FLush Queue (FLQ), SEQuential

execution (SEQ), and ReFill Pipeline (RFP). ERM is the period between the time when the

master notices misspeculation and the time when the whole system enters the recovery

mode. Although each process receives the misspeculation signal either at the begin or at

the end of subTXs in the Figure 5.7, it can receive in the middle of the subTX if a func-

tion about signal check is called, and the ERM overhead can be reduced instead of causing

checking overheads. FLQ is the overhead caused by flushing and clearing communica-

tion queues. Since multiple processes execute multiple transactions communicating each

other, there can be misspeculated values in the communication queues, so the runtime sys-

tem should flush and clear the queues. SEQ is the overhead for the master to sequentially

execute the misspeculated iteration again. The sequential re-execution allows the master

to have correct up-to-date memory without misspeculation. While the master executes the

57

Worker 2 Worker 3 Validator Master

Iter 1

Iter 2

Iter 3

Iter 4

Validate 1

Validate 2 Commit 1

Exec Execu&on	 Communica&on	

FLQ

Iter 5

Iter 3

Iter 4
Validate 3

Signaling	 Exec Misspeculated	

Worker 1

Iter 1

Iter 2

Iter 3

Iter 4

Iter 5

Iter 6

Iter 3

Iter 4

Iter 5

Iter 6

Iter 7

Pipeline
Fill Time

ERM

SEQ
Iter 2

Commit 3
Validate 4

Iter 5

FLQ

SEQ

RFP

Figure 5.7: Misspeculation recovery overheads (ERM: Enter Recovery Mode, FLQ: FLush
Queue, SEQ: SEQuential execution, and RFP: ReFill Pipeline)

58

sequential iteration, workers and the validator initialize their local memory to clear the mis-

speculated memory status. Since their overheads are overlapped by the master’s SEQ, the

overheads are not observable to users. Finally, RFP is the overhead to refill the pipeline af-

ter the ASAP runtime system resumes the speculative parallel execution. Since the ASAP

runtime system executes iterations in order, it squashes all iterations higher than the mis-

speculated one, hence causing the work done in the later iterations to go to waste. This

squash empties the pipeline after misspeculation, so the dissertation includes RFP to the

recovery overheads.

5.2 The Communication manager

The communication manager mainly provides three types of communication for the ASAP

runtime system; 1) message queue, 2) page handler, and 3) signal handler. These commu-

nication operations are implemented on top of the MPI system [54].

Message Queue: The communication manager provides multiple message queues to

execute different runtime operations such as controlling MTXs, delivering read and write

sets, and managing I/O operations. The manager reduces communication overheads by

batching the produced data in a local queue instead of directly calling MPI functions.

Figure 5.8 illustrates how the communication manager produces and consumes data

using the message queues. When a process produces data destined for another process,

the data is stored in a local queue. When the amount of stored data exceeds a threshold,

or when flushQueue function is explicitly called, the communication manager starts

delivering the stored data to the opposite process. The manager copies the whole data in the

local queue to the system buffer with a tag that indicates the message queue. Since there

are multiple message queues between two processes, the tag is unique for each message

queue. Then, the communication manager sends the data to the opposite process. When

the opposite process receives the data, the data is temporarily stored in its system buffer.

59

Process	 1	 Process	 2	
Communica0on	

Manager	

System	 Buffer	 System	 Buffer	

Message	 Queue	
for	 Produce	

Message	 Queue	 2	

Message	 Queue	 3	

(3)	 Send	

Communica0on	
Manager	

Data	 Packet	

Message	 Queue	 2	

Ptr	

Message	 Queue	 3	

Ptr	

(1) Copy	 Data	
(2)	 Add	 Tag	 (4)	 Analyze	

	 	 	 	 	 	 	 Tag	

(5)	 Create	 a	 Packet	 	
&	 Copy	 Data	

(6)	 Link	 Packet	 	
	 	 	 	 	 	 	 to	 Queue	

Message	 Queue	
for	 Consume	

Consume	 Pointer	

(7)	 Destruct	 	
Consumed	 Packet	

Figure 5.8: Communication manager: Handling message queues

After the communication manager analyzes the tag, the manager creates a data packet,

copies the data to the packet, and links the packet to the opposite queue. When the opposite

process calls the consume function, the data in the queue is consumed in order. When all

the data in the packet is consumed, the queue destroys the data packet.

Page Handler: The communication manager helps the memory manager initialize the

local memory. At the beginning of the parallel execution, all the local memories in the

workers and the validator are not initialized. When the workers or the validator access a

page at the first time, the memory manager starts to initialize the accessed page by copying

the page from the master. Figure 5.9 shows how the communication manager copies the

page from the master to the worker or the validator. When the memory manager requests

a page to the communication manager, the communication manager sends the request to

the master. In the request, there are only a page address and a page request tag. After

the communication manager in the master analyzes the tag, the communication manager

60

Process	 1	 Process	 2	

Communica0on	
Manager	

System	 Buffer	 System	 Buffer	

(3)	 Send	
	 Request	

Communica0on	
Manager	

Memory	 Space	

(1) Request	
a	 page	

(2)	 Add	 Tag	 (4)	 Analyze	
	 	 	 	 	 	 	 Tag	

Memory	
Manager	

(6)	 Send	
	 	 	 Page	

(5)	 Copy	 requested	 page	

Memory	 Space	

(7)	 Update	 Memory	

Memory	
Manager	

Figure 5.9: Communication manager: Handling page request

Signal	 List	

Process	 1	 Process	 2	

Communica5on	
Manager	

System	 Buffer	 System	 Buffer	
(4)	 Send	

Communica5on	
Manager	

(2)	 Send	
	 	 	 	 	 	 a	 signal	

(3)	 Add	 Tag	 (5)	 Analyze	
	 	 	 	 	 	 	 Tag	

MTX	 Manager	 MTX	 Manager	

(1)	 Set	 a	 signal	

Signal	 List	

(6)	 Set	 	
the	 signal	

(7)	 Read	
the	 signal	

Figure 5.10: Communication manager: Handling signals

directly copies the requested page from the local memory, and sends it to the request sender.

Then, the memory manger in the worker updates the delivered page to the local memory.

Signal Handler: The ASAP runtime system has multiple system states such as mis-

speculation, end of invocation, and exit. The runtime system uses flags to manage the

states, and makes the communication manager notify the state to other processes. Fig-

ure 5.10 shows how the communication manager notifies signals. For example, when the

master process detects misspeculation, it sets the misspeculation flag. Then, the communi-

cation manager sends the signal to the other processes to notify the stage change, and the

communication manager in the other processes receives the signal and updates their flags.

61

When the MTX managers in the other processes access the updated flags about misspecu-

lation, they can enter the recovery mode.

5.3 The Memory manager

The memory manager provides four features; memory initialization, unified virtual address

space, shadow memory for memory speculation validation, and dirty page check.

The memory manager initializes memory when a page is accessed at the first time.

(Copy-On-Access, COA). Figure 5.11 illustrates memory management of the ASAP run-

time system for two speculative workers and the master. Initially, only the master executes

the sequential, non-transactional codes, so the master has all the pages in the local memory.

The others do not have any page, and their page tables are not initialized with access pro-

tections. When a worker accesses a memory location, the protection mechanism results in

a page fault, causing a transfer of the page from the master to the worker. This COA trans-

fers only data that are actually demanded by each worker, thereby avoiding the transfer of

excessive, unnecessary data.

The COA is implemented in a memory page granularity because a word granularity

is inefficient on clusters due to its high round-trip latency. By sending a memory page

in response for a request for a word, the memory manager aggressively speculates that

words near the original location will be accessed by the worker in the future. This serves

as a constructive prefetching mechanism that amortizes the round-trip latency cost over

accesses to multiple locations in the same page.

In addition, the memory manager provides the unified virtual address (UVA) space to

all the processes on distributed memory systems. The whole address space is divided into

multiple ranges for each process. The ASAP compiler redirects all the memory allocation

and deallocation function calls to the new functions that the memory manager provides.

The new functions allow a process to allocate the memory on the target range that the

62

Communication Channel

Access
on

Copy

Access
on

Copy

Virtual Address Space

Virtual Address Space

Worker2

Commit Unit

Page Table

Page Table

Virtual Address Space

Worker1

Page Table

Physical Pages

(a)

Version j

Access
on

Copy

Value

Cmt

Modified

Virtual Address Space

Virtual Address Space

Worker2

Commit Unit

Page Table

Page Table

Virtual Address Space

Worker1

Page Table

Modified

Physical Pages

Accessed

Version k

Version i

(b)

Figure 5.11: Memory layout: (a) Initial state: Only the page table of the master maps the
non-speculative pages while the others are uninitialized. (b) MTX execution: The page
tables map accessed virtual address range to copied private pages, or keep non-accessed
page entry uninitialized.

process owns. When another process accesses the memory address, the COA mechanism

copies the page from the owner to the process.

UVA is similar to distributed shared memory (DSM) [6], but it does not support a coher-

ence mechanism unlike DSM systems. Memory coherence requires cyclic communication

because a process requests data and the other replies it. The cyclic communication on clus-

ters causes high communication overheads due to high communication latency. Instead,

UVA only provides the same virtual address space to all the processes, and the compiler

explicitly inserts message passing codes to respect existing data dependences. The pipeline

parallelism makes the message passing path acyclic, so the runtime system can be more

tolerant of the high communication latency.

When the memory manager initializes a page, it also allocates a shadow page for the

page to track read and write operations. When a process writes data at a memory address,

the memory manager checks the shadow memory. If the address is first written, the MTX

63

manager adds the write to the write set. When a process speculatively reads a memory,

the memory manager checks the shadow memory. If the address has not been read nor

written, the MTX manager adds the read to the read set. Here, the manager also checks

the write for speculative reads because the read operation on a written memory in the same

transaction do not cause any misspeculation. Since the shadow memory allows the MTX

manager to avoid inserting duplicated reads and writes to the read and write sets, it reduces

communication overheads from validation. To reduce the amount of memory usage due to

the shadow memory, the ASAP runtime allocates the shadow memory only for the accessed

memory in a transaction.

The read set can be empty if no speculative reads occur, or if all the speculative reads

operate at the already written memory spaces. If all the read sets in a MTX are empty, the

validator does not cause misspeculation. The ASAP runtime system optimistically does

not send the read and write sets to the validator if all the read sets are empty, and reduces

communication overheads. If the read set is empty for a series of MTXs, the MTX masters

send the read and write sets after a threshold to reduce rollback overheads.

Finally, the memory manager tracks memory accesses during the sequential execution

of the master, and marks pages dirty. If the program executes parallel codes again, the mem-

ory manager initializes only the dirty pages because the others are not modified. This dirty

page check reduces initialization overheads especially when inner loops are parallelized.

The ASAP runtime system executes Spec-DSWP codes on clusters without any hard-

ware support. The MTX manger provides two features such as group transaction commit

and uncommitted value forwarding, and safely executes MTXs in the Spec-DSWP codes.

The communication manager and the memory manager allow the MTX manager to effi-

ciently execute Spec-DSWP codes without worrying about hardware structure of clusters.

With the MTX, communication and memory managers, the ASAP runtime system realizes

the speedup potential of various parallel codes on commodity clusters.

64

Chapter 6

Evaluation

The ASAP system is evaluated with benchmarks from PolyBench/C [61], SPEC CPU92,

CPU95, CPU2000, CPU2006 [73], and PARSEC [11] written in C. Table 6.1 lists the

selected benchmarks along with information such as benchmark suite, benchmark descrip-

tion, and parallelization paradigms. Details of each benchmark can be found in [11, 61, 73].

The selected benchmarks exhibit diversity in terms of parallelization paradigms, types of

speculation required, and communication characteristics.

The parallel programs are evaluated on a commodity cluster with 10 nodes, 12 cores

per node (120 cores in total). Each node has two Intel 6-core Westmere X5650 processors

running at 2.67 GHz with 48 GB of memory. It runs 64-bit RedHat Enterprise Linux v5.

The inter-node communication link is Mellanox ConnectX Infiniband x4 QDR. OpenMPI

(v1.4.5 with gcc v4.1.2, -O3) is used as the underlying communication layer. The ASAP

compiler builds on the LLVM compiler infrastructure (r164307) [45].

The evaluation uses two different input sets; profiling inputs and evaluation inputs. The

ASAP system profiles the sequential programs with profiling inputs. To use different inputs

for profiling and evaluation, and to accept a problem size from the command line, this

dissertation changes statically allocated fixed size arrays to dynamically allocated variable

size arrays in the PolyBench/C benchmarks. This modification makes the benchmarks more

65

Benchmark Source Suite Description Automatic
Parallelization

Manual
Parallelization

2mm PolyBench/C 2 matrix multiplications X
3mm PolyBench/C 3 matrix multiplications X
cholesky PolyBench/C Cholesky decomposition X
correlation PolyBench/C correlation computation X
covariance PolyBench/C covariance computation X
doitgen PolyBench/C multiresolution analysis X
dynprog PolyBench/C dynamic programming (2D) X
fdtd-2d PolyBench/C 2-D finite different time domain X
gemm PolyBench/C matrix-multiply X
reg detect PolyBench/C 2-D image processing X
symm PolyBench/C symmetric matrix-multiply X
syr2k PolyBench/C symmetric rank-2k operations X
syrk PolyBench/C symmetric rank-k operations X
052.alvinn SPEC CFP 92 neural network X X
130.li SPEC CINT 95 lisp interpreter X
164.gzip SPEC CINT 2000 file compressor X
179.art SPEC CFP 2000 image recognition X
197.parser SPEC CINT 2000 English parser X
256.bzip2 SPEC CINT 2000 file compressor X
456.hmmer SPEC CINT 2006 gene sequence database search X
464.h264ref SPEC CINT 2006 video encoder X
crc32 Ref. Impl. polynomial code checksum X X
blackscholes PARSEC option pricing X X
swaptions PARSEC portfolio pricing X X

Table 6.1: Benchmark details

difficult for the compiler to analyze because the memory allocation size is not decided at

compile-time.

The evaluation inputs are chosen for the original sequential programs to run longer

than one hour to observe performance scalability on a large number of cores. Eight bench-

marks from PolyBench/C are not used for evaluation because their execution time is too

short to be parallelized even with large input sets. Among remaining 22 benchmarks, the

ASAP compiler does not parallelize 9 benchmarks such as adi, floyd-warshall,

gramschmidt, jacobi-1d-imper, jacobi-2d-imper, lu, ludcmp, seidel-2d,

and trmm because the performance estimator predicts the parallel loops are not profitable

although they can be parallelized.

Since the ASAP runtime can support speculative manual parallelization, this chapter

additionally evaluates the runtime system with manually parallelized CPU-intensive bench-

66

marks that require speculation for efficient parallelization. Codes are manually parallelized

in a systematic manner. Due to the difficulty of manual application of compiler algorithms,

benchmark selection was influenced by source code tractability.

6.1 Performance Speedup

Table 6.2 shows how the ASAP compiler parallelizes benchmarks with different kinds of

speculation and communication optimization. Although speculation is not necessary to

manually parallelize PolyBench/C benchmarks, the ASAP compiler employs speculation

to overcome imprecise and fragile static alias analysis. Figure 6.1 shows the performance

speedup. Base is the execution time of the original sequential program. In this graph,

the horizontal axis shows the number of cores, and the vertical axis shows full application

speedups. All execution times were averaged over five runs. The evaluated benchmarks are

categorized into two groups; automatically parallelized and manually parallelized bench-

marks.

6.1.1 Automatically Parallelized Benchmarks

The ASAP compiler automatically finds parallelism opportunities and parallelizes the se-

quential program. Among 17 benchmarks, the ASAP system achieves speedups on 13

benchmarks with a synergistic combination of three design choices.

First, speculation makes fully-automatic parallelization possible. Imprecision of

static analysis limits classical automatic parallelization. Table 6.2 shows that only 3 bench-

marks such as 3mm[A], correlation[A], and covariance[A] among the 13 bench-

marks with performance speedup are parallelized without any speculation. Without specu-

lation, the ASAP compiler cannot parallelize loops in the other 10 benchmarks, thus losing

performance speedup opportunities. Figure 6.2 compares performance speedups between

non-speculative parallelization and speculative parallelization. Speculation increases the

67

Benchmark
Parallelized Loops Speculation Comm. Opti. Coverage

of P’llized
LoopsDOALL

Spec- Spec-
Mem Ctrl Obj Read P B DDOALL DSWP

2mm[A] 1 1 0 4 2 0 0 0 3 2 >99.9%
3mm[A] 3 0 0 0 0 0 0 0 3 3 >99.9%
cholesky[A] 0 0 1 1 0 0 0 0 0 0 >99.9%
correlation[A] 1 0 0 0 0 0 0 0 0 0 99.5%
covariance[A] 1 0 0 0 0 0 0 0 0 0 99.7%
doitgen[A] 0 1 0 6 2 0 0 1 3 0 97.3%
dynprog[A] 0 0 1 20 3 0 0 1 0 0 >99.9%
fdtd-2d[A] 0 0 1 7 0 0 0 0 4 0 98.9%
gemm[A] 0 1 0 4 2 0 0 0 2 1 99.4%
reg detect[A] 0 1 0 18 4 0 0 0 4 0 >99.9%
symm[A] 0 0 1 0 1 0 0 0 1 0 >99.9%
syr2k[A] 0 1 0 2 1 0 0 0 1 0 99.3%
syrk[A] 0 1 0 2 1 0 0 0 1 0 99.6%
052.alvinn[A] 0 1 0 264 0 384 0 0 0 0 85.5%
052.alvinn[M] 0 1 0 7 0 0 0 3 6 0 85.5%
130.li[M] 0 0 1 87 3 0 0 9 3 0 >99.9%
164.gzip[M] 0 0 1 140 0 0 0 13 3 0 98.4%
179.art[M] 0 0 1 40 0 0 0 9 0 0 >99.9%
197.parser[M] 0 0 1 172 8 0 0 5 3 0 >99.9%
256.bzip2[M] 0 0 1 64 1 0 0 16 7 0 99.3%
456.hmmer[M] 0 0 1 59 0 0 0 1 0 0 >99.9%
464.h264[M] 0 0 1 455 0 0 0 15 0 0 93.6%
crc32[A] 0 0 1 4 3 5 0 1 0 0 >99.9%
crc32[M] 0 0 1 0 2 0 0 1 0 0 >99.9%
blackscholes[A] 1 1 0 12 0 84 382 2 0 0 >99.9%
blackscholes[M] 0 0 1 10 1 0 0 0 0 0 >99.9%
swaptions[A] 0 1 0 4 5 8761 868 1 0 0 >99.9%
swaptions[M] 0 1 0 4 2 19 0 2 0 0 >99.9%

Table 6.2: Parallelization details: DOALL, Spec-DOALL, and Spec-DSWP show the num-
ber of parallelized loops with the parallelization scheme. Mem is the number of applied
memory flow speculation, Ctrl is the number of speculated branches, Obj is the number of
memory flow dependences removed by object lifetime speculation, and Read is the number
of memory flow dependences by read-only speculation. In communication optimization,
P, B and D stand for the number of promoted, batched and removed duplicated function
calls, respectively. Coverage shows the execution time ratio of parallelized loops over the
entire program. [A] and [M] in the benchmark names stand for automatically and manually
parallelized programs.

68

0x

10x

20x

30x

40x

50x

60x

70x

80x

90x

100x

110x

120x

 12 24 36 48 60 72 84 96 108 120

S
p

e
e

d
u

p
 o

v
e

r
O

ri
g

in
a

l
S

e
q

u
e

n
ti
a

l

Number of Threads
1

456.hmmer[M]
swaptions[A]

swaptions[M]

blackscholes[M]

130.li[M]
blackscholes[A]

256.bzip2[M]
464.h264ref[M]

crc32[A]
crc32[M]

doitgen[A]
2mm[A]

gemm[A]
3mm[A]

179.art[M]
covariance[A]
correlation[A]

syrk[A]
052.alvinn[M]
197.parser[M]

syr2k[A]
052.alvinn[A]

dynprog[A]
164.gzip[M]
cholesky[A]

fdtd-2d[A]
reg-detect[A]

symm[A]

Figure 6.1: Overall speedup on 120 core cluster (Benchmarks in the legend are ordered
from highest to lowest speedup)

69

doitgen[A
]

dynprog[A
]

fdtd−d[A
]

gem
m

[A
]

reg_detect[A
]

sym
m

[A
]

syr2k[A
]

syrk[A
]

sw
aptions[A

]

S
p

ee
d

u
p

 o
v

er
 O

ri
g

in
al

 S
eq

u
en

ti
al

Benchmark

ASAP without Speculation

ASAP

 0x

 20x

 40x

 60x

 80x

 100x

052.alvinn[A
]

2m
m

[A
]

3m
m

[A
]

blackscholes[A
]

cholesky[A
]

correlation[A
]

covariance[A
]

crc32[A
]

Figure 6.2: Performance Effect of Speculative Parallelization

applicability of the ASAP system to more loops in the benchmarks, and leads performance

speedups of the benchmarks.

Moreover, speculation makes the ASAP compiler robust enough to overcome fragility

of static alias analysis. For example, the evaluated benchmarks have been slightly updated

from the earlier version. Although the two versions execute the same tasks, the update

makes the ASAP compiler require speculation to parallelize a loop in 2mm[A] that did

not require in the earlier version that was used in [40]. If the ASAP compiler relies only on

static alias analysis, the compiler could not parallelize the loop, hence losing performance

speedup. Speculation allows the ASAP system to have stable applicability and scalability.

Second, communication optimization realizes the high performance speedup po-

tential in the ASAP system. Some programs have a high ratio of memory accesses to

computation. For example, each iteration in 2mm[A], a matrix multiplication benchmark,

requires two loads and one store to execute only one floating-point multiplication. This

high rate of memory accesses requires a large amount of communication, degrading per-

formance. When applicable, based on the communication pattern, the ASAP compiler

70

dynprog[A
]

fdtd−2d[A
]

gem
m

[A
]

reg_detect[A
]

sym
m

[A
]

syr2k[A
]

syrk[A
]

blackscholes[A
]

crc32[A
]

sw
aptions[A

]

R
at

io
 (

O
p

ti
m

iz
ed

/N
o

n
−

O
p

ti
m

iz
ed

)

Benchmark

Communication

Execution Time

 0x

 0.2x

 0.4x

 0.6x

 0.8x

 1x

 1.2x

2m
m

[A
]

3m
m

[A
]

doitegen[A
]

Figure 6.3: Effects of communication optimization on 12 cores: The execution time and
the communication amount are normalized to non-optimized values. Lower ratio means
more optimized communication.

optimizes communication by promoting, batching and removing communication function

calls such as produce, specLoad and specStore. Figure 6.3 shows at most over 99%

of the communication is optimized away, thus reducing execution time. Small input sets

and 12 cores are used for this result because the unoptimized versions explode execution

time.

In addition, the ASAP compiler privatizes dynamically allocated memory objects if

the objects are speculated to be iteration-local. Its performance impact is separately eval-

uated using swaption[A] benchmark and two versions of the runtime with and without

privatization on 12 cores. A small input set is used because the execution time explodes

without privatization. With privatization, the volume of communication in bytes decreases

by 99.6%.

Third, static analysis and separate validation and commit processes reduce valida-

tion overhead. Software transactional memory systems have suffered from large validation

overhead [20]. Once the validation cost exceeds a certain threshold relative to the execu-

71

tion time of a loop iteration, the validation process becomes a performance bottleneck.

Although the task of validation is effectively offloaded to a separate process to overlap val-

idation with computation in the worker processes, it is still important to reduce the amount

of speculative memory accesses, and develop high quality static alias analysis.

However, there are four benchmarks that experience slowdown although the perfor-

mance estimator predicts speedup: cholesky[A], fdtd-2d[A], reg detect[A],

and symm[A]. Based on the parallelization strategy, these benchmarks are divided into

two classes.

For the first class, which is exemplified by cholesky[A], fdtd-2d[A] and symm[A],

the performance speedup is limited by Amdahl’s Law. The loops are parallelized with Spec-

DSWP scheme, but most instructions in the loop are sequentially executed in the sequential

stages, so the performance estimator estimates that the loops are not scalable. Although

the performance estimation assumes that the benchmarks show performance speedup on

a small number of cores, they suffer from the slowdown because the communication and

validation overheads overwhelm the performance profits.

Unlike the performance estimation, syrk[A] shows performance speedup. One rea-

son is that the benchmark has longer execution time for large input sets than the expected

one. In addition, the loop is parallelized with Spec-DOALL scheme without a sequential

stage, so the performance speedup is not limited by Amdahl’s Law.

For the second class of benchmarks such as reg detect[A], inter-node communi-

cation bandwidth limits the performance. Due to imprecise static dependence analyzer,

the ASAP compiler speculatively parallelizes the loop, and inserts validation codes that

require communication between processes. However, the ASAP compiler cannot fully op-

timize the validation codes because of non-uniform memory access patterns, thus requiring

huge communication bandwidth for validation beyond hardware supports.

72

6.1.2 Manually Parallelized Benchmarks

Since the ASAP compiler has limited applicability in making parallelization strategy, this

dissertation executes additional evaluation for the ASAP runtime system with manually

parallelized programs. Although the programs are manually parallelized, the parallelization

method is the same as the ASAP compiler’s.

052.alvinn[M]: The parallelized loop is at the second level in a loop nest. The

runtime system initializes all the processes with data from the master at the beginning of

each invocation of the parallelized loop. In addition, the runtime system delivers all live-out

data from the processes to the master at the end of each invocation. These synchronizations

from initialization and finalization limit the speedup.

130.li[M]: The parallelization speculates that each script is independent of the oth-

ers and does not change the interpreter’s environment nor cause the interpreter to exit al-

together. Accesses to the memory state corresponding to the interpreter’s environment are

executed transactionally. Control flow speculation is used to break the dependences from

the program exit condition.

164.gzip[M]: Compression works in three stages: 1) read block from the input file,

2) compress block in parallel, and 3) write compressed block. 164.gzip[M] uses a

variable block size, with the starting point of the next block being known only after the

current block is compressed. This dependence prevents parallelization. The Y-branch [17]

is used to break the dependence, and new blocks are started at fixed intervals. Multiple

versions of the arrays used for holding the blocks are automatically created by the runtime

system. Speedup is limited by communication bandwidth.

179.art[M]: The execution times of iterations in the parallelized loop are highly

unbalanced due to the varying trip count of the inner loops. A round-robin assignment of

iterations to each worker process results in wasted execution time due to the imbalance. To

address this, the first stage distributes work based on queue occupancy as a proxy for load

on each parallel-stage process.

73

197.parser[M]: The values of various global data structures are speculated to be

reset at the end of each iteration and control flow speculation for error cases is applied. An

entire dictionary must be copied from the master process on access by the worker processes,

and sentences must be transferred from the first stage to later stages. As a result, the

communication bandwidth becomes a performance bottleneck as the number of processes

increases beyond 32.

256.bzip2[M]: Like 164.gzip[M], the second stage compresses blocks in paral-

lel. Unlike 164.gzip[M], the Y-branch is not necessary because the block size is known

in the first stage. The runtime system creates multiple versions of the block array. Control

flow paths to handle error conditions are speculated as not taken.

456.hmmer[M]: The first stage calculates scores in parallel, while the second stage

computes a histogram of the scores sequentially. Max-reduction is applied to compute the

maximum score, and commutativity annotation is applied to random number generation.

464.h264ref[M]: Groups of Pictures (GoPs) are encoded in parallel. Dynamic

memory versioning enabled by the runtime system breaks false memory dependences in

the parallel stage and allows the parallel encoding of GoPs. The source and destination

of the synchronized dependences are inside an inner loop. DSWP moves the dependence

cycle to a separate stage allowing other stages to execute without waiting. Speedup is

limited primarily by the number of GoPs available.

crc32[M]: On a cluster with a network file system, the original program spends most

of its execution time reading the files. To reduce this effect, block read is used instead of

character read by replacing getc with fread. The program is speculatively parallelized

assuming errors do not occur in the CRC computation. Its speedup is limited by the number

of input files.

blackscholes[M]: The hottest loop prints error messages if a computed price is

different from its reference price. Speculation is applied on the error condition assuming

the computed price is close to the reference price in the input file.

74

swaptions[M]: As in blackscholes[M], the outermost loop is parallelized with

speculation on an error condition during price calculation. Object lifetime speculation is

applied to the dynamically allocated matrices and vectors in each iteration. Scalability is

limited by the input size.

The ASAP systems achieves scalable performance on most benchmarks in the eval-

uation. The performance improvement comes from a synergistic combination of parallel

resources, DSWP, and speculation. While clusters provide many processors, communica-

tion latency can be a barrier to good use of them. DSWP addresses this issue. Speculation

increases the applicability of DSWP to more applications. The ASAP compiler parallelizes

the sequential program combining these features, and the ASAP runtime systems enable

the combination by supporting multi-threaded transactions on clusters.

6.2 Comparison of Automatic and Manual Parallelization

Automatic parallelization is an attractive alternative to the time-consuming manual paral-

lelization. However, although the ASAP compiler automatically parallelizes various pro-

grams without any programmers’ annotation, its applicability is still limited compared to

the manual parallelization. This section analyzes the missing features of the ASAP com-

piler that cause limited applicability comparing to the manual parallelization, and demon-

strates a path for the compiler to generate scalable programs for a wide range of programs.

Section 6.1 shows the performance speedups of automatically and manually paral-

lelized programs. Among the manually parallelized programs, the ASAP compiler suc-

cessfully parallelizes blackscholes and swaptionswithout any annotation, and achieves

scalable performance speedups. However, the compiler fails to parallelize the other pro-

grams. This section analyzes how the compiler generates scalable parallel codes for blackscholes

and swaptions, and why the compiler fails to parallelize the others. Many features si-

multaneously affect the failures, but this section is focused on the representative factors.

75

6.2.1 Scalable automatic parallelization

With the right parallelization strategy and speculation plan, the ASAP system can auto-

matically generate speculative parallel codes as scalable as manual ones. Figure 6.4 shows

that the performance speedups of automatically parallelized codes for blackscholes

and swaptions are scalable and very close to the manual ones.

The main factor of the scalable speedups is that the ASAP compiler automatically

makes the same parallelization strategy as the manual one. For example, Figure 6.5 shows

the parallelization strategy that the compiler automatically generates for swaptions.

Each box is a strongly connected component (SCC), the white box is a SCC in a paral-

lel stage, and the light gray box is a SCC for induction variables that can be replicated to

all the stages. Since all the iterations in the loops are in the white boxes or the gray boxes

within one stage, the loop can be parallelized in Spec-DOALL scheme that is the same to

the manual one.

The ASAP compiler parallelizes blackscholes with Spec-DOALL scheme while

the manual parallelization uses Spec-DSWP scheme. The parallelized loop in blackscholes

has an output operation, printf. The TXIO manager in the ASAP compiler removes

inter-iteration dependences on the printf, and sequentially executes the output operation

after commit, allowing Spec-DOALL parallelization. However, the manual parallelization

allocates the output operation in the sequential stage, thus making a two-stage pipeline

parallel loop. Although the automatic and manual parallelizations generate two different

codes applying different parallelization schemes, the two codes execute in the same way.

In addition, as Table 6.2 describes, the ASAP compiler removes most loop-carried de-

pendences with object lifetime speculation and read-only speculation that do not require

communication between processes, so the compiler can overcome imprecise static alias

analysis without paying huge validation and communication costs. The right paralleliza-

tion strategy and the optimal speculation plan allow the ASAP compiler to automatically

generate the same scalable parallel codes as timing-consuming manual parallelization.

76

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 120

 12 24 36 48 60 72 84 96 108 120

S
p

e
e

d
u

p

Number of Cores

blackscholes[M]
blackscholes[A]

(a) blackscholes

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 120

 12 24 36 48 60 72 84 96 108 120

S
p

e
e

d
u

p

Number of Cores

swaptions[A]
swaptions[M]

(b) swaptions

Figure 6.4: Performance comparison between automatic parallelization and manual paral-
lelization for blackscholes and swaptions

77

Stage 0

rep 28

P 19P 7

P 18

P 3P 11

P 5 P 21

P 15 P 9

P 26 P 13 P 2

P 4P 6

P 8P 10

P 12

P 14

P 16

P 17

P 20

P 23

P 24

P 25

P 27

P 1

P 0

P 22

 %indvars.iv = phi i64 [%5, %for.body.lr.ph], [%indvars.iv.next, %for.body]

 %dStrike = getelementptr inbounds %struct.parm* %4, i64 %indvars.iv, i32 3

 %dCompounding = getelementptr inbounds %struct.parm* %4, i64 %indvars.iv, i32 4 %dMaturity = getelementptr inbounds %struct.parm* %4, i64 %indvars.iv, i32 5

 %dTenor = getelementptr inbounds %struct.parm* %4, i64 %indvars.iv, i32 6 %dPaymentInterval = getelementptr inbounds %struct.parm* %4, i64 %indvars.iv, i32 7

 %iN = getelementptr inbounds %struct.parm* %4, i64 %indvars.iv, i32 8

 %iFactors = getelementptr inbounds %struct.parm* %4, i64 %indvars.iv, i32 10

 %dYears = getelementptr inbounds %struct.parm* %4, i64 %indvars.iv, i32 9 %pdYield = getelementptr inbounds %struct.parm* %4, i64 %indvars.iv, i32 11 %ppdFactors = getelementptr inbounds %struct.parm* %4, i64 %indvars.iv, i32 12

 %dSimSwaptionMeanPrice = getelementptr inbounds %struct.parm* %4, i64 %indvars.iv, i32 1 %dSimSwaptionStdError = getelementptr inbounds %struct.parm* %4, i64 %indvars.iv, i32 2

 %indvars.iv.next = add i64 %indvars.iv, 1

 %6 = load double* %dStrike, align 8

 %call = call i32 @HJM_Swaption_Blocking(double* %arraydecay, double %6, double %7, double %8, double %9, double %10, i32 %11, i32 %12, double %13, double* %14, double** %15, i64 100, i64 %conv, i32 16, i32 0) nounwind

 %7 = load double* %dCompounding, align 8 %8 = load double* %dMaturity, align 8

 %9 = load double* %dTenor, align 8 %10 = load double* %dPaymentInterval, align 8

 %11 = load i32* %iN, align 4

 %12 = load i32* %iFactors, align 4

 %13 = load double* %dYears, align 8 %14 = load double** %pdYield, align 8

 %16 = load i32* @NUM_TRIALS, align 4

 %18 = load double* %arrayidx24, align 8

 %15 = load double*** %ppdFactors, align 8 %conv = sext i32 %16 to i64

 %17 = load double* %arraydecay, align 16

 store double %17, double* %dSimSwaptionMeanPrice, align 8

 store double %18, double* %dSimSwaptionStdError, align 8

 %19 = trunc i64 %indvars.iv.next to i32

 %cmp2 = icmp slt i32 %19, %.mul1

 br i1 %cmp2, label %for.body, label %for.end.loopexit

Figure 6.5: Parallelization strategy for swaptions[A]. The white boxes are strongly
connected components (SCCs) that do not have any loop-carried dependence, and the light
gray box is a SCC that can be replicated across all the threads. Each line between boxes
means dependences, and blue dashed lines are loop-carried dependences.

6.2.2 Imprecise performance estimation

Imperfect performance estimation may lead the ASAP compiler to parallelize an outer

loop in an inefficient way, missing profitable parallelism opportunities in inner loops. Since

parallelizing an outer loop is generally more profitable than its inner loops due to invocation

overheads, the compiler tries to parallelize from the outermost loops to their inner loops.

If the performance estimator considers a loop parallelization strategy to be profitable, the

compiler stops parallelizing its inner loops that may lead better performance improvement.

For example, Figure 6.6 shows the outermost hot loop in 052.alvinn. The hot loop

calculates inputs and outputs using weights that are updated in update weights() at

the end of each iteration, so the loop has loop-carried memory flow dependences on the

weights that affect most of the loop instructions. The ASAP compiler parallelizes the out-

ermost loop with Spec-DSWP scheme respecting the loop-carried flow dependences, and

generates a parallel loop with a large sequential stage and a small parallel stage. Figure 6.7

illustrates the pipeline strategy. The dark gray box means a SCC with loop-carried de-

pendences that cannot be executed in parallel, so most of the instructions in the loop are

allocated to the sequential stage. There are only small number of instructions in the white

78

for (epoch = 0; epoch < NUM_EPOCHS; epoch++) {
error = 0.0;

for (pattern = 0; pattern < NUM_PATTERNS; pattern++) {
input_hidden(next_input[pattern], hidden_act);
hidden_output(hidden_act, output_act);
update_stats(next_output[pattern], output_act, &error);
output_hidden(next_output[pattern], output_act, hidden_act);
hidden_input(next_input[pattern]);

}

update_weights();
printf("EPOCH NUMBER %d: ERROR = %.5f\n",

epoch+1, error / (NUM_PATTERNS *NOU));
}

Figure 6.6: The outermost hot loop in 052.alvinn

boxes that will be executed in parallel. Since the performance estimator considers the par-

allel codes to improve the performance though it is very slight improvement, the ASAP

compiler stops parallelizing its inner loops.

Unlike the automatic parallelization, the manual parallelization parallelizes the inner

loop of the hot loop in 052.alvinn. The outermost loop has an inner loop that takes

most of the execution time, and each iteration in the inner loop is independent each other

because all the inputs and outputs are indexed by pattern. The manual parallelization

parallelizes the inner loop in Spec-DOALL scheme, avoiding the loop-carried dependences

in the outer loop. Compared to the outer loop parallelization that allows only a small num-

ber of instructions to be executed in parallel, the inner loop parallelization allows all the

iterations in the loop to be independently executed, leading better performance improve-

ment.

To compare the automatic parallelization to the manual one, the ASAP compiler is

forced to skip the outer loop parallelization. The compiler correctly finds and parallelizes

the inner loop with DOALL scheme. Here, since the compiler does not support reduc-

tion, the parallelized program is slightly modified to support the reduction operations in

79

Stage 0

P 4 P 5

rep 6 P 7 P 8

Stage 1

P 0

P 1

P 2

S 3

 %epoch.07 = phi i32 [0, %entry], [%add, %update_weights.exit]

 %add = add nsw i32 %epoch.07, 1

 %call4 = call float @innerLoop(float 0.000000e+00, float* %arraydecay, float* %arraydecay3)

 %2 = load float* %arrayidx5.i, align 4 %4 = load float* %arrayidx30.i, align 4, !tbaa !479 %div = fdiv float %call4, 7.000000e+02

 %call5 = call i32 (i8*, ...)* @printf(i8* getelementptr inbounds ([31 x i8]* @.str8, i64 0, i64 0), i32 %add, double %conv) nounwind

 %0 = load float* @i_h_lrc, align 4

 %mul.i = fmul float %0, %2

 br label %for.cond1.preheader.i

 %indvars.iv62.i = phi i64 [0, %for.body], [%indvars.iv.next63.i, %for.inc16.i]

 br label %for.body3.i

 %arrayidx5.i = getelementptr inbounds [30 x [31 x float]]* @i_h_w_ch_sum_array, i64 0, i64 %indvars.iv58.i, i64 %indvars.iv62.i

 %arrayidx9.i = getelementptr inbounds [30 x [31 x float]]* @i_h_weights, i64 0, i64 %indvars.iv58.i, i64 %indvars.iv62.i

 %indvars.iv.next63.i = add i64 %indvars.iv62.i, 1

 %indvars.iv58.i = phi i64 [0, %for.cond1.preheader.i], [%indvars.iv.next59.i, %for.body3.i]

 %1 = load float* @h_o_lrc, align 4

 %mul31.i = fmul float %1, %4

 br label %for.cond23.preheader.i

 %indvars.iv54.i = phi i64 [0, %for.cond19.preheader.i], [%indvars.iv.next55.i, %for.inc47.i]

 %indvars.iv.next59.i = add i64 %indvars.iv58.i, 1

 store float %conv15.i, float* %arrayidx5.i, align 4

 %conv.i = fpext float %2 to double

 %add.i = fadd float %3, %mul.i

 %3 = load float* %arrayidx9.i, align 4

 store float %add.i, float* %arrayidx9.i, align 4

 %mul14.i = fmul double %conv.i, 9.000000e-01

 %conv15.i = fptrunc double %mul14.i to float

 %lftr.wideiv1 = trunc i64 %indvars.iv.next59.i to i32

 %exitcond2 = icmp eq i32 %lftr.wideiv1, 30

 br i1 %exitcond2, label %for.inc16.i, label %for.body3.i

 %lftr.wideiv = trunc i64 %indvars.iv.next63.i to i32

 %exitcond = icmp eq i32 %lftr.wideiv, 31

 br i1 %exitcond, label %for.cond19.preheader.i, label %for.cond1.preheader.i

 br label %for.body26.i

 %arrayidx30.i = getelementptr inbounds [35 x [31 x float]]* @h_o_w_ch_sum_array, i64 0, i64 %indvars.iv.i, i64 %indvars.iv54.i

 %arrayidx35.i = getelementptr inbounds [35 x [31 x float]]* @h_o_weights, i64 0, i64 %indvars.iv.i, i64 %indvars.iv54.i

 %indvars.iv.next55.i = add i64 %indvars.iv54.i, 1

 %indvars.iv.i = phi i64 [0, %for.cond23.preheader.i], [%indvars.iv.next.i, %for.body26.i]

 %indvars.iv.next.i = add i64 %indvars.iv.i, 1

 store float %conv43.i, float* %arrayidx30.i, align 4

 %conv41.i = fpext float %4 to double

 %add36.i = fadd float %5, %mul31.i

 %5 = load float* %arrayidx35.i, align 4

 store float %add36.i, float* %arrayidx35.i, align 4

 %mul42.i = fmul double %conv41.i, 9.000000e-01

 %conv43.i = fptrunc double %mul42.i to float

 %lftr.wideiv3 = trunc i64 %indvars.iv.next.i to i32

 %exitcond4 = icmp eq i32 %lftr.wideiv3, 35

 br i1 %exitcond4, label %for.inc47.i, label %for.body26.i

 %lftr.wideiv5 = trunc i64 %indvars.iv.next55.i to i32

 %exitcond6 = icmp eq i32 %lftr.wideiv5, 31

 br i1 %exitcond6, label %update_weights.exit, label %for.cond23.preheader.i

 %exitcond14 = icmp eq i32 %add, 100

 %conv = fpext float %div to double

 br i1 %exitcond14, label %for.end, label %for.body

Figure 6.7: Pipeline strategy for 052.alvinn[A]. All the boxes and lines have the same
meaning to Figure 6.5. The dark gray box means a SCC that has at least one loop-carried
dependence, so cannot be executed in parallel.

the loop. Figure 6.8 shows performance speedups of the manually and automatically par-

allelized codes. Although the ASAP compiler improves the performance of the program,

the achieved performance speedup is still limited because of repeated high invocation over-

heads and reduced coverage from the excluded reduction instructions. Unlike the automatic

parallelization, the manual parallelization invokes the parallel codes only once at the outer

loop, delivers the updated weights from the master process to the worker at each outer loop

iteration, and reduces the invocation overheads of the inner loop parallelization on the clus-

ters. With light invocation overheads on shared memory system, Johnson et al. achieve the

scalable performance improvement on 052.alvinn up to 12 times on 24 cores with a

fully automatic parallelization technique [38]

6.2.3 User annotation

Since the compiler cannot change the semantics of a program, the ASAP compiler par-

allelizes the sequential codes conservatively respecting the original algorithm. However,

programmers can understand the semantic of the algorithm, and changes the codes during

the manual parallelization. This difference allows the programmers to parallelize programs

80

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 12 24 36 48 60 72 84 96 108 120

S
p

e
e

d
u

p

Number of Cores

052.alvinn[M]
052.alvinn[A]

Figure 6.8: Performance comparison between automatic parallelization and manual paral-
lelization for 052.alvinn after modification

while(--argc > 0) {
errors |= crc32file(*++argv, &crc, &charcnt);
printf("%08X %7d %s\n", crc, charcnt, *argv);

}

Figure 6.9: The outermost hot loop in crc32

in more flexible ways than the compiler, so the manually parallelized codes can achieve

better performance speedups than the automatically parallelized ones.

For example, 164.gzip dynamically decides block sizes based on the compression

results to maximize compression ratio, so it is impossible to compress later blocks in ad-

vance. Since the dynamic decision limits parallelism opportunities, programmers change

the codes to partition the block in advance, enduring slightly reduced compression ratio,

and parallelize the modified program. However, the ASAP compiler cannot change the

original semantics, so fails to parallelize the program.

Figure 6.9 shows another example in crc32. The function, crc32file, reads an

input file, calculates a CRC value, and checks an error. Due to the file access that may

81

 10

 20

 30

 40

 50

 60

 12 24 36 48 60 72 84 96 108 120

S
p

e
e

d
u

p

Number of Cores

crc[A]
crc32[M]

Figure 6.10: Performance comparison between automatic parallelization with annotations
and manual parallelization for crc32

cause side effects, the ASAP compiler conservatively considers all the iterations to depend

on the previous iterations, so it cannot parallelize the loop. However, programmers know

what are input files, assume all the input files are not related, and freely parallelize the loop.

For the same reason, the ASAP compiler cannot parallelize 456.hmmer that has loop-

carried dependences on a random number generator. However, programmers can allow the

program to reorder the random number generation, and parallelize the program removing

the loop-carried dependences.

To parallelize the programs, the compiler needs permission to modify the algorithm.

One way to give the permission to the compiler is using user annotations. Bridges et al.

proposes two user annotations such as Y-branch and commutativity [17]. Y-branch anno-

tation forces a program to branch a target address if the annotation is executed more than a

pre-defined threshold. For example, the annotation forces the loop in 164.gzip to jump

to the loop header breaking the input blocks, so the program can compress the next block

independently. Commutativity annotation [17, 62] allows reordering of program execution,

82

int main(int argc,char **argv) {
...
if (setjmp(cntxt.c_jmpbuf) == 0)
for (i = 1; i < argc; i++)

if (!xlload(argv[i],TRUE,FALSE))
xlfail("can’t load file");

...
}

void xljump(CONTEXT *cptr,int type,NODE *val)
{

...
longjmp(xlcontext->c_jmpbuf,type);
...

}

Figure 6.11: setjmp and longjmp in 130.li

so it breaks loop-carried dependence on an instruction or function call. For example, the

annotation allows the random number generation reordered.

To evaluate the effect of the annotations, this dissertation implements a function level

commutativity annotation that breaks loop-carried dependences on a function call, and ap-

plies the annotation to crc32file in crc32. The annotation makes the ASAP compiler

parallelize crc32with two-stage Spec-DSWP scheme; the first parallel stage concurrently

executes crc32file assuming all the input files are independent, and the second sequen-

tial stage updates errors. The parallelization plan is the same to the manually paral-

lelized codes. Figure 6.10 shows the performance speedups of the automatically and man-

ually parallelized codes. The automatically parallelized one performs very close to the

manual version. This result shows that the annotation can effectively increase the paral-

lelism opportunities, and again that the ASAP compiler can achieve scalable performance

similar to manual parallelization if the compiler makes the right parallelization plan.

83

6.2.4 setjmp and longjmp

The ASAP compiler largely relies on the profiling results when it parallelizes a program,

from finding hot loops to speculatively removing dependences. Although the compiler can

parallelize a loop without profiling results, its applicability is limited to simple structure

that can be easily analyzed, so the profiling results are crucial for the compiler to parallelize

complex programs. However, profilers such as the loop aware memory profiler, the loop

profiler and the speculative privatization profiler fail to generate profiling results for some

programs due to setjmp and longjmp. For example, Figure 6.11 shows a hot loop and

parts of benchmark 130.li. The program calls setjmp before executing the hot loop,

and longjmp in the hot loop. The profilers track program behavior building a function

call stack and a loop nest stack. If the program pointer jumps to outside of a function or a

loop, the profilers lose their tracking information, thus failing to generate correct profiling

results.

Annotation can solve the problem. If all the longjmps in a loop do not jump to outside

of an iteration, the jumps do not affect execution of other iterations, so all the iterations can

be independently executed. Assuming annotations on the boundary of longjmp, the man-

ual parallelization parallelizes the hot loop in 130.li, and achieves scalable performance

improvement. Speculation on the boundary of longjump can solve the problem in the

same way, but with additional validation algorithm that checks the boundary of the jump.

6.2.5 Interprocedural partitioning

The ASAP compiler may parallelize a loop that include a function call. If the target func-

tion read or write memory spaces, the compiler needs to generate a program dependence

graph (PDG) including the instructions in the function. There are two ways to manage the

dependence graph.

First, the compiler generates a PDG including all the instructions in target functions. If

an instruction inst A in a function func A writes a memory space, and another instruc-

84

while (True) {
blockNo++;
initialiseCRC ();
loadAndRLEsource (stream);
if (last == -1) break;

blockCRC = getFinalCRC ();
combinedCRC = (combinedCRC << 1) | (combinedCRC >> 31);
combinedCRC ˆ= blockCRC;
doReversibleTransformation ();
bsPutUChar (0x31); bsPutUChar (0x41);
bsPutUChar (0x59); bsPutUChar (0x26);
bsPutUChar (0x53); bsPutUChar (0x59);
bsPutUInt32 (blockCRC);

if (blockRandomised) {
bsW(1,1); nBlocksRandomised++;

} else
bsW(1,0);

moveToFrontCodeAndSend ();
}

void moveToFrontCodeAndSend (void) {
bsPutIntVS (24, origPtr);
generateMTFValues();
sendMTFValues();

}

Figure 6.12: Hot loop in 256.bzip2

85

tion inst B in a function func B reads the same memory, the compiler directly inserts a

flow dependence from inst A to inst B. This way can illustrate the all the dependence

information in detail. However, if a program becomes complex, the compiler may suffer

from memory explosion because the number of edges quadratically increases to the number

of instructions.

The other way is making a function call in the loop represent all the instructions in the

target function. For the previous example, the compiler inserts a flow dependence from a

call instruction call A to the other call instruction call B instead of the two instructions

in the functions. Since the method does not increase the number of instructions in a PDG,

the compiler can avoid the memory explosion. However, since the dependence information

is abstracted, the method loses some parallelism opportunities.

To avoid memory explosion, the ASAP compiler adopts the second method, but it

suffers from limited applicability due to the abstracted PDG. For example, Figure 6.12

shows a hot loop in 256.bzip2. Each iteration in the loop reads a block from in-

put files, compresses the block, and writes the results to an output file. Though read-

ing and writing input and output files cannot be parallelized, since each iteration can

independently compress each block, the manual parallelization partitions the loop into

three stages; a sequential read stage, a parallel compression stage, and a sequential write

stage. Here, the manual parallelization splits moveToFrontCodeAndSend, and allo-

cates generateMTFValues to the parallel compression stage and bsPutIntVS and

sendMTFValues to the sequential write stage. However, the ASAP compiler consid-

ers the call to moveToFrontCodeAndSend as a single instruction, so allocates the call

instruction to a sequential stage. Since a larger function has more chance to include an

instruction with loop-carried dependences, the abstracted PDG makes the ASAP compiler

difficult to parallelize complex programs. Here, the abstracted PDG does not harm Spec-

DOALL scheme because all the instructions in the Spec-DOALL loop do not have any

loop-carried dependence, and the abstracted PDG does not lose any information.

86

6.2.6 Global variable localization

Some programs such as 164.gzip and 256.bzip2 have a lot of global variables that are

used in multiple functions. Although the global variables may make programmers easily

write a program, they make the ASAP compiler generate inefficient parallel codes even

with the right parallelization strategy. For example, the hot loop in Figure 6.12 updates a

global variable last that points the end of a read block. Although last is not accessed

after the hot loop, since it is a global variable which lifetime scope is the whole program,

the compiler conservatively delivers every update of last to the master process as a live-

out variable. Since the hot loop updates a lot of global variables that are not accessed

after the hot loop, the automatically parallelized codes waste communication bandwidth

to deliver unnecessary data, thus harming the performance. Unlike the ASAP compiler,

the programmers only deliver live-out values that are really used in later execution, so the

manually parallelized codes can achieve performance speedup.

6.3 Comparison of DSWP and TLS

As mentioned in Section 1.1, DSWP has higher latency tolerance than TLS by keeping

the communication pattern unidirectional. This section evaluates and compares the perfor-

mance of TLS and DSWP on a 128-core cluster (32 nodes × 4 cores/node). Each node

is a Dell PowerEdge 1950 with two dual-core processors (Intel Xeon 5160 @ 3.00GHz)

and 16GB of RAM. The same loops in each benchmark are manually parallelized and op-

timized with DSWP and TLS schemes.

Figure 6.13 shows that DSWP generally scales better than TLS as analyzed in Sec-

tion 1.1. The DSWP+[...] notation describes how the programs are parallelized in the

Spec-DSWP scheme. Within square brackets, parallelization techniques applied to each

stage are specified. For example, Spec-DSWP+[S, DOALL, S] means three stage pipeline

parallelism. Here, S indicates a stage that is sequentially executed, whereas Spec- indicates

87

0x

10x

20x

30x

40x

50x

60x

70x

80x

90x

100x

110x

120x

 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128

S
p

ee
d

u
p

Number of Cores

DSWP+[Spec-DOALL,S]

TLS

(a) 130.li[M]

0x

10x

20x

30x

40x

50x

60x

70x

80x

90x

100x

110x

120x

 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128

S
p

ee
d

u
p

Number of Cores

Spec-DSWP+[S,DOALL,S]

TLS

(b) 164.gzip[M]

Figure 6.13: Performance speedups of Spec-DSWP and TLS using the ASAP runtime

88

0x

10x

20x

30x

40x

50x

60x

70x

80x

90x

100x

110x

120x

 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128

S
p

ee
d

u
p

Number of Cores

Spec-DSWP+[S,DOALL,S]

TLS

(c) 179.art[M]

0x

10x

20x

30x

40x

50x

60x

70x

80x

90x

100x

110x

120x

 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128

S
p

ee
d

u
p

Number of Cores

Spec-DSWP+[S,DOALL,S]

TLS

(d) 197.parser[M]

Figure 6.13: Performance speedups of Spec-DSWP and TLS using the ASAP runtime

89

0x

10x

20x

30x

40x

50x

60x

70x

80x

90x

100x

110x

120x

 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128

S
p

ee
d

u
p

Number of Cores

Spec-DSWP+[S,DOALL,S]

TLS

(e) 256.bzip2[M]

0x

10x

20x

30x

40x

50x

60x

70x

80x

90x

100x

110x

120x

 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128

S
p

ee
d

u
p

Number of Cores

Spec-DSWP+[DOALL,S]

TLS

(f) 456.hmmer[M]

Figure 6.13: Performance speedups of Spec-DSWP and TLS using the ASAP runtime

90

0x

10x

20x

30x

40x

50x

60x

70x

80x

90x

100x

110x

120x

 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128

S
p

ee
d

u
p

Number of Cores

Spec-DSWP+[DOALL,S]

TLS

(g) 464.h264ref[M]

0x

10x

20x

30x

40x

50x

60x

70x

80x

90x

100x

110x

120x

 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128

S
p

ee
d

u
p

Number of Cores

DSWP+[Spec-DOALL,S]

TLS

(h) blackscholes[M]

Figure 6.13: Performance speedups of Spec-DSWP and TLS using the ASAP runtime

91

0x

10x

20x

30x

40x

50x

60x

70x

80x

90x

100x

110x

120x

 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128

S
p

ee
d

u
p

Number of Cores

DSWP+[Spec-DOALL,S]

TLS

(i) crc32[M]

0x

10x

20x

30x

40x

50x

60x

70x

80x

90x

100x

110x

120x

 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128

S
p

ee
d

u
p

Number of Cores

Spec-DSWP

TLS

ASAP Best

(j) Geomean

Figure 6.13: Performance speedups of Spec-DSWP and TLS using the ASAP runtime

92

speculation between stages. Spec- in DSWP+[S, Spec-DOALL, S] means that speculation

is applied only to the second stage.

DSWP scales to a higher core count than TLS especially in 179.art, 456.hmmer,

and blackscholes. It is because the cyclic dependence of TLS puts inter-process com-

munication latency on the critical path of program execution, which becomes the bottleneck

as the number of processes increases.

In 130.li and 464.h264ref, additional synchronization points limit the perfor-

mance speedups of TLS. For example, each iteration in the hot loop of 130.li executes

output operations as printf that should be synchronized to achieve correct output. While

DSWP allocates the output operations in a separate sequential stage, TLS inserts synchro-

nization between processes, so the performance speedup is limited.

Unlike other benchmarks, TLS shows better performance than DSWP for 256.bzip2,

because DSWP sends the whole input file to other processes in later stages while TLS sends

only the file descriptor of the input file to others. In this case, communication bandwidth

is the main factor that affects the performance, so TLS shows slightly better performance

than DSWP.

In summary, for the eight manually parallelized benchmarks, while TLS shows 16.46×

geomean speedup, DSWP shows 47.96× geomean speedup with better scalability.

6.4 Recovery Overhead

Figure 6.14 shows how different misspeculation rates affect the performance speedup of

blackscholes[A] on different numbers of cores. The input files are modified to cause

misspeculation with varying rates from 0.01% to 0.64%. Higher misspeculation rate and

more cores generally lead to greater performance penalties. The misspeculation overhead

is more sensitive to the misspeculation rate than the number of cores because additional

misspeculation causes a new recovery operation while synchronization overhead from ad-

93

0x

10x

20x

30x

40x

50x

60x

70x

80x

90x

100x

 12 24 36 48 60 72 84 96 108 120

S
p

e
e

d
u

p
 o

v
e

r
O

ri
g

in
a

l
S

e
q

u
e

n
ti
a

l

Number of Threads

1

None
0.01%
0.02%
0.04%
0.08%
0.16%
0.32%
0.64%

Figure 6.14: Speedup of blackscholes[A] with varying misspeculation rates

ditional cores is overlapped with the existing one. Due to the high recovery overhead, the

ASAP compiler should speculate dependences only with high confidence to achieve good

parallel performance.

6.5 Communication Overhead

Communication overhead is one of the critical features that limit performance improve-

ment of parallel programs on clusters. Although acyclic parallel programs are tolerant of

communication latency, their performance speedups are limited to communication band-

width. Figure 6.15 presents bandwidth requirements for each parallel program. Bandwidth

is computed by dividing the total data transferred via the runtime system by the total execu-

tion time. To show how the bandwidth requirement increases as more cores are used, data

is presented for three consecutive core counts starting from the number of pipeline stages

in the parallelization.

94

164.gzip[M]

179.art[M]

197.parser[M]

256.bzip2[M]

456.hmmer[M]

464.h264ref[M]

blackscholes[M]

crc32[M]

swaptions[M]

B
an

d
w

id
th

 (
k
B

p
s)

Benchmark

65,742

118,791

159,848

2,009

1 parallel worker
2 parallel workers
3 parallel workers

 0

 200

 400

 600

 800

 1,000

052.alvinn[M]

130.li[M]

Figure 6.15: Bandwidth requirement for each application

The figure shows that the required communication bandwidth increases as more cores

are used. It is because the execution times become shorter and shorter as the number of

cores increases while the total amount of data communication remains or increases. It

explains the plateauing of the speedups of 052.alvinn[M] and 197.parser[M]. In

both programs, as the number of processes increases, the application bandwidth increases

much faster when compared to the other programs. At a large number of processes, the

bandwidth requirements limit the speedup.

164.gzip[M] has very high bandwidth requirements that grow as the number of

processes is increased, explaining its limited scalability. Interestingly, the amount of data

transferred by 256.bzip2[M] is similar to 164.gzip[M]; however, the amount of

computation in 256.bzip2[M] is much more resulting in longer execution time and

much lower bandwidth. This explains the vast difference in their performance improve-

ments.

Although DSWP is communication latency tolerant, it is sensitive to the overhead of

the operations required to send a datum [67]. Since a single invocation of a send or re-

95

ceive function can take as many as 2,295 instructions in OpenMPI [18], the ASAP runtime

system coalesces multiple data transfer requests, thereby amortizing the costs. Commu-

nication using the queues in the runtime system can sustain a bandwidth of 480.7 MBps,

whereas communication using MPI Send, MPI Bsend, or MPI Isend directly provides

13.1, 12.7 and 8.1 MBps of bandwidth respectively.

6.6 Tiling Optimization

Tiling [43, 55, 69] is a well-known optimization to improve kernel applications with reg-

ular memory access such as matrix multiplication. Combined with the optimization, the

ASAP system can achieve synergistic effects in performance speedup. Among the pro-

grams listed in Table 6.1, 2mm, 3mm and gemm are applicable of the tiling optimization.

This thesis manually applies tiling optimization to these programs, and the ASAP system

automatically parallelizes the tiled programs. Figure 6.16 compares performance speedups

of tiled and non-tiled, sequential and parallel programs. The best performance speedup

results are chosen if parallel programs are not scalable up to 120 cores. The tiling op-

timization improves the performance of the sequential execution, and the ASAP system

achieves additional performance speedups on the tiled program. Since the ASAP system

parallelizes the outer-most loops of the program, all the parallel threads execute tiled se-

quential codes, so the synergistic performance improvement can be achieved.

6.7 Energy Consumption

Energy efficiency becomes a major technology issue in computer systems not only for mo-

bile devices and embedded systems, but also for servers and data centers. At first glance,

the runtime system might seem energy inefficient because parallel execution requires addi-

tional resources such as cores and memory. This section analyzes the energy consumption

of the runtime system on the shared memory system.

96

 40

 60

 80

 100

 120

 140

2mm
3mm

gemm

S
p
ee

d
u

p
 o

v
er

 O
ri

g
in

al
 S

eq
u

en
ti

al
 w

it
h

o
u

t
T

il
in

g

Benchmark

Parallel without tiling
Sequential with tiling
Parallel with tiling

 0

 20

Figure 6.16: Performance comparison between tiled and non-tiled, sequential and parallel
programs

Since there is no power meter in the cluster machines, a shared memory machine is used

for the energy performance evaluation. The machine has four Intel 6-core Xeon X7460 pro-

cessor running at 2.66 GHz with 24GB of memory. It runs 64-bit Ubuntu 9.10. Full system

power is measured at the maximum sampling rate (13 samples per minute) supported by

the power distribution unit (AP7892 [8]). The energy consumption in Figure 6.17 is nor-

malized to the original sequential program.

Figure 6.17(a) shows how much energy the runtime system consumes when it executes

each benchmark. Unlike the expectation, the runtime system consumes less energy when it

uses more processes. Although the runtime system causes additional power consumption

for parallel processes, it reduces execution time enough to save energy. To analyze the

energy consumption patterns in detail, this thesis measured the execution time and average

power consumption. The energy consumption follows a very similar trend line with execu-

97

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 4 6 8 10 12 14 16 18 20 22 24

E
n

e
rg

y
 N

o
rm

a
liz

e
d

 t
o

 O
ri
g

in
a

l
S

e
q

u
e

n
ti
a

l
P

ro
g

ra
m

Number of Threads

052.alvinn[M]
130.li[M]

164.gzip[M]
179.art[M]

197.parser[M]
256.bzip2[M]

456.hmmer[M]
blackscholes[M]

crc32[M]
swaptions[M]

(a) Energy Consumption

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 4 6 8 10 12 14 16 18 20 22 24

E
x
e

c
u

ti
o

n
 T

im
e

 N
o

rm
a

liz
e

d
 t

o
 O

ri
g

in
a

l
S

e
q

u
e

n
ti
a

l
P

ro
g

ra
m

Number of Threads

052.alvinn[M]
130.li[M]

164.gzip[M]
179.art[M]

197.parser[M]
256.bzip2[M]

456.hmmer[M]
blackscholes[M]

crc32[M]
swaptions[M]

(b) Execution Time

Figure 6.17: Energy consumption of speculative parallel execution

98

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1 4 6 8 10 12 14 16 18 20 22 24

P
o

w
e

r
C

o
n

s
u

m
p

ti
o

n
 (

W
a

tt
s
)

Number of Threads

052.alvinn
130.li

164.gzip
179.art

197.parser
256.bzip2

456.hmmer
blackscholes

crc32
swaptions

(c) Average Power Consumption

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 1 4 6 8 10 12 14 16 18 20 22 24

N
e

t
E

n
e

rg
y
 N

o
rm

a
liz

e
d

 t
o

 O
ri
g

in
a

l
S

e
q

u
e

n
ti
a

l
P

ro
g

ra
m

Number of Threads

052.alvinn[M]
130.li[M]

164.gzip[M]
179.art[M]

197.parser[M]
256.bzip2[M]

456.hmmer[M]
blackscholes[M]

crc32[M]
swaptions[M]

(d) Net Energy Consumption (netE)

Figure 6.17: Energy consumption of speculative parallel execution

99

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 4 6 8 10 12 14 16 18 20 22 24

E
D

 f
o

r
N

e
t

E
n

e
rg

y
 N

o
rm

a
liz

e
d

 t
o

 O
ri
g

in
a

l
S

e
q

u
e

n
ti
a

l
P

ro
g

ra
m

Number of Threads

052.alvinn[M]
130.li[M]

164.gzip[M]
179.art[M]

197.parser[M]
256.bzip2[M]

456.hmmer[M]
blackscholes[M]

crc32[M]
swaptions[M]

(e) Net Energy Delay Product (netEDP)

 0

 0.5

 1

 1.5

 2

 2.5

 3

130.li[M]

197.parser[M]

256.bzip2[M]

blackscholes[M]

crc32[M]

swaptions[M]

N
o
rm

al
iz

ed
 t

o
 O

ri
g
in

al
 S

eq
u
en

ti
al

Benchmark

netE(0%)
netE(0.1%)
netEDP(0%)
netEDP(0.1%)

(f) netE and netEDP with 0.1% Misspeculation

Figure 6.17: Energy consumption of speculative parallel execution

100

tion time in Figure 6.17(b), which decreases as the number of threads increases. The reason

can be found in Figure 6.17(c), average power consumption. Servers consume power even

in idle time. Figure 6.17(c) shows the idle power takes a large portion of overall power con-

sumption, so increase in power consumption due to additional thread allocation is relatively

modest. Hence, execution time plays a dominant role in calculating energy consumption,

which allows the runtime system to save total energy consumption.

If a server is fully energy proportional assuming there is no static power consumption,

the energy consumption patterns become like Figure 6.17(d). In the ideal machine, reduced

execution time does not guarantee saving energy any more because there is no idle power.

However, even in the ideal machine, the runtime system does not consume energy more

than 1.9×, while it can save energy up to 70%. The system consumes energy a lot with four

threads because only two worker processes contribute the performance speedup. The other

two processes are the validator and the master that manage speculation without contributing

performance speedup. On the ideal machine, there is an energy optimal point for each

benchmark. By manipulating the number of threads, energy can be saved. Beyond the

energy optimal point, one trades energy consumption for lower delay.

For a system that has the ability to trade energy for performance, Gonzalez and Horowitz

propose a metric, Energy-Delay Product (EDP), which aims to balance energy consumption

and execution time (delay) [30]. Figure 6.17(e) shows that the runtime system improves

EDP for all benchmarks with higher thread counts. Note that net energy is used for EDP

calculation.

Even with misspeculation, the runtime system can save net energy. Figure 6.17(f)

shows net energy and EDP on 24 cores with 0% and 0.1% misspeculation rates. Although

the energy consumption increases if misspeculation occurs, the runtime system still saves

net energy, and shows better EDP numbers (<1) than the original sequential execution.

197.parser[M] and 256.bzip2[M] increases net energy larger than the other bench-

marks because they have larger SEQ overheads during recovery.

101

Chapter 7

Conclusion

Parallelization is a crucial key to increase performance of programs on parallel platforms

such as clusters. Automatic parallelization is an attractive solution that alleviates the pro-

grammer’s efforts on manual parallelization. This dissertation proposes the ASAP system

that automatically parallelizes sequential programs for commodity clusters and achieves

scalable performance improvement.

The ASAP system is the first fully automatic speculative acyclic parallelization system

for commodity clusters. The ASAP system consists of the ASAP compiler and the ASAP

runtime system. With synergistic combination of automatic parallelization, speculation

and acyclic parallelization, the ASAP compiler transforms sequential programs to scalable

parallel programs. The ASAP runtime system executes the speculative parallel programs

on commodity clusters without any hardware support.

The ASAP compiler is the first compiler that implements speculative decoupled soft-

ware pipelining (Spec-DSWP) for clusters. The compiler transforms the loops to parallel

codes inserting communication primitives for flow dependences across parallel contexts.

The acyclic communication pattern of Spec-DSWP scheme makes the parallel codes toler-

ant of high communication latency on clusters. In addition, the compiler adopts different

speculation techniques such as control flow speculation and object lifetime speculation that

102

do not require communication for validation. The compiler also batches and promotes ex-

plicit communication, and reduces the communication overheads. The optimization allows

the parallel program to achieve scalable performance improvement.

The ASAP runtime system is the first transactional memory system that supports multi-

threaded transactions (MTXs) without any hardware supports. According to Spec-DSWP

scheme, the ASAP compiler splits a loop iteration (a transaction) into multiple pipeline

stages (sub-transactions) across multiple threads, making MTXs. The ASAP runtime sys-

tem implements the MTX concept, and executes the Spec-DSWP codes on commodity

clusters. To overcome high communication costs of clusters, the runtime system optimizes

communication in MTX operations.

With the synergistic combination with the ASAP compiler and the ASAP runtime

system, the ASAP system achieves a geomean speedup of 8.91× with 109× maximum

performance speedup on a 120-core cluster. In addition, this dissertation manually paral-

lelizes 11 sequential C programs with the ASAP system, and achieves a geomean speedup

of 39.52× with 110.6× maximum performance speedup. Comparing the ASAP system

with the manual parallelization, this dissertation demonstrates a path for the ASAP system

to achieve scalable performance improvement for general-purpose applications as future

work.

103

Bibliography

[1] The OpenMP API specification. http://www.openmp.org.

[2] K. Agrawal, J. T. Fineman, and J. Sukha. Nested parallelism in transactional memory.

In Proceedings of the 13th ACM SIGPLAN Symposium on Principles and Practice of

Parallel Programming, 2008.

[3] R. Allen and K. Kennedy. Automatic translation of FORTRAN programs to vector

form. ACM Transactions on Programming Languages and Systems, 9(4):491–542,

1987.

[4] R. Allen and K. Kennedy. Optimizing Compilers for Modern Architectures: A

Dependence-based Approach. Morgan Kaufmann Publishers Inc., 2002.

[5] S. P. Amarasinghe and M. S. Lam. Communication optimization and code genera-

tion for distributed memory machines. In Proceedings of the ACM SIGPLAN 1993

conference on Programming language design and implementation, 1993.

[6] C. Amza, A. L. Cox, S. Dwarkadas, P. Keleher, H. Lu, R. Rajamony, W. Yu, and

W. Zwaenepoel. TreadMarks: Shared memory computing on networks of worksta-

tions. Computer, 29(2):18–28, 1996.

[7] C. Ancourt and F. Irigoin. Scanning polyhedra with DO loops. In Proceedings of the

third ACM SIGPLAN symposium on Principles and practice of parallel programming,

1991.

104

[8] APC metered rack PDU user’s guide. http://www.apc.com.

[9] J. a. Barreto, A. Dragojević, P. Ferreira, R. Guerraoui, and M. Kapalka. Leveraging

parallel nesting in transactional memory. In Proceedings of the 15th ACM SIGPLAN

Symposium on Principles and Practice of Parallel Programming, 2010.

[10] A. Bhowmik and M. Franklin. A general compiler framework for speculative mul-

tithreading. In Proceedings of the fourteenth annual ACM symposium on Parallel

algorithms and architectures, 2002.

[11] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The PARSEC benchmark suite: Char-

acterization and architectural implications. In Proceedings of the 17th International

Conference on Parallel Architectures and Compilation Techniques, 2008.

[12] B. Blume, R. Eigenmann, K. Faigin, J. Grout, J. Hoeflinger, D. Padua, P. Petersen,

B. Pottenger, L. Rauchwerger, P. Tu, and S. Weatherford. Polaris: The next gener-

ation in parallelizing compilers. In Proceedings of the workshop on Languages and

Compilers for Parallel Computing, 1994.

[13] R. L. Bocchino, V. S. Adve, and B. L. Chamberlain. Software transactional memory

for large scale clusters. In Proceedings of the 13th ACM SIGPLAN Symposium on

Principles and practice of parallel programming, 2008.

[14] U. Bondhugula, A. Hartono, J. Ramanujam, and P. Sadayappan. A practical auto-

matic polyhedral parallelizer and locality optimizer. In Proceedings of the 2008 ACM

SIGPLAN conference on Programming language design and implementation, 2008.

[15] P. Boulet, A. Darte, G.-A. Silber, and F. Vivien. Loop parallelization algorithms:

from parallelism extraction to code generation. Journal of Parallel Computing, 24(3-

4):421–444, 1998.

105

[16] P. Boulet and M. Dion. Code generation in Bouclettes. In Proceedings of the Fifth

Euromicro Workshop of Parallel and Distributed Processing, 1997.

[17] M. Bridges, N. Vachharajani, Y. Zhang, T. Jablin, and D. August. Revisiting the

sequential programming model for multi-core. In Proceedings of the 40th Annual

IEEE/ACM International Symposium on Microarchitecture, 2007.

[18] D. Buntinas, G. Mercier, and W. Gropp. Implementation and evaluation of shared-

memory communication and synchronization operations in MPICH2 using the neme-

sis communication subsystem. Parallel Computing, North-Holland, 33(9):634–644,

2007.

[19] S. Campanoni, T. Jones, G. Holloway, V. J. Reddi, G.-Y. Wei, and D. Brooks. HELIX:

automatic parallelization of irregular programs for chip multiprocessing. In Proceed-

ings of the Tenth International Symposium on Code Generation and Optimization,

2012.

[20] C. Cascaval, C. Blundell, M. Michael, H. W. Cain, P. Wu, S. Chiras, and S. Chatterjee.

Software transactional memory: Why is it only a research toy? Queue, 6(5):46–58,

Sept. 2008.

[21] P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra, K. Ebcioglu, C. von

Praun, and V. Sarkar. X10: an object-oriented approach to non-uniform cluster com-

puting. In Proceedings of the 20th annual ACM SIGPLAN conference on Object-

oriented programming, systems, languages, and applications, 2005.

[22] J.-F. Collard. Code generation in automatic parallelizers. In Proceedings of the IFIP

WG10.3 Working Conference on Applications in Parallel and Distributed Computing,

1994.

[23] J.-F. Collard, T. Risset, and P. Feautrier. Construction of DO loops from systems of

affine constraints. Parallel Processing Letters, 05(03):421–436, 1995.

106

[24] M. Couceiro, P. Romano, N. Carvalho, and L. Rodrigues. D2STM: Dependable dis-

tributed software transactional memory. In Proceedings of the 2009 15th IEEE Pacific

Rim International Symposium on Dependable Computing, 2009.

[25] A. Darte and F. Vivien. Optimal fine and medium grain parallelism detection in poly-

hedral reduced dependence graphs. In Proceedings of the 1996 Conference on Parallel

Architectures and Compilation Techniques, 1996.

[26] T. El-Ghazawi, W. Carlson, T. Sterling, and K. Yelick. UPC: Distributed Shared-

Memory Programming. John Wiley and Sons, 2005.

[27] P. Feautrier. Some efficient solutions to the affine scheduling problem: I. one-

dimensional time. International Journal of Parallel Programming, 21(5):313–348,

1992.

[28] P. Feautrier. Some efficient solutions to the affine scheduling problem: II. multi-

dimensional time. International Journal of Parallel Programming, 21(6):389–420,

1992.

[29] M. I. Frank. SUDS: Automatic Parallelization for Raw Processors. PhD thesis, MIT,

2003.

[30] R. Gonzalez and M. Horowitz. Energy dissipation in general purpose microproces-

sors. Solid-State Circuits, IEEE Journal of, 31(9):1277 –1284, 1996.

[31] V. Gramoli, R. Guerraoui, and V. Trigonakis. TM2C: a software transactional memory

for many-cores. In Proceedings of the 7th ACM european conference on Computer

Systems, 2012.

[32] L. Hammond, M. Willey, and K. Olukotun. Data speculation support for a chip mul-

tiprocessor. In Proceedings of the eighth international conference on Architectural

support for programming languages and operating systems, 1998.

107

[33] M. Herlihy and Y. Sun. Distributed transactional memory for metric-space networks.

Distributed Computing, 20(3):195–208, 2007.

[34] J. P. Hoeflinger. Extending OpenMP to clusters. White Paper Intel Corporation, 2006.

[35] J. Howard, S. Dighe, Y. Hoskote, S. Vangal, D. Finan, G. Ruhl, D. Jenkins, H. Wilson,

N. Borkar, G. Schrom, F. Pailet, S. Jain, T. Jacob, S. Yada, S. Marella, P. Salihundam,

V. Erraguntla, M. Konow, M. Riepen, G. Droege, J. Lindemann, M. Gries, T. Apel,

K. Henriss, T. Lund-Larsen, S. Steibl, S. Borkar, V. De, R. Van Der Wijngaart, and

T. Mattson. A 48-Core IA-32 message-passing processor with DVFS in 45nm CMOS.

In Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2010 IEEE

International, 2010.

[36] J. Huang, A. Raman, T. B. Jablin, Y. Zhang, T.-H. Hung, and D. I. August. Decoupled

software pipelining creates parallelization opportunities. In Proceedings of the 8th

annual IEEE/ACM international symposium on Code generation and optimization,

2010.

[37] F. Irigoin, P. Jouvelot, and R. Triolet. Semantical interprocedural parallelization: an

overview of the pips project. In Proceedings of the 5th international conference on

Supercomputing, 1991.

[38] N. P. Johnson, H. Kim, P. Prabhu, A. Zaks, and D. I. August. Speculative separation

for privatization and reductions. In Proceedings of the 33rd ACM SIGPLAN confer-

ence on Programming Language Design and Implementation, 2012.

[39] W. Kelly, W. Pugh, and E. Rosser. Code generation for multiple mappings. In Pro-

ceedings of the Fifth Symposium on the Frontiers of Massively Parallel Computation,

1995.

108

[40] H. Kim, N. P. Johnson, J. W. Lee, S. A. Mahlke, and D. I. August. Automatic specula-

tive doall for clusters. In Proceedings of the Tenth International Symposium on Code

Generation and Optimization, 2012.

[41] H. Kim, A. Raman, F. Liu, J. W. Lee, and D. I. August. Scalable speculative paral-

lelization on commodity clusters. In Proceedings of the 2010 43rd Annual IEEE/ACM

International Symposium on Microarchitecture, 2010.

[42] C. Kotselidis, M. Ansari, K. Jarvis, M. Luján, C. Kirkham, and I. Watson. DiSTM:

A software transactional memory framework for clusters. In Proceedings of the 2008

37th International Conference on Parallel Processing, 2008.

[43] M. D. Lam, E. E. Rothberg, and M. E. Wolf. The cache performance and optimiza-

tions of blocked algorithms. In Proceedings of the fourth international conference on

Architectural support for programming languages and operating systems, 1991.

[44] L. Lamport. The parallel execution of DO loops. Communications of the ACM,

17(2):83–93, 1974.

[45] C. Lattner and V. Adve. Llvm: A compilation framework for lifelong program anal-

ysis & transformation. In Proceedings of the international symposium on Code gen-

eration and optimization: feedback-directed and runtime optimization, 2004.

[46] W. Li and K. Pingali. A singular loop transformation framework based on non-

singular matrices. International Journal of Parallel Programming, 22:183–205, 1994.

[47] A. W. Lim, G. I. Cheong, and M. S. Lam. An affine partitioning algorithm to maxi-

mize parallelism and minimize communication. In Proceedings of the 13th interna-

tional conference on Supercomputing, 1999.

109

[48] A. W. Lim and M. S. Lam. Maximizing parallelism and minimizing synchronization

with affine transforms. In Proceedings of the 24th ACM SIGPLAN-SIGACT sympo-

sium on Principles of programming languages, 1997.

[49] W. Liu, J. Tuck, L. Ceze, W. Ahn, K. Strauss, J. Renau, and J. Torrellas. POSH: a

TLS compiler that exploits program structure. In Proceedings of the eleventh ACM

SIGPLAN symposium on Principles and practice of parallel programming, 2006.

[50] K. Y. Luigi, L. Semenzato, G. Pike, C. Miyamoto, B. Liblit, A. Krishnamurthy, P. Hil-

finger, S. Graham, D. Gay, P. Colella, and A. Aiken. Titanium: A high-performance

Java dialect. pages 10–11, 1998.

[51] K. Manassiev, M. Mihailescu, and C. Amza. Exploiting distributed version concur-

rency in a transactional memory cluster. In Proceedings of the eleventh ACM SIG-

PLAN symposium on Principles and practice of parallel programming, 2006.

[52] M. Mehrara, J. Hao, P.-C. Hsu, and S. Mahlke. Parallelizing sequential applications

on commodity hardware using a low-cost software transactional memory. In Proceed-

ings of the 2009 ACM SIGPLAN conference on Programming language design and

implementation, 2009.

[53] K. Moore, J. Bobba, M. Moravan, M. Hill, and D. Wood. LogTM: log-based trans-

actional memory. In Proceedings of The Twelfth International Symposium on High-

Performance Computer Architecture, 2006.

[54] The message passing interface (MPI) standard. http://www-unix.mcs.anl.gov/mpi/.

[55] J. J. Navarro, T. Juan, and T. Lang. Mob forms: a class of multilevel block algorithms

for dense linear algebra operations. In Proceedings of the 8th international conference

on Supercomputing, 1994.

110

[56] C. E. Oancea and A. Mycroft. Software thread-level speculation: an optimistic li-

brary implementation. In Proceedings of the 1st international workshop on Multicore

software engineering, 2008.

[57] J. Oplinger, D. Heine, S. wei Liao, B. A. Nayfeh, M. S. Lam, and K. Olukotun.

Software and hardware for exploiting speculative parallelism with a multiprocessor.

Technical Report CSL-TR-97-715, Stanford University, Computer Systems Labora-

tory, February 1997.

[58] J. T. Oplinger, D. L. Heine, and M. S. Lam. In search of speculative thread-level paral-

lelism. In Proceedings of the 1999 International Conference on Parallel Architectures

and Compilation Techniques, 1999.

[59] G. Ottoni, R. Rangan, A. Stoler, and D. I. August. Automatic thread extraction with

decoupled software pipelining. In Proceedings of the 38th annual IEEE/ACM Inter-

national Symposium on Microarchitecture, 2005.

[60] D. A. Patterson and J. L. Hennessy. Computer Organization and Design: The Hard-

ware/Software Interface. Morgan Kaufmann, 4th edition, 2008.

[61] L.-N. Pouchet. PolyBench: the Polyhedral Benchmark suite.

http://www-roc.inria.fr/ pouchet/software/polybench/download.

[62] P. Prabhu, S. Ghosh, Y. Zhang, N. P. Johnson, and D. I. August. Commutative set:

a language extension for implicit parallel programming. In Proceedings of the 32nd

ACM SIGPLAN conference on Programming language design and implementation,

2011.

[63] W. Pugh. A practical algorithm for exact array dependence analysis. Communications

of the ACM, 35(8):102–114, 1992.

111

[64] C. G. Quiñones, C. Madriles, J. Sánchez, P. Marcuello, A. González, and D. M.

Tullsen. Mitosis compiler: an infrastructure for speculative threading based on pre-

computation slices. In Proceedings of the 2005 ACM SIGPLAN conference on Pro-

gramming language design and implementation, 2005.

[65] H. E. Ramadan and E. Witchel. The Xfork in the road to coordinated sibling transac-

tions. In The Fourth ACM SIGPLAN Workshop on Transactional Computing, 2009.

[66] A. Raman, H. Kim, T. R. Mason, T. B. Jablin, and D. I. August. Speculative paral-

lelization using software multi-threaded transactions. In Proceedings of the fifteenth

edition of ASPLOS on Architectural support for programming languages and operat-

ing systems, 2010.

[67] R. Rangan, N. Vachharajani, A. Stoler, G. Ottoni, D. I. August, and G. Z. N. Cai.

Support for high-frequency streaming in cmps. In Proceedings of the 39th Annual

IEEE/ACM International Symposium on Microarchitecture, 2006.

[68] L. Rauchwerger and D. Padua. The LRPD test: speculative run-time parallelization

of loops with privatization and reduction parallelization. In Proceedings of the ACM

SIGPLAN 1995 conference on Programming language design and implementation,

1995.

[69] G. Rivera and C.-W. Tseng. A comparison of compiler tiling algorithms. In Proceed-

ings of the 8th International Conference on Compiler Construction, Held as Part of

the European Joint Conferences on the Theory and Practice of Software, ETAPS’99,

1999.

[70] S. Rus, L. Rauchwerger, and J. Hoeflinger. Hybrid analysis: static & dynamic mem-

ory reference analysis. International Journal of Parallel Programming, 31(4):251–

283, 2003.

112

[71] M. M. Saad and B. Ravindran. HyFlow: a high performance distributed software

transactional memory framework. In Proceedings of the 20th international sympo-

sium on High performance distributed computing, 2011.

[72] M. M. Saad and B. Ravindran. Snake: control flow distributed software transactional

memory. In Proceedings of the 13th international conference on Stabilization, safety,

and security of distributed systems, 2011.

[73] Standard Performance Evaluation Corporation.

http://www.spec.org.

[74] Stanford Compiler Group. SUIF: A parallelizing and optimizing research compiler.

Technical Report CSL-TR-94-620, Stanford University, Computer Systems Labora-

tory, May 1994.

[75] J. Steffan and T. Mowry. The potential for using thread-level data speculation to fa-

cilitate automatic parallelization. In Proceedings of the 4th International Symposium

on High-Performance Computer Architecture, 1998.

[76] J. G. Steffan, C. Colohan, A. Zhai, and T. C. Mowry. The STAMPede approach to

thread-level speculation. ACM Transactions on Computer Systems, 23(3):253–300,

2005.

[77] J. G. Steffan, C. B. Colohan, A. Zhai, and T. C. Mowry. A scalable approach to

thread-level speculation. In Proceedings of the 27th annual international symposium

on Computer architecture, 2000.

[78] The Liberty Research Group, 2002.

[79] W. Thies, V. Chandrasekhar, and S. Amarasinghe. A practical approach to exploiting

coarse-grained pipeline parallelism in C programs. In Proceedings of the 40th Annual

IEEE/ACM International Symposium on Microarchitecture, 2007.

113

[80] C. Tian, M. Feng, V. Nagarajan, and R. Gupta. Copy or discard execution model

for speculative parallelization on multicores. In Proceedings of the 41st annual

IEEE/ACM International Symposium on Microarchitecture, 2008.

[81] N. Vachharajani. Intelligent Speculation for Pipelined Multithreading. PhD the-

sis, Department of Computer Science, Princeton University, Princeton, New Jersey,

United States, November 2008.

[82] N. Vachharajani, R. Rangan, E. Raman, M. J. Bridges, G. Ottoni, and D. I. August.

Speculative decoupled software pipelining. In Proceedings of the 16th International

Conference on Parallel Architecture and Compilation Techniques, 2007.

[83] H. Volos, A. Welc, A.-R. Adl-Tabatabai, T. Shpeisman, X. Tian, and

R. Narayanaswamy. NePalTM: design and implementation of nested parallelism for

transactional memory systems. In Proceedings of the 14th ACM SIGPLAN symposium

on Principles and practice of parallel programming, 2009.

[84] M. E. Wolf and M. S. Lam. A loop transformation theory and an algorithm to maxi-

mize parallelism. IEEE Transactions on Parallel and Distributed Systems, 2(4):452–

471, 1991.

[85] R. M. Yoo and H.-H. S. Lee. Helper transactions: Enabling thread-level speculation

via a transactional memory system. In PESPMA ’08: Workshop on Parallel Execution

of Sequential Programs on Multi-core Architectures, 2008.

[86] B. Zhang and B. Ravindran. Brief announcement: Relay: A cache-coherence pro-

tocol for distributed transactional memory. In Proceedings of the 13th International

Conference on Principles of Distributed Systems, 2009.

[87] B. Zhang and B. Ravindran. Location-aware cache-coherence protocols for dis-

tributed transactional contention management in metric-space networks. In Proceed-

114

ings of the 2009 28th IEEE International Symposium on Reliable Distributed Systems,

2009.

[88] Y. Zhang, L. Rauchwerger, and J. Torrellas. Hardware for speculative parallelization

of partially-parallel loops in dsm multiprocessors. In Proceedings of the 5th Interna-

tional Symposium on High Performance Computer Architecture, 1999.

[89] H. Zhong, M. Mehrara, S. Lieberman, and S. Mahlke. Uncovering hidden loop level

parallelism in sequential applications. In Proceedings of IEEE 14th International

Symposium on High Performance Computer Architecture, 2008.

[90] C. Zilles and G. Sohi. Master/slave speculative parallelization. In Proceedings of the

35th annual ACM/IEEE international symposium on Microarchitecture, 2002.

115

