
STATIC AND DYNAMIC INSTRUCTION MAPPING

FOR SPATIAL ARCHITECTURES

FENG LIU

A DISSERTATION

PRESENTED TO THE FACULTY

OF PRINCETON UNIVERSITY

IN CANDIDACY FOR THE DEGREE

OF DOCTOR OF PHILOSOPHY

RECOMMENDED FOR ACCEPTANCE

BY THE DEPARTMENT OF

ELECTRICAL ENGINEERING

ADVISOR: PROFESSOR DAVID I. AUGUST

JUNE 2018

c© Copyright by Feng Liu, 2018.

All Rights Reserved

Abstract

In response to the technology scaling trends, spatial architectures have emerged as a new

style of processors for executing programs more efficiently. Unlike traditional out-of-order

(OoO) processors, which time-share a small set of functional units, a spatial computer is

composed of hundreds or even thousands of simple and replicated functional units. Spatial

architectures avoid the overheads of time-sharing and of generating schedules repeatedly,

by mapping instruction sequences onto the functional units explicitly and reusing the map-

ping across multiple invocations.

Currently, spatial architectures mainly use static methods to map and schedule instruc-

tions onto the arrays of functional units. The existing methods have several limitations:

First, for programs with irregular memory accesses and control flows, they yield poor per-

formance because the functional units need to be invoked sequentially to respect data and

control dependences. Second, static methods cannot fully exploit speculation techniques,

which are the dominant performance sources in OoO processors. Finally, static methods

cannot adapt to changing workloads and are not compatible across hardware generations.

To address these issues and improve the applicability of spatial architectures, this disser-

tation proposes two techniques. The first, Coarse-Grained Pipelined Accelerators (CGPA),

is a static compiling framework that exploits the hidden parallelism within irregular C/C++

loops and translates them into spatial hardware modules. The proposed technique has been

implemented as a compiler pass and the experiment shows 3.3x speedup over the perfor-

mance achieved by an open-source tool baseline.

The second technique, Dynamic Spatial Architecture Mapping (DYNASPAM), reuses

the speculation system in the OoO processors to dynamically produce high performance

scheduling and execution on a dedicated spatial fabric. The proposed technique is modeled

by a cycle accurate simulator and the experiment shows the new technique can achieve 1.4x

iii

geomean performance improvement and 23.9% energy consumption reduction, compared

to an aggressive OoO processor baseline.

iv

Acknowledgements

First, I would like to thank my advisor Professor David I. August for guiding me throughout

my years in Princeton. I really appreciate the opportunities and challenges he gave me.

During the years I worked in his research group, I learnt how to conduct research projects,

write scientific papers and proposals. More importantly, I learnt from him never to give up

and always to pursue big goals. I could not image that I could have made my way today

without his encourage and support. I believe I will continue to benefit from the knowledge

he taught me in the rest of my life.

I would like to thank Professor Sharad Malik and Professor David Walker for reading

this dissertation and providing insightful comments. I also thank Professor Malik for giving

me advice and help during my years in Princeton when I was really stressed and frustrated

by study, research and language problems. I also thank Professor Walker for being always

very generous when I was looking for advices. Additionally, I want to thank Professor

Aarti Gupta and Professor David Wentzlaff for serving as my thesis committee member

and their feedbacks that helped me to polish and refine my thesis. I really appreciate the

time all the professors spent on helping me to finish the Ph.D. defence process.

This dissertation would not have existed without the help from everyone in the Liberty

Research Group. I have found great friendship with everyone in the group. I would like

to thank some senior group members, Yun Zhang, Arun Raman, Thomas B. Jablin, Jialu

Huang, Prakash Prabhu, Hanjun Kim and Nick P. Johnson for their guide and help in my

early years into my PhD study. Especially I really to thank Thomas B. Jablin, who really

spent a lot of time teaching me domain knowledge. I also want to thank Soumyadeep

Ghosh, who teaches me a good life attitude and how to handle complexities. I also want to

say thank you to Stephen R. Beard, Taewook Oh and Heejin Ahn for helping me with my

research and writing. I will remember those crazy paper deadlines we spent together.

i

I also thank the entire staff of the Department of Electrical Engineering and the Depart-

ment of Computer Science in Princeton. Their professionalism really makes this such a

great place to study and to do research. I also want to thank the staff of Davis International

Center, who helped me to improve my language skills and also handled my endless visa

issues.

There are a lot of friends I met over the years. I thank all of them for making my life

in Princeton happy and unforgettable. Yungang Bao, Yida Wang, Aoxiang Tang, Tao Han,

Shucheng Zhu, Xiaozhou Li, Xin Jin and Yunlai Zha, being my friends and roommates,

helped me a lot with my daily life. They are my patient listeners whenever I had trouble

in research or personal life. These friendship will become my largest fortune I have in my

life.

I want to thank my parents for their unconditional love and support. They let me explore

the world in the way I want. The taught me how to make balance between job and life, how

to handle unhappiness and pressure, and how to love others. I cannot imagine how much

they sacrificed to allow me to achieve what I have today. Everything I achieved today, is

truly theirs.

Last, but not the least, I want to thank my wife Jie Feng, who makes me strong and

happy. Without her encouragement, I could not survive the difficulties I had in the past

years. She is really the source of my strength and the most important part of my life.

ii

To my family.

iii

Contents

Abstract . iii

Acknowledgements . i

List of Tables . vii

List of Figures . ix

1 Introduction 1

1.1 Spatial Architectures . 1

1.2 Instruction Scheduling for Spatial Architectures 3

1.3 Dissertation Contributions . 5

1.4 Dissertation Organization . 7

2 Background and Related Work 8

2.1 Instruction Mapping Techniques . 8

2.2 Decoupled Software Pipelining Techniques 10

2.3 Existing Spatial Architectures . 12

2.4 Issues with Existing Architectures and Their Mapping Techniques 16

3 Static Mapping with Coarse-Grained Decoupled Pipelining 18

3.1 Motivating CGPA . 20

3.2 Coarse-Grained Pipeline Accelerators . 24

3.2.1 CGPA Workflow . 26

iv

3.2.2 Pipeline Generation . 27

3.2.3 CGPA Compiler Backend . 30

3.3 Evaluation of CGPA . 32

3.3.1 Methodology . 32

3.3.2 Results . 34

3.4 Applicability and Scalability of CGPA . 36

3.4.1 Applicability . 36

3.4.2 Scalability . 41

4 Spatial Architecture Speculation with Hardware Reuse 44

4.1 Motivating SPAS . 46

4.1.1 Dynamic Mapping for Spatial Architecture 46

4.1.2 Speculative Architecture Support for Dynamic Mapping 49

4.2 Hybrid Speculative Spatial Architecture Design 51

4.3 Spatial Fabric Implementation and Integration 55

4.3.1 Acyclically Connected Spatial Fabric 55

4.3.2 Integration into the Host OoO Pipeline 57

4.3.3 Intra- and Inter-Trace Memory Ordering 59

4.3.4 Configuration Datapath . 60

4.3.5 Execution Example . 60

5 Dynamic Mapping with Resource-Aware Instruction Scheduling 64

5.1 Motivating DYNASPAM . 65

5.1.1 The Importance of Mapping Scope 65

5.1.2 Hardware Synthesis . 67

5.2 DYNASPAM Design . 68

5.2.1 Resource-Aware Scheduling . 69

v

5.2.2 Priority Score Generation . 73

5.2.3 Example . 78

5.3 Evaluation . 79

5.3.1 Methodology . 79

5.3.2 Results . 81

6 Conclusions and Future Directions 88

6.1 Conclusions . 88

6.2 Future Directions . 89

vi

List of Tables

2.1 Comparison between DYNASPAM and other in-core reconfigurable com-

putation engine. 14

3.1 New primitives added to LLVM IR to support worker invocation, dependence

communication, and register value passing across hardware modules. 30

3.2 Descriptions of benchmarks used. P1: Pipeline Partition with Replicable Section

in Sequential Stage; P2: Pipeline Partition with Replicable Section in Parallel Stage 33

3.3 Comparison between CGPA and related frameworks 35

4.1 Topologies of different spatial architecture examples. 47

4.2 Types of constraints for the mapping problem. 48

5.1 Priority Scores for different connection status of the producers. 73

5.2 Evaluation system parameters . 80

5.3 Programs tested from the Rodinia Benchmark Suite. 82

5.4 Area Comparison for different components 83

vii

5.5 Detected Traces and Average Configuration Lifetime. The “Mapped Traces”

column shows how many hot traces are detected and translated to config-

urations by the hardware, and “Offloaded Traces” column shows among

them how many traces are really offloaded to the fabric. The “Avg. Con-

fig. Lifetime” shows how many invocations the offloaded traces need to be

evicted from the fabrics for the new offloaded traces. The larger the better. 84

viii

List of Figures

2.1 Decoupled Software Pipelining schedules on a multi-core processor. (a)

describes a loop which cannot be handled by other data-level paralleliza-

tion techniques. (b) is the Program Dependence Graph(PDG) of loop (a).

(c) is the DAGSCC of the PDG. Solid lines represent data dependences while

dotted lines represent control dependences. (d) shows the parallel execu-

tion schedules of the loop for DSWP on a 2-core processor, and how the

technique can tolerent core-to-core communication latency. (e) shows how

an enhanced version of DSWP (Parallel Stage PSWP) can scale to more

cores. 11

2.2 A Design Space of Computer Architectures (Convolution Engine [66], DySER [34],

BERET [35], and TPU [46]). 12

3.1 (a) Source code of the main loop of “em3d” program, with sections an-

notated as replicable or parallel; (b) Data-level parallelism is exploited by

duplicating the replicable section; (c) Coarse-grained pipeline parallelism

is exploited by separating the replicable section from the rest of the loop;

(d) A simplified source-level Program Dependence Graph (PDG) of the

main loop in em3d; (e) Pseudo-code of tasks for both hardware stages. The

code in gray is the overhead generated by the CGPA compiler. 22

ix

3.2 Different program patterns exploiting parallelism for hardware accelerator

design. 25

3.3 A logical view of CGPA architecture within the dashed box. Each grey box

contains circuit modules customized for the targeted loop and generated by

CGPA compiler. In this figure, a Sequential–Parallel–Sequential (S-P-S)

3-stage pipeline is shown. 26

3.4 Workflow for CGPA HLS Framework . 27

3.5 Speedup Results for Loop Kernels of the Benchmarks 34

3.1 The targeted loop for K-means algorithm, along with the identification of

different sections. 37

3.2 Pipeline generated for K-means by CGPA. 38

3.3 Source code for targeted loop in 1D Gaussian Blur, along with the identifi-

cation of different sections. 39

3.4 Pipeline generated for 1D Row Gaussian Blur by CGPA. 41

4.1 A generalized reconfigurable spatial architecture. 46

4.2 The overall view of the SPAS architecture. $ is the abbreviation of cache.

The blocks with gray color filled are the new components added to the con-

ventional OoO pipeline or the existing components requires modification.

. 52

x

4.3 The functional units, pass registers, and interconnect of a stripe of Fig-

ure 4.1A generalized reconfigurable spatial architecture. figure.caption.29.

Wires do not interact with each other except (1) • is put on the intersec-

tion or (2) wires with different width intersect. Units A, B and C are pass

registers; ALU represents an ALU unit; LDST represents a load/store unit;

buffers on ALU input represent the FIFOs of input operands; the output

buffer on the LDST unit represents the memory reservation buffer. 56

4.4 The design of Live-in and Live-out FIFOs for the spatial fabric and host

processor integration in SPAS. 58

4.5 (a) Source code and assembly of the simple program example, and its data

dependence graph; (b) An dynamic unrolling of (a) with OOO, which con-

tains 2 ALUs and 1 MEM; (c) An instruction placement for the spatial fab-

ric with the scheduling result from (b); (d) Activities of the functional units

(0,0), (0,1), (1,0) and (1,1) in the first three cycles, indicating the pipelined

execution. 61

5.1 (a) for two special architecture settings (without dotted line, and with dotted

line to share operands), (b) and (c) show examples where naı̈ve placement

fails to create efficient schedules, and (d) show a resource-aware schedul-

ing. 65

5.2 fabric functional units (FUs) and possible scheduling frontiers in (a) CCA;

(b) 4x4 DySER; and (c) DYNASPAM fabric. 69

5.3 An example of logic to select ready instructions from the reservation stage

for a function units. The priority can be changed by encoding more con-

straints in the priority encoder. 73

xi

5.4 An example illustrating how instruction scheduling is impacted by the lo-

cation information of the fabric. 77

5.5 Trace Coverage. “Normal” is the percentage of dynamic instructions exe-

cuted on the host OoO pipeline, “Mapping” is the percentage of dynamic

instructions which are detected as hot traces, but not offloaded to the spa-

tial fabric yet, and “Accelerating” is the percentage of dyanmic instructions

which are offloaed to the fabric successfully. 83

5.6 Performance Comparison with Respect to Host OoO Pipeline. 86

5.7 Energy Comparison with Respect to Host OoO Pipeline. 87

xii

Chapter 1

Introduction

1.1 Spatial Architectures

After being effective more than four decades, Moore’s Law [60] is still dominating the scal-

ing of micro-electronics industry, and the number of on-chip transistors are continuing to

double every eighteen months. In the past, computer architects utilized these transistors to

build complex micro-architectures, comprising more functional units, deeper pipelines, and

more complex cache hierarchy, for more powerful out-of-order (OoO) execution, that led to

better performance. The focus of these innovations was to explore the hidden instruction-

level parallelism (ILP) dynamically in the programs and to reduce program execution time.

However, exploiting ILP gave progressively diminishing returns due to the small instruc-

tion scopes that the computer architecture could optimize at runtime [86], while deep OoO

pipeline can introduce unnecessary energy overhead. The consequence is that the power

consumption becomes the critical bottleneck of improving program performance on both

portable devices and data center servers. Since neither deep OoO pipeline, simultaneous

1

multi-threading nor multi-core improves energy efficiency, we need to re-examine the de-

sign of mainstream OoO processors and consider introducing more efficient paradigms to

the computation.

OoO processors deliver high performance by their powerful dynamic scheduling mech-

anism. This mechanism actually relies on two subsystems: One subsystem comprises the

speculative units such as branch and memory dependence predictors, that can be dynami-

cally trained to predict the program behaviors for different workloads. The second subsys-

tem implements the capability of regenerating instruction schedules according to dynamic

information by using renaming logic, reservation stations and reorder buffers [65, 36, 42].

The former subsystem helps the latter by relaxing instruction scheduling constraints in or-

der to adapt to different workloads and generate high efficient schedule at runtime.

However, this is not an efficient design for computationally intensive programs, which

usually have repeating instruction sequences. With OoO execution, even if a program en-

ters a relatively repeating execution pattern with same instruction sequences, the processor

does not take full advantage of the predictable program behavior and unnecessarily spends

energy on redundantly exercising the speculative/dynamic scheduling units and regenerat-

ing schedules, for the same instruction sequences [56]. Moreover, the processor unneces-

sarily spends energy on dynamically resolving data dependences and delivering operands

to the functional units, even though the dataflow is well known for the repeating instruction

sequences and could be realized by wiring functional units together through more efficient

dedicated data paths [6, 34, 35, 93].

An ideal efficient processor architecture would utilize the repeating program schedules

and map instructions to a set of spatially distributed functional units. This would reduce

energy consumption of both instruction scheduling and data delivery. This dissertation

refers to such a processor architecture as “spatial architectures” with spatially distributed

functional units, a spatial fabric. Spatial architectures map computation across a grid of

2

functional units for processing and build specialized datapath connections between them

to fulfill dependences. Fixing instruction assignments to processing elements obviates the

need to separate instruction execution into multiple pipeline stages (fetch, decode, rename

and issue). Direct communication from producers to consumers of the elements obviates

the need for the bypass network and the register file [6, 34, 35]. This simplification of

the processor design allows spatial architectures to be more energy efficient, compared to

conventional OoO processors.

1.2 Instruction Scheduling for Spatial Architectures

However, spatial architectures usually require more effort to map program instructions to

its spatially distributed functional units. This is because the hardware resources (functional

units and datapath between them) on spatial architectures cannot be time-shared like in

OoO processors. Thus, a successful instruction mapping for spatial architectures needs to

use its computational resources in an efficient way.

One approach to build these customized mapping for spatial architectures is to manually

design dedicated circuit modules for each application using hardware description languages

(HDLs) [52, 66]. While this approach often yields the best result, it requires significant

non-recurring engineering costs to convert algorithms to HDL specifications.

Alternatively, in prior works, most reconfigurable spatial architectures, including Field-

Programmable Gate Arrays (FPGAs), Programmable Functional Units (PFUs) [5, 10, 14,

20, 34, 35, 71, 88, 92] and Coarse-Grained Reconfigurable Arrays (CGRAs) [33, 57, 58,

67, 76, 85], explore static compiling techniques, called High-Level Synthesis (HLS). HLS

maps high-level language code sequence at compile time to hardware logic. HLS can pro-

vide a large scheduling scope (the whole loop or even the whole program) and allow the

3

mapping generator to consider more instructions simultaneously in the scope, thus produc-

ing mappings that find more parallelism and achieve more efficient resource utilization.

HLS has demonstrated its applicability for generating customized hardware from programs

written in C/C++ or other HDLs [8, 25, 28, 32, 80, 82, 83, 91].

A deep dive into these use-cases reveals that they are mainly used in the domains of

scientific computation [80] and digital signal processing (DSP) applications [25, 28, 32,

83, 91]. One typical feature of these applications is that their hot spots consist of affine

loop nests. Such loop nests enable a series of loop transformations that expose loop-level

parallelism to overlap instruction execution [16, 70, 89]. Additionally, the affine loops may

also enable special circuit modules, such as systolic arrays and shift registers, to reduce

memory traffic and improve performance [18, 19, 46]. For example, the convolutional

neural networks have the regular pattern that executes a matrix multiply between input data

and weights and then apply an activation function. Thus the Matrix Multiplication Unit in

the TPUs [46] is designed to have a systolic array mechanism that contains 65,536 ALUs,

thus 65,536 multiple-and-adds for 8-bit integers can be processed every cycle.

However, in the presence of loops with complex control flows or irregular memory

accesses, these static mapping tools do not extract loop-level parallelism well, leading to

poorly performing hardware designs. In reality, the majority of programs are implemented

with non-array data structures and imperfect loop nests. This restricts the scope for par-

allelism within one or a few loop iterations, and generates hardware modules with limited

performance improvement [82]. A new technique is required to generate efficient accelera-

tors for this class of programs, and to bridge the gap between the synthesized and manually

generated results for these programs.

Besides its limited applicability domains, the HLS methods cannot make use of in-

formation gathered at runtime to optimize their mappings for changing workloads. The

optimizations in static mapping methods are conservative and usually impose unnecessary

4

constraints which bring extra resource usage and performance overhead. For example, all

statically mapped CGRAs need extra control dependences between memory operations if

they are may-alias. Additionally, programs that are statically mapped to a particular re-

configurable fabric cannot run effectively on a processor without the fabric, and may not

be compatible with different fabric generations. With this binary compatibility issue, an

application compiled to a reconfigurable fabric with certain physical settings cannot run

on a processor without the fabric, and also it is not forward and backward compatible for

different hardware generations [14, 15].

Ideally, we want spatial architectures to be in lieu of traditional OoO processors, which

can (1) handle programs with complex control and memory access patterns and (2) rely

on a OoO-like dynamic scheduling mechanism to provision functional units and fulfill

data dependences for the computation defined by the programs. These goals involve both

improving the existing static mapping methods by handling irregular programs and also en-

abling dynamic mapping methods to utilize dynamic information and generate scheduling

at runtime for spatial architectures.

1.3 Dissertation Contributions

This dissertation improves both the applicability and adaptability of static mapping meth-

ods for spatial architectures.

To improve the applicability of static mapping, this dissertation introduces Coarse-

Grained Pipelined Accelerators (CGPA) [54]. CGPA leverages the insight that a single

program loops might be composed by different code sections with different purposes, thus

it is natural to split them into several coarse-grained sections and apply different optimiza-

tions to each section individually. This dissertation implements a prototype of CGPA as an

open-source HLS tool plugin, and applied the new method on a set of algorithms.

5

To overcome the adaptability limitation of static mapping and to leverage the optimiza-

tion potential of OoO, this dissertation also presents DYNASPAM [53]. DYNASPAM is a

framework that tightly couples a spatial fabric with an OoO pipeline and re-uses the hard-

ware resources of the OoO pipeline to support speculative execution on spatial fabric. The

insight behind DYNASPAM is that OoO processors excel at utilizing speculation and con-

tain large instruction windows to dynamically map repeating instruction sequences onto

the fabric. Therefore, combining OoO techniques with the execution efficiency of spatial

architectures may lead to a more effective system.

In summary, the contributions of this dissertation are as follows:

• Coarse-Grained Pipelined Accelerators (CGPA), an HLS framework that utilizes

coarse-grained pipeline parallelism techniques to synthesize efficient specialized ac-

celerator modules from irregular C/C++ programs without requiring any annotations;

• Spatial Architecture Speculation (SPAS), a design of tightly coupled CPU-Spatial

Architecture systems that supports speculative execution by reusing hardware pre-

diction units in the host CPU processor. Re-using the branch predictor allows in-

struction traces to span multiple basic blocks. Re-using the memory speculation unit

reduces energy consumption of the datapath and increases performance;

• Dynamic Spatial Architecture Mapping (DYNASPAM), a framework that combines

SPAS with a novel dynamic, resource-aware mapping technique for reconfigurable

spatial fabrics. DYNASPAM leverages the existing scheduling logic in the host OoO

processor to provide a large mapping scope with only a small hardware overhead.

6

1.4 Dissertation Organization

The remainder of this dissertation is organized as follows: Chapter 2 describes the prior

work related to spatial architectures and their instruction mapping techniques. Chapter 3

describes a new static mapping framework which splits single loops to multiple hardware

pipeline modules for extracting better performance from these loops. Chapter 4 proposes

a novel hybrid OoO-spatial architecture design which leverages the existing OoO architec-

ture’s speculation system and enables efficient mapping for dynamic workloads. Chapter 5

shows the design of a hardware module that can be included in an OoO processor pipeline

to generate configurations for spatial architectures. Chapter 6 summarizes the results and

also discusses the future work.

7

Chapter 2

Background and Related Work

Research into spatial architecture has been an active area for quite a long time, and dif-

ferent techniques have been proposed. Roughly, the spatial architectures (fabrics) can be

classified into two categories: fine-grained and coarse-grained. Field-programmable gate

array (FPGA) is the most common fine-grained reconfigurable spatial architecture. FPGA

contain an array of programmable logic blocks, and a hierarchy of reconfigurable inter-

connects that allow the blocks to be wired together. FPGAs contain large number of logic

gates and RAM blocks to implement complex digital computations. However they require

tens of seconds to completely program their arrays. The functional units of Coarse-Grained

Reconfigurable Arrays (CGRAs) can be reconfigured as fast as normal functional units in

OoO processors. Currently the mapping for both fine-grained and coarsed-grained spatial

architectures is mainly based on the static compiling techniques.

2.1 Instruction Mapping Techniques

All existing instruction mapping techniques for spatial architectures focus on exploiting

parallelism by finding independent operations in the inner loops and overlapping their

8

execution to reduce overall execution time. The parallelism hidden in the programs can be

instruction-level and/or loop-level [2, 87, 70, 37, 31]. These forms of parallelism have been

utilized by the existing HLS tools. Among these HLS tools, Instruction-level parallelism

(ILP) techniques are combined with some other techniques such as if-conversion and loop

unrolling to increase instruction scheduling window for better performance [50]. Besides

ILP, Loop-level parallelism in modern HLS tools also increases the scheduling scope across

multiple loop iterations and can potentially yield higher performance.

Existing HLS tools target two main types of loop-level parallelism. One class of tools

targets loops with data-level parallelism [4]. If each loop iteration operates on disjoint data,

parallel hardware modules can be designed to fully interleave loop iterations. In extreme

cases, each iteration executes the same sequence of operations, leading to Single Instruction

Multiple Data (SIMD) style parallelism [4]. In reality, however, few outer loops fit this

pattern without additional transformations, thus limiting the applicability of HLS tools that

exploit this kind of parallelism.

A second class of HLS tools exploits loop pipelining to partially interleave loop itera-

tions [87, 70, 31, 37, 2]. Different pipelining schemes such as pipeline vectorization [87]

and software pipelining [70, 31, 37, 2] have been adapted to HLS for this purpose. Pipeline

vectorization is applicable to loops without true loop-carried dependences or with only reg-

ular loop-carried dependences. Software pipelining has been widely used to overlap com-

putations from different iterations. However, complicated control and data dependences

existing in loops limit the number of independent operations found from different itera-

tions.

A complementary approach for HLS tools is to use loop transformations such as loop

unrolling, flattening, permutation interchange and tiling to expose loop-level parallelism

for innermost loops [89, 90]. However, these transformations are not effective when spe-

cializing programs with either complex control flows or irregular memory accesses.

9

As the availability of on-chip resources grows due to increase in number of transistors,

targeting inner loops only is not sufficient to gain higher performance for programs that

are more complicated than scientific kernels. This necessitates the use of transformations

such as DOALL and Decoupled Software Pipelining [64] that exploit parallelism in outer

loops [54].

2.2 Decoupled Software Pipelining Techniques

All the tranditional HLS tools implement the DOALL technique, which is a data-level

parallelization technique and designed to exploit parallelism for loops without any data de-

pendences. The DOALL technique cannot handle loop-carried dependences, such as the

example shown in Figure 2.1(a). To overcome its applicability limitation, Decoupled Soft-

ware Pipelining (DSWP) [64] is designed for the loops with even loop-carried dependences

exist. DSWP divides the loop body into multiple stages and assigns each stage to a differ-

ent thread to create a pipeline. It first builds a DAGSCC of the Program Dependence Graph

(PDG) [24] (Figure 2.1(b) and (c))of the target loop by coalescing each strongly connected

component (SCC) in the PDG into a single node, then assigns those nodes to stages to

identify a pipeline schedule. Loop-carried dependences are modeled as back edges in the

PDG, which form SCCs. DSWP’s partitioning causes all loop carried dependences to be

communicated locally, as instructions from an SCC in the PDG are scheduled to the same

thread. However, since the loop body is spread across multiple threads, any intra-iteration

dependence that flows between stages must be communicated across threads. Since the

stages are arranged into a pipeline, the inter-thread communication of DSWP parallelized

programs exhibits an acyclic, or unidirectional pattern, where communication only flows

along the pipeline. This feature allows the scheduling to tolerant core-to-core communica-

tions. As shown in Figure 2.1(d), when the communication latency increases from 1 cycle

10

to 2 cycles, the execution takes one extra cycle to fill the communication pipeline, but af-

terwards, the same throughput can be achieved (2 cycles per iteration). DSWP method can

also be scalable if there are parallel stages. As shown in Figure 2.1(e), multiple instances

of Stage C can be executed in parallel, so they can be scheduled to different cores, enabling

a higher execution performance.

Comm. Latency = 1 cycle Comm. Latency = 2 cycles

A while(node->next) {
B node = node->next
C value = work(node);
D count[value] += 1;
E }

(a) Loop

A B

C D

(b) PDG

A.1

B.1

A.2

B.2

A.3

B.3

A.4

C.1

D.1

C.2

D.2

C.3

B.4

A.5

B.5

D.3

C.4

D.4

0

1

2

3

4

5

6

7

8

9

10

Core 1 Core 2

DSWP: 2 cycles/iter

A.1

B.1

A.2

B.2

A.3

B.3

A.4

C.1

D.1

C.2

D.2

C.3 B.4

A.5

B.5

D.3

C.4

0

1

2

3

4

5

6

7

8

9

10

Core 1 Core 2

DSWP: 2 cycles/iter

(c) DAGSCC of the PDG

SCCAB

C D

A.1

B.1

A.2

B.2

A.3

B.3

A.4

D.1

D.2 B.4

A.5

B.5

0

1

2

3

4

5

6

7

8

9

Core 1 Core 2 Core 3 Core 4

C.1

C.2

D.3

C.3

C.4

PS-DSWP: 2 cycles/iter DSWP: 3 cycles/iter

A.1

B.1

A.2

B.2

A.3

B.3

A.4

C.1

D.1

C.2

D.2

B.4

A.5

B.5

0

1

2

3

4

5

6

7

8

9

Core 1 Core 2 Core 3

C.3

(d) DSWP latency tolerant (e) DSWP scalability

Figure 2.1: Decoupled Software Pipelining schedules on a multi-core processor. (a) de-
scribes a loop which cannot be handled by other data-level parallelization techniques. (b)
is the Program Dependence Graph(PDG) of loop (a). (c) is the DAGSCC of the PDG. Solid
lines represent data dependences while dotted lines represent control dependences. (d)
shows the parallel execution schedules of the loop for DSWP on a 2-core processor, and
how the technique can tolerent core-to-core communication latency. (e) shows how an
enhanced version of DSWP (Parallel Stage PSWP) can scale to more cores.

To utilize DSWP for mapping instructions in a HLS workflow, all the instructions

scheduled into the same pipeline stage by DSWP are grouped together, and then can be

11

translated or mapped to separate hardware modules by the existing HLS methods. More-

over, the inter-thread communications between pipeline stages in DSWP execution can be

implemented by First-In-First-Out (FIFO) buffers.

By introducing DSWP into HLS offers several advantages, compared to existing HLS

techniques. First of all, due to its acyclic communication pattern, DSWP is generally tol-

erant to increases in communication latency between hardware modules [81]. Second,

DSWP only pays the communication cost once to fill the pipeline. Third, the pipeline

stages formed by DSWP can be optimized with other existing HLS techniques.

While DSWP provides an efficient way to enable existing HLS techniques for statically

mapping irregular programs, we can also extend the architecture of spatial architecture to

include the capability of dynamically mapping.

2.3 Existing Spatial Architectures

General-purpose	PFU/Accelerators:	
DySER,	BERET,	CGPA,	By	Specialized	Hardware	 By	Reconfigura6on	

GPU	coprocessor,		
Domain-specific	
Accelerators	,		
ConvoluCon	
Engine,	TPU	

Performance	

Generality	Efficiency	

MulC/Many-Core	
	/w	OoO	Pipeline	

Figure 2.2: A Design Space of Computer Architectures (Convolution Engine [66],
DySER [34], BERET [35], and TPU [46]).

In general, any computer architecture design attempts to balance performance, energy

efficiency and generality, as shown in Figure 2.2. For example, OoO processors are de-

signed to have limited number of functional units. These functional units are time-shared

12

using schedules generated at runtime. This type of design provides generality and perfor-

mance, but wastes energy on generating instruction scheduling and delivering instruction/-

operands to these limited number of functional units. An alternative type of design, rep-

resented by Graphics Processing Units (GPUs), improves the energy efficiency by sharing

one instruction pipeline (fetching, decoding, scheduling) with hundreds of ALUs. However

this type of design usually is less general and is only applicable to scientific computation

kernels with regular memory access.

Most existing spatial architectures are focusing on improving energy efficiency and

generality. They usually contain a grid of functional units (or can be built from logic gates

in FPGAs), such that the computational instructions can be distributed to these functional

units spatially, without time-sharing. Because of this, the functionality of the functional

units can be determined without complex pipeline logic, saving energy on instruction fetch-

ing, decoding and scheduling. Meanwhile this design simplifies the delivering of operands,

saving a large portion of the energy cost associated with the datapath. The generality of

spatial architecture follows from their ability to be reconfigured for different programs.

Table 2.3 summarizes the differences between the spatial architecture proposed by this

dissertation and prior work. All the prior work can be classified into a few categories,

according to their optimization targets:

Programmable Functional Units Programmable functional units [5, 10, 20, 34, 35, 71,

88, 92] such as OneChip, CHIMAERA and PRISC only consider short program traces or

subgraphs (multiple dependent instructions in the program), and usually do not include

memory operations. In these techniques, only energy consumed communicating interme-

diate results within the sequence can be reduced. BERET [35] classifies a set of common

subgraph patterns for the superblocks (instructions across basic blocks [41]) in general

1Note that BERET only supports control speculation by the assistance from compiler.

13

R
ec

on
fig

ur
ab

le
C

om
pi

le
rE

ff
or

t
H

ar
dw

ar
e

Fe
at

ur
e

Ta
rg

et
E

xe
cu

tio
n

Pl
ac

em
en

tR
ou

tin
g

B
in

ar
y

D
yn

am
ic

R
es

ou
rc

e-
aw

ar
e

Pi
pe

lin
e

D
at

afl
ow

Sp
ec

ul
at

iv
e

In
st

ru
ct

io
n

E
ng

in
e

N
ot

R
eq

ui
re

d
C

om
pa

tib
le

M
ap

pi
ng

Sc
he

du
lin

g
E

xe
cu

tio
n

E
xe

cu
tio

n
R

an
ge

PR
IS

C
[7

1]
×

×
×

×
×

×
×

H
IM

A
E

R
A

Su
bg

ra
ph

C
H

IM
A

E
R

A
[9

2]
×

×
×

×
×

×
×

Su
bg

ra
ph

D
yS

E
R

[3
4]

×
×

×
×

X
X

×
Su

bg
ra

ph
A

D
R

E
S

[5
7]

×
×

×
×

X
X

×
K

er
ne

l
Pi

pe
R

en
ch

[3
3]

×
×

×
×

X
X

×
K

er
ne

l
B

E
R

E
T

[3
5]

X
×

×
×

X
X

X
1

Su
bg

ra
ph

SG
M

F
[8

5]
×

×
×

×
X

X
×

K
er

ne
l

Ta
rt

an
[5

9]
×

×
×

×
X

X
×

W
ho

le
Pr

og
ra

m
W

av
eS

ca
la

r[
77

]
×

×
×

×
X

X
×

W
ho

le
Pr

og
ra

m
C

C
A

[1
4,

15
]

X
X

X
×

×
×

×
Su

bg
ra

ph
T

hi
s

w
or

k
[5

3]
X

X
X

X
X

X
X

K
er

ne
l

Ta
bl

e
2.

1:
C

om
pa

ri
so

n
be

tw
ee

n
D

Y
N

A
S

PA
M

an
d

ot
he

ri
n-

co
re

re
co

nfi
gu

ra
bl

e
co

m
pu

ta
tio

n
en

gi
ne

.

14

purpose programs, and builds corresponding specialized hardware modules for each pat-

tern. These works employ compiler techniques to extract and map subgraphs to the special

functional units. CCA [14] also requires static subgraph extraction, but performs dynamic

mapping.

Reconfigurable Spatial Co-Processors Another group of designs targets larger instruc-

tion sequences. Garp adapted the VLIW compilation technique to generate pipelined data-

path on a fine-grained reconfigurable fabric [37]. ADRES [57] applies the same technique,

but on a coarse-grained reconfigurable fabric with regular local connections between func-

tional units.

General-Purpose Dataflow Architectures Tartan [6, 59] compiles entire programs onto

spatially connected functional units, which operate completely asynchronously. Elastic

CGRAs [38] uses a similar design but focuses more on gate-level implementations. The

SGMF architecture [85] supports dynamic spatial dataflow execution and uses buffers in

front of each functional unit to execute multiple invocations simultaneously. These tech-

niques all require a static compilation to map instructions to the fabric, and their control

edges for memory operations are conservative.

General-Purpose Spatial Processors In contrast to the dataflow architectures, RAW [79]

supports both ILP and streaming instructions by routing operands between architecturally-

exposed functional units over a point-to-point scalar operand network. TRIPS [74] and its

successors such as TFlex [47] and T3 [72] use a compiler to find hyperblocks, and schedule

each hyperblock in functional units individually. WaveScalar [77] uses a similar pipelined

model as our work to execute waves, which are control flow graphs. It requires a new ISA

to encode the global sequence of memory operations, which allows for dynamic reassembly

to preserve program order.

15

Dynamic Trace Detection and Execution In addition to dynamic trace construction with

trace cache [27, 73], many techniques optimize dynamically formed traces for high effi-

cient backends. DIF [26, 62] dynamically compacts retired instructions for repeated exe-

cution on a Very-Long-Instruction-Word (VLIW) engine. HBA [23] and Yoga [84] select

only hot traces and build VLIW/In-Order instruction streams for the retired instruction.

CCA [14] dynamically maps instruction streams to spatial functional units with consid-

eration given to placement but not resources. None of these techniques actively generate

mappings during instruction scheduling. I-COP [12] builds a standalone coprocessor to

complete binary optimization for incoming instruction streams, but it does not leverage

existing micro-architecture features in OoO pipeline.

2.4 Issues with Existing Architectures and Their Mapping

Techniques

According to the summary in the above sections, it is found that current spatial architec-

tures either rely on software pipeline-based static mapping techniques to generate config-

urations or apply naı̈ve dynamic mapping techniques to configure VLIW-like accelerators.

Both these satic and dyanmic instruction mapping techniques can be improved, and the

techniques proposed in this dissertation aim to solve these problems.

For the existing static instruction mapping techniques, the decoupled pipelining tech-

nique (DSWP) can be used to improve their applicability. This dissertation proposed

CGPA, which splits the outer-loops of programs into sections with different execution

patterns, thus existing static mapping methods can find more optimization opportunities in

each code section (Chapter 3).

For the existing spatial architectures, they largely rely on compiler techniques to dis-

cover optimization opportunities statically and are lacking in adaptability. To improve this,

16

this dissertation proposed SPAS, which supports speculative execution by reusing hardware

prediction units in the host OoO processors to detect hot traces for offloading to reconfig-

urable spatial fabric and speculatively control the execution on the fabric (Chapter 4).

Last but not least, to avoid the naı̈ve instruction placement in the existing techniques,

this dissertation also proposed DYNASPAM, a novel dynamic, resource-aware mapping

technique for reconfigurable spatial fabrics (Chapter 5).

17

Chapter 3

Static Mapping with Coarse-Grained

Decoupled Pipelining

The use of compiler techniques to map programs, which are written in high-level languages

such as C/C++, to spatial fabrics statically is an active area of research. These fabrics can

be fine-grained (bit-level reconfigurable) FPGAs or coarse-grained (word-level reconfig-

urable) reconfigurable arrays (CGRAs). This technique of mapping programs to hardware

by compilation, is usually referred to High-Level Synthesis (HLS). HLS tools dramatically

reduce the non-recurring engineering cost of creating specialized hardware from high-level

languages. This enables fast prototyping and is also used for generating low power compu-

tations recently.

Existing HLS tools can successfully synthesize efficient accelerators for program ker-

nels with regular memory accesses and simple control flows (mostly consisting of affine

loop nests). Such loop nests enable a series of loop transformations that expose loop level

parallelism to overlap instruction execution [16, 70, 89]. Additionally, the affine loops may

also enable special circuit modules, such as systolic arrays and shift registers, to reduce

memory traffic and improve performance [18, 19, 46]. However, in the presence of loops

18

with complex control flows or irregular memory accesses, these HLS tools can only invoke

computational units of the fabric sequentially to execute instructions. Thus, no parallelism

is exploited, which leads to poorly performing accelerator designs. In reality, a large por-

tion of programs are implemented with non-array data structures and imperfect loop nests.

This restricts the scope for parallelism within one or a few loop iterations, and generates

hardware modules with limited performance improvement over general-purpose proces-

sors [82]. Therefore, a new technique is required to generate efficient accelerators for a

large class of programs with irregular memory accesses and imperfect loop nests.

To solve this problem, this dissertation proposes Coarse-Grained Pipelined Accelerators

(CGPA), an HLS framework which uses coarse-grained pipeline parallelism to generate

efficient hardware accelerators for loops from unannotated C/C++ programs. CGPA lever-

ages two distinct insights to improve efficiency and applicability of HLS. First, complex

loop bodies with irregular memory accesses and imperfect loops usually contain coarse-

grained code sections performing different tasks. HLS tools can separate and modularize

these tasks to build an efficient system. Second, these complex loop bodies usually con-

tain sections that are parallelizable. Coarse-grained decoupled software pipelining tech-

niques [69, 68] can exploit the presence of these parallelizable sections to enable a type of

parallelism not exploited by existing HLS tools.

CGPA automatically partitions individual loops into separate pipelined stages and gen-

erates buffer-connected hardware modules for these stages. Pipelining enables the overlap-

ping of execution of an earlier iteration of the loop with a later iteration and also allows

the synthesized hardware to tolerate variable memory latency. CGPA also utilizes hidden

data-level parallelism within the pipelined stages to achieve high performance.

19

3.1 Motivating CGPA

Figure 3.1 shows the source code of the main loop in “em3d”, which simulates electron mi-

croscope tomography by constructing two linked lists to build a N-to-N bipartite graph [9].

This code has a number of features that motivate CGPA: recursive data structures, irregular

memory accesses, and non-affine loop nests.

The nodes in one linked list contain an array of pointers to the nodes of the other

linked list, i.e. the (read-only) “from” node is disjoint from the (updated) nodes of the

traversed linked list. CGPA implements several static analysis that can determine these

facts [21, 29, 30, 44].

The input to the core em3d algorithm consists of nodes in a linked list. Each node has

four data members: value, from count, an array of from nodes which points to the

nodes of the other linked list, and an array of coeffs (coefficients) for each from nodes.

The outermost loop traverses the linked list (line 1 in Figure 3.1(a)), and updates the

value of each node by subtracting all the weighted values of its from nodes using an

inner loop (line 2-6 in Figure 3.1(a)). Even though this inner loop has some independent

instructions across iterations, an attempt to exploit loop parallelism for this inner loop may

fail because:

1. The iteration count, determined by nodelist->from count (less than 10 for

most cases), limits the amount of parallelism that can be exploited and also introduces

the overhead of determining the control of loop exits. As a result, loop optimizations

such as software pipelining cannot be applied.

2. The final weighted value reduction step in the loop induces a loop-carried depen-

dence, which prevents a full application of data-level parallelism. Also the non-

constant loop iteration numbers for each node disable the applicability of a circuit

20

structure like the reduce module, which is implemented as a tree and aggregates re-

sults from the the previous stage in [66].

Thus, the scheme for generating efficient accelerators for em3d should focus on its outer

loop. At the algorithm level, we can divide the outer loop computations into two sections:

traversal and update. The linked list traversal section (line 1 in Figure 3.1(a)) determines

the address of the node used in an iteration and also the termination of the loop. We call

this set of instructions a Sequential Section because fetching the node addresses must be

serialized. Furthermore, because this section has no side-effects (for example, among other

things, it does not store to the memory), we refer to this special sequential section as a

Replicated Section, which means it is safe for multiple hardware modules to execute it

redundantly. The update section for each node (lines 2-6 in Figure 3.1(a)) in one iteration

is independent of updates to all other nodes, and can thus be executed in parallel (as long

as the node addresses are known). We refer to this section as a Parallel Section. Existing

HLS tools cannot optimize this outer loop, due to the existence of the Sequential Section,

which introduces a loop-carried dependence, non-affine memory access and non-constant

loop boundary.

CGPA can apply two novel loop parallelism techniques to build high performance hard-

ware modules for this outer loop. One technique, called replicated data-level parallelism

leverages the insight that computations from replicated sections can be safely executed as

multiple parallel copies [43]. For example, CGPA could create four identical copies of

the traversal section — one for each hardware module, as shown in Figure 3.1(b). During

execution, each hardware module executes both fetch and update in one iteration. In the

next three iterations, the module skips update and only executes fetch. By replicating fetch

and distributing updates in a round-robin manner across the four hardware modules, CGPA

can create replicated data parallel accelerators for em3d. The redundant fetching is useful

21

...
	

1	
			
	fo

r	
(;
	n
od

el
is
t;
	n
od

el
is
t	=

	n
od

el
is
t-
>n

ex
t)
	

2	
			
			
			
fo
r	
(in

t	i
=0
;	i
<n

od
el
is
t-
>f
ro
m
_c
ou

nt
;	i
++
)	{
	

3	
			
			
			
			
		n
od

e_
t	*

fr
om

	=
	n
od

el
is
t-
>f
ro
m
_n

od
es
[i]
;	

4	
			
			
			
			
		d
ou

bl
e	
co
eff

	=
	n
od

el
is
t-
>c
oe

ffs
[i]
;	

5	
			
			
			
			
		d
ou

bl
e	
va
lu
e	
=	
fr
om

->
va
lu
e;
	

6	
			
			
			
			
		n
od

el
is
t-
>v
al
ue

	-=
	c
oe

ff
	*
	v
al
ue

;	
			
			
			
			
}	

R P

P
P

P
P

R

no
de
lis
t	

(c
)	P

ip
el
in
e	
pa

ra
lle
lis
m
	

(b
)	R

ep
lic
at
ed

	d
at
a-
le
ve
l	p
ar
al
le
lis
m
	

(a
)	e

m
3d

	lo
op

	c
od

e	
ex
am

pl
e	

R
R

R
R

P
P

P
P

1

2 3
4

5

6

(d
)	S
im

pl
ifi
ed

	P
D
G
	

in
t	t
as
k_
se
q(
liv
e-
in
s,
	Q
s)
	{	

			
	fo

r	
(i
nt
	i=
0;
	n
od

el
is
t;
	n
od

el
is
t	=

	n
od

el
is
t-
>n

ex
t,
	i+
+)
	{	

			
			
		p
ro
du

ce
(Q
s,
	i&

M
A
SK
,	n
od

el
is
t)
;	

			
			
		p
ro
du

ce
_b

ro
ad
ca
st
(Q
s,
	n
od

el
is
t=
=N

U
LL
);	
		

			
	}	

			
	re

tu
rn
	0
;	

}	

in
t	t
as
k_
pa

r(
liv
e-
in
s,
	Q
s,
	W

or
ke
rI
D
)	{
	

			
	in
t	i
t	=

	0
;	

			
	w
hi
le
(1
)	{
	

			
			
		i
f(
(i
t	&

	M
A
SK
)	
==
	W

or
ke
rI
D
)	{
	

			
			
			
			
no

de
lis
t=
co
ns
um

e(
Q
s)
;	

			
			
			
			
fo
r	
(in

t	i
=0
;	i
<n

od
el
is
t-
>f
ro
m
_c
ou

nt
;	i
++
)	{
	

			
			
			
			
			
	n
od

e_
t	*

fr
om

	=
	n
od

el
is
t-
>f
ro
m
_n

od
es
[i]
;	

			
			
			
			
			
	d
ou

bl
e	
co
eff

	=
	n
od

el
is
t-
>c
oe

ffs
[i]
;	

			
			
			
			
			
	d
ou

bl
e	
va
lu
e	
=	
fr
om

->
va
lu
e;
	

			
			
			
			
			
	n
od

el
is
t-
>v
al
ue

	-=
	c
oe

ff
	*
	v
al
ue

;	
			
			
			
			
}	

			
			
			
			
en

d=
co
ns
um

e(
Q
s)
;	

			
			
		}
	e
ls
e	
	

			
			
			
			
en

d=
co
ns
um

e(
Q
s)
;	

			
			
		i
t+
+;
	

			
			
		i
f(
en

d)
	re

tu
rn
	0
;		

			
		}
	

}	
(e
)	P

se
ud

o	
co
de

		
aF

er
	tr
an

sf
or
m
aG

on
	

ta
sk
	fo

r	
w
or
ke
r	
in
	s
ta
ge

1	

St
ag
e1
	

Re
gi
st
er
	d
ep

en
de

nc
y	

Co
nt
ro
l	d
ep

en
de

nc
y	

St
ag
e2
	

ta
sk
	fo

r	
w
or
ke
rs
	in
	s
ta
ge

2	

lo
op

	b
od

y	
1	

lo
op

	b
od

y	
2	

de
fin

e	
it
er
a2

on
	c
ou

nt
er
	

de
te
rm

in
e	
lo
op

	b
od

y	
	

up
da

te
	it
er
a2

on
	c
ou

nt
er
	

Fi
gu

re
3.

1:
(a

)S
ou

rc
e

co
de

of
th

e
m

ai
n

lo
op

of
“e

m
3d

”
pr

og
ra

m
,w

ith
se

ct
io

ns
an

no
ta

te
d

as
re

pl
ic

ab
le

or
pa

ra
lle

l;
(b

)D
at

a-
le

ve
l

pa
ra

lle
lis

m
is

ex
pl

oi
te

d
by

du
pl

ic
at

in
g

th
e

re
pl

ic
ab

le
se

ct
io

n;
(c

)
C

oa
rs

e-
gr

ai
ne

d
pi

pe
lin

e
pa

ra
lle

lis
m

is
ex

pl
oi

te
d

by
se

pa
ra

tin
g

th
e

re
pl

ic
ab

le
se

ct
io

n
fr

om
th

e
re

st
of

th
e

lo
op

;(
d)

A
si

m
pl

ifi
ed

so
ur

ce
-l

ev
el

Pr
og

ra
m

D
ep

en
de

nc
e

G
ra

ph
(P

D
G

)o
ft

he
m

ai
n

lo
op

in
em

3d
;(

e)
Ps

eu
do

-c
od

e
of

ta
sk

s
fo

rb
ot

h
ha

rd
w

ar
e

st
ag

es
.T

he
co

de
in

gr
ay

is
th

e
ov

er
he

ad
ge

ne
ra

te
d

by
th

e
C

G
PA

co
m

pi
le

r.

22

to calculate the correct node addresses for the corresponding updates. However, it causes

unnecessary memory access overhead in each module.

CGPA can also adopt another approach, called decoupled pipeline parallelism to im-

prove outer loop performance and generate accelerators similar to the results of manual

accelerator designs [68]. This approach uses a set of FIFO buffers to separate the linked

list traversal module from that for node updates. Since the traversal section only goes over

the linked list and fetches node addresses, it can progress much faster than the update sec-

tion. Thus one sequential traversal module can supply node addresses to multiple parallel

update modules in another stage, as shown in Figure 3.1(c).

With this decoupled pipeline design, when control enters the loop, the hardware mod-

ules for both stages are invoked by the same start signal. The module in the first (sequential)

stage begins fetching node addresses one by one, and assigns the node address values to

the FIFO buffers of the parallel modules in the parallel stage in a round-robin fashion. The

sequential stage stalls when there are cache misses or the corresponding buffers are full.

Each module in the second (parallel) stage waits until there are node addresses in its buffer,

and starts to process the update by fetching the node address directly from the buffer. Af-

ter completing one iteration, the module in the parallel stage can get another pointer from

the buffer, or stalls if the buffer is empty. This pipelining execution method brings the

following two benefits:

1. Tolerating Variable Latency: In this example, memory accesses during the linked

list traversal are irregular and might have variable latency due to cache misses. How-

ever, the buffers between stages ensure that the impact of variable latency is limited

to one stage and does not cause stalls in the subsequent stages as long as the buffers

are not empty.

23

2. Enabling Higher Parallelism: Since the sequential stage is split from the parallel

stage by FIFO buffers, the updates of nodes from different iterations become com-

pletely independent of each other, thus enabling extra data-level parallelism within

the parallel stage.

Besides the link list traversal example discussed in the context of em3d, many other

programs can be mapped to decoupled hardware modules. Figure 3.2 makes a classifica-

tion of some loop patterns existing in the programs, and the efficient hardware mappings for

them. For example, the decoupled pipeline parallelism model (left bottom of Figure 3.2)

has proved efficient for streaming applications [32], and has also been used to design ac-

celerators for applications such as hash indexing [48]. In [48], the hash key generation and

index traversal are decoupled to increase the throughput of the system.

CGPA is the first HLS tool to automatically extract this type of parallelism from a

single loop and generate efficient pipelined hardware modules for it.

3.2 Coarse-Grained Pipeline Accelerators

Figure 3.3 shows a logical view of coarse-grained pipelined accelerators with a Sequential–

Parallel–Sequential (S-P-S) pipeline. The number of stages for different applications is

not fixed, and is determined automatically for each application by the CGPA compiler’s

partition algorithm. The significant difference between the CGPA designs and existing

accelerator designs is that there are multiple stages of the accelerator for one single loop

and they are separated by FIFO buffers. Each hardware module with independent control

that implements instructions from the original loop is called a worker. Each worker has its

own independent control circuit and dedicated memory ports to the cache.

24

H
ar
dw

ar
e	
En

gi
ne

er
s’
	V
ie
w
	

So
1
w
ar
e	
En

gi
ne

er
s’
	V
ie
w
	

fo
r(

in
t i

=0
; i

<N
; +

+i
)

{
 w

or
ke

r(
A

[i]
, B

[i]
)

}

w
or

ke
r	

w
or

ke
r	

w
or

ke
r	

fo
r(

in
t i

=0
; i

<N
; +

+i
)

{
 t

=
w

or
ke

r(
A

[i]
, B

[i]
)

 lw

_r
ed

uc
er

(t)
;

}

w
or

ke
r	

w
or

ke
r	

w
or

ke
r	

lw
_r

ed
uc

er
	

Ex
am

pl
e:

 -

 S
um

 re
du

ct
io

n
 -

 C
on

vo
lu

tio
n

 k
er

ne
ls

Ex
am

pl
e:

 -

 V
ec

to
r A

dd
iti

on

(a) Data level Parallelism

(b) Data level Parallelism w/
 light-weight reduction

fo
r(

in
t i

=0
; i

<N
; +

+i
)

{
 t

=
w

or
ke

r1
(p

tr1
(i)

, p
tr2

(i)
)

 w

or
ke

r2
(t,

 p
tr3

(i)
);

} //p
tr1

(i)
 m

ay
 b

e
al

ia
s

w
ith

 p
tr2

(i)

//p
tr3

(i)
 is

 a
lia

s
w

ith
 p

tr1
(i)

 &
 p

tr2
(i)

fo
r(

in
t i

=0
; i

<N
; +

+i
)

{
 t

=
w

or
ke

r1
(A

[i]
, B

[i]
)

 w

or
ke

r2
(t,

 p
tr3

(i)
);

} //p
tr1

(i)
 m

ay
be

 a
lia

s
w

ith
 p

tr2
(i)

//p

tr3
(i)

 is
 a

lia
s

w
ith

 p
tr1

(i)
 &

 p
tr2

(i)

w
or

ke
r1
	

w
or

ke
r2
	

bu
ffe

r	

w
or

ke
r1
	

w
or

ke
r1
	

w
or

ke
r1
	

w
or

ke
r2
	

Ex
am

pl
e:

 -

 S
tre

am
 a

pp
lic

at
io

ns

(c) Pipeline Parallelism

(d) Pipeline Parallelism w/
 parallel workers

bu
ffe

r	

H
ar
dw

ar
e	
En

gi
ne

er
s’
	V
ie
w
	

So
1
w
ar
e	
En

gi
ne

er
s’
	V
ie
w
	

Ex
am

pl
e:

 -

 K
-m

ea
ns

 -

 e
m

3d

 -
 h

as
h-

in
de

x

bu
ffe

r	

Fi
gu

re
3.

2:
D

iff
er

en
tp

ro
gr

am
pa

tte
rn

s
ex

pl
oi

tin
g

pa
ra

lle
lis

m
fo

rh
ar

dw
ar

e
ac

ce
le

ra
to

rd
es

ig
n.

25

Dcache Request and Response Crossbars

<q, id, val>

Dcache Banks

<val>

CPU

Stage 1
(sequential)

Stage 2
(parallel)

worker worker worker worker

workerworker

Stage 3
(sequential)

Figure 3.3: A logical view of CGPA architecture within the dashed box. Each grey box
contains circuit modules customized for the targeted loop and generated by CGPA com-
piler. In this figure, a Sequential–Parallel–Sequential (S-P-S) 3-stage pipeline is shown.

The design of this pipelined accelerator can be embedded in a general-purpose co-

processor such as conservation cores [82] and Legup accelerator [8] to improve the per-

formance of these co-processors. It can alternatively be implemented as a standalone ac-

celerator to improve the performance of targeted loops. This paper explores the former

configuration.

3.2.1 CGPA Workflow

Figure 3.4 shows the workflow of the CGPA tool. The tool is built on top of the LLVM

compiler infrastructure [49] (revision 164307). The tool accepts unannotated sequential

C/C++ programs. The LLVM front-end (clang) translates the source code to intermediate

representation (IR) for further analyses and optimizations. The compiler identifies hotspots

in the code via a simple profiling step. Then, it applies a series of analyses and code

transformations to create pipeline specifications from the IR. Subsequently, the compiler

splits the program into two parts: one to be executed on the general-purpose processor

26

and the other (containing the transformed pipelines) to be implemented as accelerators.

Additionally, the compiler generates wrapper functions to invoke the accelerators from the

processor and pass them the necessary arguments. The code to be executed on the general-

purpose processor is then compiled to binary, and a hardware backend translates the second

part to Verilog descriptions and finally the device programming files.

C/C++ Source Code

Analysis & Optimization

SW/HW partition

IR-to-MIPS IR-to-Verilog

SW HW

Place & Route

Assembly + Accelerators Programming File

Profiling

LLVM IR

Building PDG

Pipeline Partition

Pipeline Transform

Verilog Generation
Verilog

RTL Generation

Tran
sfo

rm
atio

n
B
acke

n
d

Figure 3.4: Workflow for CGPA HLS Framework

3.2.2 Pipeline Generation

The specification of the pipeline is generated during the analysis and optimization phase

in the compiler. In this phase, a set of common optimization passes such as dead code

elimination, strength reduction, and scalar optimizations are applied before generating the

actual pipeline. There are three main steps in the pipeline generation stage: building the

program dependence graph (PDG), pipeline partition, and pipeline transformation.

Building the PDG: The compiler first builds a program dependence graph (PDG) for

each program. Each node in the PDG represents an instruction in LLVM IR and each

27

edge between the nodes represents a control or data dependence. During this process, a

set of alias analyses can be applied to remove dependence edges between two memory

instructions. For example, in the example of Section 5.1, several static analysis algorithms

can determine that from and nodelist nodes are from different linked-lists and disjoint

from each other [29]. After the PDG is built, the compiler consolidates all the strongly

connected components (SCCs) in the PDG to create a directed acyclic graph (DAG) [24,

45]. Each component is classified as: parallel, replicable, or sequential [43]. Parallel SCCs

contain no loop-carried dependences and thus, can be executed in parallel. The other SCCs

are either replicable (do not contain an instructions with side-effects) or sequential (may

contain instructions with side-effects).

Pipeline Partition: This is a coarse-grained instruction scheduling step that assigns

instructions to different pipeline stages. The partitioning algorithm is adapted from the

Parallel Stage Decoupled Software Pipelining (PS-DSWP) [68] algorithm. The main dif-

ference between CGPA and PS-DSWP lies in the identification of replicable sections, and

deciding whether it should be inserted in the parallel stage as replicas or into the sequential

stage. Generally, inserting replicable sections into a sequential stage will increase com-

munication, because the results of the replicable sections must be sent explicitly to the

following stages. Conversely, duplicating the replicable section in parallel stages will in-

crease the amount of computations and memory accesses. The CGPA framework only

duplicates lightweight replicable sections which do not contain load and multiply instruc-

tions. This is based on the intuition that time and resources required for the replicable

section without these instructions are less than those for communicating results via FIFO

buffers. Figure 3.1(d) shows that replicable sections with heavyweight load instructions are

identified and inserted into a sequential stage (Stage 1), and the remaining instructions are

grouped as one parallel stage (Stage 2). The required number and stage connections of the

buffers are also determined at this step.

28

Pipeline Transform: This step forms a set of control-equivalent loops for the workers

based on the results of the partition step. Control-equivalent means that all workers from

all stages have the same loop iterations and exit points as the original loop, even though

their bodies have been assigned different instructions. Then the compiler creates tasks for

each stage, with the loop live-ins and buffers as arguments. Tasks for parallel stages have

one additional argument to indicate the unique identification (ID) for the worker (relative

to all other workers in the same stage). For the body of the tasks, the instructions of the

original loop are distributed according to the result of the pipeline partition. Moreover,

loop control branch instructions of the targeted loop are also duplicated across the tasks

and the destination of original branch instructions are modified to recreate the original loop

structure in each task.

Both register and control dependences between stages are communicated via FIFO

buffers, and the compiler automatically inserts communication primitives into tasks. For

data dependences, if the definition and use of a variable are in different stages, a produce

primitive is inserted after the definition, and a consume primitive is inserted at the point

in the later stage which corresponds to the definition. Also for control dependences, the

compiler needs to broadcast the condition of the branch instructions to all the workers in

the following stages as a data dependence, as shown in Figure 3.1(e).

One significant difference between CGPA partitioning and previous work [68] is the

handling of the replicable section and loop termination. Duplicating lightweight replicable

sections introduces loop-carried dependences in the parallel stage. To solve this, the CGPA

compiler creates two copies of the loop body in the tasks for workers in a parallel stage,

as shown in Figure. 3.1(e). One copy (loop body 1) has real computations which are the

instructions (both parallel and replicable sections) assigned to this worker; another copy

(loop body 2) is only for the replicable section. The compiler creates a new basic block

to use the worker ID and iteration counter to decide which loop body the control should

29

enter at the beginning of each iteration. For the loop termination of workers in the parallel

stage (when the parallel stage is not the first stage), the same strategy is adopted, and

the branch exit condition from the previous stage is broadcasted to all the workers in the

following stages and guarantee that they can exit when the previous stage finishes, as shown

in Figure 3.1(e).

Once tasks are generated, the original loop in the parent function can be replaced by a

set of calls to the generated tasks. This is done by inserting parallel fork and parallel join

primitives with the corresponding arguments. The live-outs are communicated back to the

original parent function by inserting store liveout exactly before the exits of the tasks, and

retrieve liveout before the uses of the liveouts. Table 3.1 summarizes all the primitives

inserted by the compiler during the pipeline transformation.

Class Primitive Arguments Description

1 parallel fork LoopID, Task,
Liveins, Buffer,
WorkerID

In the current state, invoke a hardware module for Task (associated with
LoopID) and read register values of Liveins as input. If this is a parallel
worker, WorkerID is used as one extra input.

parallel join LoopID Stall in current state until all the workers related to LoopID have raised
the finish signal

2 produce Buffer, WorkerID,
Value

Push Value to the FIFO Buffer with index WorkerID

produce broadcast Buffer, Value Push Value to all the workers connected to the FIFO Buffer
consume Buffer Pop a value from the connected FIFO Buffer

3 store liveout LiveoutID, Value Store a liveout value, Value with ID LiveoutID in a register
retrieve liveout LiveoutID Read value for a liveout with ID LiveoutID from the corresponding reg-

ister

Table 3.1: New primitives added to LLVM IR to support worker invocation, dependence commu-
nication, and register value passing across hardware modules.

3.2.3 CGPA Compiler Backend

RTL Generation: The CGPA compiler first builds the RTL description of hardware mod-

ules from IR. Subsequently, it generates the Verilog code automatically from the RTL speci-

fication. For RTL generation, CGPA utilizes an open-source Verilog backend of LLVM [8].

In the instruction scheduling phase, it creates a control flow graph (CFG) of the offloaded

30

program. Then, the nodes of the CFG are split into multiple states of a finite state machine

(FSM), after scheduling instructions at different clock cycles (represented by one state in

the FSM). CGPA adopted the SDC (system of difference constraints) scheduling algorithm

to assign instructions to the FSM states. The SDC algorithm solves the instruction schedul-

ing problem by converting data dependence, control dependence, instruction latency, cycle

time and available resources to a set of constraints in a linear programming (IP) problem.

Since CGPA compiler generates pipelined parallel modules, scheduling constraints for the

new primitives should be added to the basic dependence constraints and timing constraints

to ensure correctness and performance. Here the notations from [17] is used to express

the set of new constraints that must be preserved: svbeg(v) represents the scheduling vari-

able associated with the starting state of instruction v; Ck(l) are primitives from Class k

with LoopId l (Table 3.1), M is the set of memory access instructions, B represents branch

instructions. Then the following additional scheduling constraints are introduced:

∀fi, fj ∈ C1(l) : svbeg(fi)− svbeg(fj) = 0 (3.1)

∀fi ∈ C1(l1), fj ∈ C1(l2) : |svbeg(fi)− svbeg(fj)| ≥ 1 (3.2)

∀m ∈M,∀prodcons ∈ C2 : |svbeg(m)− svbeg(prodconsc)| ≥ 1 (3.3)

∀b ∈ B, ∀lo ∈ C3 : svbeg(b)− svbeg(lo) = 0 (3.4)

Constraint 3.1 and Constraint 3.2 are for the Class 1 primitives in Table 3.1. fi and fj

are two different primitive instances. Constraint 3.1 guarantees that the parallel invocation

of hardware modules from the same loop will be within the same cycle, and only when all

the modules finish, the state machine of the parent module will continue. Constraint 3.2

guarantees that the parallel invocation of hardware modules for different loops will not be

invoked in the same cycle (must have at least one clock cycle difference).

31

Since memory operations may take multiple clock cycles, the Class 2 operations (pro-

duce and consume) are not side-effect free and should not be scheduled to the same state of

memory operations. Otherwise, when memory operations stall the circuit, it causes multi-

ple pops/pushes the same value to the FIFO buffers if they are scheduled within the same

state. Constraint 3.3 makes sure the produce and consume primitive instances (prodcons)

will not be scheduled with any memory operations (m) and have at least one clock cycle

difference.

Finally, Constraint 3.4 allows stores of live-out values (lo) only when the loop exits

(which is the branch instruction b in 3.4). The backend in [8] is fully utilized to translate

the FSM with scheduled instructions to the RTL of datapath and control circuits.

Verilog Generation: Given the RTL specification, the backend of CGPA, which uti-

lizes the Legup’s implementation, generates the Verilog code automatically. However, to

support all the primitives shown in Table 3.1, CGPA also includes a new hardware circuit

library. During the Verilog generation phase, the wire connections between the generated

modules and the hardware module in the library is completed automatically. Besides the

Verilog code, the compiler also generates a test bench to verify the design. All the Verilog

designs of the benchmarks passed the verification.

3.3 Evaluation of CGPA

3.3.1 Methodology

Evaluation Framework: The CGPA compiler is based on LLVM (revision 164307). The

backend for CGPA is adapted from an open source Verilog backend [8], which generates

both design and test bench files. The CPU/accelerators heterogeneous system from [8] is

based on Altera DE4 which features a Stratix IV FPGA [1]. A 32-bit MIPS software core

32

executes the CPU part of the program. Both the instruction cache and the data cache are

directly-mapped with 512 lines and 128 byte block size. The instruction cache and the data

cache have 1 and 8 ports, respectively. For all the pipelined accelerators, the width of FIFO

buffers is fixed to 32 bit, the depth is fixed to 16 entries and the number of workers in the

parallel stage is fixed to 4. Quartus II 11.0 is used to synthesize, fitter and simulate the

accelerator part of the program. The targeted synthesis frequency is set to 200MHz. The

accelerators generated by CGPA have all been implemented and verified. For performance,

the number of cycles for which the kernels of various programs were running is measured.

The ALUT resource usage is obtained after place and route, and the power estimated is

given by PowerPlay [1] with obtained activity files from a post-fitter simulation.

Benchmarks: Table 3.2 shows the descriptions of the set of kernels accelerated us-

ing CGPA and also the corresponding pipelined stages generated by CGPA. These bench-

marks are chosen because they belong to different domains such as machine learning, graph

partitioning, and image processing. Additionally, we are not aware of HLS synthesized ac-

celerators for some of these kernels (hash indexing, em3d, and ks).

Benchmark Domain Description P1 P2
K-
means [11]

Machine
Learning

Finding the nearest cluster for each node
and updating its position

P-S -

Hash-
indexing [48]

Database Computing hash key for each node and in-
dexing it in a linked-list

S-P-S -

ks Graph Par-
tition

Traversing doubly-nested linked-lists to
find a max grain of swapping

S-P-S -

em3d [9] 3D Simula-
tion

Updating value for each node in a linked-
list by subtracting weighted value in
from nodes

S-P P

SIFT 1D-
Gaussblur
[55]

Image Pro-
cessing

1D row Gaussian blurring; pipeline vec-
torization was applied to reduce memory
access

S-P P

Table 3.2: Descriptions of benchmarks used. P1: Pipeline Partition with Replicable Section in
Sequential Stage; P2: Pipeline Partition with Replicable Section in Parallel Stage

33

3.3.2 Results

 0X

 2X

 4X

 6X

 8X

 10X

K−means Hash−indexing ks em3d 1D−Gaussblur GeoMean

L
o
o
p
 s

p
ee

d
u
p
,
n
o
rm

al
iz

ed
 t

o
 M

IP
S

 s
o
ft

w
ar

e
co

re

Legup

CGPA

Figure 3.5: Speedup Results for Loop Kernels of the Benchmarks

Performance: In the experiment, three data points for each loop kernel are considered:

(1) Performance on a MIPS software core; (2) Performance of hardware accelerators gen-

erated by Legup [8]; and (3) Performance of hardware accelerators generated by CGPA.

Legup was chosen for comparison because it can generate accelerators for each kernel men-

tioned in Table 3.2. Additionally, other HLS tools targeting general-purpose programs use

a framework similar to Legup [82]. Figure 3.5 shows the loop speedup numbers for the

kernels, relative to the performance on the MIPS software core. The Legup HLS tool gives

a 1.85x geomean speedup over the software core. CGPA gives a geomean of 3.3x speedup

34

over the performance achieved by Legup and a geomean of 6.0x speedup over the MIPS

software core.

Area and Power: Table 3.3 shows the area and energy overheads for each kernel.

For most benchmarks, the ALUT usage relative to Legup is approximately 4.1x. This is

not surprising since CGPA creates four parallel workers in the parallel stage to increase

performance. Another type of overhead comes from the usage of BRAM to build the FIFO

buffers, which are not included in the ALUT usage. Table 3.3 also shows the power and

energy dissipation for each benchmark. The results show that a geomean of 20% energy

dissipation overhead is generated by CGPA, over the accelerators generated by Legup for

the benchmarks. The sources of the energy overhead are passing values via the FIFO

buffers, multi-port cache support and other computation overhead. On the other hand, the

energy efficiency column, obtained by dividing the energy dissipation of MIPS software

core by that of accelerators, shows CPGA can save significant energy compared to the

MIPS software core.

Benchmark Type
ALUT power energy energy

(mW) (uJ) efficiency

K-means
Legup 1696 46 22.1 7.3

CGPA (P1) 7197 162 22.9 6.9
Hash- Legup 421 47 12.1 6.7

indexing CGPA (P1) 2052 150 14.6 5.5

ks
Legup 1371 60 104.5 6.7

CGPA (P1) 5741 233 131.7 5.3

em3d
Legup 623 72 1.66 6.4

CGPA (P1) 2842 292 2.24 4.7
CGPA (P2) 2624 305 2.49 4.2

SIFT 1D- Legup 1319 53 1.27 7.4
Gaussblur CGPA (P1) 3806 183 1.35 6.9

CGPA (P2) 4168 194 1.55 6.0

Table 3.3: Comparison between CGPA and related frameworks

35

Tradeoff: To explore the tradeoff between computation and communication in the pres-

ence of replicable sections, replicated data-level parallelism for em3d and 1D-Gaussblur is

also enabled by duplicating the replicated stage in the parallel workers (reported as P2 in Ta-

ble 3.3). The pipelining method (P1) outperforms the duplicated replicable section method

(P2) by 6% and 15% for em3d and 1D-Gaussblur, respectively. Moreover, as shown in Ta-

ble 3.3, the pipelining method can reduce energy dissipation by 11% and 14% respectively

for these two benchmarks. For the other benchmarks, replicated data-level parallelism was

not found applicable.

3.4 Applicability and Scalability of CGPA

This section shows the applicability of CGPA by describing two interesting cases from the

evaluated set of benchmarks, and also the scalability of the technique by exploring some

design parameters.

3.4.1 Applicability

Two examples, K-means and 1D Row Gaussian Blur, described below show that CGPA

understands the intention of different loop patterns and generates profitable hardware mod-

ules to improve the performance.

Example One: K-means

For K-means, the CGPA compiler builds a pipelined accelerator by targeting the loop for

deciding cluster membership for each point and updating new cluster centers. Figure 3.1

shows the source code for the loop. This loop first finds the membership of each input data

point by using the findNearestPoint function. This function calculates the Euclidean

distance between a data point and the center of each cluster, then returns the index of

36

for (int i = 0; i < numNodes; ++i) {

int index = findNearestPoint (nodes[i], nFeatures, clusters, nClusters);

if(membership[i] != index)
delta += 1;

membership[i] = index;
new_centers_len[index] += 1;
for(int j = 0; j < nFeatures; ++j)

new_centers[index][j] += nodes[i][j];

}

P

S

R

Figure 3.1: The targeted loop for K-means algorithm, along with the identification of dif-
ferent sections.

the cluster corresponding to the minimum distance. The returned index is used to assign

membership to the data point and to update the positions of the corresponding cluster center.

The CGPA framework indicates that the targeted loop can be separated into three

unique sections (shown in Figure 3.1). The induction variable calculation, which deter-

mines the index of data points used in an iteration and also the termination of the loop, is

identified as a Replicable Section. The call to the findNearestPoint function can be

executed independently for each data point, and thus is identified as a Parallel Section. The

rest of the loop contains updates to three objects: membership, new center len, and

new centers. These updates are executed for each iteration, and cannot be overlapped

with the updates from the other iterations. The CGPA framework identifies these updates

as belonging to a Sequential Section.

In the pipeline transformation step of CGPA, the Parallel Section is deployed as the

parallel stage in the pipeline, which then is translated into parallel hardware modules as

shown in Figure 3.2. The Sequential Section is transformed to one hardware worker, which

is connected to the parallel workers in the earlier stage via FIFO buffers. The compiler also

identifies that the Replicable Section is lightweight, so it is duplicated across all workers.

37

Thus, each worker has its own induction variable calculation. One 4-channel FIFO buffer

is generated to hold the index from the workers in the parallel stage. The sequential worker

completes its task by fetching index values from the buffers on a round-robin basis. By

separating the sequential worker from the main parallel computations in the algorithm,

maximum parallelism can be exploited while ensuring correctness of execution.

P

index

P P P

S

index

R R R R

R

Stage1:
Parallel

Stage2:
Sequential

Figure 3.2: Pipeline generated for K-means by CGPA.

Some existing HLS tools have targeted the inner loop for the K-means kernel. For

example, Gokhale et al. proposed the use of a systolic array structure for the calculation

of Euclidean distances within the findNearestPoint function, based on an language

extension of C, called Stream-C [32]. However, the CGPA framework differs from this

approach in the following ways:

• The results of CGPA are more general (in terms of the number of different clusters

and input data points), since CGPA does not assume a fixed number of clusters; and

38

• CGPA targets the outer loop, which potentially has a higher degree of parallelism,

since the number of data points is typically orders of magnitude larger than the num-

ber of cluster centers.

CGPA is a coarse-grained pipeline parallelism technique for individual loops, and its

transformation technique usually does not change the code structure of inner loops, which

can be targeted by existing HLS techniques. In this example, the calculation of the Eu-

clidean distances between the nodes and the centers can still be optimized by applying

systolic array structures if the number of clusters is a constant. Thus, CGPA can be seen

as complementary to existing work.

Example Two: 1D Row Gaussian Blur

for (int i = 0; i < height; ++i) {
float img0 = img[i][0];
float img1 = img[i][1];
float img2 = img[i][2];
float img3 = img[i][3];
float img4 = img[i][4];

for (int j = 0; j < width-4; ++j) {

intermediate[i][j] = coef0*img0 + coef1*img1 + coef2*img2
+coef3*img3+ coef4*img4;

img0 = img1;
img1 = img2;
img2 = img3;
img3 = img4;

img4 = img[i][j+5];
}

}

R3

P

R1

R2

Figure 3.3: Source code for targeted loop in 1D Gaussian Blur, along with the identification
of different sections.

39

CGPA is able to generate parallel accelerator designs for both the 1D row and column

Gaussian Blur kernels in Scale-Invariant Feature Transform (SIFT) program. This section

only shows the result of the 1D row Gaussian Blur kernel, whose code is shown in Fig-

ure 3.3. For a certain row i, the loop has a window of size 5 moving from the left to the

right of that row, and calculates a weighted sum reduction of all the image points within the

window. In prior work, a series of optimizations, namely scalar replacement and pipeline

vectorization [18], have been utilized to optimize the number of memory accesses for the

loop. In our evaluation, these optimizations are applied for the CPU baseline, Legup and

CGPA.

The CGPA framework is able to identify four different code sections for the targeted

loop. Three of the four sections are identified as Replicable Sections. The first replicable

section (labeled R1) performs induction variable calculations, which gives out the column

index of the image data. The second replicable section (labeled R2) performs data swaps.

The third replicable section (labeled R3) fetches new image data. The fourth section is a

parallel section, which performs a weighted sum reduction of each window position. The

sum reduction for each position can be performed independently of that for other positions,

thus explaining why this section is identified as a parallel section.

CGPA handles the three replicable sections in different ways, according to their fea-

tures. Since R1 and R2 are lightweight, they are replicated in the workers. R3 has a load

instruction, thus it is inserted into a separated sequential pipeline stage. As a result, R1 is

replicated in both the sequential stage and parallel stage, because it performs all the induc-

tion variable calculations. R2 is only replicated in the parallel stage, because its result is

only used in the parallel stage. For each iteration, R3 fetches image data and broadcasts

it to all four shift register chains (R2) in the second stage. A final pipeline partition and

transformation generated by CGPA is shown in Figure 3.4.

40

P P P P

Stage1:
Sequential

Stage2:
Parallel

R1

R3

R1 R1 R1 R1

R2 R2 R2 R2

Figure 3.4: Pipeline generated for 1D Row Gaussian Blur by CGPA.

Compared to the pipeline vectorization technique which can only generate one reduc-

tion window [18], CGPA builds four parallel reduction windows to generate four interme-

diate data concurrently. This is not just a simple duplication of reduction windows that

allows them to work independently (like the results generated by inserting R3 in a parallel

stage). Experimental results show that decoupled pipelining technique (DSWP) improves

the performance by 15% and reduces energy cost by 14%. Furthermore, the map-reduce

style circuit in [66] can also be applied in the Parallel stage to improve the sum reduction

performance. Again, this technique is complementary to CGPA.

3.4.2 Scalability

Due to the limitations of the experimental platform, this paper only shows cases with a

maximum of 4 parallel workers in the parallel stage. The degree of parallelism that can be

41

potentially exploited by CGPA is larger than this number for all the benchmarks. In the

ideal case, the scalability of CGPA depends on three issues:

Workload of the Sequential Stage: Increasing the workload on the sequential stages has

two effects: (1) it may stall the parallel stage through the FIFO buffers, and (2) it may limit

the overall speedup in accordance with Amdahl’s law. The pipeline partition algorithm in

CGPA tries to find maximum parallel section of the loop body, thus reducing the workloads

of the sequential stages.

Workloads of the Replicable Sections in the Parallel Stage: If the number of workers

in the parallel stage is increased, there is an increase in the chance that execution enters the

loop body which contains only the replicable section. This could result in higher overheads

for the whole accelerator system. Thus, it is important for efficiency and scalability to

decide where the replicable section must be inserted. In CGPA, the partition algorithm can

intelligently calculate the pipeline balance and decide which replicable sections should be

inserted in the parallel stage.

Memory system support: As shown in the experiments, CGPA tries to reduce memory

access by reusing input data from a sequential stage. However, in CGPA, since each worker

in the parallel stage has its own memory ports, the overhead of building shared memory sys-

tem becomes large if the number of parallel workers increases. To solve this problem, some

existing memory optimizations, such as private cache and memory partition techniques can

be applied. CGPA’s pipeline partition design enforces an assignment of aliasing memory

instructions to the same stage (by creating SCCs), and this indicates that there are no data

access conflicts from different stages. Thus, this allows the application of existing memory

optimizations, such as local memory.

42

On the other hand, the results of static mapping largely depend on the accuracy of

compiler analysis. Without strong alias analysis techniques, CGPA would not be able to

split aliasing memory instructions into different stages, and no partitions can be formed.

To solve this issue, this dissertation also proposes a dynamic mapping technique.

43

Chapter 4

Spatial Architecture Speculation with

Hardware Reuse

Static instruction mapping techniques are widely utilized to translate software programs

to fine-grained reconfigurable fabrics, such as FPGAs. However, dynamic mapping tech-

niques are critical for enabling the deployment of coarse-grained reconfigurable spatial

architectures in mainstream computing devices. Some coarse-grained reconfigurable spa-

tial architectures, such as Programmable Functional Units (PFUs) [5, 10, 14, 20, 34, 35, 71,

88, 92] and Coarse-Grained Reconfigurable Arrays (CGRAs) [33, 57, 58, 67, 76, 85] have

the advantage of being amenable to reconfiguration, making them more general-purpose.

However, most of these existing CGRAs rely on static mapping techniques to generate

configurations. Executed a priori, static methods cannot make use of information gathered

at runtime to optimize their mappings for changing workloads. Additionally, programs

that are statically mapped to a particular reconfigurable fabric cannot run effectively on

44

a processor without the fabric, and may not be compatible with different fabric genera-

tions [14, 15]. This is a significant limitation because lots of programs, running on com-

mercial processors, are not open source, but users frequently upgrade their hardware and

computational infrastructure.

Dynamic mapping methods can overcome the adaptability and compatibility issues that

static methods are facing. However, due to small instruction scopes and lack of specula-

tion, current dynamic techniques fail to make the best use of routing resources in spatial

architectures [14]. This may lead to increased execution time and energy consumption, as

well as, in some cases, an inability to produce a feasible mapping.

To solve this problem, this dissertation proposes Dynamic Spatial Architecture Map-

ping (DYNASPAM), which includes both the speculative spatial architecture (SPAS) design

and also a pure dynamic, pluggable, hardware mapping module. The insight of SPAS

are that OoO processors excel at utilizing speculation and contain large instruction win-

dows, thus combining OoO resources with the execution efficiency of spatial architectures

leads to a more effective system. SPAS efficiently and transparently integrates with, and

utilizes the resources of, an OoO processor to dynamically map large instruction traces

to a reconfigurable fabric. SPAS reuses the prediction, speculation and scheduling tech-

niques in advanced OoO processor pipelines for spatial architectures. Specifically, SPAS

reuses the branch predictor and allows for instruction traces that spanning multiple basic

blocks to increase the scheduling window. SPAS also reuses the memory speculation unit

and increases mapping freedom by breaking memory dependences. The proposed dynamic

resource-aware mapping technique for reconfigurable spatial fabrics from SPAS also lever-

ages the existing scheduling logic in the host processor to select and map instructions from

a large scope with only a small hardware cost.

45

4.1 Motivating SPAS

To understand the need for SPAS, let us first consider the limitation of existing dynamic

mapping solutions for spatial architectures.

4.1.1 Dynamic Mapping for Spatial Architecture

interconnect

interconnect

interconnect

PE

PE

PE

PE

PE

PE

PE

PE

PE

...

...

...

Global busGlobal bus

..
.

Input Ports

Figure 4.1: A generalized reconfigurable spatial architecture.

Figure 4.1 shows a generalized reconfigurable spatial architecture. Normally, the recon-

figurable spatial architecture is organized as a grid of functional units, and each functional

unit has connections to its neighbors (in the same row or different rows). Since differ-

ent reconfigurable spatial architectures have different interconnection designs, we use a

cross-bar like interconnect structure here to represent them. In real designs, this intercon-

nect can be simplified by reducing the amount of connections. For example, in one row

of PipeRench [33], a functional unit can only be connected to its adjacent fuctional units,

46

while the functional units in the same row of CCA [14] cannot communicate with each

other at all.

Project
Internal Communication External

same row adjacent rows Communication
CCA [14] - cross-bar top

DySER [34] switch switch round
PipeRench [33] switch cross-bar top & bus
This work [53] - cross-bar top & bus

Table 4.1: Topologies of different spatial architecture examples.

Table 4.1 gives a summary of topologies for several different reconfigurable spatial

architectures, which have different features for communicating data internally (between

functional units) and externally (between functional units and the outside ports). Due to

the two-dimensional physical arrangement of functional units in spatial architectures, the

distribution of input and output ports is heterogeneous, i.e. the number of input and out-

put ports each functional unit can access directly are very different. For example, only the

functional units from the top row of CCA can directly access inputs [14], while only half

of the functional units at the edge of DySER can directly access inputs [34]. Transfer-

ring input data to spatially internal functional units costs extra cycles and datapaths, or is

even impossible. Obviously, this resource heterogeneity should be considered when map-

ping instructions to functional units to get good results. Applying global bus to connect

spatially internal functional units can partially reduce the heterogeneity. The global bus

can be shared by multiple producers and consumers, and provides flexibility in instruction

mapping.

For both the static and dynamic mapping methods, the core problem is to satisfy the

following three types of constraints when instructions are selected and placed to the func-

tional units of a spatial fabric: functionality constraint, resource constraint, and timing

constraint [63, 39, 40]. The description of each constraint and our methods to satisfy them

47

Constraint Description Solution or Heuristic
Functionality Functional unit can provide the functionality Instruction Selection

Logic
Resource Functional unit can provide the operands by

routing or input ports
Resource-Aware
Scheduling Policy

Timing Start the instruction as soon as possible but re-
spect all the dependences

Instruction Wake Up
Logic

Table 4.2: Types of constraints for the mapping problem.

are elaborated in Table 4.2. The first two constraints actually decide the feasibility of the

mapping, and the last one determines the mapping quality, which is usually expressed as

optimization objectives by setting the upper bounds of the overall evaluations from all the

mapped instructions. In an OoO processor, only functionality and timing constraints are

considered by using heuristic instruction wake-up and selection logics, and the resource

constraint is handled by moving data through centralized register file and bypass network

automatically. In a spatial fabric, resource constraint becomes specially important as the

datapaths and input port resources are limited. Thus the placement and routing decision

by one instruction may conflict with one by another instruction. As a result, a mapping

technique for spatial architectures should be resource-aware. The static mapping methods

are effective and resource-aware since they can consider requirements from all the mapping

instructions at the same time in a large mapping scope, then giving out a global mapping

solution.

However, static mapping methods are not adaptable to changing workloads and compat-

ible across hardware generations. Dynamic mapping for spatial architectures can overcome

the limitations. Potentially, dynamic mapping techniques can be developed from existing

dynamic optimization techniques, which use a method similar to trace caches [27, 73] to

collect retired instructions and perform optimization. Unfortunately all existing dynamic

techniques are naı̈ve in the sense that they follow strict program order and consider only

one instruction at a time and thus make locally optimal decisions for the constraints. For

48

example, DIF [26, 62] places retired instructions in the first VLIW instruction word that can

access its ready operands. Meanwhile, CCA [14] dynamically maps in-order instructions

from the writeback stage to the first available functional unit that can receive its operands

from the cross-bar.

4.1.2 Speculative Architecture Support for Dynamic Mapping

Speculation implemented in OoO processors actually provides the bulk of the performance

benefits of OoO processors [56]. Speculation enables better instruction scheduling results

by relaxing the timing constraints of instructions. This fact inspires the idea of SPAS, which

leverages the mature prediction and speculation design from OOO processors, and gener-

ates good instruction mapping for spatial architectures, especially for dynamic workloads.

In a sequential program, there are three kinds of dependences which prohibit executing

related instructions out of program order without speculation: register dependence, control

dependence and memory dependence. In SPAS, register dependences are naturally handled

by introducing the data-flow execution model in the spatial fabric. With data-flow execu-

tion model, one instruction starts to execute when its operands are ready and the register

dependences are fulfilled by the physical datapath connections from producer functional

units to consumer functional units. However, no execution model can inherently break

control dependences and memory dependences without speculation.

Control Dependence Speculation With assistance from compilers, control speculation

has been exploited for spatial architectures by forming enlarged basic blocks statically

after profiling and checking their validity at runtime [35]. Since these techniques are based

on profiling specific workloads, they cannot be generalized for a large class of unprofiled

workloads. Also, if-conversion based techniques, such as hyperblocks, can be used to

49

convert control dependences to register dependences. However, this would increase the

usage of hardware resources on the spatial fabric.

As a pure dynamic method, SPAS utilizes the branch predictor of OoO processors to

dynamic select code sequences across multiple basic blocks speculatively and execute them

on the spatial architecture as fat atomic instructions.

Memory Dependence Speculation Handling the delivery of direct register dependences

in spatial architectures is a matter of routing from the producer functional unit to the con-

sumer functional unit. However, properly handling memory dependences is more complex,

because the memory order needs to be constructed through a centralized load/store (LDST)

units. Static mapping techniques for spatial architectures, such as Tartan [59], CASH [75]

and SGMF [85], add explicit control edges, by converting memory dependences to reg-

ister dependences, between aliasing memory instructions to ensure that dependences are

respected. Another similar technique is used in WaveScalar [77], a dataflow technique.

In WaveScalar, all memory instructions are statically identified by two IDs: the sequence

number of the instruction within the wave (trace), and a wave number indicating the wave

(trace) invocation. All the issued memory instructions from the fabric are reassembled in

the memory system, and executed in “total load-store order”. This method requires new

LDST units and is overly conservative.

OoO pipelines intelligently break memory dependences using high confidence specula-

tive techniques, such as Store-Sets [13]. Confidence is built by recording alias information

during the misspeculation. SPAS reuses this memory speculation to increase freedom in

mapping and executing memory instructions.

Misspeculation Handling All the sides effects of speculation need to be kept from the

architectural state of the host pipelines. Usually output buffers need to be inserted between

50

the host pipeline and the fabrics to hold the live-outs and store values from the spatial fabric.

These buffers actually become the synchronization points for starting new computation on

the host pipeline or fabric, and enforces in-order executions between them.

OoO pipelines verify the validity of speculation at the end of the execution by commit-

ting the instructions from re-order buffers (ROB) in order. To fully exploit the control and

memory dependence speculation of OoO processors and enable really out-of-order execu-

tion between the host pipeline and the spatial fabric, the spatial fabric in SPAS and the host

pipeline are coupled by sharing the same ROB.

Summary As discussed previously, a lack of speculation presents one of the main bot-

tlenecks to achieve a highly efficient dynamic mapping for spatial architectures. However,

building an independent speculation system is expensive. Inspired by the application of

prediction and speculation in OoO processors, this dissertation proposes a hybrid model,

which tightly couples the OoO pipeline and the specialized spatial fabric, to benefit one

other. In this hybrid architecture, the spatial fabric can execute instructions simultaneously

with the OOO pipeline with higher performance, and at the same time, with the support of

speculation system from OoO pipeline, the design and configuration of spatial fabric can

be simplified. Meanwhile, the instruction scheduling logic of the OOO pipeline can also

provide a large mapping scope and manifest logic for instruction dependences to enable a

pure hardware dynamic instruction mapping.

4.2 Hybrid Speculative Spatial Architecture Design

Figure 4.2 shows the overall architecture of SPAS, a tightly coupled accelerator architec-

ture that can automatically accelerate repeated execution traces from the host OoO pipeline

51

Fetch	

Decode	

Reserva/on	
Sta/on	

Func/onal	
Units	

RO
B	

Register	
files	

Rename	
RO

B’
	

Issue	
Unit	

Data$	 Fabric(s)	

Instruc/on$	 Branch	
Predictor	

T$	

Configura/on$	

Mapping	
Generator	

Input	Buff.	

Dispatch	

Output		
Buff.	

Figure 4.2: The overall view of the SPAS architecture. $ is the abbreviation of cache.
The blocks with gray color filled are the new components added to the conventional OoO
pipeline or the existing components requires modification.

on a spatial fabric for efficient execution. SPAS is designed as an enhancement of high per-

formance OoO processors and does not fundamentally change the structure and execution

of the original OoO pipeline.

SPAS consists of three main components: a mapping cache, a mapping generator and

a reconfigurable spatial fabric. The mapping cache contains both trace detection (T-Cache)

and configuration storage (Configuration Cache). The mapping generator guides instruc-

tion issue in the host OoO pipeline and uses issue information to generate the mapping

configuration for the fabric. The reconfigurable spatial fabric enables dataflow execution

and acceleration of traces.

Trace acceleration in SPAS can be divided into three phases:

52

Trace Detection The detection phase identifies hot traces for acceleration. T-Cache, a

trace cache like structure, recognizes recurring instruction sequences across multiple basic

blocks. Upon commit of a branch instruction, T-Cache consults an internal history buffer

that tracks the previous three branch results1. T-Cache then builds an index consisting

of the PC of the earliest branch instruction and the three results stored in the buffer and

increments a saturation counter using this index. If the counter for this trace is larger than

a preset threshold value, a flag in T-Cache for the entry is set to indicate the trace is hot.

Trace Mapping Upon receipt of a branch instruction, the fetch unit retrieves the pre-

dictions for the next three branches from the branch predictor to build an index into the

T-Cache in order to determine if the predicted coming trace is hot. If the trace is hot, the

fetch stage grabs instructions until it reaches the fourth branch instruction, as SPAS only

tracks three branch instructions, or a preset instruction count limit and marks instructions

in the sequence as trace instructions. These trace instructions are processed as normal in-

structions in the fetch, decode, and rename stages. When they arrive at the dispatch stage,

the following process occurs :

1. The first trace instruction stops in the dispatch stage until all on-the-fly instructions

that have been dispatched to the host OOO pipeline drain through the pipeline back-

end;

2. The mapping generator interacts with the issue unit to generate configurations for the

spatial fabric. It can be a hardware module, like the design proposed in Chapter 5,

or even a co-processor [12]. The job of this mapping generator is to place the trace

instructions onto the fabric and route their operands. This generates a configuration

for the fabric with this mapping. When the issue unit schedules an instruction to an

OoO functional unit, it simultaneously maps this instruction to a functional unit on
1as suggested by [84]

53

the fabric, routes operands from the producers and thus generates a configuration.

Note that no instructions execute on the fabric during this phase;

3. The mapping process finishes when the last trace instruction completes and writes

back in the OoO pipeline. The configuration for the spatial architecture is stored

in the Configuration Cache. The Configuration Cache is indexed similarly to the

T-Cache, but contains less entries to save space. Any mis-predicted branches or

pipeline squash will abort the mapping process.

With the completion of the trace mapping, the entry in Configuration Cache is marked

as mapped. Also, the saturation counter for the entry is set to zero and incremented if the

trace is predicted again by the fetch stage. The counter filters out traces that only appear a

few times but could trigger reconfiguration of the fabric and its associated overhead. Once

the saturation counter reaches a threshold value, the entry is marked ready and begins.

To prevent frequent reconfiguration, the saturation counters in both the T-Cache and Con-

figuration Cache are periodically cleared to prevent traces that execute infrequently from

occupying the spatial fabric.

Trace Offloading Before offloading begins, the fabric is configured using the mapping

result stored in the Configuration Cache. Concurrently, the rename stage renames the live-

ins and live-outs of the trace and sends the ready register values to the fabric. After offload-

ing begins, the fetch unit is directed to the end of the trace and begins normal operation.

This allows the host OoO processor to execute concurrently with SPAS’s fabric. If the

same trace is executed back-to-back, the dependent live-outs from one invocation are for-

warded directly using the global bus to the input ports of the fabric for future invocations,

which allows for pipelined execution. During execution, the fabric sends live-out values to

the ROB and bypass network of the host OOO pipeline.

54

4.3 Spatial Fabric Implementation and Integration

Prior work contains various fabric designs for reconfigurable spatial architectures; however,

none of them are designed to dynamically map and offload hot traces from OoO proces-

sors. To enable this feature, we both optimize the complex internal interconnect design in

existing reconfigurable spatial fabrics for dynamically detected traces and integrate the new

hardware structures of SPAS with the existing OoO pipeline.

4.3.1 Acyclically Connected Spatial Fabric

To tailor the reconfigurable spatial fabric for dynamically detected traces, SPAS adopts the

high level design of the reconfigurable fabric shown in Figure 4.1. Internally, the SPAS

fabric is organized as stripes. Each stripe contains an array of functional units, which are

connected by a circuit wired interconnect, as shown in Figure 4.3. Each functional unit

contains one functional unit, a set of pass registers and multiplexers. Each functional unit

can contain a different type of functional unit, and the set of functional units in a stripe can

differ from other stripes. Each functional unit gets its operands from either the pass registers

of the previous stripe (for dependences within a trace) or the global bus (for dependences

between trace invocations).

Given that the data dependences found within traces are acyclic, the communication al-

lowed within the SPAS fabric is also acyclic. There are three types of connections provided

by SPAS: intra-stripe, local inter-stripe and global inter-stripe. Intra-stripe connections (as

shown in 1 and 2 in Figure 4.3) are completed by the interconnect, and route inter-

mediate results to the next stripes; local inter-stripe connections receive inputs from the

previous stripe (such as 3) and can bypass values to the next stripe by storing results in

a pass register (as shown in 4). Global inter-stripe connections are used to communicate

live-ins and live-outs with the external OoO pipeline and between trace invocations.

55

fr
o

m
 p

re
vi

o
u

s
st

ri
p

e

to
 n

ex
t

st
ri

p
e

G
lo

b
al

 b
u

s

A
LU

(1
,0

)

fr
o

m
 p

re
vi

o
u

s
st

ri
p

e

to
 n

ex
t

st
ri

p
e

A
LU

(1
,1

)

G
lo

b
al

 b
u

s

fr
o

m
 p

re
vi

o
u

s
st

ri
p

e

to
 n

ex
t

st
ri

p
e

G
lo

b
al

 b
u

s

A
LU

(1
,2

)

fr
o

m
 p

re
vi

o
u

s
st

ri
p

e

to
 n

ex
t

st
ri

p
e

LD
ST

(1
,N

)

G
lo

b
al

 b
u

s

A

 B

 C
A

 B

 C

A

 B

C
A

 B

 C

4
3

1
2

..
.

Fi
gu

re
4.

3:
T

he
fu

nc
tio

na
lu

ni
ts

,p
as

s
re

gi
st

er
s,

an
d

in
te

rc
on

ne
ct

of
a

st
ri

pe
of

Fi
gu

re
4.

1.
W

ir
es

do
no

ti
nt

er
ac

tw
ith

ea
ch

ot
he

r
ex

ce
pt

(1
)
•

is
pu

t
on

th
e

in
te

rs
ec

tio
n

or
(2

)
w

ir
es

w
ith

di
ff

er
en

t
w

id
th

in
te

rs
ec

t.
U

ni
ts

A
,

B
an

d
C

ar
e

pa
ss

re
gi

st
er

s;
A

L
U

re
pr

es
en

ts
an

A
L

U
un

it;
L

D
ST

re
pr

es
en

ts
a

lo
ad

/s
to

re
un

it;
bu

ff
er

s
on

A
L

U
in

pu
t

re
pr

es
en

t
th

e
FI

FO
s

of
in

pu
t

op
er

an
ds

;
th

e
ou

tp
ut

bu
ff

er
on

th
e

L
D

ST
un

it
re

pr
es

en
ts

th
e

m
em

or
y

re
se

rv
at

io
n

bu
ff

er
.

56

Given that the data dependences found in traces are totally acyclic, the communication

allowed within the SPAS fabric is also acyclic. This design will over-provision resources,

but actually simplifies data routing. With technology scaling, on-chip transistors will be

plentiful and a large portion of the transistors need to be shut down or gated regularly to

keep the power consumption within an on-chip budge, i.e. the so called “dark silicon”

issue [22]. SPAS trades silicon area for energy efficiency and routing complexity.

Each functional unit in SPAS can be power-gated independently depending on the con-

figuration to save both dynamic and static power consumption during execution. In Sec-

tion 5.3, evaluation of SPAS shows that the configuration of functional units are constant

for long periods of time, which is sufficient to tolerate the latency between transistor sleep

and wake-up across multiple configurations.

4.3.2 Integration into the Host OoO Pipeline

To support seamless and speculative execution on the spatial fabric, the rename, dispatch,

and reorder-buffer (ROB) units in the host OoO pipeline require some augmentation.

First of all, the rename unit renames live-in and live-out registers for the trace and

reserves entries in input and output FIFOs in the spatial fabric. Separate entries in the

FIFOs represent separate invocations of the trace. The oldest entries in the input FIFOs

work like reservation station entries to receive live-in values from the OoO pipeline. Live-

out FIFOs broadcast live-out values from the fabric to the OoO pipeline.

After trace renaming, the renamed result will be sent to the fabric too. The renaming

result of live-ins and live-outs will be pushed to the input buffers and output buffers, as

shown in Fig. 4.4. The input buffers are a set of FIFO queues, which are corresponding to

each live-in. Only the heads of the buffers are active, and receive data from the external

common data bus. An entry can also actively receive data from the external register files if

it becomes the head. Entries are deleted once the data is obtained. In this method, only a

57

Rdy Tag Loc. Val.

...

...

...

...

Live-ins

Rdy Tag Loc. Val.

...

...

...

...

Head0

HeadN

Live-outs

...brs liveoutsTrace Status

ROB

Head0

HeadN

Figure 4.4: The design of Live-in and Live-out FIFOs for the spatial fabric and host pro-
cessor integration in SPAS.

few entries need to be connected to the bypass network of the original OoO and the effects

are like adding some entries in the instruction queue.

The output buffers work in a similar way, receiving data from the internal global data

bus. Again only the header of the FIFOs needs to snoop on the bus since the live-outs from

the same functional units never come out out of order. When output buffers are retired,

their contents must be written to a trace status buffer.

As the trace may contain multiple side exits and experience misspeculation, the specu-

lated result of branch instructions must also be logged by the trace status. A trace is con-

sidered as having successfully completed if all the liveouts are obtained and the branches

prediction results are correct.

58

An extra index field is added in the main ROB to allow entries to point to a side ROB

(ROB′), which contains the renamed live-out values, branch results, and memory stores of

a trace invocation. Such an entry can only commit when all live-outs and branch results

are obtained from the output FIFOs. This essentially means that the trace is treated as a

fat atomic instruction by the host OOO pipeline. The ROB′ commits or squashes (if there

is a branch mis-speculation or memory order violation) the entry when it reaches the top

of ROB. When the trace is committed or squashed, the ROB′ broadcasts the information

to all pipeline stages. The number of live-ins and live-outs that the rename and ROB′ can

handle are encoded as constraints in the dynamic mapping phase. If the number of live-ins

or live-outs for a trace exceeds either number, a valid mapping cannot be completed.

4.3.3 Intra- and Inter-Trace Memory Ordering

SPAS utilizes the aggressive speculative LDST issue techniques in OOO processors and al-

lows certain LDST instructions from the fabric to be executed out-of-order. To achieve this,

SPAS keeps a simplified version of memory instructions, consisting of only their program

counters (PC), instruction types, and their relative ordering, in the configuration. When

a trace invocation is dispatched, the simplified memory instructions are sent to a memory

dependence prediction unit similar to the Store-Sets [13], which is used by modern proces-

sors to speculatively predict aliasing memory instructions that alias. Memory operations

that execute in the fabric consult the unit to determine if they can execute, or if they must

stall in order to respect a memory dependence. If the dynamic memory dependence predic-

tion unit mis-speculates and causes a memory violation, the trace is squashed in the ROB

and re-executed after updating the offending dependence in the prediction unit.

Additionally, as load operations from a LDST unit on the fabric can receive responses

out of order, SPAS adds a reservation buffer to each LDST unit to hold all the in-flight

loads, as shown in the LDST unit in Figure 4.3.

59

4.3.4 Configuration Datapath

Due the acyclic design of the data path, the reconfiguration of SPAS can be pipelined and

overlapped with the computation. After the configuration of the whole fabric is generated

by the configuration generation, the fabric can be configured stripe by stripe in a pipeline

fashion. As show in Figure 4.1, each configuration word is sufficient to configure all the

functional units in the fabric. In the first cycle, the FUs in the first stripe receive the config-

uration fields, store part of the configuration words in the FU’s configuration register, and

at the same time, pass the reconfiguration words to the next stripe. In the second cycle, the

same work can be done by the second stripe. At the same time, the first stripe can start

to receive operands and output computation results. In this way, SPAS can configure and

compute in pipelined fashion. The pipelined design largely reduces the overhead of online

configuration, and avoid suspending the execution for reconfiguration.

4.3.5 Execution Example

Fig. 4.5 shows an example of pipelined trace execution with the SPAS reconfigurable fab-

ric. In Fig. 4.5(a), the C source code, assembly, and the data dependence graph are shown.

The OoO instruction issue units can apply dynamic unrolling to fully utilize the avail-

able functional units and execute instructions from different iterations simultaneously. In

Fig. 4.5(b) shows that with 2 ALUs and 1 MEM unit, instructions from two iterations are

executed concurrently, exploiting instruction level parallelism. However, the dynamically

unrolling capability of OoO pipeline is limited by hardware resources, and the functional

units need to be time-shared by instructions from different iterations. In this example, since

each iteration contains 6 integer instructions, the 2 ALUs needs at least 3 cycles to com-

plete them. For each cycle, the intermediate results needs to be fetched and sent back to the

register file and bypass network. For computation intensive programs, which are usually

60

So
u

rc
e

 c
o

d
e

fo
r(

in
t

i =
 1

0
0

; i
 >

 0
; i

--
)

{
in

t
tm

p
1

 =
 A

[i
]<

<1
 ;

in
t

tm
p

2
 =

 B
[i

]<
<2

;
su

m
 =

 s
u

m
 +

 t
m

p
1

;
su

m
 =

 s
u

m
 +

 t
m

p
2

;
}

la
b

el
:

1
.

LD
t2

, A
(t

1
)

2
.

LD
t3

, A
(t

1
)

3
.

SH
IF

L
t2

, 1
, t

2
4

.
SH

IF
L

t3
, 1

, t
3

5
.

A
D

D
t2

, t
3

, t
4

6
.

A
D

D
t5

, t
4

, t
5

7
.

SU
B

t1
,1

,t
1

8
.

B
G

EZ
t1

, l
ab

le

A
ss

e
m

b
ly

(a
)

1
.

LD

7
.

SU
B

3
.

SH
IF

TL 5
.

A
D

D

8
.

B
G

EZ

0
7

.
SU

B
0

1
.

LD
0

1
7

.
SU

B
1

8
.

B
G

EZ
0

2
.

LD
0

2
8

.
B

G
EZ

1
3

.
SH

IF
L 0

1
.

LD
1

3
7

.
SU

B
2

4
.

SH
IF

L 0
2

.
LD

1

4
3

.
SH

IF
L 1

5
.

A
D

D
0

1
.

LD
2

5
4

.
SH

IF
L 1

6
.

A
D

D
0

2
.

LD
2

6
5

.
A

D
D

1
3

.
SH

IF
L 2

7
6

.
A

D
D

1
4

.
SH

IF
L 2

A
LU

0
A

LU
1

M
EM

II
 >

 3
, 3

4
 r

en
am

in
g,

 3
4

 r
eg

 f
ile

 r
/w

2
.

LD

4
.

SH
IF

TL

6
.

A
D

D

7
.

SU
B

0
1

.
LD

0

7
.

SU
B

1
8

.
B

G
EZ

0
2

.
LD

0

8
.

B
G

EZ
1

3
.

SH
IF

L 0
1

.
LD

1

4
.

SH
IF

L 0
2

.
LD

1

3
.

SH
IF

L 1
5

.
A

D
D

0

4
.

SH
IF

L 1
6

.
A

D
D

0

5
.

A
D

D
1

6
.

A
D

D
1

II
 =

 1
, 5

 r
en

am
in

g,
 <

 5
 r

eg
 f

ile
 r

/w

(b
)

(c
)C

yc
le

Sp
at

ia
l d

is
tr

u
b

ti
o

n
:

x

y

cy
cl

e
0

cy
cl

e
1

cy
cl

e
2

x
y

co
m

m
. t

h
r.

R

e
gF

ile

SU
B

ad
d
l

C
o

n
st

t0

B
G

ZE

SU
B

C
o

n
st

i=
1
0
0

SU
B

ad
d
l

C
o

n
st

B
G

ZE

SU
B

C
o

n
st

9
9 9
9

9
9

SU
B

ad
d
l

C
o

n
st

B
G

ZE

SU
B

C
o

n
st

9
8

9
8

t0 t1 t0

C
yc

le
 0

:

C
yc

le
 1

:

C
yc

le
 2

:

(d
)

Fi
gu

re
4.

5:
(a

)
So

ur
ce

co
de

an
d

as
se

m
bl

y
of

th
e

si
m

pl
e

pr
og

ra
m

ex
am

pl
e,

an
d

its
da

ta
de

pe
nd

en
ce

gr
ap

h;
(b

)
A

n
dy

na
m

ic
un

ro
lli

ng
of

(a
)

w
ith

O
O

O
,

w
hi

ch
co

nt
ai

ns
2

A
L

U
s

an
d

1
M

E
M

;
(c

)
A

n
in

st
ru

ct
io

n
pl

ac
em

en
t

fo
r

th
e

sp
at

ia
l

fa
br

ic
w

ith
th

e
sc

he
du

lin
g

re
su

lt
fr

om
(b

);
(d

)A
ct

iv
iti

es
of

th
e

fu
nc

tio
na

lu
ni

ts
(0

,0
),

(0
,1

),
(1

,0
)a

nd
(1

,1
)i

n
th

e
fir

st
th

re
e

cy
cl

es
,i

nd
ic

at
in

g
th

e
pi

pe
lin

ed
ex

ec
ut

io
n.

61

the target of high efficient acceleration, the hardware resources are still the performance

bottleneck, especially for traces with high confident branch prediction results.

The trace acceleration of spatial architectures targets this bottleneck in two steps: First,

static trace instructions are assigned to the spatially connected functional units with correct

data connections. For our fabric, due to the acyclic connection pattern, the observation of

instruction scheduling on the original OoO pipeline can be used to assign instructions to

the fabric. We refer this as Schedule Reuse. By combining schedule reuse with instruction

placement and correct data path routing, the fabric can actually have higher throughput than

original OOO pipeline, as shown in the right hand side of Fig. 4.5(c), which highlights the

active functional units in each cycle after the execution. In Cycle 1, the SUB instruction in

location (1,0) is executed and the result can be sent out by the global bus. Thus, the two

instructions in (0,1) and (0,2) can receive this result, and starts the second trace instance,

indicating pipelined execution of the trace instance for the same trace configuration.

An explanation with more details is shown in Fig. 4.5(d). In this figure, only the func-

tional units in the left-up corner of the fabric is shown. In cycle 0, the live ins for the first

trace instance are ready for functional unit (0,1) in the first row. Thus, it is ready to execute

and produce results at the end of the cycle. The functional unit has 1 cycle latency, and

at the end of cycle 0, the result is available on the result lines, and sent to the consumers

through the interconnect and pass registers. This actually sets the two functional units in

the second row as ready to execute since their operands become ready. In cycle 1, the func-

tional units in the second row executes. The functional unit (0,1) is waiting for its operand

which is dependent the previous trace instance. At the end of cycle 1, one live-out of the

trace, which is also the result from functional unit (1,0) will be placed on the global bus

and forwarded to the input of functional unit (0,0) to enable its execution in the next cycle.

With this method, two back-to-back trace instances are actually executed on the fabric at

the same time, with an initiation interval of 2 for a trace with 2 original loop iterations.

62

Besides the performance benefits, an equally important metric, energy consumption

can also be estimated: First, after the first configuration of the fabric, the following trace

instance execution does not need any energy for configuration. In contrast, the original

OoO pipeline needs to fetch the instructions and decode them again; Second, since the

intra-trace intermediate results are hardcoded in the hardware, only the live-ins and live-

outs need to get a tag to communicate correctly. Also the access of centralized register files

and bypass networks are largely reduced and replaced by independent registers.

Continuous sequences of hot basic blocks can form a trace. In our case, we limit the

length of the continuous sequences to three basic blocks. Thus, the original basic block

loop can be unrolled as a trace loop, in which each trace contains three basic blocks. When

this trace is predicted as hot, the two side branches can be speculatively removed by the

branch prediction results. On the other hand, the instruction sequence of a loop iteration

can exceed the hardware resource limitations. In this case, only the trace portion can be

accelerated on the fabric and the remaining part needs to be offloaded to another fabric or

must use the host OoO pipeline.

An end-to-end evaluation is presented in the next Chapter to combine with the design

of dynamic instruction scheduling component.

63

Chapter 5

Dynamic Mapping with Resource-Aware

Instruction Scheduling

The speculation support from OoO pipeline and acyclic spatial fabric design from SPAS

creates opportunities to achieve a pure hardware-based instruction mapping for spatial ar-

chitectures. A dynamic hardware-based instruction mapping offers several benefits, com-

pared to static mapping and other software-based dynamic solutions. A dynamic hardware-

based mapping is fully automatic and binary compatible. It also does not preempt the

normal software execution to regenerate configurations.

However, designing a hardware module that can map instruction traces to the targeted

spatial fabric is a complex and difficult task. It requires a mechanism to build and store the

data dependences between instructions of the scheduled trace. Meanwhile, it also requires

a weight-based algorithm to select instructions from all the available instructions, to fulfill

the scheduling target (mainly execution time constraints).

64

This dissertation proposes DYNASPAM, which includes an instruction mapping algo-

rithm and a hardware module to select, place and route instructions for spatial fabric. DY-

NASPAM is light-weight because it largely leverages the existing instruction wakeup and

issue logic in OoO processor pipeline.

5.1 Motivating DYNASPAM

5.1.1 The Importance of Mapping Scope

…
	

…
	

1: t1 = t1 + 1
2: t2 = t2 + 1
3: t5 = t3 + t4
4: t7 = t3 - t6

1: t5 = t3 + t4
2: t1 = t1 + t0
3: t2 = t2 + 1
4: t7 = t3 - t6

(b)

(c)

(a)

1	 2	

3	

1	 2	

3	 4	 X	

X	
Live-ins/outs

1: t5 = t3 + t4
2: t1 = t1 + t0
3: t7 = t3 - t6
4: t2 = t2 + 1

(d)

1	 2	

3	 4	

Figure 5.1: (a) for two special architecture settings (without dotted line, and with dotted
line to share operands), (b) and (c) show examples where naı̈ve placement fails to create
efficient schedules, and (d) show a resource-aware scheduling.

The limited number and heterogeneity of hardware resources in spatial architectures

complicate the procedure of mapping instructions to the spatial fabric. Due to the limited

mapping scope, the naı̈ve placements can only greedily satisfy the constraints from each

65

instruction one at a time, and may cause failure or inefficiency for the overall instruction

trace.

Figure 5.1 shows the importance of a large mapping scope when generating a mapping

for reconfigurable spatial architectures. Figure 5.1(a) shows an example spatial architec-

ture. While all rows of functional units have the same capability, each of them has a unique

input connection setting. Functional units in the first row can get two operands from live-

ins at the same time, while functional units in the second row can get only one operand

directly. This reflects an architecture with special input ports connected to the first row and

a global bus to forward inputs to subsequent rows such as in PipeRench [33].

Figure 5.1(b) shows how one naı̈ve mapping results in a schedule failure. In the example

code, the first two instructions have one live-in operand, and the following two instructions

have two live-in operands. There is no dependence between these four instructions, so

they can be scheduled independently. If a mapping generator can see all four instructions,

it would map instruction 3 and 4 to the functional units in the first row and instruction 1

and 2 to the second row, thereby allowing four instruction to be executed in a single cycle.

However, the naı̈ve mapping will place instruction 1 and 2 in the first row, resulting in a

scheduling failure for instruction 3 and 4 because of resource constraint.

The resource constraint failure can be resolved by adding more resources to the fabric.

For example, in Figure 5.1, if two extra data paths (by adding dotted lines) are applied to

forwarding operands from one row to the next row, the placement shown in Figure 5.1 is

feasible. However, this forwarding needs to take extra cycles, and leads to lower perfor-

mance. In this example, it needs two cycles to complete the computation. Figure 5.1(c)

is another example demonstrating the deficiencies of another naı̈ve mapping. In this ex-

ample, placing instruction 1 and 2 naı̈vely on the first row is reasonable as both of them

require two source operands from the live-ins. Instruction 4 also takes two source operands

66

from live-ins, but there are no unallocated functional units in the first row any more. For-

tunately, instruction 1 and 4 share the same source operand, t3, thus routing resources for

t3 can be reused by both instruction 1 and 4. However, in the naı̈ve schedule shown in

Figure 5.1(c), the functional units adjacent to instruction 1 are occupied, causing one extra

datapath usage and two clock cycles to deliver the operand. With a larger mapping scope,

the mapping generator will swap instruction 3 and 4 to make bypassing t3 take only one

cycle, as shown in Figure 5.1(d).

5.1.2 Hardware Synthesis

Although increasing the mapping scope may help in finding more efficient mappings,

adding separate hardware logic to hold this scope for optimizing mapping of reconfigurable

spatial architecture is expensive. DYNASPAM avoids this cost by leveraging the schedul-

ing logic of the host OoO processor. As an OoO processor’s scheduling logic is already

equipped with a large instruction window and dependence analysis features, reusing its

results can allow a reconfigurable spatial architecture to generate efficient mappings with

little to no additional hardware cost.

With large instruction scheduling windows, the requirements of different instructions

can be considered and this can largely reduce the failure ratio of instruction placement.

However, in general, mapping large range instruction streams for reconfigurable spatial

fabric with sparse connections is a NP hard problem. Static, software-based compilers are

capable of generating relatively optimal configurations since they have a global view of

the dependences in the instruction streams. However, building such an independent in-

struction window for dynamic instruction placement in hardware is very expensive. First

of all, such a structure would support parallel checking of data dependences of all the

scheduled instructions. Second, there should be associated hardware modules to record

67

the data dependences. The insight of our work is that we can reuse the instruction win-

dow of host OoO processor which are designed and optimized with high efficiency, to help

the placement and routing with a large instruction window. It is a system which is totally

transparent to the users, and online detects hot repeated execution long trace, generating

spatial fabric configuration and also automatically offloading the computations. There are

many technical challenges to be addressed in the proposed framework. First of all, to sur-

pass the performance of modern OoO processors with less energy, the reconfigurable fabric

should explore more parallelism than instruction level parallelism. These extra parallelism

should be easily detected by the hardware at runtime, rather than programmers’ efforts or

compiler hints. This is essentially the requirement from accelerating close-source bina-

ries. Second, the co-designed online configuration synthesis process should not change the

design of the host OoO pipeline much, and have small impact of the program execution.

In the following section, we show DYNASPAM solves the problems by incorporating the

acyclically connected reconfigurable fabric from the previous chapter and plug-and-play

hardware synthesis module.

5.2 DYNASPAM Design

To enable the dynamic mapping of a trace onto a reconfigurable spatial fabric, this disserta-

tion proposes the resource-aware instruction scheduling technique. This technique is used

to synthesize the configuration for the spatial fabric at runtime.

68

(a)	

(c)	

(b)	

Issue	Unit	

A:	Map	scheduling	fron3ner		
FUs		from	Fabric	to	OoO			

Dispatch	
Producer’s	Loca8on	
Overall	Usage	
Reuse	Set	

B:	Resource-Aware	
Instruc3on	Scheduling	

C1:	Issue	Insts	to		
OoO	FUs,	execute	

D:	Update	

ROB	

FUs	

Reserva8on	Sta8ons	

C2:	Map	Insts	back	to	Fabric	FUs,		
generate	configura3on,	w/o	execu3on	

fa
br
ic
	 O

oO
	

(d)	

Figure 5.2: fabric functional units (FUs) and possible scheduling frontiers in (a) CCA; (b)
4x4 DySER; and (c) DYNASPAM fabric.

5.2.1 Resource-Aware Scheduling

Scheduling Frontier The scheduling frontier is the set of unallocated functional units

that are directly connected to those that have been allocated. Initially, the scheduling fron-

tier consists of functional units that can access live-ins directly. At the end of each schedul-

ing step, the scheduling frontier moves along the data paths of the allocated functional units.

Figure 5.2 shows the arrangements of functional units in three different spatial fabrics and

possible positions of the scheduling frontier before the scheduling step. CCA [14] and DY-

NASPAM fabrics have no cyclic data paths between rows (or stripes), thus their scheduling

69

Algorithm 1: Resource-Aware Scheduling Algorithm
INPUT : scheduleCycle
OUTPUT
:

A schedule of ready instructions to functional units: Selected[:]

1 rowIdx← SchedulingFrontierIdx(scheduleCycle);
2 if rowIdx is Invalid then
3 SCHEDULE FAIL;
4 end
5 FabricFUsV ec← SchedulingFrontierFUs(scheduleCycle);
6 OOOFUsV ec← FabricToOOO(FabricFUV ec);
7 ReadyInstsV ec← ReservationStation(scheduleCycle);

8 foreach FU ∈ OOOFUsV ec do
9 foreach Inst ∈ ReadyInstsV ec do

10 PriorityScore[FU, Inst]← PriorityGen(FU, Inst, rowIdx);
11 end
12 end

13 foreach FU ∈ OOOFUsV ec do
14 selectedInst =

PriorityEncoder(PriorityScore[FU, :], HostPriorityPolicy);
15 Selected[FU] = selectedInst;
16 UpdateTables(FU, selectedInst);
17 end

frontiers are straight. Meanwhile, DySER [34] has a complex data path network and its

scheduling frontier can be irregular.

Scheduling Insights As discussed in Section 5.1, naı̈ve mapping techniques are not glob-

ally resource-aware, and thus do not generate efficient mappings. Building a standalone

scheduling unit for dynamic spatial fabric mapping would be prohibitively expensive, thus

leveraging the existing micro-architecture of the OoO pipeline is desirable. To support its

own scheduling, the OoO reservation station provides the following capabilities:

• Instruction Buffering: A large instruction window that can easily contain instructions

from a large trace;

70

• Data Dependence Analysis: Instructions marked as ready in the instruction window

are known to have their operands available, and are independent of all other ready

instructions;

• Instruction Assignment: An issue unit can select ready instructions for multiple func-

tional units by using priority rules, (referred to as HostPriorityRule), such as oldest-

first, in its Priority Encoder.

One of the key insights of DYNASPAM is that these are the same set of features needed

to support dynamic mapping for spatial fabrics, and thus we can equate the placement of

trace instructions to functional units in the scheduling frontier with the instruction schedul-

ing for the OoO functional units. However, the mapping of instructions to the fabric has

additional resource constraints, such as the location of producers, data path availability, and

the cost of allocating new paths. These constraints can be represented as a priority score

that indicates both the feasibility and efficiency of mapping an instruction to a functional

unit on the fabric.

If there is a one-to-one mapping between the functional units in the OoO pipeline and

the functional units in the scheduling frontier (Step A in Figure 5.2), then selecting an

instruction with the highest priority score (Step B in Figure 5.2) for a functional unit on

the OoO pipeline (Step C1 in Figure 5.2) also maps it to a functional unit in the schedul-

ing frontier (Step C2 in Figure 5.2). After mapping, the resource information, which is

contained in a set of status tables, can be updated (Step D in Figure 5.2) as discussed in

Section 5.2.2. Using this information allows DYNASPAM to perform resource-aware in-

struction scheduling.

Scheduling Algorithm The high-level Resource-Aware Scheduling Algorithm is shown

in Algorithm 1. The input of the algorithm is the current clock cycle. First, the scheduling

71

frontier is identified as rowIdx (Line 1) and the functional units in the frontier are iden-

tified as FabricFUsVec (Line 5). Since the scheduling frontier in DYNASPAM is always

aligned to a stripe, the scheduling frontier identifier is the stripe index of the fabric that is

currently being mapped. Line 6 maps these functional units to the OoO functional units.

Line 7 selects the ready instructions from the reservation station, and Lines 14 and 15 use

the original select logic to assign instructions to OoO functional units. This reuses the in-

struction wakeup (data dependence checking) and the instruction select logic from the host

OoO pipeline. The new instruction schedule can differ from the schedule generated by the

original host priority rule; however, we expect that this kind of priority change does not

cause a significant performance change [7].

Special Issues There are two special issues that can occur during scheduling. First, the

number of functional units in the current scheduling frontier can be greater than that in the

OoO pipeline or the issue width of the OoO pipeline, thus some functional units cannot

be mapped to in the current scheduling cycle. This problem can be overcome by dividing

one scheduling step into multiple cycles. An extra field must be added to each entry of the

reservation station to identify the ready instructions that become ready in the middle of a

scheduling step, but cannot be issued until the current scheduling step ends. Second, the

issue unit must pause if there are OoO functional units that have not finished execution at

the start of a scheduling cycle. Otherwise, the scheduling frontier could proceed before all

functional units in a stripe have been scheduled.

Lines 10 and 16 generate the priority scores for each pair of instruction and functional

unit by consulting to a set of status tables (Line 10), and then update these tables after the

instructions are scheduled (Line 16).

72

Reservation station

enable from FU

re
q

0
gr

an
t0

re
q

0
gr

an
t0

re
q

0
gr

an
t0

re
q

1
gr

an
t1

anyreq enable

OR Priority Encoder

anyreq enable

re
q

3
re

q
2

re
q

1
re

q
0

gr
an

t3

gr
an

t2

gr
an

t1

gr
an

t0

Location
Priority
Scores

Location
Priority
Scores

Location
Priority
Scores

Figure 5.3: An example of logic to select ready instructions from the reservation stage for
a function units. The priority can be changed by encoding more constraints in the priority
encoder.

Category Priority Level Description
Feasibility 3 Two operands are live-ins thus requiring two input

ports.

Routing Score

2 Two operands are not live-ins, and can be provided by
ReuseSet.

1 Only one operand can be provided by ReuseSet, while
the other can be routed.

0 None of the operands can be provided by ReuseSet,
but they can be routed.

-1 One of the operands can not be provided by ReuseSet
and can not be routed.

Table 5.1: Priority Scores for different connection status of the producers.

5.2.2 Priority Score Generation

Priority Score A priority score is a ranking for the placement of an instruction onto a

functional unit in the scheduling frontier. This priority can be used by the Priority Encoder

in the issue unit to grant an issue request from the ready instructions [65]. Figure 5.3 shows

73

an example design of the hardware module to utilize the priority scores to select and assign

instructions to functional units.

The priority score of a fabric can be customizable. DYNASPAM contains five priority

scores (shown in Table 5.1) to represent levels of mapping feasibility and routing score (a

higher score means lower routing cost).

Instructions that require two live-ins to be feasibly placed have the highest priority with

functional units in the first row, as only these units have two input ports. If the instruction

does not require two live-ins, the mapping algorithm prefers to put instructions where they

can enjoy more data path reuse, i.e. the producer’s value has been routed nearby, with

priority levels 0-2 representing the amount of data of available for reuse. Priority level

-1 represents a functional unit that cannot provide enough resources to route its operands.

Thus, this instruction should not be scheduled to this functional unit.

The scheduling algorithm is not tied to any particular priority scoring mechanism; the

scheduler should use a scoring mechanism that takes into account the resource constraints

of the particular spatial architecture that is being mapped to. For example, in CCA [14]

data used in one row cannot be reused in the same row. Thus, there is no routing cost

preference. In DySER [34], there are multiple possible data paths that can route the same

data for one functional unit, thus the routing latency should be considered.

Generation PriorityGen, a hardware module within the mapping generator, generates

priority scores by consulting the current state of mapping, which is stored in three lookup

tables: Producer Table (ProdTable), Overall Datapath Usage Table (OverallUsage), and

Datapath Reuse Set Table (ReuseSet). The priority generation algorithm is shown in Algo-

rithm 2. For each operand of an incoming instruction the algorithm checks:

1. ProdTable to obtain the location of the operands producers (Line 5);

74

Algorithm 2: MODULE PriorityGen
INPUT : OOOFU, Inst, rowIdx
OUTPUT
:

PriorityScore[:, :]

1 FabricFU ← OOOToFabric(OOOFU)
2 canReuse← 0; canRoute← 0; needInputs← 0;
3 foreach op ∈ Inst.ops do
4 livein← False;
5 ProdLoc← ProdTable(op);
6 if ProdLoc does not exist then
7 livein← True;
8 needInputs++;
9 else if op ∈ ReuseSet(FabricFU) then

10 canReuse++;
11 else if OverallUsage(ProdLoc, FabricFU) 6= ∅ then
12 canRoute++;
13 end
14 end
15 if needInputs == 2 then
16 if FabricFU can provide two InputPorts then
17 PriorityScore[OOOFU, Inst]← 3;
18 else
19 PriorityScore[OOOFU, Inst]← −1;
20 end
21 else
22 if Inst.ops num == canReuse == 2 then
23 PriorityScore[OOOFU, Inst]← 2;
24 else if Inst.ops num == canRoute then
25 ScorePriority[OOOFU, Inst]← 0;
26 else if Inst.ops num == canReuse+ canRoute then
27 PriorityScore[OOOFU, Inst]← 1;
28 else
29 PriorityScore[OOOFU, Inst]← −1;
30 end
31 end

75

Algorithm 3: MODULE UpdateTables
INPUT : OOOFU, Inst
INOUT : ProdTable, ReuseSet, OverallUsage

1 FabricFU ← OOOToFabric(OOOFU);
2 ProdTable(Inst.dest)← FabricFU ;
3 foreach op ∈ Inst.ops do
4 ProdLoc← ProdTable(op);
5 if ProdLoc exists & op 6∈ ReuseSet(FabricFU) then
6 newDatapath← SELECT OverallUsage(ProdLoc, FabricFU);
7 foreach FU ∈ newDatapath do
8 add op to ReuseSet[FU];
9 OverallUsage(FU, newDatapath)← USED;

10 end
11 end
12 end

2. ReuseSet to determine if the required operand can be obtained directly from the pass

registers from the previous stripe, in which case it does not need to add a new route

from the producers (Line 9) 1;

3. Otherwise, OverallUsage to determine if there are available data paths to route the

required data (Line 11);

4. Otherwise, the instruction cannot be assigned to the corresponding location, since

there are no enough data path resources to route its operands (Lines 19 and 29).

Lines 22-27 summarize the scores from different operands, and give corresponding pri-

ority scores. The priority scores are stored in a two dimensional table, called PriorityScore,

for each pair of ready instructions and functional unit. After one instruction is selected for

a functional unit and issued, all the status tables are updated as shown in Algorithm 3.

Additionally, a Live-Out Table (LOT) is used to track functional units that produce live-

outs and their corresponding architectural registers, and to configure the output ports of the

1In the current implementation, live-in values are not added to the ReuseSet and must be acquired from
the global bus on each use.

76

r3
(0

,1
)

r4
(0

,2
)

r9
(0

,0
)

C
yc

le
 0

7
0

0
 a

d
d

l r
1

,1
,r

3
 @

b
eg

in
1

 c
m

p
l r

2
,1

,r
4

2
 s

u
b

l r
3

,r
4

,r
5

3
 s

h
if

tL
 r

1
,1

,r
6

4
 b

eq
 r

4
, L

ab
el

1
5

 s
h

if
tR

 r
5

,1
,r

1
0

6
 a

d
d

l r
3

,r
4

,r
8

7
 c

m
p

le
 r

1
,r

2
,r

9
8

 b
eq

 r
9

, L
ab

le
2

 @
en

d

1

Lo
c.

R
e

g
La

st
 U

se
d

 L
o

ca
ti

o
n

P
h

y.
 R

e
g

R
e

ad
y

In
st

s
in

 R
S

P
ro

d
Ta

b
le

:

R
e

u
se

Se
t:

O
ve

ra
llU

sa
ge

:

r3
(0

,1
)

(1
,0

)

r4
(0

,2
)

(1
,0

),
 (

1
,2

)

r9
(0

,0
)

r5
(1

,0
)

r6
(1

,1
)

C
yc

le
 1

X
X

X
r3

r4

r4

P
h

y.
 R

e
g

P
ro

d
Ta

b
le

 :

r3
(0

,1
)

(2
,0

)

r4
(0

,2
)

(1
,2

),
(1

,2
),

(2
,0

)

r9
(0

,0
)

(2
,2

)

r5
(1

,0
)

(2
,1

)

r6
(1

,1
)

r1
0

(2
,0

)

C
yc

le
 2

X
X

X
X

X

X
X

X
X

X

r3
r4

r5 r4
r9

P
h

y.
 R

e
g

P
ro

d
Ta

b
le

 :

FU
s

o
n

 f
ab

ri
c:

7
0

2
3

1 4

7
0

2
3

6
5

1 4 8

Tr
ac

e
 in

st
s

in
 R

S

2
 s

u
b

l r
3

,r
4

,r
5

0
0

0

3
 s

h
if

tL
 r

1
,1

,r
6

0
0

0

4
 b

eq
 r

4
, L

ab
el

1
0

0
0

6
 a

d
d

l r
3

,r
4

,r
8

0
0

0

8
 b

eq
 r

9
, L

ab
le

2

0
0

0

0
 a

d
d

l r
1

,1
,r

3
0

0
0

1
 c

m
p

l r
2

,1
,r

4
0

0
0

3
 s

h
if

tL
 r

1
,1

,r
6

0
0

0

7
 c

m
p

le
 r

1
,r

2
,r

9
3

3
3

5
 s

h
if

tR
 r

5
,1

,r
1

0
0

0
0

6
 a

d
d

l r
3

,r
4

,r
8

2
0

1

8
 b

eq
 r

9
, L

ab
le

2

0
0

0

P
ri

o
ri

ty
Sc

o
re

R
e

ad
y

In
st

s
in

 R
S

FU
s

o
n

 f
ab

ri
c:

P
ri

o
ri

ty
Sc

o
re

R
e

ad
y

In
st

s
in

 R
S

FU
s

o
n

 f
ab

ri
c:

P
ri

o
ri

ty
Sc

o
re

Lo
c.

R
e

g
La

st
 U

se
d

 L
o

ca
ti

o
n

Lo
c.

R
e

g
La

st
 U

se
d

 L
o

ca
ti

o
n

R
e

u
se

Se
t:

O
ve

ra
llU

sa
ge

:

R
e

u
se

Se
t:

O
ve

ra
llU

sa
ge

:

Sc
h

e
d

u
lin

g
Fr

o
n

ti
e

r
Sc

h
e

d
u

lin
g

Fr
o

n
ti

e
r

Sc
h

e
d

u
lin

g
Fr

o
n

ti
e

r

C
o

l 0
C

o
l 1

C
o

l 2

A
B

C
A

B
C

A
B

C

C
o

l 0
C

o
l 1

C
o

l 2

A
B

C
A

B
C

A
B

C

C
o

l 0
C

o
l 1

C
o

l 2

A
B

C
A

B
C

A
B

C
A

B
C

A
B

C
A

B
C

C
o

l 0

C
o

l 1

C
o

l 2

R
o

w
 0

R
o

w
 1

R
o

w
 2

C
o

l 0

C
o

l 1

C
o

l 2

R
o

w
 0

R
o

w
 1

R
o

w
 2

C
o

l 0

C
o

l 1

C
o

l 2

R
o

w
0

R
o

w
1

R
o

w
2

B
ef

o
re

 Is
su

in
g

A
ft

er
 Is

su
in

g

C
o

lu
m

n
s

0

 1

 2

Rows

2 1 0

FU
s

o
n

 f
ab

ri
c:

D
at

ap
at

h
s

A

 B

 C

Fi
gu

re
5.

4:
A

n
ex

am
pl

e
ill

us
tr

at
in

g
ho

w
in

st
ru

ct
io

n
sc

he
du

lin
g

is
im

pa
ct

ed
by

th
e

lo
ca

tio
n

in
fo

rm
at

io
n

of
th

e
fa

br
ic

.

77

fabric [14]. Upon advancing the scheduling frontier, a value is considered a potential live-

out if its architectural register is not re-defined within the stripe, and will be automatically

routed to the next stripe to increase the probability of reuse. A table called Last Used

Location is used to track this information. If a potential live-out value is killed, the Last

Used Location table is consulted, and any routing that was unnecessarily propagated for

the killed live-out is removed.

5.2.3 Example

Figure 5.4 demonstrates mapping a short trace onto the DYNASPAM fabric and shows the

additional hardware logic needed to support the mapping process. In this example, a trace

with 9 instructions needs to be mapped to a fabric, as shown in Figure 4.3. ProdTable is

a content addressable memory, or CAM, that maps the physical registers to locations on

the fabric. ReuseSet, contains the physical registers which have values been stored in the

pass registers of the previous stripe. It is also a CAM. OverallUsage tracks the overall data

path usage across the whole fabric and is used to determine if there are enough resources

to allocate a new data path to route the data. It can be implemented as a bitmap.

At the start of mapping, the trace instructions have been renamed and placed in the

reservation station as per normal program execution. In cycle 0, four instructions are ready

within the reservation station, and all status tables are empty. Three of the instructions

(0, 1, and 3) generate Priority 0 for all functional units, indicating none of them can reuse

the pass registers in the previous stripe to receive their operands. However, instruction 7

requires two input ports and thus has Priority 3 for all functional units. Instruction 0, 1, 7

are selected and placed in the corresponding functional units. Three entries of ProdTable

are updated using the renamed destination registers of all instructions.

Since there are no available functional units in the scheduling frontier, the issue unit

moves the scheduling frontier forward and begins the placement in cycle 1. In this cycle,

78

instructions 2, 4, 6, and 8 become ready. No instruction can reuse data from the pass

registers in the previous stripe and are assigned Priority 0 for all functional units. Thus

the original oldest first priority policy selects instruction 2, 3, and 4. The data tables are

updated as follows: ProdTable adds new destination registers with the producer location;

ReuseSet records the data in the current pass registers; and OverallUsage records the data

path usage after this cycle of mapping.

In cycle 2, the final three instructions are ready. Instruction 5 and 8 have Priority 0 for

all functional units since they cannot reuse any available data. Instruction 6 has Priority

2 for functional unit 0 as the pass registers of the previous row hold both of its operand

values, r3 and r4. If Instruction 6 is placed there, no new data path routing is required.

Mapping ends with instructions 6, 5, 8 being placed respectively.

The final mapping could not be obtained by the naı̈ve method due to its limited instruc-

tion window. For example, if the instructions were placed in program order, Instruction

7 would not be placed in the first row, resulting in an infeasible schedule, and Instruction

6 would not be able to reuse the data path from Instruction 2, resulting in an inefficient

schedule.

5.3 Evaluation

The full DYNASPAM system evaluated in this dissertation incorporates the SPAS design

mentioned in Chapter 4 as well as the dynamic mapping techniques presented in this chap-

ter.

5.3.1 Methodology

Area/Performance/Energy Simulation To evaluate the area overhead of the spatial ar-

chitecture, functional units from OpenSparc T1 are used and the datapath for the SPAS

79

fabric is implemented in Verilog. The fabric design was synthesized using Synopsys De-

sign Compiler [78] with a 32nm generic cell library. In order to evaluate the performance

of the complete DYNASPAM system, this experiment incorporates both the innovations

from the SPAS and the dynamic mapping technique from this Chapter, with an end-to-end

experiment. The gem5 [3] simulation framework was used for performance evaluation. All

I/O and initialization phases were skipped in the kernels to capture the main computation

in the simulator. The baseline was an OoO processor with system configuration shown in

Table 5.2. We also implemented the DYNASPAM subsystem in conjunction with the base-

line OoO pipeline with same configurations. We only measured and compared the kernel

performance for the benchmarks. We used McPAT v1.2 [51] to model the power/energy of

DYNASPAM by using the performance statistics gem5 as input. We also estimated power

for the configuration cache was estimated separately using CACTI [61].

Parameter Setting
Fetch Unit 16-entry return stack; 4K-entry BTB Branch Predictor
Caches 64KB, 2-way, 2-cycle ICache; 64KB, 2-way, 2-cycle L1D;

2MB, 8-way, 20-cycle L2D (64-byte blocks for all caches)
Window Size 192-entry ROB; 256-entry physical RF; 8-wide issue
Execution Units 4 Int ALUs; 1 Int MUL/DIV;

4 Floating ALUs; 1 Floating MUL/DIV; 2 LDST units
Memory Unit 128-entry load queue; 128-entry store queue
Fabric 8-entry buffers; same execution units as OOO per strip;

16 strips; 3 pass regs per FU;
16 Live-in FIFOs, 16 Live-out FIFOs

Config. Cache 16-entry, direct mapped, 16-byte blocks,
3-bits saturation counter, threshold value 4

Table 5.2: Evaluation system parameters

Benchmarks DYNASPAM is evaluated using eleven programs from the Rodinia bench-

mark suite [11]. An overview of these benchmarks are shown in Table 5.3.1. We evaluate

the full DYNASPAM system using the OpenMP version of all benchmarks, with OpenMP

80

pragmas disabled to enable a sequential version. All the benchmarks are compiled with

-O3 flag.

5.3.2 Results

Area The datapath and FIFO buffers are designed separately. Table 5.4 shows that the

size of each data path block, containing pass registers and multiplexers, is almost as large

as an integer ALU, and that the area of FIFOs are much smaller. The overall fabric size

is 2.9mm2 with 8 stripes (A 2-core AMD Bulldozer is 30.0mm2 at this technology node).

The area of the configuration cache is obtained from CACTI, and the number is 0.003mm2.

Trace Coverage For different benchmarks, the coverage of dynamically accelerated in-

structions by the fabric vary, depending on the loop regularity and hardware resources. Fig-

ure 5.5 shows the percentage of dynamic instructions executed on the host OoO pipeline

(Normal), the percentage of instructions that have been mapped to the fabric but not of-

floaded yet (Mapping), and the percentage that are accelerated and run on the fabric (Ac-

celerating). We evaluate with pre-set trace lengths ranging from 16 to 40 instructions. From

the figure, we observe that a small fraction of instructions are executed during the mapping

phase for all programs. Generally, traces with longer lengths have higher coverage. How-

ever, if a trace contains only a few instructions from a block, it will force more instructions

to run on the host pipeline. As an example, imagine a single block with 33 instructions that

executes in a loop. At a trace length of 32, 32/33 instructions execute on the fabric and

1/33 instructions executes on the host OoO pipeline. At 40 instructions, the trace enters

a new block and 40/66 instructions execute on the fabric and 26/66 instructions execute

on the fabric, thereby reducing coverage. NW with 24 instructions, and SRAD with 40

instructions are examples of this effect at work. We use a trace length of 32 instructions for

all the following experiments.

81

B
en

ch
m

ar
k

N
am

e
D

om
ai

n
K

er
ne

l
D

es
cr

ip
tio

n
B

ac
k

Pr
op

ag
at

io
n

(B
P)

Pa
tte

rn
R

ec
og

ni
tio

n
bp

nn
tr

ai
n

ke
rn

el
M

ac
hi

ne
le

ar
ni

ng
al

go
ri

th
m

to
tr

ai
n

th
e

no
de

w
ei

gh
ts

of
a

ne
ur

al
ne

tw
or

k
B

re
ad

th
-F

ir
st

Se
ar

ch
(B

FS
)

G
ra

ph
A

lg
or

ith
m

s
B

FS
G

ra
ph

B
re

ad
th

-fi
rs

ts
ea

rc
h

on
a

gr
ap

h
B

+
Tr

ee
(B

T
)

Se
ar

ch
ke

rn
el

cp
u

Se
ar

ch
in

a
B

+
tr

ee
H

ot
sp

ot
(H

S)
Ph

ys
ic

s
Si

m
ul

at
io

n
co

m
pu

te
tr

an
te

m
p

E
st

im
at

e
pr

oc
es

so
r

te
m

pe
ra

tu
re

ba
se

d
on

po
w

er
si

m
-

ul
at

io
n

K
m

ea
ns

(K
M

)
D

at
a

M
in

in
g

km
ea

ns
cl

us
te

ri
ng

C
lu

st
er

in
g

al
go

ri
th

m
fo

rd
at

a-
m

in
in

g
L

U
D

ec
om

po
si

tio
n

(L
D

)
L

in
ea

rA
lg

eb
ra

lu
d

ba
se

M
at

ri
x

de
co

m
po

si
tio

n
K

-N
ea

re
st

N
ei

gh
bo

rs
(K

N
N

)
D

at
a

M
in

in
g

m
ai

n
Fi

nd
in

g
th

e
k-

ne
ar

es
tn

ei
gh

bo
rs

fr
om

an
un

st
ru

ct
ur

ed
da

ta
se

t
N

ee
dl

em
an

-W
un

sc
h

(N
W

)
B

io
in

fo
rm

at
ic

s
ru

nT
es

t
N

on
lin

ea
r

gl
ob

al
op

tim
iz

at
io

n
m

et
ho

d
fo

r
D

N
A

se
-

qu
en

ce
al

ig
nm

en
ts

Pa
th

Fi
nd

er
(P

F)
G

ri
d

Tr
av

er
sa

l
ru

n
Sh

or
te

st
pa

th
fin

de
ro

n
a

2-
D

gr
id

us
in

g
dy

na
m

ic
pr

o-
gr

am
m

in
g

Pa
rt

ic
le

Fi
lte

r(
PT

F)
M

ed
ic

al
Im

ag
in

g
pa

rt
ic

le
Fi

lte
r

St
at

is
tic

al
es

tim
at

or
of

ta
rg

et
ed

ob
je

ct
lo

ca
tio

n
gi

ve
n

no
is

y
m

ea
su

re
m

en
ts

SR
A

D
(S

R
A

D
)

Im
ag

e
Pr

oc
es

si
ng

m
ai

n
D

iff
us

io
n

m
et

ho
d

fo
ru

ltr
as

on
ic

an
d

ra
da

ri
m

ag
in

g
ap

-
pl

ic
at

io
ns

Ta
bl

e
5.

3:
Pr

og
ra

m
s

te
st

ed
fr

om
th

e
R

od
in

ia
B

en
ch

m
ar

k
Su

ite
.

82

Module names Area(µ m2) Module names Area(µ m2)
sparc exu alu 4660 fpu add 34370
sparc mul top 47752 fpu mul 62488
sparc exu div 11227 fpu div 13769
data channel 4717 fifo 848

Table 5.4: Area Comparison for different components

 0%

 20%

 40%

 60%

 80%

 100%

1
6

2
4

3
2

4
0

1
6

2
4

3
2

4
0

1
6

2
4

3
2

4
0

1
6

2
4

3
2

4
0

1
6

2
4

3
2

4
0

1
6

2
4

3
2

4
0

1
6

2
4

3
2

4
0

1
6

2
4

3
2

4
0

1
6

2
4

3
2

4
0

1
6

2
4

3
2

4
0

1
6

2
4

3
2

4
0

P
er

ce
n
ta

g
e

o
f

C
o
v
er

ag
e

Benchmarks
BP BFS��� BT� HS����KM���LD����KNN���NW PF����PTF����SRAD�

Normal Mapping Accelerating

Figure 5.5: Trace Coverage. “Normal” is the percentage of dynamic instructions executed
on the host OoO pipeline, “Mapping” is the percentage of dynamic instructions which are
detected as hot traces, but not offloaded to the spatial fabric yet, and “Accelerating” is the
percentage of dyanmic instructions which are offloaed to the fabric successfully.

Configuration Lifetime Table 5.5 shows the number of traces that are detected and

mapped successfully (mapped trace), and the number traces that are actually offloaded

(offloaded trace). Some of the traces are mapped but never offloaded due to their low fre-

quency of execution. The last three columns of Table 5.5 show the average configuration

lifetime, which starts when the fabric is configured by one trace and ends when the fabric

is reconfigured by another trace. From Table 5.5, we find that the average configuration

83

Benchmark Mapped Offloaded Avg. Config. Lifetime (Invocation)
Name Traces Traces 1 fabric 2 fabrics 4 fabrics

BP 2 2 6505.5 13013.0 13013.0
BFS 24 10 6.4 8.5 63.9
BT 4 3 197.4 246.8 987.0
HS 11 2 1065.0 2130.0 2130.0
KM 1 1 2750.0 2750.0 2750.0
LD 9 5 81.8 334.4 7690

KNN 4 3 2750.0 2750.0 2750.0
NW 1 1 13276.0 13276.0 13276.0
PF 2 1 6514.0 6514.0 6514.0

PTF 2 2 46.2 9240.0 9240.0
SRAD 1 1 33574.0 33574.0 33574.0

Table 5.5: Detected Traces and Average Configuration Lifetime. The “Mapped Traces”
column shows how many hot traces are detected and translated to configurations by the
hardware, and “Offloaded Traces” column shows among them how many traces are really
offloaded to the fabric. The “Avg. Config. Lifetime” shows how many invocations the
offloaded traces need to be evicted from the fabrics for the new offloaded traces. The larger
the better.

lifetime is above 40 trace invocations with 1 on-chip fabric for all programs except BFS,

which has only 6.4 invocations per configuration. Investigating BFS reveals that there are

many unbiased control branches within the loop. Multiple fabrics can be used to reduce

reconfiguration times and increase efficiency. We modeled architectures with 2 and 4 fab-

rics and use a least-recently-used (LRU) policy to manage reconfiguration. The experiment

results show that with 4 fabrics, BFS’s average configuration life time is 64 invocations,

and reaches 2045 invocations with 8 fabrics (not shown in the table).

Performance We compared the performance of DYNASPAM with three different configu-

rations to the baseline OoO pipeline, as shown in Figure 5.6. DYNASPAM with “mapping”

only maps the detected traces but does not offload them to the fabric. DYNASPAM with

“mapping + acceleration w/ speculation” both maps and offloads the traces to the fabric

84

while using memory speculation. DYNASPAM with “mapping + acceleration w/o specula-

tion” maps and offloads the detected traces while conservatively preserving all load-store

and store-store orderings.

Recall that mapping overhead comes from two sources: 1) time draining the pipeline

backend when the trace mapping starts; and 2) the cost of pausing instruction issue for long

latency functional units during mapping. The simulation results show that the overhead of

mapping is small, and causes less than 3% slowdown for all the benchmarks.

Without memory speculation, DYNASPAM produces a 1.23× geomean performance

and causes slowdown in two programs, NW and SRAD, which have a large fraction of

dynamic memory instructions. With memory speculation enabled, DYNASPAM produces a

1.42× geomean performance improvement without ever causing program slowdown. This

shows the importance of effectively using memory speculation.

Work on DYNASPAM has primarily focused on the feasibility and applicability of dy-

namic mapping, and has not focused on optimizing area usage. In future work, research will

be done to adjust the number of functional units according to instruction type distributions

of the benchmarks.

Energy We measured the energy consumption in the simulation of both the baseline pro-

cessor and SPAS. Figure 5.7 demonstrates the energy consumption of different hardware

components to show the energy increase/decrease in each component. The overall energy

consumption is reduced by 2.5%-36.86%, with geomean 23.9%. For each benchmark, it is

clear that the energy consumption from Fetch, Rename, Instruction Scheduling (InstSched-

ule), and the bypass networks (Datapath) are reduced. On the other hand, power consump-

tion for the memory system is increased, since SPAS cannot reduce memory activity. The

energy consumption of the fabric includes both the functional units and datapath, which is

85

 0X

 0.5X

 1X

 1.5X

 2X

 2.5X

BP BFS BT HS KM LD KNN NW PF PTF SRAD GM

S
p
ee

d
u
p
 [

X
]

Benchmarks

DynaSpAM (mapping)
DynaSpAM (mapping + acceleration w/o speculation)
DynaSpAM (mapping + acceleration w/ speculation)

Figure 5.6: Performance Comparison with Respect to Host OoO Pipeline.

greater than the energy consumed by Execution on the OoO pipeline but smaller than the

sum of Execution, Datapath, and InstSchedule.

86

 0%

 20%

 40%

 60%

 80%

 100%

B
.

D
.

B
.

D
.

B
.

D
.

B
.

D
.

B
.

D
.

B
.

D
.

B
.

D
.

B
.

D
.

B
.

D
.

B
.

D
.

B
.

D
.

B
.

D
.

E
n
er

g
y
 S

av
in

g
 a

n
d
 B

re
ak

d
o
w

n

Benchmarks
BP BFS��� BT� HS����KM���LD����KNN���NW PF����PTF����SRAD� GM

Fabric Datapath Execution InstSchedule
LSQ+L1Cache Rename Fetch+Decode

Figure 5.7: Energy Comparison with Respect to Host OoO Pipeline.

87

Chapter 6

Conclusions and Future Directions

6.1 Conclusions

Reconfigurable spatial architectures can be more efficient than OoO processors. However,

the state of the art spatical architecture design relies heavily on profiling and compiler tech-

niques to explore instruction and loop level parallelism. To make it work for outer loops

with irregular memory access patterns and control flows, this dissertation presents Coarse-

Grained Pipelined Accelerators (CGPA), an HLS framework that synthesizes efficient spe-

cialized accelerator modules for individual loops by utilizing coarse-grained pipeline paral-

lelism technique. The combination of coarse-grained pipelining and exploitation of paral-

lelism within each pipelined stage allows CGPA to design efficient accelerators for C/C++

programs with irregular memory accesses and complex control flows. Compared to the

unparallelized version, CGPA shows speedups of 3.0x–3.8x for 5 kernels from programs

in different domains.

This dissertation also exploits a dynamic mapping method for spatial architecture, to

overcome the disadvantage of static methods, such as the inability to adapt to different

88

workloads and the lack of compatibility. It identifies the major challenge of dynamic in-

struction mapping for spatial architectures is getting large enough instruction scheduling

window. To solve this issue, This dissertation presents DYNASPAM, a framework to dy-

namically detect, map and accelerate long hot instruction sequences from an OoO pipeline

on a spatial fabric. Specifically, DYNASPAM leverages existing features from the OoO

pipeline and actively guides instruction issue to generate efficient mappings for the fab-

ric. This new method is both low-cost and efficient. Experimental results, a geomean

1.42X speedup with 23.9% energy consumption reduction for 11 benchmarks from Ro-

dinia Benchmark Suite, demonstrate the potential gains from symbiotic combination of an

OoO pipeline and spatial dataflow architecture.

6.2 Future Directions

For both the static and dynamic instruction mapping techniques presented in this disserta-

tion, there are several improvements that can be exploited in the future.

First of all, the CGPA compiler only focuses on outer loops and relies on the adaptive

backend to optimize inner loops which are suitable for targeting by traditional methods. In

the future, additional optimizations using the existing research results such as prefetching

and other loop-level parallelism techniques can be applied to the inner loops, especially on

each stage separately. Additionally, the bandwidth of the memory system can be increased

by synchronizing the memory accesses from parallel stage workers [43].

Secondly, the spatial fabric designed in SPAS and has same functional unit settings

per row, and it is an interesting direction to optimize the types of functional unit and the

connections between them for better area overhead and performance improvement. For

example, the ratio between ALUs and LDST units can be optimized according to the ratio

of memory operations in the programs. Moreover, multiple spatial fabrics with different

89

functional units settings can be integrated to the same chip, so workloads with different

resource requirements can be offloaded to their optimal targets.

Last but not least, it is interesting to see DYNASPAM can be applied to other spatial

fabrics, such as DySER [34] and SGMF [85], which are using static mapping methods to

translate program code to fabric configurations. The topology of these fabrics are different

from that of DYNASPAM and requires adding new scheduling constraints to the resource-

aware scheduler of DYNASPAM.

90

Bibliography

[1] Altera corp. http://www.altera.com, 2018. [Online; accessed 01-March-

2018].

[2] Autoesl/vivado. https://www.xilinx.com/products/design-tools/

vivado/integration.html, 2018. [Online; accessed 01-March-2018].

[3] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu, J. Hest-

ness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell, M. Shoaib, N. Vaish,

M. D. Hill, and D. A. Wood. The gem5 simulator. SIGARCH Comput. Archit. News,

39(2):1–7, August 2011.

[4] U. Bondhugula, A. Hartono, J. Ramanujam, and P. Sadayappan. A practical automatic

polyhedral parallelizer and locality optimizer. In Proc. of the 29th ACM SIGPLAN

Conference on Programming Language Design and Implementation, 2008.

[5] A. Bracy, P. Prahlad, and A. Roth. Dataflow mini-graphs: Amplifying superscalar ca-

pacity and bandwidth. In In Proceedings of the 37th Annual International Symposium

on Microarchitecture (MICRO), pages 18–29, 2004.

[6] M. Budiu, G. Venkataramani, T. Chelcea, and S. C. Goldstein. Spatial computation.

In Proceedings of the 11th International Conference on Architectural Support for

Programming Languages and Operating Systems (ASPLOS), pages 14–26, 2004.

91

http://www.altera.com
https://www.xilinx.com/products/design-tools/vivado/integration.html
https://www.xilinx.com/products/design-tools/vivado/integration.html

[7] M. Butler and Y. N. Patt. An investigation of the performance of various dynamic

scheduling techniques. In Proceedings of the 25th Annual International Symposium

on Microarchitecture (MICRO), pages 1–9, 1992.

[8] A. Canis, J. Choi, M. Aldham, V. Zhang, A. Kammoona, J. H. Anderson, S. Brown,

and T. Czajkowski. Legup: High-level synthesis for fpga-based processor/accelerator

systems. In Proceedings of the 19th ACM/SIGDA International Symposium on Field

Programmable Gate Arrays (FPGA), pages 33–36, 2011.

[9] M. C. Carlisle and A. Rogers. Software caching and computation migration in Olden.

In Proceedings of the fifth ACM SIGPLAN symposium on Principles and practice of

parallel programming (PPoPP), pages 29–38, 1995.

[10] J. E. Carrillo and P. Chow. The effect of reconfigurable units in superscalar processors.

In Proceedings of the 2001 ACM/SIGDA Ninth International Symposium on Field

Programmable Gate Arrays (FPGA), pages 141–150, 2001.

[11] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee, and K. Skadron.

Rodinia: A benchmark suite for heterogeneous computing. IEEE International Sym-

posium on Workload Characterization (IISWC), 2009.

[12] Y. Chou and J. P. Shen. Instruction path coprocessors. In Proceedings of the 27th

Annual International Symposium on Computer Architecture, pages 270–281, 2000.

[13] G. Z. Chrysos and J. S. Emer. Memory dependence prediction using store sets. In

Proceedings of the 25th annual international symposium on Computer architecture,

pages 142–153. IEEE Computer Society, 1998.

[14] N. Clark, J. Blome, M. Chu, S. Mahlke, S. Biles, and K. Flautner. An architecture

framework for transparent instruction set customization in embedded processors. In

92

Proceedings of the 32Nd Annual International Symposium on Computer Architecture

(ISCA), pages 272–283, 2005.

[15] N. Clark, A. Hormati, and S. Mahlke. Veal: Virtualized execution accelerator for

loops. In Proceedings of the 35th Annual International Symposium on Computer

Architecture (ISCA), pages 389–400, 2008.

[16] J. Cong, P. Zhang, and Y. Zou. Optimizing memory hierarchy allocation with loop

transformations for high-level synthesis. In Proceedings of the 49rd Annual Design

Automation Conference (DAC), pages 1229–1234, 2012.

[17] J. Cong and Z. Zhang. An efficient and versatile scheduling algorithm based on

sdc formulation. In Proceedings of the 43rd Annual Design Automation Conference

(DAC), pages 433–438, 2006.

[18] P. Diniz and J. Park. Automatic synthesis of data storage and control structures

for fpga-based computing engines. In Proceedings of IEEE Symposium on Field-

Programmable Custom Computing Machines (FCCM), pages 91–100, 2000.

[19] B. Draper, W. Nar, W. Bohm, J. Hammes, B. Rinker, C. Ross, M. Chawathe, and

J. Bins. Compiling and optimizing image processing algorithms for fpgas. In Pro-

ceedings of Fifth IEEE International Workshop on Computer Architectures for Ma-

chine Perception, pages 222–231, 2000.

[20] C. Ebeling, D. C. Cronquist, P. Franklin, J. Secosky, and S. G. Berg. Mapping appli-

cations to the rapid configurable architecture. In Proceedings of The 5th Annual IEEE

Symposium on Field-Programmable Custom Computing Machines, pages 106–115,

Apr 1997.

[21] M. Emami, R. Ghiya, and L. J. Hendren. Context-sensitive interprocedural points-to

analysis in the presence of function pointers. In Proceedings of the ACM SIGPLAN

93

’94 Conference on Programming Language Design and Implementation (PLDI),

pages 242–256, June 1994.

[22] H. Esmaeilzadeh, E. Blem, R. St. Amant, K. Sankaralingam, and D. Burger. Dark sili-

con and the end of multicore scaling. In Proceedings of the 38th Annual International

Symposium on Computer Architecture (ISCA), pages 365–376, 2011.

[23] C. Fallin, C. Wilkerson, and O. Mutlu. The heterogeneous block architecture. Tech-

nical report, SAFARI Group, Department of Electrical and Computer Engineering,

Carnegie Melon University, 2014.

[24] J. Ferrante, K. J. Ottenstein, and J. D. Warren. The program dependence graph and

its use in optimization. ACM Transactions on Programming Languages and Systems,

9:319–349, July 1987.

[25] E. Fiksman, Y. Birk, and O. Mencer. Asc-based acceleration in an fpga with a proces-

sor core using software-only skills. In Proceedings of 14th Annual IEEE Symposium

on Field-Programmable Custom Computing Machines, pages 271–272, 2006.

[26] M. Franklin and M. Smotherman. A fill-unit approach to multiple instruction issue.

In Proceedings of the 27th Annual International Symposium on Microarchitecture

(MICRO), pages 162–171, Nov 1994.

[27] D. H. Friendly, S. J. Patel, and Y. N. Patt. Putting the fill unit to work: Dynamic op-

timizations for trace cache microprocessors. In Proceedings 31th Annual IEEE/ACM

International Symposium on Microarchitecture (MICRO), pages 173–181, December

1998.

[28] J. Frigo, M. Gokhale, and D. Lavenier. Evaluation of the streams-c c-to-fpga com-

piler: An applications perspective. In Proceedings of the 2001 ACM/SIGDA Ninth

94

International Symposium on Field Programmable Gate Arrays (FPGA), pages 134–

140, 2001.

[29] R. Ghiya and L. J. Hendren. Is it a Tree, DAG, or Cyclic Graph? In Proceedings

of the ACM Symposium on Principles of Programming Languages (POPL), January

1996.

[30] R. Ghiya and L. J. Hendren. Putting pointer analysis to work. In Proceedings of the

ACM Symposium on Principles of Programming Languages (POPL), pages 121–133,

January 1998.

[31] M. B. Gokhale and J. M. Stone. Napa c: compiling for a hybrid risc/fpga architec-

ture. In Proceedings of IEEE Symposium on FPGAs for Custom Computing Machines

(FCCM), pages 126–135, 1998.

[32] M. B. Gokhale, J. M. Stone, J. Arnold, and M. Kalinowski. Stream-Oriented FPGA

Computing in the Streams-C High LevelLanguage. In Proceedings of the 2000 IEEE

Symposium on Field-Programmable Custom Computing Machines (FCCM), pages

49–56, 2000.

[33] S. C. Goldstein, H. Schmit, M. Moe, M. Budiu, S. Cadambi, R. R. Taylor, and

R. Laufer. Piperench: A co/processor for streaming multimedia acceleration. In

Proceedings of the 26th Annual International Symposium on Computer Architecture

(ISCA), pages 28–39, 1999.

[34] V. Govindaraju, C.-H. Ho, and K. Sankaralingam. Dynamically specialized datapaths

for energy efficient computing. In Proceedings of the 2011 IEEE 17th International

Symposium on High Performance Computer Architecture (HPCA), pages 503–514,

2011.

95

[35] S. Gupta, S. Feng, A. Ansari, S. Mahlke, and D. August. Bundled execution of recur-

ring traces for energy-efficient general purpose processing. In Proceedings of the 44th

Annual IEEE/ACM International Symposium on Microarchitecture (MICRO), pages

12–23, 2011.

[36] R. Hameed, W. Qadeer, M. Wachs, O. Azizi, A. Solomatnikov, B. C. Lee, S. Richard-

son, C. Kozyrakis, and M. Horowitz. Understanding sources of inefficiency in

general-purpose chips. In Proceedings of the 37th annual international symposium

on Computer architecture (ISCA), pages 37–47, 2010.

[37] J. R. Hauser and J. Wawrzynek. Garp: a mips processor with a reconfigurable copro-

cessor. In IEEE Symposium on Field-Programmable Custom Computing Machines,

pages 12–21, 1997.

[38] Y. Huang, P. Ienne, O. Temam, Y. Chen, and C. Wu. Elastic cgras. In Proceedings

of the ACM/SIGDA International Symposium on Field Programmable Gate Arrays

(FPGA), pages 171–180, 2013.

[39] Z. Huang and S. Malik. Managing dynamic reconfiguration overhead in systems-on-

a-chip design using reconfigurable datapaths and optimized interconnection networks.

In Proceedings of the Conference on Design, Automation and Test in Europe, pages

735–745, 2001.

[40] Z. Huang and S. Malik. Exploiting operation level parallelism through dynamically

reconfigurable datapaths. In Proceeding of 39th Design Automation Conference,

pages 337–342, 2002.

[41] W. W. Hwu, S. A. Mahlke, W. Y. Chen, P. P. Chang, N. J. Warter, R. A. Bringmann,

R. G Ouellette, R. E. Hank, T. Kiyohara, G. E. Haab, J. G. Holm, and D. M. Lavery.

96

The superblock: An effective technique for VLIW and superscalar compilation. The

Journal of Supercomputing, 7(1):229–248, January 1993.

[42] C. Isci and M. Martonosi. Runtime power monitoring in high-end processors:

Methodology and empirical data. In Proceedings of the 36th Annual IEEE/ACM In-

ternational Symposium on Microarchitecture (MICRO), pages 93–103, 2003.

[43] T. B. Jablin. Automatic Parallelization for GPUs. PhD thesis, Princeton, NJ, USA,

2013.

[44] N. P. Johnson, J. Fix, S. R. Beard, T. Oh, T. B. Jablin, and D. I. August. Parallel-stage

decoupled software pipelining. In Proceedings of the Annual International Sympo-

sium on Code Generation and Optimization (CGO), 2017.

[45] N. P. Johnson, T. Oh, A. Zaks, and D. I. August. Fast condensation of the program

dependence graph. In Proceedings of the 34th ACM SIGPLAN conference on Pro-

gramming language design and implementation (PLDI), pages 39–50, 2013.

[46] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa, S. Bates,

S. Bhatia, N. Boden, A. Borchers, R. Boyle, P. Cantin, C. Chao, C. Clark, J. Coriell,

M. Daley, M. Dau, J. Dean, B. Gelb, T. V. Ghaemmaghami, R. Gottipati, W. Gul-

land, R. Hagmann, C. R. Ho, D. Hogberg, J. Hu, R. Hundt, D. Hurt, J. Ibarz,

A. Jaffey, A. Jaworski, A. Kaplan, H. Khaitan, D. Killebrew, A. Koch, N. Kumar,

S. Lacy, J. Laudon, J. Law, D. Le, C. Leary, Z. Liu, K. Lucke, A. Lundin, G. MacK-

ean, A. Maggiore, M. Mahony, K. Miller, R. Nagarajan, R. Narayanaswami, R. Ni,

K. Nix, T. Norrie, M. Omernick, N. Penukonda, A. Phelps, J. Ross, M. Ross, A. Salek,

E. Samadiani, C. Severn, G. Sizikov, M. Snelham, J. Souter, D. Steinberg, A. Swing,

M. Tan, G. Thorson, B. Tian, H. Toma, E. Tuttle, V. Vasudevan, R. Walter, W. Wang,

97

E. Wilcox, and D. H. Yoon. In-datacenter performance analysis of a tensor process-

ing unit. In Proceedings of the 44th Annual International Symposium on Computer

Architecture (ISCA), pages 1–12, 2017.

[47] C. Kim, S. Sethumadhavan, M. S. Govindan, N. Ranganathan, D. Gulati, D. Burger,

and S. W. Keckler. Composable lightweight processors. In Proceedings of the 40th

Annual IEEE/ACM International Symposium on Microarchitecture (MICRO), pages

381–394, 2007.

[48] O. Kocberber, B. Grot, Picorel J., Falsafi B., Lim K., and Ranganathan P. Meet

the walkers: Accelerating index traversals for in-memory databases. In Proceedings

of the 46th Annual IEEE/ACM International Symposium on Microarchitecture (MI-

CRO), 2013.

[49] C. Lattner and V. Adve. LLVM: A compilation framework for lifelong program anal-

ysis & transformation. In Proceedings of the Annual International Symposium on

Code Generation and Optimization (CGO), pages 75–86, 2004.

[50] H. H. Lee, Y. Wu, and G. Tyson. Quantifying instruction-level parallelism limits

on an epic architecture. In Proceedings of the IEEE International Symposium on

Performance Analysis of Systems and Software (ISPASS), pages 21–27, April 2000.

[51] S. Li, J.-H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and N. P. Jouppi.

Mcpat: An integrated power, area, and timing modeling framework for multicore

and manycore architectures. In 42nd Annual IEEE/ACM International Symposium on

Microarchitecture (MICRO), pages 469–480, Dec 2009.

[52] K. Lim, D. Meisner, A. G. Saidi, P. Ranganathan, and T. F. Wenisch. Thin servers

with smart pipes: designing soc accelerators for memcached. In Proceedings of the

98

40th Annual International Symposium on Computer Architecture (ISCA), pages 36–

47, New York, NY, USA, 2013. ACM.

[53] F. Liu, H. Ahn, S. R. Beard, T. Oh, and D. I. August. Dynaspam: Dynamic spatial

architecture mapping using out of order instruction schedules. In Proceedings of the

42Nd Annual International Symposium on Computer Architecture (ISCA), pages 541–

553, New York, NY, USA, 2015. ACM.

[54] F. Liu, S. Ghosh, N. P. Johnson, and D. I. August. Cgpa: Coarse-grained pipelined ac-

celerators. In Proceedings of the 51st Annual Design Automation Conference (DAC),

pages 78:1–78:6, New York, NY, USA, 2014. ACM.

[55] D. G. Lowe. Distinctive image features from scale-invariant keypoints. Int. J. Comput.

Vision, 60(2):91–110, November 2004.

[56] D. S. McFarlin, C. Tucker, and C. Zilles. Discerning the dominant out-of-order per-

formance advantage: Is it speculation or dynamism? In Proceedings of the Eighteenth

International Conference on Architectural Support for Programming Languages and

Operating Systems (ASPLOS), pages 241–252, 2013.

[57] B. Mei, S. Vernalde, D. Verkest, H. D. Man, and R. Lauwereins. ADRES: An architec-

ture with tightly coupled VLIW processor and coarse-grained reconfigurable matrix.

In Proceedings of the Conference on Field Programmable Logic, volume 2778, pages

61–70, 2003.

[58] E. Mirsky and A. DeHon. Matrix: a reconfigurable computing architecture with con-

figurable instruction distribution and deployable resources. In Proceedings of IEEE

Symposium on FPGAs for Custom Computing Machines, pages 157–166, Apr 1996.

[59] M. Mishra, T. J. Callahan, T. Chelcea, G. Venkataramani, S. C. Goldstein, and

M. Budiu. Tartan: Evaluating spatial computation for whole program execution. In

99

Proceedings of the 12th International Conference on Architectural Support for Pro-

gramming Languages and Operating Systems (ASPLOS), pages 163–174, 2006.

[60] G. Moore. Cramming more components onto integrated circuits. Electronics Maga-

zine, 38(8), April 1965.

[61] N. Muralimanohar, R. Balasubramonian, and N. P. Jouppi. Cacti 6.0: A tool to model

large caches. Technical report, HP Laboratories, 2009.

[62] R. Nair and M. E. Hopkins. Exploiting instruction level parallelism in processors by

caching scheduled groups. In Proceedings of the 24th Annual International Sympo-

sium on Computer Architecture (ISCA), pages 13–25, 1997.

[63] T. Nowatzki, M. Sartin-Tarm, L. De Carli, K. Sankaralingam, C. Estan, and B. Ro-

batmili. A general constraint-centric scheduling framework for spatial architectures.

In Proceedings of the 34th ACM SIGPLAN Conference on Programming Language

Design and Implementation (PLDI), pages 495–506, 2013.

[64] G. Ottoni, R. Rangan, A. Stoler, and D. I. August. Automatic thread extraction with

decoupled software pipelining. In Proceedings of the 38th Annual IEEE/ACM Inter-

national Symposium on Microarchitecture (MICRO), pages 105–118, 2005.

[65] S. Palacharla, N. P. Jouppi, and J. E. Smith. Complexity-effective superscalar pro-

cessors. In Proceedings of the 24th annual international symposium on Computer

architecture (ISCA), pages 206–218, 1997.

[66] W. Qadeer, R. Hameed, O. Shacham, P. Venkatesan, C. Kozyrakis, and M. A.

Horowitz. Convolution engine: Balancing efficiency and flexibility in specialized

computing. In Proceedings of the 40th Annual International Symposium on Com-

puter Architecture (ISCA), pages 24–35, New York, NY, USA, 2013. ACM.

100

[67] M. Quax, J. Huisken, and J. van Meerbergen. A scalable implementation of a reconfig-

urable wcdma rake receiver. In Proceedings of the Conference on Design, Automation

and Test in Europe - Volume 3, pages 30230–30240, 2004.

[68] E. Raman. Parallelization Techniques with Improved Dependence Handling. PhD the-

sis, Department of Computer Science, Princeton University, Princeton, New Jersey,

United States, June 2009.

[69] E. Raman, G. Ottoni, A. Raman, M. Bridges, and D. I. August. Parallel-stage decou-

pled software pipelining. In Proceedings of the Annual International Symposium on

Code Generation and Optimization (CGO), 2008.

[70] B. R. Rau. Iterative modulo scheduling: An algorithm for software pipelining loops.

In Proceedings of the 27th International Symposium on Microarchitecture (MICRO),

pages 63–74, December 1994.

[71] R. Razdan and M. D. Smith. A high-performance microarchitecture with hardware-

programmable functional units. In Proceedings of the 27th Annual International Sym-

posium on Microarchitecture, pages 172–180, 1994.

[72] B. Robatmili, D. Li, H. Esmaeilzadeh, S. Govindan, A. Smith, A. Putnam, D. Burger,

and S. W. Keckler. How to implement effective prediction and forwarding for fusable

dynamic multicore architectures. In Proceedings of the 2013 IEEE 19th International

Symposium on High Performance Computer Architecture (HPCA), pages 460–471,

2013.

[73] E. Rotenberg, S. Bennett, and J. E. Smith. Trace cache: A low latency approach to

high bandwidth instruction fetching. In Proceedings of the 29th International Sym-

posium on Microarchitecture (MICRO), pages 24–34, December 1996.

101

[74] K. Sankaralingam, R. Nagarajan, H. Liu, C. Kim, J. Huh, D. Burger, S. W. Keckler,

and C. R. Moore. Exploiting ilp, tlp, and dlp with the polymorphous trips archi-

tecture. In Proceedings of the 30th Annual International Symposium on Computer

Architecture (ISCA), pages 422–433, 2003.

[75] M. B. Seth and S. C. Goldstein. Optimizing memory accesses for spatial compu-

tation. In International Symposium on Code Generation and Optimization (CGO),

pages 216–227, March 2003.

[76] H. Singh, M.-H. Lee, G. Lu, F. J. Kurdahi, N. Bagherzadeh, and E.M. Chaves Filho.

Morphosys: an integrated reconfigurable system for data-parallel and computation-

intensive applications. IEEE Transactions on Computers, 49(5):465–481, May 2000.

[77] S. Swanson, K. Michelson, A. Schwerin, and M. Oskin. Wavescalar. In IEEE/ACM

International Symposium on Microarchitecture (MICRO), pages 291–303, 2003.

[78] Synopsys Design Compiler. https://www.synopsys.com/support/

training/rtl-synthesis/design-compiler-rtl-synthesis.

html, 2018. [Online; accessed 01-March-2018].

[79] M. B. Taylor, W. Lee, J. Miller, D. Wentzlaff, I. Bratt, B. Greenwald, H. Hoffmann,

P. Johnson, J. Kim, J. Psota, A. Saraf, N. Shnidman, V. Strumpen, M. Frank, S. Ama-

rasinghe, and A. Agarwal. Evaluation of the raw microprocessor: An exposed-wire-

delay architecture for ilp and streams. In Proceedings of the 31st Annual International

Symposium on Computer Architecture (ISCA), pages 2–12, 2004.

[80] J. L. Tripp, K. D. Peterson, C. Ahrens, J. D. Poznanovic, and M. B. Gokhale. Trident:

an fpga compiler framework for floating-point algorithms. In International Confer-

ence on Field Programmable Logic and Applications, 2005.

102

https://www.synopsys.com/support/training/rtl-synthesis/design-compiler-rtl-synthesis.html
https://www.synopsys.com/support/training/rtl-synthesis/design-compiler-rtl-synthesis.html
https://www.synopsys.com/support/training/rtl-synthesis/design-compiler-rtl-synthesis.html

[81] N. Vachharajani, R. Rangan, E. Raman, M. J. Bridges, G. Ottoni, and D. I. August.

Speculative decoupled software pipelining. In Proceedings of the 16th International

Conference on Parallel Architecture and Compilation Techniques (PACT), pages 49–

59, 2007.

[82] G. Venkatesh, J. Sampson, N. Goulding, S. Garcia, V. Bryksin, J. Lugo-Martinez,

S. Swanson, and M. B. Taylor. Conservation cores: reducing the energy of mature

computations. In Proceedings of the fifteenth edition of ASPLOS on Architectural

support for programming languages and operating systems (ASPLOS), pages 205–

218, 2010.

[83] J. Villarreal, A. Park, W. Nar, and R. Halstead. Designing modular hardware ac-

celerators in c with roccc 2.0. In 18th IEEE Annual International Symposium on

Field-Programmable Custom Computing Machines (FCCM), pages 127–134, 2010.

[84] C. Villavieja, J. A. Joao, R. Miftakhutdinov, and Y. N. Patt. Yoga: A hybrid dynamic

vliw/ooo processor. Technical report, High Performance Systems Group, Department

of Electrical and Computer Engineering, The University of Texas at Austin, Austin,

Texas 78212-0240, USA, 2014.

[85] D. Voitsechov and Y. Etsion. Single-graph multiple flows: Energy efficient design

alternative for gpgpus. In Proceeding of the 41st Annual International Symposium on

Computer Architecuture (ISCA), pages 205–216, 2014.

[86] D. W. Wall. Limits of instruction-level parallelism. In Proceedings of the 4th In-

ternational Conference on Architectural Support for Programming Languages and

Operating Systems, pages 176–188, April 1991.

[87] M. Weinhardt and W. Luk. Pipeline vectorization. Computer-Aided Design of Inte-

grated Circuits and Systems, IEEE Transactions on, 20(2):234–248, 2001.

103

[88] R. D. Wittig and P. Chow. Onechip: an fpga processor with reconfigurable logic. In

IEEE Symposium on FPGAs for Custom Computing Machines, pages 126–135, Apr

1996.

[89] M. Wolf, D. Maydan, and D. Chen. Combining loop transformations considering

caches and scheduling. In Proceedings of the 29th Annual International Symposium

on Microarchitecture (MICRO), pages 274–286, December 1996.

[90] M. E. Wolf and M. S. Lam. A loop transformation theory and an algorithm to maxi-

mize parallelism. IEEE Transactions on Parallel and Distributed Systems, 2(4):452–

471, October 1991.

[91] J. Xu, N. Subramanian, A. Alessio, and S. Hauck. Impulse c vs. vhdl for accelerating

tomographic reconstruction. In 18th IEEE Annual International Symposium on Field-

Programmable Custom Computing Machines (FCCM), pages 171–174, 2010.

[92] Z. A. Ye, A. Moshovos, S. Hauck, and P. Banerjee. Chimaera: A high-performance

architecture with a tightly-coupled reconfigurable functional unit. In Proceedings of

the 27th Annual International Symposium on Computer Architecture (ISCA), pages

225–235, 2000.

[93] Q. Zhu, K. Vaidyanathan, O. Shacham, M. Horowitz, L. Pileggi, and F. Franchetti.

Design automation framework for application-specific logic-in-memory blocks. In

2012 IEEE 23rd International Conference on Application-Specific Systems, Architec-

tures and Processors (ASAP), pages 125–132, July 2012.

104

	1 Introduction
	1.1 Spatial Architectures
	1.2 Instruction Scheduling for Spatial Architectures
	1.3 Dissertation Contributions
	1.4 Dissertation Organization

	2 Background and Related Work
	2.1 Instruction Mapping Techniques
	2.2 Decoupled Software Pipelining Techniques
	2.3 Existing Spatial Architectures
	2.4 Issues with Existing Architectures and Their Mapping Techniques

	3 Static Mapping with Coarse-Grained Decoupled Pipelining
	3.1 Motivating CGPA
	3.2 Coarse-Grained Pipeline Accelerators
	3.2.1 CGPA Workflow
	3.2.2 Pipeline Generation
	3.2.3 CGPA Compiler Backend

	3.3 Evaluation of CGPA
	3.3.1 Methodology
	3.3.2 Results

	3.4 Applicability and Scalability of CGPA
	3.4.1 Applicability
	3.4.2 Scalability

	4 Spatial Architecture Speculation with Hardware Reuse
	4.1 Motivating SpAS
	4.1.1 Dynamic Mapping for Spatial Architecture
	4.1.2 Speculative Architecture Support for Dynamic Mapping

	4.2 Hybrid Speculative Spatial Architecture Design
	4.3 Spatial Fabric Implementation and Integration
	4.3.1 Acyclically Connected Spatial Fabric
	4.3.2 Integration into the Host OoO Pipeline
	4.3.3 Intra- and Inter-Trace Memory Ordering
	4.3.4 Configuration Datapath
	4.3.5 Execution Example

	5 Dynamic Mapping with Resource-Aware Instruction Scheduling
	5.1 Motivating DynaSpam
	5.1.1 The Importance of Mapping Scope
	5.1.2 Hardware Synthesis

	5.2 DynaSpam Design
	5.2.1 Resource-Aware Scheduling
	5.2.2 Priority Score Generation
	5.2.3 Example

	5.3 Evaluation
	5.3.1 Methodology
	5.3.2 Results

	6 Conclusions and Future Directions
	6.1 Conclusions
	6.2 Future Directions

