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Abstract

Continuing exponential growth in transistor density and diminishing returns from the in-

creasing transistor count have forced processor manufacturers to pack multiple processor

cores onto a single chip. These processors, known as multi-core processors, generally do

not improve the performance of single-threaded applications. Automatic parallelization has

a key role to play in improving the performance of legacy and newly written single-threaded

applications in this new multi-threaded era.

Automatic parallelizations transform single-threaded code into a semantically equiva-

lent multi-threaded code by preserving the dependences of the original code. This disserta-

tion proposes two new automatic parallelization techniques that differ from related existing

techniques in their handling of dependences. This difference in dependence handling en-

ables the proposed techniques to outperform related techniques.

The first technique is known as parallel-stage decoupled software pipelining (PS-DSWP).

PS-DSWP extends pipelined parallelization techniques like DSWP by allowing certain

pipelined stages to be executed by multiple threads. Such a parallel execution of pipelined

stages requires distinguishing inter-iteration dependences of the loop being parallelized

from the rest of the dependences. The applicability and effectiveness of PS-DSWP is fur-

ther enhanced by applying speculation to remove some dependences.

The second technique, known as speculative iteration chunk execution (Spice), uses

value speculation to ignore inter-iteration dependences, enabling speculative execution of

chunks of iterations in parallel. Unlike other value-speculation based parallelization tech-

niques, Spice speculates only a few dynamic instances of those inter-iteration dependences.

Both these techniques are implemented in the VELOCITY compiler and are evalu-

ated using a multi-core Itanium 2 simulator. PS-DSWP results in a geometric mean loop

speedup of 2.13 over single-threaded performance with five threads on a set of loops from

five benchmarks. The use of speculation improves the performance of PS-DSWP resulting

in a geometric mean loop speedup of 3.67 over single-threaded performance on a set of
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loops from six benchmarks. Spice shows a geometric mean loop speedup of 2.01 on a set

of loops from four benchmarks. Based on the above experimental results and qualitative

and quantitative comparisons with related techniques, this dissertation demonstrates the

effectiveness of the proposed techniques.
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Chapter 1

Introduction

Today’s computing systems provide a much richer experience to the end user than those

of the past. Improvements in commodity hardware systems, in conjunction with compiler

optimization technology, have sustained a high growth rate of application performance on

these systems. As a consequence, application writers are able to focus their attention on de-

veloping complex software systems with new features that enhance user experience without

concerning themselves too much about the performance implications of these features.

Recent trends point to a future where application developers may no longer be able to

focus their attention on adding rich features without having to worry about their perfor-

mance impact. As a case in point, consider the graph showing historical performance trend

in Figure 1.1. This graph evaluates the performance of commodity computers from various

vendors using the SPEC [60] benchmark suite. The Y axis shows the performance based on

a normalized SPEC score metric. From 1993 to 2004, the performance of these machines

have shown a steady growth as indicated by the regression line. However, from 2004, the

rate of growth in performance has decreased significantly.

To understand the causes behind this performance flattening, it is essential to know

the causes of the performance trend until 2004. From the hardware side, there were two

main trends. The first was the exponential increase in clock frequencies of processors.

For instance, the clock frequencies of the x86 family of processors have increased from 5

1
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Figure 1.1: Normalized SPEC scores for all reported configuration of machines between

1993 and 2007.

MHz in 8086 to 3.8 GHz in Pentium 4 in less than 30 years. The second was the suite of

architectural innovations that made use of the ever increasing transistor counts to reduce

execution times. The architectural innovations include improved branch prediction, larger

and better caches, multiple functional units, larger issue width, deeper pipelines and out-

of-order execution among many others. These architectural innovations are complemented

by modern compiler technology that exploits these innovations.

However, a shift in design goals and certain inherent physical limits have significantly

impacted the performance growth delivered by the hardware. Power has become a first-

class design constraint [41]. This has caused processor manufacturers to scale down the

clock frequencies. For instance, the maximum clock frequency of Intel’s Pentium M series

of processors was 2.26 GHz as against the 3.8GHz of the previous generation Pentium 4

processors. Microarchitectural advancements have also started to give diminishing returns

due to design constraints such as power and design complexity.

Amidst this slowdown in performance improvement, the number of transistors available

on a die continues to grow at an exponential rate in line with Moore’s law [39]. For instance,

Figure 1.2 shows how the transistor counts of the current generation Intel processors fol-

low the historical growth trend. The abundance of transistors combined with the inability

to leverage them to deliver improved performance has forced a paradigm shift in processor

2
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Figure 1.2: Transistor counts for successive generations of Intel processors. Source data

from Intel [26].

design. Leading chip manufacturers started to manufacture multi-core processors that pack

multiple independent processing cores into a single die. Multi-core processors can signifi-

cantly improve the execution time of certain classes of multi-threaded applications such as

servers. However, they do not directly improve the execution latencies of single-threaded

applications. Unless the problem of improving the latency of single-threaded applications

is addressed, application developers may no longer be insulated from the performance im-

plications of the features they add to enhance end-user experience.

1.1 Approaches to Obtaining Parallelism

There are two predominant approaches to producing multi-threaded applications that de-

liver good performance on multi-core processors. The first approach is to delegate the task

of specifying the parallelism to the programmer. This places a huge burden on the program-

mer as writing efficient multi-threaded code using existing programming models is much

3



harder than writing efficient single-threaded code. The lock based multi-threaded program-

ming model introduces additional correctness issues such as race conditions, deadlocks,

and livelocks. In addition, the programmer has to worry about performance issues such as

those associated with locking granularity. The vast body of research trying to address these

problems [11, 15, 17, 34, 58] is evidence for the complexity of the task of writing efficient

multi-threaded code that places it outside the realm of most programmers. Transactional

memory [23, 51] was proposed as an alternative to lock-based multi-threading. Transac-

tional memory provides better composability than locks and eases programmers’ efforts in

handling concurrency correctly. However, the task of identifying parallel regions is still left

to the programmer. This task can be simplified by providing constructs to specify paral-

lelism in programming languages. Languages and language annotations such as High Per-

formance Fortran [33], MPI [40], OpenMP [42], Cilk [19], StreamIt [68] and Atomos [7]

provide constructs and annotations to express parallelism. However, these languages allow

only regular and structured parallelism to be easily specified by the programmer. Since

many general purpose programs do not exhibit that kind of parallelism, the applicability of

these languages is limited.

An alternative approach is to automatically translate single-threaded code written by a

programmer into efficient multi-threaded code. This translation requires analyzing large

segments of code to identify parallelism and is best done primarily by compilers, with sup-

port from runtime systems and hardware. Even if advancements in programming paradigms

make the identification and specification of parallelism by the programmer a much easier

task, an automatic parallelization solution with comparable performance that insulates the

programmer from performance issues is likely to be preferred.

Compiler based automatic parallelization, which is based on the theory of dependences

in programs [28], has been used with a high degree of success in the domain of scientific

and numerical computation. Several parallelization techniques with varying degrees of

applicability and effectiveness have been developed. The DOALL [1, 35] parallelization

4



technique extracts parallelism by executing multiple iterations of a loop in parallel. This

technique is limited by the fact that it is applicable only when the loop has no inter-iteration

dependences. An inter-iteration dependence occurs when the execution of an operation

in a loop iteration depends on the execution of an operation in some prior iteration of

that loop. DOACROSS [12, 45] also executes multiple loop iterations concurrently but

with synchronizations to handle the inter-iteration dependences. These and various other

techniques for detecting dependences in loops and transforming them into parallel code

were incorporated into research compilers such as Fortran-D Compiler [24], Suif [21, 61],

Polaris [4], etc. However, many of these techniques were successful mainly for loops

operating on arrays with regular accesses and with very limited control flow. They do

not work well for loops in general purpose programs that are characterized by complex or

irregular control flow and memory access patterns.

In the last decade, new parallelization techniques were proposed to parallelize general

purpose codes with arbitrary control flow and memory access patterns. A vast body of re-

search on speculative multi-threading techniques [3, 22, 27, 36, 59, 63, 70, 78], including

thread level speculation (TLS) and other variants, emerged. TLS improves the performance

of DOACROSS by adding speculation. A new non-speculative parallelization technique

called decoupled software pipelining [56, 44] proposed a different approach to paralleliza-

tion. DSWP extracted pipelined parallelism from a loop by partitioning the body of the

loop into pipeline stages which were then executed by different threads. The applicability

and performance of DSWP can be extended by applying speculation [72, 73]. While the

above techniques have extended the scope of automatic parallelization to general purpose

code, the performance evaluation of these techniques indicates there are many applications

whose performance do not improve by these techniques. The inability of these techniques

to deliver good performance across a wide range of applications is likely to deter automatic

parallelization from being widely embraced.
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1.2 Contributions

The contributions of this dissertation are two new compiler transformations to parallelize

loops in the presence of inter-iteration dependences. These two techniques can extract

thread level parallelism from general purpose programs with arbitrary control flow and

memory access patterns. By improving the handling of inter-iteration dependences, these

two techniques overcome the limitations of several existing techniques. This results in

performance advantages that improve the viability of automatic parallelization as a solution

to the challenges of the multi-core era.

The first technique is called parallel-stage decoupled software pipelining or PS-DSWP [52]

which improves the performance of DSWP by exploiting characteristics of DOALL par-

allelization in conjunction with pipelined parallelism. DSWP pipelines a loop body by

isolating each recurrence of dependences within a pipeline stage and executes each stage

using a separate thread. The performance of DSWP depends on how well the dynamic op-

erations of the loop are distributed across the pipeline stages and, in practice, does not scale

well as the number of threads increase. A key insight leading to the idea behind PS-DSWP

is that the code in certain pipeline stages may be free from inter-iteration dependences with

respect to the loop being parallelized. Those stages could therefore be executed by multiple

threads, with each thread executing a different iteration of the code inside the stage, similar

in spirit to a DOALL execution. As a result, PS-DSWP retains the improved applicability

of DSWP, but with better performance obtained as a result of executing iterations concur-

rently. This dissertation presents the PS-DSWP technique with a description of the key

algorithms used in the transformation as well as their implementation details. An extension

to PS-DSWP that applies speculation based on the speculative DSWP technique [73] is

also presented.

The second technique is a speculative multi-threading technique called speculative par-

allel iteration chunk execution (Spice) [53]. Spice relies on a novel software-based value

prediction mechanism. The value prediction technique predicts the loop live-ins of just a
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few iterations of a given loop. This breaks a few dynamic instances of inter-iteration de-

pendences in the loop, enabling speculative parallelization of the loop. Spice also increases

the probability of successful speculation by only predicting that the values will be used

as live-ins in some future iterations of the loop. These properties enable the value predic-

tion scheme to have high prediction accuracies while exposing significant coarse-grained

thread-level parallelism.

These two techniques are implemented in the VELOCITY automatic parallelization

compiler. The two techniques are applied to loops from several general purpose applica-

tions and evaluated on a simulated multi-core Itanium 2 processor. PS-DSWP results in a

geometric mean loop speedup of 2.13 over single-threaded performance when applied to

loops from a set of five benchmarks. The use of speculation improves the performance of

PS-DSWP resulting in a geometric mean loop speedup of 3.67 over single-threaded per-

formance when applied to loops from a set of six benchmarks. These results are compared

with the performance of DSWP and TLS on these benchmarks. Spice shows a geomet-

ric mean loop speedup of 2.01 on a set of loops from four benchmarks. The performance

results and the comparison with related techniques demonstrate the effectiveness of the

proposed techniques.

1.3 Dissertation Organization

Chapter 2 introduces some of the existing approaches to compiler based parallelization. A

simplified analytical model to characterize the performance potential of these techniques

is presented. This discussion on current parallelization approaches is important to moti-

vate and understand the contributions of this dissertation. Chapters 3 and 4 discusses the

parallel-stage decoupled software pipelining in detail including the code transformation,

thread partitioning heuristics and optimizations that enhance the applicability and the per-

formance of the baseline technique. Chapter 5 describes a new approach to value specula-
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tion for thread level parallelism and the Spice technique that relies on this value speculation.

Chapter 6 presents an experimental evaluation of the techniques proposed in this disserta-

tion. Finally, Chapter 7 discusses avenues for extending the techniques presented in this

dissertation and summarizes the conclusions.
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Chapter 2

Parallelization Transformations

This chapter presents an overview of compiler-based automatic parallelization transforma-

tions. Some general ideas and concepts in automatic parallelization are presented first.

This is followed by a discussion on some of the important proposed solutions. The two

new techniques presented in this dissertation extend these ideas to overcome some of the

limitations of these solutions.

2.1 Overview

Parallelization transformations convert single-threaded code into a semantically equivalent

multi-threaded code. The semantic equivalence is guaranteed by ensuring that the multi-

threaded execution respects all the dependences present in the single-threaded code. The

techniques employ a variety of transformations such as variable renaming, scalar expan-

sion, array privatization and reduction transformations to remove many dependences from

the single-threaded code and insert appropriate synchronization to respect the remaining

dependences in the multi-threaded code.

While the scope of these transformations can be any arbitrary code region, most of these

techniques operate on loops. The iterative nature of the execution of a loop’s body and the
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for(i = 0; i < 10; i ++){

A: a[i] = b[i-1]+1;

B: b[i] = a[i]+1;

}

Figure 2.1: An example that illustrates the limits of the traditional definition of dependence

when applied to loops.

fact that programs typically spend most of their execution time in a few hot loops make

loops a suitable candidate for parallelization. Since the techniques discussed in this chapter

also operate on loops, the discussion in this chapter is restricted to parallelization of loops.

Traditional definition of dependences between program statements or operations are in-

sufficient in the context of loops. The code example in Figure 2.1 illustrates its limitations.

The statement B depends on A resulting in the dependence arc A → B. However, B in

any given iteration is dependent on A from the same iteration of the loop and not A from

earlier iterations. This distinction is crucial for many loop parallelization techniques. The

dependence in the above example is called intra-iteration dependence. On the other hand,

A is dependent on B from the previous iteration. If a dependence is between a statement

in one iteration to a statement in some later iteration, it is said to be an inter-iteration or

loop-carried dependence. The different techniques described in this chapter differ in the

way they preserve the dependences in the multi-threaded code.

2.2 Categories of Parallelization Techniques

The different approaches to preserving the original dependences lead to different com-

munication patterns between the threads that execute the parallel code. Many important

parallelization techniques can be placed under three broad categories based on the commu-

nication pattern between the multiple threads of execution:

Independent Multi-threading (IMT) The IMT techniques are characterized by the ab-

sence of any communication between the threads that execute the parallelized loop

within the loop body. DOALL is the main parallelization technique in this category.
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Cyclic Multi-threading (CMT) Unlike IMT, the parallel threads generated by CMT tech-

niques contain communication operations inside the loop body. If threads are repre-

sented as nodes of a “communication graph” and directed edges are used to represent

communication between a pair of threads, the threads produced by CMT form a

cyclic graph. DOACROSS, and its speculative variant TLS, are the major techniques

in this category.

Pipelined Multi-threading (PMT) Like CMT, PMT techniques also generate threads that

communicate within the loop body. However, the resulting communication graph is

an acyclic graph. DSWP is a major technique in this category.

While the above categorization does not exhaustively cover all proposed automatic par-

allelization techniques, it is sufficient to cover the important techniques closely related to

the contributions of this dissertation. In the rest of this section, each of these types of

multi-threaded techniques are discussed in detail. An overview of the major representa-

tive in each category is first presented. For each category, a simplified analytical model

for performance gain is then discussed. This helps in understanding the advantages and

limitations of the techniques. Finally, the use of speculation to improve the parallelization

is discussed. Speculation is a useful tool available to compiler engineers to overcome the

effects of conservativeness in provable static analyses and is an important component in

parallelizing general purpose applications.

2.2.1 Independent Multi-threading

One of the earliest proposed IMT technique is DOALL parallelization [35]. IMT tech-

niques are characterized by their ability to extract iteration level parallelism. The iterations

of the loop are partitioned among the available threads and executed concurrently with no

or little restrictions on how the iterations can be partitioned among threads. For instance if

a loop executes for 100 iterations and is parallelized into two threads, then a DOALL par-
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for(i=0; i < N; i++) //I

a[i] = a[i] + 1; //A

(a) C code

0

1

2

3

4

5

6

7

8

Core 1 Core 2

I:1

A:1

I:2

A:2

I:3

A:3

I:4

A:4

I:5

A:5

I:6

A:6

I:7

A:7

I:8

A:8

(b) Execution timeline

Figure 2.2: A candidate loop for DOALL transformation and a timeline of its execution

after the transformation.

allelization could execute the first 50 iterations in one thread and the next 50 iterations in

another thread or execute the odd iterations in one thread and even iterations in the second

thread.

This unrestricted iteration level parallelism in IMT requires that the loop has no inter-

iteration dependences. Even if the original loop has inter-iteration dependences, transfor-

mations such as induction variable expansion, array privatization and reduction transfor-

mations can be used to remove or ignore inter-iteration dependences between threads.

Figure 2.2(a) is an example of a loop that can be parallelized using DOALL. The only

inter-iteration dependence is the increment of the index i in every iteration. This depen-

dence can be ignored by initializing the value of i in each thread appropriately so that an

iteration does not depend on a prior iteration from a different thread. Figure 2.2(b) shows

the execution schedule of a DOALL parallelization of this loop for a total of 6 iterations

using 2 threads. The first thread executes the first 3 iterations and the second thread exe-

cutes the next 3 iterations. The body of the loop executed by both the threads is identical.

The initial value of i in the second thread is set to N/2 so that the loop carried dependence

can be ignored.
12



Analytical model

The simple analytical model for measuring DOALL’s performance assumes that all itera-

tions of the loop have the same execution latency. In practice, there is some variability in

execution latencies of the iterations that could affect the performance of DOALL. Let Li

be the latency to execute an iteration of the loop and let n be the number of iterations. The

sequential execution time of the loop is n× Li. If the loop is parallelized using m concur-

rent threads, then the execution time of the parallelized loop is Li if m > n and n×Li

m
if

m ≤ n. Thus, the speedup obtained by DOALL parallelization is n×Li

(
n×Li

Min(m,n)
)

which is equal

to Min(m, n).

Performance characteristics

In the foreseeable future, the number of cores in a chip is likely to increase at an exponen-

tial rate. Hence a good parallelization technique should be scalable to a large number of

cores. As can be inferred from the analytical model, the speedup of DOALL is linear in the

number of cores available as long as there are more iterations than the number of available

processors. Since the iteration count of many loops is often determined only by the size of

the input set, DOALL scales well as the input size increases. The second advantage offered

by DOALL is that its performance is independent of the communication latency between

cores since the threads do not communicate within the loop body. Finally, from a compila-

tion perspective, code generation in DOALL is simple since the body of the loop executed

by different threads is virtually identical.

while(ptr = ptr->next) //LD

ptr->val += 1; //A

Figure 2.3: A loop with inter-iteration dependence.

The main drawback of IMT is that it is very limited in applicability. The fact that most

inter-iteration dependences are precluded by IMT makes it inapplicable to most loops. As

an example, consider the loop in Figure 2.3. In terms of functionality, the loop is similar
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to the one in Figure 2.2(a) since both the loops increment a list of integers. The only

difference is that the list is implemented as an array in Figure 2.2(a) and as a linked list in

Figure 2.3. The linked list implementation contains an inter-iteration dependence due to

the pointer chasing load that cannot be ignored making DOALL inapplicable to that loop.

Application of speculation

Static analysis techniques have very limited success in classifying dependences as intra-

or inter-iteration dependences. Most of the techniques presented in the literature work

only when the array indices are simple linear functions of loop induction variables and

conservatively assume inter-iteration dependences for complex access patterns [1]. Hence

speculation of inter-iteration dependences provides a way to improve the applicability of

DOALL.

The LRPD test [57] and the R-LRPD test [13] speculatively partition the iterations

into threads to execute in a DOALL fashion. Mis-speculation detection and recovery are

done purely in software by making use of shadow arrays and status arrays. However this

technique is limited to loops with array accesses and does not handle arbitrary loops. Zhong

et al. [77] showed that a significant fraction of loops in many programs are speculative

DOALL loops particularly after application of several classical transformations.

2.2.2 Cyclic Multi-Threading

Even in the presence of inter-iteration dependences, it is possible to extract a restricted form

of iteration-level parallelism by synchronizing the inter-iteration dependences. This is the

approach used by the CMT techniques. DOACROSS [12, 45] is an important technique in

this category. IMT techniques have restricted iteration level parallelism. The parallelism

in DOACROSS is also obtained by executing iterations concurrently across threads, but

the mapping from iterations to threads is restricted by the presence of synchronization and

communication.
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Figure 2.4: DOACROSS execution schedule for the loop in Figure 2.3.

Figure 2.4(a) shows the DOACROSS execution schedule for the loop in Figure 2.3. The

DOACROSS schedule has the following characteristics: All the odd iterations of the loop

are executed by the first thread and the even iterations by the second thread. Synchroniza-

tion is inserted to respect the inter-iteration dependence due to the pointer chasing load LD.

Both the threads receive and send synchronization tokens from the other thread resulting in

cyclic communication between the threads.

Analytical Model

Let n be the number of iterations of the loop and m be the number of threads used to par-

allelize the loop. Let us assume that there is only one inter-iteration dependence that needs

to be synchronized and let P and C be the produce and consume points of that synchroniza-

tion. Let C(i, j) and P (i, j) denote the consume and produce points in iteration i executed

by thread j. In each iteration, let t1 be the time from the start of the iteration to the consume

point, t2 be the time between the consume point C and the produce point P within a single
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Figure 2.5: This figure illustrates synchronization and associated stalls in DOACROSS for

a loop with one inter-iteration dependence. C and P are consume and produce points of the

dependence.

iteration and let t3 be the time between the produce point till the end of the iteration. Let

CL be the communication latency between two threads.

Figure 2.5 shows the timeline of a DOACROSS execution under these assumptions,

with m = 3. The solid lines represent execution of loop body, the dashed lines represent

stall cycles waiting for synchronization and the dotted lines represent communication be-

tween threads. Let SC be the stall cycles incurred by thread 1 between iterations i and

i + m which are any two consecutive iterations executed by thread 1. SC is thus the dif-

ference between the time when the synchronization token for consume point C(i + m, 1)

is available and the earliest time when C(i + m, 1) can execute. Thus

SC = Max((Csynch(i + m, 1)− Cearliest(i + m, 1)), 0)

The chain of synchronizations from C(i, 1) to Csynch(i + m, 1) contains m segments of

length CL (the communication segments) and m segments of length t2 (the execution

segments). Hence Csynch(i + m, 1) can be expressed in terms of C(i, 1) as follows

Csynch(i + m, 1) = C(i, 1) + m× (CL + t2)
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Similarly, Cearliest(i + m, 1) can be expressed as

Cearliest(i + m, 1) = C(i, 1) + t2 + t3 + t1

Using the above two expressions, the expression for the stall cycles SC can be simplified

to

SC = Max(m× CL + (m− 1)× t2− t3− t1, 0) (2.1)

Since SC is the number of cycles stalled for every m iterations of the loop, the total stall

cycles during the entire execution of the loop is n×SC
m

. If Li = (t1 + t2 + t3) is the

sequential execution time of an iteration of the original loop, then the total time to execute

the parallelized loop Lpar is given by

Lpar =
n

m
× (Li + SC)

and hence the speedup obtained is given by

speedup =
n× Li

Lpar

=
n×m× Li

n× (Li + SC)

=
m× Li

Li + Max(m× CL + (m− 1)× t2− t3− t1, 0)

While this analysis has assumed the presence of only one inter-iteration dependence that

needed to be synchronized, it can be easily extended for the general case by considering the

dependence which has largest value of t2 since the synchronization of other dependences

will be subsumed by this dependence.
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Performance characteristics

DOACROSS gives a linear speedup with m threads provided there are no stall cycles. As

the number of stall cycles increase, the speedup deviates farther from the ideal speedup of

m. Several factors influence the number of stall cycles SC.

In DOACROSS parallelization, the synchronization of dependences becomes part of

the critical path when it could not be completely overlapped with the rest of the compu-

tation. Under this scenario, as the value of CL increases, so does the value of SC. This

is illustrated by the execution timeline in Figure 2.4(b). As the number of cores on a chip

increase, on-chip memory interconnection networks are likely to be more complex with

an increased end-to-end latency. This will critically impact DOACROSS performance. A

major consequence of this is that DOACROSS becomes unprofitable when applied to hot

loops whose per-iteration execution latencies are nevertheless low.

Another factor that contributes to an increase in SC is the value of t2. Consider an

optimal placement of the produce and consume points such that the produce is inserted

immediately after the source of the dependence is executed and the consume is inserted

immediately prior to the destination of the dependence. Since an inter-iteration dependence

is usually part of a cycle in the dependence graph1, the value of t2 can be approximated

by the length of the cycle. Thus the speedup of DOACROSS is limited by the length of

the longest dependence cycle. Finding the longest cycle in a graph is an NP complete

problem [20], and in practice an optimal placement of produce and consume points is not

possible. For instance, if the source and destination of the inter-iteration dependence are

nested within some inner function in the presence of complex control flow, the produce and

consume points have to be inserted conservatively causing a further increase in the value of

SC. Heuristics have been proposed to eliminate redundant synchronizations and improve

the placement of synchronization points [8, 50].

1Otherwise a transformation like loop rotation [74] can be used to eliminate the dependence.
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The last major factor contributing to the value of SC is the number of threads available

for parallelization. Note that in Equation 2.1, m is a multiplicative factor to CL and t2.

As the number of threads increase the stall cycles also increase. This acts as an inherent

limitation to the scalability of DOACROSS.

Despite these limitations, DOACROSS may still be a viable technique if the value of

various parameters are such that the stalls due to synchronization are contained. Under

those circumstances, DOACROSS achieves a linear speedup under the ideal conditions

assumed in the analytical model. From the code generation perspective, DOACROSS code

generation is not complex since the body of the loop is identical across all threads.

Application of speculation

while(ptr = ptr->next) { //LD

ptr->val += inc; //A1

if(foo(ptr->val)) //IF

inc++; //A2

}

Figure 2.6: A loop with infrequent inter-iteration dependence.

Most TLS techniques [22, 36, 59, 63] are speculative versions of DOACROSS. Specu-

lation is a useful tool in eliminating hard-to-disprove and infrequent inter-iteration depen-

dences. While DOACROSS can parallelize loops that contain inter-iteration dependences,

speculating inter-iteration dependences can result in significant reduction of stall cycles

thereby improving the performance of DOALL.

Figure 2.6 shows a code example that demonstrates the advantage of applying specu-

lation to DOACROSS. The loop increments the elements of a linked list by inc, similar

to the loop in Figure 2.3. However the increment amount is neither constant nor loop-

invariant. Instead it gets incremented whenever a list element satisfies a complex condition

given by the function foo. Thus the loop has two inter-iteration dependences: one due to

the pointer chasing load LD and another from A2 to A1. If foo has a very long latency, then

the synchronization of the dependence from A2 to A1 will be the bottleneck contributing
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to the stall cycles. However, if A2 is infrequently executed, then A1 can speculatively use

the previous value of inc instead of synchronizing the dependence. In that case, only the

self dependence between LD needs to be synchronized resulting in a significant reduction

of stall cycles leading to a better performance.
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Figure 2.7: The execution schedule of the loop in Figure 2.6 parallelized by TLS.

Figure 2.7 shows a simplified execution schedule of a TLS parallelization of the loop

in Figure 2.6. Each iteration of the loop is represented by a rectangular box with each of

the statements demarcated. The self dependence on the LD statement is synchronized and

the dependence from A2 to A1 is speculated. As long as the speculation is successful, the

execution schedule is identical to that of DOACROSS. If a speculation is unsuccessful in an

iteration, the execution of all later iterations are squashed and re-executed. In the example,

the speculation of the dependence from iteration 4 to 5 turns out to be unsuccessful. This

causes iteration 5 in thread 2 and iteration 6 in thread 3 to be squashed and re-executed

after the detection of mis-speculation.
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The TLS execution model requires hardware support to detect mis-speculations and re-

cover from them. The cache coherence protocol is used to identify if a memory location is

written to by an iteration after some later iteration has read from it. The updates from specu-

lative iterations are buffered in private caches and written to shared caches or main memory

only after it is guaranteed that the iteration cannot suffer any further mis-speculation. The

hardware support required for TLS is described in detail by Steffan [62].

2.2.3 Pipelined Multi-threading
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Figure 2.8: The execution schedule of the loop in Figure 2.3 parallelized by DSWP.

Pipelined multi-threading is another technique for parallelization in the presence of

inter-iteration dependences. The first proposed PMT technique is DOPIPE [14]. DOPIPE

is restricted to only loops with limited control flow. Decoupled software pipelining or

DSWP [56, 44] is a more general PMT technique to extract pipelined parallelism from

loops with arbitrary control flow. DSWP partitions the body of the loop into a sequence of

pipeline stages. Each stage is then executed by a separate thread. The threads communicate
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either through special hardware structures such as synchronization array [56] or through

memory. Figure 2.8(a) shows the DSWP execution schedule of the loop in Figure 2.3. The

body of the loop is divided into a two stage pipeline: the first stage executes the pointer

chasing load LD and the second stage executes the addition A. Parallelism is achieved by

overlapping an earlier iteration of the second stage with a later iteration of the first stage.

Pipeline formation

Unlike other techniques discussed so far, DSWP partitions the body of the loop across dif-

ferent threads. While the details on how the code is partitioned across threads can be found

elsewhere [44], a brief overview is given here to understand the performance implications

of the code partitioning. The goal of the thread partitioning is to ensure that the threads

form a pipeline and the work done by the different threads are balanced so that no thread

ends up doing most of the work. The DSWP technique first constructs the program de-

pendence graph(PDG [18]) of the loop and operates on the PDG. It then identifies the set

of strongly connected graphs in the PDG. All operations in an SCC must be allocated to

the same thread as otherwise there will be cyclic communication between the threads that

execute the operations of the SCC. To ensure this, the PDG is transformed into another

graph in which each SCC in the PDG are represented by a single node. The resulting graph

is a DAG. Once the DAG is formed, the nodes of the DAG can be mapped into threads by

assigning nodes to threads in a topological order. All these steps ensure that the resulting

partition forms a pipeline. To address the problem of ensuring a balance among threads, a

bin-packing-like heuristic is used; finding an optimal solution is NP complete [44].

Analytical model

Let Π1, Π2 . . . Πk be the set of SCCs in the PDG of the loop. Let L(Πi) be the latency

to execute the set of operations in the SCC Πi. Let ΠTj,1
, ΠTj,2

. . . be the SCCs that are

mapped to the jth thread and let m be the total number of threads. Let C1, C2 . . . Cm be the
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set of communication operations that are inserted in each of the threads to communicate

and synchronize the dependences between the threads. The latency of execution of the jth

thread is given by

L(Tj) = L(ΠTj,1
∪ ΠTj,2

. . . ∪ ΠTj,kj
∪ Cj)

Assuming no variation in the execution latencies across loop iterations, the overall execu-

tion time of the parallelized loop is simply the execution time of the thread that takes the

longest time:

Lpar = Maxj(L(Tj))

= Maxj(L(ΠTj,1
∪ ΠTj,2

. . . ∪ ΠTj,kj
∪ Cj)

If Lseq is the sequential execution time of the loop, the speedup obtained by applying DSWP

is given by

speedup =
Lseq

Maxj(L(ΠTj,1
∪ ΠTj,2

. . . ∪ ΠTj,kj
∪ Cj)

(2.2)

Performance characteristics

Equation 2.2 helps to understand the factors that affect the performance of DSWP. The

first observation is that DSWP is not affected by communication latency between cores in

the asymptotic case. This naturally follows from the fact that the communication is always

unidirectional in DSWP and it is pipelined. The only impact of communication latency

is that it increases the “fill” cost of the pipeline which is significant only when the loop

has a low iteration count. This is illustrated by Figure 2.8(b). In this execution schedule,

the communication latency is increased by one more cycle. This increases the fill cycle

in thread 2 by 1. However, after the first iteration is completed, in each cycle an iteration

of the loop completes execution. Thus, the asymptotic execution latency is 1 cycle per

iteration which is twice as fast as the single-threaded case.
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While communication latency is not a factor in the expression for speedup, the latency

of executing the communication operations Ci affects the speedup. If a value is com-

municated immediately after it is generated, the number of communication operations is

proportional to the number of inter-thread dependences. However, strategies can be em-

ployed to group multiple communication operations together [54] so that the number of

communication operations is proportional to the iteration count of the loop.

The factor that significantly affects the performance of DSWP is the execution latencies

of the strongly connected components in the PDG. From the expression for speedup, it is

clear that the speedup is limited by the execution latency of the thread that takes the longest

time to execute. This is lower bounded by the execution latency of the largest SCC as

the thread containing that SCC cannot run any faster than that SCC. Thus, if Πmax is

the largest SCC, then the maximum speedup obtainable by PS-DSWP is
Lseq

L(Πmax)
. Thus a

fundamental difference between DSWP and the other techniques described earlier is that

DSWP parallelization does not scale with the iteration count of the loop and hence the size

of the input to the program.

Application of speculation

Since the speedup obtainable by DSWP is fundamentally limited by the execution time

of the largest SCC in the PDG, speculation can be used as a tool to break large SCCs.

This allows the DSWP partitioning algorithm to form more balanced partitions with bet-

ter performance characteristics. The speculative version of DSWP was first proposed by

Vachharajani et al. [73].

Figure 2.9 illustrates how speculation can be used to enhance pipelined parallelism.

Consider the program dependence graph for the loop in Figure 2.9a. The entire PDG is

one single SCC and hence prevents DSWP from being applied to this loop. Speculation

can be applied by observing that the loop exit branch BR is highly biased in one direction.

In fact, during an invocation of the loop, the branch causes the loop to be exited only
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while(ptr &&

sum < MAX_SUM) { //BR

val = foo(ptr->val)//F

sum += val //A

ptr = ptr->next //LD

}

(a) Loop with an infrequent de-

pendence.

BR

FLD

A

SCC 1

(b) Original PDG and SCCs

BR

FLD

A

SCC 4

SCC 1

SCC 2
SCC 3

(c) Speculative PDG and SCCs

Figure 2.9: This figure shows how speculation can enable the application of DSWP to a

loop with an infrequent dependence.

during the last iteration and in the rest of the iterations it always results in control being

transferred to the statement F. Hence, the control dependences originating from BR can

be speculatively ignored. Figure 2.9(c) shows the resultant speculative PDG. Once the

dependences originating from the branch BR are removed, the PDG decomposes into 4

different strongly connected components allowing DSWP to be applied.
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F:3

F:4
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A:4

BR:1

BR:2

BR:3

Figure 2.10: Execution timeline of the loop in Figure 2.9 parallelized by speculative DSWP.
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Figure 2.10 shows a possible four stage speculative DSWP pipeline of the loop in Fig-

ure 2.9. The loop is assumed to have iterated for 3 iterations. The dashed circles denote

statements that are mis-speculated. For instance, LD:4 and LD:5 are shown inside dashed

circles, denoting the mis-speculation of the statement LD in the fourth and fifth iterations.

A separate thread called commit thread detects mis-speculation and orchestrates the recov-

ery of the correct state. The recovery involves undoing the effects of the mis-speculated

statements and sequential re-execution of the mis-speculated code. To recover from the

effects of speculation on memory state, a special form of transactional memory known as

multi-threaded transactions [72] must be supported in the hardware.
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Chapter 3

Parallel-Stage Decoupled Software

Pipelining

This chapter presents the parallel-stage decoupled software pipelining (PS-DSWP) tech-

nique, first motivating the technique with code examples and then describing the tech-

nique’s details. Finally, the use of speculation to improve the performance gains of PS-

DSWP is discussed.

p = list;

sum = 0;

A: while (p != NULL) {

B: id = p->id;

C: if (!visited[id]) {

D: visited[id] = true;

E: q = p->inner_list;

F: while (q != NULL && !q->flag)

G: q = q->next;

H: if (q != NULL)

I: sum += p->value;

}

J: p = p->next;

}

Figure 3.1: Motivating example for PS-DSWP.
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(b) DAGSCC

Figure 3.2: PDG and DAGSCC for the loop in Figure 3.1.

3.1 Motivation

Parallelizing the loop in Figure 3.1 motivates the PS-DSWP technique. Consider the paral-

lelization of this loop by DSWP. Figure 3.2 shows the PDG and the DAGSCC for the loop

in Figure 3.1. As discussed in the previous chapter, the performance of DSWP is limited

by the execution latency of the largest strongly connected component. There are a total of

7 SCCs in this loop, each represented by a DAGSCC node in Figure 3.2(b). Out of these

7 SCCs, the SCC FG represents the entire inner loop formed by the statements F and G.

Assuming that the inner loop has a sufficiently high iteration count, the SCC FG is likely

to be the largest SCC and the performance of DSWP is limited by its execution time.

A key observation about the loop in Figure 3.1 is that the execution of different invo-

cations of the inner loop are independent. If DSWP is enhanced by allowing concurrent

execution of these invocations, the performance of DSWP will no longer be bound by the

total execution time of the inner loop. PS-DSWP enables such a concurrent execution by

“replicating” the SCC FG so that multiple threads concurrently execute the code repre-
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t3

id = p−>id;

t2

q = p−>inner_list;

   q = q−>next;

   visited[id] = true;

   q = q−>next;

q = p−>inner_list;

   sum += p−>value;   sum += p−>value;

if (!visited[id])

while (q!=NULL && !q−>flag)while (q!=NULL && !q−>flag)

if (q != NULL) if (q != NULL)

Odd iterationsEven iterations

t1

p = p−>next;

Figure 3.3: PS-DSWP applied to the loop in Figure 3.1.

sented by this SCC in different iterations of the outer loop. Replicating a stage results in

the extraction of data parallelism since all replicated copies of a stage execute the same

code, but on different pieces of data. Any stage in the DSWP pipeline that is replicated is

called a parallel stage. This replication is possible because this SCC is created by depen-

dences carried1 only by the inner loop, and not the outer loop that is parallelized by DSWP.

In other words, only dependences carried by the loop being parallelized by DSWP prevent

the formation of parallel stages.

In this example, there are dependences carried by the outer loop in the SCCs AJ, CD,

and I. While the dependences in the first two of these SCCs cannot be ignored, the depen-

dence in the third SCC (I) can be ignored by applying sum reduction [1], allowing the SCC

I to be replicated. Thus, one possible PS-DSWP partition of the DAGSCC in Figure 3.2(b) is

as follows: a first, sequential stage containing SCCs AJ, B, and CD, and a second, parallel

stage containing the remaining SCCs. In this partition, the parallel stage can be replicated

and concurrently executed in as many threads as available, with the performance limited

only by the number of iterations of the outer loop and the slowest stage of the pipeline.

Figure 3.3 sketches the code that PS-DSWP generates for the loop in Figure 3.1, with two

threads executing the parallel stage. While not shown in this figure, the actual transforma-

tion generates code to communicate the control and data dependences appropriately, and to

perform the sum reduction.

1A dependence is said to be carried by a loop if it is inter-iteration with respect to that loop.
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(b) PS-DSWP schedule

Figure 3.4: The execution schedule of the loop in Figure 2.3. Execution latency of LD is

one cycle and A is two cycles.

Figure 3.4 revisits the loop in Figure 2.3 and uses it to contrast DSWP and PS-DSWP.

For the purpose of this example, it is assumed that the list traversed by the loop is acyclic.

The DSWP schedule for the loop is shown in Figure 3.4(a). DSWP is unable to make use

of the third core as the loop cannot be partitioned into more than two stages. Since the

increment of the two nodes in an acyclic list can be done in parallel, PS-DSWP can be used

to replicate the second stage of the pipeline. The resulting PS-DSWP schedule is shown in

Figure 3.4(b).

3.2 Communication Model

The threads created by PS-DSWP communicate values between themselves inside the loop

body. For this purpose, PS-DSWP assumes the presence of a set of point-to-point commu-

nication queues between the threads. The interface to these queues consists of send and

receive primitives. The send primitive produces the value in a register to a communication

queue and the receive primitive consumes the value at the head of a communication queue
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into a register. The queues are addressed using a register relative address mode. A special

register called queue base register (QB) and an immediate value are added together to get

the actual queue number. This mode of addressing the queues allows the same copy of the

code in a parallel stage to be shared by all the threads executing that stage, and yet be able

to communicate with different threads. PS-DSWP does not rely on any specific implemen-

tation of the communication queues for its correctness. The queues could be implemented

by dedicated hardware structures such as synchronization array [56] and scalar operand

networks [67], or by using the memory subsystem [55].

3.3 PS-DSWP Transformation

Algorithm 1 PS-DSWP algorithm

PS-DSWP (loop L)

(1) G← build dependence graph(L)
(2) SCCs← find strongly connected components(G)
(3) if |SCCs| = 1 then return

(4) DAGSCC ← coalesce SCCs(G, SCCs)
(5) A← assign threads(DAGSCC , L)
(6) if |A| = 1 then return

(7) generate code(L,A)

Algorithm 1 shows the pseudo-code for the PS-DSWP transformation. It takes a loop

L as its input and parallelizes the loop. The rest of this subsection describes each step of

the algorithm in detail, focusing on the extensions to the DSWP algorithm that enable the

creation of parallel stages. The loop in Figure 3.1 is used as a running example to illustrate

the steps of the algorithm.

3.3.1 Building the Program Dependence Graph

The Program Dependence Graph (PDG) [18] is used to represent the body of the loop

L. The nodes of the PDG represent operations contained in the body of the loop. An

edge u → v in the PDG indicates that the operation represented by v is dependent on
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the operation represented by u. A dependence arc can represent either a data dependence

through a register,2 a data dependence through memory, or a control dependence. For

registers, only true dependences are represented in the PDG [44]. The dependence arcs in

the PDG are annotated with a flag indicating whether the dependence is inter-iteration or

not. Inter-iteration dependences are identified as follows:

• For data dependences through memory, if array dependence analysis [1] could be

applied, it is used to determine if the dependences are inter-iteration dependences.

Otherwise, a dependence is conservatively treated as an inter-iteration dependence.

• For data dependences through registers, data flow analysis is used to determine if

they are loop-carried. Consider a dependence arc n1 → n2. Let r be the register

written by the operation corresponding to n1. If the definition of r by n1 reaches the

loop header, and the use of r by n2 is upwards-exposed at the loop header, only then

the dependence is an inter-iteration dependence.

• For control dependences, a simple graph reachability check is used. If n1 → n2 is

a control dependence and all paths from n1 to n2 in the control-flow graph contain

the loop backedge, then the control dependence is considered as an inter-iteration

dependence.

Irrespective of the above tests, the dependences between operations that can be sub-

jected to reduction transformations and the self-dependences involving induction variables

are not considered to be inter-iteration, since suitable transformations can be applied to

enable these operations to be executed in a parallel stage.

One limitation of using the PDG representation is that it forces procedures that are

called within the loop to be treated as one indivisible unit, unless they are already in-

lined. As a consequence, if there is an inter-iteration dependence between two operations

deep inside a called procedure, then it prevents the SCC containing the caller from being

2In this discussion, registers denote virtual registers, which are nothing but scalar variables whose ad-

dresses are never taken.
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replicated. The use of system dependence graph (SDG) [25] overcomes this problem by

exposing the operations inside procedures to the dependence graph representation.

3.3.2 Obtaining the DAGSCC

Once the PDG or the SDG of the loop is formed, the strongly connected components

(SCCs) in this dependence graph are then identified [66] and a directed acyclic graph

of them, the DAGSCC , is constructed. Each node of the DAGSCC represents a strongly

connected component in the original dependence graph. The DAGSCC for the PDG in Fig-

ure 3.2(a) is shown in Figure 3.2(b). If there is only one node in the DAGSCC , PS-DSWP

cannot parallelize the loop. If none of the edges in a strongly connected component are

labeled as loop-carried dependences, the corresponding node in the DAGSCC is labeled as

a doall node. All other nodes are labeled as sequential nodes. If a node is labeled doall, the

operations belonging to the SCC corresponding to that node from two different iterations

can be executed concurrently.

3.3.3 Thread Partitioning

Let D = {d1, d2, . . . dk} be the set of nodes in the DAGSCC . Let the number of target

threads be denoted by n, and the set of threads be T = {t1, t2, . . . tn}. The thread partition-

ing algorithm takes D and T as input and produces the following as output:

• A partition P = {B1, B2 . . . Bl} of the nodes in the DAGSCC . Each element of P

corresponds to one of the l stages of the pipeline.

• An assignment A = {(B1, T1), (B2, T2) . . . (Bl, Tl)}, which maps the blocks3 in the

partition P to subsets Ti of T . The Tis partition the thread set T .

3An element of a partition is called block. Thus, in this dissertation, a block refers to a set of nodes in the

dependence graph. Block does not refer to a basic block unless explicitly mentioned as such.
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To be valid, an assignment A obtained as above must respect the following property:

Property 1 (Valid Assignment). The assignment A is valid iff it satisfies the following

conditions:

1. For i 6= j, if there is some dependence from Bi to Bj , then there are no blocks

Bk1 , Bk2 . . . Bkn
, where k1 = j and kn = i, such that there is some dependence arc

from every Bkl
to Bkl+1

. In other words, the dependence arcs between the blocks in

the partition do not result in a cycle.

2. For every (Bi, Ti), with |Ti| > 1, the DAGSCC nodes in Bi must be doall nodes, and

none of the dependence arcs among the nodes in Bi is an inter-iteration dependence.

The first condition ensures that the blocks Bi can be mapped to threads that form a

pipeline. The second condition ensures that only doall nodes are present in a parallel stage

and that there are no loop-carried dependences within a parallel stage. In addition to the

above two conditions, a third condition is imposed in the implementation described in this

work to simplify code generation: for every (Bi, Ti), with |Ti| > 1, |Ti| = k. In other

words, every parallel stage in a loop is executed by the same number of threads.

An ideal solution to the thread partitioning problem is one that minimizes the overall

execution time of the parallelized loop. However, the execution times of the different oper-

ations in the loop are not known a priori during compilation time. Further discussion on the

problem modeling and different thread partitioning algorithms is postponed to Chapter 4.

3.3.4 Code Generation

After the partition and assignment are chosen, multi-threaded code is generated using an

extension of the MTCG algorithm [44]. The algorithm described here assumes that the

dependence graph is a PDG. The code generation algorithm for SDG is very similar to this

with some additional changes to partition the procedures contained within the loop. The

code generation extensions specific to the partitioning of SDG are discussed by Bridges [5].

34



Thread procedures

Let P = {B1, B2 . . . Bl} be the partition obtained by thread partitioning. The instructions

in the blocks B2 . . . Bl are removed from the original loop and placed into separate proce-

dures F2 to Fl. Placing the operations involves appropriately creating the required control

flow in these procedures. This part of the code generation is identical to the original MTCG

algorithm and hence is not described here in detail.

If Bi forms a parallel stage, then it is executed by multiple threads. All these threads

execute the same procedure Fi. However, certain registers, such as loop induction variables,

need to be initialized differently by each of the threads. Hence each Fi is passed a parameter

that distinguishes the different threads that execute a given stage.

Inter-thread communication

Once the operations are placed in their respective procedures, dependences are communi-

cated between the procedures. Based on the position in the CFG where the communication

operations are inserted, inter-thread communication can be classified as follows:

Communication inside the loop: Consider two blocks Bi and Bi+1 produced by the

thread partitioning algorithm. Let PBi
and PBi+1

be the PDG nodes contained in the two

blocks. Consider the set of PDG edges E = {(u, v) | u ∈ PBi
, v ∈ PBi+1

}. E is the

set of edges whose source node belongs to PBi
and the destination node belongs to PBi+1

.

The dependences represented by E need to be communicated from the thread executing the

operations in Bi to the thread executing the operations in Bi+1. The dependences commu-

nicated include both data and control dependences.

Register dependences are communicated by sending the value of the register immedi-

ately after the operation at the source of the dependence. In the receiving thread, this value

is received at the corresponding program point. Memory dependences are synchronized

using send/receive pairs. The communication primitives used for memory synchronization

also act as memory barriers by implementing the release/acquire semantics.
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Control dependences are communicated by replicating the relevant branches. Consider

the control dependence n1 → n2. The node n1 must correspond to a conditional branch

instruction. This dependence is communicated by replicating that branch in the thread

containing n2. The direction of execution of the replicated branch should always mirror

the original branch. This requires communicating the branch direction to the other thread,

which can be viewed as a data dependence communication. Since all the operations in-

side the loop are transitively control dependent on the loop exit branch, the loop branch is

replicated in all the threads. This recreates the loop structure in all the threads.

Communication between sequential and parallel stages is handled differently. Consider

a dependence n1 → n2 from a sequential stage S to a parallel stage P . Let p be the number

of threads that execute the parallel stage. Then, during the ith iteration of the loop, the

dependence is communicated to the (i mod p)th thread executing the parallel stage P .

Initially, all such dependences are communicated as if the dependence exists between two

sequential stages. Then the total number of communication queues used Qused is computed.

The total number of available queues Qmax is then divided into a set of Qused contiguous

queues. Each set of Qused is called a queue-set. Let t0 . . . tk−1 be the threads that execute

the parallel stage P . Each ti is assigned a unique queue-set and it uses only the queues in

that queue set. The thread ti initializes its QB register to i×Qused before entering the loop.

The sequential stage S sets the value of QB to (Qused× j) mod (k×Qused) at the beginning

of the jth iteration so that the values it produces are communicated to thread tj mod k.

Figure 3.5 shows the communication of dependences for the loop in Figure 3.1. For the

purpose of this example, a two stage partition of the DAGSCC in Figure 3.2(b) is assumed.

The first stage is a sequential stage with SCCs AJ, B and CD and the second stage a parallel

stage with the rest of the nodes in the DAGSCC . Thread t0 executes the sequential stage

and threads t1 and t2 execute the parallel stage. Both t1 and t2 execute the same copy of

the loop. The communications within the loop occur from t0 to t1 and t2, alternately. The

communications between t0 and t1 are shown in dashed lines, and the communications
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Figure 3.5: Inter-thread communication in PS-DSWP for the loop in Figure 3.1. A two

stage partition of the DAGSCC in Figure 3.2(b) is assumed with the parallel second stage

executed by two threads. The (S1,R1) and (S3,R3) pairs communicate the loop exit con-

dition, (S2,R2) pair communicates the variable p, (S4, R4) pair communicates the branch

condition inside the loop and the (S5, R5) pair communicates the loop live-out sum.
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between t0 and t2 are shown in dotted lines. The loop exit branch A is split into two

statements A1 and A2, where A1 computes the branch condition and A2 is the actual

branch. Thread t0 executes A1 and communicates the value to t1 and t2 by means of the

send/receive pair (S3, R3). The branch A2 is replicated in the parallel stage as A2’, thereby

completing the communication of the control dependence. This creates the loop structure

in the parallel stage. The branch C is similarly communicated to t1 and t2. The data

dependence from J that defines the variable p is communicated using the send/receive pair

(S2, R2).

Communication of live-ins: If a register defined outside the loop is used within the

loop in the newly created threads, then the value of this register just before entering the loop

needs to be communicated. Consider a procedure Fi that uses a value v defined outside the

loop. If Fi executes a sequential stage, then the value v is communicated to Fi at the pre-

header of the loop. If Fi executes a parallel stage, then the location of communication

depends on whether the value is loop-invariant or not. If the variable containing v is loop-

invariant, then the value is communicated at the pre-header. If the variable is not loop

invariant, communicating the value in the pre-header will result in incorrect execution. To

see this, consider the variable p in Figure 3.1, which is defined both outside and inside the

loop. Let p be communicated to the parallel stage outside the loop at the pre-header. Since

all threads executing the parallel stage execute the same thread procedure, all of them would

be initialized with the value of p outside the original loop. Only the first thread executing

the parallel stage — the one that executes the first iteration of the original loop — has to

be initialized with this value. It is incorrect to initialize p with this value in the rest of the

threads executing the parallel stage. For instance, in the second parallel thread, the variable

p needs to be initialized with the value of p produced by the statement J in the first iteration

of the loop, and not the value from outside the loop. Hence, if a variable is defined both

inside and outside the loop, its value must be communicated at the loop header, instead of

the pre-header.
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In Figure 3.5, the communication of the live-in variable p is shown by the send/receive

pair (S2, R2) in basic block 1. Note that p is also communicated within the loop in basic

block 8. In this example, the (S2, R2) pair in basic block 8 can be removed since the R3 in

block 1 redefines p.

Communication of live-outs: All the variables that are defined inside the sequential

stages, and live out of the loop are communicated back to the main thread. In the parallel

stages, for each register that is not control dependent on any branch within the loop, only

the thread that executes the last iteration of the loop sends the value of the register. If

the variable is an accumulator, all the threads send the value to the main thread where

the values are added together. For conditionally defined variables and variables subjected

to min/max reduction, all threads executing the parallel stage send both the variable and

also the iteration count when the variable was last written. This iteration count acts as a

timestamp and its use is is discussed in Section 3.3.4. The only live-out variable in the

example loop is the accumulator sum, whose communication is shown by the (S5, R5)

pair.

Loop termination

The loop exit branches are replicated in all thread procedures to satisfy control depen-

dences. Exit branch replication enables the threads executing sequential stages to properly

terminate the loop. However, replicating the exit branches is not sufficient to terminate

the parallel stages, since only one of the threads assigned to a parallel stage executes the

last iteration of the loop, and only that thread exits the loop by taking the original loop

exit. Two different approaches are used to terminate the rest of the threads executing the

parallel stages, depending on where a parallel stage is located in the pipeline. If a parallel

stage is the first stage of the pipeline, it implies that the loop is counted. This follows from

the fact that all operations are control dependent on all loop exit branches, and the loop

exit is part of a non-trivial SCC in an uncounted loop. In the case of a counted loop, each
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thread executing the parallel stage counts the number of iterations they need to run and exit

based on that. If a parallel stage is not the first stage, the first (sequential) thread, which

is guaranteed to execute the loop exit branch, explicitly communicates loop termination

information to the threads executing the parallel stage. The first sequential thread sends a

true token at the loop header to the thread that is going to execute the current iteration.

On loop termination, it sends a false token to all the threads. Since the parallel-stage

thread that has exited the loop by taking the loop exit branch also receives a false token,

it has to consume and discard that token after exiting the loop. The communication of this

exit token is shown by the (S1, R1) pair in Figure 3.5. Basic block 10 in t1 and t2 has

a branch that exits based on the value received by R1. This token is sent by t0 in basic

block 1 within the loop, and basic block 9 outside the loop. Either t1 or t2 exits the loop by

executing the original loop exit branch and consumes this token in basic block 11.

Loop induction variables

When a loop induction variable is assigned to a parallel stage, it needs to be suitably ini-

tialized at the beginning of each thread. Consider a basic induction variable of the form

i = i + k. Let i0 be the initial value of i before entering the loop. Let 0, 1, . . . , p − 1 be

the thread identifiers of the threads executing the parallel stage that increments the induc-

tion variable. In the parallel stage, the variable i is initialized to i0 + id × k at the loop’s

pre-header, where id is the thread identifier passed as a parameter to the thread procedure.

Thus each thread executing the parallel stage initializes the variable with a different value.

Inside the loop, the value of i is incremented every iteration by p× k.

Loop live-outs

If a loop live-out is an accumulator, all threads executing the parallel stage send the values

to the main thread at loop termination, and the main thread sums them up. For other live-

outs that are not conditionally defined, only the thread that executes the last iteration of the
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if(cost < mincost){

mincost = cost;

minnode = node;

}

(a) Original code

if(cost < mincost){

ic = curr_iteration;

mincost = cost;

minnode = node;

}

(b) Code in parallel stages

receive(mincost1)

receive(minnode1)

receive(ic1);

receive(mincost2)

receive(minnode2)

receive(ic2);

mincost = mincost1;

minnode = minnode1;

if(mincost2 < mincost){

mincost = mincost2;

minnode = minnode2

}

else if(mincost2 == mincost){

if(ic2 < ic1)

minnode = minnode2;

}

(c) Merging of the results

Figure 3.6: Merging of reduction variables defined in parallel stages using iteration count

as the timestamp.

loop sends the value to the main thread. Conditionally defined live-outs pose an additional

problem as shown by the code fragment in Figure 3.6(a). Assuming that the computation

of mincost and minnode can be subjected to reduction, this code fragment can be part

of a parallel stage. If that parallel stage is executed by two threads, one of them computes

the minimum of the cost variable and the associated node in all even iterations, and the

other thread computes the minimal in all odd iterations. To correctly obtain the value of

minnode, it is essential to keep track of the iteration in each of the threads that finally de-

fines the mincost variable. Figure 3.6(b) shows that a variable ic is assigned the current

iteration count whenever mincost is assigned. Figure 3.6(c) shows how the main thread

merges the two values. If mincost produced by one thread is less than the mincost

produced by the other thread, the lesser value and the associated minnode is chosen. If

the values are equal, then iteration count determines the correct value of minnode.
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int a[N], b[N], c[N];

A: for(i = 1; i < N; i++){

B: a[i] = a[i]*b[i];

C: c[i] = c[i-1]+a[i];

}

(a) Loop affected by false sharing

cache lines

array elements

(b) Without chunking (c) With chunking

Figure 3.7: Memory access pattern with and without iteration chunking.

3.3.5 Optimization: Iteration Chunking

The PS-DSWP transformation causes the iterations of the parallel stage to be executed in

a round-robin fashion by the threads assigned to that stage. One of the drawbacks of such

a round-robin execution is that it could exacerbate the problem of false sharing, thereby

negating the benefits of parallelization. False sharing can occur on multi-processors that

implement an invalidation-based cache-coherence protocol when two or more different pro-

cessors alternately write to different locations in the same cache line.

Consider the loop in Figure 3.7. PS-DSWP can parallelize this loop into a first parallel

stage containing statements A and B executed by two threads followed by the sequential

stage executing C. The first thread executing the parallel stage writes to array elements

a[1], a[3], a[5] and so on, and the second thread writes to even elements of the array

a. This is depicted in Figure 3.7(b). Each row in the figure represents a cache line, and

each cell in a row represents an array element. For the sake of this discussion, assume that
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the cache-line size is 4 times the size of an element, and that the array is aligned to the

cache-line boundary. The two different colors used in the cells represent the two different

processors that execute the parallel stage, and hence write to the cache line. Since both

threads write to the same cache line, the ownership of the cache lines alternate between the

two processors. This increases the latency of every access to a. If this increase in latency

is huge, it could negate the benefits of executing the pipeline stage in parallel.

In this example, false sharing can be eliminated by applying iteration chunking. With

iteration chunking, each of the threads executing the parallel stage executes chunks of

contiguous iterations, in a round-robin fashion. For the example in Figure 3.7(a), assuming

that the two parallel threads execute chunks of 4 iterations, the writes to array a now exhibit

a pattern shown in Figure 3.7(c). Each cache line is written by only one processor, and the

two processors write to alternate cache lines, thereby eliminating false sharing. However,

chunking could reduce the amount of parallelism. In the extreme case, the chunk size can

equal the total number of iterations of the loop in a given invocation, which is equivalent

to treating that stage as a sequential stage. The chunk size can be specified as a parameter

by the user to the PS-DSWP transformation and defaults to 1. Chunking requires some

additional changes to PS-DSWP code generation in the areas of induction-variable handling

and the manipulation of the QB register.

3.3.6 Optimization: Dynamic Assignment

In PS-DSWP, the ith iteration of a parallel stage is executed by thread ti mod k where k is

the replication factor of that parallel stage. Such a static assignment of iterations to threads

can result in severe performance degradation due to variability in iteration execution times.

This is illustrated in Figure 3.8(a). The figure shows the execution schedule of a loop

after PS-DSWP transformation. There are two stages in the pipeline: a sequential stage

followed by a parallel stage which has a replication factor of two. Consider a case where

the first iteration of the parallel stage takes much longer than the rest of the iterations. As
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P2

P4

P6

P8

P3

P5

P7

S1

S7

S8

S6

S4

S2

S3

S5

P1

t0 t1 t2

(b) Dynamic Assignment

Figure 3.8: Comparison of execution schedules with static and dynamic assignment of

iterations to threads.

a consequence, thread t1 takes much longer to complete executing its share of iterations

than thread t2, while t2 is idle for many cycles between useful work. These idle cycles can

be eliminated by dynamically assigning parallel-stage iterations to the threads that execute

that stage. Figure 3.8(b) shows a dynamic assignment where thread t1 executes just the first

iteration of the parallel stage and t2 executes the rest of the iterations, thereby reducing the

total run-time.

Two different implementations of dynamic assignment are discussed in this section.

Both these implementations assume that the first stage is not a parallel stage as that implies

a fixed partition of iterations to threads. The first implementation follows a work-queue

model where the threads executing the parallel stage themselves decide the mapping. Let P

be a parallel stage and S be the sequential stage that immediately precedes it in the pipeline.

At the beginning of each iteration, the thread executing stage S writes the queue-set used in
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that iteration to the head of a shared work queue accessed by P . The work queue is accessed

by all threads executing P and is guarded by a single lock. The thread that locks the queue

consumes the value from the head of the queue and uses it to set the QB register. For this

implementation of dynamic assignment to work, the communication model has to be more

general than the model described in Section 3.2. The queues in a queue-set have to be

accessible to multiple processor cores that execute the threads associated with P . Memory

based implementations of the communication queues as proposed by Rangan et al. [55] can

provide such a functionality. Another drawback of this scheme is that during each iteration,

many threads contend for a single lock which could degrade the performance.

The second implementation does not require changes to the communication model and

retains the one-to-one mapping from threads to queue-sets. Let S1 be the first stage of

the pipeline, which is a sequential stage. In this implementation, S1 decides the mapping

from iterations to threads. Let i be the current iteration and k be the number of threads

assigned to each parallel stage. Under static assignment, iteration i gets mapped to thread

tj , where j = (i mod k). Let tr be the candidate thread for this iteration, where r 6= j. The

thread executing S1 determines the candidate based on processor load or some other related

metric that can be obtained from hardware performance counters. Dynamic assignment is

achieved by treating the current iteration as if it is iteration l, where l mod k = r, so that

it gets assigned to thread tr. To realize this, S1 inserts e empty loop iterations into the

pipeline, where e = (r − j) mod k. An empty iteration is inserted to a pipeline stage by

issuing an EARLY EXIT at the beginning of that stage. When a thread receives that token,

it skips that loop iteration by jumping to the end of the iteration. When an empty iteration

is inserted, threads executing the sequential stages, including S1, increment the QB register

so that it points to the next queue-set. After inserting e empty iterations, the QB register in

the sequential stages would point to the queue-set used by tr. At this point S1 executes the

original iteration i normally.
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As an example, consider a two stage pipeline with a first sequential stage and a second

parallel stage with a replication factor of 3. Let PT0, PT1 and PT2 be the threads that

execute the parallel stage. Iterations numbered 0 to 4 are assumed to be assigned to the

threads in a round robin fashion similar to static assignment. When the sequential stage

enters iteration 5, it decides which parallel stage is best suited to execute that iteration.

Based on some heuristic, it decides to assign iteration 5 to PT1. It then sends EARLY EXIT

tokens to PT2 and PT0, thereby inserting two empty iterations. As a result, it can treat the

original iteration 5 as if it is iteration 7 and gets assigned to PT1.

3.4 Speculative PS-DSWP

Like other non-speculative parallelization techniques, the performance potential of PS-

DSWP is limited by the conservative nature of the underlying static analyses. In particular,

the conservative results produced by the memory dependence analysis are often a crucial

limiting factor. Even if the analyses are accurate, they cannot ignore the dependences that

infrequently manifest and those dependences that are highly input dependent. Speculation

can be used in those situations to improve the effectiveness of PS-DSWP. The application

of speculation to PS-DSWP is along the lines of speculative-DSWP [72, 73].

Speculative PS-DSWP transformation involves the following steps:

1. Perform loop-aware memory distance profiling and annotate the program with the

profile information.

2. Construct the PDG (or the SDG) for the loop to be parallelized.

3. Form the speculative PDG by speculating dependences in the original PDG.

4. Construct the DAGSCC and apply a PS-DSWP thread partition algorithm that gener-

ates a valid assignment.

5. Compute the set of speculations to retain based on the partitioning.
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6. Apply the necessary speculations on the original single-threaded code and insert code

for mis-speculation detection.

7. Apply the PS-DSWP code generation algorithm on the speculated single-threaded

code.

8. Generate code for mis-speculation recovery.

A detailed description of these steps can be found in the Ph.D dissertation of Vach-

harajani [72]. The rest of this section describes loop-aware profiling and some details of

mis-speculation recovery that are specific to speculative PS-DSWP but not relevant to spec-

ulative DSWP.

3.4.1 Loop Aware Memory Profiling

The application of speculation to PS-DSWP is helpful in two ways. Speculation can cause

large SCCs to be broken down into smaller ones. This increases the likelihood of a more

balanced partitioning of the loop into pipeline stages. This benefit is the primary motiva-

tion for speculative DSWP and does not depend on the presence of parallel stages. The

second benefit of speculation is specific to PS-DSWP. Speculation can cause a node orig-

inally labeled sequential to be labeled doall. This is possible when an inter-iteration de-

pendence is speculatively treated as intra-iteration. Recall that the classification of intra-

and inter-iteration dependences is possible using static analysis only for memory depen-

dences involving affine array accesses. All other memory dependences are conservatively

assumed to be inter-iteration dependences. Instead of such a conservative classification, the

loop aware memory profiling (LAMP) described in this section can be used to speculatively

identify intra-iteration dependences, thereby potentially causing many DAGSCC nodes to

be treated as doall nodes.
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Profile information

Just like other profilers, LAMP gives runtime dependence information between store/load

pairs. Unlike other profilers, this dependence information between store/load pairs is not

just a count indicating the number of times the store and the load alias. Instead, LAMP

outputs a set of triples LP = { (Hl, dist, count) }, where Hl is a loop header, dist is depen-

dence distance and count is profile count. A triple (Hl, dist, count) is to be interpreted as

follows: with respect to a loop whose header is given by Hl, the number of times the load

reads a value written by the store that executed dist iterations ago is count. As a concrete

example, the presence of a tuple (Hloop1, 1, 10) in LP indicates that both the load and store

are inside some loop loop1 and with respect to that loop, load has read the value written to

by the store in the previous iteration 10 times. Note that the same pair of operations may

also have an intra-iteration dependence if LP contains a triple (Hloop1, 0, countintra) as well

as a dependence with respect to a different loop loop2 if LP contains a triple (Hloop2, dist,

count).

The number of inter-iteration dependences between stores and loads is obtained by

adding all values of count in triples of the form (Hloop, dist, count), where loop is the

loop being parallelized by PS-DSWP and dist > 0. If this value is below a threshold, the

dependence can be speculated as an intra-iteration dependence.

Profiler implementation

The program to be profiled is instrumented with calls to the LAMP library. First, unique

identifiers are assigned to all memory operations such as loads, stores and external library

calls as well as all the loops in the program. Then all memory operations are instrumented

with calls to the LAMP API. These calls take the identifier of the memory operation, the

address accessed by the memory operation, and the size of the load or store. The preheader

and the loop exits are instrumented to indicate the start and end of loop invocations. The

loop headers are instrumented to indicate the beginning of a new iteration of a loop.
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The LAMP library maintains several data structures to collect loop-aware profile infor-

mation. The data structures and how they are used are described below:

Timestamp A global timestamp counter that is incremented whenever a LAMP API is

called.

Loop nest stack The loop nesting information is maintained as a stack. Whenever the

LAMP invocation start API call is made, the identifier of the loop and the

current time stamp are pushed to the stack and when the LAMP invocation end

call is made the top element of the stack is popped out.

Loop iteration queues For each loop in the loop nest stack, a circular queue is maintained.

Whenever a LAMP iteration start API call is made, the current time stamp is

inserted to the tail of the circular queue corresponding to the current loop (i.e the top

element of the loop nest stack).

Memory writer map A map is maintained between each memory location and the store

operation that last wrote to that location. Whenever a LAMP store API call is

made, a map is created between the locations that are written by the store and the

tuple (id, current time stamp).

LAMP arcs map This is the main data structure that contains the final profile information.

This is a map between (store id, load id, loop) triples and a list of (iteration distance,

count) tuples. This map is updated whenever a LAMP load call is made. The lo-

cation that is read by the load is looked up in the the memory writer map to get the

(store id, time stamp) tuple. The timestamps of the entries in the loop nest stack are

scanned from top to bottom to find the innermost loop that encloses both the load

and the store. The loop iteration queue for this loop is scanned to find the iteration

distance based on the iteration in which the store happened and the current iteration.

If dist is the iteration distance, then the list in the LAMP arcs map corresponding
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to the triple (store id, load id, this loop) is scanned to see if there is a tuple for this

iteration distance, and if so, the corresponding count is incremented. If no such tuple

is found, a new (dist, 1) tuple is added to the list. If the dist is non-zero (i.e the de-

pendence is an inter-iteration dependence), the process is continued for outer loops

in the loop nest. If the iteration distance is 0, then the scanning of the entries in the

loop nest stack stops since the iteration distance with respect to any outer loop will

also be 0. When the program terminates, the contents of the LAMP arcs map are

dumped to a file which is later used to annotate the program

The length of the circular queues determines the maximum dependence-distance that

can be tracked by LAMP. If l is the length of each circular queue, any dependence with

distance greater than l cannot be distinguished from a dependence with distance l and hence

are merged together. For the purpose of speculative PS-DSWP, it is sufficient to distinguish

dependences with distance 0 (intra-iteration) and greater than 0 (inter-iteration). Hence the

circular queue can be replaced by a scalar that stores the time stamp of the last iteration of

the loop.

Among the different data structures, the loop related structures have negligible mem-

ory usage. The size of LAMP arcs map in practice turns out to be small, since the set of

dependences that manifest in practice are small [38]. The size of the memory writer map

is proportional to the working set of the application. Its size can be reduced by keeping

information at word level instead of byte level. Various performance optimization tech-

niques including caching and paging have ensured that profile times are of the order of a

few minutes for applications in the SPECInt 2000 benchmark suite.

3.4.2 Mis-speculation Detection and Recovery

Speculative DSWP uses a hybrid software-hardware approach to mis-speculation detection

and recovery. The hardware support is in the form of multi-threaded transactions (MTX)

which is only used to manage speculative updates to the memory, with software taking
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op1: ld r1 = M[r2]

op1’: ld r1’ = M[r2]

op3: br r1 == r1’, L

//Mis-speculation

L:

...

op2: st M[r3] = r4

Figure 3.9: Application of memory alias speculation in speculative PS-DSWP.

care of the rest of the mis-speculation detection and recovery. Each stage contains code

to detect violation of any speculated dependence in that stage. It then communicates that

information to a separate thread called the commit thread that orchestrates the recovery

process. The commit thread gathers the set of live-in registers from the individual stages

at the beginning of each iteration. When it receives mis-speculation information from a

thread, it restores the memory state to the state prior to the mis-speculation, re-executes the

mis-speculated iteration sequentially, and sends back the correct set of live-in registers to

all the threads. The hardware support and the steps involved in mis-speculation detection

and recovery are discussed in detail by Vachharajani [72].

The integration of PS-DSWP with speculative DSWP is almost seamless requiring very

minor changes to the two component techniques. Because of the presence of parallel stages,

the commit thread maintains multiple copies of the live-in registers that need to be restored

in each thread executing a parallel stage after recovery from mis-speculation. It manipulates

the queue base register to receive iteration live-in values from each thread in a round-

robin fashion. The queue base register in each thread itself is saved and restored after

mis-speculation to allow for correct communication among the different threads after mis-

speculation.

The addition of memory alias speculation forces the last stage of a PS-DSWP partition

to be a sequential stage because of the mis-speculation detection mechanism used in spec-

ulative DSWP. In speculative DSWP, all speculations are first applied to single-threaded

code before performing the partitioning. The application of memory speculation leads to

the insertion of new operations that must be appropriately allocated to a pipeline stage.
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In Figure 3.9, the dependence between the store op2 and the load op1 needs to be

speculated. In the single-threaded code, the load op1 is first cloned to create another load

operation op1’. Then, the original load value r1 and the cloned loaded value r1’ are

compared. Then, during partitioning, the dependence between op2 and op1 is ignored in

the PDG but a dependence is created between op2 and op1’. Furthermore, the branch

op3 is speculated to be always taken and control speculation is applied to the branch. If

the branch is not taken, it implies that r1 and r1’ are not equal. Since the dependence

between op2 and op1’ is enforced, r1 must have the incorrect value, implying the mis-

speculation of op1.

If the dependence between op2 and op1 is loop-carried, then the dependence between

op2 and op1’ is also loop-carried. Hence, op1’ has to be placed in a sequential stage

and the stage containing op1’ must come after the original store and load. Thus, due to

the use of alias speculation in speculative PS-DSWP, the last stage of the pipeline must be

a sequential stage.

3.5 Related Work

Davies [14] proposed an extension to DOPIPE that applies DOALL parallelization to a

stage if the stage comprises only an inner loop. The technique is also not general enough

to be applicable to loops with arbitrary control flow. PS-DSWP is applicable to loops with

arbitrary control flow and parallel stages are not limited to inner DOALL loops. Takabatake

et al. [65] proposed the Do-sandglass parallelization based on the observation that a loop

can be divided into tasks with inter-iteration dependences and tasks that do not have inter-

iteration dependences and they can be executed as a pipeline. However, they do not propose

any automatic transformation to achieve the same.

When a loop to which DOALL cannot be applied contains some statements that do not

have any inter-iteration dependences, loop distribution [1] can be applied to isolate those
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statements into separate loops. Then, those loops can be subjected to DOALL paralleliza-

tion and the rest of the original loop can be executed sequentially. This approach results in

computational resources being unused when the sequential portions execute whereas PS-

DSWP overlaps the execution of the sequential and DOALL portions to extract pipelined

parallelism. Furthermore, loop distribution can be applied only to counted loops.

Some of the advantages of PS-DSWP can be obtained by applying loop unrolling fol-

lowed by DSWP. If a loop is unrolled twice, an SCC in the original loop body that does

not contain an inter-iteration dependence with respect to the loop being parallelized is also

replicated twice and forms two separate SCCs in the unrolled loop. Hence a DSWP parti-

tion of the unrolled loop could execute the two SCCs in two different threads. This unroll-

and-DSWP approach has some significant drawbacks when compared to PS-DSWP. The

first big disadvantage is the increase in code size due to unrolling, especially when applied

to outer loops. To gain the same benefits of applying PS-DSWP inter-procedurally, it is not

just enough to unroll the outer loops but also recursively inline the functions in the loop.

This causes significant code growth for large unroll factors. Even if the code growth of the

final binary can be tolerated, this code growth affects the size of PDG and other data struc-

tures in memory, thereby increasing cost of analyses and the transformation. The second

major drawback is that this does not allow for dynamic assignment of iterations to threads

described in Section 3.3.6. There are also other limitations such as the fact that the repli-

cation factor of a parallel stage has to be determined earlier since unroll factor determines

the replication factor, whereas in PS-DSWP it is decided after the formation of the PDG.
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Chapter 4

Thread Partitioning

This chapter discusses the PS-DSWP thread partitioning problem in detail. The goal of

thread partitioning is to obtain a valid thread assignment that minimizes the execution time

of the parallelized loop. However, the actual execution time depends on the input set and

no compile time algorithm can minimize the execution time for all possible inputs. In this

chapter, the problem is simplified and modeled using metrics available at compile time.

The hardness of obtaining an optimal solution under this model is then shown, followed

by a discussion on three different heuristic solutions. This chapter presents empirical data

comparing the three different heuristics and based on the empirical data, a heuristic called

doall-and-pipeline is found to outperform others. The purpose of this empirical analysis is

to identify the heuristic that is likely to have a good average performance on a large number

of loops, so that it can be used by a compiler implementing PS-DSWP.

4.1 Problem Modeling and Challenges

To model the solution for the thread partitioning problem, the following simplifying as-

sumptions are made:
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• The execution time of each pipeline stage remains unchanged across different itera-

tions of the loop.

• The target processor has a single-issue in-order architecture with each operation tak-

ing 1 clock cycle to execute.

Under these assumptions, the execution time of the original operations in a stage Si

(which is the same as the operations in block Bi of the partition P ) can be approximated

by Wi, the profile weight of those operations. The profile weight Wi is simply the sum of

dynamic execution frequencies of all the operations in that stage. In addition, after the PS-

DSWP transformation, each stage executes some additional send/receive operations, whose

cost is denoted by Ci. Finally the number of iterations executed by the loop is assumed to

be much larger than the number of threads n so that all threads executing a parallel stage

performs roughly the same amount of work.

Based on the above approximation, an expression for the execution time of the paral-

lelized loop can be derived. The execution time of a sequential stage is just the sum of its

Wi and Ci. If a stage Si is a parallel stage, its work is equally divided across |Ti| threads and

hence its execution time is
(Wi+Ci)

|Ti|
. Furthermore, the latency of a pipeline is determined by

the latency of its slowest stage. Thus, the execution time of the parallelized loop is given

by

E = MAXi(
Wi + Ci

|Ti|
). (4.1)

For this simplified model of the problem, the optimal solution is one that minimizes

MAXi(
(Wi+Ci)

|Ti|
). Minimizing E can be shown to be NP-hard. The proof is by a reduc-

tion from the bin packing problem, a known NP-complete problem [20].

Theorem 1. Thread partitioning is NP-hard under the simplified execution model.

Proof. The input to the bin packing problem is a sequence of numbers S, a number of bins

b, and the capacity c of each bin. The problem is to decide if there exists an assignment of

the numbers in S to the b bins such that the sum of the numbers in each bin is at most c.
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The reduction to the thread partitioning problem instance is as follows. For each num-

ber Si in S, a DAGSCC node is created whose profile weight is set to Si. All nodes are

labeled sequential. No edges are created in the DAGSCC leading to the absence of any

communication between the nodes. The number of threads n is set to b, the number of bins.

The solution to this thread partitioning instance returns an assignment

A = {(B1, T1), (B2, T2) . . . (Bl, Tl)}, whose execution time E is given by MAXi(
(Wi+Ci)

|Ti|
).

Since no stage can be a parallel stage and there is no communication between the stages,

the number of stages l becomes the number of bins b and E reduces to MAXi(Wi). Con-

sider a bin packing where all numbers corresponding to the DAGSCC nodes in stage Si are

packed into a unique bin. If the solution to the thread partitioning problem is optimal, then

the solution to bin packing can be obtained by merely checking if MAXi(Wi) < c.

Since the size of the DAGSCC runs into thousands of nodes when constructed from a

system dependence graph, an exact solution is impractical. Hence, the rest of this chapter

presents three different heuristic algorithms for the thread partitioning problem.

4.2 Evaluating the Heuristics

Since all the three algorithms are heuristic solutions, empirical results are used to compare

them and find the algorithm that is better on the average. The algorithms are evaluated

on a total of 251 loops from 29 benchmarks that include the SPEC2000 and SPEC2006

integer benchmarks [60] written in C, the Mediabench benchmarks [29] and a few Unix

applications. Only those loops that account for at least 10% of the total execution time in

these benchmarks are used for the comparison.

The system dependence graphs of these loops are first constructed. Then, the following

criteria are used to speculate infrequent dependences in the SDG:
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Figure 4.1: Search tree traversed by the exhaustive search algorithm.

• If a branch is highly biased (> 95%), then the control dependences from the branch

to all the operations it controls are speculated.

• Dependences between operations that are infrequent with respect to the execution

frequency of the outer loop are speculated.

• Memory dependences that never manifested during the profiling run are speculated.

The DAGSCC is constructed from the speculated SDG and the partitioning algorithms are

applied on the DAGSCC . For each loop, an estimated speedup metric is computed based on

the parallel execution time in Equation 4.1 and its sequential execution time. This speedup

estimate does not take into account the cost of mis-speculation detection and recovery.

4.3 Algorithm: Exhaustive Search

The first approach is an exhaustive search algorithm that is based on the assumption that

while the PS-DSWP partitioning problem is NP-hard, certain instances may still be tractable

if the edges in the DAGSCC highly constrain the set of legal solutions. For such instances,

the algorithm searches all possible legal partitions to find the best partition. For other in-

stances, a time budget is used to stop the search-space prematurely and return the best

solution found so far.
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The search of solution space is illustrated in Figure 4.1. Figure 4.1(a) shows a sim-

ple straight-line DAG with three nodes and Figure 4.1(b) shows the corresponding search

tree. Each node of the search tree corresponds to a dependence graph G that needs to

be partitioned and the number of threads available to partition the graph. The root of the

tree contains the entire dependence graph, represented by the set of nodes {1, 2, 3} and the

number of threads given to the partitioner, which is 4 in this case. All nodes, other than the

root node, consist of two sub-nodes. This denotes a cut of the dependence graph associated

with its parent into two parts. For instance, the leftmost child of the root node corresponds

to cutting the graph into a subgraph G1 consisting of just node 1, and a subgraph G2 con-

sisting of nodes {2, 3}. The two subgraphs are represented by the two sub-nodes in the left

child of the root. The sub-nodes also contain the information that one thread is available

to partition the subgraph G1 and three threads to partition G2. A pipeline for G with 4

threads can be obtained by first obtaining a pipeline of G1 with one thread, a pipeline of

G2 with three threads and then by appending the second pipeline to the first. By cutting

G in different ways and by assigning different number of threads to the cuts, multiple fea-

sible solutions for G are obtained. The best among them — the one that maximizes the

estimated performance — is then chosen. The solution for each of the parts in a given cut

can be similarly obtained recursively. Thus, each of the sub-nodes has a set of children in

the search tree. A sub-node has no children if the corresponding subgraph is a single-node

subgraph in which case it cannot be further partitioned. A node is also a leaf node if it has

less than three threads as otherwise its partition cannot contain a parallel stage.

The pseudocode for the SEARCH routine is given in Figure 2. It contains several

optimizations to prune the search tree. It first has a series of if statements that terminate

a branch of the search tree. First, it checks if the partition for the given graph for the given

number of threads has been already computed and returns it from a table. The search also

terminates when there is just one thread available, in which case there is nothing left to

partition. If the entire graph is a DOALL graph, then again no partitioning of the subgraph
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Algorithm 2 SEARCH

Input: DAG G

Input: #Threads n

if Table[G, n] is not empty then

return Table[G, n]

else if n == 1 then

return [(G, 1)]

else if G is a DOALL graph then

return [(G, n)]

else if n == 2 then

return DSWP PARTITION(G, n)

else if Time > TimeBudget then

return DSWP PARTITION(G, n)

else if not HAS PROFITABLE PARALLEL STAGE(G, n) then

return DSWP PARTITION(G, n)

else

BEST WT =∞
CUTS = PROFITABLE LEGAL CUTS(G)

for each cut (G1, G2) in CUTS do

for m = 1 to n− 1 do

P1 = SEARCH(G1, m)

P2 = SEARCH(G2, n−m)

WT = ESTIMATE WEIGHT(G1, m, G2, n−m)

if WT > BEST WT then

BEST WT = WT

BEST CUT = APPEND(P1, P2)
end if

end for

if Time > TimeBudget then

break

end if

end for

Table[G, n] = BEST CUT

return BEST CUT

end if
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is required. Each of the next three conditions, if satisfied, causes the routine to obtain a

partition without any parallel stages by calling the DSWP PARTITION routine. The first

of these is when there are only two threads available, which rules out the possibility of a

partition with at least one sequential stage and a parallel stage. If the time taken to search

the tree so far has already exceeded the time budget, a DSWP pipeline of the subgraph

is returned. Finally, the DSWP PARTITION routine is invoked if it determines that the

profile weight of the nodes that can be assigned to a parallel stage is low.

The else part of the outermost if statement contains the recursive portion of the

SEARCH routine. First, the set of legal cuts of the graph is obtained. A cut is simply a

partition of the nodes of the graph into top and bottom parts and it is legal if there is no

arc from the bottom part to the top part. Given a legal cut, the top and bottom parts could

be independently partitioned and fused together. From the set of legal cuts, cuts that are

deemed unprofitable are removed.

A cut could be unprofitable in two ways. A cut could be lopsided if the weight of one

part is much much lower than the other leading to a poor load balance. A cut C1 of G could

also be unprofitable if it is subsumed by another cut C2. This happens when exploring C2

is likely to get a partition of G that is at least as good as any partition obtained by exploring

C1. As an example, consider a graph G that contains a sequential node n1 of weight 0.3,

and two doall nodes n2 and n3 of weights 0.1 and 0.15. A cut with n2 alone in one part and

the rest of the nodes in the other part is subsumed by a cut that has n2 and n3 in the same

part since the part containing n1 is the bottleneck.

Figure 4.2 show the relative speedup when the exhaustive search is used. The time bud-

get was set to 1200 seconds. Only 7% of the loops considered for partitioning exceeded the

time budget. The partitions obtained by exhaustive search result in a 240% geometric mean

estimated-speedup over single-threaded execution under the execution model described in

Section 4.1. On an average, the algorithm takes 211.8 seconds to partition a loop.
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Figure 4.2: Estimated speedup of exhaustive search. Estimated geometric mean speedup is

3.4.
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Figure 4.3: Example illustrating the pipeline-and-merge heuristic.

4.4 Algorithm: Pipeline and Merge

The second approach to thread partitioning is to obtain a DSWP pipeline and then per-

form a post-processing pass that merges consecutive parallel stages to obtain larger parallel

stages. This algorithm is referred to as pipeline-and-merge. The DSWP pipeline is ob-

tained by using the pipeline formation algorithm originally proposed by Ottoni et al. [44].

The algorithm attempts to balance the weights of the stages in the pipeline.

After forming the DSWP pipeline, a post-processing phase repeatedly merges stages to

reduce the depth of the pipeline and to maximize the work done by parallel stages. This

phase merges only two parallel stages since if a parallel stage is merged with a sequential

61



r1 = r2+1

r2 = ...

Stage i

Stage i+1

Figure 4.4: Parallel stages containing operations with loop carried dependence.

stage, the resulting stage can only be sequential. Furthermore, only consecutive stages

can be merged to prevent cyclical dependences between pipeline stages. The presence of

loop-carried dependences can prevent two consecutive parallel stages from being merged.

Consider two consecutive stages Si and Si+1 in Figure 4.4. Si contains an operation that

uses a register r2 defined in stage Si+1. Note that there can not be any dependence from

Si to Si+1 as that violates the requirement that there be no cyclic dependences between

pipeline stages. If Si and Si+1 are merged together, then the resulting stage cannot be

a parallel stage because it contains a loop-carried dependence. If there is no loop-carried

dependence between operations in Si and Si+1, the stages are merged together. The number

of threads allocated to the resulting stage equals the sum of threads allocated to those two

stages. It is always profitable to merge two parallel stages instead of keeping them as two

separate stages. Let stage Si have a weight of Wi and assigned ni threads and stage Si+1

have a weight of Wi+1 with ni+1 threads. The weight of the merged stage is at most Wi

+ Wi+1 since communication operations needed to communicate between Si and Si+1 are

no longer needed and no additional communication operations are inserted in the pipeline.

Clearly,
Wi+Wi+1

ni+ni+1
is less than Wi

ni
+ Wi+1

ni+1
.

Figure 4.3 illustrates this heuristic. The original DAGSCC is shown in Figure 4.3(a).

The shaded nodes are doall nodes and the numbers adjacent to the nodes are the node

weights. Figure 4.3(b) shows a pipeline with four stages. Excluding the communication

cost, the pipeline is perfectly balanced. Stages 2 and 3 are parallel stages and the edges

connecting the nodes in those stages are not loop carried. Hence they can be merged to

form a single large parallel stage that is executed by two threads as shown in Figure 4.3(c).
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Figure 4.5: Estimated speedup of pipeline-and-merge heuristic over single-threaded execu-

tion. Geometric mean of the estimated speedup is 2.65.

Figure 4.5 shows the estimated speedup of various loops using the pipeline and merge

heuristic. For the loops that are considered, the pipeline and merge heuristic results in a

165% geometric mean estimated-speedup over single-threaded execution. This compares

poorly against the speedup obtained by the exhaustive search algorithm. However, the

pipeline-and-merge algorithm takes only 4.8 seconds to partition a loop.

Randomization

One drawback with the pipeline-and-merge approach is that a stage formed by the DSWP

partitioning algorithm may comprise of mostly doall nodes, but a few sequential nodes in

that stage may prevent it from being merged with another stage to form a larger parallel

stage. Randomization can be used to overcome this problem. There are two ways in which

the use of randomization can aid in bringing more operations to parallel stages:

• DSWP partitioning algorithm traverses the DAGSCC in topological order to form

pipeline stages. There are many legal topological orderings of a DAG and DSWP

explores only one of them. Randomization helps in exploring other valid topological

orderings.

• While the DSWP partitioning tries to exactly divide the work among pipeline stages,

allowing some slack in load balancing could result in more parallel stages being

merged together in the post-processing pass.

63



The randomized version of the pipeline-and-merge algorithm conducts a large number of

random trials, where each trial corresponds to choosing one particular partitioning of the

DAGSCC . While the weight of each stage in a trial may be unbalanced, the algorithm

attempts to achieve load balancing based on the expectation of the weights of the stages

over a large number of trials.

Algorithm 3 shows how a pipeline stage is formed. For each stage, the algorithm gen-

erates a Gaussian random number R. This number determines the weight of the operations

in that pipeline stage, normalized with respect to the total weight of all the operations in the

DAGSCC . If the stages are perfectly balanced, this number has to be 1
n

+ δ, where n is the

number of threads or pipeline stages and δ is the estimated communication cost per stage.

By generating R with a mean µ of 1
n

+ δ, the algorithm ensures that over a large number

of trials, it generates balanced pipeline stages. The standard deviation σ of the Gaussian

distribution is set to µ

6
. Since more than 99% of the trials under a normal distribution lie in

the range µ± 3σ, the value of σ chosen by the algorithm ensures that most of the numbers

fall in the range µ

2
− 3µ

2
.

This algorithm also maintains a work list and picks a random node from the work list to

add to the current pipeline stage Si. If the weight of a stage exceeds the Gaussian random

number generated for that stage, then it stops adding operations to Si and starts the new

stage Si+1, unless the current value of i is n, in which case all the remaining operations

are added to Sn. In the post-processing phase, consecutive parallel stages that do not have

any inter-iteration dependences are merged and the threads are added up. Since the number

of pipeline stages created by the randomized partitioner could be less than the available

number of threads, some unused threads may remain. These are proportionately allocated

to the parallel stages based on the weight of the stages. The algorithm repeats this procedure

a large number of times and retains the best partition.

Figure 4.6 shows the results for the randomized version of the pipeline and merge

heuristic. The algorithm uses a total of 1000 trials and chooses the best of those 1000 trials.
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Algorithm 3 Randomized Pipeline Formation

Input: DAGSCC

Input: n, number of threads

µ = 1
n

+ δ

σ = µ

6

R = N(µ, σ)
while worklist not empty do

r = random element from worklist

Si = Si ∪ r

Wi = weight(Si)/weight(DAGSCC)

for each successor s of r do

if all predecessors of s are processed then

add s to worklist

end if

end for

if Wi > R and i <= n then

i = i+1

Si = ∅
R = N(µ, σ)

end if

end while
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Figure 4.6: Estimated speedup of randomized pipeline-and-merge heuristic over single-

threaded execution. Number of trials is 1000 and the estimated geometric mean speedup is

2.99.
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The geometric mean estimated-speedup obtained by this algorithm is 199%. While, this

speedup is significantly better than the deterministic version, it is still less than the speedup

obtained by the exhaustive search algorithm. Compared to the deterministic version, the

freedom given by randomization in slicing the graph in different ways results in large par-

allel stages to be extracted. However, the average time to partition a loop has increased

from 4.8 seconds in the case of the deterministic version to 95 seconds for the randomized

version. Increasing the number of trials does not significantly improve the performance,

but significantly increases the partitioning time.

4.5 Algorithm: Doall and Pipeline

The doall-and-pipeline algorithm is based on the hypothesis that executing more code as

part of parallel stages is more important than getting a balanced pipeline. Executing most

of the code in a parallel stage reduces the depth of the pipeline, thereby reducing the com-

munication overhead. The doall-and-pipeline heuristic is shown in Algorithm 4. It first

finds the largest subgraph in the DAGSCC that can be assigned to a single parallel stage.

Then it estimates if it is profitable to assign the nodes of that subgraph to a parallel stage.

It is profitable to assign a set of operations to a parallel stage only if the execution time of

those operations is significant enough that at least two threads can be assigned to execute

that parallel stage. If there is no profitable parallel stage, then it just invokes the DSWP

pipeline algorithm. Otherwise, it divides the rest of the DAGSCC into two subgraphs: a

predecessor graph P from which dependence edges reach the parallel stage and a succes-

sor graph S that is fed by the nodes of the parallel stage. The rest of the nodes that do

not have any edges incident on the parallel stage are added to either the predecessor part

or the successor part based on a load balancing heuristic. Then, it assigns pt threads to the

parallel stage, where pt ranges from 2 to t, the total number of threads available. For each

assignment of pt, the algorithm is recursively applied to the two subgraphs P and S, which
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are allotted all possible combinations of the remaining t − pt threads. The combination

with the best speedup estimate is chosen.

Algorithm 4 DOALL AND PIPELINE

Input: DAGSCC G

Input: #Threads n

if G is a DOALL graph then

return [(G, n)]

end if

PS=LARGEST PARALLEL STAGE(G, n)

ps graph=SUBGRAPH(G, PS)

if NOT PROFITABLE(PS) then

return DSWP PARTITION(G, n)

else

pred graph = FIND PRED(G, PS)

succ graph = FIND SUCC(G, PS)

best speedup = 0

for pt = MIN THREADS(ps graph) to n do

for st1 = MIN THREADS(pred graph) to n do

st2 = n - (pt + st1)

part1 = DOALL AND PIPELINE(pred graph, st1)

part2 = DOALL AND PIPELINE(ps graph, pt)

part3 = DOALL AND PIPELINE(succ graph, st2)

speedup = ESTIMATE SPEEDUP(part1, part2, part3)

if speedup > best speedup then

best speedup = speedup

best part = APPEND(part1, part2, part3)

end if

end for

end for

return best part

end if

Largest Parallel Stage in a DAGSCC

The main component of the doall-and-pipeline algorithm is an optimal algorithm to com-

pute the subgraph that can be assigned to a parallel stage and has the maximum profile

weight among all such graphs. In other words, the algorithm finds the subset PS of the

nodes of DAGSCC that satisfies the following conditions:
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Figure 4.7: Example illustrating the steps involved in obtaining the largest parallel stage

from a DAGSCC .

• All nodes in PS are doall nodes.

• It is legal to place any pair of nodes of PS in the same parallel stage.

• There is no other subset PS ′ of DAGSCC nodes satisfying the above two conditions

such that W (PS ′) > W (PS).

Figure 5 outlines the algorithm to compute such PS. The rest of this section explains

the algorithm in detail. The algorithm is illustrated using the example in Figure 4.7. Fig-

ure 4.7(a) shows the DAGSCC that is to be partitioned. Node B is the sole sequential node

and the rest of the nodes, shaded in gray, are all doall nodes.

Algorithm 5 Largest parallel stage

Input: DAGSCC

Construct the non-mergeability graph NM

Construct the bipartite graph BNM from NM

Construct the flow graph FNM from BNM

MC = MINCUT(FNM )

Obtain the largest parallel stage from MC

Non-mergeability graph

The information on the pairs of doall nodes in a DAGSCC that can be merged together

can be represented using a mergeability graph. Figure 4.7(b) gives the mergeability graph
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for the DAGSCC , which contains only the doall nodes of DAGSCC . Mergeability is not a

transitive relation. Hence, in any parallel stage, the nodes in that stage must be pairwise

mergeable. In other words, the set of nodes in any parallel stage forms a clique in the

mergeability graph. Hence, finding the largest parallel stage involves solving the maxi-

mum clique problem which is NP complete. However, the structure of the complement of

the mergeability graph — the non-mergeability graph — can be used to solve the prob-

lem optimally in polynomial time. Finding the maximum clique in a graph is equivalent

to finding the maximum independent set in its complement graph, the non-mergeability

graph. Finding the maximum independent set is NP complete for a general graph, but has

a polynomial time solution on a directed acyclic graph [2].

The nodes of the non-mergeability graph NM are again the doall nodes of DAGSCC ,

but an edge between two nodes indicates that they cannot be merged and assigned to the

same parallel stage. The edges can be assigned directions based on the partial order of

the nodes in the DAGSCC . This follows from the fact that if two nodes n1 and n2 in the

DAGSCC are not comparable, then they can be merged since doing so cannot create a

cycle. Conversely, if n1 and n2 cannot belong to the same parallel stage, then they must

be comparable and hence either there is a directed path from n1 to n2 or from n2 to n1

in DAGSCC . Thus, the non-mergeable graph is a transitive closure of the DAGSCC after

removing edges between any two nodes that can be merged. Figure 4.7(c) shows the non-

mergeability graph for the DAGSCC in Figure 4.7(a). Node C can be merged with any of

the other doall nodes and hence there is no edge incident on it in NM . Node A cannot be

merged with nodes D and E and in the DAGSCC , there is a directed path from A to D and

from A to E. Hence NM contains the edges A→ D and A→ E

Maximum independent set

Given the non-mergeability graph, the goal is to find the weighted maximum independent

set. A weighted maximum independent set of a graph is a set of nodes I such that
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1. No two elements of I are connected by an edge.

2. There is no other I ′ that meets condition 1 such that W (I ′) > W (I).

An algorithm to compute the maximum weighted independent set on a DAG was proposed

by Berenguer et al. [2]. A brief overview of that algorithm is presented below and illus-

trated with an example. Further details and the proof of correctness of the algorithm can be

found in Berenguer et al. [2].

The first step of the algorithm involves constructing a bipartite graph BNM from the

non-mergeability graph NM . Let NM = (V, E). Then, BNM = (L ∪R, E ′), where

• L = {vl
i|vi ∈ V } and R = {vr

i |vi ∈ V },

• E ′ = {(vl
i, v

r
j )|v

l
i ∈ L, vr

j ∈ R s.t (vi, vj) ∈ E}

In other words, L and R are both copies of V and if there is an arc vi → vj in NM , an edge

is added from the copy of vi in L to the copy of vi in R. The weights of the nodes in the

original graph are preserved in the two copies. Figure 4.7(d) shows the bipartite graph for

the running example. For each node n in NM , BNM has two nodes n and n′. Since NM

has the arcs A→ D and A→ E, BNM has A→ D′ and A→ E ′.

The next step is to construct the flow graph FNM from the bipartite graph BNM . For-

mally, the flow graph FNM = (V ′′, E ′′) is specified by

• V ′′ = L ∪R ∪ {s} ∪ {t}

• E ′′ = E ∪ {(s, l)|l ∈ L} ∪ {(r, t)|r ∈ R}

• C(e) =∞,∀e ∈ E ′

• C(e) = W (l),∀e = (s, l) s.t l ∈ L

• C(e) = W (r),∀e = (r, t) s.t r ∈ R
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FNM has two nodes in addition to the nodes in BNM : a source node s and a sink node t.

Edges are added from the source node to each of the nodes in L and from each of the nodes

in R to the sink node t. Capacities are assigned to the edges in FNM . For all the edges in

FNM that are also in BNM , the edge capacities are set to infinity. For an edge connected to

the source node or the sink node, the edge capacity is set to the weight of the other node

incident on the edge. The flowgraph for the running example is shown in Figure 4.7(e). The

next step is to apply a maximum flow algorithm on FNM to get the min-cut MC. Since the

edges connecting the nodes in the left and right parts of the bipartite graph have a capacity

of∞, those edges are never a part of the min-cut. Thus the edges in the min-cut must have

the source or the sink node as one of the end points and a node from BNM as the other end

point. Let MCN be the set of nodes from BNM that are incident on the edges of the min-

cut. Berenguer et al. [2] show that MCN cannot contain both a vl
i and vr

i . In other words,

both the left and the right copies of the same node in V cannot be contained in MCN .

Furthermore, V −MCN gives the maximum weighted independent set in NM . For the

example graph, MC contains just the edge (s, A) and so MCN = {A} and the maximum

weighted independent set is {C, D, E} which constitutes the largest parallel stage.

Maximum flow implementation

The algorithm uses the Edmonds-Karp algorithm [16] for maximum flow computation.

This algorithm has a complexity of O(|V ||E|2) since there are O(|V ||E|) augmenting paths

in the worst-case and the worst case complexity of finding an augmenting path is O(|E|).

For the flow graph FNM , there are at most O(|V |) augmenting paths, resulting in a worst

case complexity of O(|V ||E|). Even then, the running time is prohibitively expensive

when the flow graph has thousands of nodes. The running time can be further reduced by

making use of the following observation. In FNM , any augmenting path must have a prefix

s → l → r, where l ∈ L and r ∈ R. So, the algorithm pre-computes all such valid path

prefixes s → l → r and maintains a prefix list PL. Whenever an augmenting path has to
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Figure 4.8: Estimated speedup of doall-and-pipeline heuristic relative to single-threaded

execution. Estimated geometric mean speedup is 3.57.

be found, the algorithm starts the BFS from r for every s → l → r in PL, instead of the

source s. Since all r ∈ R have an edge to t, the first step of the BFS results in the formation

of the path s→ l→ r → t. If the edges on this path are not saturated, an augmenting path

has been found in constant time. Once an augmenting path is computed, the prefix list is

updated to remove those prefixes that contain a saturated edge.

Evaluation

Figure 4.8 shows the estimated speedup when the doall-and-pipeline heuristic is used for

thread partitioning. The geometric mean of the estimated speedup over single-threaded

execution is 257%, which is an improvement over the other heuristics proposed in this

chapter. Furthermore, this algorithm takes an average of just 20.7 seconds to partition

a loop, which is more than ten times faster than the next best performing heuristic, the

exhaustive search heuristic. The combination of a good average expected speedup and a low

average processing time makes doall-and-pipeline a good candidate for thread partitioning

in PS-DSWP.
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Chapter 5

Speculative Parallel Iteration Chunk

Execution

This chapter presents speculative parallel iteration chunk execution (Spice), a paralleliza-

tion transformation that uses a new approach to value speculation to obtain thread level par-

allelism. The value speculation used in Spice is discussed first using a motivating example.

This is followed by a detailed description of the implementation of this value speculation

and the parallelization transformation.

5.1 Value Speculation and Thread Level Parallelism

Thread level speculation, a technique discussed in Chapter 2, speculates infrequently man-

ifested dependences to concurrently execute loop iterations. The most common form of

speculation used in TLS is memory alias speculation. In this form of speculation, a load in

a given iteration is assumed not to access the same location as a store in some earlier itera-

tion. Memory alias speculation works well as long as the conflict between loads and stores

in different iterations are infrequent. If a memory dependence manifests frequently, alias

speculation suffers from high mis-speculation rates leading to poor performance. Hence
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1 c = cm->next_cl;

2 while(c != NULL){

3 int w = c->pick_weight;

4 if (w < wm) {

5 wm = w;

6 cm = c;

7 }

8 c = c->next_cl;

9 }

(a) Traversal code

3 4 5 621

7 5 641 3

4 3 71 62 5

7 3 41 62 5

Original list

Traversal

Insertion

Traversal

Node swap

Traversal

Deletion

ti
m

e

Traversal

(b) Modifications to linked list

Figure 5.1: A list traversal example that motivates the value prediction used in Spice.

TLS systems typically synchronize store-load pairs that conflict frequently. The drawback

of synchronization is a reduction in the available parallelism. An alternative approach to

synchronization is to apply value prediction [30, 31] and speculatively execute the future

iterations with the predicted values.

Several TLS techniques [10, 32, 37, 64] have proposed the use of value prediction to

minimize synchronization when alias speculation is not beneficial. TLS techniques with

value prediction typically use some value predictor originally proposed to improve instruc-

tion level parallelism (ILP). Spice is based on a new value prediction technique with the

goal of breaking inter-iteration dependences in a TLS system. The value predictor in Spice

is based on two insights into value prediction in the context of thread level parallelism.

The first insight is that, to extract thread level parallelism, it is sufficient to predict a

small subset of the values produced by a static operation. To see this, consider the loop

in Figure 5.1(a) from the benchmark otter that traverses a linked list. For the sake of

this discussion, it is assumed that the if condition in line 4 is rarely true. In that case, a
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TLS system can speculate that the read of wm in the next iteration does not conflict with

the write of wm in the current iteration. It can then apply value prediction to predict the

value of c at the beginning of the next iteration and use the predicted value of c to run that

iteration simultaneously with the current iteration. Alternatively, it can also speculatively

parallelize the loop by only predicting the value of c every tenth iteration, instead of every

iteration. In that case, the TLS system can speculatively execute chunks of 10 iterations in

parallel. If the predictions are highly accurate, then it is sufficient to predict only as many

values as the number of speculative threads. Predicting more values does not increase the

amount of TLP. This is in contrast to the use of value prediction to improve instruction

level parallelism. ILP value prediction techniques predict values of a long latency oper-

ation to speculatively execute the dependent operations. For every dynamic instance of

that operation that is not predicted, the dependent operations stall in the pipeline, thereby

reducing the ILP.

The second key insight is that the probability of predicting that an operation will pro-

duce a particular value some time in the future is higher than predicting that that value

will be produced at a specific time in the future. Predicting that a value will appear some

time in the future may be sufficient for the purposes of extracting TLP. To give an analogy,

the likelihood that the Dow Jones index will be a particular value X exactly a year from

now is much lower than the likelihood that it will be X some day within the next 2 years.

To give a more concrete example, consider Figure 5.1(b) which shows the linked list and

how it gets modified and accessed over time. Consider a simple predictor that predicts that

node 4 is present in the list. In this example, the prediction is always true, even though

the relative position of node 4 from the head of the list changes over time. Thus, such a

predictor is likely to have a higher prediction rate than a predictor that predicts that node 4

is the fourth element from the head of the list.
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t1 t2

t3

P1

P2

1 3 7

2 4 6 8

5

time

Figure 5.2: Execution schedule of the loop in Figure 5.1(a) parallelized by TLS.

5.2 Motivation

This section motivates Spice by looking at TLS parallelizations of the code in Figure 5.1(a)

and illustrates how the insights from the previous section can be used to arrive at a better

parallelization.

5.2.1 TLS Without Value Speculation

Figure 5.2 shows how the loop from Figure 5.1(a) is executed on two processor cores by

existing TLS techniques that do not employ value speculation. The solid lines represent

the execution of the code that performs the list traversal which is synchronized between

the iterations. The dotted lines represent the code corresponding to the computation of the

minimum element, and the dashed lines represent the forwarding of values from one thread

to another thread. The numbers below the lines are the iteration numbers. Let t1, t2 and t3

respectively denote the latency of each of the above three parts of the execution in an ideal

execution model when there is no variance in the execution time of these three components

due to microarchitectural effects such as cache misses and branch mis-predictions. Let the

total number of iterations of the loop be 2n.

The total time taken to execute the loop by TLS depends on the relation between t1, t2

and t3. If t2 > t1 + 2× t3, then the computation of cm and wm lies on the critical path. In

that case, the total execution time is roughly equal to n × (t1 + t2), resulting in a speedup

of two over single threaded execution. On the other hand, if the computation of cm and wm

is not on the critical path, then the list traversal becomes part of the critical path. If t2 ≤ t3,

then the total execution time becomes 2n × (t1 + t3). This results in a speedup of t1+t2
t1+t3

,
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t1 t2P1

P2

time

1 3 4 6

2 4 5 7

8

Figure 5.3: Execution schedule of the loop in Figure 5.1(a) parallelized by TLS using value

prediction.

which is always less than two, over single-threaded execution. For the loop in Fig 5.1, the

list traversal is likely to be on the critical path. This is because of the high cache miss

rate of executing the pointer chasing load and also because of our assumption that the if

statement mostly evaluates to false. Thus, the expected speedup of this loop in the ideal

case is t1+t2
t1+t3

.

5.2.2 TLS With Value Speculation

As an alternative to synchronization, some TLS techniques employ value prediction to pre-

dict the value of c, eliminating the value forwarding of c between iterations. Figure 5.3

shows an execution schedule of the loop under TLS with value prediction. In the example,

the prediction of iteration 4 is shown to be wrong, causing iteration 4 to be mis-speculated

and re-executed. Let p denote the probability that a given value prediction is correct. As-

suming that the probability of a prediction being successful is independent of other predic-

tions, the expected speedup is
2n(t1+t2)

(n+(1−p)n)(t1+t2)
or 2

2−p
. If all the values of c are successfully

predicted, then TLS results in a speedup of two over single-threaded execution. Successful

prediction depends both on the code sequence that produces the values and the predictor

that is used. In this example, the values produced are the addresses of the nodes of a linked

list. In otter, between successive invocations of the loop in Figure 5.1(a), the minimum

element found by the loop is removed from the list and some other nodes are inserted into

the list. In this scenario, many proposed value predictors have a limited accuracy:
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• The simplest value predictor is the last value predictor that predicts that an instruc-

tion will produce the same value that it produced in its previous dynamic instance.

Obviously, such a predictor cannot predict the address of the nodes of a linked list.

• Another common predictor is the stride predictor. While this is most suited for pre-

dicting array addresses, it can also predict linked list nodes as long as the nodes are

allocated contiguously in the heap and the order of the nodes seen during the traversal

matches the order in which the nodes are allocated. However, in this example, even

if the nodes are allocated contiguously, a stride predictor cannot successfully predict

all the values of c since the insertions and deletions cause the traversal order to be

different from the allocation order.

• Some TLS techniques use trace based predictors instead of instruction based pre-

dictors. Instead of predicting a value based only on the instruction that produces

the value, these predictors try to exploit the correlation of values produced by dif-

ferent instructions in an instruction trace. Marcuello et al. [37] proposed the use of

trace-based predictors for TLS. They proposed a predictor called increment predic-

tor which is a trace based equivalent of a stride predictor. The traces used are loop

iteration traces, which are unique paths taken by the program within a loop iteration.

There are two paths in the example loop and in both these paths, the value c is pro-

duced only once, by the same instruction. Hence, for this particular example, a trace

based predictor is no more accurate than an instruction based predictor.

Thus, even if value prediction is employed, it is unlikely that existing TLS techniques

would significantly improve the performance of this loop. In general, for loops with ir-

regular memory accesses and complex control flow, conventional value predictors fail to

do a good job. The next subsection describes how Spice predicts values by memoizing the

values seen during the previous invocation of the loop to break previously hard-to-predict

dependences with very low mis-speculation rates.
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1 c = cm->next_cl;

2 mispred = 1;

3 while(c != NULL){

4 int w = c->pick_weight;

5 if (w < wm) {

6 wm = w;

7 cm = c;

8 }

9 c = c->next_cl;

10 if(c == predicted_c) {

11 mispred = 0;

12 break;

13 }

14

15 }

16 if(!mispred){

17 receive(thread2, wm2);

18 receive(thread2, cm2);

19 if(wm2 < wm){

20 wm = wm2;

21 cm = cm2;

22 }

23 }

24 else{

25 squash_speculative_thread();

26 }

(a) Non-speculative thread (Thread 1)

1 c = predicted_c;

2 while(c != NULL){

3 int w = c->pick_weight;

4 if (w < wm) {

5 wm = w;

6 cm = c;

7 }

8 c = c->next_cl;

9 }

10 send(thread1, cm);

11 send(thread1, wm);

(b) Speculative thread (Thread 2)

Figure 5.4: Loop in Figure 5.1 parallelized by Spice.

5.2.3 Spice Transformation With Selective Loop Live-in Value Specu-

lation

In the TLS example in Figure 5.3, the iterations of the loop are executed alternately by the

two threads necessitating the prediction of c in every iteration. The Spice transformation

avoids the prediction of c in every iteration in by executing a set of contiguous iterations

in each thread. Figure 5.4 shows the loop in Figure 5.1 after applying Spice. This ex-

ample shows parallelization with two threads, but it can be generalized to any number of

threads. If there are only two threads, only one value of c has to be predicted since there

is only one speculative thread. The predicted value is assumed to be present in the variable

predicted c. Section 5.3 explains how this prediction is made. Both threads execute

the original loop, but with certain differences. The main non-speculative thread contains

a check at the end of each loop iteration that checks if the current value of c equals the

predicted value. When the values are equal, the main thread sets a flag indicating a suc-
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time
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5 6 7 8

Figure 5.5: Execution schedule of the loop in Figure 5.1(a) parallelized by Spice.

cessful speculation and exits the loop. Outside the loop, the main thread checks if the flag

indicating successful speculation is set. If it had exited the loop because of a successful

speculation, the main thread receives the wm and cm values from the speculative thread and

computes the minimum among the two wms and the corresponding cm. If mis-speculation

is detected, the speculative thread is squashed. In the speculated thread, the value of c is

initialized to predicted c. If the thread exits the loop without getting squashed, the

speculative thread sends the cm and wm values to the main thread.

Figure 5.5 shows the execution schedule for this transformed code. Instead of alternat-

ing the iterations among the two processor cores, Spice splits the iteration space into two

halves and executes both the halves concurrently in two different cores. Assuming again

that the probability of a given prediction being successful is p, and that the predicted value

splits the list in the middle, applying Spice results in an expected speedup of 2
2−p

. The

expression for the expected speedup of Spice is the same as that of TLS with value specu-

lation. The difference is that Spice requires only a few values to be predicted with a high

degree of accuracy to achieve good speedup. Consider a simple value prediction strategy

where on every loop invocation, the value of c in the middle of the list is remembered and

used as the predicted value in the following invocation. For the example in Figure 5.1(a),

this strategy is likely to result in a high prediction rate since only one node is deleted from

the list after each invocation and hence the probability of the remembered node being re-

moved from the list is low.

In general, given n processor cores, the loop in Figure 5.1a(a) can be parallelized into

n parallel speculative threads by predicting only n − 1 values of c in one invocation of
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the loop1. Each of these threads executes a chunk of iterations with a low mis-speculation

rate. Each Spice thread is long-running compared to iteration-granular TLS. Consequently,

Spice does not incur high thread management overhead.

5.3 Compiler Implementation of Spice

This section describes how Spice is implemented as an automatic compiler transformation.

Algorithm 6 outlines the Spice transformation. The inputs to this algorithm are the loop to

be parallelized and the number of available threads. The algorithm first computes the set

of live-ins that require value prediction. This set is obtained by first computing the set of

all inter-iteration live-ins. Those live-ins in this set that can be subjected to reduction trans-

formations [1] such as sum reduction or MIN/MAX reduction do not require prediction.

The rest of the loop carried live-ins require value prediction. If this set of live-ins contains

memory variables that cannot be register-promoted, the transformation cannot be applied

to the loop. Otherwise, the compiler then performs the following steps:

Algorithm 6 Spice transformation

1: Input: Loop L, number of threads t

2: Compute inter-iteration live-ins Liveins

3: Compute reduction candidates Reductions

4: Live-ins to be speculated S = Liveins−Reductions

5: if S contains memory dependences then

6: return

7: end if

8: Create t− 1 copies of the body of L into separate procedures

9: Insert communication for non-speculative loop live-ins and live-outs

10: Generate code to initialize speculative live-ins S

11: Generate recovery code in speculative threads

12: Insert code for mis-speculation detection and recovery in the non-speculative thread

13: Insert value predictor

Thread creation: The compiler replicates the loop t − 1 times and places the loop

copies in separate procedures. Each of these procedures is executed in a separate thread. To

1The loop-carried dependence for wm can be eliminated by applying reduction.
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avoid spawning these threads before every invocation of the loop, threads are pre-allocated

to the cores at the entry to the main thread.

Communication of live-ins and live-outs: The compiler identifies the set of register

live-ins to the loop that needs to be communicated to the speculative threads. All live-

ins except the speculative live-in set S and the set of accumulators are communicated.

Variables used as accumulators are initialized to 0 in the speculative threads.

Value speculation: The compiler creates a global data structure called the speculated

values array of size (t − 1) × m, where m is the number of live-in values that require

speculation. The compiler initializes the speculative live-ins of the loop in thread i with the

values from the (i − 1)th row of the speculated values array. The process of obtaining the

contents of this array are obtained is discussed later.

Recovery code generation: The compiler creates a recovery block for each specula-

tive thread and generates the code to perform the following actions:

1. Restore machine specific registers including the stack pointer, frame pointer, etc.

Registers used within the loop that is parallelized are simply discarded.

2. Rollback the memory state if the loop contains stores.

3. Inform the main thread that the recovery is complete.

4. Exit the recovery block and jump to the program point where it waits for the main

thread to send a token that denotes the beginning of the next invocation

Mis-speculation detection and recovery: Mis-speculation detection is done in a dis-

tributed fashion. Mis-speculation detection is first discussed in the context of only one

speculative thread (a total of two threads) and then generalized for t threads. Let S be the

set of all the loop live-in registers that need speculation. At the beginning of each loop

iteration, the non-speculative thread 1, which is also referred to as the main thread, com-

pares its values of the registers in S with the values used to initialize those live-in registers
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in thread 2. If the values of all the registers in S match at the beginning of some iteration

j, it implies that thread 2 started its execution from iteration j of the loop with correctly

speculated live-in values. In that case, thread 1 stops executing the loop before executing

iteration j and waits for thread 2 to communicate its live-outs at the end of the loop. On the

other hand, if the values never match, thread 1 eventually exits the loop by taking the orig-

inal exit branch of the loop. Since it has executed all the iterations of the loop and exited

the loop normally, it concludes that thread 2 has mis-speculated. In that case it executes a

resteer instruction to redirect thread 2 to its mis-speculation recovery code.

Mis-speculation detection and recovery is now generalized for t threads. Thread i is

responsible for detecting whether thread i+1 has mis-speculated in a loop invocation. The

compiler generates code in thread i at the beginning of each loop iteration to compare the

values of all the registers in set S with the initial values of thread (i + 1)’s live-ins. Thread

(i + 1)’s initial live-in values are loaded from the ith row of the speculated values array. It

then inserts code that sets a flag indicating successful speculation, followed by a branch to

exit the loop, if the values match. Outside the loop, the compiler emits code to check this

flag and take the necessary recovery action.

To recover from mis-speculation, the compiler generates code to perform the following

actions. The thread detecting mis-speculation, if it is not the main thread, communicates

this information to the main thread. The main thread re-steers all mis-speculated threads

to execute their recovery code. It then waits for an acknowledgment token from each of

the speculative threads indicating that they have successfully rolled back the memory state.

Finally, after all the tokens are received, the main thread commits the current memory state.

Mis-speculation detection is illustrated in Figure 5.6. Figure 5.6(a) shows the traversal

of a list with eight nodes. Three threads participate in the traversal of this list. The first

thread traverses the nodes enclosed by the solid rectangle, the second thread traverses the

nodes enclosed by the dotted rectangle and the nodes of the last thread are enclosed by

the dashed rectangle. SVA denotes the speculated values array whose elements contain the
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(b) After removal of node 4 from the list

Figure 5.6: Figure illustrating the effects of the removal of a node on Spice value prediction.

addresses of list nodes which are live-in to the list. Assume that after the first invocation,

node 4 is removed from the list as in Figure 5.6(b). The SVA entry still points to the

removed node. During the next invocation, it compares the nodes it traverses with the node

in the SVA. Since it never finds that node, it traverses the entire list. The second thread

starts from the removed node and, depending on the contents of its next pointer field, will

either stop the traversal, loop forever, or cause memory faults by accessing some invalid

memory location. Thread 3 starts from node 6 and traverses till the end of the list, repeating

the work done by thread 1. When thread 1 reaches the end of the list, it concludes that

thread 2 has mis-speculated and squashes threads 2 and 3. Note that if thread 1 compares

its live-in registers with the speculated live-ins of both threads 2 and 3, then it needs to

squash only thread 2 and not thread 3. However, this increases the overhead in thread 1

due to the additional comparisons and hence the compiler limits the comparisons to only

one set of live-ins. If thread 2 goes into an infinite loop, the resteer issued by thread 1

makes it jump to the correct recovery code. The recovery code rolls back its memory state

to undo speculative updates to its memory state.
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Value predictor insertion

The compiler inserts a software value predictor that fills the contents of the speculated

values array on every loop invocation. A simple value prediction strategy is to memoize

or remember the live-ins from t − 1 different iterations during the first invocation. These

t− 1 set of live-ins can be used as the predicted values in all subsequent invocations. This

approach does not adapt to change in program behavior and hence is not effective. For

instance, if the values that are memoized are addresses of the nodes of a linked list, and if

a memoized node is removed from the list, all subsequent invocations will mis-speculate

even if there are no further changes to the list.

A better approach is to make the predictor memoize the values not just during the first

invocation, but on every invocation of the loop. Values memoized in one invocation are

used as predicted values only in the next invocation. This approach adapts itself better to

changes to the loop structure. Moreover, if the list grows or shrinks, nodes can be memoized

in such a way that the work done by speculative threads in the next invocation is balanced.

The value predictor has two components. The first component of the value predictor

writes to the speculated values array, and its implementation is distributed across all the

threads. To implement this component, the compiler first creates a set of data structures

used by the predictor. A list called svai is created per thread. The entries of this array for

thread i contain the indices of the speculated values array (sva) to which thread i should

write to. Another per-thread list called svat contains work thresholds that determine

which values are memoized. The compiler also creates an array called work whose entries

contain the amount of work done by each thread. This is used in dynamic load balancing.

The compiler generates the code corresponding to Algorithm 7 in each thread to mem-

oize the values. Each thread maintains a counter my-work that is a measure of the amount

of work done by that thread. In the implementation described in this dissertation, the

threads increment the counter once per loop iteration. A more accurate measure of the

work done could be obtained by making use of hardware performance counters. If the
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Algorithm 7 Spice value prediction

my-work = 0

for each iteration of the loop do

my-work = my-work + 1

if my-work > svat[list-index] then

sva[svai[list-index]] = loop carried live-ins in current iteration

list-index = list-index+1

end if

end for

work[my-thread-id] = my-work

work done so far exceeds the threshold found at the head of the svat list for this thread,

then the current loop live-in values are recorded in the sva array. The index to the sva

array location to which the value must be written is given by the value at the head of the

svai list. After writing to the sva array, the head pointers of both the lists are incre-

mented. After exiting the loop, the thread writes the total work done in that invocation to

the global work array.

The other component of the value predictor is centrally implemented in a separate pro-

cedure. This component is executed at the end of each loop invocation. It collects the

amount of work done by each thread in that invocation and decides the iterations of the

next loop invocation whose live-in values are memoized. Depending on which threads

execute those iterations, it generates the entries of the svai list. The partitioning of the

iterations among the threads in the next invocation cannot be decided a priori at the end of

current invocation since it depends on the program state. Hence, the predictor makes the

following assumptions:

1. In future invocations, the total amount of work done will remain the same as in the

current invocation.

2. In the immediately following invocation, all the threads will execute the same amount

of work.
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These assumptions enable the predictor to orchestrate the memoization in a way that

results in load balancing. This is best illustrated with an example. Consider the case where

there are three threads and the work done by each thread in a particular invocation are 10,

1 and 1 units respectively. Based on the first assumption, the subsequent invocations will

also perform a total of twelve units of work. Hence the predictor wants to collect the live-

ins when the total work done in a sequential execution are four and eight. It then uses the

second assumption to determine which threads have to write those values. In this example,

the work done by the first thread in the next invocation is assumed to be ten and so both

the rows of the sva are written to by the first thread after iterations four and eight and the

other two threads do not write into the sva. Hence the svat list of the first thread is set to

[4, 8] and its svai list is set to [0,1]. For the other two threads, the head element of svat

is set to∞ so that they never write to the sva array.

5.4 Related Work

Marcuello et al. [37] proposed the use of value prediction for speculative multi-threaded

architectures. They investigated both instruction based predictors and trace based predic-

tors, in which the predictor uses the loop iteration trace as the prediction context. Steffan

et al. [64] propose the use of value prediction as part of a suite of techniques to improve

value communication in thread level speculation. They use a hybrid predictor that chooses

between a stride predictor and a context based predictor. Cintra and Torellas [10] also

propose value prediction as a mechanism to improve TLS. They use a simple silent store

predictor that predicts the value of a load to be the last value written to that location in the

main memory. Liu et al. [32] predicts only the values of variables that look like induction

variables. Oplinger [43] also incorporates value prediction in TLS design, with a particular

focus on function return values. The focus of this work is a compiler based technique that

predicts a few values with high accuracy to extract thread level parallelism.
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Zilles [78] proposed Master/Slave speculative parallelization(MSSP), which is a spec-

ulative multi-threading technique that uses value speculation. The prediction in MSSP is

made by a distilled program, which executes the speculative backward slice of the loop

live-ins. The software value predictor used in Spice predicts based on values seen in the

past and does not execute a separate thread for prediction.

Some TLS techniques [9, 10, 48, 49] have also proposed the use of iteration chunking.

These chunks are iterations of fixed size, while in our case the number of chunks equals

the number of processor cores and the chunk size is determined at runtime by the load

balancing algorithm. The LRPD test [57] and the R-LRPD test [13] are also speculative

parallelization techniques that chunk the iteration space, but they use memory dependence

speculation and not value speculation.
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Chapter 6

Experimental Evaluation

This chapter performs a quantitative evaluation of the transformations proposed in this

dissertation. The compilation framework, simulation methodology and a description of

the benchmarks are first presented. Then this chapter presents an evaluation of PS-DSWP

and speculative PS-DSWP and makes a performance comparison with DSWP and TLS.

Finally, an evaluation of Spice is presented.

6.1 Compilation Framework

The transformations described in this dissertation are implemented as part of the VELOC-

ITY compiler [69]. The application is first compiled into a low-level intermediate repre-

sentation to which a series of classical optimizations are applied. Then, the parallelization

transformation is applied. The parallelized code is again subjected to a round of classical

optimizations and then lowered into IA64 assembly code. This is followed by a first pass

of scheduling, register allocation and a final scheduling pass. Performance comparisons

are made with respect to a single-threaded code which is subjected to the exact sequence

of transformations described above, except the parallelization step.
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Processor Core Functional Units: 6 issue, 6 ALU, 4 memory, 2 FP, 3 branch

L1I Cache: 1 cycle, 16 KB, 4-way, 64B lines

L1D Cache: 1 cycle, 16 KB, 4-way, 64B lines, write-through

L2 Cache: 5,7,9 cycles, 256KB, 8-way, 128B lines, write-back

Maximum Outstanding Loads: 16

Shared L3 Cache > 12 cycles, 1.5 MB, 12-way, 128B lines, write-back

Main Memory Latency: 141 cycles

Coherence Snoop-based, write-invalidate protocol

L3 Bus 16-byte, 1-cycle, 3-stage pipelined, split-transaction

bus with round robin arbitration

Table 6.1: Details of the multi-core machine model used in simulations.

6.2 Simulation Methodology

Since the compiler transformations described in this dissertation require special hardware

support in the form of communication queues, multi-threaded transactions and ISA support

to program these hardware structures, they cannot be implemented on commodity multi-

processor systems. Hence simulation of a multi-processor with the necessary hardware

modifications is employed to evaluate the techniques. This dissertation employs two dif-

ferent simulation approaches that are described below.

6.2.1 Cycle Accurate Simulation

Suitable candidates for non-speculative PS-DSWP and Spice are typically hot inner loops

that account for significant fraction of a program’s execution. At the granularity of outer-

most loops in a general-purpose program, there are usually many complex memory depen-

dences, whose dependence distance is hard to detect by static analysis. PS-DSWP typi-

cally does not work well on such loops since those dependences have to be conservatively

treated as loop-carried, preventing large parallel stages from being formed. The applicabil-

ity of Spice to such loops is limited by the fact that the memory locations involved in such

dependences typically cannot be register promoted.

For inner loops with relatively short per-iteration execution time, cycle-accurate simu-

lation of a multi-core IA-64 processor is used. Table 6.1 lists some of the important pa-

rameters of the processor model. The individual cores of this processor are validated, with
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Figure 6.1: Block diagram illustrating native-execution based simulation.

IPC and constituent error components accurate to within 6% of real hardware for measured

benchmarks [47]. The simulator is built using the Liberty Simulation Environment [71].

Even if a loop is innermost, its simulation cost could be prohibitive if it is a hot loop.

To keep simulation costs realistic, invocations of the loop are randomly sampled with some

specified probability and simulated in detail. Except for the loops that are sampled, the rest

of the program is executed by the simulator in a fast-forward mode that maintains only the

correct architectural state without a cycle-accurate simulation.

6.2.2 Native Execution Based Simulation

A cycle-accurate structural simulator of a modern uni-processor can simulate less than forty

thousands of cycles per second [46]. Assuming a linear decrease in simulation throughput

when simulating a CMP, an eight core CMP can be simulated at the rate of around five

thousand cycles per second. This makes it prohibitively expensive to simulate outer loop

iterations of most programs in the SPEC2000 and SPEC2006 benchmark suites. Since a

primary advantage of speculative PS-DSWP is the ability to extend the scope of applicabil-

ity to outer-most loops in programs, it is impractical to use the cycle-accurate simulation

methodology to evaluate speculative PS-DSWP. Hence a native-execution based simula-

tion methodology proposed by Bridges [5] is used to evaluate speculative PS-DSWP.

Figure 6.1 gives an overview of the simulation framework. Measuring the performance

of a parallelized loop consists of the following steps:

1. The parallelized application is first emulated on a native multi-processor machine

by replacing the MTX (multi-threaded transactions) and communication operations
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Figure 6.2: Construction of PS-DSWP schedule from per-iteration, per-stage native execu-

tion times.

with calls to a library that emulates the corresponding functionality in software.

This multi-threaded binary is instrumented to collect the memory trace and a mis-

speculation trace that contains information on which iterations of the loop mis-

speculate

2. A separate binary is generated to collect native execution times of the loop itera-

tions. This avoids the use of MTX by inserting additional synchronizations into this

binary. These synchronizations ensure that a stage executes an iteration only when

all the prior iterations and all the prior stages in the current iteration have been exe-

cuted. The information from the mis-speculation trace is used to determine the itera-

tions that mis-speculate and sequential execution is used to execute those iterations.

This restricted execution model ensures correctness even in the absence of MTX and

hence can run directly on native hardware. The IA64 performance counters are used

to collect cycle counts for each stage for every iteration.

3. The per-iteration, per-stage cycle counts computed in the previous step does not re-

flect the additional overhead associated with MTX. To compensate for this, a MTX

simulator is used to find additional costs of memory accesses. This simulator uses the

memory trace and the mis-speculation trace generated in the first step and adds the

MTX overhead to the per-iteration, per-stage execution times. The MTX simulator

is described by Vachharajani [72].
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4. The augmented per-iteration, per-stage cycle counts and the mis-speculation trace are

fed into a PS-DSWP scheduler that “schedules” these individual cycle counts as well

as the mis-speculation trace to compute the execution time of the parallelized loop.

This is depicted in Figure 6.2. In this example, the pipeline has three stages with the

second stage being a parallel stage with a replication factor of two. The first stage

is shown by a dashed rectangle, the second by a solid rectangle and the third stage

by a dotted rectangle. The loop is assumed to execute for four iterations. The data

from the native run is visually represented on the left side of the scheduler, which

constructs a valid PS-DSWP schedule as depicted on the right.

6.3 Benchmarks

The techniques presented in this dissertation are evaluated on a variety of programs from

different benchmark suites. All of these applications are written in C and contain char-

acteristics of many general-purpose applications such as complex control flow and irregu-

lar memory access patterns. The benchmarks used to evaluate PS-DSWP and speculative

PS-DSWP are those that show promising improvement using the performance estimation

framework described in Chapter 4. The benchmarks used to evaluate Spice are chosen by

manually identifying loops with characteristics that can be exploited by Spice. Table 6.2

contains the descriptions of all the benchmarks used in the evaluation.

6.4 Non-speculative PS-DSWP

PS-DSWP is evaluated on a set of loops which cannot be parallelized by DOALL and which

contribute to at least 15% of the application’s execution time. The loops that are selected

are those whose estimated speedup exceeds 50%. The details of the selected loops are pre-

sented in Table 6.3. The loop in 300.twolf had to be manually annotated to indicate the

absence of a memory dependence, since the current pointer analysis used in VELOCITY is
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Benchmark Suite Description

052.alvinn SPEC 92 Trains a neural network called ALVINN (Autonomous Land

Vehicle In a Neural Network) using back-propagation

175.vpr SPEC 2000 A placing and routing algorithm

181.mcf SPEC 2000 Single-depot vehicle scheduling in public mass transporta-

tion

197.parser SPEC 2000 A syntactic parser of English, based on link grammar

256.bzip2 SPEC 2000 Data compression algorithm

300.twolf SPEC 2000 TimberWolfSC placement and global routing package

456.hmmer SPEC 2006 Profile Hidden Markov Model

458.sjeng SPEC 2006 A program that plays chess and several chess variants

swaptions Parsec Heath-Jarrow-Morton (HJM) framework to price a portfolio

of swaption

ks – Kernighan-Lin graph partitioning

otter – A theorem prover for first-order logic

Table 6.2: A brief description of the benchmarks used in evaluation.

Benchmark Loop Hotness Pipeline stages

ks FindMaxGpAndSwap (outer) 98% s→ p

otter find lightest geo child 15% s→ p→ s

300.twolf new dbox a (outer) 30% s→ p

456.hmmer P7 Viterbi (inner) 85% p→ s

458.sjeng std eval 26% s→ p

Table 6.3: Details of loops used to evaluate non-speculative PS-DSWP. The hotness col-

umn gives the execution time of the loop normalized with respect to the total execution

time of the program. In the “pipeline stages” column, an s indicates a sequential stage and

a p indicates a parallel stage.
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Figure 6.3: Speedup of non-speculative PS-DSWP and non-speculative DSWP over single-

threaded execution. Geometric mean speedup of PS-DSWP with 6 threads is 2.14. Geo-

metric mean speedup of DSWP with 6 threads is 1.36.

not powerful enough to conclude that. The pipeline stages obtained as a result of applying

the PS-DSWP transformation is also given in the final column of Table 6.3.

Figures 6.3(a)-(e) show the performance of the five selected loops after applying PS-

DSWP. For each loop, the graphs compare the speedups obtained by DSWP and PS-DSWP

for the same number of threads. Using up to 6 threads, PS-DSWP shows a geometric-mean

speedup of 2.14 and a peak speedup of 2.55 in 458.sjeng. On the same loops, with

the same number of threads, DSWP yields a speedup of only 1.36. In all the benchmarks
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except 300.twolf, PS-DSWP outperforms DSWP for any number of threads. The loop

in 300.twolf executes only 3 or 4 iterations on average; hence executing the parallel

stage in more than three threads results in diminishing returns. Since the body of the loop

in 300.twolf is large with many SCCs, a good balanced DSWP partition is possible.

The loop in 456.hmmer also shows poor scalability, even though the loop iterates 300

times per invocation. In 456.hmmer, the sequential stage takes a significant amount of

time to execute and becomes the bottleneck after a replication factor of 3 for the parallel

stage. In the other three loops, PS-DSWP scales up to six threads, while DSWP plateaus

with fewer threads.

Figure 6.3(f) shows the effect of applying iteration chunking to the loop in 456.hmmer

with four threads. The bar on the left shows the speedup obtained when iteration chunk-

ing was not applied. The second bar shows the speedup for the same code when all data

accesses were assumed to always hit in the L1 cache. This speedup number is relative to

a single-threaded baseline that was also simulated with a perfect cache. The difference in

these speedups indicates that cache effects significantly influence the speedup of the multi-

threaded code in this loop. The third bar shows that most of this performance difference

goes away using the cache parameters shown in Table 6.1 and a chunk size of 32. This

suggests that chunking can be effective in mitigating the effects of false sharing. The final

bar shows the speedup of the chunked code with a perfect data cache. This speedup is less

than what can be obtained with a perfect cache when chunking is not applied, indicating

that iteration chunking results in a loss of parallelism.

6.5 Speculative PS-DSWP

Table 6.4 lists the benchmarks used to evaluate speculative PS-DSWP. Most of the execu-

tion times of these benchmarks is spent in the loops chosen for parallelization. Figure 6.4

shows the performance of PS-DSWP with four and eight threads. The geometric mean
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Benchmark Function Hotness

052.alvinn main 98%

175.vpr try swap 99%

197.parser batch process 99%

256.bzip2 compressStream 99%

456.hmmer main loop serial 98%

swaptions HJM Swaption Blocking 98%

Table 6.4: Details of the loops used to evaluate speculative PS-DSWP.

speedup with four threads is 2.17 and with eight threads is 3.67. For comparison, the

speedup obtained by speculative DSWP on these benchmarks is also shown in the graphs

in Figure 6.4. The same speculation thresholds are used for DSWP and PS-DSWP and

the same simulation methodology is used in both the cases. DSWP performs poorly in

most of these benchmarks with some significant slowdown relative to single-threaded exe-

cution in some of the loops. The rest of this section takes a closer look at the performance

characteristics of some of the benchmarks used in the evaluation.

6.5.1 A closer look: 197.parser and 256.bzip2

The benchmark 197.parser performs syntactical parsing on an input consisting of En-

glish language sentences. The program’s outermost loop, which processes each sentence

of the loop, is parallelized. Since the grammatical structure of a sentence does not depend

on other sentences, this loop is a good candidate for PS-DSWP. The partitioner divides the

loop into three stages, with the middle parallel stage contributing to a large fraction of the

execution time. The PS-DSWP speedup scales well as long as there is enough work for all

the threads to process.

The DSWP speedup of this loop is 1.14 with both four and eight threads. The speedup

is limited by a large SCC which accounts for a little more than 80% of the total profile

weight of the loop. This SCC roughly consists of most operations in the body of the inner

loop that parses a single sentence. This underscores one of the main advantages of PS-

DSWP: its ability to distinguish inter-iteration dependences with respect to the loop being
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Figure 6.4: Speedup of speculative PS-DSWP and speculative DSWP over single-threaded

execution. The horizontal dashed line corresponds to a speedup of 1.0.

parallelized from inter-iteration dependences in inner loops. These inner loop dependences

may contribute to large SCCs that limit the performance of DSWP, but not that of PS-

DSWP.

The performance characteristics of the loop in 256.bzip2 is similar to the one in

197.parser. The loop being parallelized is the outer-most loop of the compresser.

The bzip2 algorithm divides the data into fixed size blocks and compresses them. Since

the compression of one block is independent of another, PS-DSWP is well suited for this

benchmark. Again, the performance of DSWP suffers because of the presence of a large

SCC due to inter-iteration dependences with respect to an inner loop.
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In both these benchmarks, the speculated dependences are the memory dependences

that never manifest, but whose absence cannot be established by static memory analysis.

Furthermore, both of these benchmarks benefit from the privatization effect provided by

multi-threaded transactions.

6.5.2 A closer look: swaptions

In swaptions, the non-trivial SCCs contribute to only a small portion of the execution

time of the loop body. Hence, the DSWP partitioner is able to divide it into stages of

roughly equal weight. However, it introduces a large number of communication operations

in the process. This communication overhead significantly affects the speedup of DSWP.

In the case of PS-DSWP, a three stage partition similar to 197.parser, with most of

the time spent in the middle stage. Hence, its speedup is determined by the number of

threads executing the parallel stage and not the total number of threads. Thus, in the four

thread case, speedup obtained by PS-DSWP is 1.98, which is less than the speedup obtained

by DSWP. However, as the number of available threads increase to eight, the speedup

obtained by PS-DSWP becomes close to 6, which is the number of threads that execute the

parallel stage. In the case of DSWP, an eight stage partition results in more communication

operations resulting in a lower speedup than PS-DSWP.

6.5.3 A closer look: 175.vpr and 456.hmmer

The main bottleneck for performance in 175.vpr is the number of mis-speculations and

the associated cost in recovering from them. This affects the performance of both PS-

DSWP and DSWP. A high mis-speculation rate affects performance in several ways. First,

the mis-speculated iteration is executed sequentially. There is also an additional cost asso-

ciated with re-executing the mis-speculated iteration since the commit thread has to com-

municate the live values of the subsequent iteration to the threads executing the stages.

Finally, the assumption that pipeline fill and drain costs are negligible no longer holds true
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since the recovery iteration can be executed only after all prior iterations complete, and so

each mis-speculation necessitates draining of the pipeline.

The main contributor to the significant slowdown experienced by DSWP over single-

threaded execution is the high variance in execution times that is not accounted for during

thread partitioning. The execution times of the stages vary widely from one iteration to

another. In the absence of mis-speculations, the decoupling between the threads helps to

tolerate this variance to a certain degree. However, the frequent mis-speculations and the

consequent draining of the pipeline counteract the decoupling effect.

456.hmmer also suffers from mis-speculation, but the mis-speculation rate is lower

than 175.vpr and hence the effects are reduced. The presence of a large SCC in an inner

loop further hurts the performance of DSWP.

6.6 Comparison of Speculative PS-DSWP and TLS

This section presents a quantitative comparison between speculative PS-DSWP and TLS

to better understand the differences between these two techniques. There are many dif-

ferent TLS proposals with varying approaches to speculation and synchronization of de-

pendences. The results presented in this chapter are based on a TLS system described in

Zhai [75]. This particular proposal is chosen for comparing PS-DSWP because this TLS

system relies primarily on the compiler to do the synchronization and does not delegate

that task entirely to hardware like many other TLS proposals. Faithfully implementing

an existing TLS system for comparison is not feasible because of the significant effort

required, non-availability of many of the implementation details and the differences in ar-

chitectural and micro-architectural details between the processor used to evaluate specula-

tive PS-DSWP and existing TLS systems. Hence, this work uses a native-execution based

simulation similar to the one used to evaluate speculative PS-DSWP.
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1. The first step is to identify all inter-iteration dependences and classify them into those

that need to be synchronized and those that are speculated. All register dependences

are synchronized. The choice between speculation and synchronization for memory

dependences is based on the profile information obtained from LAMP. The informa-

tion about speculated dependences are annotated into the program IR.

2. For dependences that need synchronization, the optimal points to insert the synchro-

nization are inserted based on the analysis described in Zhai et al. [76]. These anal-

yses are implemented in the VELOCITY compiler.

3. A special profiler is used to obtain a trace of the iterations during which the spec-

ulated dependences manifest. This trace records the loop invocation, loop iteration

and dependence distance for each occurrence of a speculated dependence.

4. The single-threaded program is instrumented to record the cycles from the beginning

of each iteration at which the synchronization points identified in Step 2 are executed.

In addition the cycle at which the home free token [75] has to be inserted is also

recorded.

5. In the final step, a TLS scheduler similar to the PS-DSWP scheduler described earlier

uses the cycle counts from step 4 and the speculated-dependences from step 3 to

obtain the TLS execution time of the loop.

Figure 6.5 shows the speedup obtained by TLS using the methodology described above.

For comparison, the speculative PS-DSWP speedups are also given. Speculative PS-DSWP

uses eight worker threads and a commit thread, while the TLS results are obtained using

nine threads. In all benchmarks except swaptions, speculative PS-DSWP outperforms

TLS. Some major factors which contribute to the performance advantage of speculative

PS-DSWP and an analysis of the performance difference in swaptions are discussed

next.
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Figure 6.5: Comparison of TLS and speculative PS-DSWP. Worker threads used in specu-

lative PS-DSWP = 8. Threads used by TLS = 9.

Synchronization stalls

Consider a strongly connected component in the PDG of a loop. Speculative PS-DSWP

assigns this SCC to a sequential stage, thereby limiting the parallelism. TLS synchronizes

the loop carried dependences in this SCC using wait and signal primitives. A signal has

to be inserted after the source of the dependence and the wait has to be inserted before the

destination. For every scalar variable or an abstract memory location, exactly one signal

and wait has to be executed per iteration of the loop that is parallelized. A naı̈ve approach

to synchronization is to insert all the signals at the end of a loop iteration and all the waits

at the beginning of an iteration, but this serializes the execution of the entire loop. Zhai et

al. [76] propose a data-flow analysis and a scheduling algorithm to optimize the placement

of the wait and signal primitives. There are two situations in which the placement according

to this algorithm still results in significant stall cycles.

The first case is the inefficient placement of the synchronization primitives in the pres-

ence of complex control flow. The code in Figure 6.6 is based on a code fragment in the

loop in 197.parser. The variable errors is loop carried and is hence synchronized.

The position of wait and signal shown in the figure is as determined by the synchroniza-

tion optimization algorithms. As a result of this synchronization, the calls to foo which
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for(...){
wait(errors);

if(condition1){
errors++;

}
foo() //expensive computation

if(condition2){
errors++;

}
signal(errors);

}

Figure 6.6: Insertion of TLS synchronization in the presence of control flow.

for(i = 0; i < 10; i ++){
wait(k);

while(...){
a[i] = foo(a[i]);

k++;

}
signal(k);

}

Figure 6.7: Synchronization of an inter-iteration dependence inside an inner loop by TLS.

are sandwiched between the two if statements are also serialized even though they are

completely independent of the two if statements. In comparison, speculative PS-DSWP

assigns only the if statements to a sequential stage and the calls to a parallel stage since

they are in two different SCCs. The speedup of 197.parser increases from 2.38 to 2.81

if the calls are outside the synchronized region.

The problem in this specific example can be mitigated by applying an aggressive schedul-

ing algorithm proposed by Zhai et al. [76]. The aggressive algorithm uses control and

memory speculation in conjunction with data-flow analysis and scheduling. Since in this

example, the error conditions are false with high frequency, the signal gets moved above the

call in the common case. However, if the branches are not biased, the aggressive scheduling

algorithm also produces the same synchronization shown in Figure 6.6, whereas the SCC

based approach works irrespective of whether the branch is biased or not.
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Original iteration Commit state Stall Cycles

wait(home_free) signal(home_free)

Thread 2

Thread 1

Figure 6.8: An execution schedule of TLS showing the steps involved in committing an

iteration.

The second case is that of inter-iteration dependences whose source and destination

operations are contained in some inner loop. Consider the loop in Figure 6.7, where the

execution of foo in different iterations of the outer loop are assumed to be speculatively

independent. The variable k is synchronized using signal and wait primitives. This syn-

chronization effectively serializes the execution of the entire loop, even though the inner

loop invocations can execute concurrently with the exception of the addition of the variable

k. As in the previous example, the SCC based approach of speculative PS-DSWP assigns

foo to a parallel stage. Unlike the previous example, even the aggressive scheduling ap-

proach does not help in this case.

All the loops that are used in this evaluation have at least one dependence which is con-

tained within some inner loop. Their impact on performance depends on how much of par-

allelizable portion is serialized due to the synchronizations. For instance, in 052.alvinn,

ignoring just one such inner-loop dependence can increase the speedup obtained by TLS

from 1.95 to 7.38. Note that even an optimal placement of signal and wait for this depen-

dence would incur some synchronization cost making this speedup unrealizable, but this

shows the potential cost due to the synchronization of inner-loop dependences. Another

such example is seen in 256.bzip2. By ignoring inner-loop dependences in three differ-

ent functions — spec getc, spec putc and bsW — the speedup increases to 6.14.
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Assignment of iterations to cores

The ability to dynamically map iterations to cores gives speculative PS-DSWP a significant

advantage over TLS. Such a dynamic assignment is not possible in TLS. In TLS execution,

a token called home-free token is passed among the cores. After executing the original loop

iteration, a thread waits for the home-free token from the thread executing the preceding

iteration. After receiving the home-free token, a thread commits its speculative state and

then signals the token to the next thread. This is illustrated in Figure 6.8. An important ob-

servation is that even if a thread has executed the original iteration, it cannot start executing

the next iteration till the immediately previous iteration has committed. This restriction

prevents TLS from dynamically mapping iterations to threads.

In the benchmarks that are used to compare TLS and speculative PS-DSWP, 197.parser

suffers heavily to the lack of dynamic assignment in TLS. Even if all synchronizations

are ignored, and no mis-speculation occurs, the speedup achievable by TLS is only 2.81

– much less than the 6.23 speedup obtained by speculative PS-DSWP. This gap can be

wholly attributed to dynamic assignment of iterations to threads. The presence of a few

long sentences and many shorter sentences in the input set causes many stalls to be intro-

duced in TLS.

Performance analysis of swaptions

In swaptions, there are only three dependences that need to be synchronized. Even

though they are inside an inner loop, that inner loop’s execution constitutes a small fraction

of the execution time of the loop that is parallelized. Hence, the cost of synchronizing

the dependences is hidden by the execution of the rest of the loop body. The loop never

mis-speculates and the execution times of the different iterations are more or less the same.

All of these factors result in TLS obtaining almost 9 times speedup with nine threads. In

the case of speculative PS-DSWP, the loop is partitioned into a three stage pipeline with a

sequential first and third stage and a parallel second stage. Both the sequential stages are
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Figure 6.9: Performance of swaptions with TLS and speculative PS-DSWP for threads

ranging from 8 to 256.

negligible in terms of execution time. Hence the speedup with nine total threads is very

close to 6, which is the number of threads executing the parallel stage.

The harmful effects of cyclic communication in TLS starts to affect the performance as

the number of threads exceeds a limit. Figure 6.9 shows how the performance of TLS and

speculative PS-DSWP changes with an exponential increase in the number of threads. The

speedup of TLS peaks at 72 after which an increase in the available number of threads does

not improve the performance. This is because the length of the dependence cycle between

the threads increase with the number of threads, as shown in the performance characteristics

discussion of DOACROSS in Section 2.2.2 shows. The performance of speculative PS-

DSWP continues to increase even when the TLS performance saturates since there is no

cyclic communication.

6.7 Spice

Spice is also evaluated with the cycle-accurate simulation methodology described in Sec-

tion 6.2.1. Spice is evaluated on the benchmarks in Table 6.5. These loops were chosen

manually from a set of non-DOALL loops that are found to be good candidates for this

technique. Among these loops, only those which account for significant fraction of the

program’s execution are retained.
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Benchmark Loop Hotness

ks FindMaxGpAndSwap (inner

loop)

98%

otter find lightest cl 20%

181.mcf refresh potential 30%

458.sjeng std eval 26%

Table 6.5: Details of the loops used to evaluate Spice.
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Figure 6.10: Performance improvement of Spice over single-threaded execution.

Figure 6.10 shows the speedups obtained on these four loops. The speedup numbers

are shown for both the two threads and the four threads cases. The loop speedups range

from 1.24 in 458.sjeng with two threads to as high as 2.57 on the loop in ks with four

threads. There are several factors that prevent the actual speedup from being in line with

the ideal linear speedup expected from threads executing in a DOALL fashion:

Mis-speculations 458.sjeng is the only benchmark in which performance suffers heav-

ily due to mis-speculation. Around 25% of the invocations mis-speculate in this

benchmark. In the other three loops, the mis-speculation rate is less than 1%.

Load imbalance The number of iterations per invocation varies in otter due to inser-

tions to the linked list. Load balancing plays an important role in speeding up the

loop’s execution. Since the dynamic load balancing strategy does not exactly divide

the work equally among the different cores, it results in some slowdown compared

to the ideal case. In 458.sjeng, even though the variance in the number of itera-
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tions per invocation is not very high, the actual number of instructions executed per

iteration varies across iterations. A load balancing metric better than simple iteration

counts would improve the speedup. Load balancing is also an issue in 181.mcf due

to the variability in the number of iterations of the inner loop per outer loop iteration.

Speculation overhead Even when there is no mis-speculation, there is an overhead in

checking for mis-speculation every iteration. In otter, the time to execute the loop

body per iteration is low and hence the overhead, as a fraction of useful execution

time, is high. In 458.sjeng, the overhead is high because there are 8 distinct live-

in values that are compared with the memoized values of the next thread and ANDed

together to determine whether the speculation is successful.

6.8 Summary

The results presented in this chapters validates the qualitative claims of performance ad-

vantages made in prior chapters. The techniques presented in this dissertation complement

each other by efficiently parallelizing loops with different characteristics. This can be ob-

served from the fact that there is little overlap between the set of loops that show significant

performance improvement under each of the three techniques evaluated in this chapter.
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Chapter 7

Future Directions and Conclusions

In the multi-core era, the responsibility for improving single-threaded application perfor-

mance shifts to the programmer or the compiler. Leaving that responsibility with the pro-

grammer is likely to act as a hindrance to the goal of providing a rich end-user experience.

Additionally, this solution does not address the large body of legacy sequential codes. By

proposing two new parallelization transformations, this dissertation demonstrates that a

compiler based approach could be a viable solution to the problem of improving single-

threaded performance on multi-core processors.

7.1 Future Directions

While the two transformations presented in this dissertation show significant advantages

over related techniques on the selected benchmarks, there is significant scope for extending

and improving them. This section discusses some future research directions related to the

the two proposed transformations.

Decision Heuristics

Many heuristic based optimizations can potentially increase the execution time of a piece

of code. PS-DSWP and Spice are no exceptions to this effect. Thus it is important to
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Figure 7.1: Value predictability of loops in applications. Each loop is placed into 4 pre-

dictability bins (low, average, good and high) and the percentage of loops in each bin is

shown.

develop heuristics to decide which loops to optimize, which transformation to apply and

how much speculation to use. For a static compiler to perform these steps, it needs a

good model to estimate the performance. While the performance model used by PS-DSWP

thread partitioning algorithms is a good starting point, a more realistic processor model

could significantly improve performance.

An alternative is to implement the transformations in a dynamic optimizer where a more

realistic performance estimation can be made by monitoring the execution using hardware

performance counters. This requires significant advancements in reducing the compilation

time of these transformations.

Improved Exploitation of Value Predictability

The experimental evaluation of Spice in this dissertation indicates that its applicability is

limited. However, analysis of value profiles shows that many applications exhibit a similar
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kind of predictability that Spice can exploit. The value profiler computes a hash of loop

live-ins every iteration, after ignoring infrequent memory dependences. If more than half

such hashes in an invocation are found in the preceding invocation, the loop live-ins of

that invocation is deemed predictable by Spice. Each loop is then classified according

to the percentage of its invocations that are predictable: low (1-25%), average (26-50%),

good (51-75%), and high (76-100%). The number of loops in each benchmark that fall

under each of these categories is shown in Figure 7.1. The results indicate that the Spice

does not fully leverage the predictability of values across loop invocations.

The following extensions to Spice are required in order to deliver performance improve-

ments from value predictability:

1. Supporting memory alias speculation in addition to value speculation is necessary

to handle those infrequent inter-iteration memory dependences whose values do not

show predictability across invocations. This could be accomplished by using either

TLS-style hardware support for alias mis-speculation detection or an extension of the

software based memory mis-speculation detection approach proposed by Vachhara-

jani [72].

2. Most of the predictability shown in Figure 7.1 stems from inter-iteration memory

dependences whose values are predictable across invocations. Unlike dependences

through registers, the dependence distance of these memory dependences can be

greater than 1 and hard to determine statically. The value prediction used in Spice

does not directly work under these circumstances. Value prediction must be capable

of handling varying dependence distances in order to realize performance gains.

Synergistic combination of PS-DSWP and Spice

Modern optimizing ILP compilers include a suite of optimizations, many of which interact

in a synergistic fashion. A similar interaction between various parallelizing transformations
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Figure 7.2: Speedup obtained by applying PS-DSWP to the inner loop in

FindMaxGpAndSwap method from ks. Beyond eight threads, the sequential stage be-

comes the limiting factor.

may be essential to exploit parallelism across a wide spectrum of applications. The results

in Section 6.5 demonstrate that the combination of speculative DSWP and PS-DSWP is

better than the sum of the two individual components. Integrating Spice and PS-DSWP is

an important area of future research.

One approach to combine Spice and PS-DSWP is to apply Spice to the sequential stages

generated by PS-DSWP. The potential benefit of such a combination is demonstrated by

the parallelization of the inner loop in the FindMaxGpAndSwap method from ks. The

graph in Figure 7.2 shows the speedup obtained by applying PS-DSWP to that loop. This

loop has a sequential first stage followed by a parallel stage. The performance due to PS-

DSWP flattens after an eight thread parallelization. Adding more threads does not improve

the performance since the sequential stage is the bottleneck. Since this sequential stage is

a list traversal loop, Spice can be applied to parallelize that stage. Spice delivers a 1.45

speedup with two threads and a 2.2 speedup with four threads on the sequential stage. By

reducing the sequential execution time using Spice, more threads can be used to execute

the parallel stage, thereby increasing the overall speedup over single-threaded execution.
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7.2 Summary and Conclusions

This dissertation presented two automatic parallelization transformations: PS-DSWP and

Spice. Both of these techniques can extract parallelism from general purpose applications

with complex control flow and irregular memory access patterns. PS-DSWP and Spice

show promising performance advantages over existing techniques.

The implementation and applications of PS-DSWP are presented in this dissertation.

PS-DSWP combines the pipelined parallelism of DSWP with the iteration-level parallelism

of DOALL. It has improved applicability when compared to DOALL and improved per-

formance when compared to DSWP. PS-DSWP results in a geometric mean loop speedup

of 2.13 over single-threaded performance with five threads when applied to loops from a

set of five benchmarks.

The applicability and performance of PS-DSWP improves significantly when combined

with speculative DSWP [73]. The combined technique outperforms either of the techniques

when applied alone. Speculative PS-DSWP results in a geometric mean loop speedup of

3.67 over single-threaded performance when applied to loops from a set of 6 benchmarks.

A quantitative comparison of speculative PS-DSWP and TLS is presented demonstrating

significant advantages of speculative PS-DSWP over TLS.

Spice speculatively extracts thread level parallelism by making use of a novel value

prediction mechanism. The software value prediction mechanism is based on two new in-

sights on the differences between value speculation for ILP and TLP. Spice is evaluated on

a set of 4 loops from general-purpose applications with complex control flow and memory

access patterns. Spice shows a geometric mean loop speedup of 2.01 over single-threaded

performance on the set of loops to which it is applied.

Bridges et al. [6] showed that application performance can be brought back to the his-

torical performance trendline using automatic parallelization. They proposed a framework

that brings together various parallelization techniques, with a few simple source-level an-

notations, to improve the performance of SPEC CINT2000 benchmark suite by a factor of
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5.54. This dissertation provides further support to the thesis that automatic parallelization is

a viable and effective solution to the challenges posed by multi-core processors. The tech-

niques presented in this dissertation may not by themselves be sufficient to extract scalable

parallelism from a wide range of applications. However, as the integration of speculative

DSWP and PS-DSWP suggests, a combination of various techniques capable of optimizing

codes with different dependence patterns has the potential to unlock of parallelism across

a wide range of applications.
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