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Abstract

Microarchitects rely upon simulation to evaluate design alternatives, yet constructing an ac-

curate simulator by hand is a difficult and time-consuming process because simulators are usually

written in sequential languages while the system being modeled is concurrent. Structural mod-

eling can mitigate this difficulty by allowing the microarchitect to specify the simulation model

in a concurrent, structural form; a simulator compiler then generates a simulator from the model.

However, the resulting simulators are generally slower than those produced by hand. The thesis

of this dissertation is that simulation speed improvements can be obtained by careful scheduling

of the work to be performed by the simulator onto single or multiple processors.

For scheduling onto single processors, this dissertation presents an evaluation of previously

proposed scheduling mechanisms in the context of a structural microarchitectural simulation

framework which uses a particular model of computation, the Heterogeneous Synchronous Re-

active (HSR) model, and improvements to these mechanisms which make them more effective

or more feasible for microarchitectural models. A static scheduling technique known as parti-

tioned scheduling is shown to offer the most performance improvement: up to 2.08 speedup.

This work furthermore proves that the the Discrete Event model of computation can be statically

scheduled using partitioned scheduling when restricted in ways that are commonly assumed in

microarchitectural simulation.

For scheduling onto multiple processors, this dissertation presents the first automatic par-

allelization of simulators using the HSR model of computation. It shows that effective paral-

lelization requires techniques to avoid waiting due to locks and to improve cache locality. Two

novel heuristics for lock mitigation and two for cache locality improvement are introduced and

evaluated on three different parallel systems. The combination of lock mitigation and locality

improvement is shown to allow superlinear speedup for some models: up to 7.56 for four proces-

sors.
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Chapter 1

Introduction

Computer microarchitects need to consider, evaluate, and select from many design alternatives

when planning a new microprocessor. Evaluation through hardware prototyping is expensive and

time-consuming, leading microarchitects to seek other techniques to evaluate design alternatives.

The most commonly used technique is software prototyping, or simulation.

Because microarchitects must consider many design alternatives, the ease of creation and

modification of microarchitectural simulators is very important. If it is too difficult to create or

modify simulators, microarchitects will consider fewer alternatives and make poorer decisions.

At the same time, many individual simulation runs must be made for each alternative, causing

the speed of the simulators themselves to be very important. Faster simulators allow microarchi-

tects to evaluate their design alternatives more thoroughly and to have higher confidence in their

decisions.

This work focuses on automatically accelerating microarchitectural simulation while using

simulation frameworks which allow the microarchitect to easily and rapidly specify, reuse, and

modify simulators. Automatic acceleration is needed because such simulation frameworks may

produce simulators which are slower than those created using other techniques. The combination

of automatic acceleration techniques with simulation frameworks provides the microarchitect

with simulators which are both fast and easy to modify and enables better design decisions. The

thesis of this dissertation is that simulation speed improvements can be obtained by careful auto-

matic scheduling of the work to be performed by the simulator onto single or multiple processors.

1



1.1 Microarchitectural Simulator Design

Microarchitects primarily evaluate hardware performance. The goal of this evaluation is to deter-

mine how long software will take to run on the proposed hardware. Because microprocessors are

mostly designed as synchronous (clocked) logic,1 performance is determined at the clock cycle

level. Full within-clock-cycle timing information for each wire in the processor is not necessary.

Neither is full fidelity to each wire’s behavior in the hardware; abstractions such as modeling an

adder as simply an addition operation on two integers rather than as a collection of bit-level full

adder blocks are possible, and even desirable to improve clarity and simulation speed. There-

fore, microarchitectural simulation is normally high-level cycle-based simulation; only the signal

values at clock boundaries are modeled, and those signals may contain multiple physical wires.

The most common approach to creating microarchitectural simulators is to write a simulator

in a sequential programming language such as C or C++[99]. While these languages are famil-

iar to most microarchitects, they are not well-suited for writing simulators because there is an

inherent semantic mismatch between the natures of microprocessors and sequential programs.

Microprocessors are inherently concurrent and structural in nature but sequential programming

languages are not. Even the use of object-oriented programming to model some of the structure

fails to capture the essentials of the system: method calls have very different semantics from as-

signing values to signals. This mismatch between hardware and simulator is called the mapping

problem. The mapping problem has been shown to lead to errors in understanding simulator code

and increased development and modification times[103].

Vachharajani et al.[102] propose that microarchitects avoid the mapping problem by using

concurrent-structural simulation frameworks (also known as structural simulation frameworks)

to construct a concurrent, structural model of the microprocessor. This model reflects the concur-

rency and structure of the hardware and thus requires no mapping. The framework then generates

a simulator from the model. Vachharajani et al. have shown[103] that users of such a frame-

work are able to better understand and more rapidly modify models than sequential simulators.

We have shown elsewhere[77] that a complex processor can be modeled with a high degree of

accuracy in a matter of weeks using a structural simulation framework.
1Truly asynchronous microprocessors are relatively rare; their simulators may require detailed timing information.

Such designs will not be considered further in this dissertation.
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Structural simulation frameworks present a notion of concurrency to the user. The semantics

governing this concurrency are known as the model of computation implemented by the frame-

work. The model of computation has numerous implications for the ease with which systems

can be modeled, the run-time overhead of manipulating signals, and the ability to schedule the

concurrent execution to run efficiently.

1.2 The Problem of Speed

Simulation speed is of great importance to microarchitects; the faster the simulator, the more thor-

oughly design alternatives can be evaluated, leading to better decision making. Unfortunately,

structural simulation may hurt simulator performance. A hand-coded simulator, while difficult to

write, may be able to rely upon designer intuition, specialize code, have simple signal semantics

through variables, or inline signals into registers. Reusable components in structural simulation

may be over-generalized, having more functionality, state, or communication than is required for

a particular model. Thus it is important to improve structural simulation speed. Speed is deter-

mined in large part by how well concurrent model behavior within a clock cycle is scheduled onto

the processors running the simulation. Different means of scheduling have different overheads

and performance.

Simulation speed will only grow in importance in the future. Simulation speed depends

strongly upon the complexity of the design being simulated. This complexity has increased from

generation to generation of microprocessors. Table 1.1 shows the total and estimated non-cache

transistor counts in succeeding generations of Intel R©microprocessors. (Cache array transistors

are excluded because increased cache sizes do not increase microarchitectural complexity.) While

transistor count is not a perfect metric of microarchitectural complexity, it shows the general

trend well: complexity has increased greatly over the years. Fortunately, the host machines upon

which microarchitects run simulation have become correspondingly faster, keeping pace with this

growth in design complexity.

Recently chip manufacturers have been forced to halt or even reduce the growth in core com-

plexity because of power dissipation issues. They have turned instead to replication of cores

across the chip, creating chip multiprocessors. This replication of cores increases the overall

3



Transistors
Processor Year Total Excluding cache2

4004 1971 2,300 2,300
8008 1972 3,500 3,500
8080 1974 6,000 6,000
8086 1978 29,000 29,000
Intel286 1982 134,000 134,000
Intel386TM 1985 275,000 275,000
Intel486TM 1989 1,200,000 800,000
Intel R©Pentium R© 1993 3,100,000 2,300,000
Intel R©Pentium R©II 1997 7,500,000 5,500,000
Intel R©Pentium R©III 1999 9,500,000 7,900,000
Intel R©Pentium R©4 2000 42,000,000 28,000,000
Intel R©Pentium R©4 (Northwood) 2002 55,000,000 28,000,000
Intel R©Pentium R©4 (Prescott) 2004 125,000,000 73,000,000

Table 1.1: Size of Intel R©Processors

microarchitectural complexity or amount of work which a simulator must do, but the individual

cores do not increase in performance as quickly as they have in the past. Indeed, some manufac-

turers (such as Sun with the N1 processor) are decreasing individual core performance as they

replicate the cores. The result is that microarchitectural simulators will not be able to keep pace

with the growth in design complexity unless they can utilize multiple cores or processors. In

other words, microarchitectural simulators must become parallel programs.

While the simplest way to parallelize a microarchitectural simulator is to simply run individ-

ual experiments concurrently, doing so will not provide the best performance in several situations.

One situation occurs when latency of individual simulation runs matters more than throughput of

simulation runs. Another occurs when an increase in available cache size caused by using mul-

tiple processors improves performance. Finally, and very importantly for chip multiprocessors,

when hardware resources are shared, individual experiments running concurrently may interfere

negatively with each other in ways that a parallelized simulator could avoid. Thus it is important

for the simulator itself to be parallelized and to use multiple processors.

Parallelization of a simulator written in a sequential language takes the already difficult and

time-consuming task of writing a simulator and further complicates it. Fortunately, a structural

simulation framework can exploit information about concurrency inherent in the structure to au-
2Source: Intel Corp./ PCStats.com / pcguide.com. Cache transistor count estimated as 6 ∗ numberofbits.
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tomatically parallelize the simulator as it is generated. The acceleration which this parallelization

provides to the simulator will depend upon how well the concurrent nature of the system is sched-

uled onto multiple processors.

1.3 Research Objectives and Contributions

Good scheduling of model concurrency in a structural simulator is very important to overall

structural simulation speed, whether this scheduling is done for a single processor or multiple

processors. This dissertation aims to find efficient and effective means to statically schedule

model concurrency onto a single processor for the commonly used models of computation for

structural microarchitectural simulation and to automatically parallelize the generated simulators

and efficiently statically schedule model concurrency onto multiple processors.

The literature has addressed the scheduling of simulation model concurrency onto single pro-

cessors mainly within the context of logic simulation. The first contribution of this dissertation is

to evaluate these previous scheduling mechanisms within the context of structural microarchitec-

tural simulation for a simulation framework which uses the Heterogeneous Synchronous Reactive

(HSR) model of computation. The dissertation contributes improvements to these mechanisms to

make them more effective or more feasible for microarchitectural models. These improvements

include:

• Dependence information enhancement to improve schedule quality

• Dynamic subschedule embedding to improve scheduler time complexity

• A novel technique for reducing repeated work

• Forced invocations to permit dynamic scheduling techniques

This dissertation also contributes a proof that the most commonly used model of computation,

the Discrete Event model of computation, can be efficiently statically scheduled when models

are restricted in ways that are common in microarchitectural simulation. This result contradicts

assumptions made by previous researchers[46, 36].
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Other researchers have introduced the idea of parallelizing microarchitectural simulators[33,

67, 17, 6]. This previous work has involved manual parallelization of a simulator written in a se-

quential language. Other work has focused upon parallelization of simulators using the Discrete

Event model of computation[11, 14, 45, 30, 27]. No previous work has addressed the paral-

lelization of simulators which use the Heterogeneous Synchronous Reactive model of computa-

tion. Thus another contribution of this dissertation is the first method to automatically parallelize

structural simulators which use this model of computation.

Finding efficient schedules for mapping concurrency onto multiple processors is equivalent to

the problem of multiprocessor task scheduling with precedence constraints, resource constraints,

sequence dependence, and communication costs. Additional contributions of this dissertation are

four new heuristics for solving this problem:

• Two lock mitigation heuristics to reduce time spent waiting to obey resource constraints.

• Two clustering heuristics to improve cache locality and reduce the effects of sequence

dependence.

1.4 Organization of the Dissertation

Chapter 2 provides background information about structural simulation frameworks and dis-

cusses models of computation commonly used in structural simulation systems. It provides a

brief overview of the most common structural simulation systems as well as details of the Lib-

erty Simulation Environment[102, 101], which is the structural simulation framework used in this

dissertation.

Chapter 3 investigates methods of scheduling concurrent models for execution on a single

processor. It evaluates four previously proposed techniques and proposes enhancements required

to make these techniques feasible and effective for microarchitectural simulation. It discusses

the conditions under which scheduling techniques designed for one model of computation can

be applied to other models of computation. It also shows that additional information supplied at

component library creation time can improve the scheduling results.
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Chapter 4 shows that the generated simulators can be automatically parallelized. It further

shows that efficient parallelization requires the use of scheduling techniques which can reduce

the amount of time spent waiting for locks and improve cache locality. These are equivalent to

solving the static multiprocessor task scheduling problem with precedence constraints, resource

constraints, a form of sequence dependence, and communication costs. Four novel heuristics for

doing so are presented and evaluated for three types of parallel computer systems.

Finally, Chapter 5 summarizes what this dissertation shows about scheduling to accelerate

uniprocessor and parallel microarchitectural simulation and muses upon directions for future re-

search.
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Chapter 2

Structural Simulation

Writing a simulator for a hardware system is a modeling process; the simulator writer models

the timing and functional behavior of the hardware. Hardware systems consist of components

which operate concurrently and communicate with each other through signals. Yet simulators

are generally written in a sequential programming language such as C or C++. Important hard-

ware concepts such as concurrency and communication are not directly representable in these

languages. Similarly, many of the important concepts of a sequential language such as global

variables and method calls do not have good analogs in hardware[24]. This fundamental mis-

match between the system being modeled and the technology used to model it has been identified

as the mapping problem. Vachharajani, et al. have shown[103] that this problem is one of the

primary reasons it is difficult to write an accurate simulator.

Structural simulation frameworks have been proposed as a means to solve the mapping prob-

lem and thus reduce the development effort needed to model a system at the microarchitectural

level. This chapter explains the important characteristics of structural simulation frameworks.

One of the most important of these concepts is the set of rules controlling the concurrent behavior

of the system; these rules are known as the model of computation. A detailed description is

given of the Liberty Simulation Environment, which is the framework used in this dissertation.
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Framework Type of System Model of Computation Intended Use
Verilog HDL Discrete Event RTL
VHDL HDL Discrete Event RTL
SystemC C++ library Discrete Event RTL to system-level
FastSysC[36] C++ library Zero-delay Discrete Event Microarchitecture
Expression[39] ADL Strict Microarchitecture
HASE[19] Framework Discrete Event Microarchitecture
Asim[24] C++ library Clocked Synchronous Microarchitecture
LSE[102] Framework HSR Microarchitecture

Table 2.1: Characteristics of common structural simulation frameworks

2.1 Structural Simulation Frameworks

A structural simulation framework is a modeling framework in which the behavior of a hardware

system is modeled using concurrently executing components communicating primarily through

signals.1 Such a framework removes the mapping problem by removing the need to perform the

mapping from hardware concepts to simulator code manually. The model corresponds directly to

the hardware or the user’s mental understanding of the hardware. The framework is responsible

for performing the mapping and generating a simulator binary from the model.

There are several examples of structural simulation frameworks. Some are designed specif-

ically to be frameworks. Others are architectural description languages (ADLs) or hardware

description languages (HDLs) which can be used as frameworks. An overview of structural sim-

ulation frameworks is given in Table 2.1. For more detailed descriptions of these frameworks, see

[99]. In this dissertation, the Liberty Simulation Environment (LSE) will be used for evaluation

of scheduling techniques; it is described in more detail in Section 2.3. The listed frameworks will

be used as examples in the following pages as the elements, organization, execution, and models

of computation of structural simulation frameworks are described.

2.1.1 Structural Model Elements

This subsection presents the essential elements of a structural model. These elements are compo-

nents, signals, time, and state. The terminology introduced is that used by the Liberty Simulation

Environment but the concepts apply to all structural simulation frameworks and equivalent ter-
1This is a more expansive definition than that taken by [99] and includes some so-called pseudo-structural frame-

works.
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minology in other frameworks is given in footnotes when terms are defined. Concepts specific to

the Liberty Simulation Environment are described later in Section 2.3.

Components

A structural model contains components2 instantiated from a library of modules. A module3 is

simply a template or class for generating a component; a component is an instance of a mod-

ule. Each module contains one or more codeblocks.4 A codeblock is a block of sequential code

which reads input signal values, produces output signal values, and/or updates state. Individ-

ual codeblocks logically execute concurrently and generally may make no assumptions about

the execution of other codeblocks. The nature of this concurrency depends upon the model of

computation and will be discussed in Section 2.2.

The purpose for having multiple codeblocks per module is to either organize the module code

more conveniently or to share state between codeblocks in an instantiated module. For example,

data signals and flow control signals may be handled by different codeblocks but still depend

upon some state of the component. The granularity and composition of codeblocks is typically

left up to the user. Codeblocks are commonly considered black boxes; the framework does not

have the ability to analyze the internal logic of codeblocks, though it may provide some rules

which constrain codeblock behavior.

Two primary goals of many structural simulation frameworks are reuse and flexibility. The

intent of the structural framework is to make it possible to reuse modules or to modify them

quickly and easily. Frameworks may have reuse-enhancing features such as default flow control

behavior, parametric polymorphism (the ability to make a module which works with any data

type), or algorithmic parameters. Modules in libraries are typically written with many parameters

allowing them to be used in many situations.
2Components are known as instances in SystemC, Verilog, VHDL, and Asim.
3Modules are known as entities in HASE and VHDL and units in Expression.
4Codeblocks are called threads in HASE; methods in Asim and Expression; processes in SystemC and VHDL; and

tasks, structured procedures, or continuous assignments in Verilog.
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Signals

Components are connected together using signals.5 These signals are generally typed and can

take on a rich set of values – e.g. integers, arrays, or records – allowing for higher-level abstrac-

tions than physical wires. Connections are made between ports of components. Components

communicate with each other primarily through the signals connected to their ports, though some

frameworks may also allow shared state, which must be accessed carefully to prevent race condi-

tions.

Signal values are produced by the execution of codeblocks; a codeblock assigns a value to

the signal. Constant signal values are possible; for analysis purposes they can be considered

to be assigned by a special codeblock within the framework. More than one codeblock may

potentially assign to a signal, just as more than one codeblock may potentially read the value of a

signal. Codeblocks which assign to a signal are said to be connected to codeblocks which read the

signal’s value. Occasionally the act of assigning to a signal is described as “sending a message”

on the signal, though this terminology will not be used in this dissertation.

A very important issue is whether there are restrictions on the patterns with which codeblocks

or instances can be connected in a system. If the signals are considered as edges of a directed

graph and the codeblocks or instances as the vertices, are there any directed cycles in the graph?

Some frameworks allow such cycles; others do not. If cycles are not permitted, some useful

patterns of connection between components are not allowed, reducing reuse of modules. For

example, a simple two-signal handshake between two components might not be possible because

the data signal and an acknowledge signal would form a cycle in a graph of instances.

Time

Microarchitectural simulation requires time measurements at clock-cycle granularity; it does not

require timing information within a clock cycle. Thus the only time values of interest are zero and

integral numbers of cycles. Time can be introduced as either delays upon the signals or latency

taken by codeblocks to produce signal values. In this dissertation, all signals have zero intrinsic
5Signals are a special case of channels in SystemC; they are called links in Hase, connections in Expression, and

ports in Asim.
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delay and codeblocks assign values to signals with some delay; this causes the new value of the

signal to not “take effect” until after the delay has passed.

Codeblocks which never assign with zero delay will be called E-codeblocks. All other code-

blocks assign with zero delay to at least one signal and are denoted W-codeblocks. In some

frameworks, W-codeblocks may only assign with zero delay and only E-codeblocks may assign

with non-zero delay. The E-codeblock and W-codeblock nomenclature stems from the portion

of the main simulation cycle in which each codeblock type is normally invoked, as described

in Section2.1.3; E-codeblocks are invoked in the End-of-cycle portion while W-codeblocks are

invoked in the Within-cycle portion.

Note that different frameworks provide the user with different means to indicate that a code-

block is an E-codeblock or a W-codeblock. In LSE there is a direct syntactic distinction through

a naming convention. In Expression and Asim the signals carry delay annotations which indicate

the amount of delay codeblocks use when assigning to each signal. In Verilog, VHDL, HASE,

and SystemC a codeblock which is sensitive to a clock (i.e. runs when a clock changes value) is

an E-codeblock and all other codeblocks are W-codeblocks.6

A signal A is said to computationally depend or simply depend upon another signal B if

A is assigned to with zero delay by some codeblock and that assignment is control-dependent or

data-dependent upon a read of the value of signal B within the execution of the codeblock.

A zero-delay cycle is a cycle in a graph of W-codeblocks where edges represent signals which

are assigned to with zero delay.

State

Components may contain state. This state is normally updated by E-codeblocks with non-zero

delay so that state changes are not seen until the next clock cycle. It can be possible for a W-

codeblock to successfully update state if either the construction of the codeblock or guarantees

provided by the framework prevent that state change from affecting any signal values in the

current clock cycle. Some frameworks provide these guarantees. If a W-codeblock updates state
6Codeblocks in Verilog, VHDL, and HASE are able to assign with arbitrary delays, but this capability is not

generally used in cycle-granularity simulation.
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inappropriately, a race condition occurs where the signal values depend upon the invocation

order of the codeblocks.

Some frameworks (LSE, Verilog, SystemC, and possibly Asim or Expression) may allow

codeblocks of different components to share state. This state sharing often occurs through li-

braries such as instruction set emulators. State sharing may also occur implicitly in all frame-

works whenever I/O is performed by the simulator. Race conditions may occur very easily when

state is shared between codeblocks of different components and the user must reason carefully

about how and when state is updated.

2.1.2 Organization of a Structural Model

Structural models are usually organized in a hierarchical fashion. The framework allows the user

to define modules as a collection of interconnected sub-modules. Instantiating modules creates an

instance hierarchy of components. Components which are at the lowest level of the hierarchy are

known as leaf components.7 Frameworks generally “flatten” this hierarchy to generate a netlist

of inter-connected leaf components.

This model organization reflects the nature of most microprocessor designs. A microproces-

sor can be thought of as a very large state machine that is too large to reason about as a single

machine. Instead, the microprocessor is partitioned into multiple peer state machines which com-

municate with each other. This partitioning is reflected in the codeblocks of the components.

E-codeblocks correspond to Moore state machines; their outputs are dependent only upon their

state[51]. The stored signal values for the next cycle are state for the Moore state machine, as

is user-defined internal state which the E-codeblock updates. W-codeblocks can be thought of

as Mealy state machines when they reference or update state because their outputs depend upon

both inputs and state. W-codeblocks which reference and update no state are combinational logic.

In a synchronous processor design, all state machines update their state simultaneously ac-

cording to clock signals. The key characteristic of a synchronous design is that no state exists

whose update is not controlled by a clock. Many structural simulation frameworks are intended

to simulate only synchronous designs. However, it is possible for state uncontrolled by clocks
7Leaf components are called atomic components in HASE.
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to emerge from the interconnections of the combination logic of the system and cause a design

to become non-synchronous. This may happen even though individual codeblocks are combi-

national; individually combinational logic blocks might not be joinly combinational after they

are connected. The interconnection patterns which a framework can support can be limited by

emerging state. Thus the remainder of this subsection explores this phenomenon more fully.

State emerges when under some combination of input values and assumptions about delay,

a signal depends upon itself. Malik[65] characterizes the situations under which a cyclic logic

circuit remains combinational: for a combinational circuit, primary outputs always reach stable

values for all combinations of primary input values and those output values are completely deter-

mined by the values of the primary inputs for any combination of gate and wire delays. This is

equivalent to saying that neither the eventual stability nor the stable value of any primary output

is affected by the value of an emergent state signal. I extend Malik’s characterization to non-

boolean signal values: a circuit is combinational if the stability of and stable value of no primary

output is affected by the value of an emergent state signal.

When state arises from the interconnections, the model is no longer synchronous, as that state

is not controlled by the clock. This gives rise to an operational definition of whether a model is

synchronous: if all old explicit state values are treated as primary inputs and all new state values

are treated as primary outputs, then if and only if the combined combinational portions of all state

machines in the model are jointly combinational, the model is synchronous.8

It is possible in microarchitectural modeling for designs to appear to not be synchronous even

though there exists a synchronous logic-level implementation. This is because the types used in

microarchitectural modeling are larger than a single bit and every bit of a signal is considered to

be involved when computing dependences. Such a situation is shown in Figure 2.1. Here signal

Z depends upon itself through the codeblock when the signal is considered as a whole. However,

a logic-level implementation would not appear to depend upon itself because no bit of Z actually

depends upon itself. In this dissertation, those models which admit a logic-level synchronous

implementation are called logically synchronous models and the subset of the logically syn-

chronous models which still appear synchronous at the microarchitectural signal level are termed
8Unreachable states should not be considered when checking whether the model is jointly combinational. If un-

reachable states are considered, then some models will be designated as not synchronous which always show syn-
chronous behavior in practice.
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Figure 2.1: A logically synchronous but microarchitecturally asynchronous model

microarchitecturally synchronous. This distinction will be important later when the ability of

different models of computation to connect codeblocks will be considered.

2.1.3 Structural Model Execution

The framework is responsible for producing a simulator to execute the model. To do so, the

framework must map the concurrent behavior of the model into a sequential simulator. The struc-

ture of the main simulation loop for most frameworks can be seen in Figure 2.2. The frameworks

which use the Discrete Event model of computation have a slightly different main loop in which

the within-cycle and end-of-cycle steps are merged into one step. However, as execution actually

alternates between W-codeblocks and E-codeblocks, the structure given in Figure 2.2 still applies.

Before simulation begins, there is an INIT step which initializes data simulation structures

and state. Then, during each clock cycle of simulation, the following steps are taken:

within-cycle During the within-cycle step, W-codeblocks are invoked to compute signal values

for the current cycle and potentially for following cycles. In some frameworks, codeblock

invocations may not be repeated. In others, invocations may be repeated until signal values

converge to a stable state. In yet others, invocations may be repeated, but signal values are

not guaranteed to converge, nor is this step guaranteed to terminate.

end-of-cycle During the end-of-cycle step of simulation, E-codeblocks are invoked to update

state and compute signal values for following next cycle.
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Figure 2.2: The simulation loop

between-cycle During the between-cycle step of simulation, the framework performs bookkeep-

ing such as incrementing time and applying signal values produced with some latency as

the initial signal values for the next clock cycle.

The within-cycle step and the end-of-cycle step are often combined, though it is clearer to think

about their execution as separated. After simulation ends, there is a FINISH step, which typically

reports summary statistics.

This simulation loop has been described for a hardware model in which there is a single clock.

When there are multiple clocks, the same loop is maintained, but different iterations correspond

to different clocks. For example, if there are two clocks A and B with the same period but some

amount of skew such that B lags A, then the odd iterations of the main loop will reference clock A

and the even iterations clock B. Only end-of-cycle codeblocks corresponding to the clock being

referenced by a particular iteration are invoked in that iteration. This dissertation deals only with

single-clock models, but the techniques are easily in this way to multiple-clock models.

The order in which codeblocks are executed and the manner in which signal values evolve

over the course of execution must obey certain rules which define the semantics of the system.

These rules are known as the model of computation. To avoid confusion with the model of

hardware which the user creates, models of computation will often be referred to as MoCs.
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2.2 Models of Computation (MoCs)

Researchers do not agree upon the definition of the term “model of computation.” One defines

model of computation as “the set of processes and process networks that can be constructed by

a given set of process constructors and combinators.”[44, p. 108] Yet another defines it as “the

model of time employed ..., the supported methods of communication between concurrent pro-

cesses, and the rules for process activation.”[38, p. 41]. In this dissertation, model of computation

is defined as:

Definition 1. A model of computation (MoC) is the set of rules which control:

• The values signals may assume.

• The latencies codeblocks may use when setting signal values.

• The order in which codeblocks execute.

• The order in which signals are evaluated.

The MoC has five important implications for ease of modeling and simulation performance

of a structural simulation framework:

1. A MoC may restrict the granularity of components or the way in which components can be

interconnected, thus limiting reuse or flexibility.

2. A MoC may allow a W-codeblock to update state. This may both simplify and accelerate

the code. An example of a module which can benefit from this ability is a superscalar

register renamer, where the rename of later instructions depends upon the rename of earlier

instructions.

3. A MoC affects the ease with which users can share state between codeblocks by permitting

or restricting this sharing.

4. A MoC affects the overhead of manipulating signals; some MoCs require more work to be

done when a signal value is assigned or read than others.
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MoC Limitations Within-cycle
State Update

Within-cycle
State Sharing

Overhead

Clocked
Synchronous

granularity and
connectivity

N/A no buffering

Strict connectivity yes if ordered limited buffering
Discrete Event none no no limited buffering,

comparison
Heterogeneous
Synchronous
Reactive

monotonicity yes if ordered limited buffering,
⊥ checks

Table 2.2: Characteristics of MoCs used in structural simulation frameworks

5. A MoC determines whether static or dynamic scheduling of codeblock execution is possi-

ble and desirable. The subject of Chapter 3 is efficient scheduling methods for the different

MoCs and a more detailed explanation of possible scheduling methods for each MoC is

deferred until then.

While there are many MoCs, there are several particular MoCs that are commonly used in

structural microarchitectural simulation. Table 2.2 summarizes these MoCs. They are described

below in greater detail.

2.2.1 The Clocked Synchronous MoC

The simplest model of computation is the Clocked Synchronous MoC[93]. It is used by the

Asim[24] simulation framework. This MoC enforces a clock cycle of delay along any commu-

nication path between codeblocks; equivalently, all codeblocks must assign with non-zero delay.

This leads to the following set of rules:

1. All signal assignments have non-zero delay.

2. Signals may take on only one value per clock cycle.

3. Only E-codeblocks may exist (a corollary of rule 1).

4. All codeblocks must execute exactly once per cycle.

These rules imply that codeblocks may only model Moore finite state machines. Such a

restriction greatly reduces modeling flexibility; it is not possible to compose blocks of combina-

tional logic. Some frameworks using this model of computation attempt to relax this restriction
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by allowing the user to create a within-cycle step of simulation by calling methods of the compo-

nents. Doing so requires that the user manually write code to make these calls in a correct order;

changes to the model structure result in a need to modify the calling code.

Codeblock writers may take advantage of the single execution per cycle guarantee to simplify

some codeblocks and may update state in any codeblock immediately. Sharing of state between

codeblocks is not feasible because there is no execution ordering between the codeblocks.

All signal assignments must be buffered by the framework to comply with rule 1, but this

may not be a large overhead as the granularity of modeling is typically not extremely fine with

this model of computation.

2.2.2 The Strict MoC

The Expression[39] simulation framework uses a model of computation which this dissertation

terms the Strict MoC. This name was suggested by an observation that Expression obeys the

strictness property of function languages[79] – all inputs to a function must be evaluated before

the function is called. The Strict MoC allows zero-delay assignments, but requires that there be

no zero-delay cycles between W-codeblocks.

It has the following rules:

1. Signal assignments may have delay of either zero or an integral number of cycles.

2. Signals may take on only one value per clock cycle.

3. No codeblock may execute until all its inputs have taken on their final value for the clock

cycle. This rule is the strictness property. This rule prevents zero-delay cycles among the

W-codeblocks; it also implies that W-codeblocks need be executed no more than once;

Expression guarantees that W-codeblocks will execute exactly once.

4. E-codeblocks must execute exactly once per cycle.

These rules allow individual codeblocks to model any finite state machine or combinational

logic, but they limit the patterns in which components can be connected. In particular, zero-delay

cycles between W-codeblocks are not possible. While this restriction may seem unobjectionable
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Figure 2.3: Seemingly zero-delay cycles

at first glance, it is too restrictive because seemingly zero-delay cycles appear more frequently in

microarchitectural modeling than might be expected. This can happen for two reasons:

1. A W-codeblock may calculate multiple output signals using different input signals. A

seeming zero-delay cycle involving such a codeblock may not in fact involve a true cycle

in computational dependences. As an example, consider Figure 2.3(a). Here the upper

component places a data request to the lower component and receives an acknowledge

signal in return. It then creates an enable signal based upon that acknowledge signal. It

may be very convenient to write the upper module with one codeblock to handle all this

behavior. However, there appears to be a zero-delay cycle between the codeblocks which

is not actually present in the true computational dependences.

2. A zero-delay cycle may exist statically, but not dynamically. One situation in which this

may occur when is large datapath elements are interconnected with routing elements. For

example, Figure 2.3(b) shows a situation where a control signal selects between function

F ◦ G or G ◦ F . The zero-delay cycle is never dynamically realized. A similar situation

may occur in distributed arbitration logic.
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In either case the hardware cannot be described without changing the codeblocks, reducing flex-

ibility and reuse. For example, in Figure 2.3(a), the upper codeblock would need to be split into

two codeblocks: one which generates the data signal and one which handles the ack-to-enable

calculation. In Figure 2.3(b), the hardware cannot be described at all in the strict MoC without

duplicating at least one of F or G.

Codeblock writers may take advantage of the single execution per cycle guarantee to simplify

some codeblocks and may update state in any codeblock immediately. Sharing of state between

E-codeblocks is difficult because there is no ordering guarantee between the codeblocks. Sharing

of state between W-codeblocks is possible between two codeblocks whose execution order is

guaranteed because there has been dataflow between them; sharing between W-codeblocks and

E-codeblocks is also possible.

Signal assignments which have non-zero delays must be buffered by the framework to comply

with rule 1. Other signal assignments can be simple assignments to variables.

2.2.3 The Discrete Event MoC

The Discrete Event MoC is used by simulation frameworks such as Verilog, VHDL, SystemC,

and HASE[19] and is the least restrictive model of those presented here. Instead of restricting

delays to an integral number of clock cycles, delays may be any amount of time. The rules are:

1. The assignment of values to signals produced in a codeblock is delayed by a user-assigned

amount of time. Some frameworks may permit this time to be zero; others may cause it to

always be at least a delta amount which is reported as zero elapsed time.

2. If delta-delays are used, signals may take on only one value per evaluation step, but there

may be multiple such steps per timestep. Otherwise, a signal may take on multiple values

per timestep.

3. Codeblocks must execute in the evaluation step in which any input signal to which they

are sensitive changes value. Codeblocks may not execute multiple times due to a single

change in a sensitive input.
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The Discrete Event MoC does not distinguish between W-codeblocks and E-codeblocks. In-

stead, an E-codeblock can be recognized by the fact that it is sensitive to an explicit clock signal.

As a practical matter, while the simulation main loop need not distinguish between W-codeblocks

and E-codeblocks, execution usually alternates between E-codeblock activity and W-codeblock

activity. The FastSysC[36] implementation of SystemC relies upon this behavior to improve

simulation speed for cycle-accurate models.

These rules allow individual codeblocks to model any finite state machine or combinational

logic. Connections patterns are not constrained in any way; the examples given in Figure 2.3

present no difficulties. In fact, the overall model need not be synchronous, nor need it even be

guaranteed to converge to a stable value in any timestep. However, because microarchitectural

modeling is usually synchronous, it is common to restrict the Discrete Event MoC in this case to

allow only zero and integer amounts of delay; when this is done, explicit clock signals are also

removed and E-codeblocks are treated differently from W-codeblocks. With the restricted model

of computation, some asynchronous models cannot be modeled without rewriting of codeblocks,

but all microarchitecturally synchronous and logically synchronous models can be.

As there are no guarantees that a W-codeblock will not be invoked many times per clock

cycle, nor any guarantee that a particular invocation will produce the final value of a signal for

the clock cycle, W-codeblocks may not update state. E-codeblocks may update state. State may

not be shared between W-codeblocks or between E-codeblocks as no execution order within each

class is guaranteed. However, W-codeblocks may read state written by E-codeblocks.

The Discrete Event MoC typically has a high degree of overhead. All signal assignments

with non-zero delays, including delta-delays, must be buffered by the framework. Only zero-

delay assignments may be direct assignments to variables. The final rule implies that new signal

values must be compared to old signal values to determine whether the receiving codeblock must

be scheduled for invocation unless a static scheduling scheme is used; these comparisons may be

quite expensive to perform when the signal values are complex data structures.
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2.2.4 The Heterogeneous Synchronous Reactive (HSR) MoC

The Heterogeneous Synchronous Reactive MoC was proposed by Edwards[21] as a model ap-

propriate for use in component-based embedded software systems design. His motivation was

to allow arbitrary patterns of connectivity while guaranteeing that signal values converge to sta-

ble values in each timestep after a predictable maximum number of codeblock invocations. This

MoC is used by the Liberty Simulation Environment.

The original HSR MoC model was derived from the Synchronous Reactive (SR) MoC. Syn-

chronous here means that only zero-delays are allowed. Reactive means that the system only

executes due to a change in inputs. Heterogeneous means that codeblocks can be considered as

block boxes. For microarchitectural simulation, the HSR model is extended to include non-zero

delays on assignments; this can be viewed as the non-zero-delay assignments providing input

stimuli to a proper HSR system formed from the W-codeblocks. The resulting rules are:

1. Signal assignments may have delay of either zero or an integral number of cycles.

2. Signal values are members of a pointed complete partially-ordered set (a poset). What this

means is that there exists a partial order for the signal values where there is a unique ⊥

value which is less than all the other values. In frameworks which use this MoC, the partial

order is very simple: the ⊥ value is less than all other values and all other values are not

comparable. Only this particular partial order is considered in the discussion below and in

this dissertation. With this partial order, the ⊥ value is interpreted as “not yet computed”.

3. W-codeblocks must be monotonic. In other words, if ~x and ~x′ are two vectors of input

signal values, the codeblock transfer function ~f(~x) (a functional description of the zero-

delay signal assignments a W-codeblock makes) must satisfy the property: if ~x ≤ ~x′, then

~f(~x) ≤ ~f(~x′). Note that the ordering relation for a vector of signal values is the natural

extension of the ordering relation for a single signal value: only if all components of one

vector are less than or equal to the corresponding components of another vector is the first

vector less than or equal to the second vector.

This monotonicity constraint, while complex-looking, is actually quite easy to implement

with the simple partial order assumed. The constraint can be satisfied if whenever an input
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A B Non-Strict Strict
True True True True
True False False False
True ⊥ ⊥ ⊥
False True False False
False False False False
False ⊥ False ⊥
⊥ True ⊥ ⊥
⊥ False False ⊥
⊥ ⊥ ⊥ ⊥

Table 2.3: Comparison of strict and non-strict AND-gates

whose value is truly necessary to calculate an output has the ⊥ value, the output remains

⊥. In other words, if a necessary input has not yet been computed, then the output should

not be computed.

4. The final value of a signal produced by a W-codeblock is that given by the least fixed point

solution of the system of codeblock transfer functions.

5. E-codeblocks must execute exactly once per cycle.

The HSR MoC with the simple poset described allows individual codeblocks to model any

finite state machine or combinational logic. Connection patterns are not constrained and seeming

zero-delay cycles evaluate to the expected values; however if there is a true zero-delay cycle, the

least fixed point solution contains ⊥ values for the signals involved in the cycle. This is because

if a signal truly transitively depends upon itself, ⊥ is a fixed point for the signal value and no

value can be less than ⊥. Signal values which are ⊥ in the solution are undesirable as they give

no information about the actual value of the signal.

To avoid impeding reuse, outputs should be set to a non-⊥ value whenever this can be done

without violating monotonicity. Not doing so stifles reuse because it causes more zero-delay

cycles to be true cycles. For example, if all inputs must be non-⊥ before any output is assigned

a non-⊥ value, the codeblock is actually “strict” and suffers from all the limitations of that MoC.

To see how this might occur, observe Table 2.3, which gives two truth-tables for AND-gates. A

non-strict AND-gate has the truth table given in the third column, but a careless module writer

might be tempted to use the truth table given in the fourth column, yielding a strict AND-gate.
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If a model is not microarchitecturally synchronous, there is some combination of state and

input which resulted in state emerging from the connections. State can emerge only when there

is a true zero-delay cycle, therefore, if a model is not microarchitecturally synchronous, some

signal values will remain ⊥. As a result, the HSR MoC with this poset cannot always compute

meaningful signal values for a microarchitecturally asynchronous model without modifying the

codeblocks.

On the other hand, if a model is microarchitecturally synchronous, there are no zero-delay

cycles which affect outputs or new state. In such a model, due to monotonicity, ⊥ signals will

only occur if there is a zero-delay cycle which affects no outputs or new state, some input signals

are ⊥ or a codeblock always produces an ⊥ output value and is thus useless. Note that state

with ⊥ values would cause ⊥ signals, but that would imply that the previous cycle computed an

⊥ value for the state, which would inductively imply one of the other conditions or an ⊥ initial

value for the state.

Thus if a signal value remains ⊥, one of the following situations has occurred:

• The model is microarchitecturally asynchronous.

• The model is microarchitecturally synchronous but has a zero-delay cycle with no effect

on output and state.

• The model is microarchitecturally synchronous but has ⊥ input signals.

• The model is microarchitecturally synchronous but contains a useless codeblock.

• The model is microarchitecturally synchronous but has ⊥ initial state.

All of these conditions should be rare; certainly the last three could be considered bugs. Thus

the HSR MoC will compute meaningful (non-⊥) values for each signal for most microarchi-

tecturally synchronous models. Those for which it does not are likely to contain errors.9 The

examples given in Figure 2.3 are microarchitecturally synchronous and do not present problems

to frameworks using the HSR MoC. Note, however, that the HSR MoC with the simple partial
9Frameworks can use the presence of ⊥ values as a debugging aid to indicate places where the model may be in

error.
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order used here will not compute meaningful values for some signals for logically synchronous

but microarchitecturally asynchronous models.

Codeblock writers may simplify some W-codeblocks and improve performance by taking

advantage of the fact that once a signal is no longer ⊥ it will not change again. A simple check

of an output signal value can thus skip the re-execution of code needed to compute that value.

Immediate state update is also possible if output signals which depend upon that state have already

been given values which are not ⊥. Sharing of state between W-codeblocks is possible between

two codeblocks whose order of assigning non-⊥ values to signals is guaranteed because there has

been dataflow between them.

Signal assignments which have non-zero delays must be buffered by the framework to com-

ply with rule 1. Other signal assignments can be simple assignments to variables, however the

modeled values must be extended to include the ⊥ value, which in most implementations results

in the variable consisting of two objects: a bit field indicating ⊥ and the desired value. The HSR

MoC also requires some additional overhead when using signal values as this use is often guarded

by a check for the ⊥ value.

2.3 The Liberty Simulation Environment (LSE)

The Liberty Simulation Environment (LSE)[102] is used throughout this dissertation to evaluate

scheduling techniques. LSE is a structural simulation framework designed to promote reuse

and flexibility in microarchitectural modeling. This section describes a user’s view of LSE and

characteristics which influence the scheduling techniques introduced in the next two chapters.

2.3.1 A User’s View of LSE

To the user, LSE is a tool chain with a library of core modules. The user instantiates components,

parameterizes and customizes them, and connects them together with typed signals. LSE takes as

its input a model specification and module templates and produces an executable simulator. This

flow is shown in Figure 2.4.

Model specifications are written in a language called the Liberty Structural Specification

Language (LSS)[100]. This language provides constructs for instantiating components, setting
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Figure 2.4: Overview of LSE [99, Fig. 5.1]

parameters, making connections between ports, and managing hierarchy. This language is in-

terpreted to produce a netlist. Unlike most netlisting languages, this language has very rich

semantics, supporting complex data types, type inference, functions which construct structure,

and model error checking.

Modules have an interface description written in LSS, but their behavior is specified in a

behavioral specification language (BSL), which is at present a stylized version of C++ with added

API calls. The BSL code can be thought of as a template for the instantiated components (though

C++ templates are not the implementation mechanism). The code generator combines the netlist

with the BSL to generate C++ code for each component, the framework APIs visible to the user,

and the schedule of codeblock invocations. This C++ code is highly specialized for the model.

The model of computation used by LSE is the HSR MoC. While this would seem to be

mainly of concern to writers of modules, many library modules allow algorithmic customization

and allow the user to manipulate signal values directly as part of this customization. As a result,

all users of LSE must understand the monotonicity requirement of the HSR MoC.
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2.3.2 Writing Modules

Modules either come from the standard module library or are written by users. To write a module,

a user writes an interface description for it in LSS and a behavioral description in BSL. The

behavioral description is a C++ class with stereotypical names for the methods which are to be

considered as codeblocks. The internal logic of codeblocks is not analyzed by LSE and thus

codeblocks are black boxes. A module may have no more than one E-codeblock, but may have

many W-codeblocks. There are three types of W-codeblocks.

The first type is called a handler. Handlers are used to “handle” a change in input signal

values on a specific port. If multiple connections are made to a port, there the port is said to have

multiple port instances. When a handler is invoked, it is passed a parameter indicating the port

instance whose signal changed value. The single handler for a port in the module code is con-

sidered to generate as many codeblocks as there are port instances for that port. A handler must

assign values to all output signals which are computationally dependent upon its input signals

and whose values can be determined at the time of the handler’s invocation.

The second type of W-codeblock is called a phase function. There is at most one phase

function per module. This function is considered to be the handler for all signals which do not

have handlers. A phase function must assign values to all output signals whose values can be

determined.

The third type of W-codeblock is called a control function. Every connection in LSE is point-

to-point (there is no fanout) and actually consists of three signals. These can be seen in Figure 2.5.

The first signal carries data. The other two signals are boolean flow control signals. Modules

from the standard library implement a standard handshaking protocol which makes it easy to

connect together modules and obtain reasonable flow-control behavior. Control functions are W-
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codeblocks which can modify the flow control signals flowing into and out of a port. Control

functions are specified by the user in LSS while customizing a component. Much like handlers,

a control function is passed the port instance and thus the control function’s code generates as

many codeblocks as there are port instances.

Only E-codeblocks may assign values with non-zero delay to signals; thus W-codeblocks

may only assign with zero delay. E-codeblocks are split into two portions. The first portion

only updates state, but cannot assign any signal values. The second portion assigns signal values,

but it does not run until the within-cycle step of the next clock cycle. These second portions are

called phase start functions and are treated as W-codeblocks with no input signals for scheduling

purposes.
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Chapter 3

Scheduling for Uniprocessor Structural

Simulation

A major factor determining the speed of a structural simulator is the quality of scheduling of

concurrent codeblock execution onto a single processor. This chapter investigates efficient code-

block scheduling techniques for the models of computation used by structural microarchitectural

simulation frameworks. It begins with a discussion of how scheduling affects simulator perfor-

mance. Previously proposed scheduling techniques for each of the models of computation and

how they can be applied to other models of computation are described. It then introduces the

challenges which microarchitectural simulation presents to scheduling techniques, and proposes

novel enhancements to address these challenges. The scheduling techniques with the proposed

enhancements are evaluated in the context of a structural microarchitectural framework which

uses the Heterogeneous Synchronous Reactive (HSR) MoC.

3.1 The Relationship of Scheduling to Performance

Structural simulation frameworks generate simulator code. This code consists of a set of code-

blocks which the user has specified as well as logic which schedules and invokes these code-

blocks for execution. The codeblocks are considered to execute concurrently by the user; thus the

scheduling and invocation logic must map this logically concurrent execution onto invocations of

the codeblocks on a single processor running the simulator.
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Codeblocks are divided into two classes: those which assign values with some delay to all

signals which they produce (E-codeblocks) and those that assign values to some signals with zero-

delay (W-codeblocks). Scheduling the execution of E-codeblocks is quite simple; any schedule

which invokes each E-codeblock exactly once is correct. However scheduling the execution of

W-codeblocks is more challenging, and may require multiple invocations of the same codeblock.

There are two basic approaches to scheduling W-codeblocks: dynamic and static. Dynamic

scheduling is the simpler of the two. A mutable invocation list of codeblocks to invoke is main-

tained. When a signal changes value during execution, the codeblocks which receive that signal

are added to the list. Codeblocks are removed from the list when they are invoked. When the

list is empty, the within-cycle execution is finished. After within-cycle execution has completed,

end-of-cycle execution executes all the E-codeblocks in any order.

There is an additional form of dynamic scheduling, called two-pass scheduling. (The form

described above is known as one-pass scheduling[98].) In two-pass scheduling, there are two

lists: an invocation list and a signal change list. Assignments of values to signals do not directly

modify the signal values or the invocation list; instead, assignments add elements to the signal

change list. The scheduler has two passes: during the signal update pass it applies signal changes

from the signal change list and adds elements to the invocation list. During the invocation pass

it invokes codeblocks, which add elements to the signal change list. One-pass scheduling is

generally more efficient as it does not require buffering of signal changes, and is thus preferred

in most situations, but it does not support the delta-delay variety of the Discrete Event MoC.

Static scheduling is more complex and requires that the framework compute a schedule which

obeys the rules of the MoC and which will guarantee that all signals obtain their correct values

by the end of the within-cycle phase of execution. This schedule may be computed during gener-

ation of the simulator code or it may be computed at simulator initialization time. The resulting

schedule is an immutable invocation list of codeblocks to be invoked; within-cycle execution is a

simple traversal of this list, invoking the indicated codeblocks.

Scheduling affects performance through two main factors: the overhead of manipulating the

list of codeblocks to be invoked and the number of codeblock invocations performed. In general,

static scheduling has lower overhead than dynamic scheduling because the list operations are both
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Figure 3.1: Invocation reduction opportunities for static scheduling

fewer and simpler. The number of codeblock invocations is less simple to analyze because there

are several competing factors.

At first glance, dynamic scheduling should have fewer invocations than static scheduling

because dynamic scheduling is driven directly by changes to signal values; a codeblock need only

be dynamically scheduled when an input signal changes, in contrast to static scheduling which

requires that all codeblocks be evaluated on all cycles. However, this analysis is misleading in that

it depends upon the activity factor, the MoC, and implementation details. The activity factor is a

measure of how often signals change values; if they change values frequently, dynamic scheduling

does not have many fewer invocations. Also, the Heterogeneous Synchronous Reactive MoC

requires that signal values be “reset” to an ⊥ value at the beginning of each cycle, making it

impossible to make this comparison across cycle boundaries. The result is that for this MoC,

each codeblock receiving a signal runs at least once per cycle. Furthermore, it is possible while

using static scheduling to guard invocations of codeblocks such that they are only invoked if

signals changed. This results in an increase in overhead, but may reduce the number of codeblock

invocations significantly.
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Static scheduling may also result in fewer codeblock invocations than dynamic scheduling

when certain interconnection patterns between module instances exist. Figure 3.1(a) shows an

example of one of these situations. The vertices in this directed graph are codeblocks and the

edges are signals which are assigned with zero delay by the source codeblock and read by the

target codeblock. In a dynamic scheduling approach, the execution of codeblock A produces a

value for signal S1, which adds blocks B and C to the invocation list. Suppose that block C is

then invoked before block B. It will compute some value for signal S3 based upon the current

value of signal S2. When block B executes afterward, it may change the value of signal S2, which

then will cause block C to be invoked again to recompute the value of signal S3. Static scheduling

is able to determine that the schedule ABC would prevent this re-invocation. The potential for

this behavior is present whenever a W-codeblock has multiple inputs which are generated by other

W-codeblocks; the codeblock may be invoked before all of its inputs are ready and thus must be

invoked again later.

Static scheduling may also reduce codeblock invocations when codeblocks have multiple

output signals which do not depend upon precisely the same input signals. Figure 3.1(b) shows

an example of this situation. It is very similar to the previous example, except that codeblock C

has two outputs; the dotted lines show the true computational dependence within this codeblock.

In this situation, dynamic scheduling will add blocks C to the invocation list when the value for

signal S1 is computed by the execution of block A. If block C is invoked before block B, then

block C will need to be invoked again after B computes signal S2, but if C is invoked after B,

only one invocation of C is required to compute both output signals. Static scheduling may be

able to detect this condition and coalesce the two invocations of C required to calculate the two

independent outputs to produce the schedule ABC.

Of course, scheduling is not the only factor affecting simulator performance. Modeling style,

and particularly the choice of component granularity, may greatly influence speed. As granulary

increases, performance increases due to decreasing inter-component communication overhead,

but reuse and flexibility also decrease. The user is ultimately responsible for choosing the level

of granularity. However, improving the scheduling as proposed in this dissertation should lessen

the severity of the speed-to-reuse tradeoff, thus lessening barriers to reuse.
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Speed may also be affected by good software engineering practice and optimization within

the framework, as was demonstrated dramatically by the FastSysC project[36]. The scheduling

techniques discussed in this chapter are all evaluated within the context of a single structural

framework so that differences in implementation efficiency between frameworks do not affect

comparisons between scheduling techniques.

3.2 Scheduling and Graph Terminology

The scheduling techniques used in this dissertation and in the literature operate upon directed

graph representations of the codeblocks and signals in the hardware model in order to produce

schedules. In general, these graphs are multigraphs – they may have multiple edges connecting

the same vertices – but they are typically referred to simply as graphs. There are three such

directed graphs derived from the hardware model:

• The connection graph contains vertices which represent the module instances and edges

which represent connections between the module instances. Each edge corresponds to

some signal; each signal is represented by as many edges as the fanout of the signal.

• The codeblock graph contains vertices which represent the W-codeblocks. There are

edges between two codeblocks for each signal which the source codeblock may generate

with zero-delay and the target codeblock may read.

• The extended codeblock graph contains vertices which represent all W-codeblocks and

E-codeblocks. There are edges between two codeblocks for each signal which the source

codeblock may generate with zero delay and the target codeblock may read.

• The signal graph contains vertices which represent each signal in the model. There is an

edge between two vertices if the target signal computationally depends upon the value of

the source signal.

A path in a directed graph is a sequence of edges such that the source vertex of an edge is

the same as the target vertex of the previous edge. A path can also be denoted as a sequence of
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vertices such that there is always an edge from each vertex to the next vertex. A simple path is a

path in which no vertex is repeated.

The notion of how “far” a vertex in a graph is from a source or sink vertex is used by sev-

eral of the scheduling techniques. While different terminology is used by different authors, this

dissertation defines the following concepts of distance:

tlevel The tlevel of a vertex is the maximum length (in number of edges) of all paths from source

vertices to that vertex. Source vertices have a tlevel equal to zero.

blevel The blevel of a vertex is the maximum length (in number of edges) of all paths from that

vertex to sink vertices Sink vertices have a blevel equal to zero.

A cycle is a path of length greater than zero which begins and ends at the same vertex. Note

that when cycles are present, tlevel and blevel cannot be defined for all vertices of a graph.

The asymptotic runtime complexity of various algorithms will be specified using O-notation,

Θ-notation, or Ω-notation where V stands for the number of vertices and E stands for the number

of edges in the graph. As there are several graphs defined for a system, subscripts will be used to

denote the graph which is being described. These subscripts are C for codeblock, E for extended

codeblock, and S for signal. For example, ES is the number of edges in the signal graph and VC

is the number of vertices in the codeblock graph.

Some techniques use the strongly-connected components (SCCs) of a graph. A strongly-

connected component of a graph is a maximal subgraph such that every vertex is reachable from

every other vertex. SCCs can be found quite easily in Θ(V + E) time by an algorithm due to

Tarjan[95] which consists of two depth-first searches. If each SCC of a graph is shrunk to a

single vertex, the resulting component graph is acyclic. A topological sort of the component

graph produces a topological order of the SCCs. Tarjan’s algorithm has the additional property

of returning the SCCs of a graph in topological order.

A back edge of a graph is defined with respect to some depth-first search of a graph as an

edge whose source vertex is finished before its target vertex during the depth-first search. Back

edges with respect to a strongly-connected component decomposition of a graph are those found

by the first depth-first search in Tarjan’s algorithm. Tarjan’s algorithm extended to report back
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edges will be referred to as FIND-SCCS-AND-BACK-EDGES and continues to require running

time of Θ(V + E).

3.3 Related Work

Because scheduling is so important to the performance of structural simulators, the topic has been

widely discussed in the literature. In this section, the most relevant related work is presented. The

section is organized by model of computation.

3.3.1 Scheduling the Clocked Synchronous MoC

The clocked synchronous model of computation does not permit W-codeblocks, thus the within-

cycle schedule is quite uninteresting; it is empty. The end-of-cycle schedule is arbitrary as long

as each E-codeblock is invoked once.

In Asim[24], which uses this MoC, it appears that end-of-cycle scheduling is done at initial-

ization time, though details are unclear.

While this MoC seems rather trivial, it is important because the other MoCs considered have

E-codeblocks which have these same scheduling constraints. Also, there are opportunities for

optimization even of the end-of-cycle schedule.

One opportunity for optimization of the end-of-cycle schedule has been previously introduced

in a very different context. The idea is to schedule the codeblocks so as to increase instruction

and/or data cache locality. This possibility was was introduced by Philbin et al.[80], who dealt

with cache locality for independent tasks on a uniprocessor. This possibility is not explored

further in this dissertation.

Another seeming opportunity is to use guards to prevent invocation of E-codeblocks whose

input signals have not changed during the cycle. This turns out to not be feasible, as nearly all

frameworks built on any MoC allow E-codeblocks to have internal state which should be updated

on each clock cycle, requiring invocation of the codeblocks. A framework could allow the user

to specify that state changes due to an end-of-cycle codeblock’s execution will not affect output

signals for some number of cycles and provide a means to “batch” these changes into one invoca-

tion; this would allow guarded execution. The Liberty Simulation Environment requires that the
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E-codeblocks explicitly inform the framework of the earliest cycle when state changes may cause

the output signals to be different. This information could be used for guarded invocation; instead,

it is used it to determine whether any clock cycles can be skipped entirely. If no codeblock reports

that output signals could be different in the future, the simulation terminates.

3.3.2 Scheduling the Strict MoC

The strict model of computation requires that each codeblock be executed after all of its inputs

have reached their final value for the clock cycle. Because the codeblock multigraph is acyclic,

any topological sort of the codeblock graph can be used to form a static schedule for the W-

codeblocks. The E-codeblocks may be executed in any order and thus may be scheduled exactly

like the Clocked Synchronous MoC.

Static scheduling for this MoC originated in the logic simulation community where it is

known as levelized logic simulation. Logic simulation simulates the behavior of logic gates

and is used extensively for many different VLSI design and test tasks. The term “levelized”

comes from a particular form of topological sort which is used for scheduling. Gate evaluations

are scheduled in order of their level. The netlist of gates is considered as a codeblock graph. Then

the gate evaluations are scheduled either in increasing order of tlevel or decreasing order of blevel

of the corresponding vertices in the graph. Levelization takes Θ(VC + EC) time.

For levelized logic simulation to work, the netlist of gates must be acyclic and the delay on

signals and through the gates must be zero. As a result, though the logic simulation literature

refers to this as zero-delay (or occasionally unit-delay) Discrete Event scheduling, it is really

using the Strict MoC. These conditions are very commonly met in logic simulation; many of the

uses of logic simulation do not require non-zero delays and designers try to avoid cycles (even if

they are combinational) in the netlist of gates.

Levelized logic simulation was introduced by Wang et al.[104] in 1987 in a system known as

SSIM using tlevel as the level, but similar levelization techniques were used simultaneously for

fault simulation by Barzilai et al.[8]. These latter authors later used levelization with switch-level

simulation[7]. Levelization was used several years earlier by Denneau to compile for hardware

gate-level simulation[20]. Maurer and Wang extended the techniques to unit delays[66].
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Guarded invocation is also possible when scheduling for the Strict MoC. Doing so requires

that flags indicating that invocation is needed be maintained and that new values for signals be

compared with the previous value to set these flags. Wang et al.[104] used this technique in SSIM;

they call guarded invocation selective trace. Barzilai et al. called the technique non-oblivious

scheduling in [8]. Guarded invocation is considered by many to be especially appropriate for

logic simulation as the activity factor of logic simulation is very low; Wong et al.[109] measured

the activity factor for a number of benchmark circuits and found it to be 1.2% on average.

At a higher level of abstraction than logic gates, Pétrot et al.[78] consider a set of communi-

cating finite state machines (FSMs) with zero delay for communication between the FSMs. They

show that a static schedule evaluating each FSM no more than once per cycle is possible if there

are no combinational cycles in a graph in which the vertices represent the FSMs and edges repre-

sent Mealy signals (signals which are computationally dependent upon input signals). They then

show that the static schedule can be found using a topological sort of the graph of FSMs. This

graph is an extended codeblock graph where each FSM is a codeblock, and such a system meets

the conditions of the Strict MoC. Doing so combines the within-cycle and end-of-cycle sched-

ules. A novel feature of their work when compared to logic simulation is that they treat FSMs as

black boxes (they do not need to know the whole behavior of the FSMs) with annotations which

indicate which outputs are assigned to with zero delay. Also, they support multiple outputs per

FSM. All FSMs may update state upon invocation.

Of the structural microarchitectural modeling frameworks, EXPRESSION[39] uses the Strict

MoC. While details are not provided, EXPRESSION appears to use static scheduling performed

at simulator initialization time using the extended codeblock graph and combined within-cycle

and end-of-cycle schedules. Because EXPRESSION’s static scheduling guarantees that W-code-

blocks will be invoked at most once per clock cycle, W-codeblocks may update state.

3.3.3 Scheduling the Discrete Event MoC

The Discrete Event MoC is very widely used and has been studied extensively. The basic Dis-

crete Event scheduling algorithm is dynamic. Distinctions between within-cycle and end-of-cycle
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codeblocks are not made in this style of scheduling; an end-of-cycle codeblock is simply a code-

block which is sensitive to a clock signal.

In its most general form, the Discrete Event MoC cannot be statically scheduled as the system

is not guaranteed to converge to a stable state in all timesteps. Thus all attempts to statically

schedule for this MoC must either restrict the MoC further to guarantee convergence or must

combine dynamic and static scheduling techniques.

The earliest efforts to statically schedule the DE MoC restricted the codeblock graphs to

acyclic graphs and all delays to zero, thus restricting the MoC to a Strict MoC. These have been

dealt with in the previous subsection.

Hommais and Pétrot extend[40] their previous work with FSMs[78] to allow zero-delay

cycles, thus extending the MoC considered to a zero-delay DE model and making their tech-

nique relevant to microarchitectural simulation. They generate a schedule by finding strongly-

connected components (SCCs) in the extended codeblock graph and scheduling the evaluation of

each SCC in topological order. Evaluation of a single-vertex SCC is simply the evaluation of the

codeblock represented by that vertex. Evaluation of multi-vertex SCCs is performed by Hamil-

tonian subschedule embedding; a subschedule for the SCC is inserted into the overall schedule.

This subschedule repeatedly invokes the codeblocks within the SCC until their output signals

no longer change; this procedure is known as relaxation. The ordering for this subschedule is

found by randomly selecting a vertex in the SCC which has an in-edge from outside the SCC.

A Hamiltonian path (a path which visits each vertex exactly once) is then found starting at that

edge. Not all SCCs may have Hamiltonian paths; if one cannot be found edges are added. They

use an iterative algorithm presented in [18] to add the minimum number of edges necessary to

cause the SCC to have a Hamiltonian path. Determining whether a Hamiltonian path exists was

shown by Karp[49] to be an NP-complete problem.

Convergence for an SCC is checked only on the signals upon which signals outside of that

SCC depend. No mention is made of the fact that the signals might never converge to a stable

value in a poorly formed model. FSMs must be divided into W-codeblocks and E-codeblocks;

the W-codeblocks are not allowed to update state.
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French et al.[29] statically schedule event-driven simulation described in the Verilog language

with a technique they call static simulation. This technique requires that all delays be constants

known at compile time, but can handle complex and changing codeblock sensitivity lists. Their

key observation is that a Discrete Event simulation is itself a non-deterministic finite state ma-

chine. The state is made up of the set of codeblocks (which they term events which are currently

ready to execute; the set of codeblocks which could be triggered to execute due to dataflow or

control flow; the current state of all variables; and codeblock executions already scheduled for

the future. They generate code which explicitly echoes the form of this state machine. The state

machine may have an enormous number of states; to keep them under control they limit mem-

ory values considered as unique states to provably constant values and use partial evaluation to

find a fixed point and predicate the calling of codeblocks with the exact conditions under which

the codeblocks should run. Levelization is found to be useful in deciding which state transition

to take. They implement static simulation for a significant subset of the Verilog language in a

compiler called VeriSUIF and demonstrate performance improvement relative to a commercial

compiled DE system. Their technique does not permit black box modules because all state must

be visible to the compiler.

Two additional techniques are particularly interesting because they are hybrid techniques

which combine static scheduling with dynamic scheduling. These techniques are levelized event-

driven scheduling and acyclic scheduling.

Levelized event-driven scheduling

Wang and Maurer[106] describe the LECSIM system, a zero-delay logic simulator which at-

tempts to combine the reduction of invocations which static scheduling brings in situations like

that of Figure 3.1(a) with the reduction in invocations of guarded execution and the ability to

handle cycles in the codeblock graph. It does so by using a special data structure for the list

of codeblocks to be invoked while doing one-pass dynamic scheduling. This data structure is

shown in Figure 3.2. The data structure consists of an array of circular lists. Each of these lists

corresponds to a tlevel in the codeblock graph. The data structure is traversed in increasing tlevel

order. As codeblocks are inserted into the structure when their input signal values change, they
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Level 1

Level N

Level 2

. . .

Figure 3.2: The LECSIM invocation list

are inserted into the list at the level corresponding to their tlevel. If this list is “earlier” than

the current traversal position in the data structure, a flag is set indicating that another iteration

of data structure traversal will be required. Their work did not provide for E-codeblocks, but

E-codeblocks can be invoked once each in any order after the data structure traversal is finished.

The presence of cycles in the codeblock graph causes two problems: tlevel is not defined, and

small cycles cause additional traversals of the entire data structure. To overcome this, LECSIM

combines the breaking of edges as it calculates tlevel with subschedule embedding. Figure 3.3

shows the algorithm. First, the strongly-connected components of the codeblock graph are cal-

culated. Large SCCs (those with more than some number of vertices) are hierarchically decom-

posed by removing some (but not all) back edges. Which edges are removed is not explained.

Once there are no large SCCs remaining, new codeblocks are created for each small SCC with

more than one vertex and these SCCs are replaced with vertices for the new codeblocks. This

algorithm requires Ω(VC + EC) time; an upper bound cannot be definitely stated because hier-

archical decomposition is not sufficiently well explained, though it seems likely that it would be

O(EC(VC + EC)).

The new codeblocks represent embedded subschedules for their corresponding SCCs in the

original codeblock graph. They invoke their list of codeblocks repeatedly until no signal changes

value or some limit on the number of iterations is reached. The limit is intended to detect situa-
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LE-CALCULATE-TLEVEL(G, smallSize)
� G is the codeblock graph
� smallSize is how big a “small” SCC can be

SCCs ← FIND-SCCS-AND-BACK-EDGES(G)

� Break apart large components
while ∃c ∈ SCCs s.t.|c| > smallSize

do Remove some back edges contained within c from G
� The following can be done incrementally by just considering c
SCCs ← FIND-SCCS-AND-BACK-EDGES(G)

� Replace small components with single vertices
foreach c in SCCs

do if |c| > 1
then

Collapse c in G to a single vertex

Calculate tlevel for each vertex of G

Figure 3.3: Levelized event-driven scheduling

tions where the simulation never converges to a stable value within a clock cycle. The order of

invocation within this subschedule is based upon the tlevel of each codeblock calculated with all

back edges within the component removed.

Note that when a signal value changes which is read by a codeblock in an embedded sub-

schedule that the subschedule must be scheduled for execution instead of the original reading

codeblock. This can be accomplished by making a subschedule a reader of the union of signals

read by its constituent codeblocks.

The codeblocks considered in LECSIM are either single gates or fanout-free blocks. A

fanout-free block is a set of gates which feed each other where each gate’s output signal has

only a single reader. Within a fanout-free block, each gate is evaluated once in levelized order.

The purpose of using fanout-free blocks is to reduce scheduling overhead, but they may lead to

more gate evaluations because guarded execution is not used within them.

Levelized event-driven scheduling is shown to perform better than normal dynamic schedul-

ing because it reduces codeblock invocations dramatically. When the activity factor is low, it
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outperforms levelized scheduling, again due to the reduction in codeblock invocations, but when

the activity factor is high, the overhead of maintaining the data structure causes levelized event-

driven scheduling to under-perform.

Gai et al. introduced a similar data structure in [31] where the objective was to suppress delta

spikes (multiple changes in a signal value in the same timestep). However, they used a delta-delay

version of the Discrete Event MoC, and thus required two-pass scheduling. They used the new

data structure only for the invocation list and did not allow cycles in the codeblock graph.

Acyclic scheduling

Acyclic scheduling for a DE MoC was introduced by Gracia Pérez et al. for microarchitectural

simulation in the context of the SystemC design language[36]. The objective is to obtain the re-

duction of invocations which static scheduling brings in situations like that of Figure 3.1(a) while

allowing cycles in both the codeblock graph and the signal graph. The model of computation is

restricted to delays of zero and one clock; W-codeblocks may only use zero delays. An imple-

mentation of a subset of SystemC which uses acyclic scheduling has been publicly released as

FastSysC.

The basic idea of acyclic scheduling is to create a static schedule under the assumption that

the signal graph is acyclic. Codeblocks are invoked according to this static schedule in each

cycle, but this phase of invocation is followed by a dynamically scheduled one which should

only find itself with work to do when the graph was not acyclic. Their rationale is that cycles in

the signal graph should be rare in microarchitectural simulation and the use of modeler-supplied

annotations can remove what cycles remain. Thus the dynamic scheduling merely provides a fall-

back mechanism. This fall-back mechanism is also robust because incorrect annotations merely

result in performance loss, not incorrect execution.

Unlike the techniques presented so far, acyclic scheduling uses the signal graph instead of

the codeblock graph. This allows better static schedules, as cycles in the codeblock graph are not

necessarily cycles in the signal graph, as seen in Figure 2.3(a). It means, however, that some form

of invocation coalescing should be included in the scheduling to reduce unnecessary invocations

of codeblocks which can produce multiple outputs, as seen in Figure 3.1(b).
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The static scheduling algorithm is quite simple and is given in Figure 3.4. The signal graph

is first made acyclic by removing edges. It is then topologically sorted, with the order formed

using the tlevel of each vertex as in levelization. The sorted order is transformed into a list of

codeblocks to invoke, but codeblock invocations are coalesced so that a codeblock is called no

more than once for each signal it generates at the same tlevel. This algorithm can be made to run

in Θ(VS +ES) time though the implementation used in [36] requires O(VS(VS +ES)) worst-case

time.

ACYCLIC-SCHEDULE(G)
� G is the signal graph
if G is cyclic

then Remove edges from G so that it becomes acyclic

Calculate tlevel for each vertex of G
SL← vertices in G, ordered by tlevel

CL← EMPTY

foreach codeblock c
do last [c]← −1

foreach vertex n in SL
do c← n.codeblock

if n.tlevel 6= last [c]
then Append c to CL

last [c]← n.tlevel

Return CL

Figure 3.4: Acyclic scheduling

Gracia Pérez et al. evaluate acyclic scheduling using simulators built from two models. The

first model, a simple pipelined processor, shows a reduction of 22.7% in codeblock invocations

and 1.39 speedup. The second model, an out-of-order superscalar processor, shows a reduction

of 29.9% in codeblock invocations and 1.23 speedup.

An important issue is how to deal with the mixture of static and dynamic scheduling. When a

signal value is changed, the system does not know whether to schedule the receiving codeblocks

or not. In pure dynamic scheduling, it always should, but if the static schedule is sufficient, it

should not. The solution used (but not described in detail) is to perform two-pass scheduling.
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Changes to signal values are recorded but receiving codeblocks are not immediately scheduled.

During static schedule execution, between each tlevel the signal values are updated and flags are

set indicating that receiving codeblocks should be invoked. At the end of the static schedule, a

transitional phase follows in which any codeblocks whose flags remain set are invoked. At the

end of this phase, signals are updated and receiving codeblocks are added to an invocation list.

Standard two-pass dynamic scheduling then follows, with alternating codeblock invocation and

signal update passes.

They also use guarded invocation within the static portion of the schedule. This does not in-

crease signal assignment overhead as it normally would because they already needed to compare

signal values and set flags to support the dynamic phase of execution. They note that using a tight

table-driven loop for scheduling leads to the test being a highly unpredictable branch; including

the test actually removes most of the performance benefit from having skipped the invocations

unless the scheduler code is not table-driven and is instead generated as a sequence of function

calls with guards around them.

They do not indicate how back edges should be removed from a cyclic signal graph to make

the graph acyclic. Indeed, both models used for evaluation were acyclic once annotations were

supplied by the modeler and thus removal of these edges was not required. Examination of their

code reveals that they perform a depth-first search of the signal graph, starting at an arbitrary

vertex, removing any edges to previously visited vertices. This procedure may remove more

edges than is necessary, as it does not solely remove back edges.

3.3.4 Scheduling the HSR MoC

The only work on static scheduling for the Heterogeneous Synchronous Reactive MoC is that

of Edwards[21]. Because the final value of the signals produced by within-cycle codeblocks is

given by the least fixed point solution of the system of codeblock equations, a simple scheduling

scheme is to simply evaluate all within-cycle codeblocks repeatedly for a sufficient number of

iterations to guarantee convergence. The sufficient number of iterations is the sum of the height

of the posets of signal values across all signals. Such a scheme is quite inefficient.
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Better results can be obtained through more careful scheduling. Edwards uses partitioned

scheduling of signal evaluations; he partitions the signal graph into two subgraphs which are

called the head and the tail. The partition and the choice of which subgraph is the head and

which is the tail can be done arbitrarily, though the choices made will affect the efficiency of the

schedule. A theorem originally due to Bekić[9] shows that the least fixed point solution of the

system of codeblock equations can be found by repeatedly finding the least fixed point of the tail

followed by an evaluation of the head until the signals in the head reach a fixed point and then

finishing by finding the least fixed point of the tail once more. Thus a schedule can be produced

through a divide-and-conquer algorithm which recursively finds a schedule for the tail and then

iteratively repeats this schedule, interleaving evaluations of the head.

Edwards observes that when the head does not depend upon the tail, then the least fixed point

can be found by finding the least fixed point of the head and then finding the least fixed point of the

tail. He calls such a partition a separable partition. He shows that separable partitions are optimal

in terms of the total number of signal evaluations required. Furthermore, a separable partition can

always be found if any vertex in the graph is not strongly connected to all other vertices. Thus

a strongly-connected component decomposition of the graph can be used to efficiently find the

maximum number of separable partitions. Note that if there are no cycles in the signal graph,

partitioning using the SCC decomposition results in a schedule which is a topological sort of the

signal graph.

The resulting scheduling algorithm restricted to the case where no signal value’s poset has

height of more than one (which has always been the case for frameworks using this MoC) is

given in Figure 3.5. The SCCs of the signal graph are found and scheduled in topological order.

Components with more than one signal are partitioned in a fashion to be described later and

the tail schedule is interleaved with evaluations of the head according to Bekić’s theorem. Note

that the evaluation of signals in the head can occur in arbitrary order; Edwards calls this parallel

evaluation. The algorithm executes in Ω(VS + ES) time; the nature of the how partitions are

chosen needs to be specified in order to give an upper bound to execution time.

The choice of partition for a strongly-connected component affects the number of signal eval-

uations; ideally, the optimal partition should be chosen. Unfortunately, there are 2m − 2 possible
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PARTITIONED-SCHEDULE(G)
� G is the signal graph

� Sched is a schedule of signal evaluation
Sched ← EMPTY

SCCs ← FIND-SCCS(G)
foreach C in SCCs in topological order

do if |C| = 1
then Append vertex in C to Sched
else � Do partitioning

Choose H s.t. ∅ ⊂ H ⊂ C
T ← C −H
TailSched ← PARTITIONED-SCHEDULE(T )
Append TailSched to Sched
for i← 1 to |H|

do Append a parallel evaluation of each signal in H to Sched
Append TailSched to Sched

Return Sched

Figure 3.5: Partitioned scheduling

partitions to consider, where m is the size of the component. Edwards proposes a branch-and-

bound search of the possible partitions both to reduce the number of hierarchical steps of par-

titioning and to prune partitions which produce worse behavior than simple iterative evaluation.

Furthermore, he shows that if a non-separable partition is to be optimal, its tail must be separable

and proposes a heuristic for forming partitions which will create only separable tails but may not

find all such tails or the optimal partition. Even with this heuristic, the worst case running time

is still Θ(VS !). This is not just a theoretical worst case time; his experimental results show that

in practice run-time depends exponentially on the number of signals, though it grows much less

rapidly than the factorial.

The schedule of signal evaluations must be mapped into a schedule of codeblock invocations.

This can be done by replacing each signal in the schedule with the codeblock which generates that

signal. Yet a single codeblock invocation may compute multiple output signals, so an invocation

per signal evaluation may be wasteful. Edwards suggests that invocations be coalesced using

an algorithm which tries to move each signal evaluation earlier in the schedule until it can be

coalesced with an earlier evaluation which invokes the same codeblock. He gives rules for moving
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signals which are very specific to his representation of schedules; a simpler equivalent algorithm

is given in Figure 3.6. Note that Edwards’ description is ambiguous about the order in which

signals should be considered in the outer do-loop, but the example given in [21] considers the

signals in order of their names. The running time for this coalescing is O(V E) where V and E

are measured on the signal graph.

SIGNAL-COALESCING(S)
� S is the original schedule: a list of invocations records which have three fields:

codeblock indicating the codeblock to invoke
signalList indicating the set of signals being produced by the invocation.
depList indicating

⋃
v∈signalList

signals upon which v depends

Signal lists initially contain a single signal.

foreach signal sig
do Find s ∈ S s.t. sig ∈ s.signalList

pushableRange← position of s
foreach invocation t in S s.t. t is before s,

moving backwards through S
do if ∃v ∈ t.signalList s.t. v ∈ s.depList

then Exit inner do loop
elseif s.codeblock = t.codeblock

then pushableRange← position of t

if pushableRange 6= position of s
then � Coalesce s with earlier element

t←element of S at position pushableRange
t.signalList← t.signalList

⋃
s.signalList

t.depList← t.depList
⋃

s.depList
Remove s from S

Figure 3.6: Signal-based invocation coalescing

Edwards does not used guarded invocation of codeblocks; all codeblocks are invoked as per

the schedule. However, it would not be difficult to add guarded invocation at the cost of additional

overhead to evaluate the guard before invoking the codeblocks and additional cost to set and clear

flags.
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General Zero-delay
Technique Strict DE DE HSR
Levelization[104] Origin No No No
Dynamic scheduling No Origin Yes Modified
VeriSUIF[29] Maybe Origin Yes Yes
Hamiltonian subschedules[40] Yes No Origin Yes
Levelized event-driven[106] Yes No Origin Modified
Acyclic scheduling[36] Modified No Origin Modified
Partitioned scheduling[21] Modified No Restricted Origin

Table 3.1: Applicability of scheduling techniques to models of computation

3.4 Applying Scheduling Techniques Across MoCs

The previous section has presented a number of W-codeblock scheduling techniques for different

models of computation. Some of these techniques may be useful for improving performance in

MoCs for which they were not originally designed. Yet applying a scheduling technique outside

of its “native” MoC is hazardous: it could create a schedule which does not result in the simulator

computing the correct signal values. This section investigates which techniques may be safely

applied to which MoCs. A summary is given in Table 3.1. Because so many techniques for Dis-

crete Event were proposed with a zero-delay restriction, zero-delay DE is given its own column.

The notation “origin” indicates that a technique was originally proposed for that model of com-

putation. The Clocked Synchronous Model of Computation is not considered further because it

does not have W-codeblocks.

Levelization is an important technique and is incorporated into other static and hybrid sched-

uling techniques, but by itself requires acyclic codeblock graphs, and thus can be applied directly

to only the Strict MoC.

Dynamic scheduling can be used for all models of computation but the Strict MoC. The Strict

MoC is unable to use dynamic scheduling because dynamic scheduling does not guarantee that

a W-codeblock executes at most once per cycle in situations like that of Figure 3.1(a). Dynamic

scheduling is appropriate for use with the HSR MoC – the least fixed point of the system of

codeblock equations can be found by simply invoking each W-codeblock when an input signal

changes – but as will described in Section 3.5.4 there are some corner cases involving constant

signal values that require modifications to the basic scheduling algorithm.
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VeriSUIF’s technique could be used for all models of computation, with the possible ex-

ception of the Strict MoC. Whether the state machine VeriSUIF generates would guarantee the

strictness property (or even whether such a property would have meaning if the code is being

analyzed to such a fine granularity) is unclear, but the use of levelization in picking the next state

might cause strictness to hold. The VeriSUIF technique does require an enormous state space

when a codeblock has multiple outputs. Thus the technique is likely inappropriate for large-scale

microarchitectural simulation.

The remaining four techniques assume zero delay and thus cannot be used for the General

Discrete Event MoC. They have striking similarities: each technique recognizes the importance

of cycles in either the codeblock graph or the signal graph and provides a means to deal with

them. For the HSR MoC, this is enough; all four techniques can support this MoC, though both

levelized event-driven and acyclic scheduling, as they have components of dynamic scheduling,

require the same modifications to handle constant signals that pure dynamic scheduling does.

While it would seem that as a simpler MoC, the Strict MoC could be scheduled using any of

the four cycle-based techniques, the strictness property can create problems. Hamiltonian sub-

schedules and levelized event-driven scheduling will work for the Strict MoC as these techniques

as introduced operate on the codeblock graph. Because a codeblock can appear at only one level

in a strict model, the levelization inherent in these techniques will guarantee strictness. Acyclic

scheduling will not work for this MoC because it uses a signal graph and in situations like that

of Figure 3.1(b), the tlevel-based invocation coalescing will not guarantee strictness. Partitioned

scheduling as introduced will also not work in situations like that which will be characterized in

Section 3.5.3. However, a novel coalescing technique will be introduced in that section which

would allow both acyclic scheduling and partitioned scheduling to be used. Of course, given the

simplicity of standard levelization of the codeblock graph, using any more complex technique for

scheduling a Strict MoC model would be pointless.

The applicability of partitioned scheduling to the zero-delay DE MoC is a very interesting

question, as partitioned scheduling creates a completely static schedule which may have perfor-

mance benefits. However, the analysis of this applicability requires a more extensive explanation,

which is given in the next subsection.
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3.4.1 Applying Partitioned Scheduling to the Zero-Delay DE MoC

Partitioned scheduling produces correct signal values for the zero-delay DE MoC whenever the

model is microarchitecturally synchronous. This is not surprising as the HSR MoC for which

partitioned scheduling was developed can handle most microarchitecturally synchronous models,

but I prove here that partitioned scheduling will indeed produce correct results in the zero-delay

DE MoC.

This proof requires a definition of the dynamic signal graph. Signal graphs as previously

defined are static; if a computational dependence may ever exist between two signals, there is an

edge between their vertices in the graph. A dynamic signal graph is a subgraph of the static signal

graph with edges removed dynamically as state internal to the modules and signal values change,

causing some edges to not be realized. A new instance of the dynamic signal graph exists for each

timestep of simulation. Figure 3.7(a), which repeats Figure 2.3(b), gives an example of a model

with a dynamic signal graph which can change depending upon a signal value. Figure 3.7(b)

shows the static signal graph and Figure 3.7(c) shows the two different dynamic signal graphs.

Note that only edges which are realized in a timestep are included in dynamic signal graph

for that timestep. Because of this, emergent state exists at a particular timestep if and only if the

dynamic signal graph at that timestep contains a cycle and an output signal or new state value is

reachable from that cycle. This implies that if a model is synchronous, any cycles in dynamic

signal graphs must not affect the primary outputs or new state values.

The following lemma states a relationship between partitioned schedules and the signal graph:

Lemma 1. If there exists a path between signals u and v in (static) signal graph G, the value

for signal v will be evaluated after the value for signal u at least once in the schedule formed by

partitioned scheduling.

Proof. Suppose that signals u and v are in different strongly-connected components of the signal

graph. Either there is a path from u to v or from v to u, but not both. Assume that the path is

from u to v. Because components are scheduled in topological order, the component of which v

is a part will be scheduled after the component of which u is a part and thus the evaluation of v is

scheduled after the evaluation of u.
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Figure 3.7: Model with changing dynamic signal graph
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Suppose instead that u and v are in the same strongly-connected component. This component

will be hierarchically partitioned. There are four cases:

1. Both u and v are in the head of the partition. They will both be scheduled at least twice

because the head has at least two signals. Either the evaluation of v will follow that of u in

the same iteration or the evaluation of v will follow the evaluation of u from the previous

iteration.

2. u is in the head and v is in the tail. The schedule will evaluate signals in the tail, then the

head, then again in the tail, followed by possibly more iterations of head and tail. Thus the

the evaluation of v in the second iteration of the tail will follow an evaluation of u in the

head.

3. v is in the head and u is in the tail. The evaluation of v in the first iteration of the tail will

follow an evaluation of u in the head.

4. Both u and v are in the tail. The subgraph represented by the tail is scheduled recursively.

By induction on the recursion, v will be evaluated after u in the schedule produced for the

tail and thus the evaluation of v will follow that of u in the overall schedule.

The following theorem establishes the correctness of partitioned scheduling for microarchi-

tecturally synchronous models:

Theorem 1. Partitioned scheduling results in schedules which calcuate the correct signal values

for zero-delay DE models which are microarchitecturally synchronous.

Proof. Assume that the model is microarchitecturally synchronous. Then no output signal or new

state value ever depends transitively upon an emergent state signal. This is equivalent to saying

that there is never a path in the dynamic signal graph which contains a cycle and ends at any

output signal or signal which is required to compute a new state value.

Let G be the static signal graph and Dt be the dynamic signal graph at any timestep t. Let Dr

be Dt with all cycles as well as any vertices reachable from cycles removed. Because the removed

signals have no effect on output signals in this timestep or the next state of the system, the values
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computed for these signals are irrelevant and an arbitrary scheduling of their computation is

sufficient.

For the remaining signals, because Dr is acyclic and a zero-delay model is assumed, a sched-

ule which generates correct signal values is one which obeys topological order: if there exists a

path from vertex u to vertex v in Dt then v is scheduled for evaluation after u. Because Dr is a

subgraph of G, if there exists such a path in Dr, it also exists in G. By Lemma 1, the evaluation

of v will be scheduled after the evaluation of u at least once in the schedule formed by partitioned

scheduling for G, therefore this schedule will generate correct signal values for timestep t.

Because Dr is acyclic in all timesteps and signals which affect outputs have never been re-

moved in its formation, the single schedule formed by partitioned scheduling will compute correct

signal values in all timesteps, and partitioned scheduling results in schedules which calcuate the

correct signal values for zero-delay DE models which are microarchitecturally synchronous.

The majority of interesting microarchitectural models of synchronous systems are microar-

chitecturally synchronous; to date all real or proposed systems which we have attempted to model

have been so. Nevertheless, extending the applicability of partitioned scheduling to logically syn-

chronous but microarchitecturally asynchronous models, such as that in Figure 2.1 would increase

the modeling flexibility offered to microarchitects. Partitioned scheduling can be made to work

for these additional models. The key is to break apart the signals into subsignals for analysis

in such a way that the dynamic signal graphs become acyclic. For an N -bit signal, there will

be at most N such subsignals; by using N subsignals, the model becomes a logic-level model.

Partitioned scheduling then can operate upon the subsignals; it can even assume that a subsignal

computationally depends upon all the signals which it parent depends upon, though refinement

of dependences to the subsignal level through analysis would result in better static schedules.

Breaking apart these signals may lead in many cases to excess invocations, but these can

be handled through the dynamic subschedule embedding technique which will be introduced in

Section 3.5.2. However partitioned scheduling does quite well at forming schedules for cycles

where some signal is a single bit signal. As many apparent cycles in microarchitectural models

result from control flow signals which are single bits, partitioned scheduling should do quite well.
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Note that the HSR MoC cannot use this technique of breaking apart signals to allow execution

of logically synchronous models. Each bit of the signal would need to have an independent

possibility of being ⊥ and the codeblocks would have to be correspondingly modified.

The fact that the bit representation is involved in this adaptation of partitioned scheduling

might be a cause for concern. What about models with signal values which are complex data

structures? Such models could cause practical difficulties, but as long as the signal can be parti-

tioned into a fixed maximum number of subsignals, the technique will work. The schedule may

even still be efficient depending upon the other signals in the cycle. If a fixed number of subsig-

nals cannot be assumed, choosing a number that is so large that dynamic subschedule embedding

will come into play will ensure that the scheduler can still be used.

This proof refutes statements made by other researchers about the static scheduling of zero-

delay DE models. Gracia Pérez, et al.[36] argued that partitioned scheduling is not appropriate

for zero-delay Discrete Event systems such as SystemC because of the difficulty of meeting HSR

requirements on codeblocks. The proof shows that partitioned scheduling can be correct for syn-

chronous models without requiring that codeblocks be written to obey an HSR MoC. Jennings

argued vehemently[46] that the Discrete Event MoC should not be used at all for digital system

design because of the overhead of dynamic scheduling, advocating instead the use of the Strict

MoC, while acknowledging that multiple independent outputs per codeblock would not be han-

dled well. The successful creation of static schedules by partitioned scheduling invalidates this

argument.

Hamiltonian subschedules and partitioned scheduling have an interesting relationship: they

behave precisely the same when there are no cycles in the graph, but handle the schedules for

cycles quite differently. In each case, a polynomial-time algorithm to generate the schedule for

cycles is not known. However, partitioned scheduling attempts to directly optimize the num-

ber of signal evaluations and uses the hierarchical structure of cycles in the signal graph to do.

Hamiltonian subscheduling attempts to simply find an order in which to invoke every codeblock

in the cycle; it is not even clear that such an order will minimize the number of iterations of the

cycle. As partitioned scheduling is a more direct and provably optimal approach, Hamiltonian

subscheduling will not be explored further in this dissertation.
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3.5 Solving Practical Scheduling Problems

There are several practical issues which must be addressed before scheduling techniques de-

scribed in the previous section can be applied to microarchitectural simulation. These issues

are:

1. Black-box codeblocks do not provide enough information to schedule signals effectively.

2. Partitioned scheduling of models with large cycles suffers from combinatorial explosion.

3. Scheduling signals instead of codeblocks may result in redundant invocations, requiring

invocation coalescing.

4. Some W-codeblocks may need to be forced to run in a schedule which is not fully static.

This section describes novel scheduling improvements which address these four issues.

3.5.1 Enhancing Dependence Information

Both partitioned and acyclic scheduling rely upon the signal graph. To form this graph, a knowl-

edge of the computational dependences between signals is necessary. But this knowledge is not

directly available when modules or codeblocks are treated as black boxes. As a result, the graph

must be assume that all output signals of a codeblock depend upon all the input signals of a

codeblock, turning the signal graph into a codeblock graph. The results of this can be poor static

schedules where codeblocks are called more frequently than is necessary.

The problem of finding computational dependences is further exacerbated because microar-

chitectural simulators may not know which codeblock produces a given output signal; indeed,

it may be produced through multiple codeblocks. In the complete absence of information, all

output signals of a component signals must be assumed to depend upon all input signals.

In a highly-reusable framework such as LSE which has distributed control logic and black-

box modules, these situations occur frequently. In fact, they occur at every connection between

modules because of the distributed flow control logic. Thus many extraneous computational

dependences are seen. To control this problem, I proposed the following in [75]:
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1. Annotations of port independence. These indicate that all signals received on a port do

not affect any output signals in the same cycle. A port independence annotation is a simple

boolean flag on a port declaration in LSE.

2. Addition of dependence annotations to modules. These annotations indicate for each

output signal the input signals upon which it is computationally dependent. Note that this

annotation has finer granularity than that of [78] which only indicates that outputs are

dependent upon some input but not which input.

3. Analysis of control functions to determine their computational dependences.

Dependence annotations in LSE are a list of three-tuples giving a source signal name, des-

tination signal name, and an expression indicating which port instances are to be considered

“linked”. For example, the dependence annotation for a “wire” module (a module that simply

passes through signals on each port instance) is:

port_dataflow = <<<[
(’*’, ’*’, ’0’), # eliminate all default dataflow
(’in.data’, ’out.data’, ’isporti==osporti’),
(’in.en’, ’out.en’, ’isporti==osporti’),
(’out.ack’, ’in.ack’, ’isporti==osporti’)
]>>>;

Annotations are not required for correct execution; their presence merely removes unnecessary

edges from the signal graph, improving simulation speed. Annotations can be added incremen-

tally to tune the performance of the simulator. Furthermore, annotations need be added only once

to a library module, with the cost of doing so amortized over all the uses of the module. It is im-

portant, however, that annotations never remove signal graph edges which are true computational

dependences. Also, while not currently implemented, it should be possible to automatically ex-

tract the annotations from a dataflow analysis of the code of modules; such automatic extraction

is left to future work.

The designers of FastSysC[36] have chosen to use similar dependence annotations, citing

the results in [75], though in that system they are specified at initialization time with a different

syntax. Annotations can be added incrementally in their system and need not be correct; if edges
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representing true program dependences are removed, then the dynamically scheduled portion of

the schedule computes the correct signal values with some performance loss.

The analysis of control functions is done by looking at each return statement in the function to

determine what values are being returned. The variable names for input signals are understood;

so are signal value manipulation API calls. For example, consider the simple control function

which sets a constant acknowledge signal while not modifying other signals:

return (LSE_signal_extract_enable(istatus) |
LSE_signal_extract_data(istatus) |
LSE_signal_ack);

The analysis determines that the output acknowledge signal is a constant and that the data and

enable signals are passed through without modification. Note that some experience is needed to

write control functions which are easily analyzable.

Dependence information enhancement solves the problem of removing extraneous edges

from the signal graph. It does not, however, directly solve the problem of knowing what code-

block may generate an output signal when there are multiple codeblocks in a module. In LSE,

this information can be partially inferred because of the classification of W-codeblocks. Output

signals can be generated by the phase codeblock or any handler which is tied to an input signal

upon which the output signal is dependent.1

This knowledge is used further to reduce handler invocations. When an output signal is to

be computed, the codeblocks which are invoked are the phase codeblock and the handlers for

input signals upon which the output depends. However the handlers are only invoked if the

signals which they handle have been computed since the last time the handler was invoked. This

complicates the generation of codeblock schedules from signal schedules, but not the generation

of signal schedules. For dynamic scheduling, only the appropriate handler is scheduled to run; if

there is no handler, the phase codeblock is scheduled.

3.5.2 Dealing with Combinatorial Explosion

As mentioned in Section 3.3.4, a polynomial-time algorithm for finding an optimal static schedule

for HSR models is not known. The heuristics presented by Edwards in [21] are still exponential
1Control functions can only generate special signals added when a control function is attached.

58



in the worst-case scenario. Use of a scheduling algorithm which is exponential in the number

of signals to be scheduled could severely limit scalability in model size. Thus it is necessary to

modify the scheduling algorithm.

When the signal graph is acyclic, the partitioned scheduling algorithm requires linear time:

once it finds a the strongly-connected components it simply lists them in topological order. Com-

binatorial explosion occurs only when there is a cycle in the graph and the algorithm begins to

recursively consider partitions of the cycle. These cycles occur for three reasons:

1. There is truly a zero-delay cycle in the computational dependences. Such a situation is

likely an error, as the signals involved in the cycle will remain ⊥ in an HSR model.

2. A static zero-delay cycle is never realized dynamically, as in Figure 2.3(b).

3. Imprecise information about computational dependencies causes spurious edges to appear

in the signal graph, as in Figure 2.3(a).

The final reason occurs frequently; in fact, without dependence information enhancement as de-

scribed in the previous subsection, it is extremely common. Thus it becomes essential to solve

the problem of combinatorial explosion.

The solution involves a subtle observation that when dependence information is missing or

dependence changes dynamically, partitioned scheduling is solving the wrong problem. In either

case partitioned scheduling provides an optimal schedule for a set of computational dependences

which is a superset of the true dependences. This schedule is not optimal for the true computa-

tional dependences at each timestep. Thus standard partitioned scheduling is not truly optimal!

As a detailed example of how a lack of information compromises optimality of the partitioned

scheduling algorithm, consider the codeblock graph in Figure 3.8(a) and its corresponding signal

graph in Figure 3.8(b). The dotted lines inside the codeblocks indicate the true computational

dependences within the codeblocks blocks. Signals 2 and 5 are computed from signal 1. Signals

3 and 4 are computed from signals 2 and 5 respectively, and signals 3 and 4 are not used to

compute any other signals with zero delay. Suppose that the scheduler does not know about

these true dependences. It must conservatively assume that all possible dependences within the

codeblocks exist. The extra edges which the scheduler must assume are shown as gray lines in the
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Figure 3.8: Non-optimal schedules due to lack of information

signal graph. The “optimal” schedule of invocations (after optimal invocation coalescing) which

the scheduler then generates is A C B C B C, yet the schedule A B C is correct and shorter.

The solution is to not attempt to partition and form an optimal schedule for a large SCC.

Instead, the evaluation of the signals within the SCC is done using event-driven scheduling. I call

this technique dynamic subschedule embedding. It is similar in some ways to what Hommais

and Pétrot did with SCCs in the codeblock graph, however in this case dynamic scheduling is ap-

plied to only the large SCCs of the signal graph. Furthermore, instead of using relaxation and an

NP-complete algorithm to find subschedules which will just have to be iterated to convergence,

dynamic scheduling is used, thus allowing the order of invocation to be driven by the true com-

putational dependences. Because a hierarchical decomposition of large SCCs is not attempted,

the time complexity of scheduling becomes Θ(VS + ES).

Choosing the size at which SCCs become large is important; for very small SCCs the addi-

tional overhead of dynamic scheduling may be larger than the cost of extra codeblock invocations.

For this work the definition of a large SCC is set by the interaction of both the initial scheduling

pass which produces a hierarchical schedule and an “unrolling” pass which produces a linear

schedule. The rules for the partitioning of SCCs are:

1. If |SCC| ≥ Nlarge, insert a dynamic section in the first pass. This rule provides the bound

on the running time of the algorithm.

2. If Nsmall ≤ |SCC| < Nlarge, attempt to schedule recursively with a single partition where

the head is the border of the set of signals in the SCC with the same driving codeblock as
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the first vertex in the SCC. The purpose of this rule is to give medium-size SCCs such as

might arise from Figure 2.3(b) some opportunity to be statically scheduled.

3. If |SCC| < Nsmall, schedule recursively, exhaustively trying all possible partitions. This

rule generates an optimal schedule (with respect to the signal graph) for very small SCCs.

4. If a repeating portion of the schedule has more than 2 repetitions and its total cost will be

greater than Nsmall, replace it with a dynamic section in the second pass. This rule filters

out subschedules generated in step 2 which have large numbers of repetitions.

Nlarge and Nsmall are tuneable parameters of the partitioning algorithm.

It is interesting to contrast dynamic subschedule embedding with acyclic and levelized event-

driven scheduling. With dynamic subschedule embedding the philosophy is to “contain” the

dynamic behavior of the system to just those signals involved in large cycles. Levelized event-

driven scheduling contains dynamic behavior of small cycles within subschedules, but still leaves

the global event-driven scheduling to be dynamic in nature. Acyclic scheduling does not contain

dynamic behavior; any cycles in the system will force all signal evaluations “downstream” of the

cycle to be triggered dynamically.

Note that Edwards’ concern when introducing the HSR model of computation was to define

a system which allowed an optimal static schedule for the worst-case execution of a software

system. Large scheduling times, while unpleasant, were acceptable, and the systems envisioned

had at most hundreds of signals. The concern here is for systems that may have thousands or

even tens of thousands of signals with users sensitive to simulator build times. Furthermore, the

simulator does not require a worst-case execution time bound; good average-time behavior is

sufficient. Thus, a solution with dynamic behavior is acceptable.

3.5.3 Coalescing Invocations

Techniques such as partitioned scheduling and acyclic scheduling use the signal graph rather than

the codeblock graph. This provides better schedules but at the price of potentially redundant

codeblock invocations when codeblocks produce multiple signals. Both techniques handle this

by coalescing invocations.
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Figure 3.9: Limitations of coalescing techniques

Acyclic scheduling uses a tlevel-based approach: if two invocations are to generate signals

which are at the same tlevel in the signal graph after back edges have been removed, they may

be coalesced. Partitioned scheduling uses a signal-based approach; signal evaluations are moved

earlier in the schedule until they can be coalesced with other evaluations by the same codeblock.

Both of these techniques are helpful, yet there are situations where each fails. Figure 3.9

shows a codeblock graph and signal graph for which neither technique achieves an optimal coa-

lescing. Internal dependences have been given to the scheduler through dependence annotations.

The initial schedule is that computed using partitioned scheduling where the signal vertices are

initially considered in numeric order while forming the SCCs; both codeblocks and signal num-

bers are shown. Tlevel-based coalescing reorders this schedule, but cannot coalesce. The under-

lying problem with tlevel-based coalescing is that when output signals of a codeblock use input

signals which come from different parts of the model, the tlevel of the output signals is often

different and coalescing does not occur. Signal-based rescheduling does not have this problem,

but is limited by the fact that single signals are moved at a time. In this particular example the

second invocation of codeblock D cannot be coalesced because it is dependent upon invocations

of codeblocks A and C, which are not moved because they have only a single invocation each.
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I propose the use of a novel subgraph-based technique for invocation coalescing for parti-

tioned scheduling[75]. This new technique moves the evaluation of sets of signals which form

an acyclic subgraph. The algorithm is given in Figure 3.10. The idea is to move not just a single

signal evaluation, but also the signal evaluations upon which it depends. This technique is able

to produce the optimal coalescing for the example in Figure 3.9. The worst-case running time for

this algorithm is O(V 2
S (VS + ES)).

SUBGRAPH-COALESCING(S)
� S is the original schedule: a list of invocations records which have three fields:

codeblock indicating the codeblock to invoke
signalList indicating the set of signals being produced by the invocation.
depList indicating

⋃
v∈signalList

signals upon which v depends

Signal lists initially contain a single signal.

earliest ← EMPTY � earliest is a mapping from codeblock to position
foreach invocation s in S

do
if s.codeblock does not have a position u in earliest

then Store mapping from s.codeblock to current position in earliest
else H ← NIL

deeps ← s.depList
foreach invocation t in S s.t. t is after u but before s,

moving backwards through S
do

if ∃v ∈ t.signalList s.t. v ∈ deps
then if t.codeblock = s.codeblock

then Exit inner do loop without coalescing
else Prepend t to H

deps ← deps
⋃

t.depList
elseif t.codeblock = s.codeblock

then � Coalesce s and t
t.signalList← t.signalList

⋃
s.signalList

t.depList← t.depList
⋃

s.depList
Remove s from S
Insert H into S before t
Exit inner do loop

Figure 3.10: Subgraph coalescing

Each of the techniques can be considered a heuristic for finding an optimal coalescing. Find-

ing this optimal coalescing (or more precisely, the decision problem of whether a coalescing
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which meets a bound on the number of invocations exists) has been shown to be NP-hard by

Wang and Maurer[105] by reduction from the Shortest Common Supersequence problem.

Subgraph-based coalescing makes it possible to use either acyclic scheduling or partitioned

scheduling for the Strict MoC. In the Strict MoC, both the codeblock graph and the signal graph

are acyclic. Because the codeblock graph is acyclic, there are no situations where the inner loop

has to exit without coalescing and all invocations of the same codeblock can be coalesced, leading

to at most one invocation per codeblock, thus satisfying strictness.

3.5.4 Forced Invocation

As mentioned before, dynamic scheduling can be used for an HSR model only with some im-

provements. When a W-codeblock invocation is statically scheduled, it can be assumed that it

will be invoked. However, when an invocation is dynamically scheduled or may be skipped due

to selective-trace scheduling, this assumption cannot be made and there is sometimes a need to

“promote” the invocation from dynamic to static or to suppress skipping if the normal process of

scheduling when a signal value is assigned does not occur. This happens in three situations:

1. The output signal depends solely on constant input signals and internal state. Constant

input signals may be inferred from unconnected port instances or from control function

analysis. A W-codeblock with no input signals such as the phase start function in LSE

would be a special case of this situation.

2. For control functions in LSE, control function analysis cannot determine whether the output

is a constant. If it may be a constant, the codeblock must be run to produce that constant in

case that assignment is needed to cause other codeblocks to execute.

3. For handlers in LSE, if the handler is for an unconnected port instance, the handler must

be forced to run.

The scheduler I created handles this issue by looking at the first scheduled invocation of any

codeblock which needs to be forced. If that invocation is static and selective-trace scheduling is

enabled, then the invocation is flagged as requiring forcing. If the first invocation is dynamic, it
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is added to a list of forced invocations for the embedded dynamic subschedule. How this list is

used depends upon the scheduling technique.

3.6 Evaluation of Static and Hybrid Scheduling Techniques

This section presents an evaluation of the effectiveness of static and hybrid scheduling tech-

niques for microarchitectural simulation. The goal is to determine which techniques are best

suited for this context. The three techniques evaluated are acyclic scheduling, levelized event-

driven scheduling, and partitioned scheduling. Where appropriate, selective-trace scheduling is

evaluated with the main scheduling technique. In addition, the novel dependence information

enhancement mechanisms and subgraph coalescing proposed in Section 3.5 are evaluated.

3.6.1 Evaluation Methodology

All evaluations are carried out in the Liberty Simulation Environment. Except where otherwise

noted, all dependence information enhancement mechanisms are used. Each scheduling tech-

nique is evaluated separately against a baseline of dynamic scheduling. The best variants of each

technique are then compared in Section 3.6.5

Models

The evaluation uses six different processor models. Three of these models have been used in

published work to evaluate microarchitectural techniques. The framework is used to generate

multiple simulators using the different scheduling techniques. The performance of each of these

simulators is measured as well as the number of codeblocks invocations per codeblock running

different benchmarks and input sets. Performance measurements are taken from one simulation

run; simulation lengths were chosen to achieve wall-clock time of at least 15 minutes to reduce

system effects. For all runs the reported CPU time was greater than 99% of wall-clock time.

The models are summarized in Table 3.2. The table indicates the number of module instances,

signals, and codeblocks for each model. Each of the models and their input sets is described in

more detail below:
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Model Instances Signals Codeblocks Benchmarks
ALPHA 46 1305 515 3 SPEC INT 2000
CMP04 312 4182 1555 3 Splash2 kernels
I2 209 3869 1508 3 SPEC INT 2000
I2-CMP 530 13411 5177 3 Splash2 kernels
PPC 144 4017 1749 3 SPEC INT 2000
RISC 49 407 94 2 kernels

Table 3.2: Models and input sets

ALPHA

ALPHA is a structural model of an out-of-order processor executing the Alpha ISA. The

author is David A. Penry. The microarchitecture is intended to match exactly that of the

processor modeled in the popular SimpleScalar[12] sim-outorder simulator. The sim-

ulator matches the output of sim-outorder precisely. An early version of this model

was used in a tutorial on LSE at MICRO-34. With full dependence information enhance-

ment, the signal graph is acyclic, but the codeblock graph is not.

Benchmark Input Starting instruction Length
256.bzip2 image 71,900,000,000 150,000,000
164.gzip program 119,000,000,000 150,000,000
186.crafty reference 77,500,000,000 150,000,000

Table 3.3: Input and sampling parameters for ALPHA

Three benchmark and reference input combinations from the SPEC CPU 2000[1] bench-

mark suite are used as shown in Table 3.3. These particular benchmarks and input set

combinations were selected because they provide the lowest, median, and highest slow-

down respectively between the structural simulator and sim-outorder. The binaries

were downloaded from http://www.simplescalar.com; the compiler used to create these bi-

naries is not known. For each benchmark, the beginning of the single SimPoint[84] listed

on the SimPoint website is used as the starting point of execution; 150 million instructions

are executed. For the three benchmarks and input combinations shown here, the dynam-

ically scheduled simulator generated from this model is on average 23 times slower than

sim-outorder, which is a highly-optimized hand-coded simulator written in C.
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Benchmark Input parameters Starting instruction Length
cholesky -p4 -C32768 lshp.O 30,000,000 10,000,000
fft -p4 -m16 -n1024 -l5 30,000,000 10,000,000
radix -p4 -n262144 20,000,000 10,000,000

Table 3.4: Input and sampling parameters for CMP04 model

CMP04

CMP04 is a model of a chip multiprocessor with four processors. The authors are David

A. Penry and Julia S. Chen. The microarchitecture is tiled, i.e. there are four tiles, each

containing a processor with first level instruction and data caches, a portion of a distributed

second-level cache, and connections to an on-chip routing network. Each tile has an inde-

pendent channel to memory. The processors are derived from the ALPHA model, but are

configured to be scalar and in-order and to use the PowerPC instruction set. This model is

very similar to the models used in [16]. With full dependence information enhancement,

the signal graph is acyclic, but the codeblock graph is not.

Three combinations of benchmark and inputs from the SPLASH-2 benchmark suite[110]

are used. The compiler was gcc 3.4.1 with flags -g -O2 -lm -static. A sampling

technique is used: one slice of execution is run. This slice begins after some number of

instructions have completed on the first core. This number is chosen so that all simulated

threads have begun execution by that time. The slice ends when the first core has completed

a further fixed number of instructions. The input and sampling parameters are given in

Table 3.4.

I2

I2 is a detailed model of the Intel Itanium R© 2 processor. The author is David A. Penry.

This model has been validated against hardware and is accurate to within 6% absolute

average error for the SPEC CPU INT 2000 benchmarks. It has been described in detail in

[77]. With dependence information enhancement, the signal graph is not acyclic: there are

two signals involved in a cycle. This cycle occurs because one control function has port

instance-specific dataflow which cannot be parsed by the framework. The codeblock graph

is not acyclic.
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Benchmark Input parameters Starting instruction Length
cholesky -p2 -C32768 lshp.O 50,000,000 500,000
fft -p2 -m16 -n1024 -l5 40,000,000 500,000
radix -p2 -n262144 1,000,000 500,000

Table 3.5: Input and sampling parameters for I2-CMP model

The benchmarks are bzip2, crafty, and bzip from the SPEC CPU 2000 suite. These were

chosen simply because these were the benchmarks used for the ALPHA model. The same

inputs are used as were used for the ALPHA model. The binaries were compiled using

ecc 6.0 Beta, build 20011119 with flags -O2 -static. The same inputs are used that

were used for that model. Sampling is SimPoint-like, except than instead of calculating

the SimPoint, the 10 billionth instruction is used as the first instruction. The length of the

sample is 15 million instructions.

I2-CMP

I2-CMP is a two-way chip multiprocessor based upon the Itanium R© 2 processor model

described previously. The author is Ram Rangan. The cache hierarchy is extensively mod-

ified and special hardware communication structures have been added. This model was

used in [71]. It is the largest of the models, having over 13,000 signals and 5000 code-

blocks. The signal graph is not acyclic after dependence information enhancement; there

are three cycles involving ten signals. Two of these come from the cycle in the I2 model;

the other is due to a control function in a bus arbiter which cannot be parsed. The codeblock

graph is not acyclic.

Three combinations of benchmark and inputs from the SPLASH-2 benchmark suite[110]

are used. The binaries were compiled using gcc 2.96 with flags -g -O2 -lm -static.

The same sampling technique used for the CMP04 model is used. The input parameters

and beginning of each slice used are given in Table 3.5.

PPC

PPC is a model of an out-of-order processor based loosely upon the PowerPC 970. The

author is Ram Rangan. The dependence annotation is incomplete; while it is sufficient

to allow partitioned scheduling to create a fully static schedule, there are still many small
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cycles in the signal graph. In all, there are 26 cycles involving a total of 164 signals. Most

of these cycles occur because of control functions written in an unparseable fashion; they

have not been rewritten so that the effects of many small cycles – a likely state of affairs

for un-performance-optimized models – will be seen. The codeblock graph is cyclic.

The benchmarks are bzip2, crafty, and bzip from the SPEC CPU 2000 suite. The binaries

were compiled using gcc 3.4.1 with flags -g -O2 -lm -static. These were chosen

simply because these were the benchmarks used for the ALPHA model. The same inputs

are used that were used for that model. Sampling is SimPoint-like, except than instead of

calculating the SimPoint, the 10 billionth instruction is used as the first instruction. The

length of the sample is 250,000 instructions.

RISC

RISC is a model of a simple single-issue in-order processor executing a subset of the

MIPS instruction set. It is based upon Figure 6.51 of [74]. This model comes from [36]

and was originally written in SystemC by Gilles Mouchard. For these experiments, it has

been ported into LSE by David A. Penry. After dependence annotation, the signal graph is

acyclic. Because all flow-control signals signals are forced to be constants in this model,

the codeblock graph is acyclic as well. This is a very small model, but it is interesting

because one can expect all static scheduling techniques to produce exactly one codeblock

invocation per cycle, allowing comparison of runtime overheads of different techniques.

The benchmarks used in [36] were not specified and the authors are now unable to repro-

duce the benchmarks[35]. In addition, the subsetting of the MIPS instruction set makes

it difficult to write large benchmarks. As a result, two small assembly-language kernels

are used. The first repeatedly calculates the millionth Fibonacci number using an iterative

algorithm. The second repeatedly performs a 50 by 50 matrix multiplication. In each case

500 million instructions are simulated.

Implementation of Dynamic Scheduling

The framework uses a straightforward single-pass dynamic scheduling algorithm. A list of code-

blocks to be invoked is maintained. This list is traversed to invoke the blocks. When a signal is
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� SchedList is a FIFO queue.
� flags is an array of codeblock flags.
� ForceList is the list of codeblocks which must be forced to execute

DYNAMIC-SCHEDULE(C)
� C is the codeblock to schedule.
if flags[C] = FALSE

then flags[C]← TRUE

ENQUEUE(SchedList , C)

DYNAMIC-INVOKE()
foreach codeblock C in ForceList

do DYNAMIC-SCHEDULE(C)

while SchedList not EMPTY

do C ← DEQUEUE(SchedList)
flags[C]← FALSE

Invoke C

Figure 3.11: Dynamic scheduling operations

given a value, all codeblocks which receive the signal as inputs are appended to the end of the list

if they are not already present. Figure 3.11 shows pseudocode for the scheduling and invocation

operations.

Compilation and Evaluation Systems

All simulators were compiled using gcc 3.4.4 with the default compilation flags provided by

LSE’s ls-build script. All simulations were run on a single processor system with one AMD

AthlonTM64 Processor 3400+ at 2.4 GHz. This system has 512 kilobytes of L2 cache and 2

gigabytes of memory. The system was running Fedora Core release 3 with kernel version 2.6.9-

1.667smp.

Wall-clock time is measured using /usr/bin/time. The wall-clock time includes time to

start the simulation binary, initialize, finalize, and perform all I/O including reading of simulation

state checkpoints. A statistical option in LSE measures the number of times each codeblock is

invoked.
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3.6.2 Acyclic Scheduling

The acyclic scheduling algorithm was ported from FastSysC[36] into the LSE framework. There

is one significant difference; the order in which signals are considered when performing schedul-

ing steps such as depth-first search or topological sort is different from what it would be in Fast-

SysC. In FastSysC, this order is the order in which signal constructors are called during initial-

ization. In LSE the order is complex, but is approximately alphabetical by the module instance

and port name driving the signal. As a result, LSE and the original acyclic scheduling may assign

different tlevels to signals which are part of a cycle in the signal graph.

The generated code is also somewhat different from that produced in FastSysC because of

differences in the MoC and the framework. The generated code for scheduling and invocation

operations is shown in Figure 3.12. There are four significant differences:

1. FastSysC uses a two-pass dynamic execution strategy where a change in a signal value does

not immediately add codeblocks which read that signal to the invocation list. In contrast,

LSE uses a one-pass strategy where codeblocks are immediately added to the invocation

list.

2. FastSysC maintains a count of codeblocks which should be invoked at each tlevel and can

skip an entire tlevel or even the entire remaining static schedule if it determines that no

codeblocks remain to be invoked. LSE is unable to do this.

3. FastSysC generates individual statements for the testing of flags and invocation of each

codeblock in the static schedule rather than generating a table of codeblocks to be executed.

Gracia Pérez et al. used this approach for FastSysC because it provides better performance

for the small models which they tested; they attribute this performance benefit to improved

branch predictor behavior when selective-trace is used. However, such a technique is not

scalable: in a very large model, both the instruction cache and the branch predictor would

be overwhelmed by the static schedule code. For this reason LSE uses a table-driven ap-

proach.

4. Due to its DE MoC, FastSysC can compare signal values across clock cycles. LSE cannot

do this because the HSR MoC requires all signal values to return to ⊥ at the beginning
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� StaticSched is the static schedule; each element has fields:
codeblock : the codeblock to invoke
force: should invocation be forced?

� SchedList is a FIFO queue.
� flags is an array of codeblock flags with values TRUE, FALSE, and NEEDED

� in-acyclic-finish is a boolean flag

ACYCLIC-SCHEDULE(C)
� C is the codeblock to schedule
if in-acyclic-finish = TRUE

then if flags[C] = FALSE

then flags[C]← TRUE

ENQUEUE(SchedList , C)
else flags[C]← NEEDED

ACYCLIC-INVOKE()
� Run static portion of schedule.
in-acyclic-finish ← FALSE

foreach E in StaticSched
do C ← E. codeblock

if not selective-trace-enabled or E.force = TRUE or flags[C] 6= FALSE

then flags[C]← FALSE

Invoke C

� Run transition portion of schedule.
in-acyclic-finish ← TRUE

foreach codeblock C
do if flags[C] = NEEDED

then flags[C]← FALSE

Invoke C

� Run dynamic portion of schedule.
while SchedList not empty

do C ← DEQUEUE(SchedList)
flags[C]← FALSE

Invoke C

Figure 3.12: Acyclic scheduling operations
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of each timestep. Thus FastSysC reports fewer changes in signal values than LSE does.

This results in LSE potentially making more codeblock invocations; LSE will invoke each

codeblock at least once per cycle.

One should expect to see that acyclic scheduling results in fewer codeblock invocations than

dynamic scheduling. This expectation is qualified by the fact that invocation coalescing (which

is implicit in dynamic scheduling) may proceed differently even for an acyclic signal graph.

Improve simulation speed should come about through two factors: the reduction in the number

of invocations and a reduction in the average cost of scheduling a codeblock.

Figure 3.13(a) shows the average number of codeblock executions per codeblock per simu-

lated cycle for each model and benchmark combination for dynamic scheduling, acyclic schedul-

ing without selective-trace, and acyclic scheduling with selective-trace. Figure 3.13(b) shows the

speedup of each of these three techniques vs. dynamic scheduling. Averages are on the right-hand

side of the graph and are geometric means across all models and benchmarks.

These results appear to segment the models into two classes: those that have more codeblock

invocations and experience slowdown when acyclic scheduling is used (I2, I2-CMP, and PPC)

and those that have less invocations and experience speedup.

Acyclic scheduling is successful at reducing the number of codeblock invocations for the

larger class of models. For the RISC model (which was used to evaluate acyclic scheduling when

it was first proposed) it is able to reduce them to the minimum of one invocation per codeblock.

This is due to the fact that the codeblock graph is also acyclic. The reduction in invocations leads

to faster simulation speed. These results confirm and extend the results of [36] to the HSR MoC

– acyclic scheduling can be an effective technique for improving simulation speed.

Clearly selective-trace scheduling reduces the number of codeblock invocations for these

models. But this reduction comes at a price: the extra checks to see whether a codeblock needs

to be invoked appear to outweigh the time savings from skipping the invocations unless many

invocations are skipped. These results again conform with those of [36].

Note that a direct quantitative comparison of speedup of acyclic scheduling with that given

in [36] would be inappropriate even for the RISC model because the input benchmarks are dif-

ferent, the style of dynamic scheduling being compared against (and thus the speed and number
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Figure 3.13: Acyclic scheduling results
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of codeblock invocations for dynamic simulation) is different, and LSE cannot compare signal

values across cycles to reduce invocations.

The other class of models shows three unusual tendencies. First, the number of codeblock

invocations increases with acyclic scheduling. Second, the number of codeblock invocations

soars when selective-trace scheduling is not used. Finally, acyclic scheduling slows down the

simulator.

Why do these models behave differently? One important difference between these models

and the others is that their signal graphs are cyclic. This implies that the edge removal algorithm

comes into play; this algorithm was not required to schedule the models used in [36]. Ideally,

parts of the signal dataflow graph which are not involved in cycles should still maintain dataflow

order in the schedule so that when they are invoked their input signals are at their final value

for the timestep. Analysis of the edge removal code shows that this code does not guarantee

this property because it removes edges which are not involved in cycles. The result is that the

static portion of the acyclic schedule invokes codeblocks for which the input signals are not yet

at a non-⊥ value. This effect is transitive as ⊥ inputs to one level of codeblocks lead to ⊥

inputs at the next level. Eventually all of these codeblocks are reinvoked during the fallback

dynamic scheduling. Selective-trace scheduling prevents the extra static invocations. However,

because many of the invocations are deferred until the fallback dynamic scheduling, performance

improvement versus the baseline dynamic scheduling is not seen; indeed, the additional overhead

of managing the largely-ignored static schedule causes the performance to be less than that of the

dynamic scheduling for the I2 and PPC models.

The edge removal can be improved by removing only cycle-causing edges in the signal graph.

These edges are the back edges with respect to the strongly-connected component decomposition

of the graph and can be found by using FIND-SCCS-AND-BACK-EDGES. Note that any execution

downstream of a cycle will still have to be dynamically scheduled if the edges which are removed

represent true computational dependences.

Figure 3.14 shows the results obtained by using the original and improved edge removal al-

gorithms. For the three models with cycles in the signal graph, the improved edge removal algo-

rithm successfully reduces the number of codeblock invocations to levels close to those obtained
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Figure 3.14: Improved acyclic scheduling results
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through dynamic scheduling. The I2-CMP model joins the class of models with both reduced

invocations and speedup, though selective-trace is required to reduce the number of invocations

below dynamic scheduling. In fact, some true edges were removed and some dynamic scheduling

was required. The I2 model is also able to obtain speedup even though the number of invoca-

tions is slightly larger than with dynamic scheduling. The single edge which was removed was a

false edge, so the minor difference in the number of invocations is entirely due to differences in

invocation coalescing.

On the other hand, the PPC model shows a unique behavior: selective-trace scheduling im-

proves performance, turning a slowdown into marginal speedup. This model is unique in that it

has many small cycles in the signal graph. The edge removal algorithm removes false edges from

some of these cycles and true edges from the others. Enough true edges are removed to make

selective-trace faster than non-selective-trace, even with the increased invocation overhead. At

the same time, enough of the schedule remains statically scheduled to provide overall speedup.

Overall, once the edge removal algorithm is improved, acyclic scheduling is able to provide

a speedup versus dynamic scheduling varying from 1.03 to 1.43, with a geometric mean of 1.14.

Whether selective-trace is desirable depends upon the model.

3.6.3 Levelized Event-driven Scheduling

The levelized event-driven scheduling technique introduced in LECSIM requires a major mod-

ification to be used with microarchitectural simulation. This modification is to schedule using

the signal graph rather than the codeblock graph. This is important because in LSE flow control

signals cause cycles in the codeblock graph which are not present in the signal graph. However,

doing so implies that a codeblock has multiple tlevels: up to one for each of its output signals.

Thus a question arises: at what tlevel a codeblock should be scheduled when a particular input

signal transitions?

The approach which this implementation takes is to compare tlevels for signals and code-

blocks. The tlevel for each signal is computed using the signal graph. For each codeblock, a

level-set is formed. This level-set is the set of tlevels of all signals which the codeblock may

generate. The level to use for scheduling when a signal changes values is the smallest element of
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the level-set of the codeblock receiving the signal which is greater than the signal’s tlevel. If no

such element exists, the level used is the smallest element of the level-set.

This solution allows a codeblock to be scheduled at different levels when its output signals

depend upon input signals at different tlevels. This also implies that opportunities may exist for

invocation coalescing by reducing the size of the codeblock level sets. Tlevel-based coalescing

is already present implicitly, as multiple invocations of the same codeblock to generate signals at

the same tlevel cannot occur because a codeblock can only be scheduled once per level. However,

subgraph-based coalescing could also be used and its effectiveness is evaluated here.

For this evaluation, smallSize, or the maximum number of signals in a “small” strongly-

connected component, is set to either 1 or 15. When it is set to 1, all SCCs are treated as large

SCCs and there are no embedded subschedules. When it is set to 15, embedded subschedules

may be formed. These SCCs do not use normal invocation coalescing; instead, if a codeblock is

repeated the repetitions are simply deleted since the iteration controls will re-invoke it if neces-

sary.

While [106] says that large SCCs are hierarchically decomposed to find smaller SCCs em-

bedded in the larger ones, it does not describe precisely how to remove back edges to do this.

The method used here is to remove the back edge with the largest difference in depth-first-search

finishing order between its target vertex and its source vertex. The intuition is that larger differ-

ences are associated with larger cycles in the signal graph. With this choice of edges, the overall

scheduling algorithm takes no more than O(VS(VS + ES)) and at least Ω(VS + ES) time.

Figure 3.15 shows the generated code for scheduling and invocation operations. There is

a statically-initialized scheduling information array which indicates both receiving codeblocks

and indices of flags to use when a signal value changes. The flag indices are included because

a two-dimensional array of flags indexed on codeblock and level would be highly sparse and

cache-inefficient.

One would expect to see that levelized event-driven scheduling will reduce the number of

codeblock invocations relative to dynamic scheduling. As was the case for acyclic scheduling,

this expectation must be tempered by the fact that invocation coalescing may proceed differently

than in pure dynamic scheduling. It is also possible that the increased complexity and overhead
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� SchedInfo is a statically generated array of scheduling
information for each signal. Each element has fields:

codeblock : the receiving codeblock
flagIndex : index of flag variable to use
level : level at which to schedule

� flags is an array of booleans which keeps track of which
codeblock/level combinations have already been scheduled.

� levels is the schedule structure, which is an array of lists.
Each list element has a field codeblock indicating the
codeblock and an integer flagIndex indicating which flag
variable should be used

� masterLevel is a global variable indicating the current level being invoked
� numLevels is the number of levels in the schedule
� runAgain is a global boolean flag

LEVELIZED-SCHEDULE(S)
� S is the signal whose value has changed
flagIndex ← SchedInfo[S].f lagIndex
if flags[flagIndex] = FALSE

do flags[flagIndex]← TRUE

lev ← SchedInfo[S].level
ENQUEUE(levels[lev], {SchedInfo[S].codeblock,flagIndex})
if lev ≤ masterLevel

do runAgain ← TRUE

LEVELIZED-INVOKE()
ENQUEUE-FORCED-INVOCATIONS() � as per Section 3.5.4
repeat runAgain ← FALSE

for masterLevel ← 1 to numLevels
do foreach C in levels[masterLevel ]

do flags[C.flagIndex ]← FALSE

Invoke C. codeblock
until runAgain = FALSE

Figure 3.15: Levelized Event-driven scheduling operations

79



of levelized scheduling will cause the improvements in invocations to not result in significant

speedup because the decrease in codeblock invocations will be competing with an increase in the

average cost of scheduling and dispatching a codeblock.

Figure 3.16(a) shows the average number of codeblock executions per codeblock per sim-

ulated cycle for each model and benchmark combination for dynamic scheduling and levelized

event-driven scheduling performed both with and without embedded subschedules and with and

without subgraph-based coalescing. Figure 3.16(b) shows the speedup of each of these techniques

vs. dynamic scheduling. Averages are on the right-hand side of the graph and are geometric

means across all models and benchmarks.

As was the case for acyclic scheduling, the results segment the models into two classes: those

that have more codeblock invocations with levelized event-driven scheduling (I2, I2-CMP, and

PPC) than with dynamic scheduling and those that have fewer invocations (ALPHA, CMP04,

RISC). These classes also correspond to the models which have and do not have cycles in their

signal graphs.

Levelized event-driven scheduling does succeed in reducing the number of codeblock invo-

cations for the models with acyclic signal graphs. However, speedup is obtained within this class

only for the RISC model, and that speedup is very low. Subgraph-based invocation coalescing

can further reduce invocations, but the speedup is only marginally affected. Subschedule embed-

ding is, of course, irrelevant when the signal graphs are acyclic.

The main factor causing this poor showing is the higher overhead inherent in the more com-

plex data structure used for scheduling. This does not fully explain the pathological behavior of

the CMP04 model. Profiling shows that 3.5 times as many cache misses are being generated by

the levelized event-driven simulator than the dynamically scheduled simulator. This is because

the larger scheduling data structure which levelized event-driven scheduling requires places much

more pressure on the caches. This could be also be considered overhead. Rerunning the simulator

binaries on a different host system with a different cache hierarchy shows results similar to those

of the ALPHA model.

When the signal graph has cycles, subschedule embedding increases the number of invoca-

tions. This is because the fixed, invoke-all-codeblocks behavior of subschedules invokes some
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Figure 3.16: Levelized Event-driven (LEd) scheduling results
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codeblocks in the cycles too many times. As when the signal graph was acyclic, subgraph-based

coalescing does reduce the number of invocations; without it levelized event-driven scheduling

results in more invocations than dynamic scheduling.

The impact upon speedup is mixed; for the I2 and I2-CMP model, the use of subsched-

ule embedding or coalescing causes little difference and no technique provides speedup. The

I2 model behaves similarly to the CMP04 model; there levelized event-driven scheduling slows

down simulation because of cache effects. On the other hand, the PPC model sees differences

between techniques and faster simulation speeds even though the number of invocations may

increase. Levelized event-driven scheduling has serendipitously reduced the number of invoca-

tions of particularly expensive-to-execute codeblocks while increasing invocations for the cheaper

ones, resulting in a net performance improvement.

These results do not reflect those in [106] for logic simulation, where levelization both re-

duced the number of gate evaluations by one half to one third and was from 8 to 77 times faster

than dynamic scheduling. The reasons for this are twofold. First, their experimental methodology

allowed selective-trace execution across clock cycles (test vector applications in their case). Sec-

ond, they generated specialized assembly code for the data structure manipulations and generate

all code for gates within a single function, allowing very low-overhead scheduling and invocation.

3.6.4 Partitioned Scheduling

The partitioned scheduling algorithm described in [21] has been implemented with the addition

of dynamic subschedule embedding as described in Section 3.5.2. Signal-based coalescing as in

[21] is also used; however signals are considered in the the order in which they appear in the

schedule, not numeric order. Figure 3.17 shows the generated code for scheduling and invocation

operations; note that in many cases the code generator can specialize the scheduling code so

that a lookup of the doDynamic flag in the scheduling information is not needed. The dynamic

invocation code is invoked for each embedded dynamic subschedule.

One should expect to see that partitioned scheduling reduces the number of codeblock invo-

cations relative to dynamic scheduling. This expectation is qualified by the fact that invocation

coalescing (which is implicit in dynamic scheduling) may proceed differently even for an acyclic
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� SchedInfo is a statically generated array of scheduling
information for each signal. Each element has fields:

codeblock : the receiving codeblock
doDynamic: is dynamic scheduling required?

� StaticSched is the static schedule; each element has fields:
codeblock : the codeblock to invoke
force: should invocation be forced?

� SchedList is a FIFO queue.
� flags is an array of codeblock flags with values

TRUE, FALSE, and NEEDED

PARTITIONED-SCHEDULE(S)
� S is the signal whose value has changed
if SchedInfo[S].doDynamic = TRUE

then if flags[C] = FALSE

then flags[C]← TRUE

ENQUEUE(SchedList , C)
elseif selective-trace-enabled

then flags[C]← NEEDED

PARTITIONED-INVOKE()
� Run static schedule
in-acyclic-finish ← FALSE

foreach E in StaticSched
do

if not selective-trace-enabled
then Invoke E.codeblock

elseif E.force = TRUE or flags[E.codeblock] 6= FALSE

then flags[E.codeblock]← FALSE

Invoke C

DYNAMIC-INVOKE()
� This code is used for embedded dynamic sections
ENQUEUE-FORCED-INVOCATIONS() � as per Section 3.5.4
while SchedList not EMPTY

do C ← DEQUEUE(SchedList)
flags[C]← FALSE

Invoke C

Figure 3.17: Partitioned scheduling operations
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signal graph. The reduction in invocations should translate to improved simulation speed through

two factors: the reduction in the number of invocations and a large reduction in the average cost

of scheduling a codeblock.

Figure 3.18(a) shows the average number of codeblock executions per codeblock per simu-

lated cycle for each model and benchmark combination for dynamic scheduling and partitioned

scheduling with and without selective-trace. Figure 3.18(b) shows the speedup of each of these

techniques vs. dynamic scheduling. Averages are on the right-hand side of the graph and are ge-

ometric means across all models and benchmarks. Note that no dynamic schedules are required

for any of these models.

These results divide the models into two classes: those which have a larger number of invo-

cations when non-selective partitioned scheduling is used (I2-CMP and PPC) and those which

have fewer.

Partitioned scheduling is quite effective at reducing the number of codeblock invocations

for the larger class. The number of codeblock invocations drops without the use of selective-

trace techniques by up to 24%. This results in speedups from 1.22 to 2.08. The speedup is

generally larger than the relative decrease in codeblock invocations, indicating that overhead has

been reduced as well. For these fully static schedules, the overhead with non-selective-trace

partitioned scheduling should be zero.

As with acyclic scheduling, selective-trace reduces the number of codeblock invocations rel-

ative to non-selective-trace, but the reduction in invocations is usually outweighed by the increase

in overhead. Note that this is true even though the overhead is simply the setting and testing of a

flag.

The RISC model shows an interesting behavior; the number of codeblock invocations is not

reduced to precisely one invocation per codeblock per cycle with partitioned scheduling. A single

codeblock is called twice. The reason for this is that the situation is like that of Figure 3.9; signal-

based coalescing was unable to coalesce these two invocations because another invocation upon

which the second depends could not be coalesced.

The other class of models (I2-CMP and PPC) has much lower speedup than other models as

well as an increase in the number of codeblock invocations relative to dynamic scheduling when
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Figure 3.18: Partitioned scheduling results
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non-selective-trace is used. In both models, the signal graph contains small cycles; in the case of

PPC, there are 26 of them. The increase in codeblock invocations occurs because the partitioned

scheduling algorithm “over-schedules” these blocks relative to their true data dependences, just

as in the example given in Section 3.5.2. Also, as the number of codeblocks involved is actually a

small fraction of all the codeblocks to be scheduled but these codeblocks have had a large impact

on invocations, the disruptive impact of cycles on invocation coalescing may be high. Selective-

trace does reduce the invocations to below the level in dynamic scheduling, though only for the

PPC model does this result in speed improvements.

Improving invocation coalescing

As discussed in Section 3.5.3, it is possible to improve scheduling results further through im-

proved invocation coalescing. Four coalescing strategies are evaluated: tlevel-based as used in

acyclic scheduling, a very similar blevel-based technique, signal-based as proposed by Edwards,

and the novel subgraph-based technique proposed in Section 3.5.3.

Figure 3.19(a) shows the average number of codeblock executions per codeblock per simu-

lated cycle for each model and benchmark combination for partitioned scheduling with the four

different coalescing techniques as well as no coalescing.. Figure 3.19(b) shows the speedup of

each of these techniques vs. dynamic scheduling. Averages are on the right-hand side of the

graphs and are geometric means across all models and benchmarks.

Coalescing is very important for all the models and always produces better results for these

models. The speedup over not coalescing ranges from 1.15 to 2.61 with an average of 1.68. For

several of of the models, not performing coalescing even causes the statically scheduled simulator

to be slower than the dynamically scheduled simulator, thus sabotaging the static scheduling

process.

The different coalescing techniques produce speed and invocation differences. Subgraph-

based coalescing always results in the fewest invocations because of the additional flexibility

provided by the movement of subgraphs. However the speed difference versus other techniques

is modest: only a 4.5% average speedup versus signal-based or 1.9% speedup versus tlevel-based

coalescing. Blevel-based coalescing usually under-performs all the other techniques. Signal-
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Figure 3.19: Invocation coalescing results
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based coalescing usually results in fewer invocations than tlevel-based coalescing, but neither

tlevel-based nor signal-based coalescing are clearly superior to each other in speed.

While a large reduction in invocations leads to improved speed, small reductions do not al-

ways do so. For example, subgraph-based coalescing yields a slower simulator for the CMP04

model than tlevel-based coalescing even though it yields fewer invocations. This is because

different techniques coalesce different invocations, but not all coalescings are of equal worth.

Coalescing costly invocations leads to more speedup than coalescing cheap invocations. None of

the techniques consider heterogeneity of invocation cost.

To summarize, performing some form of invocation coalescing is very important, and blevel-

based coalescing should not be used. Subgraph-based coalescing has the best overall perfor-

mance, but tlevel-based coalescing is a lower time-complexity algorithm with little difference in

performance.

3.6.5 Comparing the Techniques

Figure 3.20(a) shows the average number of codeblock executions per codeblock per simulated

cycle for each model and benchmark combination for the best overall configuration for each type

of scheduling: dynamic, improved acyclic without selective-trace, levelized event-driven with

subschedules, and partitioned without selective-trace with subgraph-based invocation coalesc-

ing.. Figure 3.20(b) shows the speedup of each scheduling technique vs. dynamic scheduling.

Averages are on the right-hand side of the graph and are geometric means across all models and

benchmarks.

The RISC model highlights the differences in scheduling and invocation overhead between

the techniques. All of the technique are able to reduce the RISC model to a single invocation per

codeblock. However, the speedup results vs. dynamic scheduling are dramatically different. Lev-

elized event-driven scheduling has only a tiny 1.04 speedup, acyclic scheduling has a respectable

1.43 speedup, but partitioned scheduling has a very high 1.89 speedup. These differences stem

directly from the differences in overhead for the different scheduling techniques.

For the other models, partitioned scheduling has a double advantage: it both produces a

lower number of codeblock invocations than the other static or hybrid techniques and has lower
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Figure 3.20: Overall technique comparison
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overhead, allowing it to obtain much higher speedups in nearly all cases. When there are many

cycles in the signal graph, such as in the PPC model, partitioned scheduling is the only technique

able to consistently obtain speedup.

The large overhead required to manipulate data structures in the levelized event-driven tech-

nique puts it at a distinct disadvantage with respect to both acyclic and partitioned scheduling. It

is only able to obtain speedup for the single model with an acyclic codeblock graph and thus is

not suitable for microarchitectural simulation.

3.6.6 The Importance of Dependence Information Enhancement

All of the scheduling techniques rely upon knowledge of computational dependences between

signals. The results heretofore shown used all the dependence information enhancement tech-

niques proposed in Section 3.5.1. This section evaluates each of those techniques when used

with partitioned scheduling. The levels of enhancement which are compared are none, only port

independence annotation, only module annotations, only control function analysis, and all en-

hancements. When some enhancements are not used, embedded dynamic subschedules may be

included in the schedule.

Figure 3.21(a) shows the average number of codeblock executions per codeblock per simu-

lated cycle for each model and benchmark combination with the different enhancements: none,

port, module, control function, and all. Figure 3.21(b) shows the speedup of each scheduling

technique vs. dynamic scheduling. Averages are on the right-hand side of the graph and are

geometric means across all models and benchmarks.

Partitioned scheduling without any dependence information enhancement is essentially dy-

namic scheduling because in the absence of information to the contrary, the default flow-control

signals between any connected module instances lead to cycles in the signal graph. The result

is that nearly all signals get pulled into a handful of large strongly-connected components, and

often just one such component. That any signals at all can be statically scheduled is due to the

presence of unconnected port instances whose signals are treated as constant values and thus pro-

vide a very small amount of dependence information. Note that these results are not the same as
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Figure 3.21: Dependence information enhancement
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those previously presented for dynamic scheduling because those results included use of all the

dependence information enhancements; this allowed some forced invocations to be dropped.

Use of all of the dependence information enhancements decreases the number of codeblock

invocations and improves speed by up to 119% over having no enhancements. Having the ad-

ditional information results in a fully static schedule for all of these models. The additional

information can also show that some signals are not used and drop them from the schedule. The

improvement in speed is generally larger than the relative decrease in invocations; this is because

a fully static schedule has lower overhead for scheduling than a partially dynamic schedule.

Partial information enhancement presents a more complex picture. The behavior is tied to the

size of strongly-connected components which are created in the signal graph when dependence

information is missing. This difference in component size stems from differences in the way in

which portions of the model which are missing information are connected and leads to differences

in the proportion of invocations taking place in dynamic subschedules. Table 3.6 shows the

proportion of signal evaluations taking place in dynamic subschedules for each of the models for

partial information enhancement.

Dynamic evaluations
Model Port Module Control Function
ALPHA 97% 26% 88%
CMP04 99% 73% 96%
I2 88% 27% 95%
I2-CMP 90% 42% 97%
PPC 91% 30% 100%
RISC 0% 0% 100%

Table 3.6: Proportion of signal evaluations scheduled dynamically

When only control function analysis is used, the computational dependences within the mod-

ule instances are not known. Module instances tend to have many signals and are usually con-

nected directly to one another. As a result, the signal graph comes to have very large strongly-

connected components within it. These components cause large embedded dynamic subschedules

to be generated, which behave very similarly to having no information at all, as indicated by the

high proportion of dynamic invocations. The number of invocations is similar, though there is

some speedup for the ALPHA and CMP04 models, which have slightly larger decreases in in-

vocations.
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When only module annotations are used, the computational dependences within the control

functions are not known. Control functions have few signals, are much less common than module

instances, and are rarely connected directly to one another. The resulting signal graph has small

strongly-connected components which are statically scheduled. This leads to a lower proportion

of dynamic invocations. However, because information was missing, the static schedules for

these small cycles are not optimal and cause there to be too many invocations. Recall that this

problem appeared in the PPC model for full information due to a few control functions that could

not be analyzed. Here all control functions are involved. As a result, for all the models except the

RISC model the number of invocations is more than when only control dependences are used.

For most models the number of invocations is not greatly affected relative to no information, but

for the CMP04 and PPC models the number of invocations does increase somewhat, indicating

that the schedules are poorer. Nevertheless, module annotations nearly always provide speedup

over no information because the significant amount of static scheduling improves the average cost

of scheduling. The exception is the ALPHA model, which will be discussed later.

When the scheduler uses only port independence annotations, very little is known about com-

putational dependences within the modules and nothing at all about the control functions. The

result is a schedule with a very high dynamic proportion of invocations and correspondingly close

behavior to no information at all. The only anomaly is the ALPHA model, which has more invo-

cations and less speed when port independence is used. This happens because the independence

information is enough to split the signal graph into two strongly-connected components, but many

signals which are scheduled to do be generated during the second subschedule are actually gen-

erated in the first embedded subschedule. As a result, all but one of the forced invocations for the

second subschedule are extraneous.

The RISC model appears odd in that port dependence or instance annotations give the same

results as all annotations and control points analysis gives the same result as no information.

This is because the RISC model has no control functions, never uses the ack signals, and all

output signals of W-codeblocks depend upon all their used input signals; thus all computational

dependencies can be inferred from port independence or instance annotations alone.
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The strangest results are those for the ALPHA model. When only module annotations are

used the number of invocations climbs dramatically and the speed of the simulator falls. The

resulting signal graph has a strongly-connected component with 157 signals. This number of

signals is very close to the size of a large component which would trigger an embedded dynamic

subschedule. The hierarchical partitioning algorithm chooses a partitioning which is nested three-

deep but never has more than two signals in the head. As a result, no portion of this component is

converted to a dynamic section and codeblocks at the deepest nesting level are scheduled to run

up to 11 times. These results suggest strongly that the either the definition of large components

is set too high and/or that the level of nesting ought to be considered when deciding whether to

convert to dynamic sections while unrolling the schedule.

Using selective-trace to deal with small cycles

Not having full dependence information may be a common situation: users may not wish to

devote time to annotating their custom modules or may not write control functions in an easily

parseable way. Indeed, the effects of this appear in the PPC model, where unparseable control

functions tend to cause the small cycles present in the signal graph. As a result, it is desirable

to see whether the extra invocations which result from small and medium-sized cycles can be

reduced using selective-trace techniques.

Figure 3.22(a) shows the average number of codeblock executions per codeblock per sim-

ulated cycle for each model and benchmark combination for module annotations and control

function analysis with and without selective trace, and no enhancements and all dependence

information enhancements without selective trace. Figure 3.22(b) shows the speedup of each

scheduling technique vs. dynamic scheduling. Averages are on the right-hand side of the graph

and are geometric means across all models and benchmarks.

Selective trace reduces the excess codeblock invocations caused by poor static schedules for

cycles effectively, but this does not translate into performance gains unless there were many extra

invocations, such as happens for the ALPHA model when module annotations are used. This is

because of the increase in scheduling and invocation overhead when selective trace is used.
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Figure 3.22: Dependence enhancement with selective trace
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3.7 Summary: Scheduling for Uniprocessor Structural Simulation

In this chapter I have shown that static and hybrid uniprocessor scheduling techniques can be

used successfully to increase structural simulation speed for the Heterogeneous Synchronous Re-

active model of computation. Both acyclic scheduling and partitioned scheduling are effective

at both reducing the number of codeblock invocations and increasing simulator speed, providing

speedups of up to 1.44 and 2.09 respectively over dynamic scheduling. Levelized event-driven

scheduling does not reliably improve performance, though it does decrease codeblock invoca-

tions. Selective-trace techniques reduce the number of codeblock invocations, but generally do

not provide improved performance because of the increased overhead they imply.

Contrary to prior belief, partitioned scheduling can generate correct static schedules for the

most common model of computation, the zero-cycle Discrete Event MoC, when models are re-

stricted to be microarchitecturally synchronous. With modifications, partitioned scheduling can

generate correct static schedules for the larger class of models which are logically synchronous

if the signals can be represented in a fixed number of bits. Thus all microarchitectural models

which describe synchronous designs where signals can be represented in a fixed number of bits

can be statically scheduled using partitioned scheduling

Four enhancements to scheduling techniques are needed to make scheduling practical: depen-

dence information enhancement to improve the precision of signal graphs used for scheduling,

dynamic subschedule embedding to control scheduler execution time in the face of limited depen-

dence information, subgraph-based invocation coalescing to reduce redundant work, and forced

invocation to allow dynamic scheduling within an HSR framework.
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Chapter 4

Scheduling for Parallel Structural

Simulation

The previous chapter has shown how to increase the speed of structural microarchitectural simu-

lators by scheduling concurrent codeblock invocations so as to reduce the number of invocations

required. Further speed improvements may be obtained by scheduling these invocations to exe-

cute concurrently on parallel hardware. The structural and concurrent nature of structural simula-

tion frameworks allows this to be done automatically. This chapter presents efficient scheduling

of concurrency for a parallel structural microarchitectural simulator.

This chapter begins with an explanation of the importance of parallelization and related work

on parallel simulation. It then describe what steps are required to carry out parallelization, and

my approach to parallelization of simulators generated using the Liberty Simulation Environ-

ment, showing how the structure of the model yields information which allows automatic par-

allelization. Next, it classifies the problem of statically scheduling simulation tasks as a variant

of multiprocessor task scheduling and discuss related work from that domain. Finally, it intro-

duced new heuristics for solving the multiprocessor task scheduling problem with precedence

constraints, resource constraints, and sequence dependence and evaluate these heuristics on par-

allel LSE simulators running on a traditional multiprocessor system, a chip multiprocessor, and a

simultaneous multithreading processor.
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4.1 Motivation: Why Parallel Simulation?

Before parallelizing any application, one should determine whether parallelization is worthwhile.

Microarchitectural simulation is commonly used in situations where there are fewer available

processors than jobs to be run, thus throughput is the main consideration. In such situations, job-

level parallelization (running independent simulations in parallel) is generally thought to offer

more throughput than parallelization of the simulator itself, as parallelization of a single appli-

cation is rarely perfectly efficient. However, this argument fails to take into account three valid

reasons for parallelizing a simulator:

• At times, latency matters more than throughput. For example, when a new microarchi-

tectural technique is being evaluated, a common methodology is to run a small number

of simulations, make a design change, and then simulate again. In such situations, any

reduction in latency improves productivity.

• Parallelization may increase the problem size that can be effectively tackled. Scientific

codes have sometimes used message-passing-based parallelization to work on data sets

larger than physical memory on a single machine. While this dissertation does not inves-

tigate a message-passing model of parallelization, the principle also holds for caches in

shared-memory multiprocessors: parallelization can increase the effective cache size or

decrease the per-processor working set size, and as shown later in this chapter, can lead to

superlinear speedups.

• The assumption that independent jobs have independent performance may not be valid

when hardware resources are shared. Current trends in processor design emphasize mul-

tithreading cores and multicore processors. These cores typically share some resources

such as execution units or caches. When they do, independent jobs may not run more ef-

ficiently than a parallelized job; indeed, situations where executing independent jobs on

a multicore processor lead to profound effects on each job’s execution time have been

demonstrated[13].

Because the systems which microarchitects build are themselves parallel, assuming that sim-

ulators of these systems will exhibit parallelism is reasonable. However, extracting and exploiting
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this parallelism presents challenges. Parallelization is a non-trivial task, usually requiring much

manual programmer effort. Thus automatic parallelization of the simulator is a worthy goal. This

goal has been pursued for decades, but success has been elusive except for highly-regular and

analyzable codes[108]. Continuing in this tradition of specialized solutions for a given class of

codes, I will show that the structure inherent in a structural model provides a rich source of infor-

mation about the parallelism available in the simulator which can be exploited to automatically

generate a parallel simulator and obtain improvements in simulator speed.

4.2 Related Work: Parallel Simulation

The related work on parallel simulation falls into three categories: distributed discrete-event sim-

ulation, parallel microarchitectural simulation, parallel sampled simulation, and parallel structural

simulation frameworks. This section describes each of these fields.

4.2.1 Distributed Discrete-Event Simulation

The phrase “parallel simulation” commonly refers to a distributed discrete event simulation, or

techniques for parallelizing simulators which use the Discrete Event model of computation. There

is an extensive literature on parallel and distributed discrete-event simulation, only some of which

can be discussed here. Overviews can be found in [30] and [27].

Distributed DE simulators typically execute in a very dynamic fashion, with invocations of

codeblocks being driven by events. Different processors may be executing different timesteps;

good performance depends upon concurrent execution of events occurring at different simulated

times. The main problems to be solved are how to coordinate concurrent execution so that causal-

ity is not violated and how to properly load-balance the work across processors when the activity

factors of the events are not known and change dynamically.

The simplest distributed simulation algorithms are synchronous. They use global event

queues and a single global clock. Individual processors remove and insert tasks from the global

queue[87]. This approach provides implicit load balancing and time agreement, but serializes ex-

ecution at the event queue manipulations, generally leading to poor performance. Work stealing
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algorithms[90] have been proposed which maintain per-processor event queues, but global clocks

are still required.

Asynchronous algorithms break this serial bottleneck by maintaining separate event queues

and clocks in each processor. This implies, however, that mechanisms are needed to perform

load balancing and synchronization of the clocks. Load balancing is carried out by assigning

codeblocks statically to specific processors; how this is done is rarely described outside of specific

domains such as logic simulation. The focus of most research has been better ways to perform

clock synchronization.

Clock synchronization

The first asynchronous algorithms were known as conservative methods; the most well-known

method is that of Chandy and Misra[14] and Bryant[11]. Codeblocks are assigned to processors

by an unspecified partitioning algorithm. Each codeblock maintains its own clock.

Codeblocks send messages tagged with time values to each other. Messages are unbuffered

and are thus sent via rendezvous synchronization: the sender and the receiver must both be wait-

ing to perform the communication for it to occur. A codeblock waits to send an output message

if it has one to send; it waits to receive an input message if the last time value received on that

input is equal to the current local clock. The local clock is always the minimum across all signals

of the last time value sent or received.

Deadlock situations can arise due to reconvergent fanout. To prevent these deadlocks, code-

blocks must send null messages whenever they can deduce that they will send no output message

for some amount of time. Chandy and Misra[15] later describe a deadlock handling mechanism

which does not require null messages. The simulation is run until deadlock occurs and then a

recovery phase is initiated to update local clocks.

Optimistic asynchronous algorithms were introduced by Jefferson[45]. His method, called

virtual time, introduces input and output buffers and allows local clocks for each codeblock

to speculatively run ahead of the messages which have been received. If a message is received

which has a timestamp before the local clock, the codeblock must recover from its misspeculation

by rolling back its state and sending anti-messages to cancel the messages which it has already
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sent. On receipt of an anti-message, a codeblock may need to perform rollback and send more

anti-messages.

No global detection mechanism or recovery phase is required, but there is a need to purge old

rollback state which is no longer required. A concurrent process is used to compute a conservative

global virtual time which indicates what state can be purged. This same mechanism can be

used for safely performing I/O or checkpointing system state. Note that rollback may require

significant user effort to implement if large-granularity codeblocks are used. For this reason,

optimistic techniques seem particularly ill-suited to microarchitectural simulation.

Effectiveness of parallel logic simulation

Soulé and Blank[90] look at several different parallel Discrete Event algorithms for logic simula-

tion on shared memory hosts. They report that the synchronous algorithm performs particularly

poorly due to overhead in accessing the event queue, giving a speedup of only about 2 for eight

processors. A distributed event queue with work stealing performs better, yielding speedup of up

to 9 for 15 processors. Parallelization of statically scheduled simulation gives linear speedup for

some circuits, but not for others; strangely, they argue that because the circuits for which static

parallelization performed the best were those for which it should have performed the worst due to

activity factors, the technique should not be used. How partitioning is done is not described. Fi-

nally, they attempt a pipeline parallelization which works only if the circuit is acyclic and multiple

input vectors are to be simulated, but which gives speedup of up to 10.5 for 15 processors.

Soulé and Gupta[91] measured the performance impact of the Chandy-Misra-Bryant algo-

rithm for distributed logic simulation. They found that while there is much parallelism available

to the simulator in logic circuits (from 42 to 200 gates could fire in parallel on average for their

benchmark circuits) and the activity factors are quite low (1% to 3%), the Chandy-Misra-Bryant

algorithm does not provide a great deal of speedup compared to uniprocessor simulation: less

than 2 for eight processors. Their explanation for this poor result is that the number of gate

evaluations increases, deadlock resolution takes a significant amount of time, and there is greater

overhead in the distributed algorithm due to complex time checking on logic gate evaluation.

101



Partitioning for parallel logic simulation

Much research has been done on partitioning for parallel logic simulation. While the overall goal

of partitioning has been to perform load-balancing, different techniques have tried to achieve this

using a wide variety of other goals. These goals have included improvement in predicted load

balance, improvement in concurrency, reduction of communication, formation of pipelines, re-

duction in null messages for conservative algorithms, and reduction in rollbacks for optimistic

algorithms. Many different partitioning techniques have been reported; a sample of such tech-

niques are here presented in approximately chronological order:

string partitioning[62, 52] Beginning at an input, find a string of connected gates which reach

a primary output. Gates in a string must have exactly one fanin and one fanout in the

string. Map the strings to processors randomly, then assign unassigned gates to strings so

as to equalize the number of gates in a processor, trying to ensure that no more than one

fanout of a particular gate is in any processor. The goal is to maximize concurrency in a

synchronous distributed simulator by spreading fanouts across processors.

string partitioning with gate delays[3] Form linear strings as in string partitioning and assign

them in round-robin fashion to processors. Assign remaining gates to processors such that

gates assigned to the same processor have different delays from sibling gates at fanout

points. Finally, move strings between processors until the difference in the number of gates

assigned to each processor is lower than some tolerance in order to load balance. The goal

is to reduce excess communication caused during string partitioning.

levelized[88] Calculate the tlevel1 and assign gates with the same tlevel to the same processor. If

there are more levels than processors, assign contiguous levels to the same processor. This

creates a pipelined partitioning.

depth-first/breadth-first[73, 48] Perform a depth-first or breadth-first search on the gate-level

netlist starting at either input or output gates and assign contiguous gates in the order in

which they were encountered in the search to a processor. Also known as input/output

partitioning. The goal is to reduce communication.
1As defined in Section 3.2: the longest path from a primary input to the gate

102



greedy levelized[73] Calculate the tlevel of each gate. In nondecreasing tlevel order, assign gates

to the processor which minimizes a cost function which takes into account computation

time and communication costs. As cost can be calculated incrementally, the algorithm is

quite efficient. This is much like list scheduling, which will be discussed in much more de-

tail in Section 4.4.2. The goal is to reduce communication for non-selective-trace compiled

logic simulation.

annealing[73, 48] Form an initial partition using any technique you like. Then try to swap gates

between processors, accepting swaps which cause a reduction in a cost function as well as

some which increase cost with ever-decreasing probability. Different authors use different

cost functions which may take into account computation time, communication costs, and

null messages. The goal is set by the cost function [73] reports that annealing is not as

effective as greedy levelized partitioning for non-selective-trace compiled logic simulation.

corolla[92] Identify and combine portions of the netlist where there is reconvergent fanout into

non-overlapped subgraphs, called corollas. Attach gates which cannot be combined to

the corolla which is the shortest path distance away. Assign corollas onto processors with

an iterative clustering technique based upon the number of choices available for a given

corolla to cluster; for example, if a corolla connects to one other corolla, cluster these two

preferentially. The goal is to reduce rollbacks in optimistic algorithms.

concurrency-preserving[50] Break the netlist into disjoint subgraphs based upon a depth-first

search from the input signals. Number each gate in such a way that all gates in a subgraph

have consecutive numbers and heavily weighted edges between subgraphs have close num-

bers; a heuristic for the traveling salesman problem is used to do this. Assign gates with

consecutive numbers into the same processor in such a way as to balance the total load.

The goal is to reduce rollbacks in optimistic algorithms by load-balancing instantaneous

workload.

multilevel[94] First, iteratively cluster connected gates in a step called coarsening. This attempts

to reduce communication costs. Second, partition the clusters among processors taking into

account only load balance. Third, break apart clusters iteratively and move individual gates
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or groups of gates across processors if this improves load balance and communication. The

goal is to balance load, maximize concurrency, and reduce communication for optimistic

algorithms.

4.2.2 Parallel Microarchitectural Simulation

Several efforts to parallelize microarchitectural simulators have been reported. All these efforts

involve manual parallelization: the writer or user of the simulator has decomposed the simulator

into tasks running on different processors and synchronized explicitly between the tasks. Decom-

position is carried out in a top-down fashion; the most common decomposition has been to assign

the simulation of each simulated processor or processor core to a host processor and either assign

the simulation of the memory hierarchy to yet another host processor or simulate memory using

a distributed discrete event simulator.

The Wisconsin Wind Tunnel II[67] uses a combination of binary instrumentation, direct ex-

ecution, and parallel discrete event simulation on a shared-memory host to accelerate simulation

of multiprocessors. The target binaries are instrumented to calculate the execution time of basic

blocks and to call the memory simulator for each load or store. The memory accesses are handled

by a parallel discrete event simulator. Speedups of 4.1 to 5.4 on an eight-way host are achieved;

these speeds correspond to an impressive 25 host machine cycles per target machine cycle. The

system is very closely tied to simulating multiprocessors and all parallelization was done explic-

itly. Falsafi et al.[25] analyzed the the predecessor Wisconsin Wind Tunnel System, which used a

distributed memory host, and concluded that parallel simulation is more cost-effective than job-

level parallelization on a network of workstations when a large model (16 or more processors) is

to be simulated.

Chidester and George[17] create a parallel multiprocessor simulator for a message-passing

multiprocessor by running a modified copy of SimpleScalar on each processor. Barr et al.[6]

create parallel multiprocessor simulators in the Asim structural modeling system by defining new

port types and changing the models to use these types. While the addition of framework support

is similar in spirit to the method presented here, it still requires manual processor assignment

and model changes to use the new port types. George and Cook[33] create a parallel architec-
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ture simulator hand-parallelized at the granularity of individual processor cores using the Linda

shared-tuple-space programming model.

Note also that both [17] and [6] use asynchronous algorithms; processors are allowed to exe-

cute independently without agreeing on time until reaching a point where synchronization must

occur; in both cases this is when a memory access reaches the first non-processor-private portion

of the simulated memory hierarchy. While this speeds up simulation considerably as synchro-

nization points are few when there are private caches, it relies upon building knowledge of when

synchronization is necessary into the model. Invalidation messages can also cause problems;

these messages must travel from the shared portion of the hierarchy into the private portions,

which may have simulated further into the future than the message. Barr does not deal with

this situation, essentially using an optimistic algorithm without any rollback. Simulators built in

this fashion may not be suitable for simulating workloads where data is shared between simu-

lated processors. Chidester uses null messages, at a cost of lower speedup due to more frequent

synchronizations.

All of the aforementioned efforts have required the user or developer to manually parallelize

the simulator. Not only is this time-consuming, but the difficulty of doing so limits the ability of

the simulator to adapt to changes in the number of available processors. For example, a simulator

of an eight-processor system parallelized for an eight processor host would be unable to take

full advantage of a twelve processor host. Likewise, the simulator would not run efficiently on a

system with fewer host processors. Thus automatic techniques for simulator parallelization are

desirable.

4.2.3 Parallel Sampled Simulation

Another approach to parallelizing microarchitectural simulation has been to simulate different

portions of the dynamic instruction stream in parallel. Nguyen et al.[69] divides an instruction

trace into equal-length chunks, feeds each chunk into a detailed simulator, and combines the

results for each chunk. The detailed simulation of each chunk proceeds in parallel. Because the

simulation of each chunk begins with “cold” microarchitectural state, the chunks are overlapped

by a fixed number of instructions; these instructions are used to warm up the later chunk.
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Girbal, et al.[34] apply a similar concept in the DiST system to support execution-driven sim-

ulators; such simulators are able to simulate wrong-path execution and are thus more accurate.

They observe that the warmup period required for each chunk varies and is difficult to predict

a priori. They propose that chunks continue simulating instructions after nominally finishing;

the statistics (e.g. cycles per instruction or cache miss rate) for these additional instructions are

compared on-line to those obtained by simulating the first instructions of the following chunk.

Once the statistics for the two simulations converge, the previous chunk may terminate simula-

tion. Thus this technique automatically determines the warmup required by a particular chunk,

improving accuracy for those requiring long warmup periods and improving simulation time for

those that do not.

Others have suggested using architectural checkpoints to support simulation of samples of

execution as parallel jobs; such efforts include those of Lauterbach[58] and TurboSMARTS[107].

Such techniques could also be used to provide initial state for simulating chunks in the DiST

system.

All of these techniques create job-level parallelism. This parallelization is manual, though

far easier to perform than the parallelizations in Section4.2.2. The automatic parallelization con-

sidered in this dissertation is complementary to parallel sampled simulation. As Section 4.1

explained, job-level parallelism might not always provide the best throughput for some systems,

particularly multi-threaded or multicore processors. Future computer systems are likely to have

a hierarchy of parallelism; a typical scenario might be a cluster of multicore processors. In such

a situation, the ideal parallelization could be to have each separate processor handling a different

chunk or sample, but the cores within each processor cooperating through an automatic paral-

lelization of the simulator.

4.2.4 Parallel Structural Simulation Frameworks

Krishnaswamy et al.[53] have successfully parallelized VHDL simulators by using a static sched-

uling approach. Unlike the dynamic approach usually taken in distributed discrete-event simula-

tion, they compile VHDL code into a statically-scheduled parallel program for a shared memory

multiprocessor. Compilation is based upon the techniques of the VeriSUIF system[29]. Code-
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blocks extracted from the VHDL code are used as the basic tasks which are then scheduled onto

individual processors. Synchronization operations are inserted as needed for notification and

mutual exclusion.

Their first attempt uses list scheduling (see Section 4.4.2) with the Highest-Level-First heuris-

tic, but they find that locking overhead causes parallel simulation with four processors to be 7.8 to

17.6 times slower than uniprocessor simulation. They add a pass after list scheduling to rearrange

the schedule to avoid inserting locks and elide some notifications which are not needed due to

dataflow between processors. While these improve performance for the three circuits considered,

parallel simulation is still 6.9 to 17 times slower.

They then introduce a partitioning algorithm based upon fanin cones which allows work to

be duplicated on different processors so that communication may be reduced. They note that if a

partitioning can be found which minimizes the largest amount of work assigned to any processor,

that partitioning will have maximal load balance. They then show that finding such a partition is

an NP-complete problem and propose a heuristic for performing the minimization. This heuristic

starts from an initial seed cone for each processor and assigns the remaining cones greedily to

each processor in decreasing order of their overlap with already scheduled tasks on the processor.

After forming this assignment of cones to processors they perform a phase of random attempts

to swap cones to improve workload. They are able to achieve speedup for thirteen gate-level

circuits, with speedups ranging from 1.09 to 2.75 for four processors.

The HASE structural simulation framework[19] is parallelized by design using a synchronous

strategy. A centralized work distributor assigns the handling of events occurring at the same time

to multiple processors and then waits for all of the processor to complete their assigned work

before moving to the next group of events. This results in very serial execution; the only oppor-

tunities for parallel execution come when two codeblocks must run at the same delta timestep.

Experiments on a highly parallel 256-processor Cray T3D yielded simulation speed not signifi-

cantly better than a single processor workstation. This is because of the extreme serialization of

execution, as well as the overhead of a centralized work distributor.
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4.3 Providing a Parallel Microarchitectural Simulator

Parallelization of a structural microarchitectural simulator requires similar steps to those that

would be taken in order to parallelize any application. This section discusses the problems that

must be solved in order to parallelize structural microarchitectural simulators, as well as termi-

nology used in this chapter.

4.3.1 Steps of Parallelization

Parallelization has four basic steps:

1. Decomposing the work of the application into tasks which will run concurrently.

2. Scheduling tasks onto processors.

3. Inserting synchronization mechanisms to provide communication and mutual exclusion as

necessary.

4. Reorganizing the layout of data to match the scheduling. This may be required in systems

without global address spaces or it may be desirable in order to improve the locality of

references and thus cache behavior.

Achieving performance improvement and scalability as the number of processors increases

depends upon maximizing the utilization of the processors. However, doing so requires an un-

derstanding of how data is accessed and organized. Thus another aspect of parallelization is

understanding the dataflow internal to the application. Task decompositions or schedules which

require large amounts of synchronization through communication or mutual exclusion may lead

to large amounts of overhead to perform synchronization operations as well as processors idling

while waiting for each other. Either outcome results in a loss of performance.

Task formation may be directed by the data structures or control flow of the program. Ex-

amples of the former approach abound in scientific code; task decomposition commonly forms

tasks based upon partitioning a data structure such as a matrix. The latter approach is taken more

frequently in simulation systems; each invocation of a codeblock is considered to be a separate

task.
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Once the task decomposition has been decided, the tasks need to be scheduled onto proces-

sors. This may be done dynamically or statically. Dynamic scheduling has the advantage of

implicitly balancing load between the processors at runtime: only if there is no work available to

be done do processors remain idle. A great deal of synchronization overhead is usually necessary

to implement such a scheme. Static scheduling does not have this overhead, but requires careful

implementation to maintain high processor utilization in the presence of varying or unknown task

execution times or communication costs. Static scheduling may use either a priori knowledge of

task execution times and communication costs or estimates of these factors.

Synchronization mechanisms include both communication primitives and mutual-exclusion

primitives. Transfer of data between tasks executing on different processors must use commu-

nication primitives, which may simply be notifications that data is available. If exclusive access

to a resource or memory location is required, mutual-exclusion primitives must be inserted. Two

invocations which require mutual-exclusion primitives are termed conflicting invocations.

Finally, reorganizing the layout of data so that data used by tasks assigned to the same pro-

cessor are kept together may be desirable. This can reduce false sharing[96] when caches are

present. For parallel systems without a shared-memory programming model, this step may be

required.

These parallelization steps may be performed by hand or by tools. For structural simula-

tion frameworks, where the simulator code is generated by tools, parallelization performed by

the tools is clearly desirable. However, the user could provide guidance to the tools: for exam-

ple, by pre-assigning tasks to processors. As noted before, task decomposition for simulation is

commonly based upon codeblock invocations.

4.3.2 Terminology and Parallel Systems

The reader may have noticed that the terms threads and processes have heretofore been avoided

while describing parallelization. The reason for this was that these terms often convey certain

implications about the programming model supplied by a parallel system, with threads often

implying a shared address space and processes not. Some parallel systems call each task a thread.

Further confusing the situation, some structural simulation frameworks call codeblocks logical
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processes. Others, such as VHDL, even allow programmed suspension of a logical process (e.g.

waiting for a signal to become true), which actually creates multiple codeblocks for a single

logical process.

This chapter continues to use the term codeblock as it was used in Chapters 2 and 3. The

independent units of work to be scheduled will be known as tasks. A thread is defined as a

portion of the parallel simulation running on a particular processor; it consists of the code to

invoke a number of tasks as well as overhead for managing their scheduling and synchronization

as well as the run-time state of the tasks. A processor executes only a single thread unless it is a

multithreading processor.

Parallel systems are classified based upon their programming model. Programming models

may be either shared-memory or message-passing. In shared-memory systems, threads may share

portions (or all) of their address space and communicate implicitly through loads and stores.

Synchronization mechanisms include barriers, locks to enforce mutual exclusion, and notification

primitives to inform a thread that data has become available to be read in the shared memory

space. In message-passing systems threads do not share an address space and communicate

explicitly through send and receive primitives. Locks are not necessary as any resource requiring

mutual exclusion must be in its own thread in such a model, but barriers are still provided.

This chapter also classifies parallel systems based upon the parallel hardware. Four kinds of

systems are considered here: A system may be a distributed system, with physically independent

computing nodes containing processors and memories, such as a network of workstations[4]. The

system may be a traditional multiprocessor (MP), with individual processors tightly coupled

in a single case or rack by some sort of communication network or memory system. A paral-

lel system may also be a chip multiprocessor (CMP)[70], where multiple processor cores are

combined on a single chip and share some portion of the memory hierarchy. Finally, the system

may be a simultaneous multithreading processor (SMT)[97], where instructions from multi-

ple threads can be simultaneously executed in a processor core. Note that these systems may be

hierarchically composed: the nodes of a distributed system could be traditional multiprocessors

made up of chip multiprocessors with simultaneous multithreading cores.
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4.3.3 Parallelization in the Liberty Simulation Environment

The parallelization of simulators in the Liberty Simulation Environment was previously described

in [76], and some figures and discussion in this section are taken from that work. The goals in

parallelizing simulators generated through the Liberty Simulation Environment are to:

• Improve simulation speed.

• Not require changes to the model. Ideally, the user should be required to state no more than

parameters of the host architecture such as the number of processors.

To meet both these goals, the framework must exploit structural information present in the model.

Parallelizing an LSE simulator is done by parallelizing the main loop of simulation. That loop

was shown in Figure 2.2; it is duplicated in Figure 4.1(a). While in some systems parallelization

such that different cycles are computed in parallel may be possible, in LSE, with black box

codeblocks that may access state as they wish, such an approach is infeasible. Instead, the form

of parallelization is that the main loop is duplicated, and individual codeblock invocations are

assigned to different threads. Barriers are inserted to separate the steps of execution described in

Section 2.1.3. This is shown in Figure 4.1(b).

between−cycle

FINISH
end−of−cycle

within−cycle

Main Loop
Simulation

INIT

(a) Uniprocessor

INIT

between−cycle

FINISH

Main Loop
Simulation

within−cycle

end−of−cycle

within−cycle

end−of−cycle

barrier

barrier

barrier

(b) Parallel

Figure 4.1: The simulation loop

This parallelization effort assumes a shared memory model. This model was chosen because

LSE is not a “pure” structural system: the user is able to share state in many ways between code-

blocks and instances. Removing the shared memory space inherent in the uniprocessor version

would require extensive changes to many user models.
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This automatic parallelization of LSE simulators is quite similar in style to that of VHDL sim-

ulators performed by [53], though the mechanisms used are quite different. Parallelization of LSE

appears to be the first effort to parallelize simulators which use the Heterogeneous Synchronous

Reactive model of computation.

Referring back to the steps of parallelization from Section 4.3.1, the following actions are

taken as parallel simulators are generated:

Task decomposition Individual codeblock invocations within a clock cycle are considered

tasks. The uniprocessor schedule of invocations is used to form a directed acyclic graph (DAG)

of tasks. There is an edge between two tasks if the source invocation is intended to generate a

signal which the destination invocation may read in order to generate an output and the destina-

tion invocation is after the source invocation in the uniprocessor schedule. In addition, there is

an edge from any invocation which may generate a particular signal value to the last invocation

which may do so; this guarantees that the final value of the signal will be known at a particular

point in the schedule and allows some reduction in the locks which will be required. Separate task

graphs are created and scheduled for the within-cycle and end-of-cycle steps of execution. Note

that all codeblocks and their dependences are visible to the framework as part of the structure

of the connection graph or dependence annotations made by the user to enhance uniprocessor

scheduling.

Embedded dynamic subschedules are treated as a single task and are not parallelized. Fur-

thermore, because they typically touch many signals and state, they are treated as serial portions

of the schedule and no other tasks may run concurrently with them. Extending the parallelization

to dynamic subschedules is deferred to future work.

Scheduling The distributed discrete-event simulation techniques presented in the previous sec-

tion are not particularly appropriate for the parallelization of LSE simulators due to their dy-

namic nature. As shown in the last chapter, static partitioned scheduling is preferred to dynamic

scheduling in the uniprocessor case as it generally reduces the number of codeblock invocations

required. The additional overhead of selective-trace techniques was found to be detrimental to

performance despite further reductions in invocations; dynamic scheduling across threads would
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require even greater overhead. Furthermore, the very fine task granularity would lead to even

more overhead[90]. As a result, a static approach to scheduling is used.

How should codeblock invocations be divided statically between threads? There must be

tradeoffs made among load balance, communication costs, the critical path of computation, and

cache effects. This is essentially a problem of multiprocessor task scheduling, where the tasks

are individual codeblock invocations. The scheduling problem is the core problem which needs

to be solved, and is addressed in more detail in Section 4.4.

Synchronization Mechanisms The barriers which are required to separate steps of execution

have already been mentioned. Binary semaphores are used in cross-thread communication to

indicate that a signal value which is produced in one thread is available for use by another thread.

Locks are used to ensure mutual exclusion when codeblocks may share state or access to the same

location in a non-shared fashion. Note that the user is not responsible for insertion of any of these

mechanisms; the framework does that automatically.

Potential state sharing is quite common and arises because:

• All the flow control signals for a port instance are “packed” into the same memory word.

• State may be shared by codeblocks within an instance.

• The user may define “runtime variables” and share them.

• The user may make stateful library calls such as I/O or instruction-set emulation.

The framework assumes that state sharing for the first two reasons will always occur. Sharing of

runtime variables could be assumed to occur as well, but has not been in the current implemen-

tation. The final source of sharing cannot be analyzed directly by the framework because of the

black-box nature of codeblocks and the library itself. As a result, the user must supply some help

to the framework in the form of conflict constraints which say simply that two codeblocks must

be mutually exclusive. These constraints are maintained in a simple text file whose name is given

as a parameter to the model. This constraint file is the only way in which the goal of “no user

changes” is not met, and in practice is quite simple to maintain.
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Avoiding the insertion of locks where they are not required is important while inserting syn-

chronization logic. A lock elision algorithm is used to remove such locks. This algorithm detects

when two conflicting tasks scheduled on different threads are serialized because of communica-

tion between the threads and thus do not need locks. During scheduling the algorithm maintains

a list of incoming cross-thread communication arcs for each thread sorted by their arrival time.

Each arc has an associated list of times to which each thread must have advanced before the com-

munication began. A binary search of this list allows a quick test to see whether a serializing

communication has occurred. This test requires O(log V ) time to perform.

Data Layout Some effort is made to place thread-private framework variables together to both

increase spatial locality and reduce false sharing between threads. The main port status data struc-

ture is also organized to reduce false sharing. The impact of these minimal layout optimizations

is not evaluated in this work.

4.4 The Scheduling Problem

Scheduling is a critical step; a poor schedule leads to processors remaining idle while waiting

to receive data or waiting for exclusive access to a resource. Furthermore, the schedule affects

locality of references and thus the cache behavior in the parallel systems considered in this dis-

sertation, further affecting performance.

4.4.1 Static Scheduling for Structural Simulation

In this dissertation only static scheduling is considered. Dynamic scheduling of many fine-

grained codeblocks seems likely to result in poor performance due to the overhead of accessing

common work queues. These overheads would be at least as large as those shown for dynamic

scheduling in the previous chapter and quite possibly much larger as synchronization would be

required. Dynamic scheduling is also likely to provide poor cache locality.

The static scheduling problem is an instance of the multiprocessor task scheduling problem.

There have been many variants of this problem studied in the literature. Table 4.1 gives the
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Variant Class Simulator Parallelization
Objective function Makespan
Precedence constraints Yes (computational dependence)
Resource constraints 0-1 (mutual exclusion)
Communication costs Yes
Sequence-dependence Yes (caching)
Cost variability Yes
Granularity Fine (100s of instructions)
Scale over 10,000 tasks

Table 4.1: Variants of the multiprocessor task scheduling problem

principal dimensions used to classify variants as well as the coordinates of structural simulator

parallelization within this classification scheme. The individual dimensions of the problem are:

Objective function The scheduler’s goal is to minimize the time required to evaluate a single

timestep. This is known in the literature as the makespan.

Precedence constraints Some tasks must follow other tasks because of computational depen-

dences.

Resource constraints Tasks may require resources in addition to processor time. The sum of

the resource requirements for tasks executing at any instant in time must not exceed the

resources available. In simulator parallelization, these constraints arise because some tasks

must run in a mutually exclusive fashion with each other. The locks which are used to en-

sure mutual exclusion can be modeled as resources which are either not used or completely

used by a single task; this usage pattern is known as a 0-1 resource constraint.

Communication costs The time it takes to transfer data between tasks running on different pro-

cessors is non-negligible.

Sequence dependence The time it takes to execute a task depends upon the schedule. Sequence-

dependence arises because of cache effects, which are dependent upon where and in what

order tasks run.

Cost variability The scheduling algorithm does not know with certainty how long a task will

take to run. As a result, schedules are not guaranteed to execute exactly as planned and

synchronization operations must be inserted.
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Granularity The granularity of tasks can be quite small; measurements taken using one model

(the CMP02 model from Section 4.6) suggest that most codeblock invocations execute a

few hundred instructions, though a few are up to three orders of magnitude larger.

Scale There are many codeblock invocations to be scheduled; one model evaluated in this chapter

has over 10,000.

The remainder of this section describes related work in task scheduling which shares some of

the characteristics of structural simulator parallelization. However, no previous work has consid-

ered a problem with all of these characteristics.

4.4.2 Related Work: Precedence Constraints and List Scheduling

The simplest problem is to minimize makespan while meeting precedence constraints. The prob-

lem was originally introduced by Hu[41]: find a schedule which will minimize the time it takes

to complete all tasks when the tasks have precedence constraints forming a directed acyclic graph

(DAG), known as the task graph. An algorithm for finding the optimal solution was demon-

strated by Ramamoorthy et al.[81], but has exponential complexity. The problem has been shown

to be NP-complete by Lenstra[61]. As a result, the focus of most research has been on finding

good heuristics.

The most well-known scheduling heuristic for minimizing makespan while meeting prece-

dence constraints is list scheduling, originally introduced by Hu in 1961[41]. A general form

of the list scheduling algorithm is given in Figure 4.2. A ready list of tasks which have not yet

been scheduled and whose predecessors have already been scheduled is maintained. Tasks are

selected according to some priority function from the ready list and assigned to a processor and

starting time combination such that the task executes after all of its predecessors have finished

and the assigned processor is not busy at that time. A particular combination of starting time and

processor is called a scheduling slot. Note that if the priority function used at the line marked

1 is such that it produces a topological sort of the graph, the ready list can be initialized with all

tasks and need not be incrementally maintained (thus removing the loop marked 3).

There are many variants of list scheduling; these variants can be classified along two dimen-

sions corresponding to the lines marked 1 and 2 in Figure 4.2. The dimensions are:
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LIST-SCHEDULE(D,L, T, P )
� D is the DAG of tasks to schedule
� Li is the time it takes to run (cost of) task i
� Ti will be the assigned start time of task i
� Pi will be the assigned processor of task i

� Form predecessor counts and initial ready list
Ci ← (number of predecessors of i),∀i ∈ D
R← {i|Ci = 0}

while R 6= ∅
1 do Select a task i from R according to some priority

R← R \ i
2 Assign task i to some processor Pi at time Ti such that

Ti is after the finish time of each predecessor of i
and Pi is not already busy during the interval [Ti, Ti + Li)

3 foreach u in successors of i
do Cu ← Cu − 1

if Cu = 0
then R← R ∪ u

Figure 4.2: List scheduling

Task Priority - The original proposal calculated a metric later called level which was the largest

sum of task costs along all paths from a task’s vertex to a sink vertex in the DAG. Tasks

were selected in descending order of level, therefore the strategy is known as Highest-

Level First (HLF). A similar strategy calculates the largest sum of task costs along a path

from a source vertex to a given task vertex. When the priority is set in ascending order of

this metric, the strategy is called Smallest Co-Level First (SCF)[2]. Many other priority

functions are possible[55]. In the literature, HLF is often called HLFET where ET signifies

that estimated task costs are used.

Processor/Time Assignment - Greedy strategies are very common: the scheduling slot that al-

lows the task to run earliest is chosen. There are two methods used to implement these

strategies. The first, used by Hu[41], is to maintain a global clock in a loop outside the

while loop. A task is then not considered ready until the timestep in which all of its pre-

decessors have finished execution. The other method is to keep track of the intervals in

which each processor is used and insert the ready task into the earliest available “hole” in
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the schedule. The difference in methods is subtle, but does result in different schedules, as

the order in which tasks are considered is different.

Adam et al.[2] evaluate several priority schemes using random task graphs of up to 200 vertices

as well as task graphs derived from FORTRAN programs. They conclude that HLF significantly

outperforms other priority schemes and is no more than 4.4 percent from optimal except in one

case. They also look at the effects of run-time task cost variations and again find that HLF

outperforms other schemes.

The execution time requirements of list scheduling depend upon the priority function and

the assignment strategy. The simplest schemes such as HLF without trying to fill in holes are

Θ(E + PV ) where P is the number of processors and V and E are respectively the number of

tasks and dependence edges between them. If attempts are made to fill holes, a straightforward

implementation of HLF has execution time O(E + PV 2).

An interesting characteristic of list scheduling is that a worst case bound can be given on its

behavior relative to an optimal schedule. Graham[37] shows that list scheduling yields a schedule

whose makespan is no more than a constant factor times the optimal makespan:

ωlist

ωopt
≤ 2− 1

p

where ω is the makespan and p is the number of processors.

4.4.3 Related Work: Communication Costs

Adding interprocessor communication costs to precedence constraints is a common variant of the

multiprocessor scheduling problem and is considered very appropriate for distributed systems or

message-passing programming models. A good survey of techniques for handling communica-

tion costs with precedence constraints is given by Kwok[55].

For shared-memory programming models and their typical implementation systems, com-

munication costs are usually not modeled directly. This is because scheduling for these costs is

typically based upon an assumption that data will be “pushed” towards consumer tasks instead

of being “pulled” by them, allowing the processor where the consumer task will run to work on

some other task while the data is in flight. For a shared memory system, though, delaying the
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consumer until the data will arrive is not possible without some sort of prefetching arrangement

because the data does not start movement to the consumer’s processor until the consumer is al-

ready running. However, looking at how communication costs can be handled is still instructive

because, as will be shown later, sequence dependence can be modeled as a communication cost.

There are three general approaches to handling communication costs. The first approach mod-

ifies list scheduling to include these costs. The second tries to cluster tasks before scheduling

them. The final approach duplicates tasks and assigns them to multiple threads so that communi-

cation need not occur. This approach is not considered further because duplication of tasks which

may share state will lead to poor cache behavior as well as a loss of concurrency as the duplicated

tasks must acquire locks.

List-based approaches

List scheduling can be modified to include communication costs. Several ways in which this has

been proposed are described below.

Extended List Scheduling (ELS) Perhaps the simplest way to add communication costs is

called Extended List Scheduling by Hwang et al.[42]. This heuristic is to simply use list schedul-

ing with no communication costs and then add delays to the schedule. This is a static equivalent

of simply using the schedule and allowing synchronization logic to delay tasks until inputs arise

(as is needed anyway if there is variability in task length). They show that this heuristic has poor

theoretical bounds on how poor the schedules can become relative to the optimal schedule with

no communication and use this finding to justify development of a more complex heuristic.

Earliest Assignment Another simple way to incorporate communication costs is given by

Yu[113], who calls it “Heuristic Algorithm D.” This algorithm simply modifies the assignment

step to choose the earliest scheduling slot such that the time is after the finish time of each pre-

decessor of the task plus any required communication cost. The priority function can be any of

those previously mentioned for list scheduling; Yu used HLF.
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Earliest-Time-First (ETF) Hwang et al.[42] present the Earliest-Time-First heuristic. This

heuristic modifies the priority function such that the highest priority ready task is the one which

can start at the earliest time, taking into account what has already been scheduled and communi-

cation costs. Ties are broken by using the level of the tasks. The chosen task is then scheduled

at the earliest time possible. The priority function need only be evaluated as tasks become ready,

so the execution time is O(PV 2). An interesting side effect of this prioritization scheme is that

holes are never introduced in the schedule which would be filled by later assignments.

Mapping Heuristic (MH) El-Rewini and Lewis[22] describe the Mapping Heuristic. This

heuristic uses a ready list which contains events. When all of the predecessors of a task are fin-

ished, a start event is added to the list with no communication delay. When start events are

processed, the processor which minimizes the finish time of the task is chosen, based upon the

communication costs which will delay its start. These costs may depend upon the current state

of the schedule. A finish event is scheduled at that time. When finish events are processed,

start events are generated for any successors which become ready. Events are always handled

in increasing timestamp order, with ties broken by level with a fixed communication cost. MH

provides a low-complexity way to manage a global clock with some ETF-style dynamic repri-

oritization. A strength of MH is its ability to incorporate network routing and contention into

communication costs. The execution time is reported to be O(P 3V 2) when a matrix of com-

munication costs is maintained, though O(E + PV log V ) seems possible when communication

costs are fixed.

Modified Critical Path (MCP) Wu and Gajski[111] retarget the priority function to vertices

which contribute to the critical path through the task graph with the Modified Critical Path

heuristic. The critical path is the path with the highest sum of task costs and communication costs

in the task graph. Vertices which are not on the critical path have some slack in when they could

be scheduled if there were an unbounded supply of processors. The latest time at which a task

can be scheduled without affecting the makespan is known as its As-Late-As-Possible (ALAP)

time. The highest priority task has the smallest ALAP time, with ties resolved by the smallest
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ALAP time of descendant tasks. This priority function allows the ready list to be initialized to all

tasks. The execution time of MCP is O(V 2 log V ).

Mobility-Directed Scheduling (MD) Wu and Gajski[111] also introduce a heuristic called

Mobility-Directed Scheduling. This heuristic uses a metric called relative mobility. Relative

mobility is the difference between the ALAP time and the As-Soon-As-Possible (ASAP) time –

the earliest time a task can start – divided by the cost of the task. This metric is defined dynami-

cally, changing as assignments are made and the communication costs between tasks assigned to

the same processor become zero. Tasks on the critical path have a relative mobility of zero. The

highest priority task has the lowest relative mobility; ties are broken by choosing a task which

has no predecessors in the set of tasks with minimum relative mobility. Tasks are assigned to

the lowest numbered processor which can receive them; the definition of when this can be done

is complex because previously assigned tasks which have slack can be delayed to form a hole

into which the new task can be placed. This is necessary because the ready list is initialized to

all tasks, but the priority function does not select vertices in topological order. The execution

time is O(V 3). Note that this algorithm does not limit the number of processors it uses, so a

post-processing step is necessary to reach a target number of processors.

Dynamic Level Scheduling (DLS) Sih and Lee[85] present Dynamic Level Scheduling. This

heuristic uses a metric called the dynamic level. The dynamic level for each potential assign-

ment of a task to a processor is defined as the difference between the static level (that normally

used for HLF list scheduling) and the earliest time that the task could begin on that processor,

taking into account what has already been scheduled and communication costs. The highest

priority ready task is the one with the highest dynamic level; that task is then assigned to the

appropriate processor and time. This dynamic priority function results in an execution time of

O(PV 2) if communication costs are considered fixed. One advantage of this technique is that it

allows schedule-dependent modeling of communication costs, though this changes the runtime.

When evaluated on random graphs of between 50 and 150 vertices, DLS provides up to 70% im-

provement in makespan over HLF. Note that if the static level is set to zero, DLS becomes ETF.
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Selvakumar and Ram Murthy[83] provide a version of DLS which uses schedule holes and also

schedules the communications networks.

Dynamic Critical Path (DCP) Kwok and Ahmad[54] proposed the Dynamic Critical Path

heuristic. This heuristic is based upon the observation that as scheduling decisions are made, the

critical path changes. DCP works similarly to MD scheduling in that the initial ready list contains

all tasks and assignments may proceed out-of-order with respect to precedence. It differs from

MD in the priority function and the processor selection method. The highest priority task has the

lowest ALAP - ASAP, with ties broken by the lowest ASAP. These metrics are recomputed after

each task assignment, with communication costs between tasks assigned to the same processor

set to zero. Only processors on which predecessors of a task are scheduled plus at most one new

processor are considered; the processor which minimizes the start time of the task plus the start

time of the successor task with the lowest slack is chosen. Furthermore, holes are only created if

there was not a large enough hole for the task already in existence. The execution time is O(V 3).

As with MD scheduling, the number of resulting processors is not limited and a post-processing

step is required to reach a target number of processors.

Clustering approaches

Clustering is another approach to handling communication costs. An algorithm for the generic

approach is given in Figure 4.3. Clustering differs from list-based scheduling in that instead of

iterating over tasks attempting to schedule each one, it tries to group tasks together into clusters

which will be scheduled onto the same processor, iteratively combining these clusters until some

limit is reached. For some algorithms, a schedule for each cluster is incrementally maintained; for

others, a list scheduling pass with processor selection constrained so that clusters remain on the

same processor follows clustering. Several proposed clustering algorithms are described below.

Internalization Sarkar and Hennessy[82] present a clustering heuristic called internalization

which attempts to put tasks along the critical path into the same cluster. They cluster as long as

there are clusters which can be combined which would reduce the critical path length (assuming

list scheduling with HLF priority) on an unbounded number of processors; the two clusters which
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GENERIC-CLUSTERING(D)
� D is the DAG of tasks to schedule

� C is the set of clusters, each of which is a set of tasks
C ← {{i}|i ∈ vertices of D}

while can continue clustering
do Choose two clusters Cj and Ck from C to merge

New cluster Cn ← Cj ∪ Ck

C ← (C \ {Cj , Ck}) ∪ Cn

� Optionally create a schedule for tasks within Cn

return C

Figure 4.3: Clustering

maximize this reduction are chosen at each clustering step. The execution time is reported to be

O(V 2(V + E)). A variant called EZ has also been reported[55] which simply considers edges

in the task graph in descending weight order and combines clusters if the result improves the

critical path length; this variant has execution time O(E(V + E)). To further assign clusters to

processors, they consider tasks from as-yet unassigned clusters in HLF priority order and assign

the corresponding cluster to the processor which results in the smallest completion time given the

current assignments. This step has execution time O(V (V + E)).

Declustering Sih and Lee[86] introduced the declustering technique. This complex algorithm

consists of five steps:

1. Form elementary clusters. Clusters are formed by cutting edges. These edges are selected

by locating branch vertices – vertices in the task graph with multiple outedges. Branch

vertices are considered in increasing static level (the level for HLF list scheduling) order.

Pairs of outedges are considered in decreasing static level of their targets and zero, one, or

two cuts are placed in their fanout so as to minimize the makespan. This step is reported to

take O(V 4) time.

2. Combine elementary clusters hierarchically. The smallest cluster in terms of total execution

time is combined with the cluster with which it has the highest communication bandwidth.
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Ties are resolved in favor of the cluster with the smallest total execution time. Each clus-

tering decision is recorded in order, forming an list of clustering decisions. This is repeated

until only one cluster remains. This step requires O(V 2) time.

3. Decompose the cluster hierarchy. All clusters are initially assigned to one processor. The

cluster decisions are then examined in reverse order. If reversing a decision to combine el-

ementary clusters by shifting the smaller of the clusters which were combined onto another

processor would reduce the schedule height obtained by list scheduling with decreasing

static level used as the priority function, then shift the smaller cluster onto the processor

which decreases the schedule height the most. This step requires O(V 3P ) time.

4. Shift some elementary clusters between processors. This step is not well-described but has

two passes. The first reduces inter-processor communication along the schedule limiting

progression, or the longest chain of dependent tasks through the schedule which does not

have any slack time; the second attempts to move clusters from heavily loaded processors

to lightly-loaded ones. The execution times are not given for this step.

5. Break down elementary clusters. This step attempts to break apart elementary clusters in

situations where the appropriate granularity was less than that of the clusters. This is done

by moving portions of the scheduling limiting progression across processors if doing so

would improve the makespan. The execution time for this step is O(N3P ).

Declustering explicitly schedules communication as requiring time on both the receiving and

sending processors. Even though the description appears to be using a message-passing model

with both send and receive operations, the authors state that declustering is designed for shared-

memory systems. This discrepancy is not explained, but by modeling cache latency as time taken

by the receive operation and scheduling a task to begin at the start of its receive operations,

declustering could be made applicable.

Dominant Sequence Clustering (DSC) Dominant Sequence Clustering, introduced by Yang

and Gerasoulis[112], places tasks on the critical path on the same processor while tracking

changes to the critical path due to clustering decisions which have already been made. An explicit

goal of this work was to produce a low-complexity algorithm.
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DSC uses a technique very like list scheduling. There are two ready lists; the main ready list is

called the free list. The other ready list, the partially free list, contains tasks for which some, but

not all of its predecessors have been examined. The priority of a task in the free list is its ASAP

time minus its ALAP time plus the critical path through the task graph. The priority of a task

in the partially free list is its ASAP time considering only the previously examined predecessors

minus its ALAP time plus the critical path. Ties are broken by choosing the task with the most

outedges in the task graph.

Assignment to clusters is performed by finding a set of predecessor tasks with which the task

can be merged. This is done in such a way as to ensure that the ASAP time will improve. This

step may move predecessor tasks between clusters if this can be done without affecting the ASAP

time of their successors. If no cluster can be found, the task begins a new cluster. The partially

free list is used to deal with certain corner cases that would affect ASAP times for successors of

already-examined tasks.

The restrictions that prevent the ASAP times of the successors of already-examined tasks

from changing imply that ALAP need be calculated only once and ASAP can be re-calculated in-

crementally. This leads to a very efficient algorithm with an execution time of O((V +E) log V ).

In addition, DSC has been proved optimal for certain classes of task graphs. Note, however, that

DSC requires a post-processing step to assign the clusters to the final number of processors.

4.4.4 Related Work: Resource Constraints

Resource constraints are a less commonly studied variant of multiprocessor scheduling. While

various works, e.g. [10, 5, 43], have considered resource constraints without precedence con-

straints, this subsection elaborates only upon those works which have considered both kinds of

constraints.

List scheduling can be used to handle resource constraints by changing the assignment step

to choose the scheduling slot which yields the earliest start time while obeying both the prece-

dence and resource constraints. Garey and Graham[32] show that the makespan will be no more

than a constant factor worse than the optimal, but that constant is, unfortunately, the number of
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processors:
ωlist

ωopt
≤ p

where ω is the makespan and p is the number of processors.

The classic work of Fisher[28] describes microcode scheduling from the standpoint of multi-

processor scheduling with 0-1 resource constraints and advocates the use of list scheduling. He

evaluates a number of list scheduling strategies, including two which form the priority function by

either adding or multiplying the number of tasks which do not require use of a common resource

with a task’s level. These resource-aware strategies do not produce significantly better schedules

for random task graphs; indeed, HLF priority produces near-optimal results. Similar approaches

continue to be widely used for instruction scheduling for superscalar or VLIW processors[56].

Narasimhan and Ramanujam[68] propose a branch-and-bound technique for finding the opti-

mal solution to the resource-constrained scheduling problem with precedence constraints. The

bounds are computed using list scheduling with ALAP time as the priority function. These

bounds are reported to be highly efficient, providing orders of magnitude improvement in schedul-

ing time vs. an integer linear programming solution. The problem sizes considered are not re-

ported, though they appear to be several hundred tasks; how efficient the technique would be on

very large task graphs is unclear

4.4.5 Related Work: Sequence Dependence

Sequence dependence with precedence constraints has been considered in the context of man-

ufacturing process scheduling, where sequence dependence arises from the need to set up new

tools on multi-function machines when assigned tasks are not homogeneous. In these environ-

ments, the objective function is typically tardiness or economic value as objective functions rather

than makespan. Furthermore, setup time depends only upon the last job run on a machine, not

the history of all jobs as cache behavior would. Thus this work is not particularly relevant to the

problem of structural simulator parallelization.

Lu[64] does provide a full integer linear programming formulation for minimization of make-

span in semiconductor manufacturing scheduling. More importantly, however, Lu observes that
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variable communication costs can be used to model setup time, though (s)he does not elaborate

more fully.

4.4.6 Related Work: Clustered Instruction Scheduling

Instruction scheduling for clustered architectures is closely related to task scheduling, although

the relationship is not always acknowledged in such works. For instruction scheduling, individ-

ual instructions are tasks, the task graph is generally called the dataflow graph, instructions are

assigned to clusters instead of processors, and individual basic blocks or traces are scheduled

separately. Clustered instruction scheduling always includes precedence constraints and commu-

nication costs; task costs are fixed and usually fairly uniform. Clustered instruction scheduling

does not always include resource constraints in the normal sense, though it usually supports ex-

clusion constraints – some instruction cannot execute on a certain cluster. Sequence dependence

has not been addressed directly. Several clustered instruction scheduling algorithms have been

proposed.

Bottom-Up Greedy (BUG) The Bottom-Up Greedy algorithm was used in the Bulldog[23]

and Multiflow[63] compilers. The idea is to start at the exit vertices of the dataflow graph and

work backwards in a recursive depth-first fashion, passing back estimates of where an instruction

is likely to be assigned and what effect that would have on the final schedule. These estimates

are based upon the level of instructions in the graph as well as machine limitations preventing

certain instructions from being on certain clusters. Predecessor vertices are considered in de-

creasing level order. Scheduling slot assignments are then made from the top-down as recursive

invocations of the depth-first search complete; the assignment resulting in the lowest estimated

schedule time given previous decisions is used. This algorithm incorporates exclusion constraints

but not resource constraints.

Unified Assign and Schedule (UAS) The Unified Assign and Schedule algorithm, by Özer

et al.[72], is very similar to ETF scheduling: ready tasks are scheduled in increasing order of

the earliest time at which they can be begun taking into account previous scheduling decisions

and data transfers. When more than one choice of cluster is possible, several different strategies
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are considered: a random choice, the cluster with the most predecessor instructions, and the

cluster with the latest completing predecessor. A slight modification which tries to place the

critical path on a single cluster is also evaluated. For several SPECint95[1] and MediaBench[59]),

UAS is shown to be more effective than BUG, with choosing the cluster of the latest completing

predecessor giving the best results. This algorithm does not incorporate resource constraints.

Partial Component Clustering (PCC) Faraboschi et al.[26] introduce Partial Component

Clustering. Components are formed by working backwards through the dataflow graph, choosing

predecessors with the highest level; a component ends when it has reached some threshold size.

Smaller thresholds result in more components and potentially higher communication costs, but

provide more opportunities for parallelism. Components are then assigned to clusters using an

integer linear programming solver to find an assignment that minimizes a function of the load

balancing and communication costs. List scheduling is then performed with constrained assign-

ments, obeying both communication costs and resource constraints. The component assignments

are then iteratively improved by either swapping components or randomly moving a component

if the change improves the results of the list scheduling. They found that PCC outperforms BUG

for nearly all benchmarks.

CARS The CARS algorithm by Kailas et al.[47] uses list scheduling to perform cluster assign-

ment, register allocation, and instruction scheduling. Descending ASAP time minus ALAP time

plus critical path length (i.e, the same function used in DSC) is used as the priority function;

the earliest scheduling slot at which an instruction can be scheduled without violating any con-

straints is chosen during assignment. Resource constraints are handled explicitly, with registers

being treated as resources.

Iterative Binding Lapinski et al.[57] use a modified list scheduling technique to produce clus-

ter assignments without assigning start times. Instructions are considered in increasing ALAP

order (thus providing a topological sort), with ties broken by mobility (ALAP-ASAP), then num-

ber of successors. An instruction is placed onto the cluster which minimizes the weighted sum of

a penalty due to functional unit serialization (thus incorporating resource constraints), the cost of
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data transfer, and a penalty due to bus occupancy. Each of the penalties is computed without per-

forming start time assignment and depends upon external parameters. Afterward, list scheduling

is performed with constrained processor assignments.

Clustering is repeated with several different values of the external parameters and the cluster-

ing resulting in the best resulting schedule is used. In addition, they use an incremental improve-

ment pass which moves single instructions between clusters if the schedule improves is used.

For fairly small instruction dataflow graphs taken from scientific kernels, they show that their

technique results in schedules nearly as good as those produced by PCC.

Convergent Scheduling Lee et al.[60] use a very different approach called convergent schedul-

ing for clustered machines as well as spatial architectures. They treat the assignment of an in-

struction to a scheduling slot as a probabilistic process; an instruction has a certain probability of

being scheduled at a particular time and location. Scheduling is organized as a series of passes

which modify the distribution functions so as to obey precedence constraints (a pass much like

list scheduling), obey resource constraints, or reduce communication costs. After some number

of passes, each instruction is assigned to its most likely time and processor. They show improve-

ments in makespan of up to 14% over UAS and PCC.

4.5 Solving the Multiprocessor Task Scheduling Problem

Parallelization of structural simulators requires a solution to the multiprocessor task scheduling

problem with precedence constraints, resource constraints, sequence dependence, and communi-

cation costs for a large number of fine-grained tasks with variable costs. This particular combina-

tion of characteristics does not appear to have been previously studied. Therefore, new heuristics

are needed to solve the problem.

Because several studies have shown that list scheduling with Highest-Level-First priority

yields near-optimal results for some of the multiprocessor scheduling variants[81, 2, 28], this

section first presents the results of pure HLF scheduling for the simulator. The scheduler ignores

communication costs, sequence dependence, and resource constraints.
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Figure 4.4: Speedup of two-threaded HLF list scheduled simulators

Figure 4.4 shows the average speedups for the simulators of a group of models when paral-

lelized for two threads. HLF list scheduling with uniform task costs is used to generate the sched-

ule of invocations for each thread. Speedups are measured relative to the uniprocessor simulator

for each model. All simulators use non-selective-trace scheduling with full dependence informa-

tion enhancement. Details of the hardware models and benchmarks will be given in Section 4.6.

The error bars in all graphs in this section indicate the range of values across benchmarks.

Clearly simple HLF list scheduling does not work well; parallelization has slowed down the

simulators for all models. This behavior can be examined in more detail by partitioning the

speedup into two components. The first component, work concurrency or overlap, is the average

over time of the number of processors doing work. Overlap is never less than one nor more than

the number of processors. The second component, dilation, measures how much overhead and

cache effects have changed the amount of CPU time required to perform the work of the simulator.

It is calculated as the ratio of the amount of CPU time spent doing work in the parallelized

simulator to the amount of CPU time spent doing work in the uniprocessor simulator. A value

greater than one indicates that the time required to do work has increased upon parallelization.

Time spent doing work is any time not spent waiting in synchronization operations. Details of
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how overlap and dilation are measured will be given in Section 4.6. Thus

speedup =
WallTs

WallTp
=

overlap

dilation
=


(

WorkTp

WallTp

)
(

WorkTp

WorkTs

)
 ∗ [

WallTs

WorkTs

]

where WallT indicates wall-clock time, WorkT indicates aggregate CPU time spent doing

work, and subscripts p and s indicate parallel and uniprocessor versions of the simulator, re-

spectively. The final term in brackets is equal to unity because the uniprocessor simulator does

not wait for other threads. Note that there is a small amount of inaccuracy because I/O time and

the effects of multiprocessing on the host machine are not considered; these are verified to be

very small in all experiments in this chapter, on the order of a few percent at most. If overlap is

greater than dilation, then the parallel simulator is faster than the uniprocessor simulator.

Figure 4.5(a) shows dilation for two threads using HLF list scheduling. The time spent doing

work has expanded substantially. This is because of cache effects. Figure 4.6 shows the number

of cache misses from the last level of the cache hierarchy per simulated cycle incurred by the

parallel and the uniprocessor simulator due to data accesses. This graph shows that the number of

cache misses increases upon parallelization by multiple orders of magnitude for certain models.

What is happening is that the working sets of the uniprocessor simulators for the smaller models

fit in the cache of a single processor.2 When the simulator is parallelized, data which is shared

between threads must now transfer between processors; this results in sharing misses. For larger

models (CMP16, CMP32, I2-CMP) the original working set did not fit into a single cache and

parallelization partially offsets the increase in sharing misses with a decrease in capacity misses

as two caches are available. The r2 between the logarithm of dilation and the logarithm of the

relative increase in cache misses is 0.936, indicating a very strong relationship.

Figure 4.5(b) shows overlap for two threads using HLF list scheduling. The overlap also

leaves something to be desired. Ideally, it would be two: at all times both threads are doing useful

work. When it falls away from two, one thread is waiting. This waiting may occur at locks,

for semaphores, or at barriers. Locking is the single largest component of this waiting time. Fig-

ure 4.7 shows the percentage of the overlap loss (the difference between the number of processors
2The RISC model is so small that the number of cache misses for the uniprocessor simulator was less than the

granularity of the cache miss measurement.
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and the overlap) which is due to waiting for locks. On average, about 49% of the loss is due to

these waits, and the percentage of loss does not appear to depend upon model size. The remaining

loss is due to communication; on average there is one communication every 5 invocations and

the remaining loss correlates moderately (r2 = 0.51) with the number of communication opera-

tions per invocation. The waiting for communication occurs because uniform task cost estimates

describe the variable, non-uniform task costs poorly.

Attempts to predict the task costs given structural parameters such as the number of signals

read and generated by an invocation have yielded very little success. This is probably due to

the fact that the time a codeblock invocation takes is very dependent upon programming style

independent of the interconnectivity of the codeblock graph. Codeblock invocation costs vary

by several orders of magnitude with each other; furthermore, these costs are data dependent

and schedule dependent. As a result, profiling of invocation times for a particular model seems

likely to be the most effective prediction technique. This dissertation defers improved task cost

estimation techniques to future work. Instead, it presents scheduling improvements which work

when task execution time is variable or estimates are poor.
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There are therefore two areas upon which this dissertation focuses to improve the scheduling:

reducing lock wait time and improving cache locality. The remainder of this section introduces

two heuristics for reducing lock wait time and two heuristics for improving cache locality.

4.5.1 Reducing Lock Wait Time via Lock Mitigation

Time spent waiting for locks accounts for a significant fraction of the loss of overlap and thus loss

in performance. Locks introduce resource constraints into the scheduling problem. Their impact

on performance is greatly increased by task cost variability; variability causing an unplanned

concurrent execution of conflicting tasks results in unexpected serialization of the threads.

Fisher’s techniques[28] and others from instruction scheduling might be applicable here be-

cause they simply do not assign tasks to scheduling slots which will violate a resource constraint.

However they are based upon having and knowing fixed task costs and thus do not take into ac-

count the variability of task costs and the likelihood that the estimates are poor. Narasimhan and

Ramanujam’s branch-and-bound algorithm[68] has a similar problem and potentially suffers from

large runtimes on the large task graphs stemming from structural simulators. Krishnaswamy’s
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method[53] of removing locks by rearranging the schedule after completing list scheduling does

not take into account load balancing or the critical path.

In this dissertation I propose two new lock mitigation heuristics derived from list scheduling

called lock avoidance and lock reprioritization which are able to cope with task cost variability

and large task graphs while still taking into account the critical path and load balance.

Lock avoidance

The premise of lock avoidance is very simple: try to choose scheduling slots which do not require

locks. Recall that locks are required whenever conflicting tasks might run concurrently. This

analysis for lock insertion must be done without assumptions as to the speed of the tasks. Thus

avoiding assignments which require locks is naturally resilient to variability or error in task cost

estimation.

The lock avoidance heuristic is a variant of list scheduling. The HLF priority function is used,

but the assignment step is different. A task is assigned to the earliest scheduling slot such that no

lock is required. If no such assignment can be made, the assignment is made without considering

locking.

Lock avoidance might seem to tend to assign every invocation in a group of conflicting invo-

cations to the same thread, thus harming load balance. However, the majority of conflicts do not

require locks because the lock elision algorithm is able to detect and remove these locks. This

allows many conflicting invocations to be distributed among threads.

The execution time of this heuristic is O(PV 3 log V ). The additional factor of V log V over

normal list scheduling is due to the check to see whether locks are required for each potential

conflict.

Lock rescheduling

When the lock avoidance heuristic cannot find a scheduling slot which does not require a lock it

chooses the slot allowing the earliest start time. This can result in situations where tasks requiring

the same lock are scheduled close together in time and the threads serialize on that lock at run

time. The lock rescheduling heuristic tries to avoid run-time serialization by selecting start times
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which separate or skew in time tasks which require the same lock. To ensure that these tasks are

actually separated at run time, other ready tasks are scheduled between them.

The lock rescheduling heuristic uses list scheduling with dynamic priorities, much like the

ETF algorithm. The priority function groups the potential scheduling slots for each task into

three groups: those requiring no locks, those requiring a lock which is not “close”, and those

which require a close lock. The groups are checked in this order and the slot with the earliest start

time in the first non-empty group is chosen. “Close” is defined as having a conflicting invocation

overlapping in scheduled time. To accommodate task cost variability and errors in estimation, the

estimated time is multiplied by some factor when making this check. For the experiments in this

work, this factor was set to 10.

The execution time of the lock rescheduling heuristic is O(PV 4 log V ). The reason for the

additional complexity compared to lock avoidance is that the priority function needs to be evalu-

ated for each ready task at each step. A dynamic programming technique is used to reduce these

evaluations in the average case, but the asymptotic worst-case complexity is unaffected.

4.5.2 Improving Cache Locality via Clustering

Improvements in cache locality promise to improve the performance of parallelization. Cache be-

havior changes the task costs in a complex fashion dependent upon the schedule and the patterns

of access to shared memory implied by the schedule. This is a form of sequence dependence

which is far more complicated than that which is normally considered and there is little to be

gleaned from prior work on sequence dependence.

Cache behavior can in part be modeled as a communication cost; any time data must be

transferred between threads, there is some delay. Some prior work allows varying communication

costs. However this delay is unusual in that it cannot be overlapped with computation in the

receiving thread, as the communication is initiated by the receiving thread itself. Moreover,

communication cost only models cache effects for signal data; it does not model cache effects

due to internal data shared between codeblocks from the same module instance. For this reason,

the standard list scheduling techniques for dealing with communication cost such as ELS, ETF,

MH, MCP, DLS, MD, or DCP are not appropriate.
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List scheduling could be modified to understand that the choice of processor affects not just

communication costs but also task costs by using either priority functions or assignment rules

which consider the finish time of the task being assigned. MH would be the easiest to adapt in

this fashion as it already creates events for finish time. However, lock mitigation heuristics must

be also be combined with these modifications, making for a very complicated overall heuristic.

Task duplication techniques such as those used in [53] are undesirable because duplicated

tasks may share state, making cache behavior worse, and because duplicated tasks would need to

acquire locks. These locks would probably not be elided; the point of task duplication is to create

independent cones of logic. The additional locks would reduce the benefit of duplication. In

addition, as task cost estimation is currently poor, the likelihood of duplicating a very expensive

task seems inordinately high.

Partitioning techniques proposed for distributed logic simulation have limited applicability.

Several attempt to improve metrics only of interest for optimistic distributed algorithms. Others

are concerned only with load balance. Those that attempt to minimize communication in com-

piled logic simulation, such as depth-first, greedy levelized, and annealing, are sufficiently similar

to list scheduling techniques that they suffer from the same issues.

A more straightforward approach is to use clustering techniques. A clustering is performed

and then list scheduling is used afterward with the choice of threads constrained. The lock reduc-

tion heuristics can be used directly during list scheduling. Note that even though the choice of

thread will be constrained, the choice of holes is not, so lock reduction techniques still have some

space in which to operate.

Previous clustering heuristics such as internalization, declustering, and DSC have considered

only communication costs. Because not all cache behavior can be modeled well as communica-

tion costs, using these heuristics directly is not likely to be effective. I therefore propose two new

heuristics based upon clustering which address the cache behavior inside instances.

Instance-Based Clustering (IBC) The first new heuristic, Instance-Based clustering (IBC) is

based upon the assumption that shared data within module instances is large. It therefore ensures

that all invocations of codeblocks from a particular module instance are always assigned to the
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same thread. This assignment may also improve instruction cache behavior if codeblocks share

functions as well as data.

INSTANCE-BASED-CLUSTERING(D)
� D is the instance graph with edges weighted by bandwidth

Assign each instance in D to a unique cluster; call the set of clusters C

Calculate list of inter-cluster connections L sorted by
descending bandwidth between the associated instances

while L 6= EMPTY and |C| > NUMTHREADS

do (Cj , Ck)← first element of L
Delete first element of L
if (bandwidth between Cj and Ck) ≥ LIMIT

then Combine Cj and Ck to form new cluster Cn

C ← (C \ {Cj , Ck}) ∪ Cn

Calculate bandwidths from Cn to other clusters and update L,
maintaining the sort order

� Perform mapping
Initialize thread loads to 0
foreach Ci in S, ordered by descending size

do Assign Ci to thread t with minimum load
Add size of Ci to load of t

return cluster assignments

Figure 4.8: Instance-Based clustering

Figure 4.8 gives the algorithm for Instance-Based clustering. Note first that the instance

graph is used instead of the task graph; instances are the basic granularity of clustering. Edges

are weighted with the communication bandwidth in either direction between the instances. In the

present implementation, the bandwidth is the number of signals connected between the instances.

Initially each instance is in its own cluster.

Clusters are merged in descending order of bandwidth. Merging is stopped when there are no

merges left to consider or the number of clusters is the same as the number of threads. A merge is

not carried out if the bandwidth is less than some limit; 10 has been used in for the experiments

in this dissertation. This limit is intended to prevent load balancing failures in the final steps of
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the merging as the inter-cluster bandwidth becomes small. The bandwidth between clusters is

updated at each merge.

Clusters are then mapped to threads in descending order of size in a load-balanced fashion.

The size is measured as the number of codeblocks in the cluster. Each cluster is assigned to the

thread with the minimum load so far. This technique is similar to that of [94].

This heuristic ignores completely the precedence constraints and critical path of the task

graph. Therefore, it may suffer from poor overlap even as it improves dilation. However, the

heuristic is quite simple to implement. The execution time is O(E2logE + PV ) where E is

measured on the instance graph. Note also that while E is O(V 2) in general, instance graphs are

usually quite sparse. Thus the execution time is in practice closer to O(V 2logV + PV ).

Instance-Aware Dominant Sequence Clustering (iDSC) The second new heuristic, Instance-

Aware Dominant Sequence Clustering (iDSC), uses the DSC technique[112] to produce a list of

clusters. Predicted cache misses due to inter-task communication are modeled as communication

cost. DSC is chosen because it tries to take into account both load balancing and the critical path

while still maintaining a very low computational complexity. Instance awareness is added in the

post-processing step which maps clusters to threads.

IDSC-MAPPING(C)
� C is the set of clusters, each of which is a list of tasks

For each task,
Initialize thread loads to 0
foreach Ci in S, ordered by descending size

do Assign Ci to thread t with minimum load which already has
a codeblock from an instance which has a codeblock in Ci.
If no such thread, choose the thread with minimum load.

Add size of Ci to load of t

return cluster assignments

Figure 4.9: iDSC mapping

The mapping algorithm is shown in Figure 4.9. It is very like the mapping performed for

Instance-Based Clustering, except that it attempts to map the cluster to a thread where instances
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which have codeblocks in the cluster have already appeared. As there are usually many more

clusters than threads, this results in clusters containing the same instances being pulled into one

thread. Load balance may be compromised by doing so. This mapping also ignores the prece-

dence constraints and critical path, as did the mapping of Instance-Based Clustering.

The DSC step has execution time of O((V +E) log V ) while the mapping step has execution

time of O(PV ).

4.6 Traditional Multiprocessor Evaluation

This section presents an evaluation of the effectiveness of the lock mitigation and clustering

heuristics on a traditional multiprocessor. The heuristics are evaluated separately and then in

combination, with a detailed look at their interactions.

4.6.1 Methodology

All experiments are carried out using the Liberty Simulation Environment. Partitioned schedul-

ing with non-selective-trace scheduling is used to generate a uniprocessor schedule, which is then

used as the basis for simulator parallelization. All dependence information enhancement mech-

anisms are used. Each parallelization is evaluated against a baseline of a uniprocessor simulator

for the same hardware model.

Models

The evaluation uses nine different processor models. Four of these models were used in Chapter 3

to evaluate uniprocessor scheduling techniques. Six of the models are from a family of chip

multiprocessor models of different sizes and are particularly interesting in that they show the

effects of model size upon parallelization. The framework is used to generate a simulator for

each scheduling technique for each model. The performance of these simulators running various

benchmarks and input sets is measured. Performance measurements are taken from a single

simulation run; simulation lengths were chosen to achieve wall-clock time of at least 5 minutes

(though 20 data points are between 4 and 5 minutes of wall-clock time).
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Model Instances Signals Within-cycle tasks Benchmarks
CMP01 81 1043 445 3 Splash2 kernels * 2 inputs
CMP02 158 2088 891 3 Splash2 kernels * 2 inputs
CMP04 312 4182 1787 3 Splash2 kernels * 2 inputs
CMP08 620 8370 3579 3 Splash2 kernels * 2 inputs
CMP16 1236 16754 7171 3 Splash2 kernels * 2 inputs
CMP32 2468 33522 14355 3 Splash2 kernels * 2 inputs
I2 209 3869 1812 3 SPEC INT 2000
I2-CMP 530 13411 6830 3 Splash2 kernels
RISC 49 407 89 2 kernels

Table 4.2: Models and input sets

The models are summarized in Table 4.2. The table indicates the number of module instances,

signals, and codeblocks for each model. Each of the models and their input sets is described in

more detail below:

CMP01 - CMP32 This is a family of six models of chip multiprocessors having from 1 to 32

processors. The authors were David A. Penry and Julia S. Chen. The microarchitecture is

tiled, i.e. there are a varying number of tiles, each containing a processor with first level

instruction and data caches, a portion of a distributed second-level cache, and connections

to an on-chip routing network. Each tile has an independent channel to memory. The

processors are configured to be scalar and in-order and to use the PowerPC instruction set.

This model is very similar to the models used in [16]. The four-processor instance was

used in Chapter 3.

For each model, three benchmarks from the SPLASH-2 benchmark suite[110] are used.

For each benchmark two inputs are used: a small problem instance and a large problem in-

stance. The binaries were compiled using gcc 3.4.1 with flags -g -O2 -lm -static.

A sampling technique is used: one slice of execution is run. This slice begins after some

number of instructions have completed on the first core. This number is chosen so that all

threads have begun execution by that time. The slice ends when the first core has com-

pleted a further fixed number of instructions. The input and sampling parameters are given

in Table 4.3.

The six selected benchmark/input combinations from SPLASH-2 elicit varying architec-

tural statistics from the models, indicating that they provide some variety of internal model

141



Benchmark Input parameters Sample Start Sample Length
CMP01 - 1 tile

cholesky.small -p1 -C32768 lshp.O 25,000,000 80,000,000
fft.small -p1 -m16 -n1024 -l5 30,000,000 80,000,000
radix.small -p1 -n262144 20,000,000 80,000,000
cholesky.large -p1 -C32768 tk29.O 500,000,000 80,000,000
fft.large -p1 -m24 -n1024 -l5 8,000,000,000 80,000,000
radix.large -p1 -n33554432 2,000,000,000 80,000,000

CMP02 - 2 tiles
cholesky.small -p2 -C32768 lshp.O 25,000,000 40,000,000
fft.small -p2 -m16 -n1024 -l5 30,000,000 40,000,000
radix.small -p2 -n262144 20,000,000 40,000,000
cholesky.large -p2 -C32768 tk29.O 500,000,000 40,000,000
fft.large -p2 -m24 -n1024 -l5 8,000,000,000 40,000,000
radix.large -p2 -n33554432 2,000,000,000 40,000,000

CMP04 - 4 tiles
cholesky.small -p4 -C32768 lshp.O 30,000,000 10,000,000
fft.small -p4 -m16 -n1024 -l5 30,000,000 10,000,000
radix.small -p4 -n262144 20,000,000 10,000,000
cholesky.large -p4 -C32768 tk29.O 500,000,000 10,000,000
fft.large -p4 -m24 -n1024 -l5 8,000,000,000 10,000,000
radix.large -p4 -n33554432 2,000,000,000 10,000,000

CMP08 - 8 tiles
cholesky.small -p8 -C32768 lshp.O 40,000,000 5,000,000
fft.small -p8 -m16 -n1024 -l5 30,000,000 5,000,000
radix.small -p8 -n262144 20,000,000 5,000,000
cholesky.large -p8 -C32768 tk29.O 500,000,000 5,000,000
fft.large -p8 -m24 -n1024 -l5 8,000,000,000 5,000,000
radix.large -p8 -n33554432 2,000,000,000 5,000,000

CMP16 - 16 tiles
cholesky.small -p16 -C32768 lshp.O 40,000,000 1,500,000
fft.small -p16 -m16 -n1024 -l5 30,000,000 1,500,000
radix.small -p16 -n262144 20,000,000 1,500,000
cholesky.large -p16 -C32768 tk29.O 500,000,000 1,500,000
fft.large -p16 -m24 -n1024 -l5 8,000,000,000 1,500,000
radix.large -p16 -n33554432 2,000,000,000 1,500,000

CMP32 - 32 tiles
cholesky.small -p32 -C32768 lshp.O 60,000,000 250,000
fft.small -p32 -m16 -n1024 -l5 30,000,000 250,000
radix.small -p32 -n262144 20,000,000 250,000
cholesky.large -p32 -C32768 tk29.O 1,000,000,000 250,000
fft.large -p32 -m24 -n1024 -l5 8,000,000,000 250,000
radix.large -p32 -n33554432 2,000,000,000 250,000

Table 4.3: Input and sampling parameters for the CMP family of models

142



behavior. For example, for CMP-04 the number of instructions completed per cycle ranges

from 2.20 to 2.47 across the six benchmark/input combinations. Branch prediction rates

range from 87% to 100%, while the first-level cache read miss rate varies from 0% to 44%.

I2 This is the validated Itanium R© 2 model used in Chapter 3. The benchmarks and input sets

from that chapter are used.

I2-CMP This is the two-way chip multiprocessor model based upon the Itanium R© 2 model

which was used in Chapter 3. The same benchmarks and input sets are used that were used

there.

RISC This is the simple single-issue in-order processor from [36] which was used in Chapter 3.

The benchmarks and input sets used are from that chapter.

Because the CMP models each have six benchmark and input set combinations, all result

graphs in this chapter report average results for each model rather than individual combinations

of benchmarks and input sets. Error bars indicate the minimum and maximum values of the

metric in question across the benchmarks and input sets.

Compilation and Evaluation Systems

All simulators are compiled using gcc 3.4.4 with the default compilation flags provided by LSE’s

ls-build script. All simulations are run on a four processor system; each processor is an AMD

OpteronTMProcessor 846 running at 2.0 GHz. This system has 1 megabyte of on-chip L2 cache

per processor and 6 gigabytes of memory. The system runs Fedora Core release 3, with kernel

version 2.6.12-1.1376 FC3smp. The system architecture is actually a Non-Uniform Memory

Architecture (NUMA); processors have individual memory controllers and the cost of a memory

access depends upon the location of the data. The OS, however, is not configured to perform any

page placement to take advantage of the latency differences, so a reasonable assumption is that

access time is evenly distributed across physical memory used by a program. Indeed, for this

particular system the difference in access time between a local access and a remote access is only

around 10%.
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Wall-clock time is measured using /usr/bin/time. The wall-clock time includes time to

start the simulation binary, initialize, finalize, and perform all I/O including reading of simulation

state checkpoints. In addition, oprofile, a statistical profiling tool, is used to sample the

program counter every 100,000 clock cycles and every 100,000 cache misses going to memory.

This sampling is done independently for each processor. The time spent doing useful work is

computed as the percentage of total clock samples across all processors for which the counter

is not in one of the synchronization wait functions times the wall clock time times the number

of processors. The approximate number of cache misses is computed using the total number of

cache samples.

Parameters for heuristics

Each task is assumed to take 146 cycles; this is the average cost per invocation across all tasks

of the uniprocessor simulator for the CMP02 model. For lock rescheduling, the margin used for

calculating whether conflicting tasks are close in time is 10 times the task cost. For IBC, inter-

cluster bandwidth is the number of signals connected between module instances in the clusters.

For iDSC, the cost in cycles of inter-task communication from task i to j running in different

threads is taken to be: 112 ∗ (1 + NSij) where NSij is the number of signals generated by i and

used by j. 112 cycles was chosen to be roughly the cost of a remote memory access.

4.6.2 Lock Mitigation

This subsection evaluates the effectiveness of the lock mitigation heuristics at reducing waiting

for locks. Figure 4.10 shows the average speedup for each model’s simulator when parallelized

onto two threads using no lock mitigation, lock avoidance, or lock rescheduling. Speedups are

measured relative to the uniprocessor simulator for each model. The error bars show the highest

and lowest speedups for each benchmark.

Both lock avoidance and lock rescheduling increase simulator performance, allowing par-

allelization to achieve speedup for the larger models. This improvement takes place for two

reasons: the heuristics have achieved their objective of reduced lock wait time and they have had

a serendipitous side effect of improved cache locality.
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Figure 4.10: Speedup for two-threaded parallelization with lock mitigation

none avoid resched.
CMP01 0.73 0.04 0.05
CMP02 0.73 0.06 0.00
CMP04 0.74 0.07 0.03
CMP08 0.74 0.10 0.04
CMP16 0.74 0.11 0.05
CMP32 0.74 0.11 0.04
I2 0.82 0.14 0.06
I2-CMP 0.86 0.14 0.08
RISC 0.58 0.21 0.08

Table 4.4: Lock acquisitions per task with lock reduction heuristics for two threads
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Table 4.4 presents the number of lock acquisitions per task. Locking is reduced considerably

by either heuristic. Lock rescheduling usually inserts fewer locks than lock avoidance because

the scheduling of a task requiring the lock is delayed in many case until the lock can be elided.

Note that not using some sort of lock wait time reduction technique results in very frequent lock

acquisitions: from 58 to 86 lock acquisitions per 100 tasks.

This reduction in lock acquisitions results in a decrease in waiting for the locks. Figure 4.11(a)

shows the average overlap achieved by each heuristic while Figure 4.11(b) shows the percentage

of lost overlap attributed to locks. The percentage of time spent waiting that is attributed to locks

decreases dramatically; with lock rescheduling very little such waiting occurs. Overall waiting

time as measured by overlap does not improve quite so much, indicating that some wait time at

locks is being replaced with wait time at semaphores or barriers. Nevertheless, there is always

improvement, and lock rescheduling is nearly always more effective at increasing overlap than

lock avoidance. In the two cases where it is not (CMP16 and CMP32), time saved spent waiting

at locks is being transmuted into even more time spent waiting for semaphores.

The lock mitigation heuristics also have the side effect of improving cache locality, leading

to less dilation of the simulator’s work time. This is shown in Figure 4.12(a), which shows the

dilation for each heuristic and Figure 4.12(b) which shows the number of last-level cache misses

caused by data accesses. Lock mitigation has reduced the number of cache misses, resulting in

lower dilation. This is because choosing threads which do not require locks tends to cause tasks

from the same instance to execute in the same thread. For the CMP16 model, the number of

misses is reduced to nearly the level of the uniprocessor simulator and dilation approaches one.

The combination of the improvements in overlap and dilation leads to meaningful speedup

for the larger models. For these models, the addition of lock reduction heuristics has made par-

allelization effective, yielding up to 80% parallel efficiency. Furthermore, lock rescheduling is

nearly always more effective overall, though the difference is small enough for larger models that

using the less complex and faster-running lock avoidance heuristic for these models would be

acceptable.

When parallelization is carried out onto four threads, reducing lock wait time should be more

important as there are more opportunities for conflicts between tasks. Figure 4.13 shows the
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(b) Percent of lost overlap due to locks

Figure 4.11: Effects of lock mitigation on overlap for two threads
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(b) Last-level cache misses due to data accesses

Figure 4.12: Effects of lock mitigation on dilation for two threads
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Figure 4.13: Speedup for four-threaded parallelization with lock mitigation

average speedup for each model’s simulator when parallelized onto four threads using no lock

mitigation, lock avoidance, and lock rescheduling. Speedups are again measured relative to the

uniprocessor simulator for each model, with error bars showing the highest and lowest speedups

for each model.

none avoid resched.
CMP01 0.81 0.13 0.08
CMP02 0.78 0.13 0.03
CMP04 0.77 0.15 0.06
CMP08 0.77 0.14 0.08
CMP16 0.77 0.12 0.08
CMP32 0.77 0.13 0.07
I2 0.86 0.17 0.10
I2-CMP 0.90 0.30 0.14
RISC 0.75 0.58 0.37

Table 4.5: Lock acquisitions per task with lock reduction heuristics for four threads

As in the two-threaded case, lock avoidance and lock rescheduling both improve simulation

speed considerably. However the difference between lock rescheduling and lock avoidance is far

more visible. Table 4.5 indicates the number of lock acquisitions per task. As before, locking is

reduced considerably by either heuristic and without the heuristic there is very frequent locking.
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Figures 4.14 and Figure 4.15 show the effects of lock mitigation on overlap and dilation re-

spectively. Lock mitigation has increased overlap as it did in the two-threaded case, but lock

rescheduling is now always clearly superior to lock avoidance. Dilation has also decreased due

to improvements in cache locality, leading the CMP16 and I2-CMP models to experience true

reductions in the work time. This occurs because the increase in sharing misses due to paral-

lelization is being balanced by a decrease in capacity misses for these large models.

With four threads, parallelization has improved performance for the four largest models.

Three of them – CMP16, CMP32, and I2-CMP – have enough performance to recommend

four-threaded parallelization, achieving up to 74% parallel efficiency.

The CMP family of models show an interesting behavior: the speedup increases as the model

size gets larger until speedup peaks at 16 tiles. The reason for this is related to the dilation

behavior of the model, which also peaks at 16 tiles. This phenomenon will be elaborated on more

fully in the next subsection.

To summarize, either lock avoidance or lock rescheduling are very effective at reducing the

number of locking operations and the amount of time spent waiting at locks. This leads directly to

improvements in overlap and indirectly to reductions in dilation. The overall result is that either

heuristic is effective at improving parallel simulation performance. Lock rescheduling is more

effective than lock avoidance when there are four threads.

4.6.3 Clustering

This subsection evaluates how well the Instance-Based clustering (IBC) and Instance-Aware

Dominant Sequence Clustering (iDSC) heuristics improve cache locality. Figure 4.16 shows the

speedup for each model’s simulator when parallelized onto two threads using no improvements,

IBC, and iDSC. Speedups are measured relative to the uniprocessor simulator for each model.

The error bars show the highest and lowest for speedups for each benchmark. After clustering,

lock rescheduling is used in each case with processor assignments constrained by the cluster-

ing. Thus the “no clustering” case is the same as the “lock rescheduling” case from the previous

subsection.
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(b) Percent of lost overlap due to locks

Figure 4.14: Effects of lock mitigation on overlap for four threads
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(b) Last-level cache misses due to data accesses

Figure 4.15: Effects of lock mitigation on dilation for four threads
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Figure 4.16: Speedup for two-threaded parallelization with clustering

Both IBC and iDSC improve simulator performance except for one model, the I2-CMP

model, which will be discussed shortly. Parallelization is now effective for all of the CMP mod-

els. Indeed, superlinear speedup is obtained for the CMP08 and CMP16 models. Nearly all this

improvement takes place because cache locality has been improved.

Figure 4.17(a) shows the dilation for each clustering heuristic while Figure 4.17(b) shows

the number of last-level cache misses caused by data accesses. Clustering has reduced dilation

considerably by decreasing the number of cache misses. For the CMP08, CMP16, CMP32,

and I2-CMP models, clustering has reduced the number of cache misses to less than the number

of misses in the uniprocessor simulator and dilation is less than one. The decrease in capacity

misses is larger than the increase in sharing misses, resulting in better overall cache behavior and

achieving a reduction in the work time required.

The CMP32 model is an interesting case. The dilation increases from the CMP16 model;

cache locality does not improve as substantially for the CMP32 model as it did for the CMP16

model. This occurs because of the relationship between working set size and cache size. For

the uniprocessor simulators, the number of misses increases by a factor of approximately 12 for

every doubling in size of the model until the step from 16 to 32 tiles. At the final doubling step
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Figure 4.17: Effects of clustering on dilation for two threads
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between 16 and 32 tiles, the misses increase by only a factor of 3. This is reasonable behav-

ior; as the working set size increases for a fixed size cache, misses increase until the cache is

eventually overwhelmed and captures little locality. Further increases in the working set result

in decreasingly smaller increases in cache misses. In the case of the simulator what happens

is that as the model grows, less and less locality extends across time steps; eventually the first

access to every signal or data value in each cycle becomes a miss and then repeated accesses at

widely separated times in the schedule become misses.3 If the working set can be decreased for

the same amount of total data, cache misses decrease and the curve of misses versus total data

size shifts to the right. When simulators are parallelized with clustering, the working set of each

thread is decreased, causing the growth in misses to be shifted to the right. Eventually, the new

working sets saturate their individual caches. This behavior is evident in the data; parallelization

shifts the curve to the right: for the first few doublings in size the cache misses grow at a rate

of only 1.3 for each doubling (the rate is lower because each model starts with sharing misses),

but between 8 and 16 tiles they grow by 6.7 times and between 16 and 32 tiles they grow by 8.6

times. When the size grows to 32 tiles, the total misses of the parallel simulator nearly “catch up”

to the uniprocessor simulator as the working sets saturate the individual caches. This explanation

is further supported by the miss data shown in Figure 4.20(b) for four-threaded parallelization,

which shows yet a further shift to the right in the curve; misses are just beginning to grow rapidly

in the CMP16 to CMP32 step.

What this all implies is that there is a “sweet spot” in the relationship between model size and

number of processors. When too few processors are used, not all the potential for reduction in

capacity misses is achieved. When too many are used, the increase in sharing misses outweighs

the additional cache capacity. But when the right number of processors is chosen, cache misses

are minimized and the work time contracts significantly. This in turn can contribute enormously

to simulation speed, providing superlinear speedup. With superlinear speedup, both throughput

and latency are improved by parallelization.

IBC usually reduces cache misses slightly more than iDSC, leading to lower dilation in nearly

all cases. Even when the two techniques lead to approximately the same number of L2 cache
3For the CMP32 model, just the data structures for holding signal values require at least 218KB, or nearly one

fourth of the L2 cache.
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misses, IBC still has a small dilation advantage, indicating that IBC may have advantages for L1

cache behavior, or possibly instruction cache behavior.

Of course, dilation is only one component of performance. Figure 4.18 shows the effects

of clustering techniques upon overlap. These results are ambiguous; clustering usually disim-

proves overlap, but at other times it improves overlap slightly, particularly for iDSC. Such a

result is reasonable; the iDSC might have taken into account critical path better than normal lock

rescheduling would have. This improvement occurs in spite of an increase in the percentage of

lost overlap spent in locking. However, the total number of locks introduced has barely changed.

The I2 and I2-CMP models are very interesting cases. As mentioned before, clustering

reduces the performance of the I2-CMP simulator. The I2 model does not see performance

improvement from parallelization, despite being about the size of the CMP04 model. In both

of these cases the clustering algorithms have “broken down,” creating significant load imbalance.

The load imbalance for each model, defined as the maximum number of tasks per thread minus the

minimum number of tasks per thread divided by the total number of tasks, is given in Table 4.6.

Both the I2 and the I2-CMP models experience high load imbalance; CMP01 has non-trivial

load imbalance as well. The IBC heuristic causes more load imbalance than iDSC.

Is load imbalance really a problem? Apparently for the CMP01 model some amount of

imbalance was a good decision; performance is nearly twice what it would be without clustering.

Performance improved for the I2 model and disimproved for the I2-CMP model when clustering

was used. That there could be models for which parallelization is just an entirely poor decision

seems reasonable. This suggests that the algorithms need further tuning and/or development and

provides an intriguing problem for future work.

none IBC iDSC
CMP01 0.22 60.90 17.30
CMP02 0.11 1.01 0.79
CMP04 0.06 0.73 0.06
CMP08 0.03 8.69 0.03
CMP16 0.01 6.74 0.01
CMP32 0.01 7.52 0.01
I2 0.11 94.37 78.37
I2-CMP 0.70 95.75 92.09
RISC 3.37 55.06 3.37

Table 4.6: Percent load imbalance for two-threaded parallelization with clustering
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Figure 4.18: Effects of clustering on overlap for two threads
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Figure 4.19: Speedup for four-threaded parallelization with clustering

Overall, clustering leads to performance improvement for all models but the I2-CMP model.

The combination of lock rescheduling with clustering has made parallelization of all of the CMP

family of models beneficial; for 8 and 16 tiles superlinear speedup is achieved. The iDSC heuristic

leads to slightly better results unless superlinear speedup is obtained, in which case IBC performs

better. Given the lower scheduling-time complexity of iDSC, neither technique is clearly more

desirable than the other.

When parallelization is carried out onto more threads, clustering should be more important

because the opportunity for sharing misses increases and also give more opportunity for im-

provement because the working set can be further divided among threads. Figure 4.19 shows the

average speedup for each model’s simulator when parallelized onto four threads using no lock

mitigation, lock avoidance, and lock rescheduling. As always, speedups are measured relative

to the uniprocessor simulator for each model, with error bars showing the highest and lowest

speedups for each model. Lock rescheduling is used in all cases.

The results are quite similar to those when two threads were used. Clustering improves per-

formance except for the I2 and I2-CMP models. Most of the CMP family of models benefit from

parallelization. A difference is that the CMP01 model now does not benefit from parallelization;
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four threads appears to be too many for this small model. In general, the smallest models (CMP01

and RISC) have performed worse with four threads. The largest models (CMP08, CMP16, and

CMP32) perform much better and continue to achieve superlinear speedup.
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Figure 4.20: Effects of clustering on dilation for four threads
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Figure 4.20 presents the effects which clustering have upon dilation and cache misses when

there are four threads. The same trends as were present with two threads are evident, with two

exceptions.

First, the I2-CMP model now does not experience reduction in dilation due to clustering.

This is because the number of cache misses is increasing slightly with clustering. This in turn is

happening because, just as in the two-threaded case, load balancing is poorer with clustering. As

a result, the caches for three of the threads are underutilized.

Second, the CMP16 and CMP32 model both have lower dilation with clustering than was

present with two threads. This is due to the greater reduction in cache misses which having four

caches among which to partition the working set has allowed. The working sets of the threads are

now further from saturating the caches for the CMP32 model.

Figure 4.21 presents the effect of clustering upon overlap when there are four threads. As

with two threads, the results are difficult to interpret. However iDSC does improve overlap and

IBC disimproves it; the additional understanding of the dynamic critical paths through the task

graph which iDSC has and IBC does not have probably explains this. The RISC model behaves

unusually in that the fraction of overlap attributable to locking and the number of tasks which

require locks decreases considerably with IBC. This is because the load balance is very poor and

fewer locks are required with so much imbalance. Load balance for all the models is shown in

Table 4.7; it has generally worsened as the number of threads has increased.

none IBC iDSC
CMP01 11.24 77.30 5.39
CMP02 0.34 30.86 34.01
CMP04 0.11 4.25 1.01
CMP08 0.06 11.09 0.03
CMP16 0.03 6.53 0.01
CMP32 0.01 6.42 0.01
I2 21.69 96.63 86.59
I2-CMP 4.93 97.23 94.76
RISC 8.99 70.79 4.49

Table 4.7: Percent load imbalance for four-threaded parallelization with clustering
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Figure 4.21: Effects of lock mitigation on overlap for four threads
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Overall, with four threads clustering leads to improvement for most of the models. Super-

linear speedup is obtained for the largest models. The iDSC heuristic is now clearly favored for

large models, other than I2-CMP.

To summarize, clustering techniques in combination with lock rescheduling are effective

at improving cache locality and reducing dilation. These techniques can provide significant

speedups for most models. The speedup increases as the number of threads increases as long

as the model is large. Instance-Aware Dominant Sequence Clustering is better for smaller models

or for more threads. Instance-Based Clustering is better for large models if few threads are used.

Further research is warranted into determining a priori how many threads should be used, tuning

of heuristics, and whether parallelization should be attempted at all for some models.

4.6.4 Interactions

The previous two sections have shown that lock mitigation techniques are effective at reducing

the lock wait time, thus increasing overlap, and that clustering techniques are effective at im-

proving cache locality, thus reducing dilation. The previous sections have also shown that the

effectiveness of these techniques is dependent upon the size of the model and the number of

threads. However, they have not shown whether there are interactions between the techniques.

The interactions can be determined by looking at the combinations of techniques together.

Further interactions can be seen by examining these combinations for two and four threads and for

different sizes of models (or even each model) separately. Table 4.8 shows the average speedup

of each combination of techniques for each combination of model size (small, medium, or large)

and number of threads (two or four). The small models are CMP01, CMP02, and RISC; the

medium models are CMP04, CMP08, and I2; and the large models are CMP16, CMP32, and

I2-CMP.

The presentation of these interactions does not follow the format of traditional statistical in-

teraction analysis[89]. Traditional interaction analysis subtracts out main effects; the cells then

only contain the interactions. Here the total effects in each cell are presented. As a result, inter-

actions as used here does not conform to the precise statistical definition, but rather the informal

notion of “how do things affect each other.”
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small model - 2 threads small model - 4 threads

none IBC iDSC Row none IBC iDSC Row
none 0.28 1.08 0.83 0.63 none 0.21 1.10 0.70 0.55
avoid 0.51 1.10 0.83 0.78 avoid 0.47 1.14 0.69 0.72
resched. 0.55 1.12 0.91 0.83 resched. 0.55 1.07 0.74 0.76
Column 0.43 1.10 0.86 0.74 Column 0.38 1.10 0.71 0.67

medium model - 2 threads medium model - 4 threads

none IBC iDSC Row none IBC iDSC Row
none 0.47 1.56 1.60 1.05 none 0.41 1.90 1.98 1.15
avoid 0.83 1.57 1.59 1.28 avoid 0.85 1.93 1.99 1.48
resched. 0.89 1.60 1.60 1.31 resched. 1.00 1.91 2.12 1.60
Column 0.70 1.58 1.60 1.21 Column 0.70 1.92 2.03 1.40

large model - 2 threads large model - 4 threads

none IBC iDSC Row none IBC iDSC Row
none 0.96 2.09 2.09 1.61 none 1.20 4.32 4.26 2.81
avoid 1.44 2.11 2.08 1.85 avoid 2.23 4.31 4.32 3.46
resched. 1.48 2.12 2.11 1.88 resched. 2.65 4.54 4.61 3.81
Column 1.27 2.11 2.09 1.78 Column 1.92 4.39 4.39 3.33

Table 4.8: Effects of clustering and lock mitigation upon speedup
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small model - 2 threads small model - 4 threads

none IBC iDSC Row none IBC iDSC Row
none 1.27 1.34 1.40 1.33 none 1.29 1.53 1.58 1.46
avoid 1.46 1.34 1.37 1.39 avoid 1.67 1.55 1.52 1.58
resched. 1.52 1.37 1.52 1.47 resched. 1.91 1.50 1.60 1.66
Column 1.41 1.35 1.43 1.40 Column 1.60 1.53 1.57 1.57

medium model - 2 threads medium model - 4 threads

none IBC iDSC Row none IBC iDSC Row
none 1.47 1.53 1.62 1.54 none 1.89 2.05 2.25 2.06
avoid 1.59 1.53 1.62 1.58 avoid 2.22 2.07 2.25 2.18
resched. 1.65 1.53 1.63 1.60 resched. 2.45 2.04 2.36 2.28
Column 1.57 1.53 1.62 1.57 Column 2.17 2.05 2.29 2.17

large model - 2 threads large model - 4 threads

none IBC iDSC Row none IBC iDSC Row
none 1.57 1.58 1.61 1.59 none 2.26 2.28 2.37 2.30
avoid 1.66 1.58 1.60 1.62 avoid 2.44 2.26 2.36 2.35
resched. 1.66 1.58 1.61 1.62 resched. 2.71 2.34 2.50 2.51
Column 1.63 1.58 1.61 1.61 Column 2.46 2.29 2.41 2.39

Table 4.9: Effects of clustering and lock mitigation upon overlap

The general results already described can be seen from this table; both clustering and lock

mitigation techniques improve simulator speeds for both two and four threads and all sizes of

models. In general, larger models experience higher speedups than smaller models and more

threads yield more speed as long as the models are not small. This table, however, also shows

that clustering is more important – it affects the speedup more – than lock mitigation.

The presence of clustering removes most of the differences between lock mitigation heuris-

tics. As long as some sort of clustering has been performed, performing lock reduction helps

very little. This is somewhat to be expected: clustering techniques constrain the choices for the

lock mitigation mechanisms and thus make them less important. This can be seen in greater de-

tail by examining the overlap. Table 4.9 shows the overlap for the combinations of techniques,

model size, and number of threads. The addition of clustering often reduces the overlap when

lock mitigation is used. The clustering has constrained the lock mitigation techniques so that they

are unable to perform their function as well. Note that this effect goes away as the models get

164



small model - 2 threads small model - 4 threads

none IBC iDSC Row none IBC iDSC Row
none 4.51 1.24 1.68 2.11 none 6.06 1.39 2.27 2.68
avoid 2.87 1.23 1.64 1.79 avoid 3.55 1.37 2.20 2.20
resched. 2.76 1.22 1.67 1.78 resched. 3.45 1.40 2.17 2.19
Column 3.29 1.23 1.66 1.89 Column 4.20 1.39 2.21 2.35

medium model - 2 threads medium model - 4 threads

none IBC iDSC Row none IBC iDSC Row
none 3.14 0.98 1.01 1.46 none 4.65 1.08 1.14 1.79
avoid 1.91 0.97 1.02 1.24 avoid 2.62 1.07 1.13 1.47
resched. 1.86 0.96 1.02 1.22 resched. 2.45 1.06 1.12 1.43
Column 2.23 0.97 1.02 1.30 Column 3.10 1.07 1.13 1.55

large model - 2 threads large model - 4 threads

none IBC iDSC Row none IBC iDSC Row
none 1.63 0.76 0.77 0.98 none 1.88 0.53 0.56 0.82
avoid 1.16 0.75 0.77 0.88 avoid 1.09 0.52 0.55 0.68
resched. 1.13 0.74 0.76 0.86 resched. 1.02 0.51 0.54 0.66
Column 1.29 0.75 0.77 0.90 Column 1.28 0.52 0.55 0.72

Table 4.10: Effects of clustering and lock mitigation upon dilation

larger and as the number of threads increase. This is probably because as the models get larger

the number of tasks increases and the less likely an attempt by two conflicting tasks to execute

concurrently becomes. The effect is also much less pronounced for iDSC, which tries to retain

some notion of the critical path while clustering, than IBC, which ignores the critical path.

Returning to Table 4.8, the use of lock reduction techniques appears to flatten the differences

between clustering techniques in an unusual way. The difference between the two clustering tech-

niques is not greatly affected, but the difference between no clustering and using either technique

is reduced. This is simply because the lock reduction techniques are achieving part of the effects

of clustering. This can be seen by looking at Table 4.10, which is a similar table for dilation. Once

clustering is performed, dilation is mostly unchanged as lock mitigation is performed. However,

lock mitigation by itself always noticeably reduces dilation.

Small models gain the most benefit from clustering techniques, more than doubling their

performance when IBC is used. Yet this is still insufficient to achieve large speedups. Why
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are small models so hard? It is because they are typically tightly interconnected; there are not

very many large, independent subsystems. This has two effects: first, more data must be shared

between the threads. Second, creating schedules without large amounts of waiting for that data

to cross the threads is difficult. Variability in codeblock execution times, makes predicting the

task costs and scheduling appropriately even more difficult. Further improvements may require

means to decompose codeblocks, which is not possible when they are treated as black boxes.

The medium and large models with four threads behave differently from the small models.

The use of iDSC with lock rescheduling produces significantly better results than all other com-

binations. This is because the overlap is significantly greater while the dilation is not. Note that

for two threads, this combination works as well as any other.

In conclusion, parallelization should use both iDSC and lock rescheduling when the model

is of medium or large size, particularly when there are four or more threads. For small models,

IBC should be used, but users should be aware that the additional use of lock mitigation will have

only small effects.

4.6.5 Odd Thread Counts

Results for two and four threads have been presented so far. One could argue that for the medium

and large models parallelization for two or four threads is very simple and obvious, as there

are a power-of-two number of tiles in the CMP models. The argument would then claim that

parallelization by hand would be possible and automatic techniques would be unnecessary. To

counter this argument, this subsection presents the results of three-threaded simulation of the

8-tile and larger CMP models. Load balancing between three threads for these models requires

that tiles be split between threads. Performing this partitioning by hand would be awkward and

time-consuming.

Figure 4.22 shows the speedup for two, three, and four-threaded simulators built for the 4-,

8-, 16-, and 32-way CMP models using lock rescheduling and iDSC. The three-threaded sim-

ulator performs well, achieving speedup between that of two and four threads, including the

now-expected superlinear speedup for the CMP16 and CMP32 models.
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Figure 4.23 shows the effects of an odd thread count on the overlap. The speedup due to

work overlap increases smoothly with the number of threads, indicating that the scheduler is

successfully splitting the tiles. This is further indicated by the load imbalance measurements

shown in Table 4.11. For the 8, 16, and 32-way models load balancing is nearly perfect; for the

CMP04 model there is a small amount of imbalance with three threads, but performance still

scales properly.

2 threads 3 threads 4 threads
CMP04 0.06 12.70 1.01
CMP08 0.03 0.00 0.03
CMP16 0.01 0.01 0.01
CMP32 0.01 0.00 0.01

Table 4.11: Effects of thread count on percent load imbalance

Figure 4.24 shows the effects of the odd thread count on the dilation. The dilation shows

interesting behavior for the CMP08 model, becoming more when three threads are used than for

two or four. The working set of this model’s uniprocessor simulator is larger than a processor’s

cache, but when divided properly among two threads, it fits well within each cache. However,

with three or four threads, more sharing misses occur but there are not corresponding reductions

in capacity misses. Four threads do not have more misses than three threads in this case because

the splitting of tiles necessary with three threads increases the amount of data which must be

shared. This model highlights the desirability of future work which investigates the tuning of

these heuristics and finds when the number of threads used is not optimal.

4.6.6 Summary: Traditional Multiprocessors

For a traditional multiprocessor, the following has been shown:

• Both lock avoidance and lock rescheduling are very effective at reducing the number of

locking operations and the amount of time spent waiting at locks. Either heuristic is effec-

tive at improving parallel simulation performance.

• Lock rescheduling is more effective than lock avoidance when there are four threads.
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• Clustering techniques in combination with lock rescheduling are effective at improving

cache locality and reducing dilation. These techniques can provide significant speedups

for most models.

• Larger models exploit additional threads beyond two more effectively than smaller models.

• There exists a “sweet spot” of model size versus the number of processors where the re-

duction in capacity misses less the increase in sharing misses is maximized.

• Of the clustering techniques, Instance-Aware Dominant Sequence Clustering is better for

smaller models or for more threads. Instance-Based Clustering is better for large models if

few threads are used.

In conclusion, parallelization should use both iDSC and lock rescheduling when the model

is of medium or large size, particularly when there are four or more threads. For small models,

IBC should be used, but users should be aware that the additional use of lock mitigation will have

only small effects.

Because there is a “sweet spot” of model size versus the number of processors, it would

be desirable to a priori estimate the optimal number of processors to use for a given model.

Unfortunately, the results in this section give little guidance. Certainly larger models will have

larger working sets and be better able to use more processors, but the definition of model size

needs to be further refined beyond just numbers of signals or instances or codeblocks to include

information about the granularity of codeblocks. Furthermore, as was seen with the I2-CMP

model, the use of more processors may lead to larger load imbalance. A possible procedure

would be to use a size metric to form an initial estimate of the number of processors and then to

progressively reduce the number of processors if load imbalance is an issue.

4.7 Chip Multiprocessor Evaluation

A fairly recent development is the wide availability of simple chip multiprocessors (CMPs). A

chip multiprocessor is a microprocessor with more than one processor core on a single die. These

cores may or may not share portions of the cache hierarchy. This section presents a preliminary
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evaluation of the multiprocessor scheduling heuristics introduced in the last section upon a two-

way chip multiprocessor. As in the previous section, the section first shows the effects of lock

mitigation, then the effects of clustering, and finally interactions between the two.

4.7.1 Methodology

The evaluation system is a single processor system with one Intel R©Pentium R© D running at 2.8

GHz. This system has 1 megabytes of L2 cache per core and 4 gigabytes of memory. The L2

cache is not shared; cache-to-cache data transfers need not go through memory, but do require

access to the system bus. The system runs Fedora Core release 3, with kernel version 2.6.15.4.

All simulators are compiled using gcc 3.4.2 with the default compilation flags provided by LSE’s

ls-build script.

The same nine models are used for the evaluation, but the parameters of the iDSC heuristic

have been changed to match the new expected communication costs. The cost in cycles of inter-

task communication from task i to j running in different threads is now taken to be: 15∗(1+NSij)

where NSij is the number of signals generated by i and used by j; 15 cycles is approximately the

cost of an access to an L2 cache. This figure is meant to reflect the lower cost for cache-to-cache

transfers in a chip multiprocessor, but is much too low for this system architecture.

4.7.2 Lock Mitigation

This subsection evaluates the effectiveness of the lock mitigation heuristics at reducing waiting

for locks. Figure 4.25 shows the average speedup for each model’s simulator when parallelized

onto two threads using no lock mitigation, lock avoidance, and lock rescheduling. Speedups are

measured relative to the uniprocessor simulator for each model. As in the previous section, the

error bars show the highest and lowest speedups for each model.

Both lock avoidance and rescheduling improve performance, with lock rescheduling the more

effective of the two. This is precisely what was seen for the traditional multiprocessor (Fig-

ure 4.10). However the size of the effect is smaller for the larger models such as CMP16 and

CMP32.

171



0

0.5

1

1.5

2

2.5

Sp
ee

du
p

Sp
ee

du
p

CMP01

CMP02

CMP04

CMP08

CMP16

CMP32 I2

I2-
CMP

RISC

HLF list scheduling lock avoidance lock rescheduling

Figure 4.25: Speedup for two-threaded CMP parallelization with lock mitigation

A loss of effectiveness in lock mitigation is not the reason for the reduction in effect size for

the largest models. Figure 4.26 shows the effect of lock mitigation on overlap; the amount of

overlap is very similar to what was seen for the traditional multiprocessor (Figure 4.11). Indeed,

reduction in the percentage of overlap loss due to locking is even more impressive because it

starts from a higher number in the chip multiprocessor case.

The reason for the loss of effect size for larger models is to be found in the effects of lock

mitigation upon cache locality. Recall that there was a serendipitous improvement in cache local-

ity for the traditional multiprocessor as lock mitigation tended to place tasks calling codeblocks

from the same instance in the same thread. Figure 4.27 shows that this effect is still present for

the CMP, but is not as strong as it was for the traditional multiprocessor (Figure 4.12(a)), except

for the I2 model.

To summarize, lock mitigation performs much the same on a chip multiprocessor as it did on

a traditional multiprocessor. Either lock avoidance or lock rescheduling are effective, and lock

rescheduling is generally more effective.
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Figure 4.26: Effects of lock mitigation on overlap for two CMP threads
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Figure 4.27: Effects of lock mitigation on dilation for two CMP threads

4.7.3 Clustering

This subsection presents the effectiveness of clustering at improving cache locality. Because the

caches are not shared in the system used for this evaluation, clustering should improve locality

much as it did for the traditional multiprocessor. However the effect on dilation and speedup

should be less than it was for the traditional multiprocessor, as the latency of cache-to-cache

transfers should be reduced.

Figure 4.28 shows the average speedup for each model’s simulator when parallelized onto two

threads using no clustering, Instance-Based Clustering, and Instance-Aware Dominant Sequence

Clustering. Speedups are measured relative to the uniprocessor simulator for each model. As

always, the error bars show the highest and lowest for speedups for each benchmark. After

clustering, lock rescheduling is used in each case with processor assignments constrained by the

clustering.

Both clustering techniques improve simulator performance for all the models. Superlinear

speedup is possible for the CMP08 model. This is different from the results obtained using

a traditional multiprocessor (Figure 4.16) in that the maximum speedup occurs with a smaller

model. This shift in the size at which maximum speedup occurs is surprising as the per-core cache

174



0

0.5

1

1.5

2

2.5
Sp

ee
du

p
Sp

ee
du

p

CMP01

CMP02

CMP04

CMP08

CMP16

CMP32 I2

I2-
CMP

RISC

no clustering IBC iDSC

Figure 4.28: Speedup for two-threaded CMP parallelization with clustering
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Figure 4.29: Effect of clustering on dilation for two CMP threads
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sizes are the same in this CMP as in the traditional multiprocessor which was used. Figure 4.29

shows the effects of clustering on dilation. Clustering reduces dilation for all models as it did on

a traditional multiprocessor, though not by as much; this does agree with intuition.

Unfortunately, the impact of clustering upon cache misses cannot be directly measured. The

performance counters of the Pentium R© D do not count L2 cache misses directly, though they

will count memory accesses. However the granularity and accuracy available appear insufficient

to use these counters with any confidence. For example, the counters report that the uniprocessor

CMP32 simulator requires fewer than one memory access per simulated cycle for the 1-megabyte

cache of the processor. This is inconceivable in light of the last section’s results, where a 1-

megabyte cache resulted in about three orders of magnitude more accesses to memory. The

sampling granularity delivered by the counter may not be that which was requested and at the

granularity delivered, no effects upon the number of memory accesses are seen.

Figure 4.30(a) shows effects of clustering upon overlap. For the smallest models (CMP01

and RISC), clustering reduces overlap severely. The CMP01, I2, I2-CMP, and RISC models

experience load imbalance, as seen in Table 4.12. For the largest models, clustering has little

effect on overlap. This is similar to the results for the traditional multiprocessor (Table 4.18(a)),

except that when iDSC improves overlap over no clustering, it does not do so as strongly. This

is to be expected; inter-thread communication costs should affect overlap less when they are

smaller, as they are for a chip multiprocessor. Note that just as in the traditional multiprocessor,

clustering constrains the lock rescheduling and leads to a larger percentage of the wait time being

spent in locks.

none IBC iDSC
CMP01 0.22 60.90 84.27
CMP02 0.11 1.01 0.11
CMP04 0.06 0.73 0.06
CMP08 0.03 8.69 0.03
CMP16 0.01 6.74 0.01
CMP32 0.01 7.52 0.01
I2 0.11 94.37 81.90
I2-CMP 0.70 95.75 90.63
RISC 3.37 55.06 1.12

Table 4.12: Percent load imbalance for two-threaded CMP parallelization with clustering
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Figure 4.30: Effects of clustering on overlap for two CMP threads
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small model - 2 threads

none IBC iDSC Row
none 0.37 1.08 0.95 0.72
avoid 0.57 1.08 0.94 0.83
resched. 0.63 1.10 1.00 0.88
Column 0.51 1.08 0.96 0.81

medium model - 2 threads

none IBC iDSC Row
none 0.61 1.67 1.72 1.20
avoid 1.01 1.64 1.70 1.41
resched. 1.04 1.70 1.72 1.45
Column 0.86 1.67 1.71 1.35

large model - 2 threads

none IBC iDSC Row
none 0.91 1.60 1.60 1.32
avoid 1.16 1.60 1.60 1.44
resched. 1.24 1.62 1.64 1.49
Column 1.09 1.61 1.62 1.42

Table 4.13: Effects of clustering and lock mitigation upon speedup for two CMP threads

Overall, clustering leads to performance improvement for all the models except I2 and I2-

CMP. The combination of lock rescheduling with clustering makes parallelization beneficial for

all the CMP family of models, though the benefit is less for the CMP16 and CMP32 models

than it was on a traditional multiprocessor. This reduction in benefit for these models, combined

with the increase in benefit for the CMP08 model is interesting, especially in light of the fact that

per-processor core cache size has not changed. This may be an indication of the insufficiency of

the task cost estimation method or the communication cost estimation and warrants attention in

future work.

4.7.4 Interactions

Table 4.13 shows the average speedup of each combination of lock mitigation and clustering

heuristics for the different sizes of models. The heuristics interact much as they did for the

traditional multiprocessor system: the effect of clustering is much larger and once clustering is
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done, the uses of lock reduction techniques makes only a minor difference. As before, the benefit

comes mainly from improved cache locality.

As with traditional multiprocessor systems, the preferred combination of heuristics would be

lock rescheduling plus iDSC for medium and large models and lock rescheduling plus IBC for

small models.

4.7.5 Summary: Chip Multiprocessors

For a chip multiprocessor, the following has been shown:

• The effectiveness of lock mitigation on a chip multiprocessor is similar to that on a tradi-

tional multiprocessor. Either lock avoidance or lock rescheduling improve performance,

with lock rescheduling resulting in slightly higher performance.

• Either clustering technique works well, but Instance-Aware Dominant Sequence Clustering

is better for medium and large models.

• Maximum speedup due to clustering takes place for smaller models than for traditional

multiprocessors; this result is surprising.

In conclusion, the preferred combination of heuristics would be lock rescheduling plus iDSC

for medium and large models and lock rescheduling plus IBC for small models.

4.8 Simultaneous Multithreading Evaluation

Another common microarchitectural technique is multithreading. A simultaneous multithread-

ing processor maintains state for multiple threads of execution and may issue instructions from

multiple threads in the same clock cycle. This section presents a preliminary evaluation of the

multiprocessor scheduling heuristics introduced in this chapter upon a two-way simultaneous

multithreading processor. The section first shows the effects of lock mitigation, then the effects

of clustering, and finally interactions between the two.
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4.8.1 Methodology

The evaluation system is a single processor system with one Intel R©Pentium R©4 Processor with

Hyperthreading running at 3.0 GHz. This processor supports two simultaneous threads and 512

KB of L2 cache; the system has 2 gigabytes of memory. All caches and the processor datapath

are shared. The system runs Fedora Core release 3, with kernel version 2.6.12-1.1381 FC3smp.

All simulators are compiled using gcc 3.4.4 with the default compilation flags provided by LSE’s

ls-build script.

The same nine models are used for the evaluation, but the parameters of the iDSC heuristic

have been changed to match the new expected communication costs. The cost in cycles of inter-

task communication from task i to j running in different threads is now taken to be: 5∗(1+NSij)

where NSij is the number of signals generated by i and used by j; 5 cycles is meant to reflect an

access to the shared L1 cache, though this number is perhaps large.

4.8.2 Lock Mitigation
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Figure 4.31: Speedup for two-threaded SMT parallelization with lock mitigation

This subsection evaluates the effectiveness of the lock mitigation heuristics at reducing wait-

ing for locks. Figure 4.31 shows the average speedup for each model’s simulator when par-
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allelized onto two threads using no lock mitigation, lock avoidance, and lock rescheduling.

Speedups are measured relative to the uniprocessor simulator for each model. As in the previous

section, the error bars show the highest and lowest speedups for each model.

The base HLF list scheduling performs much better for smaller models than it has when

parallelizing for other host systems, though it still does not achieve speedup. Once lock mitigation

is added, all but the three smallest models achieve some speedup.

As has been seen for the other host systems, both lock avoidance and rescheduling improve

performance, with lock rescheduling the more effective of the two. The difference between the

two heuristics is very small. Figure 4.32 shows the effects of lock mitigation on overlap. Lock

mitigation continues to improve overlap and reduce the fraction of overlap lost waiting for locks,

in much the same manner as it has for the other host systems.

Lock mitigation should no longer have the side effect of improving cache behavior as the

entire cache hierarchy is now shared between the threads. Figure 4.33 shows the effect of lock

mitigation upon dilation; lock mitigation has some small effect, which is usually a reduction in

dilation. More interesting still, dilation is still greater than one even with presumably no cache

effects. Some of this is due to overhead: the implementation requires that task invocations carry

the thread ID as a parameter, for example. However most of it is likely to be due to competition

between the threads for pipeline resources such as the reorder buffer or the load/store queue; lock

mitigation might reduce this contention. This seems even more likely in light of the fact that the

atomic memory operations used to implement locks could very well serialize memory accesses

for both threads in the load/store queue.

To summarize, lock mitigation for a simultaneous multithreading processor continues to in-

crease overlap in the same fashion that it does for a traditional multiprocessor. There are also

some small reductions in dilation for some models. The net result is that parallelization becomes

effective for many models. Either lock avoidance or lock rescheduling can be used, but neither is

preferred.

181



0

0.5

1

1.5

2

2.5

O
ve

rla
p

O
ve

rla
p

CMP01

CMP02

CMP04

CMP08

CMP16

CMP32 I2

I2-
CMP

RISC

HLF list scheduling lock avoidance lock rescheduling

(a) Overlap

0

20

40

60

80

100

Pe
rc

en
ta

ge
of

ov
er

la
p

lo
ss

du
e

to
lo

ck
in

g
Pe

rc
en

ta
ge

of
ov

er
la

p
lo

ss
du

e
to

lo
ck

in
g

CMP01

CMP02

CMP04

CMP08

CMP16

CMP32 I2

I2-
CMP

RISC

HLF list scheduling lock avoidance lock rescheduling

(b) Percent of lost overlap due to locks

Figure 4.32: Effects of lock mitigation on overlap for two SMT threads
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Figure 4.33: Effects of lock mitigation on dilation for two SMT threads

4.8.3 Clustering

This subsection presents the effectiveness of clustering at improving cache locality. Because the

entire cache hierarchy is shared, clustering should not improve locality and one expects to see

little performance difference from clustering unless it interferes with lock mitigation.

Figure 4.34 shows the average speedup for each model’s simulator when parallelized onto two

threads using no clustering, Instance-Based Clustering, and Instance-Aware Dominant Sequence

Clustering. Speedups are measured relative to the uniprocessor simulator for each model. As

always, the error bars show the highest and lowest for speedups for each benchmark. After

clustering, lock rescheduling is used in each case with processor assignments constrained by the

clustering.

Clustering achieves slight performance gains for about half of the models, but reduces per-

formance for the other models. This is very different from the results for the traditional mul-

tiprocessor, and it occurs because the cache hierarchy is totally shared. Figure 4.35 shows the

effects on dilation; clustering has very little effect except for the I2 and I2-CMP models, where

as can be seen in Table 4.14, clustering can create enormous load imbalance and virtually “un-

parallelize” the simulator. The effect of clustering on cache misses cannot be measured reliably
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Figure 4.34: Speedup for two-threaded SMT parallelization with clustering

0

0.5

1

1.5

2

2.5

D
ila

tio
n

D
ila

tio
n

CMP01

CMP02

CMP04

CMP08

CMP16

CMP32 I2

I2-
CMP

RISC

no clustering IBC iDSC

Figure 4.35: Effect of clustering on dilation for two SMT threads
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because the performance counters of the Pentium R© 4 processor have the same issues as those of

the Pentium R© D.

Figure 4.36 shows the effects of clustering on overlap. The ambiguous results from the tra-

ditional multiprocessor appear here as well: clustering improves overlap for some models and

degrades it for others. The iDSC heuristic outperforms IBC for all but the CMP01 model. The

CMP01, I2, I2-CMP, and RISC models suffer from load imbalance with clustering as seen in

Table 4.14 and have less overlap than without clustering; however note that all of these models

do achieve some overlap.

none IBC iDSC
CMP01 0.22 60.90 84.27
CMP02 0.11 1.01 0.11
CMP04 0.06 0.73 0.17
CMP08 0.03 8.69 0.03
CMP16 0.01 6.74 0.01
CMP32 0.01 7.52 0.01
I2 0.11 94.37 3.42
I2-CMP 0.70 95.75 93.59
RISC 3.37 55.06 1.12

Table 4.14: Percent load imbalance for two-threaded SMT parallelization with clustering

Overall, clustering can lead to performance improvement, though for many models it may

lead to performance degradation. Parallelization is effective, though not overwhelmingly so, for

about half of the models; the maximum speedup achieved is 1.34.

4.8.4 Interactions

Table 4.15 shows the average speedup of each combination of lock mitigation and clustering

techniques for the different sizes of models. The heuristics interact differently in simultaneous

multithreading processors than they do for the traditional multiprocessor or chip multiprocessor;

clustering is now not always the larger effect. Yet as before, once clustering is done, lock miti-

gation techniques still make only a minor difference. This is because clustering has constrained

lock mitigation.

As with other models, IBC performs marginally better than iDSC for small models and

marginally to slightly worse for medium and large models. This is surprising at first glance;
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Figure 4.36: Effects of clustering on overlap for two SMT threads

186



small model - 2 threads

none IBC iDSC Row
none 0.59 0.88 0.85 0.76
avoid 0.86 0.88 0.84 0.86
resched. 0.90 0.86 0.85 0.87
Column 0.77 0.87 0.85 0.83

medium model - 2 threads

none IBC iDSC Row
none 0.78 1.09 1.18 1.00
avoid 1.07 1.08 1.18 1.11
resched. 1.11 1.07 1.15 1.11
Column 0.98 1.08 1.17 1.07

large model - 2 threads

none IBC iDSC Row
none 0.92 1.19 1.22 1.10
avoid 1.18 1.19 1.22 1.20
resched. 1.20 1.19 1.21 1.20
Column 1.09 1.19 1.21 1.16

Table 4.15: Effects of clustering and lock mitigation upon total speedup for two SMT threads
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when the cache hierarchy is totally shared the size of the model should not matter. The reason is

that these results are skewed in each case by a model which becomes load unbalanced by cluster-

ing: CMP01 in the case of the small models and I2-CMP in the case of the large models. This

imbalance has occurred to some extent for all of the host systems; understanding the imbalance

is a worthy goal for future work.

As with traditional multiprocessor and chip multiprocessor systems, the preferred combina-

tion of techniques would be lock rescheduling plus iDSC for medium and large models. However,

unlike those systems, lock rescheduling without any clustering should be used for small models,

if parallelization is performed at all.

4.8.5 Summary: Simultaneous Multithreading Processors

For a simultaneous multithreading processor, the following has been shown:

• The effectiveness of lock mitigation on a simultaneous multithreading processor is similar

to that on a traditional multiprocessor. Either lock avoidance or lock rescheduling may be

used, but neither is to be preferred.

• Clustering leads to only marginal performance improvements and may degrade perfor-

mance by creating load imbalances, particularly in small models.

In conclusion, the preferred combination of techniques would be lock rescheduling plus iDSC

for medium and large models; foregoing iDSC would also be acceptable. Lock rescheduling

without any clustering should be used for small models, if parallelization is performed at all.

4.9 Summary: Scheduling for Parallel Structural Simulation

This chapter has shown that structural simulators using the Heterogeneous Synchronous Reactive

model of computation can be automatically parallelized and that the method used for scheduling

can have a large impact upon simulation speed. A simple list scheduling approach results in

parallel simulators which are slower than the corresponding uniprocessor simulators.

The parallel simulator scheduling problem is an instance of the multiprocessor task schedul-

ing problem with precedence constraints, sequence dependence, resource constraints, and com-
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Architecture
Traditional Chip Simultaneous

Model Multiprocessor Multiprocessor Multi-threaded
Size 2 threads 4 threads 2 threads 2 threads
Small Lock

rescheduling +
IBC

Lock
rescheduling +
IBC

Lock
rescheduling +
IBC

Lock
rescheduling

Medium Lock
rescheduling +
iDSC

Lock
Reschedul-
ing + iDSC

Lock
rescheduling +
iDSC

Lock
rescheduling +
iDSC

Large Lock
Reschedul-
ing + iDSC

Lock
Reschedul-
ing + iDSC

Lock
rescheduling +
iDSC

Lock
rescheduling +
iDSC

Table 4.16: Recommended scheduling heuristics

munication costs. I have introduced two new lock mitigation heuristics to reduce time spent

waiting for locks to meet resource constraints and two new clustering heuristics to improve cache

locality and reduce the effects of sequence dependence. These heuristics have been evaluated for

three classes of parallel systems: traditional multiprocessors, chip multiprocessors, and simulta-

neous multithreading processors.

Use of these heuristics allows parallelization to provide acceleration for the simulators of

many models. Indeed, for certain models, superlinear speedup is obtained: up to 7.56 for four pro-

cessors. The clustering techniques have a larger effect than lock mitigation techniques. Recom-

mendations for which heuristics should be used in what situation are summarized in Table 4.16.

Instance-Based Clustering should be preferred for small models, while Instance-Aware Dominant

Sequence Clustering performs better for medium-sized and large models. Lock rescheduling is

nearly always better than lock avoidance, though the difference is usually small. Clustering (and

perhaps not parallelization) should not be used for simulation of small models on simultaneous

multithreading processors.
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Chapter 5

Conclusions and Future Directions

In this dissertation, I have presented means to schedule model concurrency onto single and mul-

tiple processors in order to accelerate structural microarchitectural simulation. This chapter re-

capitulates the conclusions reached and contributions made by this dissertation and discusses

possible directions for future work.

5.1 Conclusions and Contributions

This dissertation has shown that static and hybrid uniprocessor scheduling techniques can be used

successfully to increase structural simulation speed for the Heterogeneous Synchronous Reactive

model of computation. In particular, partitioned scheduling has been shown to be highly effective

for scheduling models within the Liberty Simulation Environment. The use of static partitioned

scheduling can provide speedups of up to 2.09 over dynamic scheduling.

Contrary to prior belief, partitioned scheduling can generate correct static schedules for the

most common model of computation, the zero-cycle Discrete Event MoC, when models are re-

stricted to be microarchitecturally synchronous. With modifications, partitioned scheduling can

generate correct static schedules for the larger class of models which are logically synchronous

if the signals can be represented in a fixed number of bits. Thus all microarchitectural models

which describe synchronous designs where signals can be represented in a fixed number of bits

can be statically scheduled using partitioned scheduling
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Selective-trace techniques reduce the number of codeblock invocations, but generally do not

provide improved performance because of the increased overhead they imply. Acyclic scheduling

can be effective, providing speedups of up to 1.44. Levelized event-driven scheduling does not

reliably improve performance, though it does decrease codeblock invocations.

Four enhancements to scheduling techniques are needed to make scheduling practical: depen-

dence information enhancement to improve the precision of signal graphs used for scheduling,

dynamic subschedule embedding to control scheduler execution time in the face of limited depen-

dence information, subgraph-based invocation coalescing to reduce redundant work, and forced

invocation to allow dynamic scheduling within an HSR framework.

Structural simulators using the Heterogeneous Synchronous Reactive model of computation

can be automatically parallelized and that the method used for scheduling can have a large impact

upon simulation speed. A simple list scheduling approach results in parallel simulators which are

slower than the corresponding uniprocessor simulators.

The parallel simulator scheduling problem is an instance of the multiprocessor task schedul-

ing problem with precedence constraints, sequence dependence, resource constraints, and com-

munication costs. This dissertation has introduced two new lock mitigation heuristics to reduce

time spent waiting for locks to meet resource constraints and two new clustering heuristics to im-

prove cache locality and reduce the effects of sequence dependence. These heuristics have been

evaluated for three classes of parallel systems: traditional multiprocessors, chip multiprocessors,

and simultaneous multithreading processors.

Use of these heuristics allows parallelization to provide acceleration for the simulators of

many models. Indeed, for certain models, superlinear speedup is obtained: up to 7.56 for

four processors. The clustering techniques have a larger effect than lock mitigation techniques.

Instance-Based Clustering should be preferred for small models, while Instance-Aware Dominant

Sequence Clustering performs better for medium-sized and large models. Lock rescheduling is

nearly always better than lock avoidance, though the difference is usually small. Clustering (and

perhaps not parallelization) should not be used for simulation of small models on simultaneous

multithreading processors.
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5.2 Future Directions

This dissertation has not exhausted the possibilities for the use of scheduling to accelerate mi-

croarchitectural simulation. Opportunities exist for improvements in both uniprocessor and par-

allel scheduling.

For uniprocessor scheduling, dynamic subschedule scheduling could gain from better tun-

ing of what constitute large or small strongly-connected components. Both partitioned schedul-

ing and invocation scheduling could be adapted to include codeblock invocation time estimates,

thereby avoiding repetitions of the costliest codeblocks. Automatic dependence analysis using

the code of module instances would remove the responsibility for annotating modules from the

user, thereby making scheduling both easier to use and more exact.

For parallel scheduling, parallelization of dynamic subschedules would be helpful when the

user has not provided complete dependence enhancement. Further investigation of situations

where clustering techniques assign most work to a single processor could lead to improvements

in clustering or means to automatically reduce the number of processors used when model paral-

lelism does not warrant them. Other algorithmic enhancements are also possible. One such line

of inquiry involves forms of clustering which do not constrain lock mitigation as tightly, allow-

ing both lock wait time reduction and locality improvement to be addressed together. Another

involves better modeling of internal cache misses as communication costs in iDSC or a variant of

MH.

Better estimates of codeblock invocation costs and communication costs would benefit all

forms of scheduling greatly. These costs may be predictable via joint analysis of model structure

and code size metrics. Another possibility is use of profiling information. Profiling could even

be used at run-time to re-parallelize the simulator, making it adapt to host system load.

Additional studies into the scalability of the parallelization techniques to more than four pro-

cessors would also be helpful in determining which heuristics should be applied when using larger

systems. Another interesting direction to pursue would be the integration of thread-level auto-

matic parallelization with job-level parallelism techiques such as DiST in systems where there is

a hierarchy of parallelism, such as a cluster of machines containing chip multiprocessors.
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The proof that partitioned scheduling will work for a very large class of zero-delay Discrete

Event systems is quite important because it open the door for the support of multiple clock do-

mains in the models. Multiple domains are much easier to support in the DE model of computa-

tion than the HSR MoC because there are never issues with W-codeblocks updating state, which

would reduce the ability to reuse modules which did so in multiple clock models. Multiple clock

domains are very important in the modeling of systems beyond just a single microprocessor and

are becoming increasingly important to detailed modeling within a microprocessor.

Finally, codeblocks are not sacrosanct. Further large-scale improvements in performance may

require us to “open the black box” and restructure the code of module templates. Doing so will

allow improvements such as code specialization, inlining of codeblocks, downgrading of signals

to variables, and other techniques which hand-written simulators take advantage of at present.

Indeed, aggressive codeblock merging or partitioning could eventually lead to an automatically

parallelized monolithic simulator generated from a structural model.

5.3 A Final Word

The speed of microarchitectural simulation matters. So also does the ease with which microar-

chitectural models can be created and modified. Structural simulation frameworks such as the

Liberty Simulation Environment are a consequential step forward in improving the latter. But

they will not gain widespread acceptance if the speed cannot be made competitive with that of

hand-coded simulators. This dissertation represents the first few significant steps in accelerating

structural microarchitectural simulation. Faster structural microarchitectural simulation promises

to allow microarchitects to enjoy simulators which are both fast and easy to modify, ultimately

resulting in more and better evaluation of design alternatives and better design decisions.
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[35] D. Gracia Pérez. Personal communication to David A. Penry, January 2006.
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[72] E. Özer, S. Banerjia, and T. M. Conte. Unified assign and schedule: A new approach to

scheduling for clustered register file microarchitectures. In Proceedings of the 31st Annual

International Symposium on Microarchitecture, 1998.

[73] S. Patil, P. Banerjee, and C. D. Polychronopoulos. Efficient circuit partitioning algorithms

for parallel logic simulation. In Proceedings of Supercomputing ’89, pages 361–370,

November 1989.

[74] D. A. Patterson and J. L. Hennessy. Computer Organization and Design: The Hard-

ware/Software Interface. Morgan Kaufmann, San Francisco, CA, 2nd edition, 1998.

[75] D. Penry and D. I. August. Optimizations for a simulator construction system supporting

reusable components. In Proceedings of the 40th Design Automation Conference (DAC),

June 2003.

[76] D. A. Penry, D. Fay, D. Hodgdon, R. Wells, G. Schelle, D. I. August, and D. Connors.

Exploiting parallelism and structure to accelerate the simulation of chip multi-processors.

In Proceedings of the Twelfth International Symposium on High-Performance Computer

Architecture (HPCA), pages 29–40, February 2006.

[77] D. A. Penry, M. Vachharajani, and D. I. August. Rapid development of a flexible validated

processor model. In Proceedings of the 2005 Workshop on Modeling, Benchmarking, and

Simulation, June 2005.

[78] F. Pétrot, D. Hommais, and A. Greiner. Cycle precise core based hardware/software system

simulation with predictable event propagation. In Proceedings of the 23rd EUROMICRO

Conference, pages 182–187, 1997.

[79] S. L. Peyton Jones. The Implementation of Functional Programming Languages. Prentice-

Hall, 1987.

201



[80] J. Philbin, J. Edler, O. J. Anshus, C. C. Douglas, and K. Li. Thread scheduling for cache

locality. In Proceedings of the 7th International Conference on Architectural Support for

Programming Languages and Operating Systems, pages 60–70, February 1996.

[81] C. V. Ramamoorthy, K. M. Chandy, and J. Mario J. Gonzalez. Optimal scheduling strate-

gies in a multi-processor system. IEEE Transactions on Computers, C-21:137–146, Febru-

ary 1972.

[82] V. Sarkar and J. Hennessy. Compile-time partitioning and scheduling of parallel programs.

In Proceedings of the 1986 SIGPLAN Symposium on Compiler Construction, volume 21,

pages 17–26, 1986.

[83] S. Selvakumar and C. S. R. Murthy. Scheduling precedence constrainted task graphs with

non-negligible intertask communiation onto multiprocessors. IEEE Transactions on Par-

allel and Distributed Systems, 5(3):328–336, 1994.

[84] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder. Automatically characterizing large

scale program behavior. In Proceedings of the 10th International Conference on Architec-

tural Support for Programming Languages and Operating Systems, October 2002.

[85] G. C. Sih and E. A. Lee. A compile-time scheduling heuristic for interconnection-

constrained heterogeneous processor architectures. IEEE Transactions on Parallel and

Distributed Systems, 4(2):75–87, February 1993.

[86] G. C. Sih and E. A. Lee. Declustering: A new multiprocessor scheduling technique. IEEE

Transactions on Parallel and Distributed Systems, 4(6), June 1993.

[87] J. W. Smith, K. S. Smith, and R. J. Smith II. Faster architectural simulation through

parallelism. In Proceedings of the 24th ACM/IEEE Design Automation Conference, pages

189–194, 1987.

[88] S. P. Smith, B. Underwood, and M. R. Mercer. An analysis of several approaches to

circuit partitioning for parallel logic simulation. In Proceedings of the 1987 International

Conference on Computer Design, pages 664–667, 1987.

202



[89] G. W. Snedecor and W. G. Cochran. Statistical Methods. Iowa State University Press,

sixth edition, 1967.
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