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Abstract

Remote data access latency is a significant performance bot-

tleneck in many modern programs that use remote databases

and web services. We present Sprint—a run-time system

for optimizing such programs by prefetching and caching

data from remote sources in parallel to the execution of the

original program. Sprint separates the concerns of exposing

potentially-independent data accesses from the mechanism

for executing them efficiently in parallel or in a batch. In

contrast to prior work, Sprint can efficiently prefetch data in

the presence of irregular or input-dependent access patterns,

while preserving the semantics of the original program.

We used Sprint to automatically improve the perfor-

mance of several real-world Java programs that access re-

mote databases (MySQL, DB2) and web services (Face-

book, IBM’s Yellow Pages). Sprint achieves speedups rang-

ing 2.4× to 15.8× over sequential execution, which are

comparable to those achieved by manually modifying the

program for asynchronous and batch execution of data ac-

cesses. Sprint provides a simple interface that allows a pro-

grammer to plug in support for additional data sources with-

out modifying the client program.

Categories and Subject Descriptors D.3.4 [Programming

Languages]: Processors—Run-time environments

General Terms Design, Languages, Performance

Keywords remote data, automatic, prefetching, paralleliza-

tion, speculation, batching, caching, compiler, run-time, tool
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1. Introduction

Web, business, and scientific programs have increasingly be-

come data bound. They issue large numbers of long latency

data access requests—long latency because the data is often

served by remote web services or databases. Owing to the

disparity between CPU speeds and network latencies and

bandwidths, these programs spend a significant fraction of

their execution time waiting for the data access requests to

be serviced.

To improve the performance of such programs, program-

mers expend a lot of time and effort scheduling the requests

in a way that minimizes the overall execution time using

schemes such as asynchronous execution, batching, and par-

allelization. It usually requires significant code rewriting,

thereby obscuring the functional logic of the program, and

often results in non-portable performance gains. Ideally, the

programmer should only be concerned with expressing the

functional logic of the program, and allow the compiler and

run-time to orchestrate the remote data requests efficiently.

1.1 Addressing Latency Issues via Prefetching

A conventional way to overcome the problem of data access

latency is data prefetching [23, 31]. The idea is to issue asyn-

chronous data requests before the data is really needed so

that the data may be available locally when accessed by the

program. The desired characteristics of a prefetching mecha-

nism are (1) accuracy: make a good prediction about what re-

mote data will be accessed by the program, (2) effectiveness:

make the remote data available locally by the time the pro-

gram needs it, and (3) correctness: guarantee that prefetching

does not affect the program’s behavior. Prefetching has been

widely studied in the microarchitecture community to hide

the latency between the processing core and the memory

subsystem [6, 16, 21, 35]. Prefetching has also been used to

hide the latency of a local filesystem [4, 18]. The ratio of la-

tency of data access and latency of computation is relatively

low in these domains. Consequently, prefetchers in these do-

mains need run only slightly ahead of the main thread of



computation, and overlapping just a single data access with

computation often suffices. By contrast, prefetchers for re-

mote data must be able to overlap several remote data ac-

cesses since the ratio of latency of data access and latency of

computation is very high.

Most prefetchers are history-based: they analyze data ac-

cess patterns performed in the past, predict that future data

accesses will follow similar patterns, and prefetch the corre-

sponding data [8, 10, 17, 18, 25]. While this approach works

for programs with regular data access patterns, such as array-

based scientific programs, it is not effective for programs

whose data accesses depend on the input, are not structured

in easily predicted patterns, or do not contain recurrences

(that is, frequent reuse of the same remote data).

In a departure from history-based prefetching, Chang and

Gibson use speculative execution to allow programs to dy-

namically discover future read accesses to disk [4]. In the

presence of dependencies between accesses, their approach

often causes misspeculation of future disk accesses, and spu-

rious disk accesses. Speculative parallelization schemes [9,

19, 33] provide a mechanism for detecting violations of con-

trol and data dependencies and use re-execution to guaran-

tee that all dependencies are respected. These schemes of-

fer hope for issuing multiple remote data requests in paral-

lel, but have some disadvantages in our setting. In particu-

lar, violation of dependencies that do not contribute to gen-

erating remote data requests may cause re-execution, thus

re-executing some expensive remote access and hindering

progress towards exposing other requests for remote data. It

is therefore important to distinguish between dependencies

that matter for identifying remote data accesses, and those

that matter for computation that uses the data returned by

the accesses.

1.2 Prefetching from Remote Data Sources

We propose an approach, implemented in a tool called

Sprint, that separates the concerns of exposing potentially-

independent remote data accesses from the mechanism by

which the overall completion time of the data accesses is re-

duced. To expose remote data requests, our approach relies

on a prefetcher, automatically constructed from the origi-

nal program. To schedule these requests efficiently, our ap-

proach relies on an execution engine (see Figure 1).

Prefetcher The prefetcher is essentially a copy of the orig-

inal program, that executes concurrently with the original.

The prefetcher and the original program issue remote data

requests and cache the returned data locally in a shared data-

structure. The prefetcher executes faster than the original

program, because it is executed by multiple threads in a

speculatively-parallel manner, whenever resources are avail-

able. In the common case, the original program finds that the

data it requires is already available in the cache.

By restricting the effects of the prefetcher to the cache,

the behavior of the original program is preserved. By con-
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(a) Original program interacts with a remote data source through

a well-defined long-latency API
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(b) Original program interacts with a prefetcher via a data cache,
managed by an execution engine, which executes remote data

accesses in parallel or in a batch

Figure 1. Conceptual model of execution (a) without Sprint

(b) with Sprint

structing the prefetcher from the original program, all depen-

dencies are respected unless an explicit decision to speculate

is made. The prefetcher is designed to respect dependen-

cies between remote data accesses, but may violate other de-

pendencies to expose potentially-independent data accesses.

This approach works well even for programs with irregular

and input-dependent data accesses.

Execution engine The execution engine manages the

cache and automatically decides when to batch up accesses

and when to issue them in parallel. Additionally, the execu-

tion engine is responsible for monitoring the effectiveness

of the speculative prefetcher and restarting the prefetcher if

the speculation goes astray (because some remote data ac-

cesses were incorrectly dubbed as independent). Fortunately,

monitoring cache misses in the execution of the original pro-

gram provides a low-overhead way to identify violations of

dependencies between remote data accesses.

If the remote data source may be modified by other enti-

ties (not the program executed under Sprint), then the exe-

cution engine keeps the cache in sync with the data source

using the mechanism of triggers and callbacks. If this mech-

anism is not supported by the API of the remote data source

(databases usually support it, but remote services may not),

then the programmer is responsible for guaranteeing that the



program does not rely on any data consistency constraints to

be maintained by the remote data source.

Interaction with the programmer Our goal is to reduce

the burden on the programmer by helping to avoid code

rewriting that obstructs the functional logic of the program

and results in non-portable performance gains. Towards this

end, we designed a practical system that can automatically

perform speculative prefetching and optimization of remote

data accesses, implemented using certain standard APIs,

such as JDBC and HTTP. Our system uses profiling (on rep-

resentative inputs supplied by the programmer) and run-time

monitoring methods (Section 5) to automatically identify re-

mote data accesses that are likely to be independent, and to

decide when to start and stop speculative prefetching.

1.3 Contributions

The main contribution of this paper is the design, imple-

mentation, and evaluation of an integrated tool called Sprint.

Sprint is the first automatic tool to reduce the latency of pro-

grams that perform multiple accesses to data from sources

such as remote web services and databases, while preserv-

ing the semantics of such programs. Sprint consists of the

following components:

• Profiler that identifies potentially-independent remote

data accesses to improve accuracy of speculation

• Bytecode transformer that uses the profiling infor-

mation to automatically generate a program-specific

prefetcher that preserves the behavior of the original pro-

gram

• Execution engine that optimizes remote data accesses by

executing them in parallel and in a batch, monitors the

effectiveness of the prefetcher, and maintains correctness

by keeping the local cache in sync with the remote data

source

• Plug-in support for new APIs that allows programmers

to apply Sprint to new data sources without modifying

the client programs

We used Sprint to automatically improve the performance

of several Java programs that access remote databases

(MySQL, DB2) and web services (Facebook, IBM’s Yel-

low Pages), and achieved speedups ranging from 2.4× to

15.8×.

Our approach is not a silver bullet for all latency issues

with remote data sources. It is designed for programs that

can be characterized by mostly read-only accesses, irregu-

lar or input-dependent data access patterns, and very low

computation latency to data access latency ratios. Our ex-

perimental evaluation in Section 6 shows that for programs

in the target domain, our approach automatically provides

performance that is comparable to the performance achieved

by manually modifying the program for asynchronous and

batch execution of remote data accesses.

2. Motivating Example

Consider the example code shown in Listing 1 (ignoring

@Launch and @Speculate annotations on lines 16 and 26

for now). When executed, this program displays the manage-

ment hierarchy rooted at the employee whose email address

is the program input. In line 27, the method buildTree

is called to fetch the corresponding hierarchy subtree from

the remote data source into a local data-structure of Node

objects.

1 class Node {
2 static int numNodes = 0;
3 Node tree;
4
5 Node buildTree (String email) {
6 Employee emp;
7 try {
8 emp = getEmployee(email); // Expensive remote data access
9 } catch (EmployeeNotInDatabaseException e) {

10 System.err.println(‘Employee ’ + email + ‘ not found!’);
11 return null;
12 }
13 Node root = new Node(emp);
14 numNodes++;
15 for (String reportee email : root.getReporteesEmail()) {

16 Node child = @Speculate buildTree(reportee email);

17 if (child != null) {
18 root.add(child);
19 child.setParent(root);
20 }
21 }
22 return root;
23 }
24
25 void main(String[] args) {

26 @Launch Optimist(buildTree);

27 tree = new Node().buildTree(args[1]);
28 display(tree);
29 }
30 }

Listing 1. Example of building a managerial tree

The program uses a high-level API to access the remote

data source. From the viewpoint of the program, the remote

data source is just a mapping from keys to values. A remote

data access is a lookup of the value stored in the remote data

source for a given key. In this example, a key is the email

address of an employee, and a value is the record of that

employee, including the list of email addresses of employees

who directly report to the employee.

In buildTree, the call to getEmployee in line 8

is expensive, because this method accesses the remote

data source to fetch the details of the employee (im-

plementation not shown). If the employee is not found,

buildTree prints an error message and returns. Other-

wise, buildTree constructs a node that will be the root

of the subtree that corresponds to the employee (line 13), in-

crements the count of nodes in the tree (line 14), and iterates

over the direct reportees of the employee (line 15). Every it-

eration recursively builds the subtree that corresponds to the

reportee (line 16) and updates the tree by linking the em-

ployee and the reportee nodes (line 18 and line 19).

Figure 2 shows the hierarchy computed by a sample ex-

ecution of this program. In this execution, the program per-



formed a sequence of 9 remote data accesses, which corre-

sponds to the depth-first traversal of the tree in Figure 2.

The total execution time of this program is dominated

by the latency of the remote data accesses. Our goal is to

reduce the total execution time by overlapping the round trip

times of remote data accesses whenever possible, without

requiring the programmer to modify code. Existing APIs

support parallel and batch access to remote data sources and

thus provide a way to overlap round trips. The challenge is

to identify as early as possible which remote data is accessed

by the program, in the presence of dependencies among

remote data accesses.

We say that a remote data access t2 depends on

remote data access t1 if the key used by t2 is com-

puted from the value returned by t1. For example,

the remote access getEmployee(jacob) de-

pends on getEmployee(david), because the

key jacob is computed using the value returned by

getEmployee(david). It is easy to see that the de-

pendencies in this example are structured as a tree that

mimics the hierarchy shown in Figure 2. The longest chain

of dependent remote accesses is of length 3, indicating

potential for improvement upon the sequential execution.

Note that there are no dependencies between remote data

accesses in different iterations of the loop in line 15, but

there are memory dependencies between the loop iterations

due to updates of numNodes in line 14 and the Node data-

structure in line 18. In other words, there are two kinds of

dependencies—those that are required to determine the key

for the next remote data access, and those that are not.

Existing methods are ineffective in this setting because

they do not distinguish between these two kinds of depen-

dencies. For example, parallelization of the loop in line 15

using Safe Futures [33] would end up executing all re-

mote data accesses sequentially, because Safe Futures re-

spect all dependencies, including memory dependencies in

lines 14 and 18. The speculative execution method proposed

by Chang and Gibson [4] would speculate the return value of

the first call to getEmployee in line 8, leading to misspec-

ulation of the subsequent remote data accesses that depend

on this value. Other methods (e.g., transactional memory

with abstract locking [24], Galois [19], batching [2, 14, 15])

would require the programmer to modify the code or to spec-

ify which dependencies are safe to ignore.

3. Sprint Architecture

In this section, we describe the conceptual architecture of

Sprint in a platform-independent manner and highlight the

design decisions that matter the most for effective prefetch-

ing. Section 5 provides more details about our implementa-

tion of Sprint for Java, and shows an effective transformation

of the code example in the previous section.

Sprint automatically transforms a program with multiple

remote data accesses into a well-performing program that

david

jacob james joseph

jim jack john jens josh

Figure 2. Dependencies between remote data accesses per-

formed during an execution of the example program shown

in Listing 1. Assuming sufficient resources, Sprint can re-

duce the execution latency to the height of the longest depen-

dence chain of remote data accesses multiplied by a round

trip latency.

combines the benefits of parallel and batch execution of re-

mote requests. Figure 1 illustrates Sprint’s system architec-

ture. Figure 1(a) shows a system where a program interacts

with a remote data source through a “well-defined” API (the

notion of “well-defined” is explained later), without Sprint.

Figure 1(b) shows the changes with Sprint. The Sprint

bytecode transformer makes two versions of the original pro-

gram, the Optimist (O) and the Pessimist (P). P is nearly

identical to the original program, except that at a certain

point in its execution, it spawns O and communicates all

live-in values for O’s execution (indicated by the arrow from

Pessimist to Optimist in Figure 1(b)). The idea is for O to

serve as a prefetcher for P and to issue remote data accesses

as early as possible. Thus, it is important that O runs faster

and stays ahead of P. For this, Sprint creates O by specula-

tively parallelizing one or more loops or recursive methods

in the original program. Listing 1 shows annotations at the

program points where O is launched (line 26) and O will be

speculatively parallelized (line 16). For parallelized execu-

tion of O, Sprint’s execution engine includes an intelligent

thread pool and task queue (Section 3.1).

O and P communicate via a data cache (inside the exe-

cution engine) that contains key-value pairs (Section 3.2).

The key corresponds to the URL of some remote data, and

the value corresponds to the remote data. By virtue of O’s

runahead execution, P is likely to find that the remote data is

available locally. Speculative stores to memory (other than

the cache) by O are dynamically privatized at run-time by

Sprint, and the data cache maintains consistency with respect

to the data source; this ensures the correctness of P’s execu-

tion (Section 4).

To execute multiple data accesses efficiently, the execu-

tion engine uses the logic shown in Figure 4. It dispatches

data accesses in parallel, or batches some accesses together

in case the remote data source supports batch execution.

In the expected case, O makes data available to P ahead

of time through the data cache. The executions of O and

P are overlapped in a pipelined fashion causing the over-

all speedup in program execution time to be fundamentally



limited only by the larger of (i) the length of the longest de-

pendence chain of remote accesses multiplied by a round trip

latency and (ii) the time to execute the original code when all

required data is available locally. In Figure 2, assuming suffi-

cient resources, the overall execution latency of the program

will be reduced from 9 round-trips to 3 round-trips to the re-

mote data source. This is because O would have executed the

subtrees rooted at james and joseph while P is executing

the subtree rooted at jacob, thereby completely hiding the

latency of six out of the nine remote data accesses.

3.1 Optimist Thread Pool and Task Queue

The Optimist is executed by multiple threads in a thread pool

(initially containing just one thread) that has the following

property: If there is no thread available to execute a task

being enqueued, a new thread is created (without exceeding

the maximum thread pool size that is specified).

A task is a unit of parallel work that transitively results

in a remote data access. For example, buildTree on line

16 in Listing 1 is a task. In some applications, if all tasks in

the task queue of the thread pool are treated equally, it might

happen that O’s threads spend most of their time executing

data requests that are logically much later in the sequential

execution. Consider the task graph shown in Figure 3 which

may be generated by a search over tree-structured data. If

O’s threads execute subtrees rooted at T 4 and T 6, P misses

in the cache frequently since it is executing logically earlier

data requests. And if P terminates early (while O did not

because of misspeculation), a large fraction of the prefetches

turns out to be useless.

To increase the likelihood of O fetching at least those data

items that will be used by P, the task queue is implemented

as a priority queue which assigns higher priority to logically

earlier tasks. For example, a task created on iteration 1 of a

loop is assigned higher priority than a task created on iter-

ation 2. In case tasks spawn more tasks in a nested fashion,

a child task inherits the priority of the parent task, with the

priorities of siblings being decided in the logical program or-

der. Using the priority task queue, tasks in the subtree rooted

at T 1 will be executed before tasks in other subtrees, allow-

ing T 3 to be overlapped with T 2. This results in a reduction

in the total time to find the item.

3.2 Data Cache

The data cache is the sole means of communication between

O and P. Remote data accesses by both O and P are recorded

in the data cache. An entry in the cache is a pair of key and

value. key corresponds to the URL of some remote data.

value corresponds to the remote data that is fetched from

the URL. value has metadata that indicates its state: absent,

issued, or present. Upon a cache lookup, if the state is absent,

then a remote data access is issued. If the state is issued, the

caller is blocked until the data is returned by the remote data

source. If the state is present, data is returned from the cache.

Note that both O and P interact with the cache in an identical

Useless data accesses

T0

T2

T6

T7 T8T5

T4T1

T3

Search item

Figure 3. Depending on timing of task (unit of parallel

work) execution, several useless data prefetches may be is-

sued in place of useful ones. A priority task queue prioritizes

tasks that come earlier in the original program order thereby

improving the number of useful prefetches. Tasks are num-

bered according to their order in the original program.

fashion. Consequently, either can fetch data for the other. In

the uncommon case that O falls behind P, the data fetched by

P serves to accelerate O.

Batch Execution The execution engine is also responsi-

ble for batching remote data accesses. Since there are many

threads executing different parts of the program (in both O

and P), many entries will be created in the cache for different

remote data accesses. Adding another state called batched

to the metadata of value allows the engine to aggregate all

queries in the cache in the batched state, issue them all at

once, and return the values appropriately thereby releasing

the callers that were blocked. This capability of the exe-

cution engine frees the programmer from the onerous task

of identifying queries to batch and writing code to match

the return values of each query with the appropriate point

in the original program. To avoid deadlock when the batch

limit has not yet been reached and the application will not

issue any more queries, a batch flush operation is inserted at

the end of the transformed code region. This is described in

more detail in Section 5.2.4.

Figure 4 describes how a data request is processed.

Prefetch Throttling O executes the program speculatively

and may go down execution paths that differ from the origi-

nal program’s execution, or prefetch remote data that is never

used. This may have negative effects such as contention for

bandwidth to the remote data source between P, O, and other

entities that access the remote data source. To minimize such

effects, the execution engine can throttle the speculation by

using information available in the data cache as a proxy for

the degree of misspeculation. Specifically, if the cache miss

rate exceeds a threshold, then the prefetcher is deemed to be

unhelpful, and is shut down.

4. Correctness of Sprint Execution

In this section, we define what it means for a program to

execute correctly under Sprint, and show how the Sprint

architecture described in Section 3 ensures correctness.
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Figure 4. Data request processing algorithm: A data access request is serviced by the cache if data has been prefetched.

Otherwise, a data request is issued if batch size equals one, else the request is queued up in a batch and the requesting thread

waits. When the batch becomes full, a batch request is issued; when it returns, waiting threads are notified and data is cached.

A batch is flushed at the end of a transformed code region.

4.1 Sprint Guarantees

The Sprint bytecode transformer provides the following two

guarantees (Section 5.2 describes how):

1. Non-interference through memory: The Optimist and

Pessimist execute in the same process, hence the same

virtual memory space. The Sprint bytecode transforma-

tion ensures that O’s actions cannot affect P’s memory

state: (i) P interacts solely with objects created by itself,

and (ii) O only updates the objects that it creates, but may

also read objects created by P (indicated by arrow from P

to O in Figure 1(b)).

2. Suppression of externally-visible behavior: The trans-

formed program must generate the same sequence of

externally-visible behavior as the original program would

have generated. The Sprint bytecode transformer ensures

this by eliding all side effecting operations from O. In

practice, this means catching all exceptions, removing

statements such as System.out.print, and API op-

erations that may modify the remote data source. To iden-

tify such API operations, Sprint requires that the API be

“well-defined”. For every method whose execution has

any observable effects on the remote data, Sprint must

know what are the keys corresponding to the modified

values.

4.2 Preliminaries

A remote data source is a mapping M : K → V from keys

to values. Let R be a (possibly concurrent) program that

accesses a remote data source M via a well-defined API.

The API of the remote data source supports operations for

blocking lookup and update operations that can be described

by key-value pairs r[k, v] and w[k, v], respectively.

An execution of R is a sequence of transitions, each of

which corresponds to an execution of a basis statement of

R or a key-value pair that corresponds to a lookup or up-

date operation on M called by R. A transition 〈a, b, st, tid〉
consists of source state, target state, statement of R, and

thread id. A state 〈h, s〉 of the program R contains a heap

h and a mapping from thread id to the corresponding stack.

We assume that M guarantees sequential consistency, and

therefore, all the operations on M performed by some exe-

cution of R can be ordered. The operations on M performed

by an execution t of R form a sequence of key-value pairs

S(t,M)
def
= 〈k1, v1〉, 〈k2, v2〉, . . .. For any sequence S (of

pairs or transitions), and for 0 ≤ i < |S|, let S[i] denote the

i-th value in the sequence S, and |S| the length of S.

Let R′ be the result of transforming the original program

R using the Sprint bytecode transformer. Let P andO denote

the Pessimist and Optimist parts of R′, respectively. For

an execution t′ of R′, we use tP and tO to denote the

projection of t′ onto the statements in the P and O parts

of R′, respectively. Let t′′ be a restriction of all states of

tP to 〈hp, sp〉, where hp contains objects allocated by P

(excluding the cache) and sp contains threads executing in

P . We say that t′′ is the Pessimist execution of t′.

4.3 Proof of Correctness

THEOREM 4.1 (Correctness of Sprint Execution). For

every execution t′ of R′, there exists an execution t of R

such that t′′ = t. In other words, a Sprint-ed execution

t′ of a program R′ is correct when it can be partitioned

into non-interfering Pessimist and Optimist executions and

the Pessimist of t′ is equivalent to some execution of the

original program R.

Proof: A transition of t′ is an operation on M . t′ can be

partitioned into tP and tO precisely when the following

conditions hold:

1. Every state 〈h, s〉 of t′ can be partitioned into (i) objects

allocated by each of P and O, h = hp ⊎ ho ⊎ c, where c

encapsulates an implementation of the abstract data type

cache : K → V , and (ii) threads executing in each of P

and O, s = sp ⊎ so
2. No transition 〈a, b, st, tid〉 of t′ such that st is in P

accesses 〈ho, so〉 (in state a)



3. All transitions 〈a, b, st, tid〉 of t′ such that st is in O

preserve 〈hp, sp〉
4. No transition of tO performs externally-visible opera-

tions (such as an update operation on M , an uncaught

exception, etc.)

Guarantee 1 (non-interference throughput memory) pro-

vided by the Sprint bytecode transformer ensures that Con-

ditions 1, 2, and 3 hold, while Guarantee 2 (suppression of

externally-visible behavior) ensures that Condition 4 holds.

Thus, the execution t′ can be correctly partitioned into tP
and tO. Note that this does not impose any constraints on

the cache.

t′′ is the restriction of tP to 〈hp, sp〉. By construction, P

consists of the same statements as R. From this, and from

the correctness of partitioning, we can state that starting

from the same original state, for each transition induced by

a basis statement (a statement which does not interact with

M ) of R′, there exists a trace t of R in which the same

basis statement induces the same transition. It remains to

show that this holds for non-basis statements as well. We first

define when values in the cache are in sync with the remote

data source, assuming there are no updates to the remote data

source by entities other than the Sprint-ed program. For a

state a, M(a) and cache(a) denote the remote data source

and the cache mapping in state a.

DEFINITION 4.2 (Consistency of Cache and Remote Data

Source). Let t′ be an execution of R′ with Sprint, as before.

For all 0 ≤ i ≤ |t′|, if t′[i] is a lookup operation on M

and a is the source state of the transition t′[i], then for all

k ∈ cache(a), if the metadata of k in cache(a) is present

and the value of k in cache(a) is v, then the value of k

in M(a) is v. For all 0 ≤ i ≤ |t′|, if t′[i] is an update

operation on M , then the metadata of k in cache(a) is

set to absent and M(a) is updated, with both operations

happening atomically.

A non-basis statement that updates M can only appear in

tP since the update operations in O are elided. Furthermore,

the statement does not change 〈hp, sp〉. For a statement that

looks up M , the consistency of the cache and remote data

source ensures that the value returned by the cache is the

same as what would have been returned by the remote data

source; consequently the statement induces the same tran-

sition in both R′ and R. Thus, for the transitions induced

by the non-basis statements of R′, the same transitions are

induced by the same statements in trace t of R. �

4.4 Accuracy of Prefetching

Theorem 4.1 implies that for every key-value sequence that

may be generated by the Pessimist in some execution t′

of the transformed program, there exists an execution t of

the original program on the same input that generates the

same key-value sequence: S(t,M) = S(tP ,M). Accurate

prefetching can now be formally defined.

DEFINITION 4.3 (Accuracy of Prefetching). Let t′ be an

execution of R′ with Sprint. The speculation is accurate if

and only if
• for every 0 ≤ i < |t′|, if t′[i] is a transition of the Opti-

mist and it performs a lookup operation on M described

by the key-value pair [k, v],
• then there exists a j, where 0 ≤ i < j < |t′|, such

that t′[j] is a transition of the Pessimist and it performs a

lookup operation on M with k,
• and there is no update operation on M with the key k in

t′ between i and j.

Note that according to this definition, the prefetch is

considered accurate even if the cache was invalidated be-

tween i and j by other entities. The sequence observed by

an accurate Optimist consists of all the key-value pairs in

S(tP ,M), albeit possibly in a different order, because the

Optimist is a parallelized version of the original program.

However, the Optimist is a speculatively parallelized ver-

sion of the original program. Misspeculation of control and

data dependencies could result in a sequence S(tO,M) that

consists of key-value pairs that are different from those in

S(tP ,M). The expectation is that misspeculation is rela-

tively uncommon (as we show in the evaluation section) and

S(tO,M) = S(tP ,M).

4.5 Correctness in the Face of Remote Updates

Suppose that a program that uses the remote data source is

executing with Sprint, while the data source is concurrently

modified by other entities. In this situation, a reordering of

reads in O’s execution might observe an inconsistent state of

the remote data and violate some invariant in P’s execution.

Suppose that the invariant of P relies on some integrity

property of the remote data, and that this integrity property

is (atomically) guaranteed by all other entities that may

modify the remote data source. Consider an execution in

which the remote data is modified by another entity between

two out-of-order reads performed by O. It is possible that

O observes a state of remote data that does not satisfy the

integrity property, and is not observable in any execution of

the original program.

EXAMPLE 4.4. Consider a data source M with initial state
M = {a 7→ 1, b 7→ 2}. The data integrity that is to be
maintained by all entities that interact with the remote data
source is M [b] > M [a]. This is a typical invariant, for
example b could be a summary of elements such as a. The
following two programs execute concurrently using M :

P1() { x=read(M,a); y=read(M,b); assert (y > x); }

P2() { atomic{ write(M,a,2); write(M,b,3) } }

In a concurrent execution of P1 and P2, the set of all

possible key-value sequences that can be generated by P1

is:

S = {(〈a, 1〉, 〈b, 2〉), (〈a, 1〉, 〈b, 3〉), (〈a, 2〉, 〈b, 3〉)}

Note that the assertion holds in P1 in all three cases. Suppose
that P1 is transformed and executed by Sprint while P2 also



executes concurrently using M . If the reads in the Optimist
of P1 execute in parallel and happen to be served out of order
by the data source, the following sequence of events may
occur at the data source:

read(b) // by Optimist of P1

write(a,2),write(b,3) // by P2

read(a) // by Optimist of P1

read(a),read(b) // by Pessimist of P1

The following key-value sequence is generated by the

Optimist of P1 in this execution: S′ = (〈a, 2〉, 〈b, 2〉).
The data source invariant has been violated! If the remote

data source supports “trigger” capabilities, Sprint can solve

the consistency problem by installing callbacks in the data

source for certain operations that update the data source. �

Enforcing Consistency via Triggers and Callbacks Dur-

ing the execution of a program under Sprint, whenever the

Sprint execution engine performs a remote data access with

some key, it installs a callback in the remote data source that

states “notify me when the value that corresponds to this key

is updated”. Any write operation will cause the callback to

be triggered and the remote data source will notify the Sprint

execution engine. Upon receiving notification, the Sprint ex-

ecution engine will invalidate the appropriate entry in the

cache.

EXAMPLE 4.5. In Example 4.4, with the operation

read(b) performed by the Optimist of P1, the Sprint

engine installs a callback on key b. The operation

write(b,3) performed by P2 triggers the callback

on the key b. The execution engine then invalidates the

entry for b in the cache. Consequently, read(b) by the

Pessimist of P1 will miss in the cache, and the request will

be reissued. The sequence of key-value pairs observed by

the Pessimist of P1 is ([a, 2], [b, 3]) and the assertion in P1

holds. �

Data sources such as the MySQL database provide trig-

gers with the above semantics that could be leveraged by

Sprint. In the absence of trigger APIs, Sprint could ask the

programmer whether the consistency semantics arising from

the read-read and read-write order relaxation is acceptable.

Our current implementation focuses on programs with read-

only accesses; the invalidation scheme described above for

data sources with trigger APIs will be integrated in future

work.

5. Sprint Implementation

In this section, we present implementation details of the

Sprint profiler that determines candidate methods to op-

timize (Section 5.1), the Sprint bytecode transformer that

transforms the program at run-time based on the profiling re-

sults (Section 5.2), and the Sprint interface that a program-

mer can implement to use Sprint for optimizing programs

that interact with data sources other than those that are cur-

rently supported (Section 5.3).

5.1 Profiler

Sprint uses profiling to determine suitable program sites to

launch the Optimist (Listing 1, line 26) and the program sites

at which to speculate (Listing 1, line 16). Without any mod-

ifications, the user executes the program of interest on a rep-

resentative input with the Sprint profiler turned on. The pro-

filer records the calling contexts leading to remote data ac-

cess method invocations (such as the JDBC execute state-

ment for executing SQL queries). The profiler also main-

tains loop- (or recursion- ) sensitive metadata. Specifically,

it records whether a loop (or recursive method) transitively

invokes remote data access methods. Such statements within

loops (or recursive method callsites) are marked as “candi-

dates”. At this point, there are two modes of operation:
• Interactive — the user may prune the candidate set
• Automatic — the profiler directly feeds candidate infor-

mation to the bytecode rewriter

In the interactive mode, the user is presented with a list

of candidates. The user puts the @Speculate annotation

inside a candidate that is expected to not have dependencies

between remote data accesses emanating from it (e.g., List-

ing 1, line 16). If the user annotates incorrectly—there are

dependencies between data accesses at run-time—Sprint en-

sures correct program execution.

In the fully automatic mode, Sprint can infer the

@Speculate annotation in one of two ways. Sprint can use

a dynamic dataflow tracking tool called Pepe [29] that tracks

the flow of data through the remote data access methods to

build a remote data access dependency graph. The depen-

dency information is maintained in the context of the candi-

dates. Referring to the candidate loop between lines 15–21

in Listing 1, the profiler records the number of dependen-

cies between remote data accesses that are carried around

the loop’s back-edge. The frequency of dependencies is used

to determine the profitability of transforming the loop. Pepe

works for JDBC method invocations only. To transform pro-

grams that interact with other data sources, Sprint can trans-

form each and every candidate (independently) and then

observe the cache statistics on training runs to determine

whether it is worthwhile to retain the transformed candidate.

Candidates with high cache hit rates would be transformed

while candidates with high miss rates would be ignored.

Pepe is not integrated into Sprint as yet. To obtain the

results in Section 6, the Profiler output a list of candidates

for each program. The top candidate in each program was

marked by the user with the @Speculate annotation; Sprint

automatically transformed the programs with that single an-

notation.

5.2 Bytecode Rewriter

We describe in detail below the code modifications for initi-

ating O in P, constructing O, and preserving the semantics of

the original program. The Sprint bytecode rewriter uses the

ASM class transformation library [3] to augment the classes



that are loaded at run-time. The bytecode rewriter is writ-

ten entirely in Java, with no modifications to the underlying

virtual machine. The code modifications are also illustrated

on the running example in the form of high level Java state-

ments for ease of understanding; in practice, the changes are

done to Java bytecode.

5.2.1 Initiating the Optimist

Algorithm 1: Initiating the Optimist

Input: Program : original program IR
Input: CandidateSet : set of annotated statements
Output: Program with Optimist initiation
foreach candidate ∈ CandidateSet do

defMethod← getDefMethod(Program, candidate)

callsites← getCallSites(Program, defMethod)

foreach callsite ∈ callsites do

argsCopy← cloneArgs(callsite)

initiatePrefetcher(defMethod, argsCopy)

P is constructed from the original Program by modify-

ing Program to initiate O at each callsite of the method

containing the candidate loop statement or recursive method

invocation (see Algorithm 1). Referring to Listing 1, the

immediate predecessor of buildTree is main. Listing 2

shows the change to main. In practice, O is executed by a

thread pool (Section 3.1), and initiating O means submitting

a task for execution by the thread pool (line 18 in Listing 2).

The bytecode rewriter inserts code in P to encapsulate the

method and its arguments as a task and submit the task to

the thread pool.

1 class Node {
2 static int numNodes = 0;
3 Node tree;
4

5 Node buildTree (String email) {
6 Employee emp;
7 ...
8 for (String reportee email : root.getReporteesEmail()) {

9 Node child = @Speculate buildTree(reportee email);
10 ...
11 }
12 return root;
13 }
14
15 void main(String[] args) {
16 Node t = new Node();

17 try{

18 OptimistTpool.submit(buildTree, t, args[1]);

19 } catch (Exception e){}
20 tree = t.buildTree(args[1]);
21 display(tree);
22 }
23 }

Listing 2. Initiating the Optimist

5.2.2 Constructing the Optimist

O is constructed out of the original program. Sprint performs

two code transformations to address the issues of interfer-

Algorithm 2: Memory Protection

Input: ClassSet : Set of classes loaded by program
Output: Pessimist protected from Optimist
foreach class ∈ ClassSet do

addPrivateBoolean(class, “createdByOptimist”)

foreach method ∈ class do

copy← cloneMethod(method)

entryBlock← getEntryBlock(method)

addConditionalRedirectTo(entryBlock, copy)

foreach inst ∈ copy do

if inst is store to instance field then

guard← createGuard

(createdByOptimist, true)

replace(inst, guarded(inst, guard))

if inst is store to static field then

delete(inst)

if inst is store to array then

bb← getBasicBlock(inst)

callinst← createCallInst(lookupMap,

arrayOwnershipMap)

addBefore(bb, inst, callinst)

guard← createGuard

(callinstReturnVal, true)

replace(inst, guarded(inst, guard))

ence of O and P through client program memory, and se-

quence of side effects that are visible to the external world.

The general approach is to create two versions of every

method in a class, one for use by O and the other by P. The

design choice of method duplication is motivated by a space-

time tradeoff, namely that it allows P to be almost as fast as

the original sequential program because P’s code remains

nearly identical to the original program, at the cost of having

multiple copies of each method.

Memory Protection (MP) Transformation All writes to

class members are protected by guards in the O version of

each method. The details of the MP transformation vary de-

pending on whether the type is an array (see Algorithm 2).

Non-array types are discussed first. Listing 3 shows the

Node class from earlier listings after the MP transformation.

A new field createdByOptimist (line 4) is added to the

class to indicate whether the current instance was allocated

by O. This field is set during object allocation (lines 7–8). All

writes by O to the instance fields of a class are guarded by

ownership checks (for example, the write of tree by O in

main Optimistic on lines 42–44). O is allowed to write

only if the method is invoked on a class instance allocated by

O (createdByOptimist is true). Writes to static class

variables are suppressed in the O versions of methods (line

25). Sprint uses a different strategy for array elements since



the array type cannot be extended to incorporate ownership

information. For each array allocated by the original pro-

gram, Sprint allocates a variable that maintains ownership

metadata that is updated at the time of array creation. Sprint

maintains a map from array to ownership metadata. This

map is used to lookup ownership information when an ar-

ray is being updated. Sprint uses an optimized multi-level

lookup table to reduce the overhead of this operation [12].

1 class Node {
2 static int numNodes = 0;
3 Node tree;

4 private boolean createdByOptimist;
5

6 Node() {

7 if (Thread.group.equals(SPRINT TGRP))

8 createdByOptimist = true;

9 }
10
11 Node buildTree (String email) {
12 if (Thread.group.equals(SPRINT TGRP))
13 return main Optimistic(args);
14 ...
15 }
16 Node buildTree Optimistic (String email) {
17 Employee emp;
18 try {
19 emp = getEmployee(email); // Expensive remote data access
20 } catch (EmployeeNotInDatabaseException e) {
21 System.err.println(‘Employee ’ + email + ‘ not found!’);
22 return null;
23 }
24 Node root = new Node(emp);

25

26 for (String reportee email : root.getReporteesEmail()) {
27 Node child = buildTree(reportee email);
28 if (child != null) {
29 root.add(child);
30 child.setParent(root);
31 }
32 }
33 return root;
34 }
35
36 void main(String[] args) {
37 if (Thread.group.equals(SPRINT TGRP))
38 return main Optimistic(args);
39 ...
40 }
41 void main Optimistic(String[] args) {

42 Node temp = new Node().buildTree(args[1]);

43 if (createdByOptimist)

44 tree = temp;

45 display(tree);
46 }
47 }

Listing 3. Protecting shared memory

Externally-Visible Side Effect Protection (SEP) Transfor-

mation To prevent O from performing operations that re-

sult in externally-visible side effects, all such operations

(Listing 3, line 21) are elided from the O version of each

method. Sprint maintains a database of methods to be elided.

Another component of side effect protection is exception

trapping. Exceptions may be thrown during the course of O’s

execution that may not have occurred during the execution of

the original program. To ensure that such exceptions do not

escape to the user, the prefetch initiation method invocation

is wrapped in a try-catch block (Listing 2, lines 17–19).

In a future implementation, wrapping can be performed at

finer granularities in the control flow graph in order to allow

O to make useful progress beyond local exceptions.

Input Operation Transformation Reading from files and

other input operations are typically “outer loop” activities,

whereas Sprint typically optimizes inner loop nests/recur-

sions that use the input data. Presently, all input opera-

tions are elided from O similar to the SEP transformation

above. Only P performs such operations. In case there is

an input operation in the optimized loop, a dependence on

which leads O astray, in the current implementation O will

be restarted by the execution engine after observing several

misses in the cache. If dependencies on input operations are

expected to be frequent in the optimized loops/recursions,

an alternative implementation could synchronize O and P on

input operations. Recent work proposes a system that spec-

ulates on user input in the context of web prefetching [22]—

this is discussed in Section 7.

5.2.3 Optimizing the Optimist

1 class Node {
2 static int numNodes = 0;
3 Node tree;
4 private boolean createdByOptimist;
5

6 Node() {
7 if (Thread.group.equals(SPRINT TGRP))
8 createdByOptimist = true;
9 }

10
11 Node buildTree (String email) {
12 if (Thread.group.equals(SPRINT TGRP))
13 return main Optimistic(args);
14 ...
15 }
16 Node buildTree Optimistic (String email) {
17 Employee emp;
18 try {
19 emp = getEmployee(email); // Expensive remote data access
20 } catch (EmployeeNotInDatabaseException e) {
21 return null;
22 }
23 Node root = new Node(emp);
24 for (String reportee email : root.getReporteesEmail()) {

25 Node child = OptimistTpool.submit(

26 new Task(buildTree, reportee email));

27 if (child != null) {
28 root.add(child);
29 child.setParent(root);
30 }
31 }
32 return root;
33 }
34
35 void main(String[] args) {
36 if (Thread.group.equals(SPRINT TGRP))
37 return main Optimistic(args);
38 ...
39 }
40 void main Optimistic(String[] args) {
41 Node temp = new Node().buildTree(args[1]);
42 if (createdByOptimist)
43 tree = temp;
44 display(tree);
45 }
46 }

Listing 4. Optimizing the Optimist (Prefetcher)



For O to execute faster than P, Sprint spawns multiple

invocations of a Sprint annotation site optimistically in par-

allel (Listing 4, lines 25–26). Details of OptimistTpool

(thread pool) creation are left out with the note that it hap-

pens when the Java agent is loaded.

The thread executing the continuation of the spawned fu-

ture does not block on the future returned by the submit

call (Listing 4, lines 25–26). Instead, Sprint speculates a re-

turn value. In the current implementation, the speculated val-

ues are the equivalent of the null value for different types.

A future implementation could use the results of profiling or

memoize values from prior invocations for more advanced

speculation.

5.2.4 Avoiding Deadlock Due to Batching

Batch execution and the interaction of the Optimist and the

Pessimist via the cache introduce the possibility of deadlock:

The execution engine builds a batch of queries as the pro-

gram issues the queries; however, that batch may remain in-

complete once the program issues all the queries that it will

ever issue. In the absence of an appropriate mechanism, the

program will wait for the queries to return while the execu-

tion engine will wait for the program to issue more queries

to fill the batch, thus resulting in deadlock. To address this,

Sprint inserts a flush batch operation at the top of the im-

mediate postdominator of the transformed loop or recursive

method in P (the Pessimist). This ensures that the last, po-

tentially incomplete, batch is forced to execute even though

the batch may not be full, thus allowing P (and hence the

Sprint-ed program) to make progress.

5.3 Extending Sprint

Sprint currently supports data sources that are accessed via

the Java Database Connectivity (JDBC) API and the Java

URLConnection API. The implementation of the data re-

quest processing algorithm in Figure 4 is fully parameterized

with respect to the key and value types. This allows arbitrary

remote data access APIs to be used with the data request

processing algorithm in a straightforward manner using the

Cache and Batcher interfaces (see Listing 5).

To extend Sprint to support other data sources, the pro-

grammer must implement the Batch interface. This is be-

cause different data sources differ in the types of queries that

can be batched, the means to prepare a batch, and the means

to execute a batch. The Batch interface abstracts these de-

tails away from the batching logic, allowing the programmer

to just supply the data source specific batch preparation and

execution code. For example, a JDBCBatch implementa-

tion of the execute method of the Batch interface for

a DB2 database involves preparing a batch statement via

conn.prepareStatement and executing the batch via

stmt.executeDB2QueryBatch. The Batch interface

is never used by the programmer; it is used internally by the

data request processing algorithm. Note that the programmer

must implement the Batch interface only once for each new

data source access API; the implementation can be reused

across all programs that use the same API. The Cache and

Batcher interfaces are shown only to illustrate their pa-

rameterization; the programmer remains blissfully unaware

of their existence.

1 public interface Cache <K extends Object, V extends Object> {
2 /**Return the cached value corresponding to the key*/
3 V get(final K key);
4 /**Insert a value to cache corresponding to key*/
5 V put(final K key, final V value);
6 /**Remove cached value corresponding to key*/
7 void remove(final K key);
8 /**Flush the cache*/
9 void clear();

10 /**If cached entry corresponding to key already exists, then
11 * return entry; else cache value*/
12 V putIfAbsent(K key, V value);
13 }
14
15 public interface Batcher<T extends Batchable<R>, R> {
16 /**Add offered element to batch*/
17 R add(T obj);
18 }
19

20 public interface Batch<T extends Batchable<R>, R> {
21 /**Execute batch*/
22 void execute();
23 /**Return true if it was possible to add the offered element to the batch,

else false*/
24 boolean offer(T obj);
25 /**Return true if batch is full and is the first caller, else
26 * false. Must be invoked only after 'offer' returns false.*/
27 boolean isFull();
28 /**Return true if batch is currently executing*/
29 boolean isExecuting();
30 }

Listing 5. Sprint interfaces for extensibility

6. Evaluation

Sprint is implemented in Java, and is evaluated on several

client programs and data sources. Table 1 lists the different

data sources (with abbreviated names we use in the rest of

the paper), the APIs used to access them, and the network

(local vs remote) between the client machine and the data

source. Table 2 lists the client programs (with abbreviated

names we use in the rest of the paper), brief descriptions of

each, their core algorithms, the data sources with which they

interact, and their input sizes. The programs that interact

with YP and DB2 make use of the standard Java URLCon-

nection and JDBC APIs respectively. The Facebook client

programs use the RestFB API [1] that itself is a Java client

of the Facebook Graph and REST APIs and Java URLCon-

nection. All client programs are written in Java (1.6) running

on Linux 2.6.32.

The client machine is equipped with a dual core Intel

Core 2 Duo processor running at 2.1 GHz with 32KB (I) and

32KB (D) private L1 caches and a 2MB shared L2 cache,

and 4GB of DDR2 800MHz RAM. Reported numbers are

averages over five runs. For the client programs and data

sources studied, the round trip latency to a data source and

back dominated overall latency when compared to the la-

tency of processing requests at the data source.



Data Source (Abbreviation) API
Supports

Network
Batching

IBM’s Yellow Pages
Java URLConnection × LAN

Web Service (YP)

DB2 Database (DB2)
Java Database

X LAN
Connectivity (JDBC)

Facebook Web Service (FB) Facebook Graph API X WAN

Table 1. Data sources with which the Sprint-ed programs

interact

6.1 Speedup

Figure 5 shows the speedup obtained using Sprint. The base-

line for all speedup numbers is the wall-clock execution time

of the original unmodified sequential program. The execu-

tion time of the optimized versions includes the overhead

due to run-time bytecode rewriting. The “Manual Opti.”

bar represents the speedup obtained by manually rewriting

the original sequential program for asynchronous execution

(via Java Futures) and batch execution. Sprint achieves the

same performance improvements without needing any code

rewrite. Finally, because the programs are not CPU bound,

the speedups obtained (from 2.4× to 15.8×) are not limited

by the number of cores (two) on the evaluation platform.

Specifically, the number of threads in the Optimist’s thread

pool grows according to whether a thread is available to exe-

cute a task being enqueued. This allows many (> 2) remote

data accesses (contained in the tasks) to be concurrently in

flight.

Batching Optimization For data sources that support

batching, data requests could be accelerated beyond the

number of simultaneous connections to the data source,

while also enabling the data source’s query optimizer to plan

a better execution of the queries. Particularly in the case of

FC (Facebook), the large reduction in the number of round

trips via batching yields a huge benefit. The batch size was

arbitrarily set to 100. The interaction of batch execution with

parallel execution results in a complex performance model

and merits investigation [28].

Prioritized Task Execution In the case of Employee

Search (ES), the target loop is responsible for searching

a tree and the loop terminates as soon as the item be-

ing searched is found. Sprint’s control speculation mecha-

nism speculates that the loop will continue executing; con-

sequently the Optimist traverses parts of the search space

that are not accessed in the Pessimist’s search for the given

input. Hence, a significant fraction of prefetching by the Op-

timist goes to waste (see Table 5). Prioritized task execution

prioritizes data requests that come earlier in the original pro-

gram order and increases the likelihood that useful data is

prefetched. Prioritized task execution improves Sprint’s per-

formance by 25.6% in the case of ES (see Figure 5).
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Figure 5. Speedup of automatically Sprint-ed execution

over original. Benefits of batching and prioritized execution

are also shown. Sprint’s performance gains are comparable

to the best manual optimizations which include both asyn-

chronous and batch query execution but avoid Sprint’s du-

plicate computation overhead.

6.2 Program Characteristics

Two fundamental program characteristics limit speedup:

1. Ratio of remote data access latency and computation la-

tency: The higher the amount of time a program spends in

remote data accesses compared to time spent in “comput-

ing the addresses of the accesses” and other operations,

the more scope Sprint has to improve program execution.

2. Length of remote data access dependency chains: The

length of the longest dependency chain times a single

remote data access latency is the lower bound on the

time to execute all the remote data accesses in a program.

Table 3 shows the length of the longest chain for each

program.

Assuming infinite resources and perfect scalability of the

remote data source, Table 3 shows the theoretical upper

bound on achievable speedup.

6.3 Cache Behavior

Table 4 shows the number of cache hits, misses, and waits

(requests that had already been issued by O causing P to

wait). Sprint converts a lot of remote accesses by the original

program into local accesses to the cache in the Sprint-ed

program.

Benchmark (Abbreviation) Description Algorithm
Data Input Size (in number

Source of remote accesses)

Management Hierarchy (MH) Builds manager-employee relationship of organization Tree Building YP 766

Employee Search (ES) Finds employee meeting certain search parameters Tree Search YP 293

Citations Count (CC) Aggregates citations of a research group Tree Traversal DB2 502

Bibliography Aggregation (BA)
Aggregates bibliography under each manager

Tree Building, Traversal YP, DB2 1268
in research organization

Friend Connectivity (FC) Displays connectivity of Facebook friends circle Transitive Closure of Graph FB 401

Table 2. Benchmark details



Benchmark
Remote Access Time Longest Dependence Upper bound
(Percentage of Total) Chain Length on Speedup

MH 97.42% 4 31.36x

ES 97.17% 7 19.41x

CC 99.92% 2 209.16x

BA 98.27% 4 49.02x

FC 98.45% 2 48.99x

Table 3. Fraction of total execution time spent in remote

data accesses and length of longest dependency chain limit

the speedup achievable by Sprint.

Benchmark
Cache

Accesses Hits Waits Misses Miss %

MH 766 747 10 9 1.12%

ES 293 197 48 48 16.38%

CC 502 202 168 132 26.29%

BA 1268 949 178 141 11.12%

FC 401 394 0 7 1.75%

Table 4. Cache statistics: Waits denote accesses by the Pes-

simist that had already been issued by the Optimist but had

not yet been serviced by the data source, causing the Pes-

simist to wait for the data.

Table 5 shows the distribution of useful and useless

data prefetched by O. The ratio of useful prefetches to

the total number of accesses shows that Sprint successfully

prefetched a significant fraction of the used data. The cause

of useless prefetches in Employee Search has already been

discussed in Section 6.1 under Prioritized Task Execution.

Benchmark
Prefetches

Total Useful Useless Useful %

MH 757 757 0 100.00%

ES 714 245 469 34.31%

CC 370 370 0 100.00%

BA 1127 1127 0 100.00%

FC 394 394 0 100.00%

Table 5. Cache statistics: Split of prefetches according to

use by Pessimist. Sprint successfully prefetches a significant

fraction of the used data.

6.4 Comparison with Sequential Prefetching

To understand the importance of parallel prefetching by

many Optimist threads as opposed to sequential prefetching

by a single thread, we implemented a sequential prefetcher

and studied its performance using the FC (Facebook) ap-

plication. Sequential prefetching yields 2% speedup over

original program execution. By contrast, parallel prefetch-

ing unlocks an order of magnitude (15×) speedup. The fun-

damental reason for the performance difference is: Sequen-

tial prefetching is limited by the time to process all nodes

accessed in a data structure (work). Therefore, sequential

prefetching can reduce overall latency by at most a constant

factor of the total work. Parallel prefetching is limited by the

time to process the nodes in the longest dependency chain

(depth), which can be significantly smaller than the total

work. Parallel prefetching exploits the parallelism inherent

in the processing of different parts of a data structure.

7. Related Work

Batching The idea of batching is to convert several round

trips into one, and thereby amortize the round trip cost over

more data. Related remote data access calls are not per-

formed at the point the client requests them, but are instead

deferred until the client actually needs the value of a result.

By that time, a number of deferred calls may have accumu-

lated and the calls are sent all at once, in a “batch” [2, 14, 15].

The major disadvantage of these batching proposals is that

they require the programmer to rewrite the code (both client-

side and server-side) in non-trivial ways that typically ob-

scure the program logic.

Parallelization Parallelization exposes independent re-

mote data accesses and overlaps their round trip latencies.

Manual parallelization using locks is error prone. Transac-

tional memories with “abstract locking” could be used to

simplify the task of parallelization [24]. However, both ap-

proaches often require the relaxation of the original seman-

tics of the program. For example, assume that the for-loop

on lines 15–21 in Listing 1 is parallelized. Synchronized up-

dates to the root node on line 18 do not guarantee that the

original program order is preserved. Unordered iterators in

Galois have the same problem [19]. Ordered iterators could

be used but that would serialize execution. Further, Galois

still requires the programmer to implement synchronized ac-

cess to data structures. Speculative parallelization systems

such as Safe Futures [33] and Spice [27] are fully automatic;

unfortunately, the memory dependencies between iterations

cause iterations to be re-executed thereby resulting in the re-

execution of the expensive remote data accesses. In contrast

to thread-level speculation schemes, Sprint does not moni-

tor all memory reads and writes and does not abort on all

conflicts. Finally, none of these techniques incorporate batch

execution where possible.

Program Slicing Conceptually, program slicing could be

used to determine the slice of the program that is required

to execute remote data accesses [13, 30]; this slice could

be executed ahead of the remainder of the program thereby

overlapping remote data communication with computation.

Furthermore, automatic parallelization tools could be used to

optimize the “prefetcher slice”. However, automatic slicing

and parallelization tools rely on analyses (such as pointer

analysis) being interprocedural. These analyses are typically

imprecise for complex code. Furthermore, these analyses

may have to be applied at the bytecode or binary level when

recompilation of source code is not an option. Advances

in the program slicing front could reduce the amount of

duplicate computation performed by a Sprint-ed program.

Memory Prefetching To mask the latency of servicing

memory operations that miss in the cache, prefetching via

pre-execution has been proposed. This approach uses com-

piler analyses to generate a backward slice (“p-slice”) from

the address of each target memory operation. All stores in



the backward slice are elided. A p-slice is scheduled for exe-

cution by a helper thread that acts as a prefetcher for a delin-

quent load [32, 35]. Like the prefetching approach proposed

by Chang and Gibson [4], the elimination of flow depen-

dencies from stores to loads causes divergence between the

main thread and the helper thread, requiring frequent syn-

chronization. In contrast to p-slices, Sprint generates Opti-

mist threads that are long running and without store elisions

thereby respecting most dependencies and avoiding resyn-

chronization costs.

Lee et al. propose a helper thread construction algorithm

that privatizes only array locations that are written in the

backward slices from the addresses of the target memory

operations, and constructs a single helper thread [20]. Sprint

handles both arrays and records, and constructs multiple

helper threads. Additionally, the technique proposed by Lee

et al. is restricted to regions with a single live-in; Sprint does

not have such a restriction.

Cooksey et al. propose content-based prefetching, a tech-

nique that scans data in cache lines to identify addresses

and issues prefetch requests for those addresses [7]. By con-

trast, Sprint pre-computes addresses that will most likely be

accessed—this approach is more suitable for the case when

the ratio of remote access latency and computation latency

is high (as in the domain of interest). Whereas content-based

prefetching traverses recursive data structures sequentially,

Sprint’s unique code transformation enables the prefetcher

to traverse data structures in parallel. This gives Sprint a sig-

nificant performance advantage.

Sprint’s execution engine is unique to the application do-

main. Most memory prefetching techniques assume hard-

ware support for fast pre-execution thread initialization,

cache line scanning, etc., whereas Sprint runs programs

on commodity systems. Another way of viewing memory

prefetching is that it can serve to reduce the request process-

ing latency at the data source by reducing last level cache

misses, whereas Sprint reduces the total round trip network

latency by overlapping the latencies of multiple data requests

in the client. As mentioned in Section 6, the round trip la-

tency (and not the processing time at the data source) was the

dominant factor in the overall application latency for the ap-

plication and data source combinations studied in this paper.

To cover the space of diverse workloads, Sprint and memory

prefetching can be combined in a complementary fashion.

I/O Prefetching To mask the latency of filesystem access,

prefetching via history-based prediction [8, 18] and via pre-

execution [4, 5, 34] has been used. As discussed in Section 1,

history-based prefetchers work only for programs with reg-

ular data access patterns. When accesses lack regularity, as

in the domain of interest, history-based prefetchers cannot

help. SpecHint speculates future I/O accesses [4]. In the

presence of dependencies between accesses, SpecHint of-

ten causes misspeculation of future disk accesses and spu-

rious disk accesses. By contrast, Sprint generates Optimist

threads that are long running without store elisions thereby

respecting most dependencies and avoiding resynchroniza-

tion costs. Other pre-execution approaches [5, 34] rely on

slicing techniques similar to the one used to construct mem-

ory prefetchers, and thus suffer from the problems discussed

earlier. Sprint uses speculative parallelization to avoid these

shortcomings. In those pre-execution approaches, program

slicing is used to construct a single prefetcher thread per

main thread. Sprint’s code transformation creates several

useful parallel prefetcher threads per main thread that can

yield significantly better performance. Patterson and Gib-

son modify programs to insert prefetch hints to the filesys-

tem [26]. Koller and Rangaswami propose I/O deduplica-

tion that reduces duplication of data on disk by introducing

a content addressable cache that is indexed on write oper-

ations to avoid writing duplicate data and to improve write

latency; read operations are cached based on history [17]. By

contrast, Sprint is designed to reduce the latency of read op-

erations that are not amenable to history-based caching and

prefetching.

Web Prefetching Prefetching based on cumulative usage

statistics at the client and server of pages linked via hy-

perlinks in a webpage has been proposed [10, 25]. The

shortcomings of history-based approaches have already been

discussed (Section 1). Mickens et al. proposed Crom, a

JavaScript speculation engine to accelerate rich web appli-

cations [22]. Sprint and Crom perform complementary spec-

ulation. “Crom speculates on user activity rather than results

of data accesses” [22]. Sprint speculates on the results of

data accesses. Referring back to the discussion on input op-

erations in Section 5.2.2, Crom can speculate input events

while Sprint can accelerate processing of each input event

handler resulting in an expected multiplicative performance

improvement. Eden et al. propose to modify the browser

to enable a user to indicate future webpage accesses via a

click [11]. The browser then prefetches the page so that the

page is available by the time the user navigates to the page.

Sprint is entirely transparent to the user.

8. Conclusion

Many modern programs spend a significant portion of their

execution time waiting for data from remote data sources.

Sprint automatically reduces the total latency of such pro-

grams while preserving their semantics. Sprint provides

speedups between 2.4× to 15.8× on a set of applications that

access different data sources. Sprint combines both parallel

and batch execution of remote data accesses. Sprint extends

the state-of-the-art in prefetching for irregular and input-

dependent data access patterns. Indeed, the techniques pre-

sented here are applicable in other contexts such as prefetch-

ing from disk. Since the system is specified in terms of a data

access API, porting Sprint to other applicable contexts is just

a matter of specifying the relevant API in that context.
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