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Abstract
To meet the performance demands of modern architectures, compilers incorporate an ever-

increasing number of aggressive code transformations. Since most of these transformations are not
universally beneficial, compilers traditionally control their application throughpredictive heuris-
tics, which attempt to judge an optimization’s effect on final code qualitya priori. However, com-
plex target architectures and unpredictable optimization interactions severely limit the accuracy of
these judgments, leading to performance degradation because of poor optimization decisions.

This performance loss can be avoided through theiterative compilationapproach, which ad-
vocates exploring many optimization options and selecting the best onea posteriori. However,
existing iterative compilation systems suffer from excessive compile times and narrow application
domains. By overcoming these limitations, Optimization-Space Exploration (OSE) becomes the
first iterative compilation technique suitable for general-purpose production compilers. OSE nar-
rows down the space of optimization options explored through limited use of heuristics. A compiler
tuning phase further limits the exploration space. At compile time, OSE prunes the remaining opti-
mization configurations in the search space by exploiting feedback from earlier configurations tried.
Finally, rather than measuring actual runtimes, OSE compares optimization outcomes through static
performance estimation, further enhancing compilation speed. An OSE-enhanced version of Intel’s
reference compiler for the Itanium architecture yields a performance improvement of more than
20% for some SPEC benchmarks.

1. Introduction

An aggressively optimizing compiler is essential for achieving good performance on modern pro-
cessors. Non-uniform resources, explicit parallelism, multilevel memory hierarchies, speculation
support, and other advanced performance features of modern processors can only be exploited if the
compiler can effectively target them. This dependence on compiler quality is even more pronounced
in explicitly parallel, EPIC-type machines, such as the Intel Itanium [1], Philips Trimedia [2], and
Equator MAP/CA [3].

When targeting such processors, a compiler cannot judge the impact of optimizations on gen-
erated code performance using simple metrics such as instruction count. Instead, the optimization
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process has to carefully balance a set of performance factors, such as dependence height, register
pressure, and resource utilization. More importantly, the compiler must also anticipate dynamic
effects such as cache misses and branch mispredictions, and avoid or mask them if possible.

To accomplish this task, a compiler needs a large number of complex transformations. Un-
like traditional compiler optimizations, such as dead code elimination or constant folding, few of
these transformations are universally beneficial. Most of them constitute tradeoffs, improving some
performance factors while down‘grading others. For example, loop unrolling increases instruction-
level parallelism (ILP) but may adversely affect cache performance, whereas if-conversion avoids
branch stalls but increases the number of instructions that must be fetched and issued. Worse, the
final outcome of any code transformation ultimately depends on its interactions with subsequent
transformations. For example, a software pipelining transformation that originally seems beneficial
may lead to more spills during register allocation, thus worsening performance.

Clearly, a successful optimizing compiler must not only incorporate a rich set of optimization
routines, but must also correctly determine where and when to apply each one of them. In today’s
compilers, this is usually achieved through the use ofpredictive heuristics. Such heuristics examine
a code segment right before an optimization routine is applied on it, and try toa priori judge the
optimization’s impact on final performance. Usually, a great amount of time and effort is devoted to
crafting accurate heuristics. However, a heuristic’s task is complicated not only by the complexity
of the target platform, but also by the fact that it must anticipate the effect of the current code
transformation on all subsequent optimization passes. To make a successful prediction in all cases,
each heuristic would ultimately have to be aware of all other heuristics and optimization routines,
and all the ways they might interact. Furthermore, all heuristics would have to be changed every
time an optimization routine is added or modified. In today’s complex optimizers this is clearly an
unmanageable task. Therefore it is to be expected that real-world predictive heuristics will make
wrong optimization decisions in many cases.

To manage these complications, compiler writers do not fully specify the heuristic and opti-
mization behavior during compiler development. Instead, they leave several optimizationparame-
tersopen. For example, the maximum unroll factor that a loop unrolling heuristic may use can be
such a parameter. Similarly, an if-conversion parameter may control exactly how balanced a branch
has to be before if-conversion is considered. The values of such parameters are determined during
a tuning phase, which attempts to maximize a compiler’s performance over a representative sample
of applications. In essence, such parameters give the compiler’s components a limited ability to
automatically adapt to the target architecture, to the target application set, and to each other.

Parameterization and tuning have proven to be very effective in improving a modern compiler’s
performance. However, they are still an imperfect answer to modern optimization needs. No matter
how sophisticated a tuning process is, the end result is still a single, rigid compiler configuration,
which then has to be applied to code segments with widely varying optimization needs. In the end,
tuning can only maximize theaverageperformance across the sample applications. However, this
“one size fits all” approach will unavoidably sacrifice optimization opportunities in many individual
cases. This effect is especially pronounced when the compiler is applied on code that is not well
represented in its tuning sample.

To address these limitations of traditional compiler organization,iterative compilationhas been
proposed [4, 5, 6]. Instead of relying ona priori predictions, an iterative compiler applies many
different optimization configurations on each code segment. It subsequently compares the different
optimized versions of each segment and decides which one is besta posteriori. This allows the
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compiler to adapt to the optimization needs of each code segment. Previous research indicates that
iterative compilation can provide significant performance benefits.

The problem with current iterative compilation approaches is their brute force nature. Such
approaches identify the correct optimization path by considering all, or at least a great number
of, possible optimization paths. This incurs prohibitive compile time costs. Therefore, iterative
compilation has been currently limited to small parts of the optimization process, small applications,
and/or application domains where large compile times are acceptable, such as embedded processors
and supercomputing.

This article presents Optimization-Space Exploration (OSE), a novel iterative compilation me-
thod. OSE realizes the performance potential of iterative compilation while addressing the appli-
cability limitations of existing approaches. This makes OSE the first iterative compilation method
suitable for general-purpose, industrial-strength compilers. More specifically, OSE keeps compile-
time requirements reasonable by employing the following key ideas.

• Although predictive heuristics are unable to anticipate the full impact of an optimization rou-
tine on final code quality, they still encode valuable information on an optimization’s behavior.
Using this information, an iterative compiler can make intelligent choices as to which part of
the optimization space to explore, reducing the number of different optimization configura-
tions that have to be tried.

• For any given application set, a sizable part of the configuration space causes only modest per-
formance gains. Thus the configuration space can be aggressively pruned during a compiler
tuning phase.

• On any given code segment, the performance of different configurations is often correlated.
This allows the compiler to utilize feedback to further prune the exploration space at compile
time.

• Instead of selecting the best optimized version of the code by measuring actual runtimes,
an OSE compiler relies on a static performance estimator. Although this approach is less
accurate, it is much faster.

A preliminary version of this article has appeared in the CGO proceedings [7]. In comparison
with [7], this work uses a much improved instrumentation system (Section 4.1), which, among
other things, allowed us to obtain more accurate results, improve the OSE compiler’s tuning, and
further refine the OSE setup (especially Sections 3.2 and 5.1.2). This work also includes a much
more accurate and in-depth experimental evaluation of the system (especially Sections 4.2 and 5.3
to 5.5), and an expanded presentation of related work (Section 2).

The rest of this article is divided into two parts. The first part elaborates on the ideas discussed
above. Section 2 further motivates OSE by discussing the shortcomings of both the conventional
optimization approach and of current iterative compilation approaches. Section 3 presents OSE in
detail. The second part is devoted to experimental evaluation. Section 4 evaluates the behavior of
predictive heuristics in real-world compilers. Section 5 uses a proof-of-concept implementation to
evaluate the performance of OSE. Finally, Section 6 concludes.
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2. Motivation and Related Work

Typically, modern compilers apply a “one size fits all” approach to optimization, whereby every
code segment is subjected to a single, uniform optimization sequence. The only opportunity to cus-
tomize the optimization sequence to the needs of each individual code segment is offered through
predictive heuristics. However, the difficulty of characterizing interactions between optimization
routines, as well as the complexity of the target architecture, make it very hard to make accurate
optimization decisionsa priori. As a result, no single compiler configuration allows optimizations
to live up to their maximum potential. Although such an optimization process can be tuned for max-
imum average performance, it will still sacrifice important optimization opportunities in individual
cases. Section 2.1 strengthens this argument through a bibliographic survey. Experimental evidence
will be provided in Section 4.

Iterative compilation takes a different approach. Instead of relying ona priori predictions, an
iterative compiler applies many different optimization sequences on each code segment. The differ-
ent optimized versions of each code segment are then compared using an objective function, and the
best one is output. Thus iterative compilation is able to find the “custom” optimization approach that
best meets each code segment’s needs. Although this approach usually results in significant perfor-
mance gains, it requires prohibitively large compile times. This has prevented iterative compilation
from being broadly applied. Most importantly, this has rendered iterative compilation unsuitable for
production compilers. Section 2.2 examines the benefits and shortcomings of previously proposed
iterative compilation approaches.

2.1 Predictive Heuristics, Interactions, and Traditional Compilation

Whitfield et al. [8] propose an experimental framework for characterizing optimization interactions,
both analytically and experimentally. This allows a compiler developer to examine different ways to
organize optimization routines and study how they interact. Studies performed using this framework
underscore the fact that optimization routines interact heavily, in ways that are difficult to predict.
Ultimately, no single optimization organization is ideal for all cases; each compiler configuration
exhibits different strengths and weaknesses.

Other work has focused on addressing particularly problematic optimization interactions and
developing better heuristics to circumvent performance pitfalls. Heuristics that try to avoid register
spilling due to overly aggressive software pipelining have been proposed [9, 10]. Although the
proposed heuristics are quite sophisticated, the authors describe cases that the heuristics cannot
capture. Among the best studied optimization interferences are those that occur between scheduling
and register allocation. Proposed heuristic techniques seek to minimize harmful interferences by
considering these two code transformations in a unified way [11, 12, 13, 14]. Continuing efforts in
this area indicate that none of the existing heuristics can fully capture these interferences.

Hyperblock formation and corresponding heuristics have been proposed to determine when and
how to predicate code [15]. However, even with these techniques, the resulting predicated code often
performs worse than it did originally. In an effort to mitigate this problem, techniques that partly
“undo” predication by reinserting control flow have been proposed [16]. This need to reexamine and
roll back code transformations underscores the difficulty of makinga priori optimization decisions.

Recognizing the difficulty in hand-crafting heuristics, [17] lets heuristics “evolve” using genetic
algorithms. When the genetic algorithm tries to identify the best overall register allocation heuristic
for a given benchmark set, it comes up with a heuristic that leads to a 9% performance improvement.
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However, when the genetic algorithm is allowed to converge on a different heuristic for each bench-
mark, the performance improvement is 23% on average. Thus this work underscores the fact that a
“one size fits all” optimization approach, even a well-tuned one, is liable to sacrifice performance.

These works are just a sample of the research done to address problems of predictive heuristics.
The continuing effort to design better predictive heuristics and to improve compiler tuning tech-
niques indicates that the problem of determining if, when, and how to apply optimizations is far
from solved.

2.2 Iterative Compilation

Cooper et al. [4] propose a compilation framework calledadaptive compilation, which explores
different optimization phase orders at compile time. The results of each phase order are evaluated
a posterioriusing one of several objective functions. This system is experimentally evaluated on
a small FORTRAN benchmark. Depending on the objective function selected, the adaptive com-
pilation system can produce a 13% reduction in code size or a 20% reduction in runtime relative
to a well-tuned traditional compiler. Although some rudimentary pruning techniques are used, the
system still needs from 75 to 180 passes before it can identify a solution within 15% of the ideal
one.

The OCEANS compiler group [5] has also investigated iterative compilation approaches, mainly
within the context of embedded system applications. An initial study [18] on iterative applications
of loop unrolling and tiling on three small numerical kernels proves that the iterative compilation
approach can cause up to a fourfold increase in generated code performance. A more realistic
study [19], involving three loop transformations applied to more sizable numerical benchmarks,
achieves a 10% improvement over an aggressively optimizing traditional compiler. Despite the
presence of pruning techniques, the system still needs to apply up to 200 different optimization
sequences before this performance gain is achieved.

The GAPS compiler project [6] studies the iterative application of loop transformations on nu-
meric benchmarks for parallel processors. Genetic algorithms are used to guide the search for the
best optimization sequence at compile time. When applied on a numeric benchmark, the GAPS
compiler is able to produce a 75% performance improvement in comparison to the native FOR-
TRAN compiler. The compile time needed for a single small benchmark is about 24 hours.

In an interesting variant of iterative compilation, Wolf et al. [20] present an algorithm for com-
bining five different high level loop transformations, namely fusion, fission, unrolling, interchang-
ing, and tiling. For each set of nested loops the proposed algorithm considers various promising
combinations of these transformations. Instead of fully applying each transformation sequence, the
algorithm pre-evaluates them by “simulating” their application using a skeleton of the original code.
A performance estimator then selects a single sequence for actual application. When evaluated on
scientific code, the proposed algorithm yields a 15% performance improvement over non-iterative
approaches. Although no compile-time results are included in that paper, the proposed algorithm
seems reasonably efficient. However, the algorithm cannot be generalized to other optimizing trans-
formations or to non-numerical applications since it depends on a thorough understanding of the
interactions between these transformations within the numerical application domain.
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3. Optimization-Space Exploration

Previous research described in Section 2.2 amply demonstrates the promise of iterative compilation.
However, current iterative compilation approaches have excessive compile-time requirements and
limited applicability. This motivates us to propose Optimization-Space Exploration (OSE), a com-
pilation methodology that realizes the performance potential of iterative compilation while being
practical enough for the general-purpose domain.

Like other iterative compilation approaches, OSE applies different optimization configurations
to each code segment. The final decision about which optimization configuration performs best is
takena posteriori, that is after the resulting optimized versions of the code have been examined.
However, OSE differs from other iterative compilation approaches in several crucial ways.

• Predictive heuristics are used in order to limit the optimization options explored.

• OSE eliminates redundant optimization configurations by aggressively pruning the configu-
ration space during a compiler tuning phase.

• OSE employs feedback in order to dynamically prune the search space at compile time.

• A fast static estimator is used to compare the relative performance of different optimization
paths.

The remainder of this section examines each of the above ideas in greater detail. The section
concludes with a brief discussion of OSE in the context of dynamic optimization and managed
runtime environments.

3.1 Limiting the Configuration Pool through Predictive Heuristics

As noted in previous sections, predictive heuristics are unable to anticipate the full impact of a
code transformation on final code quality. However, well-crafted heuristics still encode valuable
information about a code transformation’s behavior. OSE takes advantage of this fact in order to
limit the number of different optimization configurations that need to be explored.

Consider loop unrolling as an example. For every loop, an iterative compiler would have to
try a great number of different loop unrolling factors. OSE takes a different approach. A well-
crafted and well-tuned loop unrolling heuristic, like the one found in a high-performance traditional
compiler, is expected to identify the correct loop unrolling factor for a fair number of cases. To
capture the remaining cases, configurations containing different variants of the original heuristic
can be applied. For example, some such variants could restrict the maximum loop unrolling factor
allowed. Configurations that forgo loop unrolling entirely can also be tried.

By trying many variants of each optimization’s heuristic, OSE correctly captures the optimiza-
tion needs of many more code segments than a traditional compiler. Of course, since heuristics are
imperfect, this approach cannot captureall cases, like an exhaustive iterative compiler can. This,
however, is a worthy tradeoff when considering compile-time savings. For example, the iterative
compiler proposed in [19] has to consider 16 different unroll factors for each code segment. In
comparison, the OSE prototype presented in Section 5 only considers 4 different loop unrolling
heuristics. For every optimization, exploiting predictive heuristics causes a similar reduction in the
number of choices under consideration. This leads to an overall reduction of the configuration space
by a factor exponential in the number of optimization passes.
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In subsequent discussions, any variable that controls the behavior of a heuristic or an optimiza-
tion routine will be referred to as an optimizationparameter. A full assignment of values to all
parameters in an optimizing compiler forms an optimizationconfiguration. The set of all configu-
rations that an OSE compiler has to explore constitutes theexploration space.

3.2 Static Configuration Selection

By exploiting heuristics, an OSE compiler has to explore a smaller configuration space than that of
an exhaustive iterative compiler. However, the size of this space is still prohibitively large. Since
every parameter can take at least two values, the total size of the exploration space is exponential
with regard to the number of available parameters. Clearly, exploring this space in its entirety
at compile time would be impractical. Therefore a radically reduced configuration set has to be
selected statically, that is during the OSE compiler’s tuning.

Static configuration selection exploits the fact that configurations are not equally valuable. Cer-
tain configurations may perform badly in the vast majority of cases. For example, such would be the
case of configurations that inline over-aggressively on systems with small instruction caches. Such
configurations can be omitted with little performance loss. Other configurations may form clusters
that perform similarly in most cases. For example, on a processor with limited resources and small
branch misprediction penalties, configurations differing only on if-conversion parameters would fall
under this category. In such cases, keeping only one representative configuration from each cluster
and pruning the rest would not lead to significant performance losses.

More formally, the goal of the static pruning process is to limit the configuration space to a
maximum ofK configurations with as little performance loss as possible. The performance of a
configuration set is judged by applying it to a set of representative code samplesS. The exact value
of K is dictated by compile time constraints.

Ideally, the static selection algorithm would determine the best configuration space of sizeK by
considering all possible combinations ofK configurations. However, typical exploration spaces are
so big that a full consideration of them is impractical, even during compiler tuning. For example, the
full exploration space of the OSE prototype described in Section 5 contains217 configurations, and
its full traversal would take roughly 45 years. Therefore, the static selection algorithm has to rely
on a partial traversal of the configuration space, even though this may lead to suboptimal results.

The OSE static selection algorithm consists of anexpansionstep and aselectionstep, repeatedly
applied until new steps do not provide significant new benefits, or until a time limit is reached.

Beginning with a set of configurationsCS , used as seeds, the expansion step constructs the set
CE of all configurations differing from one of the seeds in only one parameter. Subsequently, every
configuration inCE is applied on every code sample inS, and the runtimes of the optimized codes
thus produced are measured.

Subsequently, the selection step determines theK-element subset ofCE that maximizes the
performance of OSE. For that purpose, the “exploration performance” of each such subset is de-
termined, as follows: LetR(s, c) be the runtime of a code samples when optimized using an
optimization configurationc. Then the exploration value of a set of configurationsC on a set of
code samplesS is given by the formula:

EP (C,S) = |S|

√∏
s∈S

min
c∈C

R(s, c)
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Configurations Pruned at Compile TimeBest Overal Configuration

Configurations Selected

Figure 1: Automatically generated search tree annotated based on a hypothetical run of OSE.

That is, we calculate the geometric mean of the best-performing version of each code sample pro-
duced by a configuration inC. The selection step simply determines the exploration value of all
K-element subsets ofCE , and selects the one with the best (that is, lowest) exploration perfor-
mance. The configurations in the set thus selected become the new seeds, on which the expansion
step is applied again, and so forth.

The effectiveness of the above process depends greatly on the choice of the initial seeds. A bad
choice of seeds may lead to slower convergence, trap the algorithm in local minima, or both. It is
therefore important to start with a configuration that is known to perform well on average. Such a
configuration would roughly correspond to the optimization process of a well-tuned non-iterative
compiler.

3.3 Feedback-directed Compile-time Pruning

By exploiting feedback, an OSE compiler can dynamically prune the exploration space at compile
time. On any given code segment the compiler can begin by applying a small set of configurations.
Feedback on how these initial configurations performed can help the compiler make an informed
choice on which configurations to try next. Feedback from these configurations can be used to
select the next set to be tried, and so on. Thus only a portion of the configuration space needs to be
explored for each code segment at compile time.

This approach works because different configurations are generallycorrelated. In general, a
given configuration performs well on code segments that exhibit certaincode properties. In many
cases, the code properties required by two different configurations may overlap, whereas in other
cases they may be unrelated. For example, a configuration that emphasizes software pipelining will
perform well on code segments containing small, straight-line loops with complicated dependence
chains. On the same code segments, a configuration applying loop unrolling is also likely to perform
well. On the other hand, a configuration that forgoes loop optimizations is likely to underperform.
Consequently, if an OSE compiler finds out that software pipelining performs well on a code seg-
ment, it can decide to try loop unrolling configurations, while forgoing configurations that do not
concentrate on loops.
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The OSE compiler can exploit configuration correlations by organizing the set ofK configura-
tions, as determined in the static selection phase, into a tree, as shown in Figure 1. For each code
segment, configurations at the top level of the tree are tried first, and the best one is selected. Sub-
sequently, the children of the selected configuration are tried. After the best of these configurations
is selected, its children are in turn tried, and so on. After the bottom of the tree is reached, the best
one of the configurations selected at each level is the one that prevails.

This configuration tree has to be constructed during the tuning phase of an OSE compiler. Of
course, the notion of code properties is too abstract to be practically useful in this task. However,
correlations between configurations can be determined experimentally. Let us assume that anL-
way tree is desired. From theK configurations remaining after static pruning, the best-performing
combination ofL configurations is selected as the top level of the tree. Next the setS of code
samples can be partitioned intoL subsets,S1, S2, . . . , SL. SubsetSi contains the code segments for
which thei’th configuration,ci, outperforms the other top-level configurations. For eachi, theL
most valuable configurations for the limited code sample setSi are then be determined. Essentially,
these are the configurations that are most likely to succeed on code segments that respond well to
ci. Therefore, these configurations become the children ofci in the tree. Subsequent tree levels can
be formed by repeating the same process on each set of siblings.

3.4 Performance Estimation

Ideally, an OSE compiler would select the best-performing version of each code segment by mea-
suring actual runtimes. Since code segments cannot be run in isolation, the whole program would
have to be compiled before the performance of a single version of a single code segment could be
evaluated. Furthermore, the performance of each code segment is dependent not only on its own
features, but also on the features of other code segments in the program. This is due, among other
things, to cache and branch prediction effects. Therefore, an absolutely accurate judgment on a
code segment’s performance would have to be obtained through running it in conjunction with ev-
ery other possible combination of optimized versions of all other code segments in the program.
This approach is clearly impractical.

Instead, an OSE compiler makes performance judgments using a static performance estimator.
Such an estimator can make predictions based on a simplified machine model and on profile data.
In general, obtaining a static prediction of a code segment’s runtime performance is a non-trivial
task [21]. However, the job of an OSE performance estimator is much simpler, because it only needs
to provide arelativeperformance prediction. Rather than trying to determine the exact runtime of
a code segment, this estimator has to compare two code segments and predict which one is faster.
Moreover, since the code segments compared will actually be differently optimized versions of the
same source code, they will be generally similar, and differ in only one or two crucial ways. If, for
example, the estimator has to choose between two differently unrolled versions of the same original
loop, one of the two versions will have a better schedule, whereas the other will have a smaller
code size, whereas all their other features will be very similar. Thus the estimator’s task will come
down to weighing the scheduling gains versus the code size expansion. Thus the OSE estimator is
able to make mostly accurate predictions by simply scoring different code segments according to
several performance indicators, such as static cycle count, code size, and memory access patterns.
Of course, the exact form of these performance indicators and their relative weight depends on the
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target architecture and the target application domain. A concrete OSE performance estimator for
the Itanium architecture will be presented in 5.

3.5 Dynamic OSE

As presented up to now, OSE is primarily a static compilation method. However, there are obvious
ways in which OSE could be implemented in, and benefit from, dynamic optimization platforms
(DOPs) and managed-runtime environments (MRTEs). Indeed, such environments would make
OSE more successful and accurate by reducing its reliance on profile data and by eliminating the
inaccuracies inherent in static performance estimation.

To respect the generally tighter timing constraints of MRTE compilation, an OSE implementa-
tion on such a system would first compile all procedures in the traditional way. Using a lightweight
instrumentation, like the one described in 4.1, the system could then accumulate the execution time
spent on each procedure. Once a procedure’s accumulated runtime exceeds a predetermined limit,
the system would judge that this procedure is “hot”, and thus worthy of further optimization. It
would then proceed to produce differently optimized versions of the procedure using the configura-
tions in the first level of the compile-time tree (Section 3.3). Calls to the original procedure would
be redirected to a simple harness, which would satisfy each call by randomly invoking one of these
versions. After some time, the system will have gathered enough execution time statistics to know
which of these versions performs best. That version would then replace the original function’s code.
If the program continues spending a significant amount of execution time on this procedure, then
the system could repeat the above process with the second level of the tree, and so forth.

In addition to DOPs and MRTEs, which perform optimization during a single invocation of a
program, continuous optimization environments (COEs), which can gather statistics and re-optimize
throughout an application’s deployment lifetime, have been proposed [22]. A COE would actually
be the ideal environment for OSE. In addition to applying OSE dynamically as described above, the
COE could leverage repeated runs of the application over an extended time period in order to further
explore the full configuration space, thus overcoming any suboptimal choices made during static
configuration selection. One way to do this would be to obtain random points of the configuration
space, as seen in Section 5.5, and use the best-performing ones as new seeds for the expansion-
selection sequence of Section 3.2. The results of this process could be communicated to the original
OSE compiler, in order to enhance its performance on non-COE applications and to provide a better
starting point for future COE runs.

4. Evaluating Predictive Heuristic Failure

Section 2.1 argued that any traditional compiler, no matter how well-tuned, is bound to sacrifice
performance opportunities due to incorrect optimization decisions. This section quantifies this per-
formance loss in real-world compilers. We begin with a detailed presentation of the experimental
setup, which is based on the Intel Electron compiler, in Section 4.1. This setup will be used again
in subsequent sections. Section 4.2 presents experimental results on Electron. Finally, Section 4.3
briefly surveys the behavior of predictive heuristics in other compilers.
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Parameter Meaning

Optimization level -O2 (default) performs standard optimizations, including loop optimizations [23].-O3
performs all-O2 optimizations plus riskier optimizations that may degrade performance,
including aggressive loop transformations, data prefetching, and scalar replacement.

HLO level Same as above, but affects only the high-level optimizer.
Microarchitecture type Optimize for Itanium (default) or Itanium 2. Affects the aggressiveness of many optimiza-

tions.
HLO after loop norm. Off by default. Forces HLO to occur before loops are normalized, effectively disabling

some optimizations.
Loop unroll limit Maximum loop unrolling factor. Values tried: 0, 2, 4, 12 (default).
Update dependences after un-
rolling

On by default. If disabled, it effectively limits optimization aggressiveness on unrolled
loops.

Load/store coalescing On by default. Forms single instructions out of adjacent loads and stores.
Software pipelining On by default.
Software pipeline outer loops Off by default.
Software pipelining if-conversion
heuristic

On by default. Uses a heuristic to determine whether to if-convert a hammock in a loop
that is being software pipelined. If disabled, every hammock in the loop is if-converted.

Software pipeline loops with early
exits

On by default.

If-conversion On by default.
Non-standard predication Off by default. Enables predication for if blocks without else clauses.
Pre-scheduling On by default. Runs scheduling beforeand after register allocation. If disabled, runs

scheduling only after register allocation.
Scheduler ready criterion Percentage of execution-ready paths an instruction must be on to be considered for schedul-

ing. Values tried: 10%, 15% (default), 30%, and 50%.

Table 1: Electron optimization parameters used in this article’s experiments.

4.1 Experimental Setup

The following study is based on the Intel C and C++ compiler for the Itanium Processor Fam-
ily (IPF), also known as Electron. Since Electron is the SPEC reference compiler for IPF, it pro-
vides a credible experimentation base. Also, IPF is an especially interesting target architecture,
since its explicit parallelism and its complicated performance features make the proper application
of aggressive optimizations crucial to achieving good performance. For our experimental baseline
we used Electron version 6.0 invoked with the command-line parameters-O2 -ip -prof use ,
which enable intraprocedural optimization, interprocedural optimization and analysis, and profile
information use. This is very close to the compiler configuration used to report the official SPEC
numbers for Itanium. Note that the-O2 option is used instead of the more aggressive-O3 , both
for the official SPEC measurements and for our baseline. This is because the more aggressive
optimization settings enabled by-O3 often cause significant performance degradation instead of
improvement. This makes a study of Electron’s optimization decision failures all the more interest-
ing.

For this study, the behavior of several Electron optimizations was varied and the impact of these
variations on compiled code performance was observed. The full list of optimization parameters
studied is given in Table 1. The different variations of Electron were applied to the following
benchmarks:

• The SPECint2000 benchmarks164.gzip , 175.vpr , 176.gcc , 181.mcf , 186.crafty ,
197.parser , 253.perlbmk , 254.gap , 255.vortex , 256.bzip2 , and300.twolf .
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• the SPECcfp2000 benchmarks177.mesa , 179.art , 183.equake , and188.ammp.

• the SPECint95 benchmarks099.go , 124.m88ksim , 129.compress , and132.ijpeg .

• the MediaBench benchmarksadpcmdec , adpcmenc , epicdec , epicenc , g721dec ,
g721enc , jpegdec , andjpegenc .

• the parser generatoryacc

Note that252.eon is missing from the SPECint2000 benchmarks above. This is because
our experimental support programs could not handle C++. More benchmarks are missing from
the SPEC95 and MediaBench suites. Quite a few of these benchmarks did not compile or run
on Itanium since they were written for 32-bit architectures. For others, the compilation process
failed for certain configurations tried. This is not surprising, since this experiment exercises parts
of Electron’s optimizer that are not intended for general use.

For the performance measurements, executables were run on unloaded HP i2000 Itanium work-
stations running Red Hat Linux with kernel version 2.4.18. Execution times were obtained using
the performance counters of the IPF architecture with the help of thelibpfm library [24]. Because
most of our experiments required measuring the cycles consumed by each procedure in a bench-
mark, we developed an instrumentation system that directly manipulates the assembly language
produced by Electron, adding appropriate actions at each procedure entry and exit. These actions
involve reading and resetting IPF’s performance counters and accumulating each procedure’s cycle
count in special memory locations. These cycle counts are printed to a file by an exit function, in-
stalled throughatexit() . Whenever whole program runtimes are reported, these are taken to be
the sum of the cycles spent in a program’s source procedures, excluding time spent in system calls
and precompiled libraries. Reported cycle counts do not contain cycles spent in the instrumentation
system itself. Also, since the instrumentation system works directly on assembly language, it does
not disturb any part of the optimization process. Some cache interference is unavoidable, but it is
limited to a few bytes of data accessed per function entry or exit. Each benchmark was run enough
times to reduce random drift in the measurements to below 0.5%. The times that a benchmark had
to be run varied according to the characteristics of the benchmark and its input sets, from 3 for the
bigger benchmarks to about 20 for the smaller ones.

4.2 Heuristic Failure Rates

We have argued in Section 1 that no single optimization process, even a well-tuned one, can be
appropriate for all codes. Although parameterization and tuning can maximize the average perfor-
mance of a compiler, they are bound to sacrifice performance in many individual cases. To quantify
the frequency of predictive heuristic failure in Electron, the following experiment was performed.
The optimization parameters appearing in Table 1 were grouped into four broad categories: overall
optimization approach (1st to 3rd parameter), load/store handling (7th parameter), predication (12th
and 13th parameters), software pipelining (8th to 11th parameters), other loop optimizations (4th
to 6th parameters), and scheduling (14th and 15th parameters). For each one of these categories
we determined how often a non-standard setting of the category’s parameters produces noticeably
faster code than the default setting. For this purpose we tried each possible parameter setting for
each category on a group of code samples comprising the most important procedures in our bench-
mark set, namely all procedures that consume at least 10% of their benchmark’s runtime. There are
66 such functions in our benchmark set.
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Figure 2: Percentage of procedures for which a non-default setting of a category’s parameters
causes a speedup greater than 3%, 5%, 10%, and 20% over Electron’s default config-
uration.

The results of this experiment can be seen in Figure 2. For each category, this graph shows how
often a non-default parameter setting results in at least 3%, 5%, 10%, and 20% better performance
than Electron’s default setting for the category’s parameters. For columns marked with “R” all
procedures count the same, whereas for columns marked with “W” procedures are weighed by their
execution weight in the corresponding benchmark.

As we can see in Figure 2, the default setting in each category performs well in a majority of
cases. However, a significant number of procedures is not served well by the compiler’s default
configuration. For example, one of every four procedures could improve its performance by at least
5% if the overall optimization approach were set to different parameters. Similarly, one out of every
five procedures would be at least 10% faster if the loop optimizations were customized to its needs.
These results provide evidence that even a well-tuned single-path compilation process cannot fit
all codes, thus leaving significant performance benefits unrealized. The performance of the OSE-
enhanced Electron prototype, seen in Section 5, will provide another, less direct evidence of this
fact.

4.3 Heuristics in Other Compilers

The failure of heuristic-driven compilation to make correct optimization decisions is not a phe-
nomenon peculiar to Electron. In one small experiment we varied the loop unrolling factor used by
the IMPACT compiler [25] incrementally from 2 to 64. The benchmark132.ijpeg performed
best for the default loop unrolling factor of 2. However, a performance increase of 8.81% was
achieved by allowing each function in132.ijpeg to be compiled with a different loop unrolling
factor. In a bigger experiment involving 72 different configurations, the individually best config-
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urations for130.li and 008.espresso achieved 5.31% and 11.74% improvement over the
globally best configuration respectively.

As noted in Section 2.1, the experimental compiler used in [17], which is based on Trimaran,
exhibits similar behavior. Allowing the register allocation strategy to be customized on a benchmark
by benchmark basis leads to a 13% performance gain over the globally best register allocation
strategy.

The experiment described in [26] focuses on GCC targeting Pentium architectures. Reported
results show a performance improvement of up to 6% if the compiler configuration is customized
on a per-program basis.

5. Evaluation of OSE

In order to evaluate the effectiveness of the OSE approach, we retrofitted the Electron compiler to
implement OSE. We call the resulting compiler OSE-Electron. As mentioned earlier, Electron is the
SPEC reference compiler for the Itanium platform, thus providing a credible experimental baseline.

5.1 OSE-Electron

This section provides the implementation details of OSE in Intel’s Electron compiler for Itanium.
This implementation was used to produce the experimental results presented later in this section.

5.1.1 EXPLORATION DRIVER

In the original Electron compiler, optimization proceeds as follows:

1. Profile the code.
2. For each function:
3. Compile to the high-level IR.
4. Perform a lightweight high-level optimization (HLO) pass.
5. For each function:
6. Perform inlining
7. Perform a second, more comprehensive HLO pass.
8. Perform code generation (CG), including software pipelining, predication, and scheduling.

In order to build OSE-Electron, we inserted an OSE driver right after inlining (step 6 above).
For each procedure the driver decides whether OSE should be applied and which configurations
should be tried. Thus the compilation process of OSE-Electron is as follows:

1. Profile the code.
2. For each procedure:
3. Compile to the high-level IR.
4. Perform the first HLO pass.
5. For each procedure:
6. If the procedure is hot:
7. Perform OSE on the second HLO pass and CG.
8. Select the procedure’s best optimized version for emission.
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9. If the function is not hot, use the standard compilation process.

Since OSE-Electron is a retrofit of an existing compiler, it is not an ideal OSE implementation;
it incorporates several sub-optimal implementation choices. For example, due to certain technical
difficulties the exploration omits the first HLO pass and the inlining process. Also, the exploration
is limited to the configuration space described in Table 1. A compiler build for OSE from scratch
would make many more optimization parameters available for exploration. Finally, the performance
estimator’s success suffers from the limited profiling data that Electron makes available, as we will
see later in this section.

Although OSE-Electron makes use of the profile weights gathered by the Electron compiler, it
is important to note that the OSE technique is not crucially dependent on profile data. Just like any
other profile-driven compiler technique, such as inlining or software pipelining, OSE could work
with statically determined profile weight estimates.

5.1.2 PERFORMANCEESTIMATION

Two factors drove the design of the static performance estimation routine in OSE-Electron. The first
was compile time. Since the estimator must be run on every version of every function compiled, a
simple and fast estimation routine is critical for achieving reasonable compile times. For this reason,
the estimator chosen performs a single pass through the code, forgoing more sophisticated analysis
techniques. The second limitation resulted from limited information. The final code produced by
the Electron compiler is annotated with basic block and edge execution counts calculated in an
initial profiling run and then propagated through all optimization phases. Unfortunately, without
path profiling information many code transformations make the block and edge profiles inaccurate.
Further, more sophisticated profile information, such as branch misprediction or cache miss ratios,
could be useful to the estimator, but is unavailable.

Each code segment is evaluated at compile time by taking into account a number of performance
indicators. The performance estimate for each code segment is a weighted sum of all such indicators.
The indicators used are described below.

Ideal cycle count The ideal cycle countT is a code segment’s execution time assuming perfect
branch prediction and cache behavior. It is computed by multiplying each basic block’s schedule
height with its profile weight and summing over all basic blocks.

Data cache performance To account for load latencies, a function of data cache performance,
each load instruction is assumed to have an average latency ofλ. Whenever the value fetched by
a load instruction is accessed within the same basic block, the block’s schedule height, used in the
computation ofT above, is computed using a distance of at leastλ cycles between the load-use pair.

Another term is introduced to favor code segments executing fewer dynamic load instructions.
The number of load instructions executed according to the profile,L, provides another bias toward
better data cache performance.

Instruction cache performance The most obvious predictor of instruction cache performance
is of course a segment’s code sizeC. Another performance indicator seeks to bias the estimator
against loop bodies that do not fit into Itanium’s first-level instruction cache. This is achieved by
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the formula:

I =
∑

L∈ loops ofS

⌊
size(L)

size(L1 Icache)

⌋
× wt(L)

whereS is the code segment under consideration andwt(X) is the profile weight ofX. The floor
operator is used to model the bimodal behavior of loops that just fit in the cache against those that
are just a bit too large.

Branch misprediction The Electron compiler does not provide us with detailed branch behavior
profile information. Therefore, OSE-Electron has to approximate branch misprediction ratios using
edge profiles. For each code segmentS, the estimator assesses a branch misprediction penalty term
according to the formula:

B =
∑

b ∈ branches ofS

min(ptaken, 1− ptaken)× wt(b)

whereptaken is the probability that the branchb is taken, as determined by the edge profiles, and
wt(b) is the profile weight ofb.

Putting it all together Given a source-code functionF , let Sc be the version ofF ’s code gener-
ated by a compiler configurationC, and letS0 be the version ofF ’s code generated by Electron’s
default configuration. Then the static estimation value for the code segmentSc is computed accord-
ing to the formula:

Ec = α× Tc

T0
+ β × Cc

C0
+ γ × Ic

I0
+ δ × Lc

L0
+ ε× Bc

B0

where terms subscripted withC refer to the code segmentSc, and terms subscripted with 0 refer
to the code segmentS0. Whenever two or more versions of a code segment are compared, the one
with the lowest estimation value prevails.

A brute-force grid searching method was used to assign values in the interval[0, 1) to the
weightsα, β, γ, δ, andε. The same search determined the load latency parameterλ. The grid search
used the same sample of procedures that will be used in Section 5.2. The grid search determined
the values ofα, β, γ, δ, ε, andλ that guide the performance estimator to the best possible choices
on the sample. The resulting values are:α = 0.1, β = 0.02, γ = 0.001, δ = 0.03, ε = 0.0004, and
λ = 2.6.

One might assume that the design of an OSE static performance estimator for IA-64 is facilitated
by the processor’s in-order nature, and that it would be difficult to design similar estimators for out-
of-order processors. This, however, is not the case, because of the fact that the OSE performance
estimator only needs to makerelativepredictions. Take for example the load-use distance parameter
λ above. Although the exact number of stalled cycles because of a cache miss is more difficult to
predict on an out-of-order processor, it is still the case that a version of a code segment with greater
load-use distances islesslikely to incur stalls, and thus is preferable. Of course, the exact value of
λ would have to be different. However, since parameter values are determined automatically, this
would not present a problem to the compiler designer.
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5.1.3 HOT CODE SELECTION

To limit compile time, OSE-Electron limits the exploration to the proverbial 10% of the code that
consumes 90% of the runtime. For this purpose, the smallest possible set of procedures accounting
for at least 90% of a benchmark’s runtime is determined. OSE-Electron then applies an OSE com-
pilation process on procedures in this set, and a traditional compilation process on the remaining
procedures. We experimentally verified that this fraction yields a good trade-off between compile
time and performance by trying a number of other thresholds.

5.2 OSE Tuning

As described in Section 3, an OSE compiler needs to undergo a tuning phase, in which the configu-
ration space is statically pruned, the configuration tree is formed, and the performance estimator is
tuned. From the benchmarks described in Section 4.1, we chose to use the SPEC2000 suite as OSE-
Electron’s tuning set. More precisely, we formed a set of code samples comprising all functions in
SPEC2000 benchmarks that consume 5% or more of their benchmark’s runtime. There are 63 such
procedures in the SPEC2000 suite. The 5% threshold was chosen because timing measurements of
procedures with too short runtimes tend to exhibit high levels of noise, which might in turn lead
OSE-Electron’s tuning phase to wrong choices. Procedure runtimes were obtained by running the
SPEC2000 executables, using the instrumentation described in Section 4.1, with the training inputs
specified by the SPEC2000 suite. The choice of benchmarks for the tuning set was motivated by the
fact that commercial compilers are usually tuned using the SPEC2000 benchmark suite. The rest
of the benchmarks mentioned in Section 4.1, which were omitted from the tuning set, will be used
later for a fairer evaluation of OSE-Electron’s performance.

The parameters described in Table 1 form a space of217 configurations. From these we selected
25 configurations using the methodology described in Section 3.2. We used Electron’sO2 andO3
configurations as seeds, and we performed two iterations of the expansion and selection steps. A
third iteration was aborted, because its expansion step did not produce any significant performance
improvements. These 25 configurations were organized according to the methodology described in
Section 3.3 into the 2-level, 3-way tree shown in Figure 3, which contains 12 configurations in all.
Finally, the performance estimator described in Section 5.1.2 was tuned using the 63 SPEC2000
procedures in our code sample.

The progress of the tuning phase can be seen in Figure 4. The runtime performance of each
benchmark when optimized using Electron’s default configuration forms the graph’s baseline. The
first bar in the graph represents the performance of OSE-Electron at the end of the static selection
phase, without static performance estimation or compile-time pruning. Here each procedure in a
benchmark is optimized using the 25 configurations produced by the static selection phase, and the
best version is selected for emission after measuring actual runtimes. The second bar represents
OSE-Electron’s performance employing static performance estimation, but no compile-time prun-
ing. For the third bar, both the static estimator and the configuration tree were used. Runtimes
of both procedures (in the first bar) and benchmarks were determined by the instrumentation sys-
tem described in Section 4, using the benchmarks’ training inputs. Using the same set of inputs
for both tuning and performance measurement allows us to focus on the performance impact of
OSE-Electron’s features, which might be obscured by input set differences. A fairer evaluation of
OSE-Electron, using separate training and evaluation inputs, will be provided in Section 5.3.

17



TRIANTAFYLLIS , VACHHARAJANI , & A UGUST

T: True
F: False

SWP=F
O=2 SWPE=F

SWPO=F
pred=F
SWP=F

ECI=T
GPP=10%

ECI=T
pred=0

LC=T
GPP=10%GPP=50%

uArch=1HL=0GPP=10%GPP=10
SWPO=F

ECI=T
pred=FSWPE=F

BB=T
GPP=50%PS=F

SWP: Perform software pipelining

SWPO: Software pipeline outer loops
SWPE: Software pipeline loops with early exits

BB:  HLO phase order

ECI: Enable non−standard predication

uArch: Microarchitecture type − Merced(0) vs. McKinley(1)

Pred: Enable if−conversion

PS: Enable pre−scheduling
GPP: Scheduler ready criterion 
HL: HLO opti level (0 or 1)
LC: Coalesce load−pairs

Figure 3: Tree of configurations for OSE-Electron’s compile-time search.

As we can see from the graph, OSE-Electron produces a 5.3% overall improvement on the
performance of SPEC2000 benchmarks over Electron, IPF’s SPEC reference compiler. Gains are
especially pronounced for164.gzip , 179.art , and256.bzip2 . The graph also shows that
static performance estimation sacrifices a modest amount of performance. This is inevitable, since
static performance predictions cannot always be accurate. Interestingly, in some cases the estimator
makes better choices than the actual runtime measurements. This is a result of inter-procedure
interactions not taken into account in either experiment, but contributing to the final runtimes. While
this adds a factor of uncertainty, note that the average performance improvement due to OSE is well
above this factor. These runtime dependences between procedures also explain why OSE-Electron
with compile-time tuning can outperform an exhaustive search of the selected configurations.

Figure 4 also shows that the addition of compile-time pruning sacrifices almost no performance.
On the other hand, dynamic pruning causes a very significant reduction in OSE-Electron’s compile
time, as can be seen in Figure 5. This figure compares the compile times of OSE-Electron with
and without compile-time pruning. The baseline for this graph is the compile time spent by Elec-
tron’s default configuration. As we can see, OSE can be applied at a compile-time cost of 88.4%
compared to a traditional compiler. For comparison purposes, Electron’s default optimizing con-
figuration (-O2 ) is about 200% slower than non-optimizing compilation (-O0 ). Therefore, OSE
makes iterative compilation practical enough for the general-purpose domain.

5.3 OSE Performance Evaluation

To obtain a more thorough evaluation of OSE-Electron’s performance benefits, we applied it on a set
of benchmarks different from its tuning set. For this purpose we used the SPEC95 and MediaBench
benchmarks of Section 4.1, as well asyacc . The performance improvement caused by OSE-
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Figure 4: Performance of OSE-Electron generated code for SPEC benchmarks, with and without
static performance estimation and compile-time pruning.
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Figure 6: Performance of OSE-Electron generated code for non-SPEC benchmarks.

Electron compared to Electron’s default optimizing configuration can be seen in Figure 6. Unlike
Figure 4, we used different training and evaluation inputs for each benchmark in this experiment.
As we can see, OSE-Electron performs 10% better overall, and up to 56% better in individual cases,
than Electron’s default configuration.

Counter-intuitively, OSE-Electron performs better on these benchmarks than on the benchmarks
in its tuning set. This can be explained by the fact that Electron’s heuristics were probably tuned
very carefully with the SPEC2000 suite in mind, whereas they were not as well tailored to the
benchmarks tried here. OSE-Electron, on the other hand, can fit the optimization needs of both
benchmark sets.

5.4 Postmortem Code Analysis

The significant performance benefits produced by OSE in many of the benchmarks tried above
motivates us to look for the sources of these benefits. Below we examine three of the most prominent
examples of OSE’s performance improvements, and identify how the configuration exploration and
the performance estimator arrived at these results.

5.4.1 SPECINT95 BENCHMARK 132.ijpeg

Consider the functionsjpeg fdct islow andjpeg idct islow in the132.ijpeg SPEC95
benchmark. These functions compute forward and inverse discrete-cosine transforms on image
blocks. When compiled using Electron’s default configuration, these two functions account for
about 36% of the benchmark’s execution time. Each of these two functions contains two fixed-
count loops iterating 64 times.

Electron’s high-level optimizer, which is run before the more machine-specific low-level opti-
mizer in its back end, contains a loop unrolling transformation for fixed count loops, controlled by a
heuristic. Since the code of the four loops described above contains many data dependencies, which
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would prevent efficient scheduling, the loop unrolling heuristic decides to unroll each of these loops
8 times. Subsequently, a second loop unrolling transformation in the back-end optimizer unrolls
each loop another 8 times.

While full unrolling seems sensible in this case, if the high-level unrolling is turned
off, jpeg fdct islow sees a 120% performance improvement, with similar results for
jpeg idct islow . This is because complete unrolling makes each function’s code bigger than
the 16K level-1 instruction cache. The result is that132.ijpeg spends 19% of its execution time
in instruction-cache stalls when the code in these functions is fully unrolled, and only 5% when
unrolling is not applied on them. This instruction cache performance loss overwhelms any gains
due to better scheduling. One is tempted to think that better high-level loop unrolling heuristics
could avoid this problem. However, this is unlikely, since such heuristics would have to anticipate
the usually significant code size effect of all future optimization passes. On the other hand, the OSE
performance estimator has the advantage of examining both loop-unrolled and non-loop-unrolled
versions of the code at the end of the optimization process, where the problem with loop unrolling
is easy to spot.

5.4.2 SPECINT 2000 BENCHMARK 256.bzip2

Another case where OSE is able to achieve a large performance benefit is the functionfullGtU
in the256.bzip2 SPEC2000 benchmark. When compiled with Electron’s default configuration,
this function accounts for 48% of total running time. Our experiments show that a performance
improvement of 76% is achieved in this function when software pipelining is disabled.

Software pipelining is applied in order to overlap iterations in a loop while yielding fewer in-
structions and higher resource utilization than unrolling. During software pipelining, the loop’s 8
side exits are converted to predicated code. The conditions for these side exits, and consequently
the conditions on the new predicate define operations in the pipelined loop, depend on values loaded
from memory within the same iteration of the loop. Since the remainder of the code in the loop is
now data-dependent upon these new predicates, the predicate defines are now on the critical path. To
reduce schedule height, these predicate defining instructions are scheduled closer to the loads upon
which they depend. During execution, cache misses stall the loop immediately at these predicate
defines, causing performance degradation.

The performance of this code depends heavily on the ability of the compiler to separate these
ill-behaved loads from their uses. However, the constraints governing this separation are difficult
to anticipate until after optimization. In this case, the predication causing the problem only occurs
after the software pipelining decision has been made. Anticipating and avoiding this problem with
a predictive heuristic would be extremely difficult. On the other hand, the OSE compile-time per-
formance estimator can easily identify the problem, since it can examine the load-use distance after
optimization.

5.4.3 MEDIABENCH BENCHMARK adpcmenc

Examining the adpcmenc benchmark reveals that over 95% of the execution time is spent in one
function, adpcm coder . This function consists of a single loop with a variety of control flow
statements. With-O3 turned on Electron aggressively predicates the loop yielding a 12% decrease
in schedule height versus-O2 , which leaves much of the control flow intact. This accounts for all
the speedup observed. The OSE-Electron estimator can easily pick the shorter version of the code
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since other characteristics considered are similar between the versions. While this fact could lead
one to conclude that theO3 level is simply better thanO2, changing Electron’s default configuration
to O3 would actually lead to performance degradation for more than half the benchmarks in our
suite. On the other hand, OSE-Electron is able to deliver the benefits of theO3configuration while
avoiding its performance pitfalls.

5.5 Evaluating the Pruning Strategy

By following the OSE static selection and compile-time pruning methodologies, OSE-Electron is
able to deliver significant performance benefits by trying just 6 configurations per code segment,
3 for each tree level. To evaluate the effectiveness of both these methodologies, we compare the
OSE-Electron described above against randomized version of OSE. This version constructs 6 con-
figurations by assigning for each parameter in Table 1 a randomly picked value from the parameter’s
value set. Each benchmark is then compiled using these random configurations, and the best ver-
sion of each procedure is selected by using OSE-Electron’s static estimator. Figure 7 compares the
performance of OSE-Electron with that of its “Monte-Carlo” version.

From the figure we can see that a randomly selected configuration set generally offers less
performance benefits than the configuration set picked by OSE-Electron’s selection phases. On
average, the random configuration set performs about 1% worse than OSE-Electron on SPEC2000
benchmarks, and about 6% worse on the other benchmarks.

Notice that the random configuration set provides big speedups (over 15%) in only 3 bench-
marks, whereas the normal OSE-Electron achieves large speedups in 7 benchmarks. The few bench-
marks, particularly256.bzip2 , where a random configuration selection performs better than one
would expect occur because the performance improvements in these benchmarks are caused by
varying a single optimization parameter: other optimization parameters have very little effect. In
these cases each random configuration has a 25% - 50% chance of finding the correct configuration
in each random trial. In the experiment above, we try 6 random configurations, meaning that it will
find the correct answer with a probability between1− (.5)6 and1− (.25)6.

A similar analysis also explains the relatively modest improvement of OSE-Electron versus ran-
dom configurations on the SPEC benchmark suite. Since Electron was tuned for these benchmarks,
many heuristic-controlled configurations do quite well, greatly improving the random configura-
tions’ chances of generating good results. Notice that for non-SPEC benchmarks, OSE-Electron
significantly out-performs the random configurations. In short, OSE is even more effective when
the compiler encounters codes for which it was not tuned.

6. Conclusion

In this article we experimentally demonstrate that predictive heuristics in traditional, single-path,
”one size fits all” compilation approaches sacrifice significant optimization opportunities, thus mo-
tivating iterative compilation. We then propose a novel iterative compilation approach, called
Optimization-Space Exploration (OSE), that is the first such approach to be both general and prac-
tical enough for modern aggressively optimizing compilers targeting general-purpose architectures.

Unlike previous iterative compilation techniques, the applicability of OSE is not limited to spe-
cific optimizations, architectures, or application domains. Furthermore, OSE does not incur the
prohibitive compile-time costs of other iterative compilation approaches. OSE achieves this by
leveraging existing predictive heuristics, by carefully selecting the search space during compiler
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OSE-Electron: random config selection

OSE-Electron: normal config selection

Figure 7: Comparison of OSE-Electron’s static and compile-time configuration selection vs. ran-
dom configuration selection.

tuning, and by utilizing feedback in order to further prune the search space at compile time. Further,
OSE employs a fast static performance estimator, thus obviating the need to run and measure multi-
ple optimized versions of the code. Finally, OSE is only applied to the frequently executed portion
of the program.

The potential of OSE has been experimentally demonstrated by implementing an OSE-enabled
version of Intel’s aggressively optimizing production compiler for Itanium. Experimental results
from this prototype confirm that OSE is capable of delivering significant performance benefits while
keeping compile times reasonable.
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