
Retargetable Static Timing Analysis
for Embedded Software

Kaiyu Chen
Department of Electrical Engineering

Princeton University
Princeton, NJ 08544

Kchen@ee.princeton.edu

Sharad Malik
Department of Electrical Engineering

Princeton University
Princeton, NJ 08544

Sharad@ee.princeton.edu

David I. August
Department of Computer Science

Princeton University
Princeton, NJ 08544

August@cs.princeton.edu

ABSTRACT
This paper presents a novel approach for retargetable static
software timing analysis. Specifically, we target the problem of
determining bounds on the execution time of a program on
modern processors, and solve this problem in a retargetable
software development environment. Another contribution of this
paper is the modeling of important features in contemporary
architectures, such as branch prediction, predication, and
instruction pre-fetching, which have great impact on system
performance, and have been rarely handled thus far. These ideas
allow to build a timing analysis tool that is efficient, accurate,
modular and retargetable. We present preliminary results for
sample embedded programs to demonstrate the applicability of the
proposed approach.

1. INTRODUCTION
Static timing analysis is essential in real-time systems
development, where the schedulability analysis [1] of programs
with hard real-time constraints depends on the estimated extreme
case performance. It is also useful in verification of timing critical
systems, hardware/software co-design of embedded systems, and
early design space exploration.

Because of its importance, many researchers have studied the
problem and proposed various solutions. However, two problems
remain largely unresolved. First, many analysis techniques are
highly architecture specific, which makes them expensive to
migrate to other architectures. Second, many advanced features in
modern processors are still difficult to model. Since they have
great impact on system performance, it is overly pessimistic to
simply ignore their presence.

In this paper we describe a general approach for solving these
problems. We address the first difficulty by integrating a machine
independent timing analysis scheme with our programmable
platform-based software development infrastructure (called
MESCAL) [2], which allows automatic retargetability by using a

unified machine description language. We address the second one
by modeling the effects of several, hitherto largely ignored,
important features in modern processors.

To be suitable for static timing analysis, the program must be
statically predictable, e.g. it cannot have infinite loops or dynamic
function calls. In general, the analysis is performed at task-level,
in which we do not consider the effects of preemption or
interrupts.

This paper is organized as follows. In Section 2 we survey related
work. Section 3 provides a review of a powerful integer linear
programming (ILP) based software performance bounding
technique, which forms the foundation of our tool. We present our
retargetable design methodology in Section 4. In Section 5, we
describe how to extend the analysis scheme to model the effects of
branch prediction, predication, and instruction pre-fetching. Some
preliminary experimental results are presented in Section 6 to
demonstrate the applicability of the proposed approach. We
conclude our work in section 7.

2. RELATED WORK
Early work in the field of timing analysis relies on measuring the
program runtimes on the target machine [3]. However, this is
known to be unsafe and inaccurate, since it is often impossible to
identify the worst-case scenario. Most recent researches focus on
analytical methods, in which the analysis is based on information
collected before or at compile time.

In order to get fairly accurate estimation results, both program
flow and system resource utilization must be analyzed. Since the
number of feasible program execution paths can be exponential,
explicit [8] and implicit [10] path enumeration techniques are
proposed to identify the worst-case program execution sequence
efficiently. Micro-architecture affects program execution time by
changing instruction timing and program flow. Commonly used
mechanisms in modern processors for the purpose of boosting
system performance often introduce uncertainty about dynamic
program behavior. In particular, the effects of pipelines [4] and
caches [5, 6] have been studied extensively. However, most of
these approaches only handle some aspect of the problem.

More recently, there have been researches trying to integrate
multiple efforts. In [7] the author proposes an integrated path and
timing analysis method based on cycle-level symbolic execution.
The work in [8] focus on straight line-code and covers aspects on
the assembly instruction level as well as on the programming

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ISSS’01, October 1-3, 2001, Montréal, Québec, Canada.
Copyright 2001 ACM 1-58113-418-5/01/00010…$5.00.

5739

language level. The authors in [9] present a prototype for worst-
case execution time (WCET) analysis system, which is similar to
ours, but in their work the level of retargetability is unclear. In
general, due to the dependency on built-in-house development
tools (e.g. simulator/compiler) or target specific data schema, the
portability of most existing works are rather limited.

To our knowledge, there has been little work on modeling of
predication and software instruction pre-fetching for timing
estimation. The effect of branch prediction is studied in [11].
However, it’s based on branch target buffer modeling by
considering all possible program execution paths.

3. INTEGER LINEAR PROGRAMMING
(ILP) BASED TIMING ANALYSIS SCHEME
In this section we briefly review the ILP based bounding
technique used in Cinderella [10], which is adapted as the core
analysis scheme in our work. Cinderella is a timing analysis tool
for simple embedded processors. It consists of two components
for solving the WCET problem: program flow analysis and micro-
architecture modeling.

Program flow analysis characterizes the program flow by two
types of linear constraints, namely structural constraints and
functionality constraints. The construction of these constraints is
illustrated in Figure 1, where the label on the node/edge denotes
its execution/flow count.

 /* k >= 0 */
 s = k ;
 while (k < 1 0) {
 if (ok)
 j++;
 else {
 j = 0 ;
 ok = true;
 }
 k++;
 }
 r = j;

 B1 s = k ;

 B2 w hile (k<1 0);

 B3 if (ok);

 B4 j+ + ; B5 j= 0 ;
 ok= true;

 B6 k + + ;

 B7 r = j;

d1

d2

d3

d4 d5

d6 d7

d8

d9

x 1

x 2

x4 x 5

x 6

x 7

d10
 (a) C ode (b) C ontrol flow graph

x 3

Figure 1. Code segment example and its CFG.

Structural constraints can be automatically derived from the
Control Flow Graph (CFG) based on the flow constraints at each
node, i.e. the basic block execution count is equal to the number
of times that the controls enters the node (inflow), and is also
equal to the number of times that the control exists the node
(outflow). For example: x1=d1=d2. Functionality constraints can
be derived by performing data flow analysis, or more effectively
specified by the user. They provide two types of logical flow
information. The first type gives loop bounds in the program. For
example, we can see in the code fragment above that the loop
body will be executed between 0 and 10 times each time the loop
entered, this information can be specified as: 0x1 ≤ x3 ≤ 10x1. The
second type specifies other path information that may help tighten
the analysis results. For example, due to the correlation between
basic blocks B4 and B5, the else statement can be executed at most
once inside the loop, this information can be specified as: x5 ≤ 1x1.

If we assume that the execution time of a basic block Bi of the
program is a constant ci (e.g. each instruction has fixed timing), let
xi be the execution count, then the total execution time of the
program can be expressed as ∑∑∑∑cixi. Since all the constraints on xi
are expressed as integer linear formulas, we can solve the WCET
problem by maximizing the cost function of total execution time
under the constraints derived above using ILP techniques.

Nevertheless, in modern architectures instruction timing may vary
depending on factors such as operand value and machine state.
Micro-architecture modeling is used to account for these effects
on dynamic program behavior. For example, a simulator can be
used to obtain the cost coefficient of a basic block by modeling
pipeline interaction within a known sequence of instructions.
Cache behavior is hard to model because it depends potentially on
a long trace in history. To tackle this problem Cinderella uses a
refined solution based on the same ILP technique. The analysis
for a direct mapped Icache is illustrated as follows:

Define an l-block as a contiguous sequence of instructions within
the same basic block that are mapped to the same set in the
Icache, and thus have identical hit/miss behavior. Denote an l-
block inside a basic block as Bi.j. It is associated with two
variables xi.j

hit and xi.j
miss, which represent its hit and miss counts.

Let ci.j
hit and ci.j

miss represent the hit and miss execution time of
Bi.j respectively, then the new cost function for total execution
time can be expressed as: ∑∑∑∑i∑∑∑∑j (ci.j

hitxi.j
hit + ci.j

missxi.j
miss). Since the

total execution count of Bi.j is equal to that of the basic block
containing it, we have: xi = xi.j

hit + xi.j
miss.

For any two l-blocks mapped to the same cache set, they conflict
with each other if their address tags are different. Otherwise they
are said to be non-conflicting. If there are less than one conflicting
l-blocks mapped to a cache set, the sum of their miss counts must
be at most 1. For each cache set containing two or more
conflicting l-blocks, a cache conflict graph (CCG) is constructed.
It contains a start node ‘s’ (representing the start of the program),
an end node ‘e’ (representing the end of the program), and a node
‘Bk.l’ for every l-block Bk.l mapped to the same cache set. There is
a directed edge drawn from node Bk.l to Bm.n, if there exists a path
in the CFG from basic block Bk to basic block Bm without passing
through any other l-blocks of the same cache set. We assign a new
variable p(k.l, m.n) to count the number of times that control pass
the edge. Then we can derive a new set of linear constraints from
the CCG as follows.

Similar to the CFG analysis, for each node Bi.j the sum of inflow
must be equal to its execution count and the sum of the outflow.
Therefore, we have: xi = ∑u..v p(u.v, i.j) = ∑u.v p(i.j, u.v), where
“u.v” denotes some other node Bu.v that is connected with Bi.j. In
particular, for the start node ‘s’, the sum of outflow is equal to the
number of times the program segment is executed. Note that the
constraints link the new variables to those we used in CFG
analysis, therefore allow the effect of all parts to be considered in
a global way. Besides, according to the definition of the CCG, the
number of the cache hits can be determined by: p(i.j, i.j) ≤ xi.j

hit ≤
p(s, i.j) + p(i.j,i.j). These constraints, together with the structural
constraints and functionality constraints, are used to solve the ILP
problem for the new cost function. The same technique can be
extended to model set associative caches and data caches. More
details can be found in [10].

5840

4. DESIGN METHODOLOGY
As previously mentioned, both program flow and micro-
architecture need to be modeled for accurate timing analysis. In
general both depend heavily on target specific information, which
varies a lot for different machines. For example, in program flow
analysis we need to understand the instruction set architecture,
while in micro-architecture modeling we need to know the system
resource utilization and their effects on program’s dynamic
behavior. Traditionally, such information is hard-coded into the
development tools, which makes it hard to retarget to different
architectures. In this paper we show how we can reduce the
overall design efforts and complexity of the problem, through the
adoption of an approach that minimizes the overhead in doing so.
Figure 2 gives the overview of our approach.

4.1 MESCAL Software Design Environment
The goal of MESCAL [2] project is to provide a programmer's
model and software development environment that allows for
efficient implementation of an interesting set of applications onto
a family of fully-programmable architectures/micro-architectures.
As depicted in Figure 2, software development tools involve the
compiler, simulator, performance analyzer, debugger, and
visualization aids. Despite their functionality division, they are
closely related and often share common information about target
platform. For example, both the compiler and the simulator need
to know the information contained in the reservation table for a
VLIW processor. These common dependencies motivate us to use
a unified architecture description to drive the whole development
system.

There have been a lot of research efforts in the area of machine
description, such as MDES used in IMPACT compiler [12]. Our
approach is different from traditional ones in that MESCAL
Architecture Description (MAD) aims to provide both simulator
view and compiler view for the target processor. MAD is a mixed
level description that has combined instruction semantics and
structural specification, which provides the flexibility to express
the variety of architectural features found in modern
processors. It is written using XML as syntax. We chose XML
because of its flexibility and its popularity in public domain.
Currently the description consists of five sections: The
Declaration section specifies abstract machine parameters. For
example: whether interlocking is supported or not, in-order or
out-of-order instruction issue, etc. The Unit section describes
pipeline stages and special function units, such as register files,
memory, branch predictor, etc. The Operand section corresponds

to the layer between the storage units and the operation, where
different addressing modes are enumerated. The type of operand
can be immediate, register, or composite. The Operation section
has two elements. Operation specifies the attributes of individual
instructions, such as instruction format, encoding, and behavior.
Opergroup groups instruction into instruction sets for the
convenience of later reference. The Connection section defines
two types of connection: pipe and link. The former specifies the
pipeline flow in the architecture and the latter specifies the data
flow.

4.2 Implementation Strategy
As described in section 3, our core analysis scheme is machine
independent and based on ILP model. However, in Cinderella’s
case the user still needs to develop a handcrafted backend support
(including disassembler and simulator) for each different target
processor, which is difficult and inefficient for complicated
architectures. In our implementation, the program flow analysis is
performed on the compiler universal intermediate representation
of the program [16]. In this way we can have a unified interface
and processing mechanism for the compiled “program”, while the
differences between architectures are captured by the machine
description and handled by the front end of compiler.

Other information required by flow analysis can be derived from
the architecture description. For example, to build the program’s
flow control graph we need to identify the instructions that may
change program flow. We can build a table from the architecture
description files to store this kind of ISA information (i.e., the
mapping between instructions and their types - conditional jump,
function call, return, etc.). The data structures for such records are
machine independent and manipulated by the core analysis
algorithm. Note that although some information is not explicitly
presented in the architecture description, it can be inferred from
the associated attributes (e.g. function call has a special register
PC as its arguments).

As integrated in the same framework, the tools can benefit from
each other. The compiler may provide other useful information,
such as the profiling results, to assist the analysis. With the help
of visualization aids, the user can add annotation and additional
constraints to help tighten the estimation results [10], which can
be then used as feedback to help tune the design performance.

The modeling of the micro-architecture consists of two parts. The
first models the timing of program’s execution in a restricted
scope. The simulator can be used for this purpose. It accurately

Figure 2. System overview.

MAD
File

XML
Parser

Model type
Checking

Instruction Set

Structural Info.

Reservation
Tables

View
Generator

Application Architect

Architecture
Database

Programmer’s Model

Programmer

 Program Source &
 User Annotations

 Universal Internal
 Representation &
 Machine Code

Visualization
Aids

Liberty
Simulator Pipeline Analysis

 Program
 Flow Analysis

 Global Effect
 Analysis:
 Cache, Prefetch,
Branch Prediction

Liberty
Compiler

 Timing Graph
 Construction

 ILP Constraints
 Generation

Constraints Solver

Statistics Collection

Performance Analysis MESCAL
Design Flow

5941

models the effect of the pipeline and gives the cost coefficients of
basic blocks. The overhead of crafting a simulator from scratch
can be avoided as the simulator is automatically built from the
machine description. The second one is the global effect analysis.
One example is the cache modeling described in section 3, in
which the required information, such as the cache size and set
associativity, can also be automatically extracted from the
architecture description. Hence the core analysis module is kept
machine independent and the analysis framework can be easily
retargeted to new architectures.

5. ADVANCED MICRO-ARCHITECTURE
MODELING
Similar to cache, there are other features in modern processors
that affect program’s execution in a global way, such as branch
prediction, predication, and instruction pre-fetching. These
features dramatically reduce the program execution time and an
inability to model them will result in a severely pessimistic
analysis. In this section we demonstrate how to extend the
analysis scheme to model their effects on program timing.

5.1 Branch Prediction Analysis
To reduce the penalty caused by control hazards in pipeline
processors, it is common to predict the outcome of a branch
without interrupting the instruction flow. In modern processors,
both static and dynamic branch prediction schemes are employed.
The analysis for commonly used static prediction schemes can
easily fit into our ILP based solution. The dynamic schemes are
much harder to model statically, due to the fact that the prediction
results are based on program behavior at runtime. Existing
methods rely on static simulation techniques, such as BTB
modeling used in [11], to identify worst case branching cost and
then combine it with high-level analysis for WCET estimation.

Three commonly used static prediction schemes are: predict-
taken, predict-untaken, and delayed-branch-with-canceling [13].
It is the compiler’s responsibility to determine the predicted
outcome and schedule code appropriately. In many cases the
decision is based on examination of program flow behavior. This
makes it suitable for static timing analysis. An example is shown
in Figure 3.

Suppose instruction I(i) inside the
loop is predicted as not taken,
which is the case in most
execution times. At runtime, the
processor will check the result
after the branch is resolved. If it is
the same as predicted, then no
penalty is involved. Otherwise,
the instruction I[j] scheduled after
the branch instruction is turned
into a no-op and the program will
continue to execute in the correct
direction. To model this effect, we
can count the execution time of
I[j] into that of the basic block Bi. Then its corresponding term cixi
in the original cost function of the program’s total execution time
would be replaced by: (ci

miss-predictxi
miss-predict + ci

correct-predictxi
correct-

predict), where xi = xi
miss-predict + xi

correct-predict. Suppose the shown
program fragment is executed only once, then there would be only

one miss-prediction, which corresponds to: xi
miss-predict = 1. These

constraints link the new variables with those we used in program
flow analysis and cache analysis, and are sufficient to bound the
observed case. We can model similar cases and other schemes
using the same approach.

Nevertheless, there are other cases where the branch does not
come from loops, and where the compiler depends on profiled
information to predict the outcome. In these cases, we can still
represent the variances in execution time by linear constraints.
The worst-case scenario may be assumed to have the longest
execution path (e.g. always predicted wrong), or we can rely on
data flow analysis and user annotation for the bounds.

5.2 Predication Analysis
Modern compilers use a more aggressive optimization technique
to transform the control flow into predication, and thus eliminate
inefficiencies in handling branch instructions. In this approach,
most instructions can be tagged with some guarding predicate, a
special 1-bit register. The execution of the instruction may be
nullified at runtime if the predicate value is FALSE (0). As a
result the instruction latency may vary depending on the results of
the predicate define instructions. To model this optimization
effect, we can partition the instructions within a basic block into
smaller groups based on their predicates. Thus the total execution
time would be the sum of cost terms of each group of instructions,
which is the product of its normal execution time and count plus
the product of its nullified execution time and count. In the worst
case we may have one cost term for each instruction. An example
using IA-64 architecture [14] is shown in figure 4. The default
semantics of “cmp.eq” is to set p1 and p2 to complementary
values depending on the comparison results. Therefore we can
derive that instruction B and instruction D are mutually exclusive
and cannot be executed normally at the same time. The
dependence among the predicates (e.g. dominance, mutual
exclusion, exhaustion, etc.) can be derived from a BDD package
[15] generated when the compiler performs the optimization, or
provided by user annotations.

(a) B as ic b lock X i

 cmp.eq p1, p2 = r5,r4 ;: // cycle 0 : instr A
(p1) ld8 r1 = [r3] ;: // cycle 1 : instr B
 add r3 = r1 , r2 ;: // cycle ?: instr C
(p2) ld8 r4 = [r6] ;: // cycle ?: instr D
 add r6 = r4, r5 ;: // cycle ?: instr E

(b) L inear constra ints for execution counts

X i = X iA = X iC = X iE //execution count equation
 = X iB

N + X iB
n //’N ’ denotes normal case

 = X iD
N + X iD

n //’n’ denotes nullified case
 X iB

N = X iD
n (X iB

n = X iD
N)

(c) M odified cost func tion

Total_execution_time = X iA C iA + X iC C iC + X iE C iE
 + X iB

N C iB
N + X iB

n C iB
n

 + X iD
N C iD

N + X iD
n C iD

n

Figure 4. Predication modeling example.

5.3 Instruction Pre-fetching Analysis
Instruction pre-fetching [17] is another important scheme to hide
the relatively slow speed of memory system. In software

Figure 3. Control
flow example.

I(i): branch… Bi

I(j): …
Bj

Bk

fall-through taken

6042

controlled methods, since pre-fetching instructions can change the
state of cache, their effects must be modeled in the cache analysis.
Based on the observation that, in the case of pre-fetching, the
program flow is still characterized by the execution of the pre-
fetching l-block, while the cache content is determined by the pre-
fetched data, we can modify our cache analysis scheme described
earlier to factor in the effect of pre-fetching instructions.

An example using a directed mapped Icache is shown in Figure 5,
in which B5.3 and B6.1 are non-conflicting l-blocks. They both
conflict with B4.1, which is pre-fetched by B1.1. The modified
cache conflict graph CCG’ that corresponds the cache set they are
mapped to is constructed as follows: first we add in the l-block
that contains instructions pre-fetching to the same cache set, in
this case B1.1. The ‘pre-fetch’ nodes are distinguished from the
normal nodes by attached attributes. The edges for the newly
added nodes are drawn in the same way as for constructing the
CCG. We can then determine if an edge represents a transition
that results in a cache miss (denoted as ‘C’ in the graph, otherwise
denoted as ‘N’) by looking at the cache content of the nodes it
connects. Note that for a ‘pre-fetch’ node, we need to consider its
pre-fetched data when we decide the hit/miss property of its
connected edge. For example, since B1.1 pre-fetches B4.1, and B4.1
conflict with B5.3, the edge from B1.1 to B4.1 is counted as a hit,
while the edge from B1.1 to B5.3 is counted as miss. Therefore, we
can generate the constraints for bounding cache hits of the l-
blocks, e.g., x4.1

hit = p(4.1,4.1) + p(1.1,4.1). Other types of
constraints can be generated as we have described for the CCG,
with the modification that when generating the flow related
constraints, we need to count the execution of the pre-fetching l-
block associated with a ‘pre-fetch’ node. For example, the
constraints for node B1.1 would be: p(s,1.1) = p(1.1,e) + p(1.1,4.1)
+ p(1.1,5.3) = x1. Similarly we can extend the scheme to model
other cases and set associative caches, which have been omitted
for sake of brevity.

6. EXPERIMENTAL RESULTS
As an initial proof-of-concept experiment to verify the
applicability of our approach, we have incorporated and tested the
core analysis scheme as described in section 3 within the Liberty
compiler infrastructure [16]. The target architectures we
experiment with belong to the IMPACT EPIC [12] class, which
allows effective exploitation of instruction-level parallelism and
has configurable aspects such as memory characteristics, register
file sizes, number of functional units, and specialized functional
units. The architecture configuration from which we obtained the

test data are IMPACT EPIC-8G-1BL [12], which is an 8-issue 1-
branch-slot VLIW processor that supports general speculation,
and EPIC-1G-1BL, which is an 1-issue processor. Table 1 gives a
brief description of the programs we tested. The CPU time is
measured on a server running Linux with Pentium III 800Mhz
CPU and 2 Gig memory.

Table 1. Description of tested programs.
Program Name Description

Jfdctint JPEG slow-but-accurate implementation of DCT
Stats CCaallccuullaattee tthhee ssuumm,, mmeeaann aanndd vvaarriiaannccee ooff ttwwoo aarrrraayyss
FFT 11002244--ppooiinntt FFaasstt FFoouurriieerr TTrraannssffoorrmm
Matcnt Summation of 2 100*100 matrices
Sort Sort an array using BubbleSort

Table 2 shows the flow analysis results. The cost coefficients of
the basic blocks are derived from the instruction scheduling
information, which is feasible as the compiler has fully knowledge
of pipeline resource usage for VLIW processors. The estimation
results are compared with the those obtained from compiler
profiling, in which we have to manually set the worst case
scenario input data, therefore may not get the exact actual bound.
The unit of the data listed for WCET is ‘cycle’. The last column
shows the ILP solver (lp_solve) runtime in ‘second’.

Table 2. Experimental results of flow analysis.
(a) Using configuration EPIC-1G-1BL

 Program Estimated WCET Profiled WCET Time
 Jfdctint 1471 1471 0.00
 Stats 151202 151202 0.03
 FFT 198272 198272 0.03
 Matcnt 491063 481063 0.01
 Sort 2626261 2626261 0.02

(b) Using configuration EPIC-8G-1BL
Program Estimated WCET Profiled WCET Time
Jfdctint 1434 1434 0.00
Stats 126113 126113 0.03
FFT 195708 195708 0.03
Matcnt 380620 380620 0.01
Sort 1625752 1625752 0.02

Table 3 shows the Icache analysis results. Comparisons are
presented with the results obtained from the Dinero IV cache
simulator. The input to Dinero IV is the program’s execution trace
generated by Liberty emulator. Note that to verify the cache
analysis accuracy, we explicitly set the basic block execution
counts so that they match the execution trace. The units of the
data shown are ‘total_access_count / total_miss_count’.

We can see that the estimated results are very close to those given
by other standard tools. As analyzed in [10] the ILP technique is
efficient compared with other methods. In general, the problem
size will grow with the number of variables (corresponding to
vertices and edges in the constructed timing graphs), program
structure complexity (represented by the generated linear
constraints), and architecture configuration (e.g. cache
associativity). Furthermore, as indicated in table 3-c, the
overhead of static analysis can be much lower than simulation
based scheme, especially for programs with long execution trace
but unsophisticated structures.

Figure 5. Example of cache analysis with pre-fetching.

B4.1
B5.3

e

N
C

N

N
C

N N

CCG’

B1.1

S

B6.1
C

B’4.1

 B1B1.1

 B2

 B3

 B4 B4.1
 B5B5.3

 B6B6.1

 B8 B7

 B9 CFG

 B5.3 B6.1

B4.1

 B1.1
 pre-fetch

Cache mapping

6143

Table 3. Experimental results of cache analysis.
(a) Cache configuration: Size = 512; Line Size = 32; Assoc. = 1

Program Name Cache Analysis Dinero IV
Jfdctint 1583 / 38 1583 / 38
Stats 209394 / 2072 209394 / 2072
FFT 167068 / 1023 167068 / 1023
Matcnt 721196 / 39 721196 / 39
Sort 4996587 / 20 4996587 / 20

(b)Cache configuration: Size = 512; Line Size = 16; Assoc. = 2
Program Name Cache Analysis Dinero IV

Jfdctint 1583 / 73 1583 / 73
Stats 209394 / 145 209394 / 145
FFT 167068 / 60 167068 / 60
Matcnt 721196 / 76 721196 / 76
Sort 4996587 / 37 4996587 / 37

(c) Measured runtime in experiment (a)
Program Name Cache Analysis Dinero IV

Jfdctint 0.06 0.02
Stats 0.19 0.38
FFT 0.08 0.28
Matcnt 0.09 1.19
Sort 0.03 8.25

7. CONCLUSION
In this paper we have described an approach for retargetable static
software timing analysis. We propose to integrate a machine
independent timing analysis scheme with our programmable
platform-based software development environment.

The advantages of this approach are twofold. First, by separating
machine dependent and independent parts, and carefully
designing the interface, we can make the timing analysis tool
retargetable and modular. Second, due to the close interaction, the
modules in the infrastructure can benefit from each other.
Compared with other methods, in our approach significant design
efforts can be leveraged among the modules in the same
development infrastructure, including the highly optimizing
compiler and automatically built simulator. The core analysis
scheme can handle both software/hardware aspects in a uniform
ILP framework and remains primarily unchanged. Furthermore, as
we have demonstrated, the core analysis scheme can be easily
extended to model several of the most important features in
contemporary architectures, and thus produce tighter bounds.

8. ACKNOWLEDGEMENT
The authors would like to acknowledge the support from GSRC,
and suggestions from all colleagues, in particular Yau-Tsun
Steven Li. This work is partly sponsored by Hangseng Overseas
Scholarship.

9. REFERENCES
[1] J. Stankovic, M. Spuri, M. Di Natale, and G. Buttazzo.

“Implications of classical scheduling results for real-time
scheduling”. IEEE Computer, pages 16--25, June 1995.

[2] K. Keutzer, S. Malik, A. R. Newton, J. Rabaey and A. Sangiovanni-
Vincentelli. “System Level Design: Orthogonolization of Concerns
and Platform-Based Design”. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 19(12), December
2000.

[3] P. Gopinath and R. Gupta. “Applying compiler techniques to
scheduling in Real-time systems”. In Proceedings of 1990 IEEE
Real-Time Systems Symposium, pages 247--256, 1990.

[4] S. Lim, Y. H. Bae, G. Tae Jang, B. Rhee, S. Lyul Min, C. Y. Park,
H. Shin, K. Park, S. Moon, C. S. Kim, "An Accurate Worst Case
Timing Analysis Technique for RISC Processors," In Proceedings of
the 15th Real-Time Systems Symposium, 1994.

[5] R. T. White, F. Mueller, C. A. Healy, D. B. Whalley, and M. G.
Harmon, "Timing Analysis for Data Caches and Set-Associative
Caches". In Proceedings of the IEEE Real-Time Technology and
Applications Symposium, Montreal, Canada, pp. 192—202, June
1997.

[6] F. Mueller. “Timing predictions for multi-level caches”. In ACM
SIGPLAN Workshop on Language, Compiler, and Tool Support for
Real-Time Systems, pages 29--36, 1997.

[7] T. Lundqvist and P. Stenstrom. “An integrated path and timing
analysis method based on cyclelevel symbolic execution”. Journal
of Real-Time Systems, November 1999.

[8] F. Stappert and P. Altenbernd. "Complete Worst-Case Execution
Time Analysis of Straight-line Hard Real-Time Programs." Journal
of Systems Architecture, 46(4), 2000.

[9] J. Engblom, A. Ermedahl, M. Sjodin, J. Gustafsson, and H.
Hansson, “Worst-Case Execution-Time Analysis for Embedded
Real-Time Systems”. Unpublished technique report, Department of
Computer Systems, Uppsala University, Sweden, 2000.

[10] Y. S. Li, S. Malik and A. Wolfe, "Cache Modeling for Real-Time
Software: Beyond Direct Mapped Instruction Caches". In
Proceedings of the IEEE Real-Time Systems Symposium, December
1996.

[11] A. Colin and I. Puaut. “Worst case execution time analysis for a
processor with branch prediction”. In Real-Time Systems, 18(2-3):
249--274, May 2000.

[12] “The IMPACT Research Group”,
http://www.crhc.uiuc.edu/IMPACT

[13] J. Hennessy, J. L. Hennessy, D. Goldberg, D. A. Patterson.
“Computer Architecture : A Quantitative Approach”. Morgan
Kaufmann Publishers, 1996.

[14] ItaniumTM Processor Microarchitecture Reference. Technical report,
Intel Corp., August 2000. http://developer.intel.com/design/ia-64/

[15] J. W. Sias, D. I. August, and W. W. Hwu. “Accurate and Efficient
Predicate Analysis with Binary Decision Diagrams”. In Proceedings
of the 33rd International Symposium on Microrchitecture,
December 2000.

[16] “The Liberty Computer Architecture Research Group”,
http://liberty.cs.princeton.edu

[17] C. Luk and T. Mowry. “Cooperative Prefetching: Compiler and
Hardware Support for Effective Instruction Prefetching in Modern
Processors”. In Proceedings of 31st International Symposium on
Microarchitecture, pages 182--193, December 1998.

6244

	Main
	ISSS01
	Front Matter
	Table of Contents
	Session Index
	Author Index

