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ABSTRACT 
This paper presents a novel approach for retargetable static 
software timing analysis. Specifically, we target the problem of 
determining bounds on the execution time of a program on 
modern processors, and solve this problem in a retargetable 
software development environment. Another contribution of this 
paper is the modeling of important features in contemporary 
architectures, such as branch prediction, predication, and 
instruction pre-fetching, which have great impact on system 
performance, and have been rarely handled thus far. These ideas 
allow to build a timing analysis tool that is efficient, accurate, 
modular and retargetable. We present preliminary results for 
sample embedded programs to demonstrate the applicability of the 
proposed approach.     

1. INTRODUCTION 
Static timing analysis is essential in real-time systems 
development, where the schedulability analysis [1] of programs 
with hard real-time constraints depends on the estimated extreme 
case performance. It is also useful in verification of timing critical 
systems, hardware/software co-design of embedded systems, and 
early design space exploration.  

Because of its importance, many researchers have studied the 
problem and proposed various solutions. However, two problems 
remain largely unresolved. First, many analysis techniques are 
highly architecture specific, which makes them expensive to 
migrate to other architectures. Second, many advanced features in 
modern processors are still difficult to model. Since they have 
great impact on system performance, it is overly pessimistic to 
simply ignore their presence.  

In this paper we describe a general approach for solving these 
problems. We address the first difficulty by integrating a machine 
independent timing analysis scheme with our programmable 
platform-based software development infrastructure (called 
MESCAL) [2], which allows automatic retargetability by using a 

unified machine description language. We address the second one 
by modeling the effects of several, hitherto largely ignored, 
important features in modern processors.   

To be suitable for static timing analysis, the program must be 
statically predictable, e.g. it cannot have infinite loops or dynamic 
function calls. In general, the analysis is performed at task-level, 
in which we do not consider the effects of preemption or 
interrupts.   

This paper is organized as follows. In Section 2 we survey related 
work. Section 3 provides a review of a powerful integer linear 
programming (ILP) based software performance bounding 
technique, which forms the foundation of our tool. We present our 
retargetable design methodology in Section 4. In Section 5, we 
describe how to extend the analysis scheme to model the effects of 
branch prediction, predication, and instruction pre-fetching. Some 
preliminary experimental results are presented in Section 6 to 
demonstrate the applicability of the proposed approach. We 
conclude our work in section 7. 

2. RELATED WORK 
Early work in the field of timing analysis relies on measuring the 
program runtimes on the target machine [3]. However, this is 
known to be unsafe and inaccurate, since it is often impossible to 
identify the worst-case scenario. Most recent researches focus on 
analytical methods, in which the analysis is based on information 
collected before or at compile time. 

In order to get fairly accurate estimation results, both program 
flow and system resource utilization must be analyzed. Since the 
number of feasible program execution paths can be exponential, 
explicit [8] and implicit [10] path enumeration techniques are 
proposed to identify the worst-case program execution sequence 
efficiently.  Micro-architecture affects program execution time by 
changing instruction timing and program flow. Commonly used 
mechanisms in modern processors for the purpose of boosting 
system performance often introduce uncertainty about dynamic 
program behavior. In particular, the effects of pipelines [4] and 
caches [5, 6] have been studied extensively. However, most of 
these approaches only handle some aspect of the problem.  

More recently, there have been researches trying to integrate 
multiple efforts. In [7] the author proposes an integrated path and 
timing analysis method based on cycle-level symbolic execution.  
The work in [8] focus on straight line-code and covers aspects on 
the assembly instruction level as well as on the programming 
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language level. The authors in [9] present a prototype for worst-
case execution time (WCET) analysis system, which is similar to 
ours, but in their work the level of retargetability is unclear.  In 
general, due to the dependency on built-in-house development 
tools (e.g. simulator/compiler) or target specific data schema, the 
portability of most existing works are rather limited. 

To our knowledge, there has been little work on modeling of 
predication and software instruction pre-fetching for timing 
estimation. The effect of branch prediction is studied in [11]. 
However, it’s based on branch target buffer modeling by 
considering all possible program execution paths. 

3. INTEGER LINEAR PROGRAMMING 
(ILP) BASED TIMING ANALYSIS SCHEME 
In this section we briefly review the ILP based bounding 
technique used in Cinderella [10], which is adapted as the core 
analysis scheme in our work. Cinderella is a timing analysis tool 
for simple embedded processors. It consists of two components 
for solving the WCET problem: program flow analysis and micro-
architecture modeling. 

Program flow analysis characterizes the program flow by two 
types of linear constraints, namely structural constraints and 
functionality constraints. The construction of these constraints is 
illustrated in Figure 1, where the label on the node/edge denotes 
its execution/flow count.  

 

 /* k  >= 0  */ 
 s = k ; 
 while (k  < 1 0) {  
     if (ok ) 
         j++; 
     else  {  
         j = 0 ; 
         ok  = true; 
     }  
     k++; 
 }  
 r =  j; 

  B1 s =  k ; 

  B2 w hile (k<1 0); 

  B3 if (ok ); 

  B4 j+ + ;   B5 j= 0 ; 
 ok= true; 

  B6 k  + + ; 

  B7 r =  j; 
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Figure 1. Code segment example and its CFG. 

Structural constraints can be automatically derived from the 
Control Flow Graph (CFG) based on the flow constraints at each 
node, i.e. the basic block execution count is equal to the number 
of times that the controls enters the node (inflow), and is also 
equal to the number of times that the control exists the node 
(outflow). For example: x1=d1=d2. Functionality constraints can 
be derived by performing data flow analysis, or more effectively 
specified by the user. They provide two types of logical flow 
information. The first type gives loop bounds in the program. For 
example, we can see in the code fragment above that the loop 
body will be executed between 0 and 10 times each time the loop 
entered, this information can be specified as: 0x1 ≤ x3 ≤ 10x1. The 
second type specifies other path information that may help tighten 
the analysis results. For example, due to the correlation between 
basic blocks B4 and B5, the else statement can be executed at most 
once inside the loop, this information can be specified as: x5 ≤ 1x1.  

If we assume that the execution time of a basic block Bi of the 
program is a constant ci (e.g. each instruction has fixed timing), let 
xi be the execution count, then the total execution time of the 
program can be expressed as ∑∑∑∑cixi. Since all the constraints on xi 
are expressed as integer linear formulas, we can solve the WCET 
problem by maximizing the cost function of total execution time 
under the constraints derived above using ILP techniques. 

Nevertheless, in modern architectures instruction timing may vary 
depending on factors such as operand value and machine state. 
Micro-architecture modeling is used to account for these effects 
on dynamic program behavior. For example, a simulator can be 
used to obtain the cost coefficient of a basic block by modeling 
pipeline interaction within a known sequence of instructions. 
Cache behavior is hard to model because it depends potentially on 
a long trace in history. To tackle this problem Cinderella uses a 
refined solution based on the same ILP technique. The analysis 
for a direct mapped Icache is illustrated as follows: 

Define an l-block as a contiguous sequence of instructions within 
the same basic block that are mapped to the same set in the 
Icache, and thus have identical hit/miss behavior.  Denote an l-
block inside a basic block as Bi.j. It is associated with two 
variables xi.j

hit and xi.j
miss, which represent its hit and miss counts. 

Let ci.j
hit and ci.j

miss represent the hit and miss execution time of 
Bi.j respectively, then the new cost function for total execution 
time can be expressed as: ∑∑∑∑i∑∑∑∑j (ci.j

hitxi.j
hit + ci.j

missxi.j
miss). Since the 

total execution count of Bi.j is equal to that of the basic block 
containing it, we have: xi = xi.j

hit + xi.j
miss. 

For any two l-blocks mapped to the same cache set, they conflict 
with each other if their address tags are different. Otherwise they 
are said to be non-conflicting. If there are less than one conflicting 
l-blocks mapped to a cache set, the sum of their miss counts must 
be at most 1. For each cache set containing two or more 
conflicting l-blocks, a cache conflict graph (CCG) is constructed.  
It contains a start node ‘s’ (representing the start of the program), 
an end node ‘e’ (representing the end of the program), and a node 
‘Bk.l’ for every l-block Bk.l mapped to the same cache set. There is 
a directed edge drawn from node Bk.l to Bm.n, if there exists a path 
in the CFG from basic block Bk to basic block Bm without passing 
through any other l-blocks of the same cache set. We assign a new 
variable p(k.l, m.n) to count the number of times that control pass 
the edge. Then we can derive a new set of linear constraints from 
the CCG as follows.  

Similar to the CFG analysis, for each node Bi.j the sum of inflow 
must be equal to its execution count and the sum of the outflow.  
Therefore, we have: xi = ∑u..v p(u.v, i.j) = ∑u.v p(i.j, u.v), where 
“u.v” denotes some other node Bu.v that is connected with Bi.j. In 
particular, for the start node ‘s’, the sum of outflow is equal to the 
number of times the program segment is executed. Note that the 
constraints link the new variables to those we used in CFG 
analysis, therefore allow the effect of all parts to be considered in 
a global way. Besides, according to the definition of the CCG, the 
number of the cache hits can be determined by: p(i.j, i.j) ≤  xi.j

hit ≤ 
p(s, i.j) + p(i.j,i.j). These constraints, together with the structural 
constraints and functionality constraints, are used to solve the ILP 
problem for the new cost function. The same technique can be 
extended to model set associative caches and data caches. More 
details can be found in [10]. 
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4. DESIGN METHODOLOGY 
As previously mentioned, both program flow and micro-
architecture need to be modeled for accurate timing analysis. In 
general both depend heavily on target specific information, which 
varies a lot for different machines. For example, in program flow 
analysis we need to understand the instruction set architecture, 
while in micro-architecture modeling we need to know the system 
resource utilization and their effects on program’s dynamic 
behavior. Traditionally, such information is hard-coded into the 
development tools, which makes it hard to retarget to different 
architectures. In this paper we show how we can reduce the 
overall design efforts and complexity of the problem, through the 
adoption of an approach that minimizes the overhead in doing so. 
Figure 2 gives the overview of our approach. 

4.1 MESCAL Software Design Environment  
The goal of MESCAL [2] project is to provide a programmer's 
model and software development environment that allows for 
efficient implementation of an interesting set of applications onto 
a family of fully-programmable architectures/micro-architectures. 
As depicted in Figure 2, software development tools involve the 
compiler, simulator, performance analyzer, debugger, and 
visualization aids. Despite their functionality division, they are 
closely related and often share common information about target 
platform. For example, both the compiler and the simulator need 
to know the information contained in the reservation table for a 
VLIW processor. These common dependencies motivate us to use 
a unified architecture description to drive the whole development 
system.  

There have been a lot of research efforts in the area of machine 
description, such as MDES used in IMPACT compiler [12]. Our 
approach is different from traditional ones in that MESCAL 
Architecture Description (MAD) aims to provide both simulator 
view and compiler view for the target processor. MAD is a mixed 
level description that has combined instruction semantics and 
structural specification, which provides the flexibility to express 
the variety of architectural features found in modern 
processors. It is written using XML as syntax. We chose XML 
because of its flexibility and its popularity in public domain. 
Currently the description consists of five sections: The 
Declaration section specifies abstract machine parameters. For 
example: whether interlocking is supported or not, in-order or 
out-of-order instruction issue, etc. The Unit section describes 
pipeline stages and special function units, such as register files, 
memory, branch predictor, etc. The Operand section corresponds 

to the layer between the storage units and the operation, where 
different addressing modes are enumerated. The type of operand 
can be immediate, register, or composite. The Operation section 
has two elements. Operation specifies the attributes of individual 
instructions, such as instruction format, encoding, and behavior. 
Opergroup groups instruction into instruction sets for the 
convenience of later reference. The Connection section defines 
two types of connection: pipe and link. The former specifies the 
pipeline flow in the architecture and the latter specifies the data 
flow.  

4.2 Implementation Strategy  
As described in section 3, our core analysis scheme is machine 
independent and based on ILP model. However, in Cinderella’s 
case the user still needs to develop a handcrafted backend support 
(including disassembler and simulator) for each different target 
processor, which is difficult and inefficient for complicated 
architectures. In our implementation, the program flow analysis is 
performed on the compiler universal intermediate representation 
of the program [16]. In this way we can have a unified interface 
and processing mechanism for the compiled “program”, while the 
differences between architectures are captured by the machine 
description and handled by the front end of compiler.  

Other information required by flow analysis can be derived from 
the architecture description. For example, to build the program’s 
flow control graph we need to identify the instructions that may 
change program flow. We can build a table from the architecture 
description files to store this kind of ISA information (i.e., the 
mapping between instructions and their types - conditional jump, 
function call, return, etc.). The data structures for such records are 
machine independent and manipulated by the core analysis 
algorithm. Note that although some information is not explicitly 
presented in the architecture description, it can be inferred from 
the associated attributes (e.g. function call has a special register 
PC as its arguments).  

As integrated in the same framework, the tools can benefit from 
each other. The compiler may provide other useful information, 
such as the profiling results, to assist the analysis. With the help 
of visualization aids, the user can add annotation and additional 
constraints to help tighten the estimation results [10], which can 
be then used as feedback to help tune the design performance. 

The modeling of the micro-architecture consists of two parts. The 
first models the timing of program’s execution in a restricted 
scope. The simulator can be used for this purpose. It accurately 

Figure 2. System overview. 
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models the effect of the pipeline and gives the cost coefficients of 
basic blocks. The overhead of crafting a simulator from scratch 
can be avoided as the simulator is automatically built from the 
machine description. The second one is the global effect analysis. 
One example is the cache modeling described in section 3, in 
which the required information, such as the cache size and set 
associativity, can also be automatically extracted from the 
architecture description. Hence the core analysis module is kept 
machine independent and the analysis framework can be easily 
retargeted to new architectures. 

5. ADVANCED MICRO-ARCHITECTURE 
MODELING 
Similar to cache, there are other features in modern processors 
that affect program’s execution in a global way, such as branch 
prediction, predication, and instruction pre-fetching.  These 
features dramatically reduce the program execution time and an 
inability to model them will result in a severely pessimistic 
analysis. In this section we demonstrate how to extend the 
analysis scheme to model their effects on program timing. 

5.1 Branch Prediction Analysis 
To reduce the penalty caused by control hazards in pipeline 
processors, it is common to predict the outcome of a branch 
without interrupting the instruction flow. In modern processors, 
both static and dynamic branch prediction schemes are employed. 
The analysis for commonly used static prediction schemes can 
easily fit into our ILP based solution. The dynamic schemes are 
much harder to model statically, due to the fact that the prediction 
results are based on program behavior at runtime. Existing 
methods rely on static simulation techniques, such as BTB 
modeling used in [11], to identify worst case branching cost and 
then combine it with high-level analysis for WCET estimation. 

Three commonly used static prediction schemes are: predict-
taken, predict-untaken, and delayed-branch-with-canceling [13]. 
It is the compiler’s responsibility to determine the predicted 
outcome and schedule code appropriately. In many cases the 
decision is based on examination of program flow behavior. This 
makes it suitable for static timing analysis. An example is shown 
in Figure 3. 

Suppose instruction I(i) inside the 
loop is predicted as not taken, 
which is the case in most 
execution times. At runtime, the 
processor will check the result 
after the branch is resolved. If it is 
the same as predicted, then no 
penalty is involved. Otherwise, 
the instruction I[j] scheduled after 
the branch instruction is turned 
into a no-op and the program will 
continue to execute in the correct 
direction. To model this effect, we 
can count the execution time of 
I[j] into that of the basic block Bi. Then its corresponding term cixi 
in the original cost function of the program’s total execution time 
would be replaced by: (ci

miss-predictxi
miss-predict + ci

correct-predictxi
correct-

predict), where xi =  xi
miss-predict + xi

correct-predict. Suppose the shown 
program fragment is executed only once, then there would be only 

one miss-prediction, which corresponds to: xi
miss-predict = 1. These 

constraints link the new variables with those we used in program 
flow analysis and cache analysis, and are sufficient to bound the 
observed case. We can model similar cases and other schemes 
using the same approach.  

Nevertheless, there are other cases where the branch does not 
come from loops, and where the compiler depends on profiled 
information to predict the outcome. In these cases, we can still 
represent the variances in execution time by linear constraints. 
The worst-case scenario may be assumed to have the longest 
execution path (e.g. always predicted wrong), or we can rely on 
data flow analysis and user annotation for the bounds. 

5.2 Predication Analysis 
Modern compilers use a more aggressive optimization technique 
to transform the control flow into predication, and thus eliminate 
inefficiencies in handling branch instructions. In this approach, 
most instructions can be tagged with some guarding predicate, a 
special 1-bit register. The execution of the instruction may be 
nullified at runtime if the predicate value is FALSE (0). As a 
result the instruction latency may vary depending on the results of 
the predicate define instructions. To model this optimization 
effect, we can partition the instructions within a basic block into 
smaller groups based on their predicates. Thus the total execution 
time would be the sum of cost terms of each group of instructions, 
which is the product of its normal execution time and count plus 
the product of its nullified execution time and count. In the worst 
case we may have one cost term for each instruction. An example 
using IA-64 architecture [14] is shown in figure 4. The default 
semantics of “cmp.eq” is to set p1 and p2 to complementary 
values depending on the comparison results. Therefore we can 
derive that instruction B and instruction D are mutually exclusive 
and cannot be executed normally at the same time. The 
dependence among the predicates (e.g. dominance, mutual 
exclusion, exhaustion, etc.) can be derived from a BDD package 
[15] generated when the compiler performs the optimization, or 
provided by user annotations.  

 
 

(a) B as ic  b lock X i 

        cmp.eq   p1, p2  =  r5,r4  ;: // cycle 0 : instr A 
(p1)  ld8         r1  =  [r3] ;:         // cycle 1 : instr B  
         add         r3  =  r1 , r2 ;:      // cycle ?: instr C  
(p2)  ld8         r4  =  [r6] ;:         // cycle ?: instr  D  
         add         r6  =  r4, r5 ;:      // cycle ?: instr E  

(b) L inear constra ints  for execution counts  

X i =  X iA =  X iC =  X iE   //execution count equation 
        =  X iB

N +  X iB
n         //’N ’ denotes normal case 

        = X iD
N +  X iD

n         //’n’ denotes nullified  case 
    X iB

N  =  X iD
n   (X iB

n =  X iD
N  )  

(c ) M odified  cost func tion 

Total_execution_time =  X iA C iA +  X iC C iC +  X iE C iE 
                                        +  X iB

N C iB
N +  X iB

n C iB
n  

                                        +  X iD
N C iD

N +  X iD
n C iD

n  

 
Figure 4. Predication modeling example. 

5.3 Instruction Pre-fetching Analysis 
Instruction pre-fetching [17] is another important scheme to hide 
the relatively slow speed of memory system. In software 

Figure 3. Control 
flow example. 
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controlled methods, since pre-fetching instructions can change the 
state of cache, their effects must be modeled in the cache analysis. 
Based on the observation that, in the case of pre-fetching, the 
program flow is still characterized by the execution of the pre-
fetching l-block, while the cache content is determined by the pre-
fetched data, we can modify our cache analysis scheme described 
earlier to factor in the effect of pre-fetching instructions.  

An example using a directed mapped Icache is shown in Figure 5, 
in which B5.3 and B6.1 are non-conflicting l-blocks. They both 
conflict with B4.1, which is pre-fetched by B1.1. The modified 
cache conflict graph CCG’ that corresponds the cache set they are 
mapped to is constructed as follows: first we add in the l-block 
that contains instructions pre-fetching to the same cache set, in 
this case B1.1. The ‘pre-fetch’ nodes are distinguished from the 
normal nodes by attached attributes. The edges for the newly 
added nodes are drawn in the same way as for constructing the 
CCG. We can then determine if an edge represents a transition 
that results in a cache miss (denoted as ‘C’ in the graph, otherwise 
denoted as ‘N’) by looking at the cache content of the nodes it 
connects. Note that for a ‘pre-fetch’ node, we need to consider its 
pre-fetched data when we decide the hit/miss property of its 
connected edge. For example, since B1.1 pre-fetches B4.1, and B4.1 
conflict with B5.3, the edge from B1.1 to B4.1 is counted as a hit, 
while the edge from B1.1 to B5.3 is counted as miss. Therefore, we 
can generate the constraints for bounding cache hits of the l-
blocks, e.g., x4.1

hit  = p(4.1,4.1) + p(1.1,4.1). Other types of 
constraints can be generated as we have described for the CCG, 
with the modification that when generating the flow related 
constraints, we need to count the execution of the pre-fetching l-
block associated with a ‘pre-fetch’ node. For example, the 
constraints for node B1.1 would be: p(s,1.1) = p(1.1,e) + p(1.1,4.1) 
+ p(1.1,5.3) = x1. Similarly we can extend the scheme to model 
other cases and set associative caches, which have been omitted 
for sake of brevity. 

6. EXPERIMENTAL RESULTS 
As an initial proof-of-concept experiment to verify the 
applicability of our approach, we have incorporated and tested the 
core analysis scheme as described in section 3 within the Liberty 
compiler infrastructure [16]. The target architectures we 
experiment with belong to the IMPACT EPIC [12] class, which 
allows effective exploitation of instruction-level parallelism and 
has configurable aspects such as memory characteristics, register 
file sizes, number of functional units, and specialized functional 
units. The architecture configuration from which we obtained the 

test data are IMPACT EPIC-8G-1BL [12], which is an 8-issue 1-
branch-slot VLIW processor that supports general speculation, 
and EPIC-1G-1BL, which is an 1-issue processor. Table 1 gives a 
brief description of the programs we tested. The CPU time is 
measured on a server running Linux with Pentium III 800Mhz 
CPU and 2 Gig memory. 

Table 1.  Description of tested programs. 
Program Name Description 

Jfdctint JPEG slow-but-accurate implementation of DCT 
Stats CCaallccuullaattee  tthhee  ssuumm,,  mmeeaann  aanndd  vvaarriiaannccee  ooff  ttwwoo  aarrrraayyss 
FFT           11002244--ppooiinntt  FFaasstt  FFoouurriieerr  TTrraannssffoorrmm 
Matcnt      Summation of 2 100*100 matrices 
Sort Sort an array using BubbleSort 

 
Table 2 shows the flow analysis results. The cost coefficients of 
the basic blocks are derived from the instruction scheduling 
information, which is feasible as the compiler has fully knowledge 
of pipeline resource usage for VLIW processors. The estimation 
results are compared with the those obtained from compiler 
profiling, in which we have to manually set the worst case 
scenario input data, therefore may not get the exact actual bound. 
The unit of the data listed for WCET is ‘cycle’. The last column 
shows the ILP solver (lp_solve) runtime in ‘second’. 

Table 2. Experimental results of flow analysis. 
(a) Using configuration EPIC-1G-1BL 

 Program Estimated WCET  Profiled WCET    Time 
 Jfdctint  1471  1471 0.00 
 Stats  151202  151202 0.03 
 FFT       198272       198272 0.03 
 Matcnt  491063  481063 0.01 
 Sort       2626261       2626261 0.02 

(b) Using configuration EPIC-8G-1BL 
Program Estimated WCET Profiled WCET   Time 
Jfdctint 1434 1434 0.00 
Stats 126113 126113 0.03 
FFT      195708      195708 0.03 
Matcnt 380620 380620 0.01 
Sort      1625752      1625752 0.02 

 
 
Table 3 shows the Icache analysis results. Comparisons are 
presented with the results obtained from the Dinero IV cache 
simulator. The input to Dinero IV is the program’s execution trace 
generated by Liberty emulator. Note that to verify the cache 
analysis accuracy, we explicitly set the basic block execution 
counts so that they match the execution trace. The units of the 
data shown are ‘total_access_count / total_miss_count’. 

We can see that the estimated results are very close to those given 
by other standard tools. As analyzed in [10] the ILP technique is 
efficient compared with other methods. In general, the problem 
size will grow with the number of variables (corresponding to 
vertices and edges in the constructed timing graphs), program 
structure complexity (represented by the generated linear 
constraints), and architecture configuration (e.g. cache 
associativity).  Furthermore, as indicated in table 3-c, the 
overhead of static analysis can be much lower than simulation 
based scheme, especially for programs with long execution trace 
but unsophisticated structures.  

Figure 5. Example of cache analysis with pre-fetching. 
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Table 3. Experimental results of cache analysis.  
(a) Cache configuration: Size = 512; Line Size = 32; Assoc. = 1 

Program Name Cache Analysis Dinero IV 
Jfdctint 1583 / 38 1583 / 38 
Stats 209394 / 2072 209394 / 2072 
FFT 167068 / 1023 167068 / 1023 
Matcnt 721196 / 39 721196 / 39 
Sort 4996587 / 20 4996587 / 20 

(b)Cache configuration: Size = 512; Line Size = 16; Assoc. = 2 
Program Name Cache Analysis Dinero IV 

Jfdctint 1583 / 73 1583 / 73 
Stats 209394 / 145 209394 / 145 
FFT 167068 / 60 167068 / 60 
Matcnt 721196 / 76 721196 / 76 
Sort 4996587 / 37 4996587 / 37 

(c) Measured runtime in experiment  (a) 
Program Name Cache Analysis Dinero IV 

Jfdctint 0.06 0.02 
Stats 0.19 0.38 
FFT 0.08 0.28 
Matcnt 0.09 1.19 
Sort 0.03 8.25 

 

7. CONCLUSION 
In this paper we have described an approach for retargetable static 
software timing analysis. We propose to integrate a machine 
independent timing analysis scheme with our programmable 
platform-based software development environment.  

The advantages of this approach are twofold. First, by separating 
machine dependent and independent parts, and carefully 
designing the interface, we can make the timing analysis tool 
retargetable and modular. Second, due to the close interaction, the 
modules in the infrastructure can benefit from each other. 
Compared with other methods, in our approach significant design 
efforts can be leveraged among the modules in the same 
development infrastructure, including the highly optimizing 
compiler and automatically built simulator. The core analysis 
scheme can handle both software/hardware aspects in a uniform 
ILP framework and remains primarily unchanged. Furthermore, as 
we have demonstrated, the core analysis scheme can be easily 
extended to model several of the most important features in 
contemporary architectures, and thus produce tighter bounds.  
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