
DynaSpAM: Dynamic Spatial Architecture Mapping using Out of Order

Instruction Schedules

Feng Liu Heejin Ahn Stephen R. Beard Taewook Oh David I. August
Princeton University

{fengliu,heejin,sbeard,twoh,august}@princeton.edu

Abstract

Spatial architectures are more efficient than traditional Out-

of-Order (OOO) processors for computationally intensive pro-

grams. However, spatial architectures require mapping a

program, either statically or dynamically, onto the spatial

fabric. Static methods can generate efficient mappings, but

they cannot adapt to changing workloads and are not compat-

ible across hardware generations. Current dynamic methods

are adaptive and compatible, but do not optimize as well

due to their limited use of speculation and small mapping

scopes. To overcome the limitations of existing dynamic map-

ping methods for spatial architectures, while minimizing the

inefficiencies inherent in OOO superscalar processors, this pa-

per presents DynaSpAM (Dynamic Spatial Architecture Map-

ping), a framework that tightly couples a spatial fabric with

an OOO pipeline. DynaSpAM coaxes the OOO processor into

producing an optimized mapping with a simple modification

to the processor’s scheduler. The insight behind DynaSpAM is

that today’s powerful OOO processors do for themselves most

of the work necessary to produce a highly optimized mapping

for a spatial architecture, including aggressively speculating

control and memory dependences, and scheduling instructions

using a large window. Evaluation of DynaSpAM shows a ge-

omean speedup of 1.42× for 11 benchmarks from the Rodinia

benchmark suite with a geomean 23.9% reduction in energy

consumption compared to an 8-issue OOO pipeline.

1. Introduction

Out-of-Order (OOO) processors deliver high performance by

dynamically training speculative units, such as branch and

memory dependence predictors, to expose more instruction

level parallelism for scheduling. However, even if a program

enters a relatively fixed execution pattern, the processor cannot

take full advantage of the predictable behavior and unneces-

sarily spends energy on regenerating a schedule for the same

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage, and that copies

bear this notice and the full citation on the first page. To copy otherwise, to

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from Permissions@acm.org.

ISCA’15, June 13-17, 2015, Portland, OR, USA

© 2015 ACM. ISBN 978-1-4503-3402-0/15/06...$15.00

DOI: http://dx.doi.org/10.1145/2749469.2750414

instruction trace [27]. Moreover, data communication between

functional units occurs through explicit centralized structures,

such as the physical register file and bypass network, even

though the dataflow is well known and could occur through

highly efficient dedicated data paths for the repeated code

sequence [4, 17, 18, 50, 49].

In contrast, spatial architectures map computation across

a grid of Processing Elements (PEs) and build specialized

data connections between them to fulfill dependences. Fixing

instruction assignments to PEs obviates the need to separate

instruction execution into multiple pipeline stages (fetch, de-

code, rename and issue) and direct communication from pro-

ducers to consumers obviates the need for the bypass network

and register file [4, 17, 18]. However, considering hardware

resources is critical when generating mappings for spatial ar-

chitectures in order to make effective use of PEs and minimize

the datapath usage between them.

A class of reconfigurable spatial architectures, such as

Programmable Functional Units (PFUs) [3, 6, 10, 12, 17,

18, 37, 47, 48] and Coarse-Grained Reconfigurable Fabrics

(CGRFs) [16, 28, 29, 36, 41, 46], uses static techniques, which

offer a large scope, for mapping. The large scope enables the

mapping generator to consider more instructions simultane-

ously, and thus produce mappings that achieve more efficient

resource utilization. Executed a priori, static methods cannot

make use of information gathered at runtime to optimize their

mappings for changing workloads. Additionally, programs

that are statically mapped to a particular reconfigurable fabric

cannot run effectively on a processor without the fabric, and

may not be compatible with different fabric generations.

Dynamic mapping methods can overcome the adaptability

and compatibility issues that static methods face. However,

due to the small instruction scopes and lack of speculation,

current dynamic techniques fail to make the best use of routing

resources in spatial architectures [10]. This might lead to

increased execution time and energy consumption, as well as,

in some cases, an inability to produce a feasible mapping.

To address this problem, we present DynaSpAM, Dynamic

Spatial Architecture Mapping. The insight of DynaSpAM is

that OOO processors excel at utilizing speculation and contain

large instruction windows, thus combining OOO resources

with the execution efficiency of spatial architectures leads to a

more effective system. DynaSpAM efficiently and transpar-

ently integrates with, and utilizes the resources of, an OOO

processor to dynamically map large instruction traces to a

Constraint Description Solution

Functionality Specialized PEs in spatial fabrics can perform only select operations OOO pipeline’s Instruction selection logic (reused)

Communication-resource Limited communication resources to provide operands Resource-aware scheduling logic (new design)

Timing Instructions should start as early as possible while respecting dependencies OOO pipeline’s Instruction wake up logic (reused)

Table 1: Mapping constraints and solutions

of current dynamic mapping techniques.

✄ ✄

1: t1 = t1 + 1

2: t2 = t2 + 1

3: t5 = t3 + t4

4: t7 = t3 - t6

1: t5 = t3 + t4

2: t1 = t1 + t0

3: t2 = t2 + 1

4: t7 = t3 - t6

(b)

(c)(a)

1 2

3

1 2

3 4 X

X

Live-ins/outs

Figure 2: (a) for two spacial architecture settings (with and

without dotted line), (b) and (c) show examples where a naïve

method fails to create efficient schedules.

2.2.1. Limited Mapping Scope Limited and heterogeneous

resource distribution in spatial architectures complicate the

procedure of mapping instructions. Due to the limitation of

a small mapping scope, naïve methods greedily satisfy the

constraints of each instruction one at a time, and may create

inefficient mappings or fail to produce a feasible schedule.

Figure 2 shows the importance of a large mapping scope

when generating a mapping for reconfigurable spatial archi-

tectures. Figure 2(a) without dotted lines shows an example

spatial architecture. While each row of PEs has the same capa-

bility, each has a unique set of input connections. PEs in the

first row can get two operands from live-ins at the same time.

PEs in the second row can receive only one live-in, which

comes directly from a global bus such as in PipeRench [16].

Figure 2(b) shows how one naïve mapping results in a sched-

ule failure. In the example code, the first two instructions have

one live-in operand, and the following two instructions have

two live-in operands. There is no dependence between these

four instructions, so they can be scheduled independently. If a

mapping generator can see all four instructions, it would map

instruction 3 and 4 to the PEs in the first row and instruction 1

and 2 to the second row, thereby allowing all four instructions

to be executed in a single cycle. However, the naïve map-

ping will place instruction 1 and 2 in the first row, resulting

in a scheduling failure for instruction 3 and 4 because of the

communication-resource constraint.

The communication-resource constraint failure can be re-

solved by adding more routing resources. For example, in

Figure 2(a), if extra data paths (shown by dotted lines) are

applied to allow for forwarding operands from one row to the

next, the mapping shown in Figure 2(b) is feasible. However,

forwarding requires extra cycles to complete and thus leads to

lower performance. In this example, it two cycles are complete

the computation with forwarding.

Figure 2(c) is another example demonstrating the deficien-

cies of naïve mapping. In this example, placing instructions 1

and 2 on the first row is reasonable as both of them require two

source operands from live-ins. Instruction 4 also takes two

source operands from live-ins, but there are no unallocated

PEs in the first row. Fortunately, instruction 1 and 4 share the

same source operand, t3, thus routing resources for t3 can

be reused by both instruction 1 and 4. However, in the naïve

schedule shown in Figure 2(c), the PEs adjacent to instruction

1 are occupied, causing one extra datapath to be used and

requiring two cycles to complete the bypass. With a larger

mapping scope, the mapping generator will swap instruction 3

and 4 to make bypassing t3 take only one cycle.

Although increasing the scope helps in finding efficient

mappings, adding extra hardware logic to hold this scope is

costly. The key insight of DYNASPAM is to avoid the cost

by leveraging the scheduling logic of the host OOO proces-

sor. Since an OOO processor’s scheduling logic is already

equipped with a large instruction window and dependence

analysis features, reusing them can allow a reconfigurable spa-

tial architecture to generate efficient mappings with little to no

additional hardware cost.

2.2.2. Limited Speculation Support Even with resource-

aware mapping techniques, speculation support is necessary

to relax timing constraints and achieve good mapping results.

There are three kinds of program dependences that prohibit

executing related instructions out of order without specula-

tion: register dependence, control dependence and memory

dependence. In DynaSpAM, register dependences are nat-

urally handled by use of the data-flow execution model, in

which one instruction starts to execute when its operands are

ready or communicated from its producers by the physical

datapath connections. However, spatial architectures must rely

on speculation to break control and memory dependences in

order to gain the freedom necessary to produce mappings that

perform well.

Control Dependence Speculation With assistance from com-

pilers, control speculation has been exploited for spatial ar-

chitectures by forming enlarged basic blocks statically after

profiling and checking their validity at runtime [18]. As a pure

dynamic method, DynaSpAM utilizes the branch predictor

of OOO processors to dynamic select code sequences across

multiple basic blocks speculatively and execute them on the

spatial architecture as fat atomic instructions.

Memory Dependence Speculation Properly handling mem-

ory instructions through the use of load/store (LDST) units,

which properly respect memory order, in spatial architectures

is a complex problem. Static mapping techniques for spatial

architectures, such as Tartan [30] and SGMF [46], add explicit

control edges, by converting memory dependences to register

dependences, between aliasing memory instructions to ensure

that dependences are respected. In WaveScalar [42], a dataflow

technique, all memory instructions are statically identified by

two IDs: the sequence number of the instruction within the

wave (trace), and a wave number indicating the wave (trace)

invocation. All issued memory instructions from the fabric are

reassembled in the memory system and executed in "total load-

store order". This method requires new LDST units and is

overly conservative. OOO pipelines intelligently break mem-

ory dependences using high confidence speculative techniques,

such as Store-Sets [9]. Confidence is built by recording alias

information during execution. DynaSpAM makes similar use

of memory speculation to increase freedom in mapping and

executing memory instructions.

Misspeculation Handling All side effects of speculation

need to be kept from the architectural state of the host pipelines.

Usually output buffers need to be inserted between the host

pipeline and the fabrics to hold the live-outs and store values

from the spatial fabric for performance [18]. These buffers can

also serve as the synchronization points for starting new com-

putation on the host pipeline or fabric, and enforces in-order

execution between them. OOO pipelines verify the validity

of speculation at the end of the execution by committing the

instructions from re-order buffers (ROB) in order. To fully

exploit the control and memory dependence speculation of

OOO processors and enable true out-of-order execution be-

tween the host pipeline and the spatial fabric, the spatial fabric

in DynaSpAM fuses its datapaths with the host pipeline more

tightly through the ROB.

3. DynaSpAM Framework

Figure 3: The overall view of the DynaSpAM architecture.

3.1. Overview

This section presents DynaSpAM, a tightly coupled accelera-

tor architecture that applies a novel resource-aware mapping

to automatically accelerate repeated execution traces from

the host OOO pipeline on a spatial fabric for efficient execu-

tion. Figure 3 shows the overall architecture. DynaSpAM is

designed as an enhancement of high performance OOO pro-

cessors and does not fundamentally change the structure and

execution of the original OOO pipeline.

Trace acceleration in DynaSpAM can be divided into three

phases:

Trace Detection The detection phase identifies hot traces

for acceleration. T-Cache, a trace cache like structure, rec-

ognizes recurring instruction sequences across multiple basic

blocks. Upon commit of a branch instruction, T-Cache con-

sults an internal history buffer that tracks the previous three

branch results1. T-Cache then builds an index consisting of

the PC of the earliest branch instruction and the three results

stored in the buffer and increments a saturation counter using

this index. If the counter for this trace is larger than a preset

threshold value, a flag in T-Cache for the entry is set to indicate

the trace is hot.

Trace Mapping Upon receipt of a branch instruction, the

fetch unit retrieves the predictions for the next three branches

from the branch predictor to build an index into the T-Cache

in order to determine if the predicted coming trace is hot. If the

trace is hot, the fetch stage grabs instructions until it reaches

the fourth branch instruction, as DynaSpAM only tracks three

branch instructions, or a preset instruction count limit and

marks instructions in the sequence as trace instructions. These

trace instructions are processed as normal instructions in the

fetch, decode, and rename stages. When they arrive at the

dispatch stage, the following process occurs :

1. the first trace instruction stops in the dispatch stage until

all on-the-fly instructions that have been dispatched to the

host OOO pipeline drain through the pipeline back-end;

2. the mapping generator adds the resource-aware priority

policy to the issue unit. When the issue unit schedules

an instruction to an OOO functional unit, it simultane-

ously maps this instruction to a PE on the fabric, routes

operands from the producers and thus generates a config-

uration. Note that no instructions execute on the fabric

during this phase;

3. the mapping process finishes when the last trace instruc-

tion completes and writes back in the OOO pipeline. The

configuration for the spatial architecture is stored in the

configuration cache. The configuration cache is indexed

similarly to the T-Cache, but contains less entries to save

space. Any mis-predicted branches or pipeline squash will

abort the mapping process.

See Section 4 for a more detailed discussion. With the

completion of the trace mapping, the entry in configuration

cache is marked as mapped, and a saturation counter for the

entry is set to zero and increased if the trace is predicted

again by the fetch stage. The counter filters out traces that

1As suggested by [45]

from the OOO pipeline. Live-out FIFOs broadcast live-out

values from the fabric to the OOO pipeline.

An extra index field is added in the main ROB to allow

entries to point to a side ROB (ROB′), which contains the

renamed live-out values, branch results, and memory stores

of a trace invocation. Such an entry can only commit when

all live-outs and branch results are obtained from the output

FIFOs. This essentially means that the trace is treated as a

fat atomic instruction by the host OOO pipeline. The ROB′

commits or squashes (if there is a branch mis-speculation or

memory order violation) the entry when it reaches the top.

When the trace is committed or squashed, the ROB′ broad-

casts the information to all pipeline stages. The number of

live-ins and live-outs that the rename and ROB′ can handle

are encoded as constraints in the dynamic mapping phase. If

the number of live-ins or live-outs for a trace exceeds either

number, a valid mapping cannot be completed.

Intra- and Inter-Trace Memory Ordering DynaSpAM

utilizes the aggressive speculative LDST issue techniques in

the OOO processors and allows certain LDST instructions

from the fabric to be executed out-of-order. To achieve this,

DynaSpAM keeps a simplified version of the memory instruc-

tions, consisting of only their PC, type, and their relative

ordering, in the configuration. When a trace invocation is

dispatched, the simplified memory instructions are sent to a

memory dependence prediction unit similar to Store-Sets [9],

which is used by modern processors to speculatively predict

the memory instructions that alias. Memory operations that

execute in the fabric consult the unit to determine if they can

execute, or if they must stall in order to respect a memory

dependence. If the dynamic memory dependence prediction

unit mis-speculates and causes a memory violation, the trace

is squashed in the ROB and re-executed after updating the

offending dependence in the prediction unit.

Since load operations from a LDST unit on the fabric can

receive responses out of order, DynaSpAM adds a reservation

buffer to each LDST unit to hold all the in-flight loads as

shown in the LDST unit in Figure 4.

4. Dynamic Mapping for Spatial Fabric

This section presents a design to enable the dynamic mapping

of a trace onto a reconfigurable spatial fabric using resource−

aware OOO scheduling.

4.1. Resource-Aware Scheduling

Scheduling Frontier The scheduling frontier is the set of

unallocated PEs that are directly connected to those that have

been allocated. Initially, the scheduling frontier consists of

PEs that can access live-ins directly. At the end of each

scheduling step, the scheduling frontier moves along the data

paths of the allocated PEs. Figure 5 shows the arrangements

of PEs in three different spatial fabrics and possible positions

of the scheduling frontier before a scheduling step. CCA [10]

Algorithm 1: Resource-Aware Scheduling Algorithm
INPUT :scheduleCycle

OUTPUT :A schedule of ready instructions to function units: Selected[:]

1 rowIdx← SchedulingFrontierIdx(scheduleCycle);
2 if rowIdx is Invalid then

3 SCHEDULE_FAIL;

4 FabricPEsVec← SchedulingFrontierPEs(scheduleCycle);
5 OOOFUsVec← FabricToOOO(FabricPEVec);
6 ReadyInstsVec← ReservationStation(scheduleCycle);

7 foreach FU ∈ OOOFUsVec do

8 foreach Inst ∈ ReadyInstsVec do

9 PriorityScore[FU, Inst]← PriorityGen(FU, Inst,rowIdx);

10 foreach FU ∈ OOOFUsVec do

11 selectedInst =
PriorityEncoder(PriorityScore[FU, :],HostPriorityPolicy);

12 Selected[FU] = selectedInst;
13 UpdateTables(FU,selectedInst);

and DynaSpAM fabrics have no cyclic data paths between

rows (or stripes), thus their scheduling frontiers are straight,

while DySER [17] has a complex data path network and its

scheduling frontier can be irregular.

Scheduling Insights As discussed in Section 2, naïve map-

ping techniques are not globally resource-aware, and thus

do not generate efficient mappings. Building a standalone

scheduling unit for dynamic spatial fabric mapping would be

prohibitively expensive, thus leveraging the existing micro-

architecture of the OOO pipeline is desirable. To support its

own scheduling, the OOO reservation station provides the

following capabilities:

• Instruction Buffering A large instruction window that can

easily contain instructions from a large trace;

• Data Dependence Analysis Instructions marked as ready in

the instruction window are known to have their operands

available, and are independent of all other ready instructions;

• Instruction Assignment An issue unit can select ready in-

structions for multiple functional units by using priority

rules, (referred to as HostPriorityRule), such as oldest-first,

in its Priority Encoder.

One of the key insights of DynaSpAM is that these are

the same set of features needed to support dynamic mapping

for spatial fabrics, and thus we can equate the placement of

trace instructions to PEs in the scheduling frontier with the

instruction scheduling for the OOO functional units. How-

ever, the mapping of instructions to the fabric has additional

resource considerations, such as the location of producers,

data path availability, and the cost of allocating new paths.

These considerations can be represented as a priority score

that indicates both the feasibility and efficiency of mapping

an instruction to a PE on the fabric. If we build a one-to-one

mapping between the functional units in the OOO pipeline

and the PEs in the scheduling frontier (Step A in Figure 5),

then selecting an instruction with the highest priority score

(Step B in Figure 5) for a functional unit on the OOO pipeline

(Step C1 in Figure 5) also maps it to a PE in the scheduling

frontier (Step C2 in Figure 5). After mapping, the resource

Figure 5: PEs and possible scheduling frontiers in (a) CCA; (b) 4x4 DySER; and (c) DynaSpAM fabric.

information, which is contained in a set of status tables, can

be updated (Step D in Figure 5) as discussed in Section 4.2.

We call this resource-aware instruction scheduling.

Scheduling Algorithm The high-level Resource-Aware

Scheduling Algorithm is presented in Algorithm 1. The input

of the algorithm is the current clock cycle. First, the schedul-

ing frontier is identified as rowIdx (Line 1) and the PEs in

the frontier are identified as FabricPEsVec (Line 4). Since

the scheduling frontier in DynaSpAM is always aligned to a

stripe, the scheduling frontier identifier is the stripe index of

the fabric that is currently being mapped. Line 5 maps these

PEs to the OOO functional units. Line 6 selects the ready

instructions from the reservation station, and Lines 11 and

12 use the original select logic to assign instructions to OOO

functional units. This reuses the instruction wakeup (data

dependence checking) and the instruction select logic in the

host OOO pipeline. The new instruction schedule can differ

from the schedule generated by the original host priority rule;

however, we expect that this kind of priority change does not

cause a significant performance change [5].

Special Issues There are two special issues that can oc-

cur during scheduling. First, the number of PEs in the cur-

rent scheduling frontier can be greater than that in the OOO

pipeline or the issue width of the OOO pipeline, thus some

PEs cannot be mapped to in the current scheduling cycle. This

problem can be overcome by dividing one scheduling step into

multiple cycles. An extra field must be added to each entry of

the reservation station to identify the ready instructions that

become ready in the middle of a scheduling step, but cannot

be issued until the current scheduling step ends. Second, the

issue unit must pause if there are OOO functional units that

have not finished execution at the start of a scheduling cycle.

Otherwise, the scheduling frontier could proceed before all

PEs in a stripe have been scheduled.

Lines 9 and 13 generate the priority scores for each pair

of instruction and functional unit by consulting to a set of

status tables (Line 9), and then update these tables after the

instructions are scheduled (Line 13).

4.2. Priority Score Generation

Priority Score A priority score is a ranking for the place-

ment of an instruction to a PE in the scheduling frontier. This

priority can be used by the Priority Encoder in the issue unit

to grant an issue request from the ready instructions [35].

The priority score of a fabric can be customizable. Dyna-

SpAM contains five priority scores (shown in Table 2) to

represent levels of mapping feasibility and routing score (a

higher score means lower routing cost).

Instructions that require two live-ins to be feasibly placed

have the highest priority with PEs in the first row, as only

these units have two input ports. If the instruction does not

require two live-ins, the mapping algorithm prefers to put

instructions where they can enjoy more data path reuse, i.e.

the producer’s value has been routed nearby, with priority

levels 0-2 representing the amount of data of available for

reuse. Priority level -1 represents a PE that cannot provide

enough resources to route its operands. Thus this instruction

should not be scheduled to this PE.

The scheduling algorithm is not tied to any particular pri-

ority scoring mechanism; the scheduler should use a scoring

mechanism that takes into account the resource constraints of

the particular spatial architecture that is being mapped to. For

example, in CCA [10] data used in one row cannot be reused

in the same the row, thus there is no routing cost preference.

In DySER [17], there are multiple possible data paths that can

route the same data for one PE, thus the routing latency should

be considered.

Generation PriorityGen, a hardware module within the

mapping generator, generates priority scores by consulting the

current state of mapping, which is stored in three lookup tables:

Producer Table (ProdTable), Overall Datapath Usage Table

(OverallUsage), and Datapath Reuse Set Table (ReuseSet).

The priority generation algorithm is shown in Algorithm 2.

For each operand of an incoming instruction the algorithm

checks:

1. ProdTable to obtain the location of the operands producers

(Line 5);

2. ReuseSet to determine if the required operand can be ob-

tained directly from the pass registers from the previous

stripe, in which case it does not need to add a new route

Category Priority Level Description

Feasibility 3 Two operands are live-ins thus requiring two input ports.

Routing Score

2 Two operands are not live-ins, and can be provided by ReuseSet.
1 Only one operand can be provided by ReuseSet, while the other can be routed.
0 None of the operands can be provided by ReuseSet, but they can be routed.
-1 One of the operands can not be provided by ReuseSet and can not be routed.

Table 2: Priority Scores for different connection status of the producers.

Algorithm 2: MODULE PriorityGen
INPUT :OOOFU, Inst,rowIdx

OUTPUT :PriorityScore[:, :]

1 FabricPE← OOOToFabric(OOOFU)
2 canReuse← 0; canRoute← 0; needInputs← 0;
3 foreach op ∈ Inst.ops do

4 livein← False;
5 ProdLoc← ProdTable(op);
6 if ProdLoc does not exist then

7 livein← True;
8 needInputs++;

9 else if op ∈ ReuseSet(FabricPE) then

10 canReuse++;

11 else if OverallUsage(ProdLoc,FabricPE) 6= /0 then

12 canRoute++;

13 if needInputs == 2 then

14 if FabricPE can provide two InputPorts then

15 PriorityScore[OOOFU, Inst]← 3;
16 else

17 PriorityScore[OOOFU, Inst]←−1;

18 else

19 if Inst.ops_num == canReuse == 2 then

20 PriorityScore[OOOFU, Inst]← 2;

21 else if Inst.ops_num == canRoute then

22 ScorePriority[OOOFU, Inst]← 0;
23 else if Inst.ops_num == canReuse+ canRoute then

24 PriorityScore[OOOFU, Inst]← 1;
25 else

26 PriorityScore[OOOFU, Inst]←−1;

Algorithm 3: MODULE UpdateTables
INPUT :OOOFU, Inst

INOUT :ProdTable,ReuseSet,OverallUsage

1 FabricPE← OOOToFabric(OOOFU);
2 ProdTable(Inst.dest)← FabricPE;
3 foreach op ∈ Inst.ops do

4 ProdLoc← ProdTable(op);
5 if ProdLoc exists & op 6∈ ReuseSet(FabricPE) then

6 newDatapath← SELECT OverallUsage(ProdLoc,FabricPE);
7 foreach FU ∈ newDatapath do

8 add op to ReuseSet[FU];
9 OverallUsage(FU,newDatapath)← USED;

from the producers (Line 9) 2;

3. otherwise, OverallUsage to determine if there are available

data paths to route the required data (Line 11);

4. otherwise, the instruction can not be assigned to the cor-

responding location, since there are no enough data path

resources to route its operands (Lines 17 and 26).

Lines 19-24 summarize the scores from different operands,

and gives corresponding priority scores. The priority scores

are stored in a two dimensional table, called PriorityScore, for

each pair of ready instructions and functional unit.

2In the current implementation, live-in values are not added to the ReuseSet

and must be acquired from the global bus on each use.

After one instruction is selected for a functional unit and is-

sued, all the status tables are updated as shown in Algorithm 3.

Additionally, a Live-Out Table(LOT) is used to track func-

tional units that produce live-outs and their corresponding

architectural registers, and to configure the output ports of the

fabric [10]. Upon advancing the scheduling frontier, a value is

considered a potential live-out if its architectural register is not

re-defined within the stripe, and will be automatically routed

to the next stripe to increase the probability of reuse. A table

called Last Used Location is used to track this information.

If a potential live-out value is killed, the Last Used Location

table is consulted, and any routing that was unnecessarily

propagated for the killed live-out is removed.

4.3. Mapping Example

Figure 6 demonstrates mapping a short trace onto the Dyna-

SpAM fabric and shows the additional hardware logic needed

to support the mapping process. In this example, a trace with

9 instructions needs to be mapped to a fabric, as shown in

Figure 4. ProdTable is a content addressable memory, or

CAM, that maps the physical registers to locations on the

fabric. ReuseSet, contains the physical registers which have

values been stored in the pass registers of the previous stripe.

It is also a CAM. OverallUsage tracks the overall data path

usage across the whole fabric and is used to determine if there

are enough resources to allocate a new data path to route the

data. It can be implemented as a bitmap.

At the start of mapping, the trace instructions have been

renamed and placed in the reservation station as per normal

program execution. In cycle 0, four instructions are ready

within the reservation station, and all status tables are empty.

Three of the instructions (0, 1, and 3) generate Priority 0 for

all functional units, indicating none of them can reuse the

pass registers in the previous stripe to receive their operands.

However, instruction 7 requires two input ports and thus has

Priority 3 for all functional units. Instruction 0, 1, 7 are se-

lected and placed in the corresponding functional units. Three

entries of ProdTable are updated using the renamed destination

registers of all instructions.

Since there are no available PEs in the scheduling frontier,

the issue unit moves the scheduling frontier forward and begins

the placement in cycle 1. In this cycle, instructions 2, 4, 6,

and 8 become ready. No instruction can reuse data from the

pass registers in the previous stripe and are assigned Priority 0

for all functional units. Thus the original oldest first priority

policy selects instruction 2, 3, and 4. The data tables are

updated as follows: ProdTable adds new destination registers

Figure 6: An example illustrates how instruction scheduling is impacted by the location information of the fabric.

with the producer location; ReuseSet records the data in the

current pass registers; and OverallUsage records the data path

usage after this cycle of mapping.

In cycle 2, the final 3 instructions are ready. Instruction

5 and 8 have Priority 0 for all functional units since they

cannot reuse any available data. Instruction 6 has Priority 2

for functional unit 0 as the pass registers of the previous row

hold both of its operand values, r3 and r4. If Instruction 6 is

placed there, no new data path routing is required. Mapping

ends with instructions 6, 5, 8 being placed respectively.

The final mapping could not be obtained by the naïve

method due to its limited instruction windows. For example,

if the instructions were placed in program order, Instruction 7

would not be placed in the first row, resulting in an infeasible

schedule, and Instruction 6 would not be able to reuse the data

path from Instruction 2, resulting in an inefficient schedule.

5. Evaluation

5.1. Methodology

To evaluate the design of DynaSpAM framework, we deploy

a comprehensive methodology involving an architectural sim-

ulator for performance, power simulators for efficiency, and

CAD tools to estimate area.

Benchmarks DynaSpAM is evaluated using eleven pro-

grams from the Rodinia benchmark suite [7], representing

computationally intensive workloads, to evaluate the system

for trace detection, mapping and, acceleration. An overview of

these benchmarks is shown in Table 3. We evaluate using the

OpenMP version of all benchmarks, with OpenMP pragmas

disabled to enable a sequential version. All the benchmarks

are compiled with -O3 flag.

Performance Simulation The GEM5 2.0 [2] simulation

framework was used for performance evaluation. All IO and

initialization phases are skipped in the kernels to capture the

main computation. The baseline is an OOO processor with

the system configuration shown in Table 4. We implement

the DynaSpAM subsystem in conjunction with the baseline

OOO pipeline with the same configurations. We measure and

compare the kernel performance for each benchmark.

Energy and Area Estimation We used McPAT v1.2 [26]

to model the energy of DynaSpAM using execution statistics

from the performance simulation. Power for the configuration

cache was estimated separately using CACTI [31].

We used functional units from OpenSparc T1 [34] and im-

plemented the datapath for the DynaSpAM fabric in Verilog.

The fabric design was synthesized using Synopsys Design

Compiler [43] with a 32nm generic cell library to estimate

area.

5.2. Experimental Results

✥�

✁✥�

✂✥�

✄✥�

☎✥�

✆✥✥�

✶
✝
✷
✞
✸
✷
✞
✹

✶
✝
✷
✞
✸
✷
✞
✹

✶
✝
✷
✞
✸
✷
✞
✹

✶
✝
✷
✞
✸
✷
✞
✹

✶
✝
✷
✞
✸
✷
✞
✹

✶
✝
✷
✞
✸
✷
✞
✹

✶
✝
✷
✞
✸
✷
✞
✹

✶
✝
✷
✞
✸
✷
✞
✹

✶
✝
✷
✞
✸
✷
✞
✹

✶
✝
✷
✞
✸
✷
✞
✹

✶
✝
✷
✞
✸
✷
✞
✹

P
✟
✠✡
✟
☛
☞✌
✍
✟
✎
✏
✑
✎
✒
✟
✠✌
✍
✟

❇✓✔✕✖✗✘✙✚✛

❇✜ ❇✢✣ ❇✤ ❍✣ ❑✦ ▲✧ ❑★★ ★◆ ✜✢ ✜✤✢ ✣❙✩✧

✪✫✬✭✮✯ ▼✮✰✰✱✲✳ ❆✴✴✵✯✵✬✮✺✱✲✳

Figure 7: Trace Coverage.

Trace Coverage and Configuration Lifetime Figure 7

shows the percentage of dynamic instructions executed on

the host OOO pipeline, the percentage of instructions that

execute during the mapping phase, and the percentage that are

accelerated and run on the fabric. We evaluate with pre-set

trace lengths ranging from 16 to 40 instructions. From the

figure, we observe that a small fraction of instructions are exe-

cuted during the mapping phase for all programs. Generally,

Benchmark Name Domain Kernel Description

Back Propagation (BP) Pattern Recognition bpnn_train_kernel Machine learning algorithm to train the weights of nodes of a layered neural network

Breadth-First Search (BFS) Graph Algorithms BFSGraph Breadth-first search on a graph

B+ Tree (BT) Search kernel_cpu Search in a B+ tree

Hotspot (HS) Physics Simulation compute_tran_temp Estimate processor temperature based on power simulation

Kmeans (KM) Data Mining kmeans_clustering Clustering algorithm for data-mining

LU Decomposition (LD) Linear Algebra lud_base Matrix decomposition

K-Nearest Neighbors (KNN) Data Mining main Finding the k-nearest neighbors from an unstructured data set

Needleman-Wunsch (NW) Bioinformatics runTest Nonlinear global optimization method for DNA sequence alignments

PathFinder (PF) Grid Traversal run Shortest path finder on a 2-D grid using dynamic programming

Particle Filter (PTF) Medical Imaging particleFilter Statistical estimator of the location of a target object given noisy measurements

SRAD (SRAD) Image Processing main Diffusion method for ultrasonic and radar imaging applications based on PDEs

Table 3: Programs tested from the Rodinia Benchmark Suite

Parameter Setting

Fetch Unit 16-entry return stack; 4K-entry BTB Branch Predictor

Caches 64KB, 2-way, 2-cycle ICache; 64KB, 2-way, 2-cycle L1D;
2MB, 8-way, 20-cycle L2D (64-byte blocks for all caches)

Window Size 192-entry ROB; 256-entry physical RF; 8-wide issue

Execution Units 4 Int ALUs; 1 Int MUL/DIV;
4 Floating ALUs; 1 Floating MUL/DIV; 2 LDST units

Memory Unit 128-entry load queue; 128-entry store queue

Fabric 8-entry buffers; same execution units as OOO per strip;
16 strips; 3 pass regs per FU;
16 Live-in FIFOs, 16 Live-out FIFOs

Config. Cache 16-entry, direct mapped, 16-byte blocks,
3-bits saturation counter, threshold value 4

Table 4: Evaluation system parameters

Benchmark Mapped Offloaded Avg. Config. Lifetime (Invocation)
Name Traces Traces 1 fabric 2 fabrics 4 fabrics

BP 2 2 6505.5 13013.0 13013.0

BFS 24 10 6.4 8.5 63.9

BT 4 3 197.4 246.8 987.0

HS 11 2 1065.0 2130.0 2130.0

KM 1 1 2750.0 2750.0 2750.0

LD 9 5 81.8 334.4 7690

KNN 4 3 2750.0 2750.0 2750.0

NW 1 1 13276.0 13276.0 13276.0

PF 2 1 6514.0 6514.0 6514.0

PTF 2 2 46.2 9240.0 9240.0

SRAD 1 1 33574.0 33574.0 33574.0

Table 5: Detected Traces and Average Configuration Lifetime

traces with longer lengths have higher coverage. However,

if a trace contains only a few instructions from a block, it

will force more instructions to run on the host pipeline. As

an example, imagine a single block with 33 instructions that

executes in a loop. At a trace length of 32, 32/33 instructions

execute on the fabric and 1/33 instructions executes on the

host OOO pipeline. At 40 instructions, the trace enters a new

block and 40/66 instructions execute on the fabric and 26/66

instructions execute on the fabric, thereby reducing coverage.

NW with 24 instructions, and SRAD with 40 instructions are

examples of this effect at work. Addressing this via more

intelligent instruction selection is a goal of future work. We

use a trace length of 32 instructions for all the following ex-

periments.

Table 5 shows the number of traces that are detected and

mapped successfully (mapped trace), and the number traces

that are actually offloaded (offloaded trace). Some of the traces

are mapped but never offloaded due to their low frequency

of execution. The last three columns of Table 5 show the

average configuration lifetime, which starts when the fabric is

configured by one trace and ends when the fabric is reconfig-

ured by another trace. From Table 5, we find that the average

configuration lifetime is above 40 trace invocations with 1

on-chip fabric for all programs except BFS, which has only

6.4 invocations per configuration. Investigating BFS reveals

that there are many unbiased control branches within the loop.

Multiple fabrics can be used to reduce reconfiguration times

and increase efficiency. We modeled architectures with 2 and

4 fabrics and use a least-recently-used (LRU) policy to manage

reconfiguration. The experiment results show that with 4 fab-

rics, BFS’s average configuration life time is 64 invocations,

and reaches 2045 invocations with 8 fabrics (not shown in the

table).

✥�

✥✁✂�

✄�

✄✁✂�

☎�

☎✁✂�

❇✆ ❇✝✞ ❇✟ ❍✞ ❑✠ ▲✡ ❑☛☛ ☛◆ ✆✝ ✆✟✝ ✞❙☞✡ ●✠

✌
✍
✎
✎
✏
✑
✍
✒✓
✔

❇✕✖✗✘✙✚✛✜✢

❉✣✤✦✧★✩✪ ✫✬✦★★✭✤✮✯

❉✣✤✦✧★✩✪ ✫✬✦★★✭✤✮ ✰ ✦✱✱✲✳✲✴✦✵✭✶✤ ✷✸✶ ✹★✲✱✺✳✦✵✭✶✤✯

❉✣✤✦✧★✩✪ ✫✬✦★★✭✤✮ ✰ ✦✱✱✲✳✲✴✦✵✭✶✤ ✷✸ ✹★✲✱✺✳✦✵✭✶✤✯

Figure 8: Performance Comparison vs Host OOO Pipeline

Performance We compared the performance of DynaSpAM

with three different configurations to the baseline OOO

pipeline. DynaSpAM with "mapping" only maps the detected

traces but does not offload them to the fabric. DynaSpAM with

"mapping + acceleration w/ speculation" both maps and of-

floads the traces to the fabric while using memory speculation.

DynaSpAM with "mapping + acceleration w/o speculation"

maps and offloads the detected traces while conservatively

preserving all load-store and store-store orderings.

Recall that mapping overhead comes from two sources: 1)

time draining the pipeline backend when the trace mapping

starts; and 2) the cost of pausing instruction issue for long la-

tency functional units during mapping. The simulation results

show that the overhead of mapping is small, and causes less

than 3% slowdown for all the benchmarks.

Without memory speculation, DynaSpAM produces a

1.23× geomean performance and causes slowdown in two

Module names Area(µ m2) Module names Area(µ m2)

sparc_exu_alu 4660 fpu_add 34370

sparc_mul_top 47752 fpu_mul 62488

sparc_exu_div 11227 fpu_div 13769

data_path 4717 fifo 848

Table 6: Area Comparison for different components

programs, NW and SRAD, large fraction of dynamic memory

instructions. With memory speculation enabled, DynaSpAM

produces a 1.42× geomean performance improvement without

ever causing program slowdown. This shows the importance

of effectively using memory speculation.

✥�

✁✥�

✂✥�

✄✥�

☎✥�

✆✥✥�

❇
✝
❉
✝

❇
✝
❉
✝

❇
✝
❉
✝

❇
✝
❉
✝

❇
✝
❉
✝

❇
✝
❉
✝

❇
✝
❉
✝

❇
✝
❉
✝

❇
✝
❉
✝

❇
✝
❉
✝

❇
✝
❉
✝

❇
✝
❉
✝

❊
✞
✟
✠✡
☛
☞
✌
✍
✎✞
✡
✌
✞
✏
❇
✠✟
✌
✑
✏
✒
✓
✞

✔✕✖✗✘✙✚✛✜✢

✔✣ ✔✤✦ ✔✧ ❍✦ ❑★ ▲✩ ❑✪✪ ✪◆ ✣✤ ✣✧✤ ✦❙✫✩ ●★

❋✬✭✮✯✰ ✱✬✲✬✳✬✲✴ ✵✶✷✰✸✲✯✹✺ ■✺✻✲✼✰✴✷✽✸✾✷

✿✼❀❁✿❂❃✬✰✴✷ ❘✷✺✬❄✷ ❋✷✲✰✴❁✱✷✰✹✽✷

Figure 9: Energy Comparison vs Host OOO Pipeline

Energy We measured the energy consumption in the simula-

tion of both the baseline processor and DynaSpAM. Figure 9

demonstrates the energy consumption of different components

to show the energy increase/decrease in each component. The

overall energy consumption is reduced by 2.5%-36.86%, with

geomean 23.9%. For each benchmark, it is clear that the en-

ergy consumption from Fetch, Rename, Instruction Schedul-

ing (InstSchedule), and the bypass networks (Datapath) are re-

duced. On the other hand, power consumption for the memory

system is increased, since DynaSpAM cannot reduce memory

activity. The energy consumption of the fabric includes both

the functional units and datapaths, which is greater than the en-

ergy consumed by Execution on the OOO pipeline but smaller

than the sum of Execution, Datapath, and InstSchedule.

Area To match the frequency of the OOO pipeline, we used

functional units from an industry grade design, OpenSparc T1,

to build the fabric. The datapath and FIFO buffers are designed

separately. Table 6 shows that the size of each datapath block,

containing pass registers and multiplexers and the area of

FIFOs, compared to modules from OpenSparc T1. It is shown

that datapath block is almost as large as an OpenSparc T1

integer ALU, and that the area of FIFOs are much smaller. The

overall fabric size is 2.9mm2 with 8 stripes (A 2-core AMD

Bulldozer is 30.0mm2 (including cache) at this technology

node). The area of the configuration cache is obtained from

CACTI, and the number is 0.003mm2.

Work on DynaSpAM has primarily focused on the feasibil-

ity and applicability of dynamic mapping, and has not focused

on optimizing area usage. In future work, research will be

done to adjust the number of functional units according to

instruction type distributions of the benchmarks.

6. Related Work

Research into spatial architecture has been an active area for

quite a long time, and different techniques have been proposed.

Table 7 summarizes the differences between DynaSpAM and

prior work.

Programmable Functional Units Programmable func-

tional units [3, 6, 12, 17, 18, 37, 47, 48] such as OneChip,

Chimaera and PRISC only consider short program traces or

subgraphs, and usually do not include memory operations.

In these techniques, only energy consumed by communi-

cating intermediate results within the trace can be reduced.

BERET [18] classifies a set of common subgraph patterns

for the superblocks in general purpose programs, and builds

corresponding specialized hardware modules for each pattern.

These works employ compiler techniques to extract and map

subgraphs to the special functional units. CCA [10] requires

static subgraph extraction, but performs dynamic mapping.

Reconfigurable Spatial Co-Processors Another group of

designs target larger instruction sequences. Garp adapted the

VLIW compilation technique to generate pipelined datapaths

on a fine-grained reconfigurable fabric [20]. ADRES [28]

applies the same technique, but on a coarse-grained reconfig-

urable fabric with regular local connections between functional

units. DIM [1] performs dynamic mapping, but like CCA,

the mapping is naïve and in program order. Tartan [4, 30]

compiles entire programs onto spatially connected functional

units, which operate completely asynchronously. Elastic

CGRAs [21] uses a similar design but focuses more on gate-

level implementations. The SGMF architecture [46] supports

dynamic spatial dataflow execution and uses buffers in front of

each functional unit to execute multiple invocations simultane-

ously. These techniques all require a static compilation to map

instructions to the fabric, and their control edges for memory

operations are conservative. DynaSpAM dynamically maps

detected hot traces, using memory speculation, from the OOO

execution without compiling.

DynaSpAM’s fabric design is similar to the fabric of

PipeRench [16] in terms of the stripe organization and com-

munication channels. The major difference is that our design

is dataflow-based and is tailored the interconnect to match the

shape of trace by reducing the connections between functional

units in the same stripe, while PipeRench is not dataflow based

and contains dense connections.

Spatial General-Purpose Processors RAW [44] supports

both ILP and streaming instructions by routing operands be-

tween architecturally-exposed functional units over a point-to-

point scalar operand network. TRIPS [40] and its successors

such as TFlex [25] and T3 [38] use a compiler to find hy-

Reconfigurable
Execution
Engine

Compiler Effort Hardware Feature Target
Instruction
Range

Placement Routing Binary Dynamic Resource-aware Pipeline
Dataflow \w MEM

Not Required Compatible Mapping Scheduling Execution

PRISC [37], Chimaera [48] × × × × × × × Subgraph

DySER [17] × × × × X X × Subgraph

ADRES [28],PipeRench [16] × × × × X X X Kernel

BERET [18] X × × × X X X Subgraph

SGMF [46] × × × × X X X Kernel

Tartan [30], WaveScalar[42] × × × × X X X Whole Program

CCA [10, 11] X X X × × × × 3 Subgraph

DynaSpAM X X X X X X X Kernel

Table 7: Comparison between DynaSpAM and other in-core reconfigurable computation engine

perblocks, and schedule each hyperblock in functional units

individually. WaveScalar [42] uses a similar pipelined model

as our work to execute "waves," which are control flow graphs.

It requires a new ISA to encode the global sequence of memory

operations, which allows for dynamic reassembly to preserve

program order.

Dynamic Trace Detection and Execution In addition to

dynamic trace construction with trace cache [15, 39], many

techniques optimize dynamically formed traces for high effi-

cient backends. DIF [14, 32] dynamically compacts retired in-

structions for repeated execution on a VLIW engine. HBA [13]

and Yoga [45] select only hot traces and build VLIW/In-Order

instruction streams for the retired instruction. CCA [10] dy-

namically maps instruction streams to spatial functional units

with consideration given to placement but not resources. None

of these techniques actively generate mappings during instruc-

tion scheduling as in DynaSpAM. I-COP [8] builds a stan-

dalone coprocessor to complete binary optimization for in-

coming instruction streams, but our work leverages existing

micro-architecture features in OOO pipeline.

7. Conclusions

Reconfigurable spatial architectures are more efficient than

OOO processors. Static mapping methods rely heavily on

profiling and compiler techniques to explore instruction and

loop level parallelism. Dynamic methods can overcome the

disadvantages of static methods, such as the inability to adap-

tive to different workloads and lack of compatibility; however,

they have not had access to large enough instruction scope to

generate efficient mappings. We have presented DynaSpAM,

a framework to dynamically detect, map and accelerate hot

instruction sequences from an OOO pipeline on a spatial fab-

ric. Specifically, DynaSpAM leverages existing features from

the OOO pipeline and actively guides instruction issue to gen-

erate efficient mappings for the fabric. This new method is

both low-cost and efficient. Experimental results, a geomean

1.42× speedup with 23.9% energy consumption reduction for

11 benchmarks from Rodinia Benchmark Suite, demonstrate

the potential gains from symbiotic combination of an OOO

pipeline and spatial dataflow architecture.

3Note that CCA traces can contains stores and loads to spilled values

which can be eliminated during the mapping. But generally the accelerator

does not contain memory ports.

Acknowledgments

We thank the entire Liberty Research Group for their sup-

port and feedback during this work. We thank Yungang

Bao for his comments and feedback during this work. We

also thank the anonymous reviewers for their insightful com-

ments. This research was funded in part by National Science

Foundation grants 1047879 and 1439085 and by DARPA con-

tracts FA8750-10-2-0253 and HR0011-13-C-0005. All opin-

ions, findings, conclusions, and recommendations expressed

throughout this work are those of the authors and do not nec-

essarily reflect the views of the aforementioned funding agen-

cies.

References

[1] A. Beck, M. Rutzig, G. Gaydadjiev, and L. Carro, “Transparent recon-
figurable acceleration for heterogeneous embedded applications,” in
Design, Automation and Test in Europe, March 2008, pp. 1208–1213.

[2] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell,
M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood, “The gem5 simu-
lator,” SIGARCH Comput. Archit. News, vol. 39, no. 2, pp. 1–7, Aug.
2011.

[3] A. Bracy, P. Prahlad, and A. Roth, “Dataflow mini-graphs: Amplifying
superscalar capacity and bandwidth,” in In Proc. of the 37th Annual
International Symposium on Microarchitecture, 2004, pp. 18–29.

[4] M. Budiu, G. Venkataramani, T. Chelcea, and S. C. Goldstein, “Spatial
computation,” in International Conference on Architectural Support
for Programming Languages and Operating Systems, 2004, pp. 14–26.

[5] M. Butler and Y. Patt, “An investigation of the performance of various
dynamic scheduling techniques,” in Proceedings of the 25th Annual
International Symposium on Microarchitecture, 1992, pp. 1–9.

[6] J. E. Carrillo and P. Chow, “The effect of reconfigurable units in
superscalar processors,” in Proceedings of the 2001 ACM/SIGDA Ninth
International Symposium on Field Programmable Gate Arrays, ser.
FPGA ’01, 2001, pp. 141–150.

[7] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee, and
K. Skadron, “Rodinia: A benchmark suite for heterogeneous comput-
ing,” IEEE International Symposium on Workload Characterization
(IISWC), 2009.

[8] Y. Chou and J. P. Shen, “Instruction path coprocessors,” in Proceedings
of the 27th Annual International Symposium on Computer Architecture,
2000, pp. 270–281.

[9] G. Z. Chrysos and J. S. Emer, “Memory dependence prediction using
store sets,” in Proceedings of the 25th annual international symposium
on Computer architecture. IEEE Computer Society, 1998, pp. 142–
153.

[10] N. Clark, J. Blome, M. Chu, S. Mahlke, S. Biles, and K. Flautner, “An
architecture framework for transparent instruction set customization
in embedded processors,” in Proceedings of the 32Nd Annual Interna-
tional Symposium on Computer Architecture, ser. ISCA ’05, 2005, pp.
272–283.

[11] N. Clark, A. Hormati, and S. Mahlke, “Veal: Virtualized execution
accelerator for loops,” in Proceedings of the 35th Annual International
Symposium on Computer Architecture, ser. ISCA ’08, 2008, pp. 389–
400.

[12] C. Ebeling, D. Cronquist, P. Franklin, J. Secosky, and S. Berg, “Map-
ping applications to the rapid configurable architecture,” in Field-
Programmable Custom Computing Machines, 1997. Proceedings., The
5th Annual IEEE Symposium on, Apr 1997, pp. 106–115.

[13] C. Fallin, C. Wilkerson, and O. Mutlu, “The heterogeneous block
architecture,” SAFARI Group, Department of Electrical and Computer
Engineering, Carnegie Melon University, Tech. Rep., 2014.

[14] M. Franklin and M. Smotherman, “A fill-unit approach to multiple
instruction issue,” in in Proceedings of the 27th Annual International
Symposium on Microarchitecture, Nov 1994, pp. 162–171.

[15] D. H. Friendly, S. J. Patel, and Y. N. Patt, “Putting the fill unit to
work: Dynamic optimizations for trace cache microprocessors,” in
Proceedings 31th Annual IEEE/ACM International Symposium on
Microarchitecture, December 1998, pp. 173–181.

[16] S. C. Goldstein, H. Schmit, M. Moe, M. Budiu, S. Cadambi, R. R.
Taylor, and R. Laufer, “Piperench: A co/processor for streaming multi-
media acceleration,” in Proceedings of the 26th Annual International
Symposium on Computer Architecture, 1999, pp. 28–39.

[17] V. Govindaraju, C.-H. Ho, and K. Sankaralingam, “Dynamically spe-
cialized datapaths for energy efficient computing,” in International
Symposium on High Performance Computer Architecture, 2011, pp.
503–514.

[18] S. Gupta, S. Feng, A. Ansari, S. Mahlke, and D. August, “Bundled
execution of recurring traces for energy-efficient general purpose pro-
cessing,” in International Symposium on Microarchitecture, 2011, pp.
12–23.

[19] R. Hameed, W. Qadeer, M. Wachs, O. Azizi, A. Solomatnikov, B. C.
Lee, S. Richardson, C. Kozyrakis, and M. Horowitz, “Understanding
sources of inefficiency in general-purpose chips,” in Proceedings of
ISCA, 2010.

[20] J. Hauser and J. Wawrzynek, “Garp: a mips processor with a recon-
figurable coprocessor,” in IEEE Symposium on Field-Programmable
Custom Computing Machines, 1997, pp. 12–21.

[21] Y. Huang, P. Ienne, O. Temam, Y. Chen, and C. Wu, “Elastic cgras,”
in Proceedings of the ACM/SIGDA International Symposium on Field
Programmable Gate Arrays, 2013, pp. 171–180.

[22] Z. Huang and S. Malik, “Managing dynamic reconfiguration overhead
in systems-on-a-chip design using reconfigurable datapaths and opti-
mized interconnection networks,” in Proceedings of the Conference on
Design, Automation and Test in Europe, 2001, pp. 735–.

[23] Z. Huang and M. Sharad, “Exploiting operation level parallelism
through dynamically reconfigurable datapaths,” in Proceeding of 39th
Design Automation Conference, 2002, pp. 337–342.

[24] C. Isci and M. Martonosi, “Runtime power monitoring in high-end pro-
cessors: Methodology and empirical data,” in Proceedings of the 36th
Annual IEEE/ACM International Symposium on Microarchitecture, ser.
MICRO 36, 2003, pp. 93–.

[25] C. Kim, S. Sethumadhavan, M. S. Govindan, N. Ranganathan, D. Gu-
lati, D. Burger, and S. W. Keckler, “Composable lightweight proces-
sors,” in IEEE/ACM International Symposium on Microarchitecture,
2007, pp. 381–394.

[26] S. Li, J.-H. Ahn, R. Strong, J. Brockman, D. Tullsen, and N. Jouppi,
“Mcpat: An integrated power, area, and timing modeling framework
for multicore and manycore architectures,” in 42nd Annual IEEE/ACM
International Symposium on Microarchitecture., Dec 2009, pp. 469–
480.

[27] D. S. McFarlin, C. Tucker, and C. Zilles, “Discerning the dominant
out-of-order performance advantage: Is it speculation or dynamism?”
in Proceedings of the Eighteenth International Conference on Archi-
tectural Support for Programming Languages and Operating Systems,
2013, pp. 241–252.

[28] B. Mei, S. Vernalde, D. Verkest, H. D. Man, and R. Lauwereins,
“ADRES: An architecture with tightly coupled VLIW processor and
coarse-grained reconfigurable matrix.” in Proceedings of the Confer-
ence on Field Programmable Logic, vol. 2778, 2003, pp. 61–70.

[29] E. Mirsky and A. DeHon, “Matrix: a reconfigurable computing ar-
chitecture with configurable instruction distribution and deployable
resources,” in FPGAs for Custom Computing Machines, 1996. Pro-
ceedings. IEEE Symposium on, Apr 1996, pp. 157–166.

[30] M. Mishra, T. J. Callahan, T. Chelcea, G. Venkataramani, S. C. Gold-
stein, and M. Budiu, “Tartan: Evaluating spatial computation for whole
program execution,” in Proceedings of the 12th International Con-
ference on Architectural Support for Programming Languages and
Operating Systems, 2006, pp. 163–174.

[31] N. Muralimanohar, R. Balasubramonian, and N. P. Jouppi, “Cacti 6.0:
A tool to model large caches,” HP Laboratories, Tech. Rep., 2009.

[32] R. Nair and M. E. Hopkins, “Exploiting instruction level parallelism in
processors by caching scheduled groups,” in Proceedings of the 24th
Annual International Symposium on Computer Architecture, 1997, pp.
13–25.

[33] T. Nowatzki, M. Sartin-Tarm, L. De Carli, K. Sankaralingam, C. Estan,
and B. Robatmili, “A general constraint-centric scheduling framework
for spatial architectures,” in Proceedings of the 34th ACM SIGPLAN
Conference on Programming Language Design and Implementation,
2013, pp. 495–506.

[34] Oracle, “Opensparc t1 microprocessor,”
http://www.oracle.com/technetwork/systems/opensparc/index.html.

[35] S. Palacharla, N. P. Jouppi, and J. E. Smith, “Complexity-effective su-
perscalar processors,” in Proceedings of the 24th annual international
symposium on Computer architecture, 1997, pp. 206–218.

[36] M. Quax, J. Huisken, and J. van Meerbergen, “A scalable implementa-
tion of a reconfigurable wcdma rake receiver,” in Proceedings of the
Conference on Design, Automation and Test in Europe - Volume 3,
2004, pp. 30 230–.

[37] R. Razdan and M. D. Smith, “A high-performance microarchitecture
with hardware-programmable functional units,” in Proceedings of the
27th Annual International Symposium on Microarchitecture, ser. MI-
CRO 27, 1994, pp. 172–180.

[38] B. Robatmili, D. Li, H. Esmaeilzadeh, S. Govindan, A. Smith, A. Put-
nam, D. Burger, and S. W. Keckler, “How to implement effective
prediction and forwarding for fusable dynamic multicore architectures,”
in International Symposium on High Performance Computer Architec-
ture (HPCA), 2013, pp. 460–471.

[39] E. Rotenberg, S. Bennett, and J. E. Smith, “Trace cache: A low latency
approach to high bandwidth instruction fetching,” in Proceedings of
the 29th International Symposium on Microarchitecture, December
1996, pp. 24–34.

[40] K. Sankaralingam, R. Nagarajan, H. Liu, C. Kim, J. Huh, D. Burger,
S. W. Keckler, and C. R. Moore, “Exploiting ilp, tlp, and dlp with
the polymorphous trips architecture,” in International Symposium on
Computer Architecture, 2003, pp. 422–433.

[41] H. Singh, M.-H. Lee, G. Lu, F. Kurdahi, N. Bagherzadeh, and
E. Chaves Filho, “Morphosys: an integrated reconfigurable system
for data-parallel and computation-intensive applications,” Computers,
IEEE Transactions on, vol. 49, no. 5, pp. 465–481, May 2000.

[42] S. Swanson, K. Michelson, A. Schwerin, and M. Oskin, “Wavescalar,”
in IEEE/ACM International Symposium on Microarchitecture, 2003,
pp. 291–303.

[43] Synopsys, “Synopsys Design Compiler,”
http://www.synopsys.com/Tools/Implementation/RTLSynthesis/DesignCompiler.

[44] M. B. Taylor, W. Lee, J. Miller, D. Wentzlaff, I. Bratt, B. Greenwald,
H. Hoffmann, P. Johnson, J. Kim, J. Psota, A. Saraf, N. Shnidman,
V. Strumpen, M. Frank, S. Amarasinghe, and A. Agarwal, “Evaluation
of the raw microprocessor: An exposed-wire-delay architecture for ilp
and streams,” in International Symposium on Computer Architecture,
2004, pp. 2–12.

[45] C. Villavieja, J. A. Joao, R. Miftakhutdinov, and Y. N. Patt, “Yoga:
A hybrid dynamic vliw/ooo processor,” High Performance Systems
Group, Department of Electrical and Computer Engineering, The Uni-
versity of Texas at Austin, Austin, Texas 78212-0240, USA, Tech. Rep.,
2014.

[46] D. Voitsechov and Y. Etsion, “Single-graph multiple flows: Energy
efficient design alternative for gpgpus,” in Proceeding of the 41st
Annual International Symposium on Computer Architecuture, ser. ISCA
’14, 2014, pp. 205–216.

[47] R. Wittig and P. Chow, “Onechip: an fpga processor with reconfig-
urable logic,” in IEEE Symposium on FPGAs for Custom Computing
Machines, Apr 1996, pp. 126–135.

[48] Z. A. Ye, A. Moshovos, S. Hauck, and P. Banerjee, “Chimaera: A
high-performance architecture with a tightly-coupled reconfigurable
functional unit,” in Proceedings of the 27th Annual International Sym-
posium on Computer Architecture, 2000, pp. 225–235.

[49] Q. Zhu, B. Akin, H. Sumbul, F. Sadi, J. Hoe, L. Pileggi,
and F. Franchetti, “A 3d-stacked logic-in-memory accelerator for
application-specific data intensive computing,” in 3D Systems Inte-
gration Conference (3DIC), 2013 IEEE International, Oct 2013, pp.
1–7.

[50] Q. Zhu, K. Vaidyanathan, O. Shacham, M. Horowitz, L. Pileggi, and
F. Franchetti, “Design automation framework for application-specific
logic-in-memory blocks,” in 2012 IEEE 23rd International Conference
on Application-Specific Systems, Architectures and Processors (ASAP),
July 2012, pp. 125–132.

