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Figure 10: Overall speedup (Benchmarks in the legend are or-
Figure 7: Enabling effect of Privateer at 24 worker processes. [1] dered from highest to lowest speedup) [2]
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Figure 9: Speedups achieved by HELIX on a real system [3]

... when it works
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How to compose?

Parallelizing Compiler 1

E- - 2
Parallelizini Compiler 2

E;: Enabling Transformations
(e.g., Memory Speculation)

N, A
7S

—>

P;: Parallelization Techniques
(e.g., DOALL, PS-DSWP)



very transformation is protected by two
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[Drawings courtesy of Nick P. Johnson]



“ither may reject a program
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[Drawings courtesy of Nick P. Johnson]



We can gather wisdom from them

Is it appllcable / profltable’? Why is it not aplicable / profitable?

[Drawings courtesy of Nick P. Johnson]



Criticisms

Expected Speedup

pPOG

Critic: Answers why a parallelization technique
is not applicable/profitable?



Criticisms
{DepA, DepB, ...}

Remediator

pOO

Remediator:
Uses applicability guard of enabling transformations.

Ignores original profitability guard;

Estimated Cost

the transformation is useful if a criticism is satisfied
Do not apply the transformation but express its effect

Remedies
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Programmer as a Remediator

Assume expected answer,
ask programmer only

‘ Criticisms ‘ when remedy part of
I final parallelization plan

Remediator

pOO

* Programmer Remediator:

« Applicability: Checks if criticisms can be translated to high-level yes/no questions
* Profitability: High-probability assumptions
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Conclusion

* Combine compiler advancements on automatic parallelization
into an unified compiler framework

« Better automated and robust parallelization decision process
» Transformations communicate through criticisms and remedies
* New supervisory compiler component, called The Orchestrator

* Modularity
 Easy to add new transformations to the system
* Every transformation developed independently

* Minimize programmer involvement
« Seek help from the programmer only when necessary

13



Thank you

Questions?



