Collaborative Parallelization
Framework

Sotiris Apostolakis, Greg Chan,
Ziyang Xu, Benjamin Huang, and
David |. August

Liberty Research Group

Princeton University

° | | ° ° .
AUtOIIIatlc arallelization is great — . -
blackscholes
doitgen x A
90x ggmm :] 4
mm ,
20x T T \ T 80 . I%l"nrg - t
S — u geomdhn of scalable 8 f-e—) i T
18x || DOALL-only = swaptions [-e i
—_ [3 Privateer 2 70x H covariance [% |
8 g correlation J§-+ 7
= 16x = gramschmidt i+
= 8 sox I acobi-2d-imper ff -+ / i
= - u o
3 14x 2 ludemp - i 1 ; H
B9y -é" 50x | seidel §-o - || .~ B o s, e ey
- ', E—
5 5
@ 10x 5 4ox
5
z 8 § smx
o %)
3 6x 20x
§. 4x 10x
%)
2x ox Y & & % &
1 12 24 36 48 60 72 84 96 108 120

0x

052.alvinn dijkstra swaptions enc—md5 blackscholes Number of Threads

Figure 10: Overall speedup (Benchmarks in the legend are or-
Figure 7: Enabling effect of Privateer at 24 worker processes. [1] dered from highest to lowest speedup) [2]

2 Cores =" 4 Cores mmmmm 6 Cores [mmmm

1)
H
]

Measured speedup
(sequential execution
N

ip vpr mesa art mcf equake crafty ammp parser gap vortex bzip2 twolf geoMean

Figure 9: Speedups achieved by HELIX on a real system [3]

... when it works

[1] N. P. Johnson, H. Kim, P. Prabhu, A. Zaks, and D. I. August. Speculative separation for privatization and reductions. PLDI 2012.
[2] H. Kim, N. P. Johnson, J. W. Lee, S. A. Mahlke, and D. I. August. Automatic speculative doall for clusters. CGO 2012
[3] S. Campanoni, T. Jones, G. Holloway, V. J. Reddi, G.-Y. Wei, and D. Brooks. Helix: automatic parallelization of irregular programs for chip multiprocessing. CGO 2012

How to compose?

Parallelizing Compiler 1

E- - 2
Parallelizini Compiler 2

E;: Enabling Transformations
(e.g., Memory Speculation)

N, A
7S

—>

P;: Parallelization Techniques
(e.g., DOALL, PS-DSWP)

very transformation is protected by two

§ 1
Profitability

[Drawings courtesy of Nick P. Johnson]

“ither may reject a program

i U
Profitability
/

\

[Drawings courtesy of Nick P. Johnson]

We can gather wisdom from them

Is it appllcable / profltable’? Why is it not aplicable / profitable?

[Drawings courtesy of Nick P. Johnson]

Criticisms

Expected Speedup

pPOG

Critic: Answers why a parallelization technique
is not applicable/profitable?

Criticisms
{DepA, DepB, ...}

Remediator

pOO

Remediator:
Uses applicability guard of enabling transformations.

Ignores original profitability guard;

Estimated Cost

the transformation is useful if a criticism is satisfied
Do not apply the transformation but express its effect

Remedies

— OO0

i- Enabling Transformations
i Parallelization Techniques

.- Remediator

Collaborative Parallelization Framework

Parallelizing Compiler 1

Parallelizini Compiler 2

.- Critic

Orchestrator

— OO0

Collaborative Parallelization Framework

Parallelizing Compiler 1

Parallelizini Compiler 2

i- Enabling Transformations
i Parallelization Techniques
i: Remediator

.- Critic

Reproduce
existing
compilers

Orchestrator

10

— OO0

Collaborative Parallelization Framework

Parallelizing Compiler 1

Parallelizini Compiler 2

i- Enabling Transformations
i Parallelization Techniques
i: Remediator

.- Critic

Create
new
hybrid

versions

Orchestrator

11

Programmer as a Remediator

Assume expected answer,
ask programmer only

‘ Criticisms ‘ when remedy part of
I final parallelization plan

Remediator

pOO

* Programmer Remediator:

« Applicability: Checks if criticisms can be translated to high-level yes/no questions
* Profitability: High-probability assumptions

12

Conclusion

* Combine compiler advancements on automatic parallelization
into an unified compiler framework

« Better automated and robust parallelization decision process
» Transformations communicate through criticisms and remedies
* New supervisory compiler component, called The Orchestrator

* Modularity
 Easy to add new transformations to the system
* Every transformation developed independently

* Minimize programmer involvement
« Seek help from the programmer only when necessary

13

Thank you

Questions?

