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Abstract
Array databases are well suited for complex multi-

dimensional analysis. However, array queries are often
performance constrained by the high computational de-
mands of the underlying algorithms. We explore the use
of GPU to accelerate these algorithms and study its end-
to-end effects on performance, power, and energy effi-
ciency.

We have extended SciDB, a popular array database, to
use GPUs and improved its query performance by 1.5×
to 11×. While GPUs improve both performance and
energy efficiency, multiple design issues limit us from
reaching the touted 100× performance benefits of GPUs.
We provide detailed experimental analysis to understand
these bottlenecks related to array partitioning, load im-
balance, and CPU-GPU hybrid execution.

1 Introduction

Array oriented databases (AODB) are increasingly be-
ing used to process large amounts of multi-dimensional
data. AODBs store logical arrays and provide SQL-
based query languages with mathematical operators
(SciDB [4], RasDaMan [3], MonetDB [1]). Typical
queries in array databases involve dense and sparse lin-
ear algebra (for machine learning and graph analysis),
and moving window operations (for image analysis).
These operations are computationally demanding, in-
volving O(n2) or even O(n3) operations. Given the com-
plexity of these algorithms and the increasing sizes of
scientific and sensor data, array queries can become very
expensive to run on commodity processors.

A promising approach to improve query performance
is to offload expensive computation from the CPU to
hardware accelerators such as NVIDIA GPU, AMD
APU, or Intel MIC [11]. Many array computations eas-
ily map to vector operations and, hence, can naturally
leverage the massive parallelism provided by accelera-
tors. To validate our hypothesis that accelerators can be
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Figure 1: Application kernel speedups: GPU vs. single-
core CPU implementation. Y-axis is log scale.

beneficial, we measure the best case speedups in four
array applications when executed on an NVIDIA Tesla
GPU instead of a single Xeon core. Figure 1 depicts
the speedups seen on the GPU. Application and dataset
details are in Table 1. Since we are interested in the
best case performance improvement, we only measure
the GPU kernel time of the application. All other over-
heads, such as the time to load data from disk, decom-
press data, transfer data between the host and the GPU,
and so on, are excluded. The plot shows the potential of
GPU acceleration: the crux of the computations can run
26× to an astounding 1,400× faster!

To explore these benefits, we have modified SciDB,
an array database, to leverage GPUs. Our results reveal
many interesting and non-obvious observations that can
guide future research in this area. For example, in certain
applications a GPU can provide 100× end-to-end per-
formance gains over single-core CPU implementations.
However, the gains become 1.5× to 10× against parallel
CPU implementations utilizing 16 CPU cores. In addi-
tion, data representation and partitioning schemes signif-
icantly impact performance. Small array chunks are bet-
ter for CPU parallelism while large array chunks reduce
the overhead of loading data and transferring to the GPU.
Furthermore, unlike popular belief, moving data between
host and GPU is not always the biggest overhead. Af-
ter offloading computation to the GPU, time spent inside
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Application Input data Application Characteristics
Complexity Parallelism Ops/element

Dense MatMul Two n×n matrices: n=25,600, 2×10 GB O(n3) Parallel across chunks n
K-means clustering n 3-D points: n=100M, K=512, 2.3 GB O(K·n) Reduction at end K
PageRank Graph: v=33M, e=286M, 4.5 GB O(e) Parallel across chunks v
Image smoothing n×n image: n=51,200, w=7×7, 20 GB O(w·n2) Parallel across chunks w

Table 1: Application characteristics and their input data.

the database engine or in converting the data format may
overshadow the GPU kernel execution time, and in some
cases, even the data transfer time. Thus, depending upon
the execution mode (CPU, GPU, or both), different de-
sign knobs need to be dynamically tuned in coordination.

2 Background

SciDB is an open source array management and analyt-
ics database [4]. It has a shared-nothing, distributed ar-
chitecture for array storage and analysis. SciDB has a
coordinator node and multiple worker nodes. Array data
is partitioned into and stored as equal sized sub-arrays
called chunks. Chunks are the basic unit for I/O, compu-
tation, inter-node communication, and version control.
Chunk sizes are specified by users and can be tuned
to improve parallelism and reduce memory access la-
tency [12]. To reduce storage overhead chunks are com-
pressed using a variant of run length encoding (RLE).
SciDB supports both sparse and dense arrays, and can
store array chunks that overlap. For example, graphs
are stored as sparse matrices while images are stored as
dense chunks with overlapping boundary elements.

We evaluate four representative applications- matrix
multiplication, PageRank, K-means, and image smooth-
ing (Table 1). Our choice of applications is motivated
by the four classes of operations that array databases
support: dense array operations, sparse array opera-
tions, user-defined functions, and window based aggre-
gation. Not only do these applications exercise differ-
ent SciDB components, they also have different compu-
tational complexity and parallelism characteristics.

3 System design

Figure 2 shows our overall framework integrating GPUs
in SciDB. We describe specific components below.

GPU scheduling and monitoring. We have added a
scheduler to decide when the GPU should execute com-
putation tasks. After putting tasks in a work queue, ex-
ecutor threads remove tasks from the queue and process
them on CPU or GPU based on the scheduler policy. The
scheduler can use static policies, such as a fixed limit on
the maximum number of concurrent GPU tasks, or use
runtime metrics, such as GPU utilization, to tag tasks.

SciDB CPU 
executer

Query SchedulerParser Optimizer Monitor

GPU 
executer

Host to GPU 
transfer

GPU kernel 
launch

Input data 
conversion

GPU to host 
transfer

Output data 
conversion

Workflow in GPU executer

Figure 2: GPU offloading in SciDB.

Dynamic chunk optimization. An array chunk or
sub-array is the basic storage and computation unit in
SciDB. Chunk sizes thus have a significant impact on
data transfer time (from disk, or between host and GPU)
and execution time on the CPU or the GPU. We modi-
fied SciDB’s optimizer to support chunk resizing. Once
the scheduler determines where chunks will be processed
(CPU or the GPU), the optimizer divides or merges
chunks. Our prototype does not automatically find op-
timal chunk sizes. Instead, we configure the optimizer to
use a target chunk size at runtime, and study the effect of
resizing chunks on application performance.

GPU execution. We have modified SciDB’s execution
engine to incorporate GPU kernel launches. We added
support for three kinds of data conversions. First is data
structure conversion to convert data from an array-of-
structures in SciDB to the GPU preferred structure-of-
arrays. For example, in PageRank, sparse array repre-
sentation of the graph has to be converted from SciDB’s
list of values to compressed sparse row format. It helps
coalesce GPU memory accesses. The second type of
data conversion is matrix orientation conversion which
changes the orientation of multi-dimensional matrix. For
K-means, we use this type of conversion to transpose the
row major ordered input on the CPU side to column ma-
jor ordered GPU kernel input. The final conversion type
is data decompression where compressed data stored in
SciDB is converted to flat uncoded data.

4 Evaluation

All experiments are run on an HP SL250 server with
Ubuntu 11.10. The server has two Intel Xeon E5-2650
2.0 GHz processors (total of 16 cores), 128 GB DRAM,
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Figure 3: Effect of chunk size on total execution time when using 16-core CPUs or a GPU. Lower is better.
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Figure 4: Overheads when using a GPU. Lower is better. The execution time only includes the GPU kernels and
related overheads, such as data movement and data conversion, to enable the kernels.

and a 200 GB SSD. We attached a NVIDIA Tesla M2090
GPU (total of 512 cores). The GPU has 6 GB global
memory and peak CPU-GPU bandwidth is 8 GB/s on
PCIe 2.0. For dense matrix multiply, PageRank, and
image smoothing, we use cublas, cusparse libraries in
CUDA 5.5, and image convolution library. We wrote our
own GPU implementations for K-means on SciDB 12.3.

4.1 Effect of array chunk sizes

CPU case. Figure 3 evaluates the effect of different
chunk sizes on the CPU and GPU implementations of
the applications. When using the CPU configuration,
the execution time of all applications, except PageR-
ank, increases with increase in chunk size. For exam-
ple, in dense matrix multiplication, chunk size of 256K
gives 84% better performance compared to chunk size of
256M. The performance difference is due to spatial local-
ity. In matrix multiplication, each chunk is stored in row
order but during multiplication the chunks of the right
hand side matrix is accessed in column order. Uniquely,
PageRank shows less spatial locality effects. PageRank
accesses a relatively small vector in random order while
the larger adjacency matrix is accessed sequentially.

GPU case. Unlike the CPU case, performance of GPU
implementations of applications improve as chunk size
increases. For example, matrix multiplication is 19×
faster for chunk sizes of 256M compared to chunk sizes
of 256K (Figure 3a). Similarly, PageRank’s performance
is 37% better at 269M chunk size compared to 1M chunk
size. With large chunks, the transfer overhead between
host and the GPU decreases substantially. Few large data

transfers are invoked instead of multiple small transfers.
Figure 4 reveals that both data transfer and computation
time decreases with increase in chunk size. Unlike in the
CPU case, single core data locality has a minor effect in
the GPU device because different cores anyway have to
fetch data from the device memory.

Observation 1: Smaller chunks preserve spatial local-
ity and improve performance of CPU implementations.

Observation 2: Larger chunks increase GPU appli-
cation’s performance due to lower scheduling and data
transfer overheads.

4.2 Overheads in using a GPU

Offloading computation to the GPU changes which
software components become performance bottlenecks.
When using 16 CPU cores (Figure 5a), the main appli-
cation kernel takes up more than 73% of the total time
in matrix multiplication, K-means, and image smooth-
ing. Figure 5b shows that after GPU offloading, less than
37% of the time (for some applications less than 1%) is
spent in the main kernel. In many cases the database it-
self, such as SciDB code to read data and iterate through
data-structures, become a major bottleneck.

Data transfer. Data transfer between host and GPU is
an overhead present in all applications. Figure 5b shows
the breakdown of execution time spent in different com-
ponents. Of the total execution time, data transfer takes
upto 47% in dense matrix multiply, 6% in K-means, 5%
in PageRank, and 4% in image smoothing. It is startling
to see that in PageRank and image smoothing, the actual
compute kernel takes less than 1% of the total execution
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Figure 5: 16-core CPU vs. GPU processing: Fraction of
time spent in different components.

time. In contrast, dense matrix multiply and K-means are
compute bound and spend 34% and 37% respectively of
their total execution time on actual computation.

Data conversion. Figure 5b shows that 11% of the
time in K-means and 10% in PageRank is spent in data
conversion in the CPU. In K-means the input matrix is
converted to column major order while in PageRank the
input matrix is transformed to compressed sparse row
format.

Decompression. Decompression overhead depends
upon input data: our randomly generated datasets do
not result in any compression. Therefore, we run sep-
arate experiments to evaluate GPU offloading of decom-
pression. Figure 6 compares the performance of image
smoothing when decompression occurs in 16-core CPU
versus on the GPU. We vary the average run length of
the input image and always execute the image smooth-
ing kernel in the GPU. Longer run lengths imply that
data can be better compressed. Decompressing data in
the GPU reduces total execution time because of lower
data transfer overhead and faster decompression relative
to the CPU. When the average run length is 10,000, de-
compression in the GPU reduces total execution time by
34% on an input array of 51200×51200.

Shared GPU. A GPU can be used in shared or ex-
clusive access mode. For SciDB this means that in the
shared GPU mode, multiple chunk processing tasks can
execute concurrently. Shared GPU mode results in paral-
lel data transfers and reduces transfer latency. However,
the overheads of scheduling and context switch in the
GPU can degrade performance. Figure 7 shows that for
both dense matrix multiplication and K-means, perfor-
mance improves till four concurrent tasks are executed
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Figure 6: RLE decoding in 16-core CPU vs. GPU.
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Figure 7: Performance of GPU in shared mode.

in the GPU, after which performance degrades. In dense
matrix multiplication the performance degrades by 4%
if the GPU is shared by sixteen tasks. In contrast, for
PageRank and image smoothing, the performance con-
tinues to improve as the GPU is shared by more tasks.
This effect is because these applications spend only a
small percentage of their total time in the GPU kernel
execution, thus leaving the GPU underutilized.

Observation 3: Compute kernels are the main bottle-
neck in CPU execution and may take even 92% of the
total execution time.

Observation 4: Data transfer, conversion, and the
database itself are significant overheads and overshadow
GPU kernel execution time. Database designers should
use storage formats that avoid conversion, and optimize
database internals.

Observation 5: GPU in shared mode can improve
performance by cherry-picking number of tasks.

4.3 CPU and GPU cooperation

Finding the optimal task allocation between the CPU and
the GPU is beyond the scope of this paper. Instead, we
focus on three intuitive scheduling policies: (1) schedule
all tasks on the CPU (policy CPU), (2) assign all tasks on
the GPU (policy GPU), and (3) optimize chunk sizes dy-
namically depending upon whether the CPU or the GPU
executes the task (policy CPU+GPU).

CPU case. Figure 8 shows that except for PageR-
ank, performance of SciDB scales well as we use more
CPU cores (policy CPU). At 16 CPU cores, dense ma-
trix multiplication is 13× and K-means is 11×, and im-
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Figure 8: Performance effect of 16-core CPU and GPU cooperation. Speedups are relative to single CPU core.
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Figure 9: More tasks on GPU improve performance.

age smoothing 10× faster than single core performance.
PageRank has mediocre performance improvement be-
cause most of the execution time is spent inside the
database to read and iterate over the dataset (Figure 5a).

GPU case. The GPU policy shows that scheduling all
jobs on the GPU is very effective for compute intensive
applications. For example, matrix multiplication is more
than 127× faster than a single core system. These GPU
wins remain substantial even when compared to higher
core counts. At 16 CPU cores, the relative benefit of
using a GPU is 1.9× for K-means, 9× for matrix mul-
tiplication, and 11× for image smoothing. PageRank,
however, shows marginal performance improvement as
its main kernel is not compute intensive and GPU of-
floading imposes additional overheads (Figure 5a).

CPU+GPU case. The CPU+GPU policy always per-
forms better than 16-core CPU implementations. Com-
pared to the GPU policy, this hybrid policy performs 3%-
9% better in all applications except image smoothing,
where it performs worse.

In image smoothing, CPU tasks take much longer
(11×) than GPU tasks. As the scheduler assigns tasks
to idle CPUs, they end up as stragglers and increase to-
tal execution time. Figure 9 shows that as the number
of GPU tasks increase from 4 to 16, execution time de-
creases by 78%, which means all tasks should be sched-
uled on the GPU to obtain the best performance.

Figure 10 shows that dynamic chunking improves per-
formance of matrix multiplication by 3× to 20× in the
CPU+GPU policy. When the input chunks are very small
(256KB) or large (64MB), dynamic chunking shows the
maximum benefit: chunks can be merged (divided) to
improve the performance of CPU or GPU tasks.
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Figure 10: Benefits of dynamic chunking.
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Observation 6: GPU implementations can be 127×
faster than single core CPU implementations, but com-
pared to 16-core CPU performance benefits are modest.

Observation 7: Array applications incur load im-
balance due to different performance of CPU and
GPU tasks. Simple scheduling policies give moderate
speedups, but many applications will require more so-
phisticated techniques.

4.4 Power and energy efficiency
Database designers are under increasing pressure to re-
duce power consumption and improve energy efficiency
(performance per Watt). Figure 11 shows that the CPU
configuration consumes the least amount of power, while
the GPU configuration consumes 20-60% more. GPU
case consumes more power due to the (sometimes sig-
nificant) use of CPUs for pre-processing such as data
conversion. The hybrid (CPU+GPU) policy requires the
highest power, 65% more than the CPU case.

Table 2 compares the energy efficiency calculated as
the inverse of runtime-power product ( 1

exec time∗power ) and
normalized to the CPU-only baseline. GPU acceleration
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Policy Dense Mat-
Mul K-means PageRank Image

smth.
CPU 1.0 1.0 1.0 1.0
GPU 5.9 1.5 0.6 8.6
CPU+GPU 5.9 1.4 0.7 2.1

Table 2: Normalized efficiency (performance/Watt) for
each configuration. Higher is better.

clearly has the energy efficiency advantage for applica-
tions such as matrix multiplication, K-means and image
smoothing. Specifically, for image smoothing the GPU
is 8× more energy efficient than the CPU. PageRank has
lower efficiency with the GPU due to the overheads of
data conversion and low utilization (e.g., 7% GPU uti-
lization). Other than PageRank, using both the CPU and
GPU is more energy efficient than using only the CPUs.

Observation 8: Multi-core CPUs have the lowest
power consumption. Yet, speedup benefits makes the
GPU (sometimes in cooperation with CPUs) a more en-
ergy efficient option.

5 Related Work

Previous research, on leveraging hardware accelerators
for databases, has been limited to traditional relational
models and query components such as indexing [2], sort-
ing [5], and joins [7, 13]. While useful, these compo-
nents are often not the dominant performance bottleneck
in AODBs. Instead, we focus on array operations com-
mon in multi-dimensional data analysis. An orthogo-
nal line of research is on GPU kernels for data analy-
sis [14, 8, 9]. Our focus is not on creating new GPU ker-
nels but on integrating, leveraging, and tuning the GPU
kernels inside the database execution engine for array
queries. Many prior work make simplifying assump-
tions such as limiting the dataset to completely reside
in the small memory local to the accelerator (6GB for
NVIDIA Tesla) or comparing performance against sin-
gle threaded CPU implementations [6]. In contrast, we
focus on real-world applications where these simplifica-
tions often do not hold true. Dandelion simplifies pro-
gramming by compiling .NET code to different backends
such as GPUs and FPGAs [10]. Observations in our pa-
per are complementary, and help understand bottlenecks
and energy efficiency in heterogeneous environments.

6 Conclusion

The Good. GPUs are a good fit for array queries.
They improve performance and energy efficiency. In all
our applications, using the GPU outperformed the pure
multi-core CPU implementations and resulted in 20%-
40% better energy efficiency (and sometimes 8× better).

The Bad. The GPU speedups are in the 10× range
(instead of a desirable 100×) when compared to a multi-
core CPU implementations. Additionally, it is not easy
to determine the right configuration to use. For each ar-
ray query, the database administrator would have to tune
various software configuration parameters.

The Promising. Our observations in this paper point
to the untapped potential of GPUs. In most database ap-
plications, data conversion, transfer, and database pro-
cessing have a lot of overhead (more than 90% in image
smoothing). By reducing these overheads we will not
only boost performance but also energy efficiency. Our
evaluation also shows that CPUs are an integral compo-
nent for query processing. Even in the GPU mode, the
CPU has a helper role, executing many parts of the query
such as data partitioning, distribution, and conversion.
Going forward, we expect AODBs to be optimized for
the hybrid configuration.
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