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Abstract

As chip densities and clock rates increase, processors are
becoming more susceptible to transient faults that can affect
program correctness. Computer architects have typically ad-
dressed reliability issues by adding redundant hardware, but
these techniques are often too expensive to be used widely.
Software-only reliability techniques have shown promise in
their ability to protect against soft-errors without any hard-
ware overhead. However, existing low-level software-only
fault tolerance techniques have only addressed the problem
of detecting faults, leaving recovery largely unaddressed. In
this paper, we present the concept, implementation, and eval-
uation of automatic, instruction-level, software-only recov-
ery techniques, as well as various specific techniques rep-
resenting different trade-offs between reliability and perfor-
mance. Our evaluation shows that these techniques fulfill the
promises of instruction-level, software-only fault tolerance by
offering a wide range of flexible recovery options.

1 Introduction
In recent decades, microprocessor performance has been

increasing exponentially, due in large part to smaller and
faster transistors enabled by improved fabrication technology.
While such transistors yield performance enhancements, their
lower threshold voltages and tighter noise margins make them
less reliable [3, 14, 26], rendering processors that use them
more susceptible to transient faults. Transient faults are in-
termittent faults caused by external events, such as energetic
particles striking the chip, that do not cause permanent dam-
age, but may result in incorrect program execution by altering
signal transfers or stored values.

When cost is not an issue, system designers typically
address transient faults by relying on large amounts of re-
dundant hardware [8, 27, 32, 33]. While effective, this re-
dundancy is prohibitively expensive for arenas outside of
the high-end, high-availability market, rendering these tech-
niques impractical for the desktop and embedded computing
markets. For example, protecting the register file with ECC
has shown to be extremely costly in terms of both perfor-
mance [28] and power [19].

To provide protection when hardware costs are prohibitive,
software-only approaches have been proposed as alterna-
tives [15, 17, 25, 29]. In particular, techniques such as
SWIFT [23] have demonstrated that high reliability can be
achieved through a software-only fault-detection solution
which degrades performance modestly. These software-only

reliability techniques are valuable because they do not require
any hardware support. They can be applied to future designs
without any hardware changes or even to currently deployed
systems. Software-only approaches also allow for software-
control; the user, the application, or the system may dynami-
cally reconfigure the trade-off between reliability and perfor-
mance after the system has been deployed to best suit varying
conditions.

However, detecting faults is only part of the path to full
fault tolerance. In order to truly be reliable, a system must
also be able to recover from faults. Until now, all proposed
low-level software-only techniques of which we are aware
have addressed only fault detection, not fault recovery. Al-
though this prevents faults from corrupting data, it does not
allow the application to correctly run to completion in the
presence of a fault.

In this paper, we present three novel, software-only re-
covery techniques at the compiler level which offer varying
levels of protection. The first is SWIFT-R, which is based
on SWIFT [23], an existing software-only detection scheme.
The SWIFT-R technique intertwines three copies of a pro-
gram and adds majority voting before critical instructions of-
fering near-perfect reliability for those applications that re-
quire it.

The second technique we present is TRUMP (Triple
Redundancy Using Multiplication Protection), which inter-
twines the original program with an AN -encoded version
of the program. Section 4.1 will give an overview of AN -
encoding, a more efficient representation of redundant infor-
mation than simple triplication. At certain points in the pro-
gram, the original and AN -encoded versions are compared
and recovery code is triggered if a mismatch is detected. The
AN -encoding of TRUMP allows recovery although only two
versions of the program are computed. Although TRUMP’s
AN -encoding is not as general as SWIFT-R’s triple-modular
redundancy, rendering it unable to protect certain portions
of programs, TRUMP’s redundant computation is much less
onerous, providing an alternative for applications that cannot
afford the performance penalty of SWIFT-R, but could bene-
fit from moderate protection.

The last technique, MASK, dynamically enforces invari-
ants that can be proved true statically. By merely assert-
ing statically known facts at various points in the program,
MASK is able to improve the reliability of the system with-
out adding redundancy. The MASK technique is more
lightweight than the other two techniques but can still sub-
stantially increase reliability in some cases.

We implemented SWIFT-R, TRUMP, and MASK in a



compiler and evaluated them in isolation, as well as in inter-
esting hybrid combinations. The evaluation shows that these
techniques offer a wide spectrum of viable options for fault-
tolerance that can be deployed on existing systems without
any hardware additions. These techniques range from the
lightweight MASK which does not incur any significant per-
formance penalty to SWIFT-R which incurs a 99% increase in
execution time. Similarly, these techniques reduce the num-
ber of incorrect program executions in the presence of faults
from 1.24% for the lightweight technique to 89.39% for the
heavyweight technique.

This paper contributes the concept, implementation, and
evaluation of instruction-level, software-only recovery tech-
niques. These techniques will allow designers to increase re-
liability with reasonable performance costs without having to
design or deploy new hardware.

The rest of the paper is organized as follows. Section 2
introduces the fault model and terminology that will be used
in the remainder of this paper, and also gives a description of
the SWIFT technique. Sections 3, 4, 5 describe the SWIFT-
R, TRUMP, and MASK techniques respectively. Section 6
discusses various hybrid combinations of these techniques.
Section 7 provides an experimental evaluation of the perfor-
mance and reliability of each of the techniques. Section 8
describes related work. The paper concludes with Section 9.

2 Background
This section first describes the fault model assumed

throughout this paper. It then briefly describes the SWIFT
fault-detection technique (Section 2.2), the basis of several
recovery techniques presented in this paper. SWIFT has been
shown to protect against most faults in various structures in-
cluding the register files and the instruction buffer [24]. Note
that for the remainder of the paper, we will not concern our-
selves with SWIFT’s control-flow protection technique which
is used to detect faults that corrupt the program counter. It is
largely orthogonal to SWIFT’s instruction-duplication tech-
nique and can be implemented on top of any of the techniques
that follow. For the purposes of this work, this paper assumes
that no faults occur to the program counter register.

2.1 Fault Model
Throughout this paper, the commonly used single-event

upset (SEU) fault model will be assumed. In the SEU model,
exactly one bit-flip in one state element will occur through-
out a particular execution of the program. The techniques
presented also tolerate a wide variety of multi-bit errors, al-
though we do not quantify this effect.

In order to evaluate the reliability of a system, faults are
classified according to their effect on the final output of the
program in the presence of the fault. If the fault causes the
execution to be abnormally terminated due to a segmentation
fault, the fault is categorized as SEGV. If the program com-
pletes execution, but does not produce correct output, then
the fault is categorized as an SDC (silent data corruption). Fi-
nally, if the program completes execution and the output is
correct, the fault is categorized as unACE (unnecessary for
architecturally correct execution) [13]. In this paper, the “re-
liability” of a system refers to the percentage of faults that are

ld r3 = [r4]

add r1 = r2, r3

st [r1] = r2

(a) Original Code

1: br faultDet, r4 != r4’
ld r3 = [r4]

2: mov r3’= r3
add r1 = r2, r3

3: add r1’= r2’,r3’
4: br faultDet, r1 != r1’
5: br faultDet, r2 != r2’

st [r1] = r2

(b) SWIFT Code

Figure 1. SWIFT Duplication and Validation.

unACE, since SEGV and SDC faults are both deleterious.

2.2 SWIFT

The SWIFT-enabled compiler duplicates a program’s in-
structions and schedules them along with the original instruc-
tions in the same execution thread. The original and duplicate
versions of the instructions are register-allocated so that they
do not interfere with each other. At certain synchronization
points in the combined program, validation code is inserted
by the compiler to ensure that the data produced by the origi-
nal and redundant instructions are equal.

Since program correctness is defined by the output of a
program, the validation checks must be inserted before any
instruction which may potentially generate output. There are
two principal methods for user-level code to produce output:
memory-mapped I/O and system calls. We first address the
issue of memory-mapped I/O.

If all output is produced via memory-mapped I/O, then a
program has executed correctly if all correct loads and stores
in the program have executed correctly. Under this conserva-
tive assumption, data must be validated before all loads and
stores. By the same token, the redundancy must also avoid
adding any extra stores and loads, lest any unwanted I/O be
performed. The lack of redundancy in memory accesses typ-
ically does not significantly impact reliability, since mem-
ory and caches are often protected against transient faults by
ECC.

Figure 1 shows a sample code sequence before and after
the SWIFT fault-detection transformation. The add instruc-
tion is duplicated and inserted as instruction 3. The duplicate
instruction uses redundant versions of the values in registers
r2 and r3, denoted by r2’ and r3’ respectively. The result
is stored in r1’s redundant version, r1’.

Instructions 1 and 2 are inserted to validate and repli-
cate the data of the load instruction. As mentioned earlier,
program correctness can only be ensured if all loads and
stores execute correctly. In the case of load instructions, that
amounts to verifying the address of the load. Instruction 1 is
a comparison inserted to ensure that the address of the subse-
quent load matches its duplicate address. Furthermore, since
a redundant load instruction cannot be inserted as the load
may be uncacheable [22, 24], to set r3’, the technique must
find an alternative to redundantly executing the load. In this
case, instruction 2 accomplishes this by simply copying the
result of the load instruction into its duplicate register.

The values of r1 and r2 are used at the store instruction
at the end of the example. Since it is necessary to avoid stor-
ing incorrect values into memory and to avoid storing values
to incorrect addresses, the technique must check that both the



call otherFunc

br r1 == r2, label

(a) Original Code

1: br faultDet, P0 != P0’
call otherFunc

2: mov R0’= R0
3: br faultDet, r1 != r1’
4: br faultDet, r2 != r2’

br r1 == r2, label

(b) SWIFT Code

Figure 2. SWIFT Branch and Function Call Val-
idation.

address and value match their redundant copy. If a difference
is detected, then a fault has occurred and the system is no-
tified via instructions 4 or 5. Otherwise, the store proceeds
normally.

Although in this example program an instruction is imme-
diately followed by its duplicate, an optimizing compiler (or
dynamic hardware scheduler) is free to schedule the instruc-
tions to use additional available instruction-level parallelism
(ILP) thus minimizing the performance penalty of the trans-
formation.

Checking at loads and stores is sufficient to protect against
a large number of faults. However, as mentioned earlier, pro-
grams may also generate output via system calls, or more
generally, via external libraries. Since external code may not
have any protection, the best SWIFT can do is verify that all
of the inputs to the function or system call are correct. There
are two classes of inputs arguments: register and memory.

Parameters passed through memory do not need to be
rechecked since they will have already been checked via the
store that placed them in memory. Thus, the only parameters
needing special handling are the parameters passed via regis-
ters. Just as the compiler inserts checks to compare the input
to each store instruction against its redundant copy, the com-
piler inserts check instructions for register arguments before
function calls.

Unfortunately, checking at these points alone, namely be-
fore loads, stores, and function calls, is not enough to protect
against faults which affect branch outcomes. If a fault occurs
on a data slice which only feeds a branch, then an incorrect
execution path may be taken and incorrect loads and stores
may be executed, although no fault will be detected. In order
to protect against this, the technique also verifies the input
registers to any branch predicate. The technique can also ver-
ify the input to any register indirect jump, although we do not
implement it here since register indirect jumps are relatively
infrequent.

An example of this protection is given in Figure 2. Instruc-
tions 3 and 4 check that the source registers to the conditional
branch are correct. Instruction 1 checks that the input param-
eter register P0 is equal to its redundant version before mak-
ing the external function call to otherFunc. The function
call is akin to a load instruction not only in the fact that the
inputs must be checked, but also that they cannot be safely
duplicated. Therefore, in order to produce a redundant copy
of the return value, here given in R0, instruction 2 must be
executed.

While SWIFT has some vulnerabilities which will be de-
scribed in Section 3.2, previous work [24] has shown it to be
effective at detecting most faults in many parts of the system.

ld r3 = [r4]

add r1 = r2, r3

st [r1] = r2

(a) Original Code

1: majority(r4,r4’,r4’’)
ld r3 = [r4]

2: mov r3’ = r3
3: mov r3’’= r3

add r1 = r2, r3
4: add r1’= r2’,r3’
5: add r1’’= r2’’,r3’’
6: majority(r1,r1’,r1’’)
7: majority(r2,r2’,r2’’)

st [r1] = r2

(b) SWIFT-R Code

Figure 3. SWIFT-R Triplication and Validation.

3 SWIFT-R
This section introduces the novel recovery extensions to

SWIFT which comprise SWIFT-R and also discuss SWIFT-
R’s vulnerabilities and limitations.

3.1 The SWIFT-R Transformation
The SWIFT transformation can be seen as a double-

modular redundancy implemented in software. Double re-
dundancy provides detection but not recovery. In order to
achieve recovery, it is natural to move to triple-modular re-
dundancy.

The SWIFT-R transformation, instead of creating one re-
dundant copy as in SWIFT, creates two redundant copies.
Having three copies means that should a fault corrupt any
one version’s computation, two other versions will still have
the correct computation. By using a simple majority voting
scheme, any single-bit fault can be corrected.

The code in Figure 1 is shown again in Figure 3, except
that SWIFT-R code is given instead of SWIFT code. In-
struction 4 duplicates the previous add instruction, just as in
SWIFT. However, the SWIFT-R transformation also inserts
instruction 5, a third version of the add instruction which uses
a third set of registers, here denoted by r1’’, r2’’, and
r3’’. Similarly, after the load instruction, instead of a sin-
gle move instruction (instruction 2), SWIFT-R also inserts a
second move instruction (instruction 3).

Furthermore, the fault detection code used by SWIFT has
been replaced, in SWIFT-R, by recovery code at instructions
1, 6, and 7. The recovery code is simply a majority voting
procedure — if two versions of a register, r1 and r1’ for
example, have the same value, but the third version, r1’’,
does not, then r1’’ is set to the value in r1/r1’, correcting
the corrupted value of r1’’.

3.2 Windows of Vulnerability
SWIFT-R, like all software-only reliability techniques, in-

cluding SWIFT and the techniques which will follow, has
small windows of vulnerability. There are four principal
classes of vulnerabilities:

1. Between validation and use. Because the validation
occurs in software, the verification of a value must in-
variably happen some number of instructions before the
use of that value. Consider the region in Figure 3 be-
tween instruction 7 and its subsequent store (st). If a
fault occurs to r2 during this time, a faulty value will
be transmitted to memory. Similarly, if a fault occurs
to r1 between instruction 6 and the st instruction then
the store will go to an incorrect address. While it is im-



possible to remove this vulnerability altogether, it can
be partially mitigated by scheduling the verification in-
structions as closely as possible to their corresponding
uses.

2. Before a value is copied. At various points, such as af-
ter load instructions and after function call returns, val-
ues are triplicated. If a fault occurs to the register to be
copied before all copies have been made, then multiple
copies of the register will be corrupted. Consider the re-
gion in Figure 3 between the load (ld) and the move in
instruction 2. If a fault occurs to r3 at this point, then
r3’ and r3’’ will also be incorrect, compromising all
future checks on those values. Once again, scheduling
can minimize the window of vulnerability but it cannot
eliminate it altogether.

3. Certain faults to opcode bits. Faults corrupting the
opcode bits of an instruction may transform it into a
store or a branch. This will cause memory to be cor-
rupted or incorrect control-flow to be taken. Since no
checks are inserted before most instructions, any non-
load/store/branch instructions transformed into a load,
store, or branch may go uncaught by our techniques.
Note that other faults to the opcode bits will be caught
by our techniques.

4. Deadlock. Since the micro-architectural state of the
processor is not exposed to the software, software-only
techniques are unable to protect against faults on some
portions of the micro-architectural state such as parts of
the control logic. If faults to such state cause deadlock,
any software-only scheme will be unable to make for-
ward progress.

4 TRUMP
This section describes the second novel software-only

recovery technique, TRUMP. Section 4.1 gives a brief
overview of AN -codes which form the theoretical backdrop
for the TRUMP technique. AN -codes allow redundancy to
be represented more compactly, ultimately enabling the triple
redundancy of SWIFT-R to be contained in two registers in-
stead of three. Section 4.2 presents the TRUMP transforma-
tion itself.

4.1 AN-codes
AN -codes are a class of arithmetic codes where the code-

word is simply the original data multiplied by a constant, A.
The fact that AN -codes are arithmetic codes, codes which are
preserved across arithmetic expressions, is evident by stan-
dard algebra:

(Ax) + (Ay) = A(x + y) (1)
(Ax) · k = A(x · k) (2)

AN -codes can be used to detect errors by verifying that the
codeword is divisible by A. Precisely, C is a valid codeword
only if C ≡ 0 (mod A). The choice of A has a large impact
on the implementation cost as well as the reliability of the
resulting code. A = 2n− 1 is a particularly good choice with
respect to both of these.

Let us first consider the reliability ramifications of this

let x = original copy
let y = AN -encoded copy

if (3x 6= y)
if (y ≡ 0 (mod 3))

x = y
3

else
y = 3x

Figure 4. TRUMP recovery pseudo-code.

choice. Any single-bit fault to a codeword may be considered
either an addition or subtraction of 2k for some k. Observe
that 2k 6= 2n − 1 for any n > 0. Therefore,

C ± 2k ≡ ±2k (mod A) 6≡ 0 (mod A)

By the above proof, the faulty AN codeword is guaranteed
not to be divisible by A. Thus, this choice of A will be able
to detect any single-bit faults to the codeword. Although we
will not prove it here, this choice of codeword can also protect
against a large number of multi-bit faults.

A = 2n − 1 is also a convenient implementation for per-
formance because a multiplication by an A of this type can
simply be computed as a shift left by n and a subtraction,
specifically, Ax = (x � n)− x.

The choice of A also determines how many bits will be re-
quired to represent the codeword. For A = 2n−1, n extra bits
will be needed to represent the codeword. Therefore, in our
implementation, we choose the smallest nontrivial n, namely
n = 2 and A = 22 − 1 = 3, to minimize the additional bits
necessary for storage.

4.2 The TRUMP Transformation
In TRUMP, we exploit AN -codes to implement software-

only recovery more efficiently than in SWIFT-R. As noted
in the prior section, an AN -code with A = 3 is sufficient
to detect any single-bit error. We can extend its detection
capability to recovery by adding one extra, non-AN -encoded
version.

TRUMP essentially has two copies of every value, akin
to SWIFT. However, unlike SWIFT, one copy of the data
is AN -encoded. Under this scheme, the program detects a
fault whenever the original copy multiplied by A does not
match the AN -encoded copy. If they do not match, then the
code can recover by inferring which copy is correct. This
can be done by making use of the result in Section 4.1. If
the AN -encoded copy is divisible by A, then we can sur-
mise that the fault struck the original copy. If it is not, then
the AN -encoded copy was struck and the original is correct.
Pseudo-code for this recovery sequence is shown in Figure 4.
While it may be costly due to the division and modulo opera-
tions, these instructions are only executed during fault recov-
ery, which is relatively rare.

An example of the TRUMP transformation is shown in
Figure 5. Note that the redundant trump registers are denoted
by appending a ‘t’ to the register’s name. Although we have
shown code with multiplications here for brevity, note that
we implement multiplications with the faster combination of
shifts and adds.

As implemented in previous software-only reliability tech-
niques, the load address must be checked before load instruc-



ld r3 = [r4]

add r1 = r2, r3

st [r1] = r2

(a) Original Code

1: call recovery, 3*r4 != r4t
ld r3 = [r4]

2: mul r3t = 3,r3
add r1 = r2, r3

3: add r1t = r2t,r3t
4: call recovery, 3*r1 != r1t
5: call recovery, 3*r2 != r2t

st [r1] = r2

(b) TRUMP Code

Figure 5. TRUMP example.

tions. Instruction 1 performs this check by ensuring that three
times the original value is equal to the redundant value. If
there is a mismatch, the recovery code shown in Figure 4 is
called. Similarly, before the store instruction, the operands of
the store are checked in instructions 4 and 5.

Also similarly to previous software-only reliability tech-
niques, the result of the load instruction must be copied into
the redundant register, as in instruction 2. In TRUMP, in-
stead of a simple move, a multiplication is performed in order
to ensure that the redundant copy is properly AN -encoded.
Finally, instruction 3 performs a redundant add instruction.
Recall that AN -codes are arithmetic codes, which means
that codewords are preserved through arithmetic operations.
Therefore this instruction does not have to be altered in any
way from the SWIFT version.

Thus, TRUMP offers recovery similar to SWIFT-R, but
only requires two independent versions.

4.3 Applicability
In addition to the vulnerabilities which all software-only

recovery schemes have, described in Section 3.2, TRUMP
has two primary limitations that must be kept in mind. First
of all, AN -codes do not propagate through many logical op-
erations, such as and and or [18], and therefore cannot be
applied to certain dependence chains. Secondly, a register
can never assume a value greater than 2M

A , where M is the
number of bits in that register. Otherwise, the AN -encoded
version of the register will overflow. In order to avoid this
situation, TRUMP can only be applied on dependence chains
whose values never exceed 2M

A . If the compiler cannot stati-
cally prove that a certain dependence chain has this property,
it has no choice but to leave it at least partially unprotected.
Fortunately, restrictions on valid memory addresses on most
architectures provide ample spare bits for the TRUMP trans-
formation to be applied to pointers. Also, code written in
languages with primarily 32-bit data types, such as C, will
typically not utilize many bits when executed on 64-bit archi-
tectures. These two phenomena allow TRUMP to be applied
widely on most applications.

5 MASK
This section introduces the MASK technique, which en-

forces statically known invariants in order to eliminate faults
that can be reasoned away. Using these invariants, MASK
can remove faults that would otherwise be deleterious, thus
increasing reliability without redundant execution.

The MASK technique is best illustrated through exam-
ple. Consider the code given in Figure 6, loosely culled from
adpcmdec, an adaptive PCM decoder benchmark from Me-

mov r3 = 0

Loop:
...

call otherFunc, r3 != 0
xor r3=r3,1
br Loop

(a) Original Code

mov r3 = 0

Loop:
...
and r3=r3,1
call otherFunc, r3 != 0
xor r3=r3,1
br Loop

(b) MASK Code

Figure 6. MASK example.

diaBench [10]. In this snippet, the otherFunc function is
called every other iteration of the loop, via the guarding reg-
ister r3. Any faults on the lowest bit of this register will cer-
tainly be detrimental to the program, causing it to execute or
not execute otherFunc erroneously for every subsequent
iteration. Furthermore, any fault on any of the other bits of
register r3 will cause otherFunc to be erroneously exe-
cuted every iteration, instead of every other iteration as orig-
inally intended. On a 64-bit system, 63

64 of the faults will be
of this latter type while only 1

64 of the faults will be of the
first type. It is this latter and more common type of fault that
MASK attempts to resolve.

By statically analyzing the code, the compiler can know
that all but the lowest-order bit of r3 must necessarily be
zero. The MASK technique enforces this invariant by adding
the boldfaced instruction shown in Figure 6. If a fault occurs
to any of the bits which should be zero, then it will be masked
out and will not affect any subsequent computation. There-
fore, the reliability of register r3 will be increased by a factor
of 64 in our example.

The MASK technique reduces the total number of live
bits in the system, thereby increasing the system’s resilience
against faults; any fault to a dead bit cannot cause the sys-
tem to produce incorrect output. Although we only evaluate
masking with and instructions to enforce known-zero bits,
the technique could easily be extended to use or instruc-
tions to enforce known-one bits, or sign-extensions to enforce
known-sign bits. The technique could also eventually be ex-
tended to take into account higher-level semantic information
and programmer annotations.

6 Hybrid Techniques
In this section, we describe four hybrid combinations of

SWIFT-R, TRUMP, and MASK.

6.1 TRUMP/SWIFT-R

Although TRUMP can be applied in many situations, it
cannot be applied to all. In order to ensure the highest level
of reliability, the TRUMP technique can be applied to protect
as much of the program as possible, and then the remaining
parts of the program can be protected with the universally
applicable SWIFT-R technique.

This hybrid technique is called TRUMP/SWIFT-R. In
TRUMP/SWIFT-R, every dependence chain is broken up into
exactly two continuous segments: the part of the chain where
TRUMP can be applied and the part where TRUMP cannot
be applied. The technique further places the restriction that
the region where TRUMP can be applied must include the
uses of this dependence chain, i.e. the end of the dependence



ld r3 = [r4]

and r3 = r3, 0xFF

add r1 = r2, r3

st [r4] = r1

(a) Original Code

1: majority(r4,r4’,r4’’)
ld r3 = [r4]

2: mov r3’ = r3
3: mov r3’’ = r3

and r3 = r3, 0xFF
4: and r3’ = r3’, 0xFF
5: and r3’’ = r3’’, 0xFF
6: shl r3t = r3’,1
7: add r3t = r3t,r3’’

add r1 = r2, r3
8: add r1t= r2t,r3t
9: call recovery, 3*r1 != r1t
10: majority(r4,r4’,r4’’)

st [r4] = r1

(b) TRUMP/SWIFT-R Code

Figure 7. TRUMP/SWIFT-R example.

chain. This means that within a dependence chain, there will
only ever be one transition from SWIFT-R to TRUMP and not
vice versa. This restriction is required because, as we will see,
converting SWIFT-R redundancy into TRUMP redundancy is
far more affordable than converting TRUMP redundancy into
SWIFT-R redundancy, which requires expensive checks and
division.

At the point where the SWIFT-R chain ends and the
TRUMP chain begins, the SWIFT-R redundancy is converted
into TRUMP redundancy. To do this, two of the SWIFT-R
values are combined to create a single AN -encoded TRUMP
value. This ensures that any faults to either one of the two
SWIFT-R values will be properly reflected in the TRUMP
value. An example is shown in Figure 7.

In this code sequence, all instructions through the and
comprise the SWIFT-R portion of the chain, and the remain-
der comprises the TRUMP portion of the chain. Therefore,
the ld and the and instructions have typical SWIFT-R pro-
tection in instructions 1 through 5. Instruction 6 multiplies
r3’ by two and instruction 7 adds r3’’ to this value. If
there were no faults, then 2 · r3’+ r3’’ = 2 · r3+ r3 =
3 · r3, the proper AN -encoded value. If either r3’ or r3’’
has a single-bit fault, then the resulting value, r3t will also
have the fault and not be divisible by 3. The TRUMP redun-
dant addition is inserted as instruction 8. The store instruction
at the end of the example has its sources protected by both
TRUMP and SWIFT-R, and the appropriate recovery code is
inserted at instructions 9 and 10.

6.2 TRUMP/MASK

TRUMP/MASK is the TRUMP and MASK techniques
combined. In TRUMP/MASK, it is only desirable to apply
the MASK technique to the original version of the code and
not to TRUMP’s redundant instructions. This is because in-
structions that are protected by TRUMP are already tolerant
of faults and therefore need no additional protection from
MASK. However, MASK can be applied on those depen-
dence chains which TRUMP cannot protect. These are often
exclusive, since it is typically difficult to prove that any of
the bits in the instructions that TRUMP can protect, namely
arithmetic operations, are zero, while it is usually much easier
to prove that bits are zero in instructions that TRUMP cannot
protect, such as logical and and or. Because of this exclu-
sivity, the TRUMP and MASK techniques are able to com-
plement each other in TRUMP/MASK by protecting different

portions of the program.

6.3 Other Hybrids
In this paper, we do not evaluate the combination of

SWIFT-R and MASK. Since the MASK technique does
not add any redundancy into the program, unlike TRUMP,
all of SWIFT-R’s redundancy must remain in the program.
Therefore, the SWIFT-R/MASK combination would simply
consist of SWIFT-R with additional MASK instructions in-
serted. However, since MASK does not close or reduce any
of SWIFT-R’s windows of vulnerability, the MASK instruc-
tions would be useless. Therefore, we do not evaluate this
hybrid combination. For the same reason, we also do not
evaluate a TRUMP/SWIFT-R/MASK hybrid.

7 Evaluation
This section evaluates the SWIFT-R, TRUMP, and

MASK techniques, as well as the TRUMP/MASK and
TRUMP/SWIFT-R hybrid techniques. Each technique was
implemented as a pass in the gcc compiler, version 3.4.1,
targeted for the PowerPC 970. Our additional compila-
tion phase occurs in the backend of the compiler immedi-
ately before register allocation and scheduling. We evalu-
ated these techniques on a variety of benchmarks taken from
SPEC CPU2000, MediaBench [10], and other benchmark
suites. All binaries were compiled with the -O2 level of op-
timization and run on an Apple Xserve G5 with a dual-core
PPC970FX.

7.1 Reliability
We performed fault injection experiments for each of our

techniques in order to evaluate their reliability. In accordance
with the SEU model, we inserted exactly one fault per ex-
ecution. The fault was inserted into a uniformly randomly
selected bit in a uniformly randomly selected integer regis-
ter at a uniformly random dynamic instruction in the pro-
gram’s execution. 250 such runs were performed for each
benchmark for each technique and the outcome of each run
was recorded. We injected faults into the register file since it
has been shown to be one of the leading contributors of soft-
errors [20, 30]. We believe the proposed techniques are also
able to protect against most errors to other structures such as
the ALU, which are nearly impossible to protect with ECC,
since errors to these structures will often manifest themselves
similar to faults to the register file.

The fault injection infrastructure instrumented the binaries
with code which would alter the appropriate bit at the ap-
propriate dynamic instruction. However, the fault injection
infrastructure did not permit fault injections into the TOC
pointer, a PPC specific register which is a pointer to global
data locations. Additionally, since we implemented our trans-
formations before register allocation, we were unable to pro-
tect all uses of the stack pointer. Therefore, we also did not
inject faults into the stack pointer.

For future work, we plan to extend our infrastructure to
allow for injections into the TOC, and to investigate ways
of protecting the stack pointer while not being prohibitively
costly. Since the PPC64 has 32 registers, an upper bound
on the additional SDC for not protecting both of these is
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Figure 8. Reliability percentage for NOFT(N), MASK(M), TRUMP(T), TRUMP/MASK(K), TRUMP/SWIFT-
R(R), and SWIFT-R(S). The Average is across all benchmarks.

2
32 ≈ 6%, the probability that a fault will occur in either the
stack pointer or the TOC pointer. For these experiments, we
also neither inserted faults into, nor duplicated, floating-point
registers.

Figure 8 shows the results of the reliability evaluation. The
amount of unACE in NOFT is quite high at 74.18%, demon-
strating that there is already a large number of dynamically
dead registers and masked bits in unprotected code. The
SEGV percentage for NOFT is 18.00%, much higher than
the SDC percentage of 7.82%. This indicates that faults in
registers are much more likely to cause segmentation faults
than to corrupt data, suggesting that a great deal of computa-
tion for most benchmarks only feeds the addresses of memory
accesses rather than the data itself.

As expected, SWIFT-R and its triple-modular redundancy
is able to greatly reduce the SEGV and SDC, down to 1.93%
and 0.81% respectively. Furthermore, it is consistently low
across all benchmarks, indicating universal applicability. The
amount of SEGV and SDC is still nonzero, however, due to
the windows of vulnerability described in Section 3.2. Since
the compiler was not specifically directed to schedule for re-
liability, the reliability could be further improved, possibly at
the cost of some performance, if the compiler were forced to
move the checks as close as possible to the uses.

TRUMP also significantly improves reliability over
NOFT, albeit not as much as SWIFT-R. TRUMP reduces the
SEGV down to 7.39% and the SDC down to 4.88% while
increasing the unACE percentage to 87.73%. TRUMP im-
proves SEGV much more dramatically than SDC; this is due
to the fact that most pointer dependence chains can be pro-
tected by TRUMP while many other dependence chains can-
not be. There are two principal reasons for this. First, as
mentioned earlier, pointer ranges are limited to valid mem-
ory addresses, making it easier to verify that the AN -encoded
values will not overflow. Secondly, pointer computations tend
to be restricted to simple arithmetic operations such as addi-
tion, which can be protected by TRUMP.

As will be shown in the next section, the performance
penalty incurred by TRUMP is significantly less than that of

SWIFT-R. Coupled with TRUMP’s reliability, this technique
represents a promising middle-ground for designers who can-
not afford to incur the performance penalty of SWIFT-R but
who still need significant reliability enhancement. However,
designers must keep in mind that TRUMP does not increase
reliability uniformly across all benchmarks. For benchmarks
that are dominated by arithmetic instructions that can be pro-
tected by TRUMP, such as 183.equake and mpeg2enc,
TRUMP performs on par with SWIFT-R. For benchmarks,
such as 197.parser, that are dominated by instructions
TRUMP cannot protect, such as logical operations, TRUMP’s
reliability is significantly lower SWIFT-R’s.

The MASK technique does not significantly reduce SDC
(7.61% versus 7.82% for NOFT) or SEGV (17.89% ver-
sus 17.89% for NOFT) across all benchmarks. In fact, in
some benchmarks, MASK’s reliability can be slightly worse
than NOFT’s, due to poorer schedules in terms of reliabil-
ity. However, in other benchmarks, such as adpcmdec or
mpeg2dec, the MASK technique can make a significant dif-
ference. In adpcmdec, it is able to lower the SDC from
17.30% down to 12.87%, and in mpeg2dec, the SEGV is
lowered from 25.74% down to 22.57%. This is encourag-
ing and suggests that by looking for further opportunities to
enforce program invariants, the MASK technique offers the
potential to enhance reliability with practically no cost.

As would be expected, combining the TRUMP and MASK
techniques yields reliability similar to that of TRUMP. How-
ever, for benchmarks where MASK makes a significant dif-
ference, such as adpcmdec, TRUMP/MASK fares signifi-
cantly better than either TRUMP or MASK. For adpcmdec,
in fact, the SDC of the benchmark is reduced to 4.55% com-
pared with 4.88% for TRUMP and 7.61% for MASK. This
additive effect can be attributed to the fact that MASK and
TRUMP protect very different types of instructions. TRUMP
protects arithmetic instructions while MASK protects instruc-
tions where bits can be proved to be zero, which are almost al-
ways logical instructions. Their protections complement each
other yielding a technique which is more reliable than either
TRUMP or MASK alone.



Finally, the TRUMP/SWIFT-R technique performs sim-
ilarly to SWIFT-R, with a SEGV of 2.14% and a SDC
of 0.62%. This implies that the SWIFT-R portions of the
code are successfully filling in the gaps in protection left by
TRUMP, leaving windows of vulnerability on par with those
in SWIFT-R. However, the reliability of TRUMP/SWIFT-
R is slightly worse than that of SWIFT-R for some bench-
marks because the addition of the TRUMP instructions can
sometimes increase the total dynamic number of instructions.
This is due to the fact that transitions between SWIFT-R and
TRUMP require extra instructions, and that TRUMP’s veri-
fication sequence is longer than SWIFT-R’s. This can ulti-
mately increase register live ranges and the size of windows
of vulnerabilities. This suggests that the heuristics of when to
apply SWIFT-R and when to apply TRUMP and how to tran-
sition from one to the other within a single dependence chain
requires additional investigation, which we are pursuing as
future work.

7.2 Performance

We collected performance results for each technique us-
ing oprofile [11] when no faults were injected. Figure 9
shows the execution times for each of our techniques nor-
malized to a baseline build with no additional fault tolerance
(NOFT). Note that the bars are clipped at one. In most cases,
the performance of MASK is only nominally above one, and
in some cases, the performance of MASK bests that of NOFT
because the inserted instructions cause slight changes to the
scheduling and register allocation heuristics. Consequently,
MASK bars appear “missing” for many benchmarks.

Our techniques exhibit a wide range of performance be-
havior. The low-cost techniques, TRUMP and MASK, have
normalized execution times of only 1.36 and 1.00 respec-
tively. Combining these two is the TRUMP/MASK tech-
nique, which correspondingly has the larger normalized exe-
cution time of 1.37. The higher coverage techniques, SWIFT-
R and TRUMP/SWIFT-R, have normalized execution times
of 1.99 and 1.98 respectively.

TRUMP/SWIFT-R’s execution time is closer to that of
SWIFT-R than TRUMP. This implies that TRUMP/SWIFT-
R’s protection choices track more closely with SWIFT-R than
TRUMP, i.e. there are many more instructions protected by
SWIFT-R than instructions protected by TRUMP. This is
in agreement with the reliability evaluation, showing that
the reliability of TRUMP/SWIFT-R was much closer to that
of SWIFT-R than that of TRUMP. The performance of
TRUMP/SWIFT-R is highly dependent, much like its relia-
bility, on the particular tradeoffs between SWIFT-R protec-
tion and TRUMP protection that TRUMP/SWIFT-R makes.
The SWIFT-R technique is more expensive than TRUMP in
terms of redundancy, because two additional versions of the
computation are required instead of one. TRUMP, on the
other hand, is more expensive in terms of verification because
the AN -encoded and original data must be converted to the
same form for comparison. Depending on the ratio of re-
dundant computation to comparison, a TRUMP dependence
chain may actually be more costly than a SWIFT-R depen-
dence chain, which accounts for SWIFT-R occasionally out-

performing TRUMP/SWIFT-R.
TRUMP/MASK’s performance is typically much higher

than that of either TRUMP/SWIFT-R or SWIFT-R, but also
significantly lower than MASK and on par with TRUMP.
This is to be expected as the performance impact of MASK is
nearly negligible. The performance is slightly worse than the
simple sum of MASK and TRUMP, because each technique
alone is able to use some of the previously unused resources,
but there are not enough unused resources to support both
the MASK and TRUMP protections, thus creating a super-
additive performance penalty. Note that in some cases, most
notably mpeg2dec, TRUMP/MASK outperforms TRUMP,
just as MASK occasionally outperforms NOFT. Once again,
this is due to unpredictable changes in the scheduler and reg-
ister allocator as a result of inserting extra instructions.

One interesting observation is that the normalized execu-
tion time of all of our techniques, even SWIFT-R, averages
far less than three, what one might naı̈vely expect after tripli-
cating the code. In benchmarks dominated by floating-point
instructions which we do not protect, such as 179.art, we
would expect little difference in performance between the
various versions of the code, and this is exactly the case.
However, the normalized execution time is also far less than
three for most integer benchmarks. All of our techniques take
advantage of the well-documented existence of unused ILP
resources in most modern processors. Since most of the in-
structions added in SWIFT-R and TRUMP are independent of
the original instructions, the reliable code is typically able to
make use of previously unused ILP resources. This effect is
especially visible in benchmarks which already exhibit poor
ILP in NOFT, such as 181.mcf. 181.mcf spends a large
fraction of its time in memory stalls, consequently, our trans-
formations have a very small impact on the performance. The
variety in available ILP leads to wide variations in the perfor-
mance cost for each benchmark.

In addition to the effect of ILP, the instruction mix of the
various benchmarks affects the performance cost of added
reliability. Recall that for both TRUMP and SWIFT-R, the
protection for most instructions is simply replication. How-
ever, whenever there are checks, another more complex se-
quence of instructions is executed. Although the verification
code differs for each technique, in benchmarks where there
are many checks, such as 255.vortex due to a prepon-
derance of loads, the performance impact is typically much
higher than benchmarks with smaller numbers of checks and
more of their time dedicated to pure computation, such as
300.twolf.

In summary, SWIFT-R, which has a normalized execution
time of 1.99, can significantly improve reliability, increas-
ing unACE to 97.27%. SWIFT-R should be used in situa-
tions where high reliability requirements warrant this level
of performance degradation. The performance of SWIFT-
R can be improved slightly by moving to the hybrid tech-
nique TRUMP/SWIFT-R. When the reliability requirements
of the system are not stringent enough to warrant SWIFT-
R or TRUMP/SWIFT-R, TRUMP or TRUMP/MASK can be
used. TRUMP has the much lower normalized runtime of
1.36, while still managing to increase the unACE to 87.73%
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Figure 9. Execution time of MASK, TRUMP, TRUMP/MASK, TRUMP/SWIFT-R, and SWIFT-R normalized
to NOFT. The GeoMean is across all benchmarks.

versus 74.18% for NOFT. TRUMP/MASK improves on this
slightly, increasing reliability further while having a negli-
gible impact on performance. Finally, when almost no per-
formance degradation can be tolerated, the MASK technique
can be used. While MASK does not improve reliability in
many cases, it does on some occasions, and since it is essen-
tially free in terms of performance cost, it is almost certainly
worthwhile to apply it.

8 Relation to Prior Work
The techniques presented in this paper are the first low-

level software-only recovery methods. Previous works have
proposed single-threaded fault mitigation techniques both at
the source code level [21] and the instruction level [17, 23,
31], but these techniques only address fault detection, not
fault recovery. Techniques have also been previously devised
which use arithmetic codes, however, they either only address
fault detection [16] or require some hardware [5, 6].

There has also been previous work on the notion of mul-
tiple execution and majority reconciliation to enable fault re-
covery. N-version programming (NVP), the process of us-
ing N independent modules to do the same task, was origi-
nally created to reduce faults in the system design process,
by using different teams and compilation tools to develop a
software system [1, 2, 4]. While our techniques create mul-
tiple versions of the computation, it is notably different from
NVP in that NVP attempts to address software programmer
errors, while our technique addresses transient faults. Con-
sequently, NVP requires programs to be independently de-
veloped multiple times, whereas our techniques are fully-
automated, compiler-driven approaches.

Techniques using software-only N-way redundancy have
also been applied to parallel systems [7, 9, 12]. In those sys-
tems, an application was split into independent tasks and each
task was assigned to multiple computation nodes. The results
of the computations were compared from the multiple nodes,
and a final output was determined, usually by majority vot-
ing. These techniques used software recovery, but at a much
higher level. By targeting thread-level parallelism rather
than instruction-level parallelism, these high-level techniques

under-utilize available ILP resources, resulting in a lower
transistor efficiency than our techniques. Furthermore, their
techniques are only applicable in multi-processor environ-
ments, whereas our techniques are all single-threaded.

9 Conclusion
As faults become more commonplace, it will be critical for

designers, especially at the embedded and commodity level,
to maintain the reliability of their systems without adding
hardware and increasing the design complexity of already
baroque hardware.

This paper demonstrates that software-only recovery in the
face of transient faults is a reliable option. Three novel tech-
niques are introduced – SWIFT-R, an augmentation of the
software-only detection scheme, SWIFT; TRUMP, a new re-
covery system which makes use of AN -codes for implement-
ing redundancy more cost-effectively; and MASK, which en-
forces program invariants with minimal intrusiveness. The
experimental evaluation shows that the techniques represent
a wide spectrum of performance and reliability tradeoffs.
SWIFT-R offers nearly total protection against faults by re-
ducing the amount of SDC and SEGV events by 89.39%,
while MASK offers nearly negligable performance degrada-
tion. TRUMP offers an attractive middle ground, reducing
SDC and SEGV by 52.48% while only costing 36% in execu-
tion time overhead. Combining these techniques into hybrid
techniques offers even more options to designers.

Our implementation of these software-only recovery tech-
niques in a production compiler demonstrates that fault re-
covery can indeed be added into today’s designs and today’s
processors.
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