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Multicore systems are grossly underutilized [1,2]

Extraction of parallelism fine-grained enough for

multicore is notoriously hard [3]

Programmers are mostly limited to coarse-grained

parallelism (CGP)

CGP is ill-suited for multicore as it tends to stress
multicore’s shared resources
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Why Speculative Automatic Parallelization?

For a long time, memory analysis
limited applicability of automatic parallelization

undecidable in theory [Landi, LPLS’92]
For any fixed analysis algorithm, there is a counter-example input

for which the algorithm is imprecise.

insufficiently precise in practice [Hind, PASTE’01]
especially for languages like C/C++.

conservatively respects all possible inputs
Many real dependences rarely occur in practice.

Speculation overcame applicability limitations
by enabling optimization of the expected case
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The most applicable prior automatic speculative DOALL

system Is Privateer

|
two identified inefficiencies

Excessive use of memory speculation

Very expensive to validate due to costly communication and bookkeeping for each
speculated dependence

Expensive speculative privatization
Monitor large write sets to correctly merge private memory states of parallel workers
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Parallelization of dijkstra benchmark (MiBench)

with Privateer”

Required monitoring of

973GB of reads & 649GB of writes
for an input graph of 3K nodes!
O(N3), where N is # of nodes
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Maintain the applicability of prior speculative automatic parallelization
systems without unnecessary overheads
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Inexpensive control speculation check

instead of monitoring

i1l:

for
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The Perspective Approach

Design goals

Increase awareness
Enable collaboration

Avoid unnecessary transforms
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Source

Approach

%9 Enabling
Transforms

Enabler
1

Enabler
n
New
Enablers

Profile-based
Speculative Assertions

4+ Planning

+ Speculation-Aware Memory Analysis
+ New Efficient Enabling Transforms

Transform
Selector

Planning Phase

Transform Phase

Transforms
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Revisiting motivating example with

Parallelization of dijkstra benchmark (MiBench)

Excessive use of memory speculation

EII"\ V\

Required monitoring of
O72f'|2 nf roadc 2. GAQCR Af \Alrl'l-acl

I J G \JI Il AV I X V1 DI VI

over Privateer™

“Nick P. Johnson et al., PLDI ‘12
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Framework
Is implemented on the
LLVM Compiler Infrastructure

~80K loc in C/C++
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Perspective’s Evaluation Methodology

Platform
Evaluated on a commodity shared-memory machine with 28 cores

Empirically Evaluated Claim
Maintain the applicability of prior automatic-DOALL systems

while improving their efficiency

Benchmarks
All parallelizable benchmarks from two state-of-the-art automatic

DOALL-parallelization papers [1,2].
12 C/C++ benchmarks from SPEC CPU, PARSEC, PolyBench and MiBench.

[1] Johnson et al., PLDI ’12 [2] Kim et al., CGO ’12
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Perspective yields scalable speedup

28X
26X
24X
22X
20x
18x
16X

14x
12X

10X

Whole Program Speedup over Sequential

IR

—&— enc-md5
—&— dijkstra
—4— swaptions
—#— doitgen
gemm
—— blackscholes
—t— 2mm
3mm
179.art
correlation

—— covariance
—— 052.alvinn

Number of Cores
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doubles performance of Privateer”

28X
26X
24X
22X
20X
18X
16X
14x

10X
8X
b6X
4x

Whole Program Speedup over Sequential

Ox

“Nick P. Johnson et al., Speculative Separation for Privatization and Reductions in PLDI ‘12
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doubles performance of Privateer

thanks to dramatic reduction of monitored reads/writes

Monitored Read Set Size | Monitored Write Set Size
Benchmark , . : .

Privateer | Perspective | Privateer | Perspective
enc-md5 1.87TB 39.1KB 581GB 43.2KB
052.alvinn 153GB 0B 107GB 10.2MB
179.art 1.6TB 0B 958GB 1.68GB
2mm 1TB 0B 1TB 0B
3mm 3TB 0B 1.5TB 0B
correlation 0B 0B 192MB 192MB
covariance 0B 0B 192GB 192MB
doitgen 2.53TB 0B 2.54TB 0B
gemm 128MB 0B 256MB 0B
blackscholes 0B 0B 37.3GB 336B
swaptions 703KB 0B 165KB 165KB
dijkstra 973GB 0B 649GB 3.61KB
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Conclusion

Perspective advances state-of-the-art by identifying and mitigating

core inefficiencies of prior speculative automatic parallelization
systems.

Perspective generates minimal-cost DOALL-parallelization plans

by combining a planning phase, speculation-aware memory analysis,
and efficient speculative privatization.

Perspective fully-automatically yields scalable speedup (23.0x on 28 cores),
double the performance of state-of-the-art.

Artifact available at: https://doi.org/10.5281/zenodo.3606885 ‘ ‘
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