Perspective: A Sensible Approach to
Speculative Automatic Parallelization

Sotiris Apostolakis, Ziyang Xu, Greg Chan,
Simone Campanoni’, and David I. August

ASPLOS 2020

UNIVERSITY

£ -2 Northwestern
7 University

Why Automatic Parallelization?

Why Automatic Parallelization?

Multicore systems are grossly underutilized [1,2]

1 . Q.ueue'” 2

U }'HLH' Y
f Hl.H”rﬂHH"ﬂdll.m H[’ f

] HﬂH‘rHJ‘HPHHMHFMMPH'{HLH.{HM.I
i i t

1] L. A. Barroso, U. Holzle. The Datacenter as a Computer, 2013

2] C. Delimitrou and C. Kozyrakis. Quasar: Resource-Efficient and QoS-Aware Cluster Management, ASPLOS 2014
0

Why Automatic Parallelization?

Multicore systems are grossly underutilized [1,2]

Extraction of parallelism fine-grained enough for

multicore is notoriously hard [3]

1] L. A. Barroso, U. Holzle. The Datacenter as a Computer, 2013
C. Delimitrou and C. Kozyrakis. Quasar: Resource-Efficient and QoS-Aware Cluster Management, ASPLOS 2014

3] P. Prabhu et al., A survey of the practice of computational science, SC’11 2

Why Automatic Parallelization?

_‘fﬁf

T TG T TG T T
i o ok o ok ok o o o |

Multicore systems are grossly underutilized [1,2]

|: ey

= |1Queue,Uncoreg, 1/O "

Extraction of parallelism fine-grained enough for

multicore is notoriously hard [3]

Programmers are mostly limited to coarse-grained
parallelism (CGP)

el ‘
i | I it
’ i gt L isal ey
CEHT i (711 Ve !
i i ,u LI e R e 5 chirees [i
il : i e 4 \
: 11 A gl " I
LDE0d 000 400 G000 RA00 E00 D081 400 Siuil LI :
DL B § 1o ,
|
i ‘ 1

G CINNRRRRany

1] L. A. Barroso, U. Holzle. The Datacenter as a Computer, 2013

2] C. Delimitrou and C. Kozyrakis. Quasar: Resource-Efficient and QoS-Aware Cluster Management, ASPLOS 2014
3] P. Prabhu et al., A survey of the practice of computational science, SC’11 2

Why Automatic Parallelization?

ok

| I oo 33
o o L ik ke

|: ey

& 1"Queue, Uncorg, /0

' = ‘ B o mpm [w1 e
= Memory:Control
SERRSMSIEIIRR L1 L

2] C. De
3] P. Pra

: T H ,,:,I,L]I \l_;' :_‘l 1l ”‘ T V' Y
HHY] PR R B 1 rrieh et | il

10 + Hiit { "- "
i HH Hety 3 ey

: 1 DRI nw-»

Rt L NINBARRARAN! BRNNIRNAN

mmmm - | Iwee el

18

Al ey s R R
Wi el y A Y Y
ler LAl o e]

" et . U ‘I) 1]
Ty e OIS TS] Tl i |
:‘1 I Rt i oty iy
LR I S AL S REH R R

\ b RE |

Multicore systems are grossly underutilized [1,2]

Extraction of parallelism fine-grained enough for

multicore is notoriously hard [3]

Programmers are mostly limited to coarse-grained

parallelism (CGP)

CGP is ill-suited for multicore as it tends to stress
multicore’s shared resources

1] L. A. Barroso, U. Holzle. The Datacenter as a Computer, 2013

imitrou and C. Kozyrakis. Quasar: Resource-Efficient and QoS-Aware Cluster Management, ASPLOS 2014
ohu et al., A survey of the practice of computational science, SC’11

2

The Potential of Automatic Parallelization:
enable efficient use of multicore systems

The Potential of Automatic Parallelization:
enable efficient use of multicore systems

Parallel

Sequential

LA
“

executable

program

Parallelizing
compiler

Programmer

Why Speculative Automatic Parallelization?

Why Speculative Automatic Parallelization?

For a long time, memory analysis
limited applicability of automatic parallelization

Why Speculative Automatic Parallelization?

For a long time, memory analysis
limited applicability of automatic parallelization

undecidable in theory [Landi, LPLS’92]
For any fixed analysis algorithm, there is a counter-example input
for which the algorithm is imprecise.

Why Speculative Automatic Parallelization?

For a long time, memory analysis
limited applicability of automatic parallelization

undecidable in theory [Landi, LPLS’92]
For any fixed analysis algorithm, there is a counter-example input
for which the algorithm is imprecise.

insufficiently precise in practice [Hind, PASTE’01]
especially for languages like C/C++.

Why Speculative Automatic Parallelization?

For a long time, memory analysis
limited applicability of automatic parallelization

undecidable in theory [Landi, LPLS’92]
For any fixed analysis algorithm, there is a counter-example input

for which the algorithm is imprecise.

insufficiently precise in practice [Hind, PASTE’01]
especially for languages like C/C++.

conservatively respects all possible inputs
Many real dependences rarely occur in practice.

Why Speculative Automatic Parallelization?

For a long time, memory analysis
limited applicability of automatic parallelization

undecidable in theory [Landi, LPLS’92]
For any fixed analysis algorithm, there is a counter-example input

for which the algorithm is imprecise.

insufficiently precise in practice [Hind, PASTE’01]
especially for languages like C/C++.

conservatively respects all possible inputs
Many real dependences rarely occur in practice.

Speculation overcame applicability limitations
by enabling optimization of the expected case

Outline

Why Speculative Automatic Parallelization?

State-of-the-art Approach

Inefficiencies of State-of-the-art

The Approach

Fvaluation

Conclusion

How to automatically parallelize?
State-of-the-art approach

How to automatically parallelize?
State-of-the-art approach

Sequential

Static
Source * :
Code Analysis

Memory Analysisl

1Johnson et al., CGO 17

How to automatically parallelize?
State-of-the-art approach

Sequence of
Static Enabling Transforms

Sequential

Source
Code

A EWATES
Enabler ’ ’ Enabler

(Speculative) Privatization?3
(Speculative) Reduction?3
Memory Analysis! Memory Speculation456
Control Speculation
Value Prediction

1Johnson et al., CGO '17 2 Tu et al., LCPC ’93 3Johnson et al., PLDI '12 4 Mehrara et al., PLDI 09
> Tian et al., PLDI '10 6 Kim et al., CGO ’12

How to automatically parallelize?
State-of-the-art approach

Sequence of
Enabling Transforms Parallelization

Sequential

Source
Code

Enabler Enabler Transform
. . . n

(Speculative) Privatization?3

(Speculative) Reduction?3 DOALL
Memory Analysis! Memory Speculation456 PS-DSWP?
Control Speculation HELIXS

Value Prediction

1Johnson et al., CGO '17 2 Tu et al., LCPC ’93 3Johnson et al., PLDI '12 4 Mehrara et al., PLDI 09
> Tian et al., PLDI 10 6 Kim et al., CGO ’12 / Raman et al., CGO 08 3 Campanoni et al., CGO '12

How to automatically parallelize?
State-of-the-art approach

out
3.\\ a‘O ces

\U S “de(\

1008 Disprove Break Tolerate

Sequence of
Enabling Transforms Parallelization

Sequential

Source
Code

Enabler Enabler Transform
. . . n

(Speculative) Privatization?3

(Speculative) Reduction?3 DOALL
Memory Analysis! Memory Speculation456 PS-DSWP?
Control Speculation HELIXS

Value Prediction

1Johnson et al., CGO '17 2 Tu et al., LCPC ’93 3Johnson et al., PLDI '12 4 Mehrara et al., PLDI 09
> Tian et al., PLDI 10 6 Kim et al., CGO ’12 / Raman et al., CGO 08 3 Campanoni et al., CGO '12

How to automatically parallelize?
State-of-the-art approach

Break

Sequence of
Enabling Transforms Parallelized

code

Enabler * * Enabler

(Speculative) Privatization?3
(Speculative) Reduction?3
Memory Speculation456
Control Speculation
Value Prediction

How to automatically parallelize?
State-of-the-art approach

costs often negate
parallelization benefits

|
Break

Sequence of
Enabling Transforms Parallelized

code

Enabler * * Enabler

(Speculative) Privatization?3
(Speculative) Reduction?3
Memory Speculation456
Control Speculation
Value Prediction

The most applicable prior automatic speculative DOALL

system Is Privateer®

“Nick P. Johnson et al., Speculative Separation for Privatization and Reductions in PLDI ‘12

10

The most applicable prior automatic speculative DOALL

system Is Privateer

|
two identified inefficiencies

“Nick P. Johnson et al., Speculative Separation for Privatization and Reductions in PLDI ‘12

10

The most applicable prior automatic speculative DOALL

system Is Privateer

|
two identified inefficiencies

Excessive use of memory speculation
Very expensive to validate due to costly communication and bookkeeping for each

speculated dependence

“Nick P. Johnson et al., Speculative Separation for Privatization and Reductions in PLDI ‘12

10

The most applicable prior automatic speculative DOALL

system Is Privateer

|
two identified inefficiencies

Excessive use of memory speculation

Very expensive to validate due to costly communication and bookkeeping for each
speculated dependence

Expensive speculative privatization
Monitor large write sets to correctly merge private memory states of parallel workers

“Nick P. Johnson et al., Speculative Separation for Privatization and Reductions in PLDI ‘12

10

Inefficiencies of state-of-the-art:

Overuse of expensive-to-validate memory speculation

11:

12

for (1=0; 1<N; ++1) {

1f (observed always true)
*ptr = ..

. + *ptr

Simplified example from
the dijkstra benchmark (MiBench)

— branch condition cannot be
statically proven true
— ptr is not modified within the loop

11

Inefficiencies of state-of-the-art:

Overuse of expensive-to-validate memory speculation

Simplified example from

for (1=0; 1<N; ++1) { the dijkstra benchmark (MiBench)

if (observed always true) — branch condition cannot be

il: *ptr = .. statically proven true
— ptr is not modified within the loop
i2: .. = .. + *ptr
}

Program Dependence|~$ Cross-iter RAW Dep

= 9 Cross-iter WAW Dep
Grapfl (PDG) - [Nntra—iter RAW Dep

ne
e
|
\

P
N Ey
§ N
» d
3 ;. A
&2 .\
g 4
PR
MRt Y

11

Inefficiencies of state-of-the-art:

Overuse of expensive-to-validate memory speculation

11:

12

for (1=0; 1<N; ++1) { h

1f (observed always true)
*ptr = ..

. . + *ptr
}

Program Dependence| -

p» Cross-iter RAW Dep

= 9 Cross-iter WAW Dep
Grapfl (PDG) -~ [INntra-iter RAW Dep

Ilteration k Ilteration |

Simplified example from

e dijkstra benchmark (MiBench)

— branch condition cannot be
statically proven true
— ptr is not modified within the loop

11

Inefficiencies of state-of-the-art:

Overuse of expensive-to-validate memory speculation

11:

12

for (1=0; 1<N; ++1) {

1f (observed always true)
*ptr = ..

. . + *ptr
}

Program Dependence|~-

Simplified example from
the dijkstra benchmark (MiBench)

— branch condition cannot be
statically proven true
— ptr is not modified within the loop

p» Cross-iter RAW Dep

= 9 Cross-iter WAW Dep
Grapfl (PDG) -~ [INntra-iter RAW Dep

DOALL parallelization
applicability criterion:

No cross-iteration dependences

Ilteration k Ilteration |

11

Inefficiencies of state-of-the-art:

Overuse of expensive-to-validate memory speculation

for

(i=0

s 1<N; ++1) {

1f (observed always true)

11:

}

*ptr

. + *ptr

Relaxing Program Dependence Graph (PDG)

Simplified example from
the dijkstra benchmark (MiBench)

— branch condition cannot be
statically proven true
— ptr is not modified within the loop

- Cross-iter RAW Dep
- 9 Cross-iter WAW Dep
-3 INntra-iter RAW Dep

12

Inefficiencies of state-of-the-art:

Overuse of expensive-to-validate memory speculation

for (1

0;

1<N; ++1) |

1f (observed always true)
il: *ptr

-
N
|l

}

. + *ptr

Analysis

Relaxing Program Dependence Graph (PDG)

ne

Simplified example from
the dijkstra benchmark (MiBench)

— branch condition cannot be
statically proven true
— ptr is not modified within the loop

—— Cross-iter RAW Dep
- 9 Cross-iter WAW Dep
-3 INntra-iter RAW Dep

12

Inefficiencies of state-of-the-art:

Overuse of expensive-to-validate memory speculation

Simplified example from
the dijkstra benchmark (MiBench)

for (1=0; 1<N; ++1) {

if (observed always true) — branch condition cannot be

il: *ptr = .. statically proven true
— ptr is not modified within the loop
i2: .. = .. + *ptr
}

| ~——3 Cross-iter RAW Dep
Relaxing Program Dependence Graph (PDG) - % Cross-iter WAW Dep

 Intra-iter RAW Dep

ne

Control

Analysis Spec

Inefficiencies of state-of-the-art:

Overuse of expensive-to-validate memory speculation

Simplified example from
the dijkstra benchmark (MiBench)

for (1=0; 1<N; ++1) {

if (observed always true) — branch condition cannot be

il: *ptr = .. statically proven true
— ptr is not modified within the loop
i2: .. = .. + *ptr
}

| —§ Cross-iter RAW Dep
Relaxing Program Dependence Graph (PDG) - % Cross-iter WAW Dep

 Intra-iter RAW Dep

ne

N Control
Spec

Analysis

Inefficiencies of state-of-the-art:

Overuse of expensive-to-validate memory speculation

Simplified example from
the dijkstra benchmark (MiBench)

for (1=0; 1<N; ++1) {

if (observed always true) — branch condition cannot be

il: *ptr = .. statically proven true
— ptr is not modified within the loop
i2: .. = .. + *ptr
}

| ~——3 Cross-iter RAW Dep
Relaxing Program Dependence Graph (PDG) - % Cross-iter WAW Dep

B Intra-iter RAW Dep

ne

N Control
Spec

Analysis Privatization

Inefficiencies of state-of-the-art:

Overuse of expensive-to-validate memory speculation

Simplified example from
the dijkstra benchmark (MiBench)

for (1=0; 1<N; ++1) {

if (observed always true) — branch condition cannot be

il: *ptr = .. statically proven true
— ptr is not modified within the loop
i2: .. = .. + *ptr
}

| —§ Cross-iter RAW Dep
Relaxing Program Dependence Graph (PDG) - % Cross-iter WAW Dep

B Intra-iter RAW Dep

ne

DOALL-able

but with use of
expensive-to-validate
memory speculation

N Control
Spec

Analysis Privatization

Inefficiencies of state-of-the-art:

Overuse of expensive-to-validate memory speculation

for (1=0;

i<N; ++1i) {

1f (observed always true) {

spec write(ptr)
il: *ptr = ..
}

spec read(ptr)
i12: .. = .. + *ptr

Monitoring
Overhead

Time

Worker 1 Worker 2

Validator

13

Inefficiencies of state-of-the-art:

Overuse of expensive-to-validate memory speculation

for (i=0; i<N; ++i) { Worker 1 Worker 2 Validator

W, 1,ptr

il: *ptr = ..
} %

1f (observed always true) {
spec write(ptr)

spec read(ptr)
i12: .. = .. + *ptr

Time

Monitoring
Overhead

Inefficiencies of state-of-the-art:

Overuse of expensive-to-validate memory speculation

for (i=0; i<N; ++i) { Worker 1 Worker 2 Validator

1f (observed always true) ({

spec_write(ptr) W,1,ptr W,2,ptr

il: *ptr = ..
} M

spec read(ptr)
i12: .. = .. + *ptr

Time

Monitoring
Overhead

Inefficiencies of state-of-the-art:

Overuse of expensive-to-validate memory speculation

for (1=0;

i<N; ++1) {

1f (observed always true) {

spec write(ptr)
il: *ptr = ..
}

spec read(ptr)
i12: .. = .. + *ptr

Monitoring
Overhead

Time

Worker 1 Worker 2

W, 1,ptr W,2,ptr

s NS

R,3,ptr

Validator

13

Inefficiencies of state-of-the-art:

Overuse of expensive-to-validate memory speculation

for (1=0;

i<N; ++1) {

1f (observed always true) {

spec write(ptr)
il: *ptr = ..
}

spec read(ptr)
i12: .. = .. + *ptr

Monitoring
Overhead

Time

Worker 1 Worker 2

W, 1,ptr W,2,ptr

s NS

R,3,ptr

D

Validator

13

Inefficiencies of state-of-the-art:

Expensive speculative privatization

11:

12

for (1=0; 1<N; ++1) {

1f (observed always true)
*ptr

. + *ptr

Assumptions

— branch condition statically proven true

— ptr is not modified within the loop

14

Inefficiencies of state-of-the-art:

Expensive speculative privatization

for (i=0; i<N; ++i) { Assumptions
- — branch condition statically proven true
+t—(observed—always—true) — ptr is not modified within the loop
il: *ptr = ..
i2: .. = .. + *ptr
}

| -3 Cross-iter RAW Dep
Relaxing Program Dependence Graph (PDG) - % Cross-iter WAW Dep

B Intra-iter RAW Dep

14

Inefficiencies of state-of-the-art:

Expensive speculative privatization

for (i=0; i<N; ++i) { Assumptions
- — branch condition statically proven true
+t—(observed—always—true) — ptr is not modified within the loop
il: *ptr = ..
i2: .. = .. + *ptr
}

| - Cross-iter RAW Dep
Relaxing Program Dependence Graph (PDG) - % Cross-iter WAW Dep

B Intra-iter RAW Dep

ne

Analysis
14

Inefficiencies of state-of-the-art:

Expensive speculative privatization

for (i=0; i<N; ++i) { Assumptions
- — branch condition statically proven true
+t—(observed—always—true) — ptr is not modified within the loop
il: *ptr = ..
i2: .. = .. + *ptr
}

| - Cross-iter RAW Dep
Relaxing Program Dependence Graph (PDG) - % Cross-iter WAW Dep

B Intra-iter RAW Dep

Control
Spec

Analysis
14

Inefficiencies of state-of-the-art:

Expensive speculative privatization

for (i=0; i<N; ++i) { Assumptions
- — branch condition statically proven true
+t—(observed—always—true) — ptr is not modified within the loop
il: *ptr = ..
i2: .. = .. + *ptr
}

| - Cross-iter RAW Dep
Relaxing Program Dependence Graph (PDG) - % Cross-iter WAW Dep

B Intra-iter RAW Dep

Control
Spec

Analysis Privatization

14

Inefficiencies of state-of-the-art:

Expensive speculative privatization

for (i=0; i<N; ++i) { Assumptions
- — branch condition statically proven true
+t—(observed—always—true) — ptr is not modified within the loop
il: *ptr = ..
i2: .. = .. + *ptr
}

| - Cross-iter RAW Dep
Relaxing Program Dependence Graph (PDG) - % Cross-iter WAW Dep

B Intra-iter RAW Dep

‘ DOALL-able but

expensive
write monitoring
used for live-out state

Control
Spec

Spec
Privatization

Analysis
14

Inefficiencies of state-of-the-art:

Expensive speculative privatization

for (1=0; 1<N; ++1) {

1f (observed always true) {

il: spec write(ptr)
*ptr = ..
}
12: .. = .. + *ptr
}
Monitoring
Overhead

Time

Worker 1

Worker 2 Master

15

Inefficiencies of state-of-the-art:

Expensive speculative privatization

for (1=0; 1<N; ++1) {

1f (observed always true) {

il: spec write(ptr)
*ptr = ..
}
12: .. = .. + *ptr
}
Monitoring
Overhead

Time

Worker 1

||II|HHHIIHIIII'

(W, 1,ptr)

Worker 2 Master

15

Inefficiencies of state-of-the-art:

Expensive speculative privatization

for (i=0; i<N; ++i) {

1f (observed always true) {

il: spec write(ptr)
*ptr = ..
}
12: .. = .. + *ptr
}
Monitoring

Overhead

Time

Worker 1 Worker 2 Master

(W, 1,ptr) (W,2,ptr)

(W, 3,ptr)

15

Inefficiencies of state-of-the-art:

Expensive speculative privatization

for (1=0; 1<N; ++1) {

1f (observed always true) {

il: spec write(ptr)
*ptr = ..
}
12: .. = .. + *ptr
}
Monitoring
Overhead

Time

Worker 1 Worker 2 Master

(W, 1,ptr) (W,2,ptr)
(W, 3,ptr)
(W,N-2,ptr)
(W,N-1,ptr)

Merge

live—-out

15

Parallelization of dijkstra benchmark (MiBench)

with Privateer”

Required monitoring of

973GB of reads & 649GB of writes
for an input graph of 3K nodes!
O(N3), where N is # of nodes

“Nick P. Johnson et al., Speculative Separation for Privatization and Reductions in PLDI ‘12

16

Outline

Why Speculative Automatic Parallelization?

State-of-the-art Approach

Inefficiencies of State-of-the-art

The Perspective Approach
Evaluation

Conclusion

17

Maintain the applicability of prior speculative automatic parallelization
systems without unnecessary overheads

18

Fully leverage inexpensive speculative assertions to

efficiently break dependences

for (1=0; 1<N; ++1) {

1f (observed always true)
il: *ptr = ..

12: ..
}

. + *ptr

Program Dependence
Graph (PDQG)

Simplified example from
the dijkstra benchmark (MiBench)

— branch condition cannot be
statically proven true
— ptr is not modified within the loop

- Cross-iter RAW Dep
- 9 Cross-iter WAW Dep
- Intra-iter RAW Dep

19

Fully leverage inexpensive speculative assertions to

efficiently break dependences

for (1=0; 1<N; ++1) {
- £ I Ala~AarxyrAA Alrrsacxry 4 a~aa
-l e \VHU\’-I- V\I\A_M-LVVMIU_U-LM
il: *ptr = ..
i2: .. = .. + *ptr
t

~\
~

Program Dependence
Graph (PDQG)

Simplified example from
the dijkstra benchmark (MiBench)

— branch condition cannot be
statically proven true
— ptr is not modified within the loop

-~ Cross-iter RAW Dep
- 9 Cross-iter WAW Dep
- Intra-iter RAW Dep

19

Fully leverage inexpensive speculative assertions to

efficiently break dependences

for (1=0; 1<N; ++1) {
- £ I Ala~AarxyrAA Alrrsacxry 4 a~aa
-l e \VHU\’-I- V\I\A_M-LVVMIU_U-LM
il: *ptr = ..
i2: .. = .. + *ptr
t

~\
~

Program Dependence
Graph (PDQG)

Simplified example from
the dijkstra benchmark (MiBench)

— branch condition cannot be
statically proven true
— ptr is not modified within the loop

- Cross-iter RAW Dep
- 9 Cross-iter WAW Dep
- Intra-iter RAW Dep

19

Fully leverage inexpensive speculative assertions to

efficiently break dependences

for (1=0; 1<N; ++1) {
- £ I Ala~AarxyrAA Alrrsacxry 4 a~aa
-l e \VHU\’-I- V\I\A_M-LVVMIU_U-LM
il: *ptr = ..
i2: .. = .. + *ptr
t

~\
~

Program Dependence
Graph (PDQG)

Simplified example from
the dijkstra benchmark (MiBench)

— branch condition cannot be
statically proven true
— ptr is not modified within the loop

-~ Cross-iter RAW Dep
- 9 Cross-iter WAW Dep
- Intra-iter RAW Dep

19

Fully leverage inexpensive speculative assertions to

efficiently break dependences

for (1=0; 1<N; ++1) {

-C II\L\("!I'\'I/'T?I‘\A —'\-If-?—'\'r?ﬂ d= amaq
= . \VMUV.I— V o WA M.LVVM-ZU wds WA

(]
q
—h

il: *ptr = ..

12: ..
}

. + *ptr

~\
~

Program Dependence
Graph (PDQG)

Simplified example from
the dijkstra benchmark (MiBench)

— branch condition cannot be
statically proven true
— ptr is not modified within the loop

- Cross-iter RAW Dep
- 9 Cross-iter WAW Dep
- Intra-iter RAW Dep

DOALL-able
without monitoring

P @
B
b
5 o
as

A
b

e > @

19

Inexpensive control speculation check

instead of monitoring

i1l:

for

1

e

12:

(1=0; i<N; ++i) {

f (observed always true)
*ptr = ..

lse

misspec ()

. + *ptr

Control
Spec Check

20

The Perspective Approach

21

The Perspective Approach

Design goals

Increase awareness
Enable collaboration

Avoid unnecessary transforms

21

The Perspective Approach

+ Planning

22

The

Sequential

Source
Code

>

Analysis

+ Planning

22

The

Sequenﬂal

Source
Code

Static
AnaIyS|s

Approach

kel Enabling

Transforms
Enabler
f 1

Enabler
n

+ Planning

22

The

Sequenﬂal

Source
Code

Static
AnaIyS|s

Approach
kel Enabling

Transforms
Enabler
f 1

Enabler
n

+ Planning

Transform
Selector

22

The

Sequential

Source
Code

>

Analysis

Approach

kel Enabling

Transforms
- f .

—>

Enabler
n

+ Planning

Transform
Selector

Planning Phase

Transform Phase

Apply
Transforms

22

The

Sequential

Source
Code

>

Analysis

Approach

el Enabling

Transforms
- f L

—>

Enabler
n

4+ Planning

+ Speculation-Aware Memory Analysis

Transform
Selector

Planning Phase

Transform Phase

Apply
Transforms

23

The

Sequential

Source
Code

>

Analysis

+ Planning

Approach + Speculation-Aware Memory Analysis

el Enabling

Transforms
- f L

m—>

Transform
Selector

Enabler
n

T

Profile-based
Speculative Assertions

Planning Phase

Transform Phase

Transforms

23

The

Sequenﬂal

Source
Code

Approach

el Enabling
Transforms
Enabler
f 1
AnaIyS|s e
Enabler
N

Profile-based
Speculative Assertions

Static

4+ Planning

+ Speculation-Aware Memory Analysis

Transform
Selector

Planning Phase

Transform Phase

Apply Parallelized

Transforms code

23

The

Sequential

Source
Code

Approach

Enabling
Transforms

Enabler
f 1

* Analysis #

Enabler
n

Profile-based
Speculative Assertions

4+ Planning

+ Speculation-Aware Memory Analysis

Transform
Selector

Planning Phase

Transform Phase

Transforms

23

The

Sequential

Source

Approach

%9 Enabling
Transforms

Enabler
1

Enabler
n
New
Enablers

Profile-based
Speculative Assertions

4+ Planning

+ Speculation-Aware Memory Analysis
+ New Efficient Enabling Transforms

Transform
Selector

Planning Phase

Transform Phase

Transforms

24

Revisiting motivating example with

Parallelization of dijkstra benchmark (MiBench)

Excessive use of memory speculation

EII"\ V\

Required monitoring of
O72f'|2 nf roadc 2. GAQCR Af \Alrl'l-acl

I J G \JI Il AV I X V1 DI VI

over Privateer™

“Nick P. Johnson et al., PLDI ‘12

25

Framework
Is implemented on the
LLVM Compiler Infrastructure

~80K loc in C/C++

—_———, e e e ——— ——— — — e —-

Sequential Program
V
(Clang)
Vi
[LLVM Optimizer J
\V/
LLVM IR Profile Inputs
Y
(Profile-Guided Inliner
v
Inlined IR
\%
[LLVM Optimizer J
W V
Target IR g Profilers

Per Hot Loopv

Preprocessing
&
Profiling

m Profiling Results

Speculation-Aware Memory Analyzer
i i Speculative
Static Analysis —> P

Assertions

\V

Annotated Loop PDG

W N

ﬂ[

Applicability Guard of
Enabling Tranforms

AN/

|

Transform

Proposals

AN/

(Transform Selector)

Set of Transforms

to

Be Applied

———pm——————g—————

-------’I‘______________
I

Planning

[Loop Selection > Transform Application—>

Multi-threaded
Code Generation

_____>F._________________
I

I
Transform

W/

Parallel IR

\(Clang++ J

Runtime

/

V

Parallel Executable

] &

Code Generatior

20

Perspective’s Evaluation Methodology

27

Perspective’s Evaluation Methodology

Platform
Evaluated on a commodity shared-memory machine with 28 cores

27

Perspective’'s Evaluation Methodology

Platform
Evaluated on a commodity shared-memory machine with 28 cores

Empirically Evaluated Claim

Maintain the applicability of prior automatic-DOALL systems
while improving their efficiency

27

Perspective’s Evaluation Methodology

Platform
Evaluated on a commodity shared-memory machine with 28 cores

Empirically Evaluated Claim
Maintain the applicability of prior automatic-DOALL systems

while improving their efficiency

Benchmarks
All parallelizable benchmarks from two state-of-the-art automatic

DOALL-parallelization papers [1,2].
12 C/C++ benchmarks from SPEC CPU, PARSEC, PolyBench and MiBench.

[1] Johnson et al., PLDI ’12 [2] Kim et al., CGO ’12

27

Perspective yields scalable speedup

28X
26X
24X
22X
20x
18x
16X

14x
12X

10X

Whole Program Speedup over Sequential

IR

—&— enc-md5
—&— dijkstra
—4— swaptions
—#— doitgen
gemm
—— blackscholes
—t— 2mm
3mm
179.art
correlation

—— covariance
—— 052.alvinn

Number of Cores

28

doubles performance of Privateer”

28X
26X
24X
22X
20X
18X
16X
14x

10X
8X
b6X
4x

Whole Program Speedup over Sequential

Ox

“Nick P. Johnson et al., Speculative Separation for Privatization and Reductions in PLDI ‘12

29

doubles performance of Privateer

thanks to dramatic reduction of monitored reads/writes

Monitored Read Set Size | Monitored Write Set Size
Benchmark , . : .

Privateer | Perspective | Privateer | Perspective
enc-md5 1.87TB 39.1KB 581GB 43.2KB
052.alvinn 153GB 0B 107GB 10.2MB
179.art 1.6TB 0B 958GB 1.68GB
2mm 1TB 0B 1TB 0B
3mm 3TB 0B 1.5TB 0B
correlation 0B 0B 192MB 192MB
covariance 0B 0B 192GB 192MB
doitgen 2.53TB 0B 2.54TB 0B
gemm 128MB 0B 256MB 0B
blackscholes 0B 0B 37.3GB 336B
swaptions 703KB 0B 165KB 165KB
dijkstra 973GB 0B 649GB 3.61KB

30

Conclusion

Perspective advances state-of-the-art by identifying and mitigating

core inefficiencies of prior speculative automatic parallelization
systems.

Perspective generates minimal-cost DOALL-parallelization plans

by combining a planning phase, speculation-aware memory analysis,
and efficient speculative privatization.

Perspective fully-automatically yields scalable speedup (23.0x on 28 cores),
double the performance of state-of-the-art.

Artifact available at: https://doi.org/10.5281/zenodo.3606885 ‘ ‘

31

https://doi.org/10.5281/zenodo.3606885

