Perspective: A Sensible Approach to Speculative
Automatic Parallelization

Sotiris Apostolakis

Princeton University

Simone Campanoni
Northwestern University

Abstract

The promise of automatic parallelization, freeing program-
mers from the error-prone and time-consuming process of
making efficient use of parallel processing resources, remains
unrealized. For decades, the imprecision of memory anal-
ysis limited the applicability of non-speculative automatic
parallelization. The introduction of speculative automatic
parallelization overcame these applicability limitations, but,
even in the case of no misspeculation, these speculative tech-
niques exhibit high communication and bookkeeping costs
for validation and commit. This paper presents Perspective,
a speculative-DOALL parallelization framework that main-
tains the applicability of speculative techniques while ap-
proaching the efficiency of non-speculative ones. Unlike
current approaches which subsequently apply speculative
techniques to overcome the imprecision of memory analysis,
Perspective combines a novel speculation-aware memory an-
alyzer, new efficient speculative privatization methods, and a
planning phase to select a minimal-cost set of parallelization-
enabling transforms. By reducing speculative parallelization
overheads in ways not possible with prior parallelization
systems, Perspective obtains higher overall program speedup
(23.0x for 12 general-purpose C/C++ programs running on a
28-core shared-memory commodity machine) than Privateer
(11.5%), the prior automatic DOALL parallelization system
with the highest applicability.

CCS Concepts -+ Software and its engineering — Com-
pilers; Multithreading,.

Keywords automatic parallelization; speculation; privati-
zation; memory analysis

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

ASPLOS 20, March 16-20, 2020, Lausanne, Switzerland

© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-7102-5/20/03...$15.00
https://doi.org/10.1145/3373376.3378458

Ziyang Xu

Princeton University

Greg Chan

Princeton University

David I. August

Princeton University

ACM Reference Format:

Sotiris Apostolakis, Ziyang Xu, Greg Chan, Simone Campanoni,
and David I. August. 2020. Perspective: A Sensible Approach to
Speculative Automatic Parallelization. In Proceedings of the Twenty-
Fifth International Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS 20), March 16-20,
2020, Lausanne, Switzerland. ACM, New York, NY, USA, 17 pages.
https://doi.org/10.1145/3373376.3378458

1 Introduction

Using PThreads [42], Map-Reduce [9], OpenMP [31], and
other libraries and languages, programmers routinely pro-
duce coarse-grained parallel (CGP) programs even at the
warehouse scale. At the other end of the parallelism granu-
larity spectrum, compilers and out-of-order processors con-
sistently extract instruction-level parallelism (ILP) from pro-
grams without any programmer intervention. Unfortunately,
despite developments in parallel programming languages,
parallel libraries, and parallelizing compilers, reliably finding
parallelism appropriate for multicore remains a challenge.
Programs with CGP are not ideally suited for multicore as
they tend to stress multicore’s shared resources, such as
caches and memory bandwidth. Despite progress in recent
years, automatic parallelization is not yet a reliable solution
for the extraction of multicore appropriate parallelism.

Parallelizing compilers integrate program analysis, en-
abling transforms and parallelization patterns to find work
that can execute concurrently. Automatic parallelization nat-
urally focuses on loops because that is where programs spend
their time. An essential aspect of program analysis in a par-
allelizing compiler is memory analysis because the compiler
must understand memory access patterns to divide work
across threads or processes. Enabling transforms use con-
trol flow and data flow facts from analysis to make the code
amenable to a given parallelization pattern. Examples of en-
abling transforms include: i) loop skewing which re-arranges
array accesses to move cross-iteration dependences out of
inner loops; ii) reduction which expands storage locations
to relax ordering constraints on associative and commuta-
tive operations; and, iii) privatization which creates private
data copies for each worker process to remove contention
caused by the reuse of data structures. Many parallelization
patterns exist, but among the most desirable is DOALL, the
independent execution of loop iterations.

https://doi.org/10.1145/3373376.3378458
https://doi.org/10.1145/3373376.3378458

ASPLOS ’20, March 16-20, 2020, Lausanne, Switzerland

For decades, parallelizing compilers only performed en-
abling transforms that could be proven correct with respect
to the facts provided by static analyses [2, 4, 7, 32, 37, 47].
While this approach showed some success in scientific codes,
its reliance on memory analysis, a type of analysis notorious
for its imprecision [17, 25], severely limited the applicability
of automatic parallelization.

Following the success of speculation for extracting ILP,
speculation in automatic parallelization has gained traction
in the last decade [21, 23, 27, 36, 43]. Speculation allows
the compiler to optimize for the expected case. The effect is
dramatic since there are many fewer dependences in prac-
tice than can be proved nonexistent by memory analysis.
Memory flow speculation is a popular speculative enabling
transform that asserts the absence of flow dependences not
manifested (or manifested infrequently) during profiling,
backing its assertions with runtime checks to initiate mis-
speculation recovery when necessary. Another important
speculative enabling transform is speculative privatization
proposed in Privateer [21]. With speculation, Privateer is
able to handle dynamic data structures even in the presence
of unrestricted pointers, a task that proved insurmountable
for non-speculative privatization techniques.

Despite the dramatic advance that speculation for auto-
matic parallelization represents, challenges remain that pre-
vent its widespread adoption [5, 14, 22, 33]. While memory
flow speculation is popular, its relaxed program dependence
structure comes with a high cost. Even without any mis-
speculation, validation of memory flow speculation requires
instrumenting memory operations on every iteration to log
or communicate speculative accesses to additional validation
code. For larger regions with many speculation checks, the
validation cost can become prohibitively expensive, negating
the benefits of the parallelization. Speculative privatization
may also entail high overheads but in a different way. Cor-
rectly merging the private memory state of each parallel
worker at the end of a loop invocation can require speculative
privatization systems to monitor large write sets during exe-
cution, significantly degrading their profitability [21, 23, 39].

The goal of this work is to produce a parallelizing compiler
that achieves the coverage of speculative parallelization tech-
niques while also reducing its costs. The proposed system,
called Perspective, is an automatic DOALL parallelization
framework integrating a speculation-aware memory ana-
lyzer, efficient variants of speculative privatization, and a
planning phase to select the cheapest set of DOALL paral-
lelization enabling transforms. This approach avoids certain
unnecessary speculation overheads of prior work.

In Perspective, the speculation-aware memory analyzer
increases the impact of speculative assertions. In practice,
Perspective often recognizes that an inexpensive specula-
tive enabler addresses problems thought by prior systems
to require additional and more expensive speculation. For
example, by observing the pruning of a path never taken in

Apostolakis et al.

profiling by control-flow speculation, the speculation-aware
memory analyzer knows to remove memory dependences
that exist as a result of the existence of the pruned path. In
contrast, prior work systems are unaware of these impacts
and unnecessarily employ additional speculative techniques
to remove those memory dependences.

Perspective’s planning phase makes the addition of new
speculative enablers feasible by enabling the selection of
enablers based on their cost and overall impacts. Prior work
systems were not sophisticated enough to make these deci-
sions in an informed way. As a consequence, these systems
generally had a small number of powerful, but expensive to
validate, speculative enablers.

The primary contributions of this paper are:

e A novel speculation-aware memory analyzer that
better leverages speculation by allowing memory anal-
ysis algorithms to interpret speculative assertions as
program facts;

o New efficient speculative privatization transforms
that avoid the overheads of prior speculative privati-
zation techniques;

o A planning phase that combines non-speculative and
speculative techniques to select the most profitable set
of parallelization-enabling transforms;

e A fully automatic speculative DOALL parallelization
framework for commodity hardware that exhibits
scalable speedups by minimizing the speculative par-
allelization overheads of prior work.

Perspective achieves scalable automatic parallelization on
commodity shared-memory machines without any program-
mer hints. We evaluate Perspective on a set of 12 C/C++
benchmarks used in prior state-of-the-art automatic paral-
lelization system papers [4, 21, 23]. On a 28-core machine,
Perspective yields a geomean whole-program speedup of
23.0x over sequential execution. This represents a doubling
in performance compared to Privateer, the most applicable
prior state-of-the-art speculative DOALL system [21]. These
results come from the effective usage of static properties of
the code in conjunction with cheap speculative assertions,
the careful selection of applied transforms, and a lightweight
process-based runtime system. Perspective represents an im-
portant step towards fulfilling the promise of automatic par-
allelization.

2 Background and Motivation

Software-based automatic DOALL parallelization systems
have been studied for a long time. Early works including
Polaris [2], SUIF [47], PD [38], and Hybrid Analysis [40]
use static or runtime analysis to parallelize programs and
examine the applicability of enabling transforms such as pri-
vatization and reduction. However, the imprecision of static
analysis and the difficulty of extracting low-cost runtime

Perspective: A Sensible Approach to Speculative Automatic Parallelization

int *pathcost; // dyn alloc 1-D N
int xadj; // dyn alloc 2-D NxN
int dist;

int nDist;

void allocatePathCost() {
pathcost = (intx)malloc(N*sizeof(int));
3
10 int dequeue() {
11 if (!'nullQHead()) {

14 dist = ...

16 }
19 3}

21 void hot_loop(int N) {

26 for (src=0; src<N; src++) {

29 for (i=0; i<N; i++)

30 pathcost[i] = inf;

31

32 enqueue (src, 0);

33 while (!emptyQ()) {

34 int v = dequeue();

35 for (i=0; i<N; i++) {

39 nDist = adj[v][i] + dist;
42 if (pathcost[i] > nDist) {
45 pathcost[i] = nDist;

46 enqueue (i, nDist);

47 }

48 }

49 3

53 }

55 %}

Figure 1. Motivating example from dijkstra [16]

checks limit the applicability of these systems to scientific
codes.

More recent works like STMlite [27], Cluster Spec-
DOALL [23], Privateer [21] use profile-guided speculation
to overcome the limitations of static analysis and enable
parallelization of loops with pointers, irregular memory ac-
cesses, and complex control flows. Among these works, Pri-
vateer [21] supports speculative privatization and reduction
even in the presence of unrestricted pointers by using spec-
ulative heap separation, and has greater applicability than
other automatic speculative-DOALL systems.

Despite increased applicability, evaluation results of auto-
matic speculative-DOALL systems on real hardware are still
underwhelming due to overheads that often negate the ben-
efits of parallelization [5, 14]. This paper first identifies core
inefficiencies of the state-of-the-art parallelizing compilers
and subsequently describes how Perspective mitigates them.

2.1 Overheads of State-of-the-Art

Privateer [21] is the most applicable automatic DOALL par-
allelization system, and thus this paper focuses on the paral-
lelization overheads of Privateer. Examining the evaluation

ASPLOS ’20, March 16-20, 2020, Lausanne, Switzerland

of Privateer, we identified two significant overheads: (i) ex-
cessive use of memory speculation, which is the most com-
mon problem of prior speculative parallelization systems;
and (ii) expensive privatization, which applies to most sys-
tems with privatization, especially speculative ones. In §2.1.1
and §2.1.2, we discuss the impact of these two main over-
heads on Privateer along with a motivating example taken
from the dijkstra benchmark (used in Privateer’s evalua-
tion) from MiBench [16]. Simplified code for the hot loop of
this benchmark is shown in Figure 1. Section 3.4 shows how
Perspective avoids these overheads in this example.

2.1.1 Excessive Use of Memory Speculation

Privateer’s excessive use of memory speculation leads to
large overheads for monitoring speculative memory accesses,
with an average of 23.7 GB of reads and 18.4 GB of writes
monitored per benchmark, as reported in the paper [21]. This
problem is especially apparent for the di jkstra benchmark
which has particularly high overheads (84.9GB of reads and
56.7GB of writes) that limit its speedup to 4.8X on 24 cores.
For example, Privateer resorts to memory speculation to re-
solve the cross-iteration flow dependence from line 14 to line
39 in order to privatize dist. Static analysis alone is unable
to disprove this dependence, since the write to dist is in-
side a conditional block. Other prior parallelization systems,
similarly to Privateer, cannot avoid the use of memory spec-
ulation in this case. However, Perspective is able to remove
this dependence without the use of expensive-to-validate
memory speculation, as shown in §3.4.

2.1.2 Expensive Privatization

Perhaps unexpectedly, parallelized programs may still have
large overheads due to bookkeeping of writes to privatized
objects, even without the use of memory speculation. For
dijkstra, even assuming checks for speculative reads are
removed, Privateer still needs to log 56.7 GB of writes to pri-
vatized objects, which constitutes around 20% of each parallel
worker’s time. In Figure 1, static analysis alone can disprove
all cross-iteration flow dependences related to pathcost and
safely privatize it. However, because pathcost is a live-out
object (i.e., might be read after the loop invocation), Privateer
still logs its writes in order to track in which iteration each
byte of the object was last written. In contrast, Perspective
avoids this unnecessary bookkeeping by selecting a more
efficient privatization variant, as discussed in §3.4.

3 The Perspective Approach

Current parallelizing compiler designs utilize memory anal-
ysis and speculative techniques independently and apply a
fixed sequence of transforms with a focus on parallelization
applicability rather than profitability. These designs lead
to unnecessary overheads that often negate the benefits of
parallelization. To overcome these limitations, Perspective

ASPLOS ’20, March 16-20, 2020, Lausanne, Switzerland

introduces a planning phase that involves careful selection
of applied transforms and tight coupling of static analysis
with speculation techniques. Perspective’s design enables
the discovery of efficient parallelization opportunities not
possible in prior parallelizing compilers.

3.1 Planning

Unlike prior speculative systems that apply a fixed sequence
of parallelization-enabling transforms, Perspective proposes
a more sensible approach: before applying any transform,
plan first.

Enabling transforms modify the code to remove paral-
lelization inhibitors, which in the context of DOALL paral-
lelization are cross-iteration dependences. All transforms are
split into two parts to facilitate planning: the applicability
guard that participates in the planning phase of the compila-
tion, and the actual transform that is applied, if selected, in
the transform phase. The applicability guard utilizes prop-
erties produced by memory analysis and speculative asser-
tions! to determine which parallelization inhibitors the corre-
sponding transform can handle. The interface between mem-
ory analysis and speculative assertions, and enabling trans-
forms is an annotated program dependence graph (PDG). The
output of each applicability guard is collected in a transform
proposal that is sent to a transform selector. Each proposal
also includes a cost for the application of the transform and
a set of speculative assertions required for the transform to
be applicable and correct.

Memory-related transforms, instead of targeting individ-
ual cross-iteration dependences, offer to handle a set of mem-
ory objects, in effect addressing all associated cross-iteration
dependences. This object-centric approach is motivated by
the fact that memory-related enabling transforms often op-
erate at the object level. For example, the privatization trans-
form creates private copies of memory objects.

At the end of the planning phase, the transform selector
picks a minimal-cost set of transform proposals necessary
for DOALL parallelization.

3.2 Speculation-Aware Memory Analyzer

Prior techniques use memory analysis and speculative
assertions independently. Instead, this work proposes a
speculation-aware memory analyzer that combines the
strengths of static analysis and cheap-to-validate specula-
tive assertions to reduce the need for expensive speculation.
If memory analysis fails on its own to resolve an analysis
query, it interprets cheap-to-validate speculative assertions
as facts, ignoring the possibility of misspeculation. The use
of speculation necessitates the declaration of any specula-
tion assertions leveraged in the process, for each answer.

ISpeculative assertions are predictions of program properties based on
profile information.

Apostolakis et al.

Note that querying memory analysis after applying specu-
lation would not have the same effect since the possibility
of misspeculation restrains static analysis. For more details
regarding speculation-aware memory analysis see §4.1.

3.3 New Enabling Transforms

Prior work on speculative parallelization focuses on the en-
abling effects of transforms without enough consideration of
their costs. To maximize applicability, enabling transforms
are often given a program dependence graph relaxed with the
use of all the available speculative assertions. This approach
not only creates ambiguity in terms of which speculative as-
sertions are necessary but also prevents the usage of efficient
variants of transforms. By exposing a combination of static
analysis information and the effect of speculative assertions,
Perspective enables more efficient enabling transforms. This
is especially true for the case of speculative privatization,
efficient variants of which are explored in this paper. This
section first discusses speculative privatization as it appears
in prior work and then describes new variants that perform
more efficient privatization.

Prior software speculative systems with extended support
for privatization [21, 23] only infer the basic privatization
property: a memory object does not have any cross-iteration
data flows. Speculative privatization application involves
costly instrumentation of all write accesses of privatized
objects for logging or communication. At commit, the private
copies of each worker are merged according to metadata that
specify which worker last wrote each byte.

To avoid expensive monitoring of write sets during paral-
lel execution and minimize copy-out costs, we propose four
efficient variants of this transform. These variants require
additional memory object properties apart from the basic
privatization property to be applicable. Private objects could
additionally be (a) independent (no loop-carried false depen-
dences); (b) overwritten (written to the same locations at
every loop iteration); (c) predictable (predictable live-out con-
tent); or (d) local (allocated outside the loop, but all accesses
are contained within the loop).

Inference of any of these four private properties allows
complete elimination of bookkeeping costs provided that the
basic privatization property was satisfied without the use of
memory flow speculation. The first two variants have been
explored by Tu et al. [45] but were limited to static analy-
sis based detection of privatization. Unlike any prior work,
Perspective extends the applicability of these two variants
with the usage of speculative assertions to programs with
pointers, dynamic allocation, and type casts.

3.4 Example

This section describes how the new ideas introduced in
Perspective (§3.1, §3.2, §3.3) enable efficient parallelization
of the dijkstra benchmark. This section also highlights
the limitations of prior work. Consider the code again in

Perspective: A Sensible Approach to Speculative Automatic Parallelization

Sequentlal Code

Points-to Edge Memory
Profiler Profller Profiler
Speculative Control Points-to Memory
Assertions Flow Map Flow
L L L L L L e L R L LR L L '
[— RAW pathcost dist
1| - > war
RS » WAW o =
% Removed

..| U0=3

PDG (Memory Only)

- Communication and
merging of private copies

- Communication and
merging of private copies

' pathcost dist ,
' Transforms Privatization - Privatization !
' - Memory Speculation - Memory Speculation :
i) Used ! } 8 .
,_; N - Separation Speculation - Separation Speculation 1
1 1
w0
&) : - Heap check - Heap check ,
1 Runtime - Privacy checks & logging for - Privacy checks & logging for 1
' Overheads all accesses all accesses :
: 1
1 1
1

(a) Privateer [21]

ASPLOS ’20, March 16-20, 2020, Lausanne, Switzerland

Points—to” Edge I Memory

Profiler Profller Profiler
Speculation-Aware | Static Speculallve ontrol omts-to mory
Memory Analyzer |Analysis Assertlons Flow (CF) Map (PM) Flow (MF)
[el mEmmmmm==-- 1
iI[— rRaw pathcost dist
|- B
e waw .

X Femouie| Y = B A
f\ 4\

OVERWRITE | -~

..(MF3)

£+ (CF3)

Annotated PDG(Memory Only)

| Basic Privatization } IOverwrite Privatizationl ILocaI Privatization‘
v
g < rd \,& kT A .
b . pathcost | dist
=} ' {PM1,2,3} 1+ 1+ {CFu3}
= P '
[Y J S tmmmmmmmpaal laoaoaal! e m
& PN —

: pathcost dist i
1 Transforms - Overwrite Privatization - Local Privatization :
: Selected - Separation Speculation (PM1,2,3) - Control Speculation (CF1,3)
' :
1 1

Results

Runtime
Overheads - Heap check

(b) Perspective (This Work)

Figure 2. Comparison of the decision process for handling memory objects pathcost and dist of dijkstra. Numbers in
circles are line numbers in Figure 1; “UO=#" means the underlying object is allocated/declared in line #; Colors in (b) indicate
the component(s) that inferred a property; Privateer does not keep track of how a property was inferred.

Figure 1, briefly discussed in §2.1. Figure 2 compares the
compilation flow of Perspective with that of Privateer for
handling memory objects pathcost and dist.

Perspective employs an exploration phase that yields a
much more profitable plan than Privateer’s scheme. At first,
the speculation-aware memory analyzer (SAMA) pro-
cesses the sequential code and profile information and pro-
duces a program dependence graph (PDG) annotated with
properties and underlying speculative assertions, as shown
in Figure 2b.

In this example (Figure 1), the branch in line 11 is heavily
biased; it is always taken in practice. Therefore, control spec-
ulation leveraging edge profiling information can assert that
the branch is always taken and that the instruction in line 14
executes at every invocation of the dequeue function. Nor-
mally, memory analysis is unaware of this assertion, and thus
is unable to handle the cross-iteration data flow from line
14 to line 39. However, our speculation-aware memory ana-
lyzer can view this assertion as a fact, ignore the branch, and
observe the read in line 39 as being dominated by the write
in line 14. This way, a kill-flow analysis algorithm aware of
this assertion can infer that there is no cross-iteration data

flow between these two operations since the write to dist ap-
pears to always kill the flow from a previous iteration before
it reaches the read operation in line 39. This combination
of control speculation and static analysis removes a depen-
dence that would require the use of memory speculation in
any prior speculative parallelization system.

Apart from providing different options for removable
edges, SAMA also provides useful information for non-
removable edges. Non-removable output dependence edges,
in the example in Figure 2b, are annotated with the overwrite
property that indicates that the destination operation always
overwrites the footprint of the source operation.

Furthermore, SAMA annotates nodes of instructions that
may access memory with underlying memory objects, namely
the instruction’s memory footprint (“‘UOs" in Figure 2b). This
information can be inferred either statically or via points-to
profile information, and is required for privatization trans-
forms that need to map memory objects to memory opera-
tions for correct identification of privatizable objects.

In the next step, based on the annotated PDG, three dif-
ferent transforms offer to handle memory objects, includ-
ing overwrite privatization and local privatization, pro-
posed in §3.3.

ASPLOS ’20, March 16-20, 2020, Lausanne, Switzerland

10 int dequeue() {
11 if (!nullQHead()) {

12 // Privacy Local Check & Logging

13 private_write(&dist, sizeof(int), md); // < 1% added OH
14 dist = .

15

16 3

17

18

19 }

21 void worker_loop(int start, int N, int step) {

22 void *md = alloc(); // allocate metadata

23 // Separation Local Check

24 check_heap (pathcost, PRIVATE); // < 0.001% added OH
25 check_heap (&dist, PRIVATE); // < 0.001% added OH

26 for (src=start; src<N; src+=step) {

27 // Privacy Local Check & Logging

28 private_write(pathcost, Nxsizeof(int), md); // < 1% added OH
29 for (i=0; i<N; i++)

30 pathcost[i] = inf;

31

32 enqueue(src, 0);

33 while (!emptyQ()) {

34 int v = dequeue();

35 for (i=0; i<N; i++) {

36 // Privacy Local Checks & Logging

37 private_read(&dist, sizeof(int), md); // 11.4% added OH
38 private_write (&nDist, sizeof(int), md); // 13.3% added OH
39 nDist = adj[v][i] + dist;

40 // Privacy Local Check & Logging

41 private_read(&pathcost[i], sizeof(int), md); // 11.6% added OH
42 if (pathcost[i] > nDist) {

43 // Privacy Local Check & Logging

44 private_write (&pathcost[i], sizeof(int), md); // < 1% added OH
45 pathcost[i] = nDist;

46 enqueue (i, nDist);

47 3}

48 }

49 3}

50 if (checkpointDue()) {

51 checkPrivAcccessesConflicts(md); // < 1% added OH

52 3}

53 3

54 communicateLiveOutMemState(md); // < 1% added OH

55 %}

(a) Privateer [21]

Apostolakis et al.

10 int dequeue() {
11 if (!nullQHead()) {

14 dist = ...

15 .

16 }

17 else

18 misspec("Control misspec in dequeue()"); // 0% added OH
19 3}

21 void worker_loop(int start, int N, int step) {

23 // Separation Local Check
24 check_heap (pathcost, OVERWRITE_PRIVATE); // < 0.001% added OH

26 for (src=start; src<N; src+=step) {

29 for (i=0; i<N; i++)

30 pathcost[i] = inf;

31

32 enqueue(src, 0);

33 while (lemptyQ()) {

34 int v = dequeue();

35 for (i=0; i<N; i++) {

36

37

38

39 nDist = adjlv][i] + dist;
40

41

42 if (pathcost[i] > nDist) {
43

44

45 pathcost[i] = nDist;
46 enqueue (i, nDist);
47 3}

48 Y

49 3}

5)

51 // only last iter's pathcost array

52 // needs to be communicated

53 if (src == N-1+step)

54 communicate_pathcost(); // < 1% added OH

(b) Perspective (This Work)

Figure 3. Comparison of parallelized code for di jkstra. Logging and checks during loop execution dominate the overheads,

indicated in the code as “added OH”.

The DOALL planner then selects the lowest cost option
for each memory object. For example, the local privatiza-
tion’s offer is selected for dist since it is the cheapest pri-
vatization transform (no monitoring and no copy-out costs),
and its speculative assertion is the same as those of other
options. The nDist object (not shown in this figure) is also
handled by local privatization, while the pathcost array is
handled by the overwrite privatization transform.

On the other hand, Privateer, the prior automatic DOALL
parallelization system with the highest applicability, is un-
able to parallelize dijkstra as efficiently as Perspective (Fig-
ure 2a). The problem is that Privateer relies on profile in-
formation to create a speculatively relaxed PDG, creating
ambiguities on how each dependence was removed. More-
over, the produced PDG does not contain any information on
remaining edges. This overall lack of information impedes
consideration of the efficient privatization variants described
in this paper. Instead, Privateer’s approach necessitates ex-
cessive memory speculation validation to conservatively
preserve program correctness, and expensive privatization

of the objects with privacy checks and costly merging of
private copies. The end result for Privateer’s parallelization
is high runtime overheads.

Figure 3 compares the resulting parallelized versions (in
a simplified form) by Perspective and Privateer. The code
includes all the added checks, logging, and live-out handling
overheads. The code changes are marked with the average
added overhead compared to the useful work of each worker.
It is clear that Perspective is able to parallelize di jkstra with
minimum overheads thanks to the use of speculative-aware
memory analyzer, careful selection of applied transforms,
and use of efficient privatization variants. In fact, Perspective
exhibits 4.8x speedup over Privateer for dijkstra (see §5).

4 Framework Design and Implementation

Perspective is a framework for DOALL parallelization that
incorporates the ideas described in §3. Figure 4 depicts an
overview of the Perspective framework, which includes a set
of profilers, a parallelizing compiler, and a runtime system.
The compilation flow begins with a preprocessing step in

Perspective: A Sensible Approach to Speculative Automatic Parallelization

Sequential Program r

[Clang
|LLVM Optimizer (§4.6.1)
A3

\ LLVM IR | | Profile Inputs

) 1

(Profile-Guided Inliner (§4.6.2) Preprogessing

| Inlined IR \ Profiling

1
(" LLYM Optimizer (4.6.1) | H
i i
Target IR ’ m Profilers (§4.4) i
N :
1
Profiling Results !

I U — — — ¥
4| A
Per Hot Loop W :
Speculation-Aware Memory Analyzer (§4.1) i
{"Static Analysis'—-s! Speculative [
i ysi = P i
T i
| Annotated Loop PDG ‘ !
- !

Planning

Applicability Guard of
Enabling Tranforms
§4.2)

Transform
Proposals

H’Tansform Selector (§4.3)

to Be Applied

N T P b-——--L_ %_

{Loop Selection y{Transform Application; ,/ Multi-threaded
ta. g7 (84.2.1) e

A2
‘ Set of Transforms ‘

i 7t Code Generation

Transform
[Runtime API (§4.8)] Y

Code Generation
1

Parallel R |

Clang++
Parallel Executable

Figure 4. Perspective Framework Overview

which the code is canonicalized, and the profiling results
are generated. In the planning phase, for each hot loop, the
speculation-aware memory analyzer is queried to annotate
the PDG with properties regarding dependences and instruc-
tions. The applicability guard of each enabling transform
examines the annotated PDG and creates transform pro-
posals that offer to remove parallelization-inhibiting cross-
iteration dependences in the loop, along with their cost. Then,
the transform selector considers these proposals and selects
a minimal-cost set of enabling transforms, if a profitable
DOALL plan is available. Finally, the compiler selects a set
of compatible parallelizable loops with the maximum prof-
itability, applies the transforms in their plans, and generates
the parallel IR, which is then linked with the runtime and
compiled to a parallel executable. The rest of this section
begins with the description of components in the planning
phase, which includes the main contributions of this paper,
and subsequently describes other parts of the framework.

ASPLOS ’20, March 16-20, 2020, Lausanne, Switzerland

4.1 Speculation-Aware Memory Analyzer

The speculation-aware memory analyzer is queried to pop-
ulate a program dependence graph (PDG) annotated with
information utilized by the rest of the planning phase. An-
notations include properties for the dependences and the
dependent instructions. The memory analyzer does not make
any decisions but instead presents all alternatives for each
inferrable property.

Making memory analysis aware of cheap-to-validate spec-
ulation reduces the need for expensive memory speculation.

Perspective’s memory analysis (CAF [20]) is composed
of simple analysis algorithms that collaboratively resolve
queries. The modularity of the analysis simplifies the addi-
tion of speculation awareness. Only analysis algorithms that
could benefit from the collaboration need to be extended with
a speculative mode that interprets speculative assertions.

Perspective includes analysis passes extended with aware-
ness of speculative assertions from two profilers: edge pro-
filer (detects biased branches) and value-prediction profiler.
The rest of the speculative assertions are used independently
of static analysis. While the use of these two types of specu-
lative assertions in conjunction with static analysis already
enables up to 2.5X improvement over a system with no col-
laboration of memory analysis and speculation (see §5), ex-
posing even more cheap-to-validate speculative assertions to
memory analysis could also be beneficial. Such exploration
is left for future work.

Perspective uses edge profiling to produce a speculative
control flow. Two examples of analysis passes that benefit
from this speculative information is the kill-flow and the
unique access paths (UAP) algorithms. Kill-flow analysis
disproves memory dependences by finding killing operations
along all feasible paths between two operations. If kill-flow
interprets speculative control flow information, the feasible
paths may be reduced, and kill-flow can assert the absence
of a statically non-disprovable memory dependence. UAP
collects a points-to set of objects for a pointer stored to a non-
captured memory location (i.e., address never stored into
memory and never passed to an externally defined function).
The use of speculative control flow information enables the
detection of speculatively dead stores in this set, decreasing
its size and thus simplifying alias queries for this pointer.

Perspective uses value-prediction profiling to predict the
result of certain load operations. If memory analysis passes
assume that these predictions are correct, then they can re-
interpret a predicted load as a store of the predicted value.
One analysis algorithm that can benefit from that is again kill-
flow. Kill-flow treats the predictable load as a kill operation
for must-aliasing data flows.

4.2 Enabling Transforms

Enabling transforms address memory, register or/and control
cross-iteration dependences.

ASPLOS ’20, March 16-20, 2020, Lausanne, Switzerland

4.2.1 Memory Dependences

Applicability: The applicability guard of a transform uses
the results of the speculation-aware memory analyzer to
determine which memory objects satisfy the properties re-
quired by the transform and records the speculative asser-
tions used.

Transform Proposal: The output of each applicability guard
is assembled in a transform proposal that is sent to the trans-
form selector (§4.3). The proposal includes for each memory
object an estimated handling cost based on the transform it-
self and the validation cost of all used speculative assertions.
For simplicity, each transform and speculation validation op-
eration is assigned a fixed cost that ensures a basic ordering
among the options. For example, memory speculation has
an extremely high cost (expensive validation), loaded value
prediction has a much smaller cost, while control specula-
tion has no cost. For the set of transforms and speculative
assertions in our framework and in the context of DOALL
parallelization, this simplified cost model proved sufficient
for the detection of minimal-cost plans.

Transform Application: Each transform reallocates mem-
ory objects it is selected to handle to its own heap, disjoint
from any others; transforms may also perform additional
transform-specific modifications.

Separating objects is essential for two reasons. First, each
transform may demand different memory mapping seman-
tics and handles objects differently at commit. Second, map-
ping of memory accesses to objects often relies on profil-
ing information, especially in languages with unrestricted
pointers like C/C++. Ensuring that all objects’ accesses are
contained within a transform’s heap is sufficient to validate
underlying object assertions. This idea of heap separation has
been explored previously by Johnson et al. (Privateer [21]).

Memory-related enabling transforms include:

e Privatization: Applicable for objects with no false de-
pendences. Requires costly logging and merging at
commit.

e Reduction: Applicable for objects that only participate
in reduction operations. At commit, objects are merged
according to their reduction operation.

e Short-lived: Applicable for objects that only exist within
one iteration of the loop. Inserts check to ensure that
all these objects are freed at the end of each iteration.

e Read-only: Applicable for objects that are unmodified
within the loop. Requires no transform-specific checks.

e I/O deferral: Applicable for shared I/O objects. When
applied, it replaces I/O library calls with custom calls.
During runtime, it collects output operations and per-
forms them in-order at commit.

Efficient Privatization Variants: This paper introduces
four efficient variants of the privatization transform. Their
applicability criteria are described in §3.3.

Apostolakis et al.

e Independent: This transform’s heap is shared among
all parallel workers, since there are no overlapping
memory accesses. No monitoring of write sets is needed.
At commit, if the loop is speculatively parallelized, the
heap is copied out to the non-speculative state.

e Overwrite Private: This transform’s heap has CoW
(copy-on-write) mapping. At the end of the parallel
invocation, the last executed iteration state is copied-
out, and no monitoring is needed.

e Predictable Private: This transform’s heap has CoW
mapping. The live-out state is predictable, so no moni-
toring or merging of parallel worker state is needed.

e Local Private: This transform’s heap has CoW map-
ping, and there is no need for copy-out or monitoring.

4.2.2 Register & Control Dependences

Cross-iteration register dependences are handled with re-
duction, replication, control speculation, or value prediction.
Replication replicates side-effect-free computation across
parallel workers to overcome cross-iteration dependences
and avoid inter-thread communication. Cross-iteration con-
trol dependences are handled either with replication or con-
trol speculation. The use of replication allows handling of
uncounted loops, namely loops with unknown trip count
when the loop is invoked. In terms of transform cost, all
transforms have constant costs except for replication. Repli-
cation’s cost depends on how many instructions need to be
replicated. Non-speculative enablers (reduction and replica-
tion) are preferred, in most cases, over speculative ones, and
reduction is preferred over replication.

4.3 Transform Selector

The selector picks the cheapest set of transforms that en-
ables DOALL parallelization. Its inputs are an annotated
loop-centric PDG (generated by the speculation-aware mem-
ory analyzer) and the transform proposals of the enabling
transforms. Given these inputs, it greedily selects the cheap-
est transform proposal for each memory object and for each
cross-iteration register and/or control dependence. Though
one could always increase the complexity of this selection,
we have not found empirical evidence that justifies such extra
complexity. If there is a memory object, or a cross-iteration
register or control dependence that cannot be addressed by
any enabling transform, then the selector concludes that
DOALL is not applicable. Note that if no speculative asser-
tions are used, it produces non-speculative plans, forgoing
the need for any speculation overhead.

4.4 Profiling

Perspective uses a set of profilers to generate speculative
assertions: (i) an edge profiler [26] that identifies biased
branches and produces a speculative control flow; (ii) a mem-
ory flow dependence profiler [6] that asserts the absence of
non-observed data flows; (iii) a value-prediction profiler [15]

Perspective: A Sensible Approach to Speculative Automatic Parallelization

that detects predictable loads; (iv) a pointer-to-object pro-
filer [21] that produces a points-to map for detection of un-
derlying objects for every memory access; and, (v) an object
lifetime profiler [21] that detects short-lived memory objects,
namely objects that exist only within a single loop iteration.

4.5 Static Analysis

Perspective uses a state-of-the-art memory dependence anal-
ysis framework tailored for parallelization (CAF [20]), in
which multiple simple analysis algorithms collaboratively
attempt to disprove dependences and minimize the need for
speculation. The utilized analysis algorithms reason about
shape analysis, reachability, flow killing, induction variables,
scalar evolution of pointers, and particular features of the
LLVMIR and the C standard library. Next, this section presents
an improvement to the Kill-Flow algorithm of CAF.

Extended Kill-Flow Analysis Algorithm: Kill-Flow is a
highly effective analysis algorithm that searches for killing
operations along all feasible paths between two operations. If
akilling operation is found, then these two operations cannot
have a dependence. Since there may be exponentially many
paths, its search is restricted to blocks which post-dominate
the source of the queried dependence and dominate the des-
tination. This approximation prevents the detection of a
common pattern (seen in ©52.alvinn, 179.art, dijkstra)
that can be observed in the code in Figure 1. The write to
pathcost in line 30 kills values flowing from the previous
iteration to the read in line 42. However, there is no domi-
nance relation, and thus it cannot be detected. We extend the
Kill-Flow algorithm of prior work [20] to detect this pattern.
Observe that the loop header of the inner loop in line 29
dominates the read in line 42. The extended Kill-Flow treats
this inner loop as a single operation that overwrites a range
of memory locations. This way, it can easily be proven that
this range write overwrites the memory addresses read in
line 42 at every iteration. This extension allows us to dis-
prove additional data flows compared to the state-of-the-art
and to further reduce the need for memory speculation.

4.6 Preprocessing

The compilation process begins with a preprocessing step
that generates the targeted for parallelization intermediate
representation (IR) of the program. The build system uses
Clang [26] to generate LLVM IR from the sequential C/C++
programs, followed by LLVM IR optimizations. It then per-
forms a pass of selective profile-guided inlining and finally
another round of LLVM IR optimizations to produce the tar-
get LLVM IR that is used as the starting point for the rest of
the compilation.

4.6.1 LLVM optimizations

Transforms in this preprocessing step are crucial for the ap-
plicability and profitability of parallelization. Parallelizing

ASPLOS ’20, March 16-20, 2020, Lausanne, Switzerland

compilers usually compile the source code with the -O3 flag
to get the initial IR and then perform a few additional passes.
However, traditional compiler transforms are meant for op-
timized sequential execution. Some of these optimizations
could unnecessarily complicate the code and preclude par-
allelization efforts. Any performance improvements from
these optimizations are negligible compared to the benefits
of successful parallelization. For example, LLVM tries to sink
common instructions from two different execution paths.
This reduces the code size, but when applied to memory
operations, it complicates the inference of the underlying
objects. To avoid such problems, Perspective’s preprocessing
step only applies a small set of LLVM IR enabling transforms
that simplify and canonicalize the IR.

4.6.2 Profile-Guided Selective Inlining

Dependences involving callsites often prevent parallelization
or lead to extensive use of expensive-to-validate memory
flow speculation. Inlining can mitigate this problem, but the
heuristics used to determine whether to inline or not in indus-
trial compilers are tailored for sequential code optimization
and are mostly irrelevant to effective parallelization.
Perspective uses profile information to detect hot loops
and speculatively dead callsites. Only callsites that are within
these hot loops and that cannot be speculated away with
control speculation are inlined. Of these callsites, Perspective
also avoids inlining ones that do not sink or source cross-
iteration dependences that inhibit DOALL parallelization.

4.7 Loop Selection

An execution time profiler, similar to gprof [41], finds hot
loops that execute for at least 10% of the total program execu-
tion. Out of the profitably parallelizable loops, certain loops
are not selected for parallelization. The excluded loops are
either simultaneously active with another more profitable
loop (no support for nested parallelism) or their memory
object heap assignments conflict with the assignments of a
more profitable loop (each memory object can be allocated
to only one heap in our current implementation).

4.8 Runtime

Perspective includes an efficient runtime for both speculative
and non-speculatively parallelized programs.

Process-based Approach: Perspective’s runtime system uses
a process-based parallelization scheme, as opposed to a thread-
based one for multiple reasons. First, it allows the use of
copy-on-write (CoW) semantics of processes to achieve low
overhead for communicating live-in values from the main
process to the workers. It also gives an implicit separation
between the speculative states of the workers and the com-
mitted state that the main process maintains when specula-
tion is used. Benefits of process-based parallelization have
also been discussed by prior work [12, 21, 36]. To facilitate

ASPLOS ’20, March 16-20, 2020, Lausanne, Switzerland

Apostolakis et al.

Benchmark Suite % of Execution Time]i?}i\z:dsegz SCSZ'\?(; Ne\‘zv Enable(rg)’ Monitored Read Set Size () Monitored Write Set Size ()
(Theoretical Speedup) @) RAW WAW Object Cov Privateer vl v2 Perspective|| Privateer vl v2 Perspective
enc-md5 Trimaran 100.0% (28.0x) 87 45 5 1.87TB | 9.21MB | 39.1KB 39.1KB 581GB 581GB | 43.2KB 43.2KB
052.alvinn SPEC FP 97.5% (16.7X) 0 0 4 153GB 0B 0B 0B 107GB 59.9GB | 4.08GB 10.2MB
179.art SPEC FP 99.1% (22.5X) 8 8 7 1.6TB 64.8GB | 64.8GB 0B 958GB 958GB | 1.68GB 1.68GB
2mm PolyBench 100.0% (28.0x) N/A N/A 2 1TB 0B 0B 0B 1TB 1GB 0B 0B
3mm PolyBench 100.0% (28.0x) N/A N/A 3 3TB 0B 0B 0B 1.5TB 2.25GB 0B 0B
correlation | PolyBench 99.7% (25.9%) N/A 0 0 0B 0B 0B 0B 192MB | 192MB | 192MB 192MB
covariance PolyBench 99.9% (27.3%) N/A 0 0 0B 0B 0B 0B 192GB | 192MB | 192MB 192MB
doitgen PolyBench 99.6% (25.3) N/A N/A 2 2.53TB 0B 0B 0B 2.54TB | 10.1GB 0B 0B
gemm PolyBench 100.0% (28.0x) N/A N/A 1 128MB 0B 0B 0B 256MB | 256MB 0B 0B
blackscholes PARSEC 99.7% (25.9%) 0 1 1 0B 0B 0B 0B 37.3GB | 37.3GB 3368 3368
swaptions PARSEC 100.0% (28.0x) 0 0 0 703KB 0B 0B 0B 165KB 165KB | 165KB 165KB
dijkstra MiBench 99.7% (25.9%) 4 18 8 973GB 648GB | 648GB 0B 649GB 649GB | 663MB 3.61KB

Table 1. Benchmark Details: (A) % of program execution time spent inside parallelized loop(s). Theoretical speedup calculated
using Amdahl’s Law with 28 workers. (B) # of cross-iteration dependences that would require memory speculation without
speculation awareness in memory analysis. “N/A” indicates all dependences are handled by static analysis. (C) # of objects
covered by proposed speculative privatization transforms. (D) Monitored read and write set sizes for each benchmark; v1
represents Perspective without proposed enablers and SAMA (planning only); v2 represents Perspective without SAMA.

cheap heap assignment validation, each worker’s virtual
memory address space is segmented into disjoint sections,
corresponding to each transform’s heap, enabling cheap heap
assignment checks, same as in Privateer [21]. To avoid the
overhead of process spawning for parallelized inner loops
with multiple invocations (052 . alvinn), fork() is used only
once at program startup and each worker’s virtual memory
remapped at the start of every invocation.

Use of Shared Memory: The runtime system utilizes POSIX
named shared memory in /dev/shm to share data among
workers and the main process. For non-speculative paral-
lelization plans, the independent privatization’s heap (§4.2.1)
uses mmap () with shared permissions to avoid the overhead
of merging worker states and copying out live-out values.

Checkpoints and Validation: Checkpoints are used to val-
idate speculative memory accesses across workers and to
save the current program state if no misspeculation is de-
tected. Instead of using a separate validator thread [18, 36],
Perspective employs a decentralized validation system, as
in Privateer. When a worker reaches an iteration marked
with a checkpoint operation, it acquires a lock to a shared
checkpoint object, maps the checkpoint object to its virtual
memory space for detection of disallowed overlap with other
workers, and then adds its own memory state to the ob-
ject. If all workers complete the same checkpoint without
misspeculation, the checkpoint object is committed to the
non-speculative state maintained by the main process.

Recovery: The use of speculation necessitates recovery code
in case misspeculation occurs. When misspeculation is de-
tected by a worker, either during an iteration or at check-
point time, other workers continue up to and commit the
last valid checkpoint, then wait for recovery to finish. The
main process will execute the loop sequentially up to and

including the misspeculated iteration, using the last com-
mitted checkpoint as the starting state, and then restart the
parallel workers.

5 Evaluation

We evaluate Perspective on a commodity shared-memory
machine with two 14-core Intel Xeon CPU E5-2697 v3 pro-
cessors (28 cores total) running at 2.60GHz (turbo-boost
disabled) with 768GB of memory. The operating system is
64-bit Ubuntu 16.04.5 LTS with GCC 5.5. The Perspective
compiler is implemented on the LLVM Compiler Infrastruc-
ture (version 5.0.2) [26].

We evaluate Perspective against 12 C and C++ bench-
marks (Table 1), covering all the parallelizable (exhibiting
speedup) benchmarks from two state-of-the-art automatic
speculative-DOALL parallelization papers (Privateer [21],
Cluster Spec-DOALL [23]) as well as an additional bench-
mark (179.art) from HELIX [4], a non-speculative automatic
parallelization system. We choose benchmarks that have
been parallelized in prior work because the goal of this work
is to boost the efficiency of automatic parallelization while
maintaining the applicability of prior work.

We modify the benchmarks from Polybench and the
dijkstra benchmark from MiBench to dynamically allo-
cate previously statically allocated arrays and accept com-
mand line-defined array sizes in the same way as prior
work [21, 23]. Benchmarks are profiled using small inputs,
while all the experiments presented in this section are con-
ducted using different, large evaluation inputs. The evalua-
tion inputs are chosen to be large enough for the sequential
version to run for at least 10 minutes to observe accurate
parallel execution times on 28 cores. Reported speedups are
an average of 5 runs to minimize, although very small, the
effect of variance in execution time between runs.

Perspective: A Sensible Approach to Speculative Automatic Parallelization

ASPLOS ’20, March 16-20, 2020, Lausanne, Switzerland

28x T T T T
E 26x | —— enc-md5
S 24xf —&— dijkstra
=) i swaptions
o »
8 22x - doitgen
.. 20x[gemm
2 18x | blackscholes
o
a i 2mm
_g 16x C 3mm
o 14x - 179.art
& 12x |- correlation
£ 1oxl —M— covariance
] XT"| —%— 052.alvinn
S 8
Q
o 6x
% 4x
<
< 2

1 2 3 4 5 6 7 8 9 10 11 12 13

15 16 17 18 19 20 21 22 23 24 25 26 27 28

Number of Cores

Figure 5. Perspective’s Fully Automatic Whole Program Speedup over Sequential Execution

5.1 Scalability of Perspective

Figure 5 presents fully automatic whole program speedups
across a various number of cores (up to 28 cores) for the 12
evaluated C/C++ benchmarks on our 28-core shared-memory
commodity machine. These speedups are relative to the se-
quential performance of the original code, compiled with
clang++ -03. Perspective achieves scalable performance on
all the benchmarks thanks to the elimination of unnecessary
overheads with the careful selection of applied transforms,
the use of the speculation-aware memory analyzer, and the
introduction of new enabling transforms.

For most of the benchmarks parallelized with Perspective,
checkpointing does not add any significant (>1%) over-
head; the exceptions are 052.alvinn, correlation, and
covariance, which exhibit lower-than-expected speedups.
For 052.alvinn, checkpointing constitutes a considerable
portion of the run time (~20%) since loop iterations are short,
and thus the useful work performed between checkpoints
is small. For covariance and correlation, the use of the
basic privatization transform entails that the checkpoints
merge large private sets with an introduced overhead of
~10% for each. Complex cross-iteration output dependences
prevented the usage of more efficient privatization variants.

For several benchmarks, we observe speedups that exceed
their theoretical limits, which we attribute to two factors:
(1) The compiler replaces all calls to malloc() inside a par-
allelized loop with our own heap allocator. Our implemen-
tation of this allocator does not track segments of memory
that have been freed for later use in the way most C/C++
runtime libraries do and as such, the overhead for dynamic
(de)allocation is considerably reduced, as seen in dijkstra.
(2) Using multiple cores increases the effective cache size,
which may reduce access times to memory [19]. This effect
can be seen in the performance of 179.art, enc-md5, and
doitgen.

5.2 Comparison with State-of-the-Art

We compare Perspective with Privateer [21], the most appli-
cable prior automatic speculative-DOALL system. We utilize
the Privateer implementation provided by the authors of the
Privateer paper with modifications to adhere to the more
recent LLVM version used for Perspective. We achieve com-
parable speedups and runtime overheads compared to the
original paper. Despite being a state-of-the-art parallelization
framework, Privateer misses opportunities to reduce specu-
lative checks and avoid monitoring of writes, as discussed in
§2.1. This is apparent in columns (D) of Table 1, where paral-
lelization of most benchmarks with Privateer requires moni-
toring of read and write sets orders of magnitude larger than
those of Perspective. The first bar of Figure 6 corresponds
to the achieved speedups by Privateer, and it demonstrates
the performance impact of monitoring large read and write
sets. These overheads are especially high for benchmarks
with many reads and writes to privatized object(s) such as
3mm, doitgen, 179.art, and dijkstra. Overall, Perspective
doubles the geomean speedup achieved by Privateer by min-
imizing unnecessary memory access monitoring and checks.

5.3 Performance Analysis of Perspective

We create two variants of Perspective with some compo-
nents disabled to quantify the impact of the three main con-
tributions of this paper (planning, new enablers, SAMA).
The first variant (Planning Only / v1) includes everything in
Perspective except for SAMA and the new enabling trans-
forms (i.e., efficient privatization variants in §4.2.1). Without
SAMA, static analysis and speculation are utilized in isola-
tion; a dependence cannot be resolved by a combination of
static analysis and one or more speculative assertions. The
second variant (Planning & Proposed Enablers / v2) is the
same as vI but with the addition of efficient privatization
variants (i.e., Perspective without SAMA). Figure 6 compares

ASPLOS ’20, March 16-20, 2020, Lausanne, Switzerland

Privateer |
Perspective v2 (Planning + Proposed Enablers) []

Apostolakis et al.

Perspective v1 (Planning Only) []

Perspective (Planning + Proposed Enablers + SAMA) [l

28x
26x
24x
22x
20x
18x
16x
14x
12x
10x

8x

6x

4x

0x

Whole Program Speedup over Sequential

< 3 C 9 %,
/77/;7 /77/)7 Ol/e /7.3,70 @/77/77 O/(:QGO

o,
/'/-e /e l/
%n Sy

7)9 9/7 G@ o/);@
N

Figure 6. Whole Program Speedup Comparison among Variants of Perspective and Privateer with 28 Cores

the performance of Perspective and Privateer with the two
variants of Perspective.

The Planning Only variant of Perspective (vI), carefully se-
lects the cheapest set of parallelization enabling transforms
that need to be applied, as opposed to Privateer that overly ag-
gressively applies speculative transforms. The introduction
of this planning is the only distinguishing factor between Pri-
vateer and this variant; Privateer utilizes the same enablers
and static analysis as this variant. Even so, this Perspective
variant yields almost 46% additional geomean speedup com-
pared to Privateer. The benefit of planning is particularly
high for benchmarks with increased read set monitoring,
including 2mm, 3mm, doitgen, enc-md5, and 179.art (Fig-
ure 6). These performance improvements are mostly thanks
to the avoidance of unnecessary checks on reads of non-
speculatively privatized objects. Notice in columns (D) of
Table 1 that for doitgen and 3mm, the monitored read set
size is reduced from 2.53TB and 3TB, respectively, to zero.
The absence of instrumentation of certain reads additionally
enables a peephole optimization that hoists monitoring of
writes to the same location outside a loop, further decreasing
the overhead.

The introduction of new efficient privatization trans-
forms (§3.3) in the v2 variant improves the geomean perfor-
mance over the v1 variant by 26%, thanks to the avoidance of
unnecessary bookkeeping. These new enablers are utilized
in most of the evaluated benchmarks, as shown in column
(C) of Table 1. The performance impact for each benchmark
depends on the amount of monitoring avoided, depicted
in columns (D). For example, the 179.art and dijkstra
benchmarks significantly benefit with the application of the
overwrite privatization due to the dramatic reduction of the
monitored writes. For the enc-md5 benchmark, the use of the
predictable privatization contributes to the dramatic reduc-
tion of the monitored write set and the increased speedup,
while the use of the independent privatization for the 2mm
and 3mm benchmarks has a smaller performance impact. Note

that just the introduction of these new enablers without the
planning would not be as profitable. The planning phase is
essential for exposing all the fine-grained information that
makes these new transforms applicable and for allowing
them to be selected over more expensive transforms.

The full version of Perspective additionally includes the
speculation-aware memory analyzer (SAMA, §4.1). With
SAMA, static analysis can remove by leveraging cheap-
to-validate speculative assertions additional dependences,
thought by prior work to require expensive speculation, such
as memory speculation. Its effect is seen most prominently in
dijkstra (2.6x speedup over v2), where the use of control
speculation in conjunction with static analysis enables effi-
cient (without monitoring) privatization of additional mem-
ory objects, including the global variable dist (discussed in
§3.4). The introduction of SAMA also removes additional
dependences from 179.art, enc-md5, and blackscholes,
as shown in columns (B) of Table 1. For the latter two, these
removed dependences do not reduce the monitored memory
accesses (columns (D)), and thus do not have any perfor-
mance impact. For 179. art, the monitored read set is nulli-
fied with the addition of SAMA, but the performance impact
is small.

5.4 Misspeculation Evaluation

Perspective uses only high confidence speculation to mini-
mize the chance of misspeculation. Only properties that hold
true without exception on the training inputs are speculated.

This conservative approach led to a complete lack of mis-
speculation on the evaluation inputs for the eight specu-
latively parallelized benchmarks (2mm, 3mm, doitgen, and
gemm were non-speculatively parallelized). Six of them could
misspeculate for some (unusual) input. The remaining two
(covariance, correlation) do not misspeculate across all
possible inputs, since speculation is only used for heap sepa-
ration checks that cannot fail (from manual inspection of the
code). Even so, speculation is still necessary given the inabil-
ity of static analysis to infer the underlying objects of certain

Perspective: A Sensible Approach to Speculative Automatic Parallelization

40x

No Misspec 1
35x [~ ~0.1% Misspec I ||

30x - b
25x - b
20x - b
15x - b
10x [~ b

Speedup over Sequential

5x - b

0x

dijkstra swaptions 179.art blackscholes enc-md5 052.alvinn

Figure 7. Impact of Misspeculation

memory accesses in these two C programs. Regardless of
the accuracy of the used static analysis, such cases of non-
misspeculating speculation cannot be completely eliminated
due to the undecidability of static analysis [25].

Since none of the benchmarks exhibit misspeculation on
the given inputs, we artificially inject misspeculation at the
end of every 1000 iterations to observe the performance
degradation with a misspeculation rate of 0.1%. The inputs
for 179.art were not large enough to allow for at least
1000 iterations. Therefore, we perform a weighted average
of non-misspeculating and misspeculating runs to achieve
an average corresponding to the desired rate.

Figure 7 shows how misspeculation affects the perfor-
mance of the six benchmarks that could misspeculate for
some input. These results demonstrate that misspeculation
severely affects performance, and thus supports the decision
of using only high-confidence speculation in Perspective.

6 Related Work

Early non-speculative DOALL parallelizing compilers
(Polaris[2], SUIF[1, 47]) are limited by imprecise static anal-
ysis. LRPD[39] and R-LRPD[8] overcome the limitations of
static analysis by leveraging speculation. Yet, these works
are restrained to array-based applications and cannot handle
pointers and dynamic data structures.

More recent works (STMlite [27], CorD [43], Cluster Spec-
DOALL [23], Privateer [21]) extend the applicability of auto-
matic DOALL parallelization to general-purpose programs
with profile-guided speculation. Perspective mitigates core
inefficiencies of these prior works while maintaining their
increased applicability.

Beyond DOALL, prior work has explored alternative paral-
lelization paradigms (HELIX [4], DOACROSS [7], DSWP [32],
PS-DSWP [37]) that tolerate more dependences than DOALL
parallelization by allowing communication among workers.
Perspective targets only DOALL parallelism, but the contri-
butions of this paper should be profitable to other paralleliza-
tion paradigms as well. We leave the exploration of other
parallelization schemes for future work.

ASPLOS ’20, March 16-20, 2020, Lausanne, Switzerland

Other works [10, 24, 30, 34, 35] propose systems that re-
quire developers to cast programs in specialized code pat-
terns or insert annotations to express their intent better.
Instead, Perspective fully automatically parallelizes general-
purpose applications without the need for annotations or
specialized abstractions.

Another line of work [3, 28, 44, 46] extracts parallelism by
ignoring data dependences without preserving soundness
via misspeculation detection and recovery. These approaches
extract parallelism either by sacrificing the program’s output
quality [3, 28, 46] or by depending on user approval [44].
Instead, Perspective extracts parallelism without violating
the sequential program semantics.

In terms of speculation-aware analysis, Devecsery et
al. [11] and Fernandez et al. [13] extend certain analysis
algorithms with knowledge of profile-based speculative in-
formation. Yet, contrary to our speculation-aware memory
analyzer, these works do not target automatic parallelization
or even dependence analysis.

Neelakantam et al. [29] propose converting biased branches
to assertions to allow subsequent transforms to leverage
speculative control flow information. Instead, Perspective
leverages speculative control flow information during analy-
sis and planning, prior to transformation.

7 Conclusion

This work identifies and mitigates core inefficiencies of prior
automatic speculative-DOALL systems. Perspective com-
bines a novel speculation-aware memory analyzer, efficient
variants of speculative privatization, and a planning phase to
generate minimal-cost DOALL parallelization plans, avoid-
ing overheads of prior work. Perspective fully-automatically
yields geomean whole-program speedup of 23.0x over se-
quential execution for 12 C/C++ benchmarks on a 28-core
shared-memory commodity machine, double the perfor-
mance of Privateer, the prior automatic speculative-DOALL
system with the highest applicability. Perspective represents
an important advance in fulfilling the promise of automatic
parallelization.

Acknowledgments

We thank the Liberty Research Group for their support and
feedback during this work. We also thank the anonymous
reviewers for their insightful comments and suggestions.
This work was supported by the National Science Founda-
tion (NSF) through Grants CCF-1814654 and CNS-1763743.
All opinions, findings, conclusions, and recommendations
expressed in this paper are those of the authors and do not
necessarily reflect the views of the NSF.

ASPLOS ’20, March 16-20, 2020, Lausanne, Switzerland

References

(1]

—
w
—

(10]

[11]

(13]

Saman P. Amarasinghe and Monica S. Lam. 1993. Communication op-
timization and code generation for distributed memory machines.
In Proceedings of the ACM SIGPLAN 1993 conference on Program-
ming language design and implementation (PLDI *93). Association for
Computing Machinery, Albuquerque, New Mexico, USA, 126-138.
https://doi.org/10.1145/155090.155102

Bill Blume, Rudolf Eigenmann, Keith Faigin, John Grout, Jay Hoe-
flinger, David Padua, Paul Petersen, Bill Pottenger, Lawrence Rauch-
werger, Peng Tu, and Stephen Weatherford. 1994. Polaris: The Next
Generation in Parallelizing Compilers. In Proceedings of the Workshop
on Languages and Compilers for Parallel Computing. Springer-Verlag,
Berlin/Heidelberg, 10-1.

Simone Campanoni, Glenn Holloway, Gu-Yeon Wei, and David Brooks.
2015. HELIX-UP: Relaxing program semantics to unleash paralleliza-
tion. In Code Generation and Optimization (CGO), 2015 IEEE/ACM
International Symposium on. 235-245. https://doi.org/10.1109/CGO.
2015.7054203

Simone Campanoni, Timothy Jones, Glenn Holloway, Vijay Janapa
Reddi, Gu-Yeon Wei, and David Brooks. 2012. HELIX: automatic par-
allelization of irregular programs for chip multiprocessing. In Pro-
ceedings of the Tenth International Symposium on Code Generation and
Optimization (CGO ’12). Association for Computing Machinery, San
Jose, California, 84-93. https://doi.org/10.1145/2259016.2259028
Calin Cascaval, Colin Blundell, Maged Michael, Harold W. Cain, Peng
Wau, Stefanie Chiras, and Siddhartha Chatterjee. 2008. Software Trans-
actional Memory: Why Is It Only a Research Toy? Queue 6, 5 (Sept.
2008), 46-58. https://doi.org/10.1145/1454456.1454466

Tong Chen, Jin Lin, Xiaoru Dai, Wei-Chung Hsu, and Pen-Chung
Yew. 2004. Data Dependence Profiling for Speculative Optimizations.
In Compiler Construction (Lecture Notes in Computer Science), Evelyn
Duesterwald (Ed.). Springer, Berlin, Heidelberg, 57-72. https://doi.
org/10.1007/978-3-540-24723-4_5

R. Cytron. 1986. DOACROSS: Beyond Vectorization for Multiproces-
sors. In Proceedings of the 1986 International Conference on Parallel
Processing (ICPP). 836-884.

Francis H. Dang, Hao Yu, and Lawrence Rauchwerger. 2002. The R-
LRPD Test: Speculative Parallelization of Partially Parallel Loops. In
Proceedings of the 16th International Parallel and Distributed Processing
Symposium (IPDPS ’02). IEEE Computer Society, USA, 318.

Jeffrey Dean and Sanjay Ghemawat. 2004. MapReduce: simplified data
processing on large clusters. In Proceedings of the 6th conference on
Symposium on Operating Systems Design & Implementation - Volume 6
(OSDI'04). USENIX Association, San Francisco, CA, 10.

Enrico A. Deiana, Vincent St-Amour, Peter A. Dinda, Nikos Har-
davellas, and Simone Campanoni. 2018. Unconventional Paralleliza-
tion of Nondeterministic Applications. In Proceedings of the Twenty-
Third International Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS ’18). Association
for Computing Machinery, Williamsburg, VA, USA, 432-447. https:
//doi.org/10.1145/3173162.3173181

David Devecsery, Peter M. Chen, Jason Flinn, and Satish
Narayanasamy. 2018. Optimistic Hybrid Analysis: Accelerating
Dynamic Analysis Through Predicated Static Analysis. In Proceedings
of the Twenty-Third International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS ’18). ACM,
New York, NY, USA, 348-362. https://doi.org/10.1145/3173162.3177153
Chen Ding, Xipeng Shen, Kirk Kelsey, Chris Tice, Ruke Huang, and
Chengliang Zhang. 2007. Software Behavior Oriented Paralleliza-
tion. In Proceedings of the 28th ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation (PLDI °07). Asso-
ciation for Computing Machinery, New York, NY, USA, 223-234.

https://doi.org/10.1145/1250734.1250760
Manel Fernandez and Roger Espasa. 2002. Speculative Alias Analysis

for Executable Code. In Proceedings of the 2002 International Conference

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

Apostolakis et al.

on Parallel Architectures and Compilation Techniques (PACT ’02). IEEE
Computer Society, Washington, DC, USA, 222-231. http://dl.acm.org/
citation.cfm?id=645989.674312

Jordan Fix, Nayana P. Nagendra, Sotiris Apostolakis, Hansen Zhang,
Sophie Qiu, and David I. August. 2018. Hardware Multithreaded Trans-
actions. In Proceedings of the Twenty-Third International Conference on
Architectural Support for Programming Languages and Operating Sys-
tems (ASPLOS ’18). Association for Computing Machinery, Williams-
burg, VA, USA, 15-29. https://doi.org/10.1145/3173162.3173172
Freddy Gabbay and Avi Mendelson. 1997. Can program profiling sup-
port value prediction?. In Proceedings of the 30th annual ACM/IEEE
international symposium on Microarchitecture (MICRO 30). IEEE Com-
puter Society, Research Triangle Park, North Carolina, USA, 270-280.
M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge,
and R. B. Brown. 2001. MiBench: A free, commercially representative
embedded benchmark suite. In Proceedings of the Workload Character-
ization, 2001. WWC-4. 2001 IEEE International Workshop (WWC 01).
IEEE Computer Society, USA, 3-14.

Michael Hind. 2001. Pointer analysis: haven’t we solved this problem
yet?. In Proceedings of the 2001 ACM SIGPLAN-SIGSOFT workshop
on Program analysis for software tools and engineering (PASTE °01).
Association for Computing Machinery, Snowbird, Utah, USA, 54-61.
https://doi.org/10.1145/379605.379665

Jialu Huang, Prakash Prabhu, Thomas B. Jablin, Soumyadeep Ghosh,
Sotiris Apostolakis, Jae W. Lee, and David I. August. 2016. Specula-
tively Exploiting Cross-Invocation Parallelism. In Proceedings of the
2016 International Conference on Parallel Architectures and Compilation
(PACT ’16). Association for Computing Machinery, New York, NY, USA,
207-221. https://doi.org/10.1145/2967938.2967959

Donghwan Jeon, Saturnino Garcia, Chris Louie, and Michael Bedford
Taylor. 2011. Kismet: parallel speedup estimates for serial programs. In
Proceedings of the 2011 ACM international conference on Object oriented
programming systems languages and applications (OOPSLA ’11). Asso-
ciation for Computing Machinery, Portland, Oregon, USA, 519-536.
https://doi.org/10.1145/2048066.2048108

Nick P. Johnson, Jordan Fix, Stephen R. Beard, Taewook Oh, Thomas B.
Jablin, and David I. August. 2017. A collaborative dependence analysis
framework. In Proceedings of the 2017 International Symposium on
Code Generation and Optimization (CGO ’17). IEEE Press, Austin, USA,
148-159.

Nick P. Johnson, Hanjun Kim, Prakash Prabhu, Ayal Zaks, and David L
August. 2012. Speculative separation for privatization and reduc-
tions. In Proceedings of the 33rd ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation (PLDI ’12). Associ-
ation for Computing Machinery, Beijing, China, 359-370. https:
//doi.org/10.1145/2254064.2254107

Kirk Kelsey, Tongxin Bai, Chen Ding, and Chengliang Zhang. 2009.
Fast Track: A Software System for Speculative Program Optimization.
In Proceedings of the 7th annual IEEE/ACM International Symposium on
Code Generation and Optimization (CGO "09). IEEE Computer Society,
USA, 157-168. https://doi.org/10.1109/CG0.2009.18

Hanjun Kim, Nick P. Johnson, Jae W. Lee, Scott A. Mahlke, and David L.
August. 2012. Automatic speculative DOALL for clusters. In Proceed-
ings of the Tenth International Symposium on Code Generation and
Optimization (CGO ’12). Association for Computing Machinery, San
Jose, California, 94-103. https://doi.org/10.1145/2259016.2259029
Milind Kulkarni, Keshav Pingali, Bruce Walter, Ganesh Rama-
narayanan, Kavita Bala, and L. Paul Chew. 2007. Optimistic parallelism
requires abstractions. In Proceedings of the 28th ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation (PLDI "07).
Association for Computing Machinery, San Diego, California, USA,
211-222. https://doi.org/10.1145/1250734.1250759

William Landi. 1992. Undecidability of static analysis. ACM Letters
on Programming Languages and Systems (LOPLAS) 1, 4 (Dec. 1992),

https://doi.org/10.1145/155090.155102
https://doi.org/10.1109/CGO.2015.7054203
https://doi.org/10.1109/CGO.2015.7054203
https://doi.org/10.1145/2259016.2259028
https://doi.org/10.1145/1454456.1454466
https://doi.org/10.1007/978-3-540-24723-4_5
https://doi.org/10.1007/978-3-540-24723-4_5
https://doi.org/10.1145/3173162.3173181
https://doi.org/10.1145/3173162.3173181
https://doi.org/10.1145/3173162.3177153
https://doi.org/10.1145/1250734.1250760
http://dl.acm.org/citation.cfm?id=645989.674312
http://dl.acm.org/citation.cfm?id=645989.674312
https://doi.org/10.1145/3173162.3173172
https://doi.org/10.1145/379605.379665
https://doi.org/10.1145/2967938.2967959
https://doi.org/10.1145/2048066.2048108
https://doi.org/10.1145/2254064.2254107
https://doi.org/10.1145/2254064.2254107
https://doi.org/10.1109/CGO.2009.18
https://doi.org/10.1145/2259016.2259029
https://doi.org/10.1145/1250734.1250759

Perspective: A Sensible Approach to Speculative Automatic Parallelization

323-337. https://doi.org/10.1145/161494.161501

Chris Lattner and Vikram Adve. 2004. LLVM: A Compilation Frame-

work for Lifelong Program Analysis & Transformation. In Proceedings

of the international symposium on Code generation and optimization:
feedback-directed and runtime optimization (CGO ’04). IEEE Computer

Society, Palo Alto, California, 75.

[27] Mojtaba Mehrara, Jeff Hao, Po-Chun Hsu, and Scott Mahlke. 2009.
Parallelizing sequential applications on commodity hardware using
a low-cost software transactional memory. In Proceedings of the 30th
ACM SIGPLAN Conference on Programming Language Design and Im-
plementation (PLDI ’09). Association for Computing Machinery, Dublin,
Ireland, 166-176. https://doi.org/10.1145/1542476.1542495

[28] Sasa Misailovic, Deokhwan Kim, and Martin Rinard. 2013. Parallelizing
Sequential Programs with Statistical Accuracy Tests. ACM Trans.
Embed. Comput. Syst. 12, 2s, Article Article 88 (May 2013), 26 pages.
https://doi.org/10.1145/2465787.2465790

[29] Naveen Neelakantam, Ravi Rajwar, Suresh Srinivas, Uma Srinivasan,
and Craig Zilles. 2007. Hardware atomicity for reliable software spec-
ulation. In Proceedings of the 34th annual international symposium on
Computer architecture (ISCA °07). Association for Computing Machin-
ery, San Diego, California, USA, 174-185. https://doi.org/10.1145/
1250662.1250684

[30] Donald Nguyen, Andrew Lenharth, and Keshav Pingali. 2014. Deter-
ministic galois: on-demand, portable and parameterless. In Proceed-
ings of the 19th international conference on Architectural support for
programming languages and operating systems (ASPLOS ’14). Associa-
tion for Computing Machinery, Salt Lake City, Utah, USA, 499-512.
https://doi.org/10.1145/2541940.2541964

[31] OpenMP Architecture Review Board. 2007. OpenMP Application Pro-
gram Interface.

[32] Guilherme Ottoni, Ram Rangan, Adam Stoler, and David I. August.
2005. Automatic Thread Extraction with Decoupled Software Pipelin-
ing. In Proceedings of the 38th annual IEEE/ACM International Sym-
posium on Microarchitecture (MICRO 38). IEEE Computer Society,
Barcelona, Spain, 105-118. https://doi.org/10.1109/MICRO.2005.13

[33] Manohar K. Prabhu and Kunle Olukotun. 2003. Using thread-level

speculation to simplify manual parallelization. In Proceedings of the

ninth ACM SIGPLAN symposium on Principles and practice of parallel
programming (PPoPP ’03). Association for Computing Machinery, San

Diego, California, USA, 1-12. https://doi.org/10.1145/781498.781500

Prakash Prabhu, Stephen R. Beard, Sotiris Apostolakis, Ayal Zaks, and

David L. August. 2018. MemoDyn: Exploiting Weakly Consistent Data

Structures for Dynamic Parallel Memoization. In Proceedings of the

27th International Conference on Parallel Architectures and Compilation

Techniques (PACT ’18). Association for Computing Machinery, New

York, NY, USA, Article Article 15, 12 pages. https://doi.org/10.1145/

3243176.3243193

Prakash Prabhu, Soumyadeep Ghosh, Yun Zhang, Nick P. Johnson,

and David I. August. 2011. Commutative Set: A Language Extension

for Implicit Parallel Programming. In Proceedings of the 32nd ACM

SIGPLAN Conference on Programming Language Design and Implemen-

tation (PLDI ’11). Association for Computing Machinery, New York,

NY, USA, 1-11. https://doi.org/10.1145/1993498.1993500

[26

=

(34

[l

(35

=

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

ASPLOS ’20, March 16-20, 2020, Lausanne, Switzerland

Arun Raman, Hanjun Kim, Thomas R. Mason, Thomas B. Jablin,
and David I. August. 2010. Speculative parallelization using soft-
ware multi-threaded transactions. In Proceedings of the fifteenth In-
ternational Conference on Architectural support for programming lan-
guages and operating systems (ASPLOS XV). Association for Com-
puting Machinery, Pittsburgh, Pennsylvania, USA, 65-76. https:
//doi.org/10.1145/1736020.1736030

Easwaran Raman, Guilherme Ottoni, Arun Raman, Matthew J. Bridges,
and David I. August. 2008. Parallel-stage decoupled software pipelining.

In Proceedings of the 6th annual IEEE/ACM international symposium on
Code generation and optimization (CGO "08). Association for Comput-

ing Machinery, Boston, MA, USA, 114-123. https://doi.org/10.1145/
1356058.1356074

Lawrence Rauchwerger and David Padua. 1994. The privatizing
DOALL test: a run-time technique for DOALL loop identification and
array privatization. In Proceedings of the 8th international conference
on Supercomputing (ICS *94). Association for Computing Machinery,
Manchester, England, 33-43. https://doi.org/10.1145/181181.181254
Lawrence Rauchwerger and David A. Padua. 1999. The LRPD Test:
Speculative Run-Time Parallelization of Loops with Privatization and
Reduction Parallelization. IEEE Transactions on Parallel and Distributed
Systems 10, 2 (Feb. 1999), 160-180. https://doi.org/10.1109/71.752782
Silvius Rus, Lawrence Rauchwerger, and Jay Hoeflinger. 2003. Hybrid
analysis: static & dynamic memory reference analysis. International
Journal of Parallel Programming 31, 4 (Aug. 2003), 251-283. https:
//doi.org/10.1023/A:1024597010150

The GNU Project. [n.d.]. GNU Binutils. Published:
\http://www.gnu.org/software/binutils/.

The IEEE and the Open Group. 2004. The Open Group Base Specifica-
tions Issue 6 IEEE Std 1003.1, 2004 Edition.

Chen Tian, Min Feng, and Rajiv Gupta. 2010. Supporting spec-
ulative parallelization in the presence of dynamic data structures.
In Proceedings of the 31st ACM SIGPLAN Conference on Program-
ming Language Design and Implementation (PLDI ’10). Association
for Computing Machinery, Toronto, Ontario, Canada, 62-73. https:
//doi.org/10.1145/1806596.1806604

Georgios Tournavitis, Zheng Wang, Bjérn Franke, and Michael F.P.
O’Boyle. 2009. Towards a Holistic Approach to Auto-Parallelization: In-
tegrating Profile-Driven Parallelism Detection and Machine-Learning
Based Mapping. In Proceedings of the 30th ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI "09). As-
sociation for Computing Machinery, New York, NY, USA, 177-187.
https://doi.org/10.1145/1542476.1542496

Peng Tu and David A. Padua. 1993. Automatic Array Privatization.
In Proceedings of the 6th International Workshop on Languages and
Compilers for Parallel Computing. Springer-Verlag, Berlin, Heidelberg,
500-521.

Abhishek Udupa, Kaushik Rajan, and William Thies. 2011. ALTER:
Exploiting Breakable Dependences for Parallelization. In Proceedings of
the 32Nd ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI 11). ACM, New York, NY, USA, 480-491.
https://doi.org/10.1145/1993498.1993555

Robert Wilson, Robert French, Christopher Wilson, Saman Amaras-
inghe, Jennifer Anderson, Steve Tjiang, Shih Liao, Chau Tseng, Mary
Hall, Monica Lam, and John Hennessy. 1994. The SUIF Compiler System:
a Parallelizing and Optimizing Research Compiler. Technical Report.
Stanford University, Stanford, CA, USA.

https://doi.org/10.1145/161494.161501
https://doi.org/10.1145/1542476.1542495
https://doi.org/10.1145/2465787.2465790
https://doi.org/10.1145/1250662.1250684
https://doi.org/10.1145/1250662.1250684
https://doi.org/10.1145/2541940.2541964
https://doi.org/10.1109/MICRO.2005.13
https://doi.org/10.1145/781498.781500
https://doi.org/10.1145/3243176.3243193
https://doi.org/10.1145/3243176.3243193
https://doi.org/10.1145/1993498.1993500
https://doi.org/10.1145/1736020.1736030
https://doi.org/10.1145/1736020.1736030
https://doi.org/10.1145/1356058.1356074
https://doi.org/10.1145/1356058.1356074
https://doi.org/10.1145/181181.181254
https://doi.org/10.1109/71.752782
https://doi.org/10.1023/A:1024597010150
https://doi.org/10.1023/A:1024597010150
https://doi.org/10.1145/1806596.1806604
https://doi.org/10.1145/1806596.1806604
https://doi.org/10.1145/1542476.1542496
https://doi.org/10.1145/1993498.1993555

ASPLOS ’20, March 16-20, 2020, Lausanne, Switzerland

A Artifact Appendix
A.1 Abstract

The artifact for this paper contains code and data to gener-
ate, with minimal effort, the main evaluation results of this
paper and corroborate its claims. A Dockerfile is provided to
create a docker image that can run across different platforms
with all the software dependencies automatically installed.
The artifact additionally includes a precompiled copy of the
proposed compiler, along with variants and a state-of-the-art
compiler (from prior work) used for comparison in our eval-
uation. Further, the artifact includes binaries for the parallel
and sequential versions of the evaluated benchmarks, scripts
to run them and reproduce speedup graphs (Figures 5 and
6 in the evaluation), along with the source code and a build
system to regenerate these binaries. We also provide Collec-
tive Knowledge (CK) integration to simplify the interface of
our experimentation workflow.

A.2 Artifact Check-list (meta-information)

o Algorithm: Speculative Automatic DOALL Parallelization

Program: Includes benchmarks from PolyBench, PARSEC,

MiBench, and Trimaran suites. SPEC CPU benchmarks are

omitted to respect license restrictions.

Compilation: Compilation of benchmarks is performed

within the docker container. Required compilers are either

automatically installed within the docker container or are

included precompiled.

Transformations: Automatic parallelization of sequential

source code.

Binary: Binaries for sequential and parallel versions of the

benchmarks included (to execute within the docker con-

tainer). Source code and scripts also included to regenerate

binaries.

Data set: Small inputs for the benchmarks are provided to

reduce execution time and hardware requirements of the

artifact evaluation.

e Run-time environment: Requires docker daemon run-

ning.

Hardware: CPU-based x86_64 shared-memory machine

with > 4 physical cores, memory > 4GB

e Run-time state: We recommend to disable TurboBoost
or any other processor frequency related optimization for
more stable speedup results. Ideally, minimal concurrent
applications should run during experiments.

e Execution: Performed within a docker container and auto-

mated via CK command line.

Metrics: Speedup of parallel execution over sequential exe-

cution, and comparison with prior work.

Output: The output is two plots similar to Figures 5 and 6

from the evaluation section of this paper and a file with the

speedup results in a text form (along with expected results

as produced on our reference machine).

Experiments: i) Scalability experiment for the proposed

parallelizing compiler (evaluate with different number of

cores (Figure 5); and, ii) comparison with state-of-the-art

prior work and variants of the proposed compiler (Figure 6).

e How much disk space required (approximately)?: 10GB.

Apostolakis et al.

e How much time is needed to prepare workflow (ap-
proximately)?: Preparation takes only a few minutes (for
building the docker image) if provided precompiled bina-
ries for the evaluated benchmarks are used (default option).
Preparation can take around 2 hours if profiling and sequen-
tial and parallel binaries are reproduced.

e How much time is needed to complete experiments
(approximately)?: Experiments take around 3 hours in
total (roughly 1.5 hours each one).

e Publicly available?: Yes

e Code licenses (if publicly available)?: See LICENCE in-
cluded in the archive file from https://doi.org/10.5281/zenodo.
3606885.

e Data licenses (if publicly available)?: Varies for each
benchmark suite. License notice can be found on the source
code folder of each benchmark.

o Workflow framework used?: Collective Knowledge (CK),
GNU make, and python3 scripts

e Archived (provide DOI)?: Yes, https://doi.org/10.5281/
zenodo.3606885

A.3 Description
A.3.1 How Delivered
Download artifact from https://doi.org/10.5281/zenodo.3606885.

A.3.2 Hardware Dependencies

CPU-based x86_64 shared-memory machine with > 4 physi-
cal cores, memory > 4GB.

A.3.3 Software Dependencies

Installation of docker is required. All software dependencies
are specified in the Dockerfile and are automatically installed
in the docker image. Tested on macOS and Linux.

A.3.4 Data Sets

The inputs utilized in this artifact are smaller compared to
the inputs used in the evaluation of this paper (§5). Inputs for
producing Figures 5 and 6 are large enough for the sequen-
tial version to run for at least 10 minutes (as mentioned in
§5). On the other hand, the evaluation inputs in the artifact
lead to sequential times ranging from a few seconds up to 3
minutes. The goal for the artifact evaluation is to produce
reasonable results while minimizing the required hardware
resources (core count and memory size requirements) and
the evaluation time.

A.4 Installation
A.4.1 Installation of Docker

We recommend the installation of Docker Community Edi-
tion (CE). Instructions for various platforms can be found
here: https://docs.docker.com/install/. This section provides
instructions for platforms on which we tested our artifact.

Ubuntu:
1. $ sudo apt-get update

https://doi.org/10.5281/zenodo.3606885
https://doi.org/10.5281/zenodo.3606885
https://doi.org/10.5281/zenodo.3606885
https://doi.org/10.5281/zenodo.3606885
https://doi.org/10.5281/zenodo.3606885
https://docs.docker.com/install/

Perspective: A Sensible Approach to Speculative Automatic Parallelization

II. $ sudo apt-get install -y docker-ce

Running the docker command requires root privileges. It
can be run by a user without root privileges by adding the
username to the docker group:
$ sudo usermod -aG docker <username>

macOS: To install docker on a macOS, download Docker
Desktop for Mac from https://www.docker.com/products/
docker-desktop and follow instructions.

A.4.2 Build Docker Image

I. make sure that the docker daemon is running

II. download the artifact from https://doi.org/10.5281/zenodo.

3606885

III. decompress the tar archive and change to the decom-
pressed directory (asplos2@ae_perspective)

IV. build docker image:
$ docker build --force-rm -t
asplos2@ae_perspective:1.0 -f ./Dockerfile ./

A.5 Experiment Workflow

L run the built docker image:
$ docker run -it --shm-size=1.5gh --memory=2gb
--memory-swap=-1 asplos2@ae_perspective:1.0

II. perform the experiments with the default parameters:
$ ck run artifact
(the latter command executes within the docker con-
tainer)

A.6 Evaluation and Expected Result
Running the experiments produces graphs similar to Figures
5 and 6 in the evaluation section of this paper (§5). A text
file with all the speedup results is also produced. The pro-
duced files can be found in the following (within the docker
container) paths:

e /home/asplos20ae/scalability-exp.pdf

e /home/asplos2@ae/comparison-exp.pdf

e /home/asplos2@ae/result. txt

To copy files from the container to the host system do
(outside the docker container):
$ docker cp <containerID>:/home/asplos20ae/<file>
/path/in/host/.
To find the container ID do:
$ docker ps
The artifact includes reference results as produced using

the provided artifact on the machine used for the evaluation
of this paper (shared-memory machine with two 14-core
Intel Xeon CPU E5-2697 v3 processors running at 2.60GHz
with TurboBoost disabled and 768GB of memory). The result
in textual form (result. txt) includes the reference result
along with the newly produced results. We also provide plots
with the reference results (/home/asplos20ae/
reference-scalability-exp.pdf, /home/asplos20ae/
reference-comparison-exp. pdf).

ASPLOS ’20, March 16-20, 2020, Lausanne, Switzerland

For the comparison experiment, variant v1 refers to Per-
spective with planning-only, v2 refers to Perspective with
planning and proposed enablers, and complete Perspective
includes planning, proposed enablers, and SAMA (see §5).

Compared to the evaluation in this paper, this artifact
utilizes smaller inputs, as discussed in §A.3.4. Smaller inputs
lead to shorter execution times. This often translates to more
variance, and lower speedups since one-time costs such as
process spawning become more significant.

Note also that the reference results were produced in a ma-
chine with TurboBoost disabled, no concurrent applications
running, and with the pinning of worker threads to separate
cores. The pinning of worker threads to cores might not
operate as expected in different platforms (e.g., two workers
might be pinned to different virtual CPUs corresponding to
the same physical CPU due to some unexpected core layout).
Different hardware characteristics (e.g., disk, memory, CPU
performance) certainly affect the achieved speedups.

Despite variances in the achieved speedups, across all
platforms we tested, results demonstrate that the proposed
work (Perspective) scales and yields significantly increased
speedup over a state-of-the-art prior work (Privateer).

A.7 Experiment Customization

Experiments in this artifact are customizable. ck options
allow for running tests with different configurations. Check
the README and/or use ck run artifact --help to
examine all the available options. Below is a partial list of
configurations and their default values:

e multicore: (default: 1,2, 3, 4) Number of worker processes
used in the scalability experiment.

e compare: (default: 4) Number of worker processes used in
the comparison with prior work and variants experiment.

e test_times: (default: 2) Number of times to run each test (to
reduce variance). The average execution time among these
runs is reported.

o from_X: (default: from_binary) From what stage of the
compilation to start the experiment (either use precompiled
binaries if available, or perform code generation without
reproducing profiles, or reproduce everything).

Some of these options may be turned off by prepending
them with “no" (e.g. -—-no-compare will exclude running the
comparison portion of the experiment).

A.8 Notes

Multiple README files are included in the artifact for more
information. The README in the top-level directory con-
tains the file/folder structure of the artifact with pointers to
other README files within subdirectories.

A.9 Methodology

The artifact of this paper was reviewed according to
the following guidelines: http://cTuning.org/ae/reviewing-
20190109.html, https://www.acm.org/publications/policies/
artifact-review-badging.

https://www.docker.com/products/docker-desktop
https://www.docker.com/products/docker-desktop
https://doi.org/10.5281/zenodo.3606885
https://doi.org/10.5281/zenodo.3606885
http://cTuning.org/ae/reviewing-20190109.html
http://cTuning.org/ae/reviewing-20190109.html
https://www.acm.org/publications/policies/artifact-review-badging
https://www.acm.org/publications/policies/artifact-review-badging

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Overheads of State-of-the-Art

	3 The Perspective Approach
	3.1 Planning
	3.2 Speculation-Aware Memory Analyzer
	3.3 New Enabling Transforms
	3.4 Example

	4 Framework Design and Implementation
	4.1 Speculation-Aware Memory Analyzer
	4.2 Enabling Transforms
	4.3 Transform Selector
	4.4 Profiling
	4.5 Static Analysis
	4.6 Preprocessing
	4.7 Loop Selection
	4.8 Runtime

	5 Evaluation
	5.1 Scalability of Perspective
	5.2 Comparison with State-of-the-Art
	5.3 Performance Analysis of Perspective
	5.4 Misspeculation Evaluation

	6 Related Work
	7 Conclusion
	Acknowledgments
	References
	A Artifact Appendix
	A.1 Abstract
	A.2 Artifact Check-list (meta-information)
	A.3 Description
	A.4 Installation
	A.5 Experiment Workflow
	A.6 Evaluation and Expected Result
	A.7 Experiment Customization
	A.8 Notes
	A.9 Methodology

