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Abstract

As devices become more susceptible to transient faults
that can affect program correctness, processor designers
will increasingly compensate by adding hardware or soft-
ware redundancy. Proposed redundancy techniques and
those currently in use are generally applied uniformly to a
structure despite non-uniformity in the way errors within the
structure manifest themselves in programs. This uniform
protection leads to inefficiency in terms of performance,
power, and area. Using case studies involving the register
file, this paper motivates an alternativeNon-Uniform Fault
Toleranceapproach which improves reliability over uniform
approaches by spending the redundancy budget on those ar-
eas most susceptible.

1 Introduction

In recent decades, microprocessor performance has been
increasing exponentially, due in large part to smaller and
faster transistors enabled by improved fabrication technol-
ogy. While such transistors yield performance enhance-
ments, their lower threshold voltages and tighter noise mar-
gins make them less reliable [1, 8, 13], rendering processors
that use them more susceptible totransient faults. Tran-
sient faults, also known assoft errors, are intermittent faults
caused by external events, such as energetic particles strik-
ing the chip. They do not cause permanent damage, but
may result in incorrect program execution by altering sig-
nal transfers or stored values.

Incorrect execution in high-availability and real-time ap-
plications can potentially result in serious damage and thus
these systems have the highest reliability requirements.
These systems will often resort to exhaustive hardware re-
dundancy to ensure maximum reliability. While several fault
tolerance solutions have been proposed for high-end sys-
tems [4, 14, 18], the high hardware costs of these solutions
make them less than ideal for the desktop and embedded
computing markets.

The high cost of these techniques, in terms of perfor-
mance, area, and power, is due in large part to the breadth
with which they are applied. Existing techniques often re-
sort to duplicating functional units, processor pipelines or
even entire processor cores. These techniques areuniform;

they protect all of the data within their spheres of protection
uniformly.

This uniform approach leads to a prodigal use of system
resources. As described later, the effects of soft errors are,
in fact, non-uniformacross several dimensions for registers
— value, bit number, and register number. Since the effects
are not uniform as existing techniques anticipate, existing
techniques are inefficiently applying their resources. To take
advantage of this non-uniformity, this paper proposes aNon-
Uniform Fault-Toleranceapproach, which targets the level
of protection to where it is most necessary.

The notion of non-uniformity is already well-entrenched
in various aspects of computer architecture. For example,
caches take advantage of the fact that memory accesses
do not follow a uniformly random distribution. Instead,
they exhibit striking temporal and spacial locality which
has been exploited to boost performance. Branch predic-
tion is another case in which heavy biasing leads to signif-
icant speedups. However, non-uniformity has not yet been
exploited to the realm of reliability.

To apply non-uniform fault tolerance, a designer begins
by experimentally observing and quantitatively measuring
the phenomenon of non-uniformity in faults. Once the na-
ture of non-uniformity in faults is understood, the designer
identifies those state elements which are most likely to cor-
rupt program output and analyze why they cause user-visible
errors. Finally, with these results, the designer can appropri-
ately adapt existing techniques for non-uniformity in order
to target only the most important elements. Such an ap-
proach allows designers to make the smallest set of modi-
fications to their processor and incur the smallest penalties
while still meeting their reliability goals. A non-uniform
fault tolerance techniques can offer nearly perfect protec-
tion while incurring very little cost when compared against
the original techniques. One such technique is able to effec-
tively eliminate all output-corrupting faults due to single bit
errors to the integer register file, while only requiring mini-
mal changes to a modern processor.

The rest of the paper is organized to illustrate the non-
uniform fault tolerance approach using case studies on the
register file. Section2 first provides background informa-
tion for the transient fault detection discussion. Section3
describes the experimental setup used in the exploration of
several dimensions of non-uniformity in the register file.



Sections4-6 evaluates and exploits non-uniformity across
individual registers, bit positions within a register, and reg-
ister values. The paper concludes with Section7.

2 Preliminaries
This paper assumes theSingle Event Upsetfault model

typically used in related work [9, 7, 12]. This model as-
sumes that exactly one bit is flipped exactly once during
a program’s execution and is used because the underlying
physical causes of soft errors make double-bit and multi-bit
errors orders of magnitude less likely than single-bit errors.
In this model, any bit in the system at any given execution
point can be classified as one of the following [7]:

ACE These bits are required forArchitecturally Correct Ex-
ecution(ACE). A transient fault affecting an ACE bit
will cause the program to execute incorrectly.

unACE These bits are not required for ACE. A transient
fault affecting an unACE bit will not affect the pro-
gram’s execution. For example, unACE bits occur in
state elements that hold dynamically dead information,
logically masked values, or control flows that are Y-
branches [16]

Fault tolerance mechanisms add redundancy to reduce
the total number of ACE bits by converting them to unACE
bits or reduce output corruption by detecting faults to ACE
bits. Unfortunately, most fault tolerance mechanisms do not
provide perfect protection and, consequently, ACE bits re-
main and not all faults to these bits will be caught. When an
ACE bit becomes corrupted and no fault protection mech-
anism detects the error, the program will exit abnormally
(e.g. with a segmentation fault) orSilent Data Corruption
(SDC) will occur. When SDC occurs, some program output
is incorrect and the user is given no indication that an error
has occurred. On the other hand, abnormal program termi-
nation (ABTERM) does not necessarily imply that data has
been corrupted and additionally the user is notified of ab-
normal termination. While both SDC and abnormal termi-
nation are undesirable, designers attempt to almost entirely
eliminate SDC to prevent silent corruption. Consequently,
designers, to meet the reliability demands of their clients,
typically have a target SDC rate of one fault per 1000 years,
while they have a target ABTERM rate of one fault per 10
years [2]. The differentiation of these two classes of events
by two orders of magnitude implies that SDC poses a far
more signficant challenge to designers than ABTERM.

Mean Time To Failure (MTTF) is a traditional metric for
comparing fault-tolerance systems. This metric measures
the amount of time between system failures and depends
on, among other things, specific manufacturing and envi-
ronmental parameters. An alternative metric,Architectural
Vulnerability Factor(AVF) [7], has been proposed that elim-
inates dependence on these quantities. AVF is defined as

follows:

AVF =
number of ACE bits in the structure
total number of bits in the structure

The two quantities are closely related; MTTF is inversely
proportional to AVF where the scaling factor is determined
by manufacturing and environmental parameters. Note, that
AVF can be partitioned into SDC and ABTERM AVF by
considering only SDC or ABTERM bits (bits which, if
flipped, would result in an SDC or abnormal termination re-
spectively) in the numerator of the expression.

Partitioning the space of existing techniques allows for a
better understanding of how to modify each of them to take
advantage of non-uniformity. The space of fault-tolerance
techniques can be broadly described as operating at either
theLogic Levelor theArchitectural Level. Logic level tech-
niques operate at the level of individual circuits or state el-
ements and are applied where fine-grained, local protection
are needed. Logic level include techniques such as func-
tional unit duplication [14] and ECC. Architectural level
techniques operate at much coarser granularities. These op-
erate by using redundant threading [3, 6, 10], software-level
instruction duplication [11], hardware-level instruction du-
plication [9], processor-core duplication [18], or a hybrid
combination of the aforementioned schemes [12].

3 Experimental Setup

This paper investigates AVF non-uniformity in the in-
teger register file because previous studies [12, 17] have
shown that the integer register file is one of the largest con-
tributor to the processor core’s overall SDC. While integer
register file is the subject of this work, the conclusions about
non-uniform fault tolerance certainly apply elsewhere in a
modern processor core.

We evaluated the AVF of the integer register file for a va-
riety of benchmarks culled from SPEC CPUINT2000, SPEC
CPUINT95, and MediaBench [5] suites. The binaries were
compiled usinggcc -O2 version 3.4.1 targeting PPC970.

Faults were injected by first selecting a random instruc-
tion uniformly distributed across the program’s dynamic in-
struction stream. At that point in the program, a random bit
from a random integer register is flipped and the program
is then allowed to run to completion. 600 runs were exe-
cuted for each benchmark and the average AVF across all
benchmarks has less than 1% error with a 95% confidence
interval.

4 Non-Uniformity Across Registers

One perspective from which to examine the distribution
of faults is at the register level. Figure1 shows the SDC of
each of the 32 integer registers averaged across all of our
benchmarks. Figure2 similarly shows the corresponding
ABTERM AVF.
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Figure 1. SDC AVF of the integer register file broken down by register.
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Figure 2. ABTERM AVF of the integer register file broken down by register.

4.1 Analysis

Figure2 shows that the ABTERM AVF across registers
is mostly uniform except for an extremely sharp peak which
includes registers 1, 2, and to a lesser extent 3. In fact,
these three registers account for 31.5% of overall ABTERN
AVF. This suggests that providing extra protection to these
registers will yield large dividends when trying to prevent
ABTERM events.

The reason for the peak at these registers becomes evi-
dent when the PowerPC64 ABI [15] is considered. Register
1 is used as the stack pointer and thus is liable to cause a
segmentation fault at one of the numerous stack references
at the prologue and epilogue of each function. Register 2 is
used as a Table of Contents (TOC) pointer. Code following
the ABI specification rarely refers to data directly. Instead,
the linker fills a table of contents with the address of each
datum at link time so that code never needs to be modified
in order to support proper linkage. When code wishes to ac-
cess a data item, it loads the address of the item from a TOC
entry which is a fixed offset from the TOC pointer, regis-
ter 2. Thus, any fault to register 2 will likely result in the
program’s inability to properly access any datum. Finally,
register 3 is used both as the first parameter register and the
return value register. Since parameters and return values are
often pointer values, faults to this register may also cause
segfaults.

Figure1 exhibits much more irregularity than Figure2.
Despite this fact, there are two regions where the SDC AVF
is higher. One is the region centered around register 6, while
another one is centered register 30. Again, this can be ex-
plained by examining the ABI. The parameter registers (reg-
isters r3 through r10) are caller-saved. Thus, any function

which calls another function must save its own parameters
by spilling. Typically, these registers are spilled into the
callee-saved registers (r14-r31) going backwards from r31.
Thus, registers like r30 and r31 are almost always live. Fur-
thermore, their live-ranges are typically very long because
they span child function calls. This makes them susceptible
to a higher SDC AVF because the longer a register is live,
the more opportunity there is for it to be corrupted.

Register 6, being a caller-saved register, is volatile, and so
many functions without any child function calls will use r6
as temporary storage for computation. It’s particularly high
SDC here is due mostly to two benchmarks —adpcmdec

andadpcmenc . In both cases, r6 is used throughout a func-
tion which comprises the bulk of the execution time of the
programs. Furthermore, output depends directly on every bit
of this register, ensuring that the SDC of this register is es-
sentially 100% for these two benchmarks. We observe that
the code that manipulates and uses r6 can be easily modi-
fied so that only the least significant bit is ever live, suggest-
ing that compiler transformations may be able to eventually
manufacture non-uniformity to make codes more amenable
to low-cost fault-tolerance techniques.

4.2 Exploiting Non-Uniformity Across Registers

The prior section has examined the non-uniformity of
errors across registers, showing that certain registers con-
tribute more to the overall SDC AVF of the system than oth-
ers. It is therefore desirable to protect only those registers
which are the top contributors.

Suppose, for example, that a system were able to offer
single-error correction for half of the 32 registers. In this
case, the designer should choose to protect the 16 registers
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Figure 3. AVF of the integer register file after protecting the 16 registers with the highest SDC AVF
(right) and the AVF without any protection (left).

with the highest SDC AVF. The hypothetical result of such
a choice is given in Figure3. The bars on the left in show
the original, unprotected AVF. The bars on the right show
the result with the protection scheme.

This scheme, while simpler and drastically less costly
than full register file protection, is able to reduce the SDC
AVF from 7% down to 2%. This corresponds to a normal-
ized MTTF of 3.5x. Furthermore, the ABTERM AVF is
reduced from 23.4% down to 12.3%.

5 Non-Uniformity Across Bits
Another perspective from which to view non-uniformity

is at the bit level. Figure4 shows the SDC AVF of each
bit of the average 64-bit integer register, averaged across all
benchmarks.

5.1 Analysis

Figure4 has some clear peaks. This is most evident at bit
7. Bit 7 is the most significant bit for byte operations, and
is therefore often duplicated via sign-extension operations,
effectively transforming a 1-bit fault into a 57-bit fault.

Even more striking than the peaks, however, is the sharp
decay of the SDC AVF as the bit number increases. This
can be seen more clearly in Figure5, the cumulative distri-
bution of Figure4. The curve flattens out rapidly after the
midway point. In fact, this graph indicates that 87% of the
SDC faults occur on the lower half of the register. 78% of
the SDC faults occur on the lower 24 bits of the register and
63% on the lower 16 bits of the register.

Many computations, especially in C code, operate on data
which are less than 64 bits. Theint datatype, for example,
is 32-bits. Therefore, faults on the upper-bits are likely to
be logically masked by sign and zero extension operations.
Furthermore, faults on the lower bits of a pointer value are
more likely to yield another valid pointer while faults on the
upper bit are not. Thus, for pointers, faults on the lower bits
will lead to the reading or writing of incorrect data while
faults on the upper bits will lead to segmentation faults.

The non-uniformity which dominates this graph suggests
that techniques which only protect the lower bits of registers

are likely to do almost as well as techniques which protect
the entire register.

A slightly different picture emerges from the correspond-
ing graphs for ABTERM AVF. These are shown in Figure6
and Figure7. These graphs indicate that a smaller number
of the lower bits are ABTERM bits. In contrast to 63% of
the total SDC AVF being contributed by the lower 16 bits,
the ABTERM AVF for the lower 16 bits is only 18% of the
total ABTERM AVF. This observation is further borne out
by the CDF in Figure7. The graph begins as a fairly flat lin-
ear curve, but around bit 20 an inflection occurs, after which
the line trends upwards more sharply.

Again, we observe that faults to the upper bits are more
likely to resteer pointers into invalid addresses. This in-
flection occurs at bit 20 because of the way in which pool
memory allocation works in the system libraries and oper-
ating system used. To verify this theory, we wrote a small
test program which would simply allocate 100 bytes via the
malloc call and then successively access addresses starting
from the beginning of the allocated area until a segmentation
fault occurred. The resulting program produced a segmenta-
tion fault221 bytes from the start of the allocated area. This
suggests that the distance from an average point in allocated
heap memory to a segfaulting address is220.

5.2 Exploiting Non-Uniformity Across Bits

As shown, the majority of SDC bits are concentrated in
the lower 32 bits of registers. If a technique were to have
single-error correction for the lower 32 bits of every regis-
ter, while having no protection for the upper 32-bits, then it
would have the reliability characteristics given in Figure8.

The bars on the left in Figure8 show the original, un-
protected AVF. The bars on the right show the result with
the hypothetical protection scheme. On average, the SDC
plummets from 7.0% down to 0.8%. This corresponds to a
normalized Mean Time To SDC Failure of 8.5x. Clearly,
taking advantage of non-uniformity to intelligently apply
fault-tolerance can yield large dividends. Meanwhile, this
simple change also reduces the amount of ABTERM AVF
from 23.4% down to 13.2%.
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Figure 4. SDC AVF of the integer register file broken down by bit.
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Figure 6. ABTERM AVF of the integer register file broken down by bit.
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Figure 7. CDF of the ABTERM AVF of the integer register file.

Values Frequency SDC Frequency ABTERM Frequency Encoding
0x00000000 88.8% 91.7% 82.3% 00

0x000001FF 6.3% 0.0% 14.7% 10

0x00000080 2.2% 8.3% 3.0% 11

0xFFFFFFFF 1.4% 0.0% 0.0% 01

0x90000000 0.3% 0.0% 0.0% 01

Other 1.0% 0.0% 0.0% 01

Table 1. Original values of the upper 32 bits of the register.
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Figure 8. AVF of the integer register file after protecting the lower 32-bits of each register with a
single-error-correcting scheme (right) and the AVF without any protection (left).

6 Non-Uniformity Across Values

The actual values held in the register file also follow a
non-uniform pattern, as some values may be more prevalent
than others. Because of this, the information complexity of
the values in the registers may be far less on average than in
the worst case. This means that stronger protection can be
more easily applied.

For the first 100 runs of each benchmark, we recorded
the original value contained in the register right before it
was altered. The first and second columns of Table1 give
the breakdown of the upper 32 bits of these values. This can
be considered to be a random sampling of the upper bits of
the values in the register file. Clearly, the upper bits of the
register usually only assumed one of a few values, leaning
very heavily towards the value0x0 . The top three entries on
this table alone account for 97.3% of the values in the upper
part of any register at any given time.

6.1 Analysis

The third column of Table1 shows the breakdown of val-
ues in the upper 32 bits whenever flipping one of those bits
led to SDC. In this case, the upper bits only ever assumed
one of two values, namely0x0 and0x80 , again leaning heav-
ily towards0x0 .

A similar phenomenon occurs when one examines
ABTERM bits in the fourth column of Table1. Again, only
a very small number of distinct values is ever assumed. And
once again,0x0 is by far the most prevalent value. A value
of 0x1FF in the upper 32 bits of a register would strongly
imply that the register was a pointer into the stack segment
since stack addresses always have0x1FF in their upper bits.
By the same token, a value of0x80 in the upper bits would
imply that the register is a pointer to a heap address. A value
of 0x0 in the upper bits may either refer to addresses in the
code, data, or TOC segments. In this situation, a segmenta-
tion fault resulting from a fault to the upper bits of a register
containing0x0 in its upper bits may mean that the register
contained an offset or some intermediate in the offset com-
putation. Offsets are small and predominantly positive.

6.2 Exploiting Non-Uniformity Across Values

Whenever a fault to the upper 32 bits of a register yielded
an SDC or ABTERM, Table1 indicate that only three dis-
tinct values were ever taken. This means that a fully redun-
dant copy of the upper 32 bits of the data in these cases can
be encoded in onlydlog 3e = 2 bits. A suggested encoding
is given in the last column of Table1. The remaining en-
coding value can be used in the unlikely event that the upper
bits do not correspond to any of the three predefined value.
In this situation, the level of protection will be reduced.

Since every valid codeword (for the three observed cases)
is now a hamming distance of more than two from any other
valid codeword, this scheme provides complete single er-
ror correction for the upper 32-bits. When this technique is
combined with the technique described earlier for protect-
ing the lower 32 bits, yielding a single-error correction tech-
nique for registers, for which we observed perfect reliability,
at a significantly lower cost than traditional techniques.

7 Conclusion

By investigating the integer register file of a PPC970 in
detail, this paper shows that the distribution of AVF is non-
uniform across bits, registers, and values. This informa-
tion motivates modifications to existing fault-tolerance tech-
niques to take advantage of this phenomenon.

By prioritizing protection to only those bits which need
it the most,Non-Uniform Fault-Tolerancetechniques can
vastly reduce the cost of implementing an existing fault-
tolerance technique while still maintaining its reliability
characteristics. In one application, a non-uniform fault-
tolerance technique was able to effectively eliminate all
single-upset error induced SDC in the integer register file
while incurring only minimal changes to a typical proces-
sor. This experience motivates more techniques to take full
advantage of the inherent non-uniformity in the manifesta-
tion of errors.
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