
A Disciplined Approach to the
Development of Platform Architectures

D. I. August†, K. Keutzer‡, S. Malik†, A. R. Newton‡
{daugust, malik}@princeton.edu; {keutzer, rnewton}@eecs.berkeley.edu

† Princeton University
‡ University of California, Berkeley

ABSTRACT
Silicon capability has enabled the embedding of an entire system
on a single silicon die. These devices are known as systems-on-a-
chip (SOC). Currently, the design of these devices is
undisciplined, expensive, and risky. One way of amortizing the
cost and ameliorating this design risk is to make a single
integrated circuit serve multiple applications, and the natural way
of enabling this is through end-user programmability. The aim of
the MESCAL project, which is the subject of this paper, is to
introduce a disciplined approach to producing reusable
architectural platforms that can be easily programmed to meet a
variety of applications. (MESCAL stands for Modern Embedded
Systems, Compilers, Architectures, and Languages.)

1. INTRODUCTION
While Moore’s Law has enabled us to increase the complexity of
integrated circuits at an exponential rate, this increase in
complexity has provided tough challenges to the design and
design automation communities. The design of individual devices
and associated interconnect is becoming harder due to deep sub-
micron effects resulting in increasing interconnect delay and
coupling. At the same time there are an exponentially more
number of devices to deal with. The situation is further
exacerbated by the need to integrate heterogeneous elements –
digital, analog and mixed signal, RF, and software – on the same
piece of silicon. Finally, all of this comes with competitive
pressures to further reduce the time to market. This results in a
quadruple whammy for designers and has resulted in the well-
publicized gap between manufacturing capability and design
productivity.

In addition to the intellectual design challenges, there are
significant economic challenges associated with non-recurring
engineering costs associated with manufacturing. The
International Technology Roadmap for Semiconductors predicts
that while manufacturing complex System-on-Chip designs will be
practical, at least down to 50nm minimum feature sizes, the
production of practical masks and exposure systems will likely be
a major bottleneck for the development of such chips. That is, the
cost of masks will grow even more rapidly for these fine
geometries, adding even more to the up-front NRE for a new
design. Reports indicate a single mask set and probe card cost for
a state-of-the-art chip is over $0.5M for a complex part today, up
from less than $100K a decade ago (note: this does not include the
design cost). At 0.15µm technology SEMATECH estimates we
will be entering the regime of the "million dollar mask set."

One way of amortizing design cost and ameliorating design risk is
to make a single integrated circuit serve multiple applications, and
the natural way of enabling this is through end-user

programmability. The aim of the MESCAL project, which is the
subject of this paper, is to introduce a disciplined approach to
producing reusable architectural platforms that can be easily
programmed to meet a variety of applications. (MESCAL stands
for Modern Embedded Systems, Compilers, Architectures, and
Languages.) Achieving this goal requires coordinating research in
applications, software environments, and application specific
instruction processor (ASIP) design. We are currently focusing on
networking applications. We aim to enable significant design-
space exploration by means of a highly automated environment for
generating compilers and simulators from a high-level
architectural description. Our target architectures are
multiprocessor networks consisting of specialized VLIW
processing elements. Our approach puts equal emphasis on
concurrency in the communication network and on the
effectiveness of the individual processing element. We note that
our target applications are highly concurrent and so are our target
integrated circuits. The goal then is to easily capture the process-
level, instruction-level, and bit-level concurrency of the
application, and map it naturally onto the target device.

In this introduction, we have motivated the use of programmable
architectural platforms. In Section 2, we further motivate the
development of a disciplined approach to the design of these
platforms by examining current approaches to platform-
architecture development and by showing the deficiencies of these
approaches in Section 3. Section 4 lists fundamental principles of
platform architecture development, and the elaboration of these
principles constitute the remainder of the paper.

2. CURRENT APPROACHES TO PLATFORM-
ARCHITECTURE DEVELOPMENT

This section briefly surveys the architectural diversity of current
programmable platform architectures and the approaches to their
development.

2.1 Diversity of Current Architectures
Parallelism and concurrency. Current systems on a chip support
parallelism at a variety of levels. It is the increasing trend that
SOCs have multiple processing elements on-chip. Common
combinations are to have a RISC microprocessor for control
functions and a Digital Signal Processor (DSP) for communication
functions. Enabled by Moore’s Law, there is a trend toward even
higher degrees of parallelism and already chips with 100’s of
individual processing elements have been fabricated. As each
processing element may support multiple computational processes
there is the potential for very high levels of process-level
parallelism on each chip.

Because of their superior power/energy efficiency relative to
superscalar processors, very large instruction word (VLIW)
processors are gaining in popularity for embedded applications.
VLIW processors allow instruction-level parallelism (ILP) to be
computed by the compiler rather than generated dynamically.

Some of the new architectural platforms also utilize reconfigurable
computation fabrics, similar to Field-Programmable Gate Arrays
(FPGA) on chip. These fabrics provide the opportunity for
performing numerous bit-level operations in parallel. Although it
comes with some cost in circuit area and performance, these
reconfigurable fabrics offer bit-level parallelism in a user-
programmable way.

Special Purpose Hardware. Modern platforms may have a
variety of special purpose execution units tailored to their target
application. For example, contemporary network processors may
have built-in hardware for performing hash-table search. There
may also be special purpose hardware for hiding memory latency.

On-chip Communication Networks. Current platforms must
utilize a variety of different mechanisms to efficiently interconnect
processing elements to memory, to pins, and to each other. The
complexity of this is further complicated by the heterogeneity of
the processing elements themselves.

2.2 DEVELOPMENT OF PLATFORM
ARCHITECTURES

Simulation. Approaches to the development of platform
architectures vary widely. We do not attempt to characterize best
practices here. Instead, we simply report the most common
practices. At the heart of architectural development is the
development of the simulator. Although simulator-generator
environments exist [1] the most common practice is to ``hand-
craft’’ the simulator from C-code for each instance of the
architecture. This approach means that the development cost for
exploring an architectural variant is high.

Compilation. There is limited use of automatically retargetable
compiler components for platform architectures. As a result
evaluation of benchmarks is principally limited to assembly
coding. Benchmarks must be hand-coded in the assembly
language of all new architectures. It can then be run on the hand-
crafted simulator to evaluate performance. The cost in developing
the benchmark, the assembler, and the simulator limits design
space exploration.

2.3 WHY SO LITTLE TOOL SUPPORT?
Given the growing reliance on programmable solutions for
embedded systems it is interesting to reflect as to why there is not
more tool support for designing these platforms. The primary
reason is that the number of new processor development projects
significantly lags that of ASIC development projects. A company
aiming to provide tools for integrated circuit development would
have a larger market opportunity by providing tools for traditional
IC design problems such as static timing analysis or equivalence
checking.

3. DEFICIENCIES OF CURRENT APPROACHES
TO THE DEVELOPMENT OF PLATFORM
ARCHITECTURES

The ad hoc approaches currently employed in platform
architecture design lead to a number of recurrent problems. The
first problem is that because of the high cost of design-space

exploration, resulting architectures may be over-tuned to a few
application benchmarks, and poorly suited to others. The resulting
architecture may be quite inefficient on the general application
mix.

Because the development of the compiler and the software
development environment lags that of the architecture, the
resulting architecture may be poorly amenable to automated
compilation techniques. The same computational idioms that made
the architecture run efficiently on the small computation kernels
coded in assembler may be impossible to capture in automated
compilation.

While some current architectures have done better at both design
space exploration [2] and supplying software development
environments for their resulting processor (for example in
Tensilica’s Xtensa processor [3]), the deficiencies described here
are very common.

4. KEY PRINCIPLES OF THE DISCIPLINE OF
PLATFORM ARCHITECTURE DEVELOPMENT

Our goal is to develop and to further codify best practices in
architectural platform development. In this section, we introduce a
few of the key principles that guide our approach to architectural
platform development.

• Modeling architectures using executable specifications that are
formally analyzable.

The first description of a particular architecture may be as
semantically meaningless as figures on a napkin. Our aim is first
to give a flexible graphical framework for the description of a
multiprocessor architecture such that as soon as the architectural
specification is entered a simulation of that architecture is
available. Secondly, we aim to not just support, but also require,
that the concurrent operation of the architecture be described in a
formal manner using models of computation in Ptolemy II [4].
Section 5 describes this process.

• Concurrent-development of hardware and software within an
environment that supports multiple views (software
development, simulation, architecture, hardware) of the
architectural platform.

Architectural simulators used for performance analysis, analysis
tools used for software development, and compilers require their
own description of the architecture. Thus, there are two
challenges: The first is to develop architectural descriptions to
support each of the tools. The second challenge is to ensure that
these views are consistent. In MESCAL, we obviate these
problems by maintaining a single architectural database from
which the views required by the various tools are automatically
generated. We give details in Section 6.

• Enabling disciplined design-space exploration through
descriptive benchmarks and automatically generated compilers
and simulators.

There are a number of elements to exploring a design space
associated with multiprocessors architectures in a disciplined
manner. The first of these is the characterization of the design
space itself. This entails elaborating the degrees of architectural
freedom. The second is carefully identifying a set of
computational kernels and benchmarks over which the
architectures are to be evaluated. This is further elaborated in
Section 5.

• Exportation of programmer’s model to aid in platform
exportation.

Efficient programming of an architecture platform currently
requires understanding the salient features of the underlying
architecture. In the MESCAL approach, the software compiler is
automatically retargeted as the architecture is developed; however,
this does not mean that the best approaches for programming the
architecture will immediately be evident. Our aim is to augment
the platform architecture and its software development
environment, with a programming model that conveys to an
application programmer how to get the best performance from the
platform architecture. Section 8 motivates the need of a
programmer’s model.

5. ARCHITECTURE EXPLORATION
The goal of this part of the project is to provide an environment
for the efficient exploration of concurrent architectures by means
of a flexible interface provided with the heterogeneous simulation
environment known as Ptolemy II [4]. Concurrency in our
architecture is provided at multiple levels: at the bit level through
specialized functional units, at the instruction level through VLIW
processors, at the thread level through multi-threading and at the
process level through multiple processors. The exploration
environment enables the designer to specify a particular micro-
architecture and architecture, and automatically export an interface
to these that is used for the retargetable synthesis of the software
environment (simulators, compilers and custom run-time systems).
In addition to the specification of the processing elements (PEs),
the environment provides for the specification of the
communication between the PEs. The communication
specification provides for flexibility in the physical network –
topology as well as switching type (circuit or packet), as well as
flexibility in the protocol for the network usage.

5.1 Defining the Space for Architectural Exploration
Before an architectural design space can be explored, it must first
be defined. If the initial definition of the search space is
incomplete then all resulting architectures will be inadequate or
incomplete because they will have failed to consider some
architectural possibilities. In MESCAL, we have begun with a
thorough categorization of existing network processor
architectures, functional units, and co-processors [5].

5.2 Identifying Representative Benchmarks
A benchmark is simply a standard by which something can be
measured or judged. As the set of candidate architectures will be
measured over and over relative to their performance on the set of
candidate benchmarks, the choice of candidate benchmarks is very
important. In MESCAL, our target platform architectures are
network processors and our primary goal in developing network
processor benchmarks is to compare network processors in a
quantitative way. The secondary goals of these benchmarks are to
provide insight into the network processor’s expected real-world
application performance and to highlight the salient architectural

features that are most useful for network processing applications.
Our efforts on benchmarks and techniques for network processor
comparison are currently being written up in [6].

5.3 Single Processing Element Environment
A designer creates a processing element in the MESCAL
environment by creating a back-of-the-envelope schematic of the
structure of the micro-architecture. A graphical interface based on
the tools Diva and Swing allows the user to drag and drop visual
components and connect ports of the components with edges. The
semantics of the schematic are created through the use of Ptolemy
II and Vergil [4]. Specifically, processing elements designed in the
MESCAL environment utilize a new Ptolemy II domain that
implements multiplexed cycle based static dataflow semantics
with cycle precision stalls.

Spatial control is defined by creating instructions and their
associated resource usage sets. After constructing a schematic of
the model in the architecture view, the designer enters the
instruction-set architecture (ISA) view of the model. In the ISA
view, the designer names an instruction and clicks on the
resources that the instruction uses. Automatic inference of the
resource usage provides syntax directed editing of the spatial
control. This greatly improves the productivity of the designer.
Cycle based static dataflow semantics allow reservation tables to
then be extracted by the use of static timing analysis based on the
resource usage sets and structure of the model. The designer does
not have to insert retiming and pipeline registers; they are implicit.
Consistency is automatically maintained from the architecture
view to the ISA view so that structural and timing changes are
reflected in the reservation tables. The model is simulated using
multiplexed cycle based static dataflow semantics by simulating
the resources in a topological order on the cycles specified in the
reservation table for a given instruction. On each cycle, a new
instruction is fetched and the appropriate schedule is queued; this
allows for an efficient simulation of a pipelined machine. A
compiler uses the extracted reservation tables to create a valid
schedule.

Temporal control is defined by choosing the appropriate
hierarchical splits in the model. Splits occur on boundaries where
control signals that affect the temporal flow of data cross. A
processing element model has two domain input ports, an
instruction and a stall signal. The instruction signal’s purpose
determines the spatial control. The stall signal determines the
temporal control of a given spatial configuration. Stall signals
cause the pipeline to interlock on the specified pipe stage.
Designers need not model the pipeline interlocking since it is
implicit to the domain. This allows models to more easily
incorporate interrupts, exceptions, and dynamic control. The
hierarchical splits usually occur on boundaries that separate the
control plane from the data plane. The data plane is described
using multiplexed cycle based static dataflow semantics. A
number of different semantics may be used to describe the control
plane as long as the appropriate instruction and stall signals are
generated.

5.4 On-chip Communication Architectures for
Multiprocessors

As mentioned above, silicon resources available today easily
permit us to consider integrated circuits consisting of multiple
processors on a single die. As applications traditionally have
significant concurrency in them, now with significant concurrency
available in the platforms, we can more efficiently map the
application concurrency onto the architectural concurrency of the
platform.

A key element of the methodology to enable this is to consider the
on-chip communication architecture as a first class element of the
architectural exploration environment, rather than as an
afterthought. There is a wide diversity of possible communication
architectures available, and selection of an appropriate
architecture can impact all metrics such as performance, power,
etc. just as much, if not more, as the computational architecture.

In the space of computational architectures, much effort has gone
into classifying and modelling of different forms of architectures
(RISC/CISC, VLIW/Superscalar, SIMD/MIMD) and elements of
microarchitectures (pipelines, memory hierarchies, accelerators
such as branch predictors etc.). However, while individual
communication architectures have been modelled, there is little
systematic classification of on-chip communication architectures
or of the micro-architectural primitives that go into constructing
such architectures. As part of the MESCAL effort to build an
architectural exploration environment, we are developing a
general modelling infrastructure for on-chip communication
architectures. As part of this infrastructure, we have developed a
class hierarchy of on-chip communication architectures as shown
in Figure 1. The key idea here is that the entire family of possible
communication architectures can be organized as a tree with
specific instances at the leaves. A particular node in the tree
inherits all the properties/characteristics of its ancestors and can
add some of its own that are passed on to its descendents. The
properties/characteristics are captured in a parametric executable
behavioural model as part of the Ptolemy II [4] environment. As
shown in the figure, this hierarchy is quite diverse, covering the
space from conventional buses and circuit switching to more
recently emerging packet switching architectures.

The usage of this class hierarchy in architectural exploration is as
follows. If the specific communication architecture to be explored
is already present as a leaf, then its model is already available and
this can be parameterised and used in architectural evaluation for
simulation. If a new communication architecture is being
developed, then its nearest ancestor is located in the hierarchy and
customized by adding on specific characteristics. This is then
added back to the hierarchy for potential reuse in the future. This
methodology provides for an environment that provides rapid
development of reusable customisable executable models, as well
as a classification of the space of available architectures. Using
this hierarchy, we were able to develop a detailed executable
model for the AMBA [7] bus with relatively little additional effort
once we had a model for the CoreConnect Bus [8] in place. With
these specific well known instances of bus architectures now
available as part of the architectural environment, any time a bus
architecture is desired, either of these instances can be rapidly
evaluated, or possibly a new custom bus architecture rapidly
designed using the existing models as a base, and then evaluated.

We see this hierarchy as being a key element of exploration of the
combined computation and communication architectural space.

6. ARCHITECTURAL PLATFORM VIEWS

6.1 The Need for Multiple Views
The architectural exploration environment is geared towards
enabling the architect to rapidly assembly a diverse range of
instruction set architectures and microarchitectures for the
processing elements, as well as the communication architectures.
Once a particular architecture has been assembled, it is likely to be
subject to evaluation and potential use in the future. This requires
that the architectural details be exported outside of this
environment. The exact information that needs to be exported is a
function of the intended use. For example, an instruction set
simulator generator will need to know all the details of the
microarchitecture, including the execution semantics of each
microarchitectural component, as well as the instruction set
architecture, along with a precise description of exactly how each
instruction is executed. On the other hand, a compiler generator
needs to know the semantics of each instruction, along with “well
summarized” microarchitectural information regarding the usage,
including constraints, of microarchitectural elements during
instruction execution. By “well summarized” we mean the
information is in directly usable form, such as a reservation table
for VLIW processors, and does not require very complex analysis
to extract.

This diversity of types of exported information makes it clear that
there is no single uniform architectural model that can be used for
all the intended functions. Instead, we must support multiple
views, each of which is geared towards supporting a specific
function. Currently MESCAL supports an ISA view, which
exports the instructions and their semantics, a simulator view for
the simulator generator, a compiler view for the compiler
generator and a memory view, which describes the memory
hierarchy. The views are possibly overlapping in as much as the

AbstractChannel
Model

GenericChannel
Model

PacketChannel
Model

sender_address;
receiver_address;

Addressable
ChannelModel SimplexLink

Model
Association DuplexLinkModelCircuitSwitch

ChannelModel
Loopback
Channel
Model

UnicastChannel
Model

MultipleAccess
ChannelModel

Broadcast
ChannelModel

MulticastChannel
Model

n inputs
n outputs

SwitchBarModel

n inputs
m outputs
k stages

Multistage
NetworkModel

FaultyLinkModel

Association

GenericBusModel
n buses
k levels

MultipleBus
ChannelModel

Association

CoreConnect
Bus AMBA Bus

Figure 1: Class Hierarchy of On-chip Communication
Architectures

same information may be available in the same or possibly
different form in more than one view. A key requirement on the
generation of these views is that they guarantee consistency
among the different views. The above set of views is not intended
to be complete; instead the environment is expected to be flexible
enough to permit the generation of additional views that may be
required in the future.

6.2 MESCAL Architectural Description (MAD)
The MESCAL Architecture Description is a compiler and
simulator view that is generated from the architectural
environment and serves as a target description for a retargetable
simulator and compiler. The architecture description describes
both the computation as well as the communication architecture.
The description itself is in XML, which makes it flexible, and
enables leverage of standard XML tools.

The computational architecture is specified by providing the ISA,
and the microarchitectural description required by the simulator
and compiler. It combines a behavioral and a structural model, as
well as the mapping of the former onto the latter, for this purpose.

The behavioral model provides details of the instruction set
architecture, and describes the operations, opcodes, encodings,
operands, various categories of operations, and the semantics of
the operations. The structural model provides details of the
microarchitectural components such as decoders, pipeline stages
as well as their interconnection. The interface between the
behavioral and the structural model is key in describing the
physical execution of instructions. This describes the mapping of
operands to functional units, as well as operations to pipeline
stages. A key feature of MAD is system support capability. This
includes the support for privileged instructions, the ability to
model interrupts, and the ability to support specialized functional
units such as communication assists - a critical element of this
methodology in dealing with communication between distributed
computation.

The communication architecture again has a behavioral model and
a structural model associated with it. The structural model is a
netlist of the components of the communication architecture. The
behavioral model captures the semantics of the exact
communication occurring between these. This is accomplished by
using the same parametric description of communication
architectures as shown in Figure 1. An instance of a
communication architecture is described by specifying a leaf in the
tree, with specific parameters for each of the nodes on path from
the root of the tree of the leaf. The semantics of each of the nodes
on this path describe the semantics of the communication
architecture. This can be used by the simulator and compiler
generators. The parameters quantify various metrics such as
bandwidth, throughput, latency and power of basic operations,
buffer sizes etc.

There are several competing architectural specification languages
available today such as nML [9], ISDL [10], Maril [11], HMDES
[12], LISA [1], PRMDL [13], RADL [14] and Expression [15].
We have done a detailed comparison of the capabilities of MAD
with these forms of specification. None of them provide either
system support or the ability to specify communication
architectures as MAD does. In terms of support for describing
basic processor elements, LISA and Expression come the closest
to MAD. In comparison with LISA, MAD has a higher level of
abstraction, and thus more compact specification. It also directly
provides support for VLIW compilers in terms of clear description

of instruction level parallelism. MAD and Expression are similar
in their goals of providing support for simulators and compilers
for VLIW processors. However, MAD has less redundancy in the
description and thus fewer issues of consistency in description.

6.3 Liberty Simulator Specification
There are two steps to generating a simulator. First, a view

generator converts a MAD Description into a Liberty Simulator
Specification (LSS). Then, using this specification, the Liberty
Simulation Environment (LSE) constructs a simulator by
instantiating microarchitectural modules and connecting them with
instantiated channels. A module is a microarchitectural component
template, which interacts with other parts of the simulator via
input and output ports. A channel is a communication template,
which connects one or more module ports. In general, modules
describe significant functionality such as caches, branch
predictors, and functional units while channels describe timing
interactions using notions such as wire, queue, and filter. The LSS
directs the instantiation and connection of the module and channel
templates.

The Liberty Simulator Specification serves two purposes.
First, LSS is a Liberty simulator view of the architecture - LSS
represents the microarchitecture in a manner conducive to
simulator generation. Second, LSS allows the designer to directly
manipulate the microarchitecture to be modeled. This access is
necessary for modeling irregularities introduced by VLSI
constraints or other details not describable with MAD. Unlike
MAD, LSS approximates the computer architect's view of the
microarchitecture - modules and channels generally have a
physical counterpart in the hardware. The relative ease of
manipulating the LSS makes customizing a simulator to match a
candidate microarchitecture an efficient process for the
microarchitect. Like MAD, LSS is stored as an XML ASCII
description, but typically a graphical visualizer is the preferred
user interface.

A complete Liberty Simulator Specification consists of four
parts: module instantiations to create architectural functions,
channel instantiations to create connections, control points to
specify complex or non-local control not implied by channel
connections, and event instantiations to provide the user or
compiler with performance feedback.

Module Instantiation. To create an architectural component in
the simulator, a module instantiation is indicated in LSS using the
instantiation directive, INST. In Figure 2, an instruction fetch
unit ifetch1 is created from the ifetch template. Each
instantiated module can have its behavior customized via
parameters. Module instantiation tools use these parameters at
simulator construction time to create code appropriate for the
specific case. All module types define a default set of parameters
to use if a parameter is not specified in LSS. Here the default
ifetch parameter decode_latency is overridden in
ifetch1 to have a value of 1 cycle.

Channel Instantiation and Connection. Channels are instantiated
much like modules - they have parameters and are derived from a
channel type template. In Figure 2, a queue named pred_chan
is created between the instruction fetch (fetch1) lookup port
and the branch predictor (bpred1) predict port to initiate
branch predictions at the appropriate time. In this example, the
channel uses the default type parameters. Data passing through
channels has the type specified by datatype. Here, the channel
only relays a trigger signal without associated data.

Control Points and Exported State. Channel connections imply
local and regular control information. For example, instruction
fetch initiates branch predictions with the pred_chan channel.
Unfortunately, channels cannot express all control possible in real
machines, so a control point mechanism exists to express this non-
local or irregular control logic. In Figure 2, the control function
decide_to_fetch stops instruction fetch whenever the
rename logic has fewer than 8 free registers. To accomplish this,
the control function uses the free_regs exported state
function from the rename1 instantiated module in making a
fetch decision.

Event Points. Since the type of information necessary from the
simulator is application specific, LSS allows the inclusion of code
at various event points. The code at an event point executes
whenever a particular event has occurred. The user specified code
at these event points can perform a variety of tasks ranging from
collecting simple statistics to driving a visualizer or debugger.

7. PLATFORM ARCHITECTURE EVALUATION
ENVIRONMENT

Both a compiler and a simulator are necessary to evaluate a
candidate platform. However, to influence the design process in a
meaningful manner the time and resources put into their design
and construction must be moved off the processor design critical
path. Therefore, the compiler and simulator must be automatically
generated.

7.1 Compiler Development
Platform architectures are only truly programmable when they
include an optimizing compiler. The performance of a platform
architecture is a combination of the quality of the code generated
by the compiler and the efficiency of the hardware while executing
that code. The only meaningful measure of the fitness of a
particular platform architecture is one which includes the entire
system, compiler and hardware. Naturally, the most advanced
architectural mechanisms are of little worth if compiler technology
is not able to exploit them. Disciplined development of platform
architectures requires the consideration of many candidate
compiler/hardware pairs. Therefore, an automatically retargeted
compiler is a requirement.

While many compilers in the past have been retargetable [16, 17,
18], they often do not have automatic retargeting of machine
specific optimizations, beyond instruction selection, scheduling
and register allocation. To make things worse, most processors

(DSPs, network processors, etc.) require machine specific
optimizations [19, 20]. In fact, programmers often code for some
of these devices in assembly language since compilers, when they
exist, do not regularly generate performance-boosting code [21].
This is not an acceptable solution for programmable platforms.

The MESCAL compiler and MAD together provide a solution to
the problem of creating an automatically retargetable compiler.
The MESCAL compiler uses the MAD description to guide
instruction selection, optimization, scheduling, and register
allocation. Since the MESCAL compiler makes no assumptions
about the target machine not explicitly described in MAD or
implied by MAD's domain, automatic retargetability becomes
tractable. The key to success is to extend current compiler
technology rather than restrict MAD's domain.

Consider, for example, the conflicting requirements that
instruction set architects and compiler writers often have for the
design of the instruction set. The architects are driven by micro-
architecture complexity and code size considerations; while the
compiler writers prefer clean orthogonal instruction sets amenable
to regular compiler algorithms. For a variety of reasons, special
purpose processors often have very irregular architectures that are
very hard to compile for and that need specialized optimization
techniques. Instead of avoiding these irregular architectures or
writing a customized optimizer for each one, the MESCAL
compiler and MAD generalizes these architectures to create
retargetable compiler support for them.

Traditional compilers work directly with physical resources to
determine what can and cannot be scheduled in parallel. It is
desirable to leverage this large body of work for the MESCAL
compiler. Using a MAD view, irregularities in the ISA can be
matched with the regular resource-based requirements of classic
compilers by generating a set of artificial resources from the ISA
specification. The artificial resources are generated by solving a
combinatorial graph labeling problem, which is generated from
the MAD ISA specification. These resources may not correspond
to any real physical resources, but are equivalent in as much as
they specify the instructions which can be executed in
simultaneously in a manner equivalent to the real resource
specification [22].

The MESCAL compiler contains other generalizations which
enhance the domain of automatically retargetable compilers. By
designing the compiler in this way, compiler writers can create
compilers for architectures before they are specified, moving their
efforts off the critical path, and enabling meaningful design of
platform architectures.

7.2 Simulator Development
A requirement for disciplined development of platform
architectures is a retargetable, fast, and precise simulation tool.
Most simulators in the past have not been retargetable, have
supported only a limited class of microarchitectures, or have
abstracted away important design details [23, 24]. Many have not
accurately modeled control effects due to this abstraction. These
inaccuracies can lead designers to make incorrect design decisions
[24]. The Liberty Simulation Environment (LSE)
(http://liberty.princeton.edu) addresses these
requirements.

Automatic Retargetability. A Liberty simulator is automatically
created by the simulator builder from a Liberty Simulator
Specification (LSS), modules from a module library, and channels

Figure 2: Portion of a Liberty Simulator Specification.

<INST name="ifetch1" type="ifetch">
 <PARAMETERS>
 <PARM name="decode_latency" value="1"/>
 </PARAMETERS>
 <CONTROLFUNC name="decide_to_fetch">
 if(QUERY_CALL(rename1, free_regs) < 8)
 return SIM_decision_no;
 return SIM_decision_yes;
 </CONTROLFUNC>
</INST>
<CHANNEL name="pred_chan" datatype="none"
 type="queue" model="q">
 <CONNECT inst="ifetch1" name="lookup"/>
 <CONNECT inst="bpred1" name="predict"/>
</CHANNEL>

from a channel library. Of these, only the LSS creation must be on
the design critical path. Simulator writers should spend their time
creating module and channel libraries prior to the start of platform
architecture exploration. The modules and channels they create
should be flexible enough to be used in a wide class of
architectures.

Since the same module or channel may be reused in many vastly
different contexts, it is unlikely that an efficient and generic
module could be written once in a high-level language. Doing so
would forgo the opportunity to optimize the module for each
particular parameter set. Consequently, LSE uses a statically
instantiated object system to create specialized components. The
process is akin to object instantiation in JAVA, except that it is
done statically to allow host compiler optimization, and it is done
with simulation specific knowledge to allow algorithmic-level
optimizations not achievable any other way.

Fast Simulation. To explore many points of the design space, the
simulator must be fast while remaining feature rich. Static
instantiation of the modules and channels allows the code to be
host compiler optimized for each particular case. The simulator
construction environment is built so that one only pays for the
features that are used. For example, if an architect is not yet
interested in modeling the effects of various types of speculative
update of branch predictor state, the branch predictor does not
waste time updating its state speculatively. Also, constructed
simulators need not be complete. For example, if one is only
interested in the pipeline, the remainder of the machine need not
be instantiated. Semantics for unconnected module ports ensure
proper simulator operation.

LSE also takes a different approach to instruction decode.
Microprocessor simulators often perform instruction decode
dynamically, an unnecessary task. This is not to say that one does
not need to know which instruction is being executed, but that all
information associated with an instruction can be statically pre-
decoded. Liberty implements this technique by statically decoding
instructions and generating code for evaluating them (this is
known as compiled-code simulation). Note, however, that
Liberty's novel approach allows it to simulate, in a cycle accurate
fashion, dynamic effects such as mis-speculation despite the use of
compiled-code simulation. Using compiled-code simulation
precludes the use of self-modifying code, but gives huge
performance gains - generally two orders of magnitude when
compared to an equivalent dynamically decoded functional
simulator. A dynamic decoder is available to handle self-
modifying codes when they are encountered. Using compiled-
code simulation, functional simulation with a Liberty simulator is
typically only one to four times slower than native hardware.

Precise Simulation. With the LSE, we can precisely model non-
local and irregular complex control, including those stemming
from VLSI considerations without a need to understand or directly
modify simulator code. Module writers must insert place holders
for certain control decisions in their code. As shown earlier, a user
can specify the control logic in the LSS using control functions.
These control functions can create their own state or query state
exported by other module instances.

7.3 Other tools
While performance simulators and compilers are critical elements
in the evaluation loop of architectural platforms, there are other
tools that can also be significant.

Increasingly, power is emerging as possibly more critical than
performance as a design metric. Thus, we need to provide support
for power evaluation and optimization at the same level as
performance. We have done this in the Liberty simulator by
building a power simulator in parallel with the performance
simulator. It shares the same design as the performance simulator,
differing only by using power models instead of performance
models. As with the performance simulator, this is completely
retargetable.

Several platform applications have real-time deadlines.
Guaranteeing hard real-time deadlines is not possible using
simulation. We have integrated a retargetable static timing
analysis engine as part of the MESCAL framework for this
purpose [25]. The analysis engine uses our previously developed
algorithms based on integer linear programming for implicit path
analysis, and static cache modeling techniques.

Debuggers and performance visualization tools are very important
for enhancing designer productivity; however, thus far, we have
been unable to devote any resources to this area.

8. EXPORTING THE ARCHITECTURAL
PLATFORM THROUGH A PROGRAMMER’S
MODEL

MESCAL is aimed at platform architectures for embedded-system
applications. These architectures are certain to have high-level
process concurrency, operator/instruction level parallelism, bit-
level parallelism, and multiple application-specific execution
units. Our goal in MESCAL is to create easy to understand
programmer’s models of the target architectures that enable
application developers to get as close to assembly-language
programming quality as possible.

We use as inspiration the development of the C-language as a
programmer’s model for minicomputers and workstations.
Although the C-compiler technology for the C-language was
relatively primitive, the C-language became the standard for high
performance programming of minicomputers and workstations.
We believe that this was due to a judicious choice of the key
assembly language features (pointer arithmetic, bit-manipulation,
register keywords) to make programmer visible in the C-language.
Similarly, our aim is to determine the 20% of the architectural and
microarchitectural features that allow for 80% of the architecture’s
performance. Initially we are focusing on network processors and
looking for constructs to make easily visible their features such as
zero-overhead context switching, queue management, and built-in
primitives such as hash-table lookup.

9. SUMMARY, CONCLUSIONS
Current approaches to IC design are becoming unmanageable. The
development of programmable platforms provides an attractive
way to minimize design risk and cost. There is currently little
discipline to the development of programmable platforms. This is
the gap that the MESCAL project aims to fill. We also have
considerable effort focused on mapping applications onto
programmable platforms, but space limitations in this paper have
only allowed us to present the broadest details of our current
research efforts on platform architecture development. More
details and reports of progress on MESCAL can be learned from
our website at www.gigascale.org/mescal.

10. ACKNOWLEDGMENTS
In addition to the faculty-authors the MESCAL project consists of
a number of graduate students, post-doctoral fellows, and
industrial visitors. Industrial visitors are Christian Sauer of
Infineon and Kees Vissers of Trimedia. Chidamber Kulkarni,
formerly of IMEC, is our post-doctoral fellow. Berkeley graduate
students include Yujia Jin, Andrew Mihal, Matthew Moskewicz,
Niraj Shah, Melvin Tsai, and Scott Weber (author of section 5.3).
Princeton graduate students include Zhining Huang, David Penry,
Wei Qin, Subbu Rajagopalan, Spyros Triantafyllis, Manish
Vachharajani, Shaojie Wang and Hangsheng Wang. Discussions
with Jan Rabaey, Alberto Sangiovanni-Vincentelli, and Kees
Vissers have helped shape our platform design vision.

11. REFERENCES

1 Stefan Pees, Andreas Hoffmann, Vojin Zivojnovic, Heinrich
Meyr, “LISA  Machine Description Language for Cycle-
Accurate Models of Programmable DSP Architectures,” In
Proceedings of Design Automation Conference, June 1999, New
Orleans.
2 G.J. Hekstra, D.D. La Hei, P. Bingley, F.W. Sijstermans,
“TriMedia design space exploration,” In Proceedings of ICCD
1999, Austin, Texas, pp 599-606.
3 Tensilica, “The Xtensa Processor Generator”,
http://www.tensilica.com/technology.html.
4 E. A. Lee, “Overview of the Ptolemy Project,” Technical
Memorandum UCB/ERL M01/11, University of California,
Berkeley, March 6, 2001.
5 N. Shah, “Understanding Network Processors,” M. S. Thesis,
Department of Electrical Engineering and Computer Sciences,
University of California at Berkeley, August 2001.
6 M. Tsai, “Methodologies and Techniques for Network Processor
Comparison,” M. S. Thesis, Department of Electrical Engineering
and Computer Sciences, University of California at Berkeley, (in
preparation).
7 AMBA On-Chip Bus Rev 2.0 Specification, ARM Ltd, 2000.
8 CoreConnect Bus Architecture, White Paper, IBM Corp, 1999.

9 A. Fauth, J. Van Praet, and M. Freericks, “Describing
instructions set processors using nML,” In Proceedings of
European Design and Test Conference, Paris (France), March
1995, pp. 503--507.
10 G. Hadjiyiannis, S. Hanono, and S. Devadas, “ISDL: An
instruction set description language for retargetability,” In
Proceedings of Design Automation Conference, May 1997,
Anaheim, CA.
11 David G. Bradlee, Robert R. Henry and Susan J. Eggers. “The
Marion System for Retargetable Instruction Scheduling,” In
Proceedings of the Conference on Programming Language
Design and Implementation, June, 1991, Toronto Canada.
12 J. C. Gyllenhaal, B. R. Rau, and W. W. Hwu, “HMDES Version
2.0 Specification,” Technical Report IMPACT-96-3, The
IMPACT Research Group, University of Illinois, Urbana, IL,
1996.

13 A.S. Terechko, E.J.D. Pol and J.T.J. van Eijndhoven, “PRMDL:
A Machine Description Language for Clustered VLIW
Architectures,” In Proceedings of European Design and Test
Conference, March, 2001, Munich, Germany.
14 Chuck Siska, “A Processor Description Language Supporting
Retargetable Multi-Pipeline DSP program Development Tools,”
In Proceedings of the 11th International Symposium on System
Synthesis, December, 1998, Taiwan China.

15 A. Halambi, P. Grun, V. Ganesh, A. Khare, N. Dutt, A. Nicolau,
“Expression: A Language for Architecture Exploration through
Compiler/Simulator Retargetability,” In Proceedings of Design
Automation and Test in Europe, 1999, Munich, Germany.
16 S. Hanono and S. Devadas, “Instruction selection, resource
allocation, and scheduling in the AVIV retargetable code
generator,” In Proceedings of the 35th Design Automation
Conference, June 1998.
17 S. Rajagopalan, S. P. Rajan, G. Araujo, S. Rigo, and S. Malik,
“Using the IMPACT VLIW compiler framework to implement a
compiler for a fixed point DSP,” In Proceedings of the 5th
International Workshop on Software and Compilers for
Embedded Systems (SCOPES), March 2001.
18 D. Lanneer, J. V. Praet, A. Kifli, K. Schoofs, W. Geurts,
F. Thoen, and G. Goossens, “CHESS: Retargetable code
generation for embedded DSP processors,” In, Code generation
for embedded processors, pp. 85-102, Boston, MA: Kluwer
Academic Publishers, 1995.
19 S. Liao, Code Generation and Optimization for Embedded
Digital Signal Processors. PhD thesis, Massachusetts Institute of
Technology, Cambridge, MA, 1996.
20 Intel Corporation, IA-64 Application Developer's Architecture
Guide, May 1999.
21 E. Stotzer, B. Huber, R. Tatge, and A. Ward, “Programming a
VLIW DSP in assembly language,” In Proceedings of the 2nd
International Workshop on Compiler and Architecture Support
for Embedded Systems, October 1999.
22 S. Rajagopalan, M. Vachharajani and S. Malik, “Handling
Irregular ILP Within Conventional VLIW Schedulers Using
Artificial Resource Constraints,” In Proceedings of CASES 2000,
November 2000.
23 B. Black and J. P. Shen, “Calibration of microprocessor
performance models,” IEEE Computer, vol. 31, pp. 59-65, May
1998.
24 R. Desikan, D. Burger, and S. W. Keckler, “Measuring
exprimental error in microprocessor simulation,” Proceedings of
the 28th International Symposium on Computer Architecture, July
2001.
25 K. Chen, S. Malik and D. August, “Retargetable Static Timing
Analysis for Embedded Software”, In Proceedings of the
International Symposium on System Sciences, (ISSS) 2001.

