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ABSTRACT 
Silicon capability has enabled the embedding of an entire system 
on a single silicon die. These devices are known as systems-on-a-
chip (SOC).  Currently, the design of these devices is 
undisciplined, expensive, and risky. One way of amortizing the 
cost and ameliorating this design risk is to make a single 
integrated circuit serve multiple applications, and the natural way 
of enabling this is through end-user programmability. The aim of 
the MESCAL project, which is the subject of this paper, is to 
introduce a disciplined approach to producing reusable 
architectural platforms that can be easily programmed to meet a 
variety of applications. (MESCAL stands for Modern Embedded 
Systems, Compilers, Architectures, and Languages.) 

1. INTRODUCTION  
While Moore’s Law has enabled us to increase the complexity of 
integrated circuits at an exponential rate, this increase in 
complexity has provided tough challenges to the design and 
design automation communities.  The design of individual devices 
and associated interconnect is becoming harder due to deep sub-
micron effects resulting in increasing interconnect delay and 
coupling. At the same time there are an exponentially more 
number of devices to deal with. The situation is further 
exacerbated by the need to integrate heterogeneous elements – 
digital, analog and mixed signal, RF, and software – on the same 
piece of silicon. Finally, all of this comes with competitive 
pressures to further reduce the time to market. This results in a 
quadruple whammy for designers and has resulted in the well-
publicized gap between manufacturing capability and design 
productivity. 

In addition to the intellectual design challenges, there are 
significant economic challenges associated with non-recurring 
engineering costs associated with manufacturing. The 
International Technology Roadmap for Semiconductors predicts 
that while manufacturing complex System-on-Chip designs will be 
practical, at least down to 50nm minimum feature sizes, the 
production of practical masks and exposure systems will likely be 
a major bottleneck for the development of such chips. That is, the 
cost of masks will grow even more rapidly for these fine 
geometries, adding even more to the up-front NRE for a new 
design. Reports indicate a single mask set and probe card cost for 
a state-of-the-art chip is over $0.5M for a complex part today, up 
from less than $100K a decade ago (note: this does not include the 
design cost). At 0.15µm technology SEMATECH estimates we 
will be entering the regime of the "million dollar mask set." 

One way of amortizing design cost and ameliorating design risk is 
to make a single integrated circuit serve multiple applications, and 
the natural way of enabling this is through end-user 

programmability. The aim of the MESCAL project, which is the 
subject of this paper, is to introduce a disciplined approach to 
producing reusable architectural platforms that can be easily 
programmed to meet a variety of applications. (MESCAL stands 
for Modern Embedded Systems, Compilers, Architectures, and 
Languages.) Achieving this goal requires coordinating research in 
applications, software environments, and application specific 
instruction processor (ASIP) design. We are currently focusing on 
networking applications. We aim to enable significant design-
space exploration by means of a highly automated environment for 
generating compilers and simulators from a high-level 
architectural description. Our target architectures are 
multiprocessor networks consisting of specialized VLIW 
processing elements. Our approach puts equal emphasis on 
concurrency in the communication network and on the 
effectiveness of the individual processing element. We note that 
our target applications are highly concurrent and so are our target 
integrated circuits. The goal then is to easily capture the process-
level, instruction-level, and bit-level concurrency of the 
application, and map it naturally onto the target device. 

In this introduction, we have motivated the use of programmable 
architectural platforms. In Section 2, we further motivate the 
development of a disciplined approach to the design of these 
platforms by examining current approaches to platform-
architecture development and by showing the deficiencies of these 
approaches in Section 3. Section 4 lists fundamental principles of 
platform architecture development, and the elaboration of these 
principles constitute the remainder of the paper. 

2. CURRENT APPROACHES TO PLATFORM-
ARCHITECTURE DEVELOPMENT  

This section briefly surveys the architectural diversity of current 
programmable platform architectures and the approaches to their 
development. 

2.1 Diversity of Current Architectures 
Parallelism and concurrency. Current systems on a chip support 
parallelism at a variety of levels. It is the increasing trend that 
SOCs have multiple processing elements on-chip. Common 
combinations are to have a RISC microprocessor for control 
functions and a Digital Signal Processor (DSP) for communication 
functions. Enabled by Moore’s Law, there is a trend toward even 
higher degrees of parallelism and already chips with 100’s of 
individual processing elements have been fabricated. As each 
processing element may support multiple computational processes 
there is the potential for very high levels of process-level 
parallelism on each chip. 



Because of their superior power/energy efficiency relative to 
superscalar processors, very large instruction word (VLIW) 
processors are gaining in popularity for embedded applications. 
VLIW processors allow instruction-level parallelism (ILP) to be 
computed by the compiler rather than generated dynamically. 

Some of the new architectural platforms also utilize reconfigurable 
computation fabrics, similar to Field-Programmable Gate Arrays 
(FPGA) on chip. These fabrics provide the opportunity for 
performing numerous bit-level operations in parallel. Although it 
comes with some cost in circuit area and performance, these 
reconfigurable fabrics offer bit-level parallelism in a user-
programmable way. 

Special Purpose Hardware. Modern platforms may have a 
variety of special purpose execution units tailored to their target 
application. For example, contemporary network processors may 
have built-in hardware for performing hash-table search. There 
may also be special purpose hardware for hiding memory latency. 

On-chip Communication Networks. Current platforms must 
utilize a variety of different mechanisms to efficiently interconnect 
processing elements to memory, to pins, and to each other. The 
complexity of this is further complicated by the heterogeneity of 
the processing elements themselves.  

2.2 DEVELOPMENT OF PLATFORM 
ARCHITECTURES 

Simulation. Approaches to the development of platform 
architectures vary widely. We do not attempt to characterize best 
practices here. Instead, we simply report the most common 
practices. At the heart of architectural development is the 
development of the simulator. Although simulator-generator 
environments exist [1] the most common practice is to ``hand-
craft’’ the simulator from C-code for each instance of the 
architecture. This approach means that the development cost for 
exploring an architectural variant is high. 

Compilation. There is limited use of automatically retargetable 
compiler components for platform architectures. As a result 
evaluation of benchmarks is principally limited to assembly 
coding. Benchmarks must be hand-coded in the assembly 
language of all new architectures. It can then be run on the hand-
crafted simulator to evaluate performance. The cost in developing 
the benchmark, the assembler, and the simulator limits design 
space exploration. 

2.3 WHY SO LITTLE TOOL SUPPORT? 
Given the growing reliance on programmable solutions for 
embedded systems it is interesting to reflect as to why there is not 
more tool support for designing these platforms. The primary 
reason is that the number of new processor development projects 
significantly lags that of ASIC development projects. A company 
aiming to provide tools for integrated circuit development would 
have a larger market opportunity by providing tools for traditional 
IC design problems such as static timing analysis or equivalence 
checking. 

3. DEFICIENCIES OF CURRENT APPROACHES 
TO THE DEVELOPMENT OF PLATFORM 
ARCHITECTURES 

The ad hoc approaches currently employed in platform 
architecture design lead to a number of recurrent problems. The 
first problem is that because of the high cost of design-space 

exploration, resulting architectures may be over-tuned to a few 
application benchmarks, and poorly suited to others. The resulting 
architecture may be quite inefficient on the general application 
mix.  

Because the development of the compiler and the software 
development environment lags that of the architecture, the 
resulting architecture may be poorly amenable to automated 
compilation techniques. The same computational idioms that made 
the architecture run efficiently on the small computation kernels 
coded in assembler may be impossible to capture in automated 
compilation. 

While some current architectures have done better at both design 
space exploration [2] and supplying software development 
environments for their resulting processor (for example in 
Tensilica’s Xtensa processor [3]), the deficiencies described here 
are very common.    

4. KEY PRINCIPLES OF THE DISCIPLINE OF 
PLATFORM ARCHITECTURE DEVELOPMENT 

Our goal is to develop and to further codify best practices in 
architectural platform development. In this section, we introduce a 
few of the key principles that guide our approach to architectural 
platform development. 

•  Modeling architectures using executable specifications that are 
formally analyzable. 

The first description of a particular architecture may be as 
semantically meaningless as figures on a napkin. Our aim is first 
to give a flexible graphical framework for the description of a 
multiprocessor architecture such that as soon as the architectural 
specification is entered a simulation of that architecture is 
available. Secondly, we aim to not just support, but also require, 
that the concurrent operation of the architecture be described in a 
formal manner using models of computation in Ptolemy II [4].  
Section 5 describes this process.  

•  Concurrent-development of hardware and software within an 
environment that supports multiple views (software 
development, simulation, architecture, hardware) of the 
architectural platform. 

Architectural simulators used for performance analysis, analysis 
tools used for software development, and compilers require their 
own description of the architecture. Thus, there are two 
challenges: The first is to develop architectural descriptions to 
support each of the tools. The second challenge is to ensure that 
these views are consistent. In MESCAL, we obviate these 
problems by maintaining a single architectural database from 
which the views required by the various tools are automatically 
generated. We give details in Section 6. 

•  Enabling disciplined design-space exploration through 
descriptive benchmarks and automatically generated compilers 
and simulators. 

There are a number of elements to exploring a design space 
associated with multiprocessors architectures in a disciplined 
manner. The first of these is the characterization of the design 
space itself. This entails elaborating the degrees of architectural 
freedom. The second is carefully identifying a set of 
computational kernels and benchmarks over which the 
architectures are to be evaluated.  This is further elaborated in 
Section 5. 



•  Exportation of programmer’s model to aid in platform 
exportation. 

Efficient programming of an architecture platform currently 
requires understanding the salient features of the underlying 
architecture. In the MESCAL approach, the software compiler is 
automatically retargeted as the architecture is developed; however, 
this does not mean that the best approaches for programming the 
architecture will immediately be evident. Our aim is to augment 
the platform architecture and its software development 
environment, with a programming model that conveys to an 
application programmer how to get the best performance from the 
platform architecture. Section 8 motivates the need of a 
programmer’s model.  

5. ARCHITECTURE EXPLORATION 
The goal of this part of the project is to provide an environment 
for the efficient exploration of concurrent architectures by means 
of a flexible interface provided with the heterogeneous simulation 
environment known as Ptolemy II [4]. Concurrency in our 
architecture is provided at multiple levels: at the bit level through 
specialized functional units, at the instruction level through VLIW 
processors, at the thread level through multi-threading and at the 
process level through multiple processors. The exploration 
environment enables the designer to specify a particular micro-
architecture and architecture, and automatically export an interface 
to these that is used for the retargetable synthesis of the software 
environment (simulators, compilers and custom run-time systems). 
In addition to the specification of the processing elements (PEs), 
the environment provides for the specification of the 
communication between the PEs. The communication 
specification provides for flexibility in the physical network – 
topology as well as switching type (circuit or packet), as well as 
flexibility in the protocol for the network usage. 

5.1 Defining the Space for Architectural Exploration 
Before an architectural design space can be explored, it must first 
be defined. If the initial definition of the search space is 
incomplete then all resulting architectures will be inadequate or 
incomplete because they will have failed to consider some 
architectural possibilities. In MESCAL, we have begun with a 
thorough categorization of existing network processor 
architectures, functional units, and co-processors [5]. 

5.2  Identifying Representative Benchmarks  
A benchmark is simply a standard by which something can be 
measured or judged. As the set of candidate architectures will be 
measured over and over relative to their performance on the set of 
candidate benchmarks, the choice of candidate benchmarks is very 
important. In MESCAL, our target platform architectures are 
network processors and our primary goal in developing network 
processor benchmarks is to compare network processors in a 
quantitative way. The secondary goals of these benchmarks are to 
provide insight into the network processor’s expected real-world 
application performance and to highlight the salient architectural 

features that are most useful for network processing applications. 
Our efforts on benchmarks and techniques for network processor 
comparison are currently being written up in [6]. 

5.3 Single Processing Element Environment  
A designer creates a processing element in the MESCAL 
environment by creating a back-of-the-envelope schematic of the 
structure of the micro-architecture. A graphical interface based on 
the tools Diva and Swing allows the user to drag and drop visual 
components and connect ports of the components with edges. The 
semantics of the schematic are created through the use of Ptolemy 
II and Vergil [4]. Specifically, processing elements designed in the 
MESCAL environment utilize a new Ptolemy II domain that 
implements multiplexed cycle based static dataflow semantics 
with cycle precision stalls. 

Spatial control is defined by creating instructions and their 
associated resource usage sets. After constructing a schematic of 
the model in the architecture view, the designer enters the 
instruction-set architecture (ISA) view of the model. In the ISA 
view, the designer names an instruction and clicks on the 
resources that the instruction uses. Automatic inference of the 
resource usage provides syntax directed editing of the spatial 
control. This greatly improves the productivity of the designer. 
Cycle based static dataflow semantics allow reservation tables to 
then be extracted by the use of static timing analysis based on the 
resource usage sets and structure of the model. The designer does 
not have to insert retiming and pipeline registers; they are implicit. 
Consistency is automatically maintained from the architecture 
view to the ISA view so that structural and timing changes are 
reflected in the reservation tables. The model is simulated using 
multiplexed cycle based static dataflow semantics by simulating 
the resources in a topological order on the cycles specified in the 
reservation table for a given instruction. On each cycle, a new 
instruction is fetched and the appropriate schedule is queued; this 
allows for an efficient simulation of a pipelined machine. A 
compiler uses the extracted reservation tables to create a valid 
schedule. 

Temporal control is defined by choosing the appropriate 
hierarchical splits in the model. Splits occur on boundaries where 
control signals that affect the temporal flow of data cross. A 
processing element model has two domain input ports, an 
instruction and a stall signal. The instruction signal’s purpose 
determines the spatial control. The stall signal determines the 
temporal control of a given spatial configuration. Stall signals 
cause the pipeline to interlock on the specified pipe stage. 
Designers need not model the pipeline interlocking since it is 
implicit to the domain. This allows models to more easily 
incorporate interrupts, exceptions, and dynamic control. The 
hierarchical splits usually occur on boundaries that separate the 
control plane from the data plane. The data plane is described 
using multiplexed cycle based static dataflow semantics. A 
number of different semantics may be used to describe the control 
plane as long as the appropriate instruction and stall signals are 
generated.  



5.4 On-chip Communication Architectures for 
Multiprocessors 

As mentioned above, silicon resources available today easily 
permit us to consider integrated circuits consisting of multiple 
processors on a single die. As applications traditionally have 
significant concurrency in them, now with significant concurrency 
available in the platforms, we can more efficiently map the 
application concurrency onto the architectural concurrency of the 
platform.  

A key element of the methodology to enable this is to consider the 
on-chip communication architecture as a first class element of the 
architectural exploration environment, rather than as an 
afterthought. There is a wide diversity of possible communication 
architectures available, and selection of an appropriate 
architecture can impact all metrics such as performance, power, 
etc. just as much, if not more, as the computational architecture. 

In the space of computational architectures, much effort has gone 
into classifying and modelling of different forms of architectures 
(RISC/CISC, VLIW/Superscalar, SIMD/MIMD) and elements of 
microarchitectures (pipelines, memory hierarchies, accelerators 
such as branch predictors etc.). However, while individual 
communication architectures have been modelled, there is little 
systematic classification of on-chip communication architectures 
or of the micro-architectural primitives that go into constructing 
such architectures. As part of the MESCAL effort to build an 
architectural exploration environment, we are developing a 
general modelling infrastructure for on-chip communication 
architectures. As part of this infrastructure, we have developed a 
class hierarchy of on-chip communication architectures as shown 
in Figure 1. The key idea here is that the entire family of possible 
communication architectures can be organized as a tree with 
specific instances at the leaves. A particular node in the tree 
inherits all the properties/characteristics of its ancestors and can 
add some of its own that are passed on to its descendents. The 
properties/characteristics are captured in a parametric executable 
behavioural model as part of the Ptolemy II [4] environment. As 
shown in the figure, this hierarchy is quite diverse, covering the 
space from conventional buses and circuit switching to more 
recently emerging packet switching architectures. 

The usage of this class hierarchy in architectural exploration is as 
follows. If the specific communication architecture to be explored 
is already present as a leaf, then its model is already available and 
this can be parameterised and used in architectural evaluation for 
simulation. If a new communication architecture is being 
developed, then its nearest ancestor is located in the hierarchy and 
customized by adding on specific characteristics. This is then 
added back to the hierarchy for potential reuse in the future. This 
methodology provides for an environment that provides rapid 
development of reusable customisable executable models, as well 
as a classification of the space of available architectures. Using 
this hierarchy, we were able to develop a detailed executable 
model for the AMBA [7] bus with relatively little additional effort 
once we had a model for the CoreConnect Bus [8] in place. With 
these specific well known instances of bus architectures now 
available as part of the architectural environment, any time a bus 
architecture is desired, either of these instances can be rapidly 
evaluated, or possibly a new custom bus architecture rapidly 
designed using the existing models as a base, and then evaluated. 

We see this hierarchy as being a key element of exploration of the 
combined computation and communication architectural space.  

6. ARCHITECTURAL PLATFORM VIEWS 

6.1 The Need for Multiple Views 
The architectural exploration environment is geared towards 
enabling the architect to rapidly assembly a diverse range of 
instruction set architectures and microarchitectures for the 
processing elements, as well as the communication architectures. 
Once a particular architecture has been assembled, it is likely to be 
subject to evaluation and potential use in the future. This requires 
that the architectural details be exported outside of this 
environment. The exact information that needs to be exported is a 
function of the intended use. For example, an instruction set 
simulator generator will need to know all the details of the 
microarchitecture, including the execution semantics of each 
microarchitectural component, as well as the instruction set 
architecture, along with a precise description of exactly how each 
instruction is executed. On the other hand, a compiler generator 
needs to know the semantics of each instruction, along with “well 
summarized” microarchitectural information regarding the usage, 
including constraints, of microarchitectural elements during 
instruction execution. By “well summarized” we mean the 
information is in directly usable form, such as a reservation table 
for VLIW processors, and does not require very complex analysis 
to extract. 

This diversity of types of exported information makes it clear that 
there is no single uniform architectural model that can be used for 
all the intended functions. Instead, we must support multiple 
views, each of which is geared towards supporting a specific 
function. Currently MESCAL supports an ISA view, which 
exports the instructions and their semantics, a simulator view for 
the simulator generator, a compiler view for the compiler 
generator and a memory view, which describes the memory 
hierarchy. The views are possibly overlapping in as much as the 
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same information may be available in the same or possibly 
different form in more than one view. A key requirement on the 
generation of these views is that they guarantee consistency 
among the different views. The above set of views is not intended 
to be complete; instead the environment is expected to be flexible 
enough to permit the generation of additional views that may be 
required in the future.  

6.2 MESCAL Architectural Description (MAD) 
The MESCAL Architecture Description is a compiler and 
simulator view that is generated from the architectural 
environment and serves as a target description for a retargetable 
simulator and compiler. The architecture description describes 
both the computation as well as the communication architecture. 
The description itself is in XML, which makes it flexible, and 
enables leverage of standard XML tools. 

The computational architecture is specified by providing the ISA, 
and the microarchitectural description required by the simulator 
and compiler. It combines a behavioral and a structural model, as 
well as the mapping of the former onto the latter, for this purpose.  

The behavioral model provides details of the instruction set 
architecture, and describes the operations, opcodes, encodings, 
operands, various categories of operations, and the semantics of 
the operations. The structural model provides details of the 
microarchitectural components such as decoders, pipeline stages 
as well as their interconnection. The interface between the 
behavioral and the structural model is key in describing the 
physical execution of instructions. This describes the mapping of 
operands to functional units, as well as operations to pipeline 
stages. A key feature of MAD is system support capability. This 
includes the support for privileged instructions, the ability to 
model interrupts, and the ability to support specialized functional 
units such as communication assists - a critical element of this 
methodology in dealing with communication between distributed 
computation. 

The communication architecture again has a behavioral model and 
a structural model associated with it. The structural model is a 
netlist of the components of the communication architecture. The 
behavioral model captures the semantics of the exact 
communication occurring between these. This is accomplished by 
using the same parametric description of communication 
architectures as shown in Figure 1.  An instance of a 
communication architecture is described by specifying a leaf in the 
tree, with specific parameters for each of the nodes on path from 
the root of the tree of the leaf. The semantics of each of the nodes 
on this path describe the semantics of the communication 
architecture. This can be used by the simulator and compiler 
generators. The parameters quantify various metrics such as 
bandwidth, throughput, latency and power of basic operations, 
buffer sizes etc.  

There are several competing architectural specification languages 
available today such as nML [9], ISDL [10], Maril [11], HMDES 
[12], LISA [1], PRMDL [13], RADL [14] and Expression [15]. 
We have done a detailed comparison of the capabilities of MAD 
with these forms of specification. None of them provide either 
system support or the ability to specify communication 
architectures as MAD does. In terms of support for describing 
basic processor elements, LISA and Expression come the closest 
to MAD. In comparison with LISA, MAD has a higher level of 
abstraction, and thus more compact specification. It also directly 
provides support for VLIW compilers in terms of clear description 

of instruction level parallelism. MAD and Expression are similar 
in their goals of providing support for simulators and compilers 
for VLIW processors. However, MAD has less redundancy in the 
description and thus fewer issues of consistency in description.  

6.3 Liberty Simulator Specification 
There are two steps to generating a simulator. First, a view 

generator converts a MAD Description into a Liberty Simulator 
Specification (LSS). Then, using this specification, the Liberty 
Simulation Environment (LSE) constructs a simulator by 
instantiating microarchitectural modules and connecting them with 
instantiated channels. A module is a microarchitectural component 
template, which interacts with other parts of the simulator via 
input and output ports. A channel is a communication template, 
which connects one or more module ports. In general, modules 
describe significant functionality such as caches, branch 
predictors, and functional units while channels describe timing 
interactions using notions such as wire, queue, and filter. The LSS 
directs the instantiation and connection of the module and channel 
templates.  

The Liberty Simulator Specification serves two purposes. 
First, LSS is a Liberty simulator view of the architecture - LSS 
represents the microarchitecture in a manner conducive to 
simulator generation. Second, LSS allows the designer to directly 
manipulate the microarchitecture to be modeled. This access is 
necessary for modeling irregularities introduced by VLSI 
constraints or other details not describable with MAD. Unlike 
MAD, LSS approximates the computer architect's view of the 
microarchitecture - modules and channels generally have a 
physical counterpart in the hardware. The relative ease of 
manipulating the LSS makes customizing a simulator to match a 
candidate microarchitecture an efficient process for the 
microarchitect. Like MAD, LSS is stored as an XML ASCII 
description, but typically a graphical visualizer is the preferred 
user interface.  

A complete Liberty Simulator Specification consists of four 
parts: module instantiations to create architectural functions, 
channel instantiations to create connections, control points to 
specify complex or non-local control not implied by channel 
connections, and event instantiations to provide the user or 
compiler with performance feedback. 

Module Instantiation. To create an architectural component in 
the simulator, a module instantiation is indicated in LSS using the 
instantiation directive, INST. In Figure 2, an instruction fetch 
unit ifetch1 is created from the ifetch template. Each 
instantiated module can have its behavior customized via 
parameters. Module instantiation tools use these parameters at 
simulator construction time to create code appropriate for the 
specific case. All module types define a default set of parameters 
to use if a parameter is not specified in LSS. Here the default 
ifetch parameter decode_latency is overridden in 
ifetch1 to have a value of 1 cycle.  

Channel Instantiation and Connection. Channels are instantiated 
much like modules - they have parameters and are derived from a 
channel type template. In Figure 2, a queue named pred_chan 
is created between the instruction fetch (fetch1) lookup port 
and the branch predictor (bpred1) predict port to initiate 
branch predictions at the appropriate time. In this example, the 
channel uses the default type parameters. Data passing through 
channels has the type specified by datatype. Here, the channel 
only relays a trigger signal without associated data.  



Control Points and Exported State. Channel connections imply 
local and regular control information. For example, instruction 
fetch initiates branch predictions with the pred_chan channel. 
Unfortunately, channels cannot express all control possible in real 
machines, so a control point mechanism exists to express this non-
local or irregular control logic. In Figure 2, the control function 
decide_to_fetch stops instruction fetch whenever the 
rename logic has fewer than 8 free registers. To accomplish this, 
the control function uses the free_regs exported state 
function from the rename1 instantiated module in making a 
fetch decision.  

Event Points. Since the type of information necessary from the 
simulator is application specific, LSS allows the inclusion of code 
at various event points. The code at an event point executes 
whenever a particular event has occurred. The user specified code 
at these event points can perform a variety of tasks ranging from 
collecting simple statistics to driving a visualizer or debugger. 

7. PLATFORM ARCHITECTURE EVALUATION 
ENVIRONMENT 

Both a compiler and a simulator are necessary to evaluate a 
candidate platform. However, to influence the design process in a 
meaningful manner the time and resources put into their design 
and construction must be moved off the processor design critical 
path. Therefore, the compiler and simulator must be automatically 
generated. 

7.1 Compiler Development 
Platform architectures are only truly programmable when they 
include an optimizing compiler. The performance of a platform 
architecture is a combination of the quality of the code generated 
by the compiler and the efficiency of the hardware while executing 
that code. The only meaningful measure of the fitness of a 
particular platform architecture is one which includes the entire 
system, compiler and hardware. Naturally, the most advanced 
architectural mechanisms are of little worth if compiler technology 
is not able to exploit them. Disciplined development of platform 
architectures requires the consideration of many candidate 
compiler/hardware pairs. Therefore, an automatically retargeted 
compiler is a requirement.  

While many compilers in the past have been retargetable [16, 17, 
18], they often do not have automatic retargeting of machine 
specific optimizations, beyond instruction selection, scheduling 
and register allocation. To make things worse, most processors 

(DSPs, network processors, etc.) require machine specific 
optimizations [19, 20]. In fact, programmers often code for some 
of these devices in assembly language since compilers, when they 
exist, do not regularly generate performance-boosting code [21]. 
This is not an acceptable solution for programmable platforms.  

The MESCAL compiler and MAD together provide a solution to 
the problem of creating an automatically retargetable compiler. 
The MESCAL compiler uses the MAD description to guide 
instruction selection, optimization, scheduling, and register 
allocation. Since the MESCAL compiler makes no assumptions 
about the target machine not explicitly described in MAD or 
implied by MAD's domain, automatic retargetability becomes 
tractable. The key to success is to extend current compiler 
technology rather than restrict MAD's domain.  

Consider, for example, the conflicting requirements that 
instruction set architects and compiler writers often have for the 
design of the instruction set. The architects are driven by micro-
architecture complexity and code size considerations; while the 
compiler writers prefer clean orthogonal instruction sets amenable 
to regular compiler algorithms. For a variety of reasons, special 
purpose processors often have very irregular architectures that are 
very hard to compile for and that need specialized optimization 
techniques. Instead of avoiding these irregular architectures or 
writing a customized optimizer for each one, the MESCAL 
compiler and MAD generalizes these architectures to create 
retargetable compiler support for them.  

Traditional compilers work directly with physical resources to 
determine what can and cannot be scheduled in parallel. It is 
desirable to leverage this large body of work for the MESCAL 
compiler. Using a MAD view, irregularities in the ISA can be 
matched with the regular resource-based requirements of classic 
compilers by generating a set of artificial resources from the ISA 
specification. The artificial resources are generated by solving a 
combinatorial graph labeling problem, which is generated from 
the MAD ISA specification. These resources may not correspond 
to any real physical resources, but are equivalent in as much as 
they specify the instructions which can be executed in 
simultaneously in a manner equivalent to the real resource 
specification [22].  

The MESCAL compiler contains other generalizations which 
enhance the domain of automatically retargetable compilers. By 
designing the compiler in this way, compiler writers can create 
compilers for architectures before they are specified, moving their 
efforts off the critical path, and enabling meaningful design of 
platform architectures. 

7.2 Simulator Development  
A requirement for disciplined development of platform 
architectures is a retargetable, fast, and precise simulation tool. 
Most simulators in the past have not been retargetable, have 
supported only a limited class of microarchitectures, or have 
abstracted away important design details [23, 24]. Many have not 
accurately modeled control effects due to this abstraction. These 
inaccuracies can lead designers to make incorrect design decisions 
[24]. The Liberty Simulation Environment (LSE) 
(http://liberty.princeton.edu) addresses these 
requirements.   

Automatic Retargetability. A Liberty simulator is automatically 
created by the simulator builder from a Liberty Simulator 
Specification (LSS), modules from a module library, and channels 

Figure 2: Portion of a Liberty Simulator Specification. 

<INST name="ifetch1" type="ifetch"> 
  <PARAMETERS> 
    <PARM name="decode_latency" value="1"/> 
  </PARAMETERS> 
  <CONTROLFUNC name="decide_to_fetch"> 
    if(QUERY_CALL(rename1, free_regs) < 8)  
      return SIM_decision_no; 
    return SIM_decision_yes; 
  </CONTROLFUNC> 
</INST>     
<CHANNEL name="pred_chan" datatype="none"  
         type="queue" model="q"> 
  <CONNECT inst="ifetch1" name="lookup"/> 
  <CONNECT inst="bpred1" name="predict"/> 
</CHANNEL> 



from a channel library. Of these, only the LSS creation must be on 
the design critical path. Simulator writers should spend their time 
creating module and channel libraries prior to the start of platform 
architecture exploration. The modules and channels they create 
should be flexible enough to be used in a wide class of 
architectures.  

Since the same module or channel may be reused in many vastly 
different contexts, it is unlikely that an efficient and generic 
module could be written once in a high-level language. Doing so 
would forgo the opportunity to optimize the module for each 
particular parameter set. Consequently, LSE uses a statically 
instantiated object system to create specialized components. The 
process is akin to object instantiation in JAVA, except that it is 
done statically to allow host compiler optimization, and it is done 
with simulation specific knowledge to allow algorithmic-level 
optimizations not achievable any other way.  

Fast Simulation. To explore many points of the design space, the 
simulator must be fast while remaining feature rich. Static 
instantiation of the modules and channels allows the code to be 
host compiler optimized for each particular case. The simulator 
construction environment is built so that one only pays for the 
features that are used. For example, if an architect is not yet 
interested in modeling the effects of various types of speculative 
update of branch predictor state, the branch predictor does not 
waste time updating its state speculatively. Also, constructed 
simulators need not be complete. For example, if one is only 
interested in the pipeline, the remainder of the machine need not 
be instantiated. Semantics for unconnected module ports ensure 
proper simulator operation.  

LSE also takes a different approach to instruction decode. 
Microprocessor simulators often perform instruction decode 
dynamically, an unnecessary task. This is not to say that one does 
not need to know which instruction is being executed, but that all 
information associated with an instruction can be statically pre-
decoded. Liberty implements this technique by statically decoding 
instructions and generating code for evaluating them (this is 
known as compiled-code simulation). Note, however, that 
Liberty's novel approach allows it to simulate, in a cycle accurate 
fashion, dynamic effects such as mis-speculation despite the use of 
compiled-code simulation. Using compiled-code simulation 
precludes the use of self-modifying code, but gives huge 
performance gains - generally two orders of magnitude when 
compared to an equivalent dynamically decoded functional 
simulator. A dynamic decoder is available to handle self-
modifying codes when they are encountered.  Using compiled-
code simulation, functional simulation with a Liberty simulator is 
typically only one to four times slower than native hardware.   

Precise Simulation. With the LSE, we can precisely model non-
local and irregular complex control, including those stemming 
from VLSI considerations without a need to understand or directly 
modify simulator code. Module writers must insert place holders 
for certain control decisions in their code. As shown earlier, a user 
can specify the control logic in the LSS using control functions. 
These control functions can create their own state or query state 
exported by other module instances.  

7.3 Other tools 
While performance simulators and compilers are critical elements 
in the evaluation loop of architectural platforms, there are other 
tools that can also be significant.  

Increasingly, power is emerging as possibly more critical than 
performance as a design metric. Thus, we need to provide support 
for power evaluation and optimization at the same level as 
performance. We have done this in the Liberty simulator by 
building a power simulator in parallel with the performance 
simulator. It shares the same design as the performance simulator, 
differing only by using power models instead of performance 
models. As with the performance simulator, this is completely 
retargetable. 

Several platform applications have real-time deadlines. 
Guaranteeing hard real-time deadlines is not possible using 
simulation. We have integrated a retargetable static timing 
analysis engine as part of the MESCAL framework for this 
purpose [25]. The analysis engine uses our previously developed 
algorithms based on integer linear programming for implicit path 
analysis, and static cache modeling techniques. 

Debuggers and performance visualization tools are very important 
for enhancing designer productivity; however, thus far, we have 
been unable to devote any resources to this area. 

8. EXPORTING THE ARCHITECTURAL 
PLATFORM THROUGH A PROGRAMMER’S 
MODEL 

MESCAL is aimed at platform architectures for embedded-system 
applications. These architectures are certain to have high-level 
process concurrency, operator/instruction level parallelism, bit-
level parallelism, and multiple application-specific execution 
units. Our goal in MESCAL is to create easy to understand 
programmer’s models of the target architectures that enable 
application developers to get as close to assembly-language 
programming quality as possible.  

We use as inspiration the development of the C-language as a 
programmer’s model for minicomputers and workstations. 
Although the C-compiler technology for the C-language was 
relatively primitive, the C-language became the standard for high 
performance programming of minicomputers and workstations. 
We believe that this was due to a judicious choice of the key 
assembly language features (pointer arithmetic, bit-manipulation, 
register keywords) to make programmer visible in the C-language. 
Similarly, our aim is to determine the 20% of the architectural and 
microarchitectural features that allow for 80% of the architecture’s 
performance. Initially we are focusing on network processors and 
looking for constructs to make easily visible their features such as 
zero-overhead context switching, queue management, and built-in 
primitives such as hash-table lookup. 

9. SUMMARY, CONCLUSIONS 
Current approaches to IC design are becoming unmanageable. The 
development of programmable platforms provides an attractive 
way to minimize design risk and cost. There is currently little 
discipline to the development of programmable platforms. This is 
the gap that the MESCAL project aims to fill. We also have 
considerable effort focused on mapping applications onto 
programmable platforms, but space limitations in this paper have 
only allowed us to present the broadest details of our current 
research efforts on platform architecture development.  More 
details and reports of progress on MESCAL can be learned from 
our website at www.gigascale.org/mescal. 
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