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Abstract

Multiprocessor systems present serious challenges in the
design of real-time systems due to the wider variation of
execution time of an instruction sequence compared to a
uniprocessor system. Even if non-determinism is tightly
controlled by adding conventional QoS support, it is gener-
ally difficult to find the minimal hardware resource request
settings (e.g., memory bandwidth) for a given user-level
performance goal (e.g., transactions per second). In this
paper, we introduce the METERG (Measurement-Time En-
forcement and Run-Time Guarantee) QoS system that pro-
vides an easy method of obtaining a tight estimate of the
lower bound on end-to-end performance for a given config-
uration of resource reservations. Every QoS-capable block
in the METERG system supports two operation modes for
each task requiring QoS: enforcement mode for estimat-
ing the lower bound on a task’s execution time and deploy-
ment mode for maximizing its performance. We evaluate
the effectiveness of our approach with an execution-driven
multiprocessor simulator implementing the METERG QoS
memory subsystem. We show that the performance lower
bound is easy to obtain by simply running an application in
enforcement mode, and that this estimated lower bound is
tight.

1 Introduction

As semiconductor technology continues to improve and
reduces the cost of transistors, computing devices are be-
coming more pervasive. Computing systems are now called
upon to process a wide variety of complex application work-
loads with demands for real-time or near real-time process-
ing of real-world data streams. The difficulty of meeting
power-performance goals with uniprocessor designs has led
to the adoption of multiprocessor architectures in all scales
of system, from handheld devices to rack-mounted servers.

Existing techniques for managing real-time systems can
provide hard guarantees for small applications running on
uniprocessor systems, but there is a growing need to sup-
port complex multiprogrammed workloads, including both
soft real-time and best-effort tasks, running on multiproces-
sor systems. For example, a handheld device might support
various types of media codec running alongside best-effort
background tasks on an embedded multiprocessor core [14].
As another example, the provider of a co-located server
farm may use OS virtualization to reduce computing costs
by supporting multiple customers on a single multiproces-
sor server but would like to offer varying levels of guaran-
teed performance.

Conventional multiprocessor systems present severe
challenges when trying to provide even soft real-time guar-
antees. Multiple concurrent processes exhibit complex non-
deterministic interactions when sharing common system re-
sources, such as the memory system, causing execution
time to exhibit much wider variation than in a uniprocessor.
As the number of processors increases, problems are usu-
ally exacerbated. For example, in Intel’s Paragon system [8]
with 1,024 nodes, the theoretical worst-case message deliv-
ery time is several days [10]. Although extreme, this ex-
ample underscores the need for Quality-of-Service (QoS)
support in multiprocessor systems. A typical QoS system
has hardware-enforced resource allocation controlled by an
operating system, which allocates resources and performs
admission control to ensure QoS resources are not oversub-
scribed.

Even though QoS-capable hardware components pro-
vide performance isolation and allow tighter bounds on a
task’s execution time, a major problem still remains: users
would like to request only the minimal resources needed
to meet the desired performance goal. That is, translat-
ing a high-level performance goal for a complex application
(e.g., transactions per second) into minimal settings for the
hardware QoS components (e.g., memory bandwidth and
latency) is challenging and usually intractable.

One approach is for the user to try to measure the per-



formance of their code running on the target system with
varying settings of the resource controls. Unfortunately,
a conventional QoS-capable shared resource usually dis-
tributes unused resources to the sharers so as to maximize
the overall system’s throughput. Consequently, even with
an identical setting of resource reservation parameters, the
observed performance of an instruction sequence fluctuates
widely depending on how much additional resource it re-
ceives. Even if competing jobs are run to cause severe re-
source contention, we cannot safely claim the observed per-
formance is really representative of worst case contention.

In this paper, we propose a new measurement-based
technique, METERG (Measurement-Time Enforcement
and Run-Time Guarantee), where QoS blocks are modified
to support two modes of operation. During performance
measurement, resource guarantees in the QoS blocks are
treated as an upper bound, while during deployment, re-
source guarantees are treated as a lower bound. The ME-
TERG QoS system enables us to easily estimate the max-
imum execution time of the instruction sequence produced
by a program and input data pair, under the worst-case re-
source contention. In this way, we can guarantee measured
performance during operation.

Unlike static program analysis techniques, which cover
all possible input data, the METERG methodology is based
on measurement of execution time for a certain input set.
However, this is still useful, especially in soft real-time sys-
tems, where we can use representative input data to get a
performance estimate and add a safety margin if needed. In
a handheld device, for example, a small number of dead-
line violations may degrade end users’ satisfaction but are
not catastrophic. Such potential violations are tolerable in
exchange for the reduced system cost of shared resources.
In contrast, hard real-time systems, such as heart pacemak-
ers, car engine controllers, and avionics systems, justify the
extra cost for dedicated resources with possibly suboptimal
throughput.

The rest of this paper is organized as follows. In Sec-
tion 2, we review related work. In Section 3, we first
overview the METERG QoS system with the set of assump-
tions made, followed by the details of the system. In Sec-
tion 4, we give a preliminary evaluation of a METERG QoS
system using our execution-driven multiprocessor simula-
tor. Finally, we summarize our work and suggest directions
for future research.

2 Related Work

The end-to-end performance (e.g. execution time) of a
program running on a multiprocessor is the result of com-
plex interactions among many factors. We identify three
major factors causing non-deterministic performance. First,
performance depends on the input data to the program, as

this determines the program’s control flow and data access
patterns. Second, even if we run the program with identical
input data multiple times, the performance of each run can
vary widely because of the different degrees of contention
in accessing shared system resources. Third, performance
anomalies [23, 18] in microprocessors also affect the end-
to-end performance.

The first factor has been actively investigated in the
real-time system community in Worst Cast Execution Time
(WCET) studies [26, 3, 16, 7, 21, 2]. Researchers have
made efforts to estimate a program’s WCET across all pos-
sible input data. The third factor is not problematic as long
as a processor is performance monotonic, i.e., longer access
time to a resource always leads to equal or longer execution
time. Performance monotonicity holds for simpler proces-
sors, but not for some complex out-of-order processors. A
code modification technique [23], or an extra safety mar-
gin can be added to the estimated lower bound of perfor-
mance to cope with performance non-monotonicity. We do
not cover this issue further in this paper. Our work reduces
the non-determinism caused by the second factor: resource
contention.

The goal of QoS research is to limit the impact of the
non-determinism coming from resource contention. QoS
was originally introduced in the context of long-haul IP net-
works, where a network that can provide different levels of
packet delivery service in terms of latency, bandwidth, or
both, is said to support QoS [15]. The idea of QoS has
since been applied to other shared resources such as mul-
tiprocessor interconnection networks [10, 25, 19], memory
subsystems [4, 20], and storage and I/O systems [1, 24].

Recently, researchers have investigated QoS support for
smaller-scale shared resources, especially those within pro-
cessors. Iyer addresses the QoS issue in shared caches
of CMP platforms [9]. Kalla et al. [13] allocate shared
resources to concurrent threads on a simultaneous multi-
threaded (SMT) processor, such as instruction issue band-
width, based on a fixed static priority.

Most QoS research projects mentioned above, however,
focus on bounding the non-determinism of individual re-
sources, and their link to the user-observable end-to-end
performance still remains unclear. Therefore, users often
have to rely on the high-level knowledge of a program in
setting up the resource reservation parameters appropriately
to meet a certain end-to-end performance goal.

One interesting exception is the work done by Cazorla
et al [5]. On an SMT processor, for a given performance
goal specified by a user metric (instructions-per-cycle, or
IPC), a dynamic adjustment is made to allocation of shared
resources such as renaming registers, instruction/load/store
queues, L2 cache, to meet the IPC goal. However, the ad-
justment is made based on observations during the previ-
ous sampling period, which could be in a different program
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phase with completely different IPC characteristics.
Note that our work differs from real-time scheduling re-

search [17, 22, 11, 6]. In the conventional formulation of the
real-time scheduling problem, it is assumed that, for a given
set of n tasks (T1, T2, · · · , Tn), the execution time of each
task (or its upper bound) is known in advance. Then each
task is scheduled for execution at a particular time. In con-
trast, our work provides performance guarantees to ensure
the estimated execution time of each task is not violated in
practice because of severe resource contention. Our work is
independent of the scheduling algorithm.

In order to estimate a lower bound on end-to-end per-
formance, existing frameworks for WCET estimation can
be used [26, 3, 16, 7, 21, 2]. By assuming all memory
accesses take the longest possible latency, the execution
time, given worst-case resource contention, can be calcu-
lated. However, use of WCET is limited. Most WCET es-
timation techniques require several expensive procedures:
elaborate static program analysis, accurate hardware mod-
eling, or both. These techniques cannot be easily applied, if
at all, to complex hardware components and programs.

3 The METERG QoS System

3.1 Overview

In the METERG QoS system, each process requiring
QoS support (QoS process for brevity) can run in two oper-
ation modes: enforcement and deployment. In enforcement
mode, a QoS process cannot take more than its guaranteed
resource share from each QoS block even when there are
additional resources available. In deployment mode, how-
ever, the process is allowed to use any available additional
resources (we do not discuss policies for sharing excess re-
sources among multiple QoS processes in this paper). If a
QoS block supports the two operation modes as described
above, we call it a METERG QoS block. If every shared
resource within a system is a METERG QoS block, the sys-
tem is termed a METERG system.

With a METERG system, a user first measures execu-
tion time of a given code sequence with a given input in
enforcement mode with given resource reservation parame-
ters. The METERG system then guarantees that a later exe-
cution of the same code sequence in deployment mode will
perform as well as or better than the previous execution in
enforcement mode, provided the same parameters are used
for resource reservation. More specifically, a user takes the
following steps:

• Step 1 Given an input set and a performance goal for
execution time (TGOAL), the user runs the program
with the input set in enforcement mode. The system
provides APIs to set resource reservation parameters

to arbitrary values. (Setting these parameters to rea-
sonable values can reduce the number of iterations in
Step 2.)

• Step 2 Iterate Step 1 with various resource reserva-
tion vectors to find a minimal resource request setting
that still meets the performance goal. If the measured
execution time (TMEAS) is smaller than TGOAL −
TMARGIN (where TMARGIN is a safety margin, if
needed), the user may try a smaller resource reserva-
tion vector. If not, they may increase the amount of
reserved resources. We believe that this process can be
automated, but do not consider an automated search in
this paper.

• Step 3 The estimated minimal vector of resource reser-
vation is stored away, for example, as an annotation in
the binary. There can be multiple minimal vectors, or
pareto-optimal points, meeting the performance goal,
to enable better schedulability for the program.

• Step 4 Later, when the program is run in deployment
mode, the OS uses a stored resource reservation vec-
tor to configure the hardware accordingly. Note that
the system may reject the resource reservation request
if oversubscribed. If the request is accepted, the ex-
ecution time (TDEP ) is guaranteed to be no greater
than TGOAL − TMARGIN . Any performance slack
(TGOAL−TMARGIN−TDEP ) of the program in run-
time can be exploited to improve the system through-
put or reduce energy consumption as described in [2],
but we do not address this issue further.

Figure 1 depicts the METERG system model. There are
n processors and m METERG QoS blocks (e.g. memory,
I/Os). These QoS blocks are shared among all n proces-
sors, and can reserve a certain amount of resource for each
processor to provide guaranteed service (e.g. bandwidth,
latency). Unlike conventional guaranteed QoS blocks, they
accept an extra parameter, OpModei, from a processor to
request the QoS operation mode. If the processor requests
enforcement mode, the strict upper bound on runtime usage
of a resource is enforced in every METERG QoS block. If
the processor requests deployment mode, it can use addi-
tional otherwise unclaimed resources.

We assume that the j-th METERG QoS block (where
1 ≤ j ≤ m) maintains a resource reservation vector of
n real numbers, (x1,j , x2,j , . . . , xn,j), where the i-th entry
(xi,j) specifies the fraction of available resource reserved
for processor i. We use a single number per processor for
simplicity. For example, a shared memory bus may take
the vector to determine the fraction of available bandwidth
it will allocate to each processor, and set up the bus arbiter
properly (time sharing). Another example could be a shared
cache to determine how many ways or sets it will allocate to
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Figure 1. The METERG QoS system. Each
QoS block takes an extra parameter (Op-
Mode) as well as a resource reservation pa-
rameter (xi,j) for each processor.

each processor (space sharing). The range of xi,j is between
0 and 1 by convention, where xi,j=1 indicates that the i-th
processor will monopolize all of the available resource from
the QoS block, and xi,j=0 indicates no guaranteed share
for the i-th processor or only a best-effort service from the
QoS block. Note that guaranteed services can be provided
only to a limited number of sharers meeting the condition∑n
i=1 xi,j ≤ 1.
Before further discussion, we present a set of assump-

tions for the rest of this paper:

• We limit ourselves to dealing with single-threaded
programs in the multiprogrammed environment. We
do not consider interprocess communication or shared
objects among multiple threads running on different
processors.

• At any point in time, there can be only one (or no) ac-
tive thread running on a processor – that is, there is
no interference such as cache contamination between
multiple threads on the same processor. Combined
with the previous assumption, this implies a one-to-
one relationship between running processes and pro-
cessors.

• We neither consider the performance variation from
OS operations (e.g. flushing cache or branch predictor
states after a context switch), nor address OS design
issues (e.g. admission control, scheduling). A sched-
uled program runs to completion without preemption

by other processes.

• We are not concerned about the performance variation
coming from the processor’s initial state, whose per-
formance impact can be easily amortized over a pro-
gram’s longer execution time in most cases.

3.2 Safety-Tightness Tradeoff: Relaxed
and Strict Enforcement Modes

We propose two types of enforcement mode,relaxed and
strict, to reflect a tradeoff between safety and tightness
of performance estimation. The estimated execution time
should not be violated (safety), but be as close as possi-
ble to typical execution times (tightness). So far, we have
accounted for the amount of allocated resources (i.e., band-
width), but not the access latency to each QoS block. How-
ever, the execution time of a program is heavily dependent
on latency as well. In Figure 2, we show an example of
two network connections between Node 0 (N0) and Node 3
(N3) with a simple fixed frame-based scheduling. Although
Connection B receives twice as much bandwidth as Con-
nection A, its latency is longer. This longer latency could
lead to a longer execution time for a given instruction se-
quence. Therefore, we introduce strict enforcement mode
to enforce constraints on both bandwidth and latency. Con-
dition 1 below (Bandwidth) is met by both relaxed and strict
enforcement modes, but Condition 2 (Latency) is met only
in strict enforcement mode.

Condition 1 For a given processor i, and ∀j(1 ≤ j ≤ m),

BandwidthDEP (xi,j) ≥ BandwidthENF (xi,j)

Condition 2 For a given processor i, and ∀j(1 ≤ j ≤ m),

MAX{LatencyDEP (xi,j)} ≤
MIN{LatencyENF (xi,j)}

Assuming performance monotonicity of a processor,
we can safely claim that the estimated performance lower
bound in strict enforcement mode will not be violated in
deployment mode. The estimated lower bound of execu-
tion time in strict enforcement mode is safer than that in the
relaxed enforcement mode but is not as tight.

3.3 METERG QoS Memory Subsystem:
An Example

We can build METERG QoS blocks meeting Condition 1
by slightly modifying conventional QoS blocks supporting
per-processor resource reservation. The QoS scheduling al-
gorithm is modified to exclude processors running in en-
forcement mode when distributing unclaimed slots.
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Figure 2. An example of having longer latency in spite of more bandwidth.

Latency guarantees are more difficult to implement than
bandwidth guarantees. Fortunately, although conventional
latency guarantees require a certain time bound not to be
exceeded (absolute guarantee), the METERG system re-
quires only the inequality relationship in Condition 2 to hold
(relative guarantee). Given METERG QoS blocks capable
of bandwidth guarantees, we can implement the METERG
system supporting strict enforcement mode by inserting a
delay queue between every QoS block-processor pair on the
reply path.

Figure 3 depicts an example of a METERG QoS mem-
ory subsystem supporting strict enforcement mode. For the
rest of this paper, we drop the QoS block identifier in re-
source reservation parameters, for we only have one shared
resource for illustrative purposes, i.e., xi ≡ xi,j . Because
the memory block is capable of resource reservation, we can
assume that the latency to this block in deployment mode is
upper bounded. The upper bound, TMAX(DEP )(x1), is de-
termined by the resource reservation parameter x1. Note
that the bounded latency is not guaranteed in enforcement
mode, because the program receives no more resource than
specified by x1.

The delay queue is used only in enforcement mode; it
is simply bypassed in deployment mode. If a memory ac-
cess in enforcement mode takes Tactual cycles, which is
smaller than TMAX(DEP )(x1) due to lack of contention,
the network interface (NI) places the reply message in the
delay queue with the entry’s timer set to TMAX(DEP )(x1)−
Tactual. The timer value gets decremented every cycle.
The NI will defer signaling the arrival of the message to
the processor until the timer expires. Hence, the proces-
sor’s observed memory access latency is no smaller than
TMAX(DEP )(x1) and Condition 2 holds.

Because the processor needs to allocate a delay queue
entry before sending a memory request in enforcement
mode, a small delay queue may cause additional memory
stall cycles. However, this does not affect the safety of the
measured performance in enforcement mode, but only its
tightness.

The memory access time under the worst-case con-
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Figure 3. An implementation of the METERG
system supporting strict enforcement mode.
We use delay queues to meet the latency
condition (Condition 2) required by strict en-
forcement mode.

tention for a given resource reservation parameter (x1),
TMAX(DEP )(x1), depends on the hardware configuration
and the scheduling algorithm. In some systems, the latency
lower bound is known or can be calculated [15, 4, 10]. For
example, for connection A in the setup shown in Figure 2,
it is straightforward. Because it uses simple frame-based
scheduling with ten time slots in each frame and at least
one out of every ten is given to the process, each hop can-
not take more than 10 time slots (if there is no buffering
delay caused by a large buffer). Therefore, the worst-case
latency between Node 0 and 3 will be 30 time slots. If the
estimation process is not trivial, however, one may use an
observed worst-case latency with some safety margin.
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4 Evaluation

In this section, we present a preliminary evaluation of the
METERG system. We evaluate the performance of a single-
threaded application with different degrees of resource con-
tention on our system-level multiprocessor simulator.

4.1 Simulation Setup

We have added a strict METERG memory system to
a full-system execution-driven multiprocessor simulator
based on Bochs IA-32 emulator [12]. Figure 4 depicts the
organization of our simulated platform. Although our sim-
ulator only supports the METERG QoS in the memory sub-
system, we believe that the QoS support can be extended to
other shared I/O devices (e.g. disk, network).
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Figure 4. A simple bus-based METERG sys-
tem. The memory subsystem is capable of
METERG QoS.

Our processor model is a simple in-order core capable of
executing one instruction per cycle, unless there is a cache
miss. A cache miss is handled by the detailed memory sys-
tem simulator and takes a variable latency depending on the
degree of contention. The processor’s clock speed is five
times faster than the system clock (e.g. 1 GHz processor
with 200 MHz system bus, which is reasonable in embed-
ded systems). The processor has a 32-KB direct-mapped
unified L1 cache, but no L2 cache. The cache is blocking,
so there can be at most one outstanding cache miss by any
processor.

Our detailed shared memory model includes primary
caches and a shared bus interconnect, and we have aug-
mented it with the METERG QoS support. We have used a
simple magic DRAM which returns the requested value in
the next bus cycle; otherwise, long memory access latencies

of the detailed DRAM, combined with our blocking caches,
would make the memory bandwidth underutilized. Note
that QoS support is meaningful only when there is enough
resource contention. Severe memory channel contention
is feasible in multiprocessor embedded systems where re-
sources are relatively scarce and bandwidth requirements
for applications (e.g. multimedia) are high.

The shared bus interconnect divides a fixed-size time
frame into multiple time slots, which are the smallest units
of bandwidth allocation, and implements a simple time di-
vision multiplexing (TDM) scheme. For example, if Pro-
cessor 1 requests QoS with the resource allocation param-
eter (x1) of 0.25, one out of every four time slots will be
given to the processor. Hence, the access time is bounded
by d1/x1e=4 time slots in this case. An unclaimed time
slot can be used by any other processors not in enforcement
mode (work conserving).

We use a synthetic benchmark, called memread, for
our evaluation to mimic the behavior of an application
whose performance is bounded by the memory system per-
formance. It runs an infinite loop which accesses a large
memory block sequentially to generate cache misses, with
a small amount of bookkeeping computation in each itera-
tion.

4.2 Simulation Results

Performance Estimation

Figure 5 compares the performance of memread in various
configurations with different operation modes (OpMode),
degrees of contention, and resource allocation parameters
(x1). We use instructions per cycle (IPC) as our perfor-
mance metric and all IPCs are normalized to the best possi-
ble case (denoted by BE-1P), where a single memread in
best-effort mode monopolizes all the system resources. In
best-effort (BE) mode, all processes run without any QoS
support. In enforcement (ENF) or deployment (DEP) mode,
only one process runs in QoS mode (either enforcement or
deployment), and the remaining concurrent processes run in
best-effort mode to generate memory contention. The figure
depicts the single QoS process’ performance.

In Figure 5(a), we first measure performance with vary-
ing degrees of resource contention. Without any QoS sup-
port (denoted by BE), we observe the end-to-end perfor-
mance degradation of a single process by almost a factor
of 2, when the number of concurrent processes executing
memread increases from 1 (BE-1P) to 8 (BE-8P).

On the other hand, a QoS process in either enforcement
or deployment mode is well protected from the dynamics of
others. At any given time, a process in deployment mode
always outperforms its counterpart in enforcement mode
for a given resource allocation parameter (x1). There is
a significant performance gap between the two to give a
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Figure 5. Performance of memread in various configurations. BE, ENF, and DEP stand for best-
effort, enforcement-mode, and deployment-mode execution, respectively. In (a), as the number of
concurrent processes increases from 1 to 8, the performance of a process degrades by 46 % without
QoS support, but only by 9 % in deployment mode. The estimated performance from a measurement
in strict enforcement mode indicates the performance degradation for the given resource reservation
to be 31 % in the worst case. In (b), we observe that the performance estimation in strict enforcement
mode becomes tighter as the resource allocation parameter (x1) increases.

safety margin for estimated performance. The performance
gap can be explained by two factors. First, there is extra
bandwidth given to the process in deployment mode, which
would not be given in enforcement mode. Second, regard-
less of the actual severity of contention, every single mem-
ory access in enforcement mode takes the longest possible
latency. Note that, although rare, this could happen in a real
deployment-mode run. Hence, an enforcement-mode exe-
cution provides a safe and tight performance lower bound
for a given x1. Because a memory access in enforcement
mode always takes the worst possible latency, there is little
variation of the performance across 1 (ENF-1P) through 8
(ENF-8P) concurrent processes.

In Figure 5(b), we run the simulation with different re-
source reservation parameters. We observe that as we in-
crease the parameter value, the performance gap between
the two modes shrinks. This is because extra bandwidth be-
yond a certain point gives only a marginal performance gain
to the QoS process in deployment mode, but improves the
performance in enforcement mode significantly by reducing
the worst-case memory access latency.

Interactions among Processes

Because we have dealt with a single QoS process so far,
a question naturally arises about the interactions of multi-
ple concurrent QoS processes. Figure 6 shows the perfor-

mance variation when multiple QoS processes are contend-
ing against each other to access the shared memory.

The figure demonstrates that, even if we increase the
number of QoS processes from one to four, the performance
of QoS processes in deployment mode degrades very lit-
tle (by less than 2 %) for a given parameter (xi=0.25) and
the performance lower bound estimated by an enforcement-
mode execution is strictly guaranteed. The amount of re-
served resource for each process is given in the resource
allocation vector. Note that xi=0 means no resource is re-
served for processor i (best-effort), and that we use x4=0.20
rather than x4=0.25 in the case of 4 QoS + 4 BE so as not
to starve the best-effort processes.

As we increase the total amount of resources reserved for
QoS processes, the performance of best-effort processes is
degraded as expected. We observe that the system provides
fairness so that their execution time differs only by less than
1 %. Fairness is also provided to the QoS processes having
the same resource reservation parameter.

5 Conclusion

Although conventional QoS mechanisms effectively set
a lower bound on a program’s performance for a given re-
source reservation parameter, it is not easy to translate a
user-level performance metric into a vector of hardware re-
source reservations. To facilitate performance estimation,
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Figure 6. Interactions between QoS and Best-effort (BE) processes running memread. All QoS pro-
cesses are running in deployment mode. Even if the number of QoS processes increases, the per-
formance of QoS processes degrades very little as long as the system is not oversubscribed.

we argue for having every QoS-capable component sup-
port two operation modes: enforcement mode for estimat-
ing end-to-end performance and deployment mode for max-
imizing performance with a guaranteed lower bound. Our
approach does not involve any expensive program analy-
sis or hardware modeling often required in conventional ap-
proaches for performance estimation. Instead, we use sim-
ple measurement. In order to demonstrate its effectiveness,
we have implemented a multiprocessor system simulator
and estimated the lower bound on the execution time of a
bandwidth-intensive synthetic benchmark.
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