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Abstract

To meet the challenges presented by the performance requirements of modern architectures,

compilers have been augmented with a rich set of aggressive optimizing transformations.

However, the overall compilation model within which these transformations operate has

remained fundamentally unchanged. This model imposes restrictions on these transforma-

tions’ application, limiting their effectiveness.

First, procedure-based compilation limits code transformations within a single proce-

dure’s boundaries, which may not present an ideal optimization scope. Although aggres-

sive inlining and interprocedural optimization can alleviate this problem, code growth and

compile time considerations limit their applicability.

Second, by applying a uniform optimization process on all codes, compilers cannot

meet the particular optimization needs of each code segment. Although the optimization

process is tailored by heuristics that attempt toa priori judge the effect of each transfor-

mation on final code quality, the unpredictability of modern optimization routines and the

complexity of the target architectures severely limit the accuracy of such predictions.

This thesis focuses on removing these restrictions through two novel compilation frame-

work modifications, Procedure Boundary Elimination (PBE) and Optimization-Space Ex-

ploration (OSE).

PBE forms compilation units independent of the original procedures. This is achieved

by unifying the entire application into a whole-program control-flow graph, allowing the

compiler to repartition this graph into free-form regions, making analysis and optimization

routines able to operate on these generalized compilation units. Targeted code duplica-

tion techniques can then recover the performance benefits of inlining while limiting code

growth. Thus PBE offers a superset of the benefits of inlining and interprocedural opti-

mization, while avoiding both excessive code growth and overly long compile times.

OSE, on the other hand, explores many optimization options for each code segment and

selects the best onea posteriori. OSE trims the space of options explored through limited
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use of heuristics, further limits the search space during compiler tuning, and exploits feed-

back to prune the remaining optimization configurations at compile time. The resulting

optimization outcomes are compared through a fast and effective static performance esti-

mator. As a result, OSE is the first iterative compilation technique fast enough and general

enough for general-purpose compilation.
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Chapter 1

Introduction

The performance of modern computing systems increasingly depends on the effectiveness

of aggressively optimizing compilation. At one end, even mass-market processors increas-

ingly incorporate a multitude of advanced performance features, such as multitiered mem-

ory hierarchies, explicitly parallel ISAs, and even multiple on-chip cores. Such features

cannot be fully exploited unless an optimizing compiler aggressively targets them. At

the other end, object-oriented, strictly typed languages such as C# and Java are fast re-

placing lower-level programming facilities, while quasifunctional and application-specific

languages are gaining in popularity.

Both these trends increase the demands placed on optimizing compilation. In addition

to the traditional tasks of simplifying computations and eliminating redundancies, a modern

aggressively optimizing compiler must work around inconvenient language features, such

as programs’ fragmentation into small procedures, while effectively exploiting complex

computational resources, exposing instruction-level parallelism (ILP) and/or thread-level

parallelism (TLP), and avoiding performance pitfalls such as memory stalls and branch

misprediction penalties. As a result, over the last decade, compilers have been enhanced

with a multitude of new optimization routines. However, the overall compilation frame-

work in which these routines are applied has changed relatively little. This discrepancy
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decreases optimization effectiveness, thus hampering a compiler’s ability to influence a

system’s performance. The central focus of this dissertation lies in identifying the ways in

which the traditional compilation framework limits optimization efficiency and in propos-

ing ways to remove these limitations.

1.1 Optimization Scope Limitations

Traditionally, most of the analysis and optimization routines incorporated in an optimizing

compiler operate within the scope of individual procedures. This scope limitation greatly

hampers the ability of these routines to produce efficient code. The original breakup of a

program into procedures serves software engineering rather than optimization goals, often

making procedures less than ideal optimization units. This problem is only exacerbated

by modern software engineering techniques, such as object-oriented programming, which

typically encourage small procedures (methods) and frequent procedure calls.

To alleviate the inconvenient optimization scope of individual procedures, most modern

compilers employ interprocedural optimization and/or aggressive inlining. Interprocedural

analysis and optimization [9, 20, 30, 37, 44, 45, 46, 47] vastly increase the amount and

accuracy of information available to the optimizer, exposing many previously unavailable

optimization opportunities. However, the compile-time cost of these methods, both in terms

of memory usage and time, increases dramatically with program size. As a result, inter-

procedural optimization is either sparingly applied or omitted entirely from commercial

compilers.

Inlining, originally proposed to limit call overhead, copies the bodies of selected pro-

cedures into their call sites [3, 6, 10, 18, 24, 49, 53, 54]. This not only exposes more code

to analysis and optimization routines, it also allows the optimizer to specialize the callee’s

code for each particular call site. Unfortunately, the benefits of aggressive inlining come at

the cost of extensive code growth. Since the adverse effects of code growth quickly become
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prohibitive, many limitations are placed on the inlining routine. In particular, inlining is

usually limited to frequently executed call sites with small callees.

The optimization scope problem, along with the benefits and shortcomings of existing

approaches to it, is discussed in Chapter 2.

1.2 Optimization Decision Limitations

Unfortunately, the limited scope of procedure-based compilation is not the only way in

which a traditional compilation framework limits optimization effectiveness. A second

limitation stems from the the compiler’s difficulty in reaching the correct optimization de-

cisions. Due to the complexity of modern processors, judging the impact of a code trans-

formation on final code quality cannot be achieved by simple metrics such as instruction

count or code size. Instead, an optimizing compiler has to carefully balance a set of per-

formance factors, such as dependence height, register pressure, and resource utilization, as

well as anticipate dynamic effects, such as cache misses and branch mispredictions.

This task is complicated by the fact that most modern optimization routines usually

constitute tradeoffs, improving some performance factors while worsening others. As a

result, a successful optimizing compiler must correctly determine where and when to apply

each code transformation. In today’s compilers, this is usually achieved through the use of

predictive heuristics, which try toa priori judge the impact of an optimization routine on a

code segment’s final performance. However, a heuristic’s task is complicated not only by

the complexity of the target platform, but also by the complexity of interactions between

optimization routines. As a result, these heuristics lead to wrong optimization decisions in

many cases.

To address these limitations,iterative compilation[1, 13, 16, 29, 32, 40, 56, 57] has

been proposed. Instead of relying ona priori predictions, an iterative compiler applies

many different optimization configurations on each code segment and decides which one
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is besta posteriori. Previous research indicates that iterative compilation can provide sig-

nificant performance benefits. However, current iterative compilation techniques incur pro-

hibitive compile-time costs, essentially placing iterative compilation’s benefits out of the

reach of general-purpose compilers. Chapter 7 deals with the optimization decision prob-

lem and with current iterative compilation approaches.

1.3 Contributions

In order to overcome the above restrictions, this dissertation introduces two novel modifi-

cations to the traditional compilation framework: Procedure Boundary Elimination (PBE)

and Optimization-Space Exploration (OSE).

PBE expands the scope of optimization by unifying an entire application’s code into

an optimizable program-wide representation, called thewhole-program control-flow graph

(WCFG). By employing an expanded version ofregion formation[22], the compiler can

then divide the WCFG into more manageable compilation units. These new compilation

units are chosen according to the needs of optimization, regardless of the original proce-

dure boundaries. Since code duplication, such as that caused by inlining, can often increase

optimization opportunities, PBE also employs atargeted code specializationphase, which

causes code growth only where it is likely to produce actual benefits. Of course, the cen-

tral challenge that this scheme faces is that subsequent optimization and analysis routines

must be able to operate on arbitrary portions of the WCFG. This problem was solved

by extending and generalizing interprocedural analysis algorithms [47], and by properly

encapsulating regions. As a result, PBE offers a superset of the benefits of inlining and

interprocedural optimization, while avoiding both excessive code growth and overly long

compile times.

PBE is presented in Chapters 3 to 6 of this dissertation. Chapter 3 focuses on the

overall PBE compilation framework. Chapter 4 presents the dataflow analysis algorithm
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that makes PBE compilation possible. This algorithm is based on existing interprocedural

analysis approaches, but includes significant modifications that allow it to deal with the

nontraditional flowgraphs that PBE produces. Chapter 5 describes how PBE keeps compile

time in check through region-based compilation. Finally, Chapter 6 offers an experimental

evaluation of PBE. PBE has been previously published in the proceedings of the 2006

Conference on Programming Language Design and Implementation [50].

While PBE deals with the problems of limited optimization scope, OSE is a novel iter-

ative compilation technique that deals with improving optimization decisions. Unlike pre-

vious iterative compilation attempts, which suffer from unrealistic compile times and focus

on limited portions of the optimization process, OSE is the first iterative compilation tech-

nique fast enough and general enough for widespread use in general-purpose compilation.

To achieve this, OSE narrows down the space of optimization options explored through

judicious use of heuristics. A reasonably sized subarea of this reduced search space is then

selected for exploration during a compiler tuning phase. At compile time, OSE exploits

feedback from optimization sequences already tried in order to further prune the search on

a per-code-segment basis. Finally, rather than measuring actual runtimes, OSE compares

optimization outcomes using a fast but effective static performance estimator. The OSE

framework is presented in Chapter 8. Chapter 9 provides details of a proof-of-concept

implementation of OSE using a commercial compiler and provides detailed experimental

results. OSE has been previously published in the proceedings of the 2003 International

Symposium on Code Generation and Optimization [52] and in the Journal of Instruction-

Level Parallelism [51].

Finally, Chapter 10 summarizes the contributions of this thesis, draws conclusions, and

discusses avenues for future research.
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Chapter 2

The Optimization Scope Problem

Forcing optimization and analysis routines to operate within individual procedures obvi-

ously limits their ability to improve performance. Since procedures are chosen based on

criteria unrelated to optimization, their boundaries may conceal significant optimization

opportunities. For example, procedure calls within loops can conceal cyclic code from the

compiler, hindering both traditional loop optimizations and loop parallelization transfor-

mations. Additionally, breaking up a computational task into many small procedures may

prevent a scheduling routine from constructing traces long enough to provide sufficient ILP

opportunities.

In order to recover optimization opportunities concealed by procedure boundaries, most

modern optimizing compilers apply aggressive inlining and, to a far more limited extent,

interprocedural optimization. Section 2.1 discusses interprocedural optimization and anal-

ysis. Section 2.2 presents existing work on inlining and surveys its benefits and short-

comings. Section 2.3 presents region-based compilation, often used to limit the excessive

compile time resulting from over-aggressive inlining. Finally, Section 2.4 presents variants

of inlining that can selectively duplicate parts of a procedure.
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2.1 Interprocedural Analysis and Optimization

When operating within a single procedure, a dataflow analysis routine generally computes

a “meet-over-all-paths” solution to a set of dataflow equations. In contrast to this, apre-

cise(or context-sensitive) interprocedural analysis routine has to compute a “meet-over-all-

realizable-paths” solution. A path on an interprocedural control-flow graph is considered

realizable if its call and return transitions are in accordance with procedure call semantics.

More precisely, on a realizable path a return edge cannot occur without a matching call

edge, and call and return edges have to be properly nested.

Sharir and Pnueli [47] are credited with the first systematic approach to interprocedural

dataflow analysis. They present thefunctionalapproach to dataflow analysis, which, with

several variations, forms the base of almost all modern interprocedural analysis methods.

Because the PBE analysis algorithm is also a derivative of the functional approach, Sharir

and Pnueli’s algorithm will be outlined in Chapter 4. A second approach proposed in the

same article, called thecall-strings approach, is easier to understand but leads to much

less efficient analyses for most common problems. It is generally used only in approxi-

mative interprocedural analysis systems. Sharir and Pnueli [47] also prove that both these

approaches converge to a maximal fixed point (MFP) solution for all monotone dataflow

analysis problems on bounded semilattices. In the case where the dataflow analysis prob-

lem is also distributive, Knoop and Steffen [30] have proven that the MFP solution is also

accurate, in the sense that it coincides with the meet-over-all-realizable-paths solution.

The interprocedural dataflow analysis problem is exponential in the general case. How-

ever, for the more limited class of analyses typically used in a general-purpose optimizer,

including the one presented in this paper, efficient algorithms are available. For locally sep-

arable (“bit-vector”) problems, the asymptotic complexity of interprocedural analysis is no

greater than that of intraprocedural analysis [31]. By reducing the interprocedural dataflow

analysis problem to graph reachability on a properly expanded version of the control-flow

graph, Reps et al. [44] were able to provide an efficient interprocedural analysis algorithm
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for all finite distributive subset dataflow problems.

A discussion of interprocedural analysis would be incomplete without mentioning mem-

ory analysis. Indeed, all nontrivial points-to or alias analyses are interprocedural; see [11,

12, 21] among many others. Also, Myers [39] studies classical interprocedural dataflow

analysis in conjunction with alias analysis, showing that even bit-vector interprocedural

dataflow analysis problems become NP-hard if the source language supports reference pa-

rameters. However, a discussion of memory analysis lies outside the scope of this thesis.

This is because memory analysis and PBE are orthogonal to each other. Memory analysis

is equally necessary and useful in a traditional optimizing compiler as in a PBE compiler.

Also, PBE neither helps nor hinders memory analysis.

Using the results of interprocedural analysis, some classical optimization routines can

be performed interprocedurally. Morel and Renvoise [37] propose an interprocedural ver-

sion of partial redundancy elimination. Interprocedural constant propagation, which is rel-

atively fast and effective, has been extensively studied; see for example [9, 20, 45]. Finally,

some interprocedural optimizations, such as the link-time register allocation algorithm pro-

posed by Santhanam and Odnert [46], work by propagating problem-specific summary in-

formation along the call graph, without having to apply interprocedural dataflow analysis

algorithms.

Obviously, interprocedural optimization routines are able to exploit many more opti-

mization opportunities than their intraprocedural counterparts. However, compilers nor-

mally apply interprocedural optimization to a very limited extent, and often not at all.

This is because of the superlinear complexity of interprocedural analysis and optimization

routines, which makes it difficult to apply them repeatedly to entire real-world programs

without prohibitive increases in compile time and memory utilization. An additional prob-

lem ensues for interprocedural optimizations that may extend variables’ live ranges, since

data exchange between procedures is normally possible only through parameter-passing or

global variables. Adding new parameters or transforming local variables to global both
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carry costs, which limit the value of such transformations. For this reason, optimizations

such as partial redundancy elimination or loop-invariant code motion are rarely applied

interprocedurally. PBE overcomes this problem by eliminating special assumptions about

procedure boundaries and addresses the problem of excessive compile-time costs through

region-based compilation (Chapter 3).

2.2 Inlining

Inline procedure expansion, or simply inlining, eliminates procedure calls by replacing se-

lected call sites with copies of their callees. Originally used to eliminate call overhead,

inlining is aggressively applied by many modern compilers in order to expose additional

optimization opportunities. Inlining, its performance impact, and the heuristics that drive it

have been extensively studied. For example, the high-performance compiler implemented

by Allen and Johnson [3] conservatively applied inlining on small static C functions in or-

der to increase vectorization opportunities. A much more aggressive inlining methodology,

studied by Hwu and Chang [10, 24], aimed to remove around 60% of a program’s dynamic

call sites by using a variety of heuristic criteria, some of them profile-driven. Ayers et al. [6]

studied a compiler that combined profile-driven inlining with the closely related technique

of procedure cloning for greater effect.

The benefits of inlining come from increasing the size of procedures, thus expanding

optimization scope, and from allowing code specialization by enabling the compiler to

optimize the body of a callee according to a particular call site. This provides significant

performance benefits. For example, inlining-induced speedups reported in [10] are 11% on

average, reaching up to 46% for some benchmarks. Even greater speedups are reported on

SPECint95 benchmarks in [6], with an average of 32% and a maximum of 80%.

Unfortunately, inlining’s benefits often come at the cost of excessive code growth. Since

traditional inlining can only copy entire procedure bodies, it must duplicate both “hot” and
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“cold” code, despite the fact that the latter is unlikely to offer any performance benefits.

For example, the inlining heuristics in [10] can cause code growth of up to 32%. One

undesirable side effect of excessive code growth is that optimization and analysis time

may increase significantly, especially if individual procedure bodies grow too large. In [6],

for example, inlining causes up to a 100% increase in compile time. In a rather more

extreme experiment, Hank et al. [22] report a more than eightfold compile-time increase

when 20% of a benchmark’s call sites are inlined. To avoid these pitfalls, commercial

compilers usually apply inlining only to frequent call sites with small callees, thus limiting

the technique’s applicability and value.

2.3 Region-Based Compilation

Region-based compilation was proposed by Hank et al. [22] in order to cope with the ex-

cessive compile-time dilation that aggressive inlining occasionally causes. A region is es-

sentially a compiler-selected, multiple-entry multiple-exit portion of a procedure, which is

analyzed and optimized in isolation. This is made possible by properly annotating dataflow

information, mainly liveness and points-to sets, on a region’s boundaries, and by teaching

the rest of the optimization process to restrict its operation within a single region at a time.

Experiments in [22] show that region-based compilation can reduce the time spent in ex-

pensive compilation phases, such as register allocation, by more than 90% at almost no cost

to performance.

As we will see in Chapter 5, PBE is also a region-based compilation technique, al-

though both the region formation algorithm used and the overall way in which regions are

incorporated into the compilation process are significantly different.
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2.4 Partial Inlining

Partial inlining alleviates traditional inlining’s code growth problems by duplicating only a

portion of the callee into the call site. This is achieved by abstracting away infrequent parts

of the callee into separate procedures, and inlining only the remaining, frequently executed

part.

Way et al. [53, 54] propose a partial inlining framework based on region formation (Sec-

tion 2.3). This framework uses a profile-guided heuristic to form regions across procedure

calls. It then breaks up the parts of callees that lie outside these regions (and therefore are

less frequently executed) into new procedures, and inlines just the remaining, frequently

executed parts. Compared to full inlining, this framework achieves modest code growth

reductions (between 1% and 6%) without sacrificing performance. Implementations of par-

tial inlining in just-in-time compilers, such as the one proposed by Suganuma et al. [49],

also have the option of simply deferring the compilation of the callee’s cold portions until

they are first entered, which may never happen in a typical execution. If the code attempts

to access the omitted portions, the corresponding inlining decision is canceled and a re-

compilation is triggered. This results in a substantial code growth savings of up to 30%,

at least when recompilation is not triggered. Other work, such as Goubault [18], proposes

less general partial inlining techniques as part of specific optimization or analysis routines.

By providing the compiler with more flexibility as to which parts of the code are du-

plicated, partial inlining can strike a better balance between code growth and performance

improvement. However, this flexibility is limited in several ways. If the cold code has to be

repackaged as one or more procedures, only single-entry, single-exit code regions can be

excluded from duplication. More general cold regions have to be converted to single-entry

single-exit form through tail duplication, which introduces code growth with no perfor-

mance benefits. Perhaps more importantly, transitions from hot to cold code, which were

originally intraprocedural, must be converted to calls and returns. Additionally, any data

exchange between these two parts of the code has to be implemented through parame-
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ter passing or global variables [54]. This makes these transitions much costlier, which in

turn makes partial inlining worthwhile only for procedures containing sizable parts of very

infrequently executed code. This restriction is even more pronounced in [49], where a tran-

sition from hot to cold code forces recompilation. For these reasons, partial inlining is not

broadly used in commercial compilers.
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Chapter 3

A Framework for Unrestricted

Whole-Program Optimization

In order to overcome the limitations of procedure-based compilation while avoiding the

shortcomings of interprocedural optimization and inlining presented in Chapter 2, this

chapter introducesProcedure Boundary Elimination(PBE), a compilation framework that

allows unrestricted whole-program optimization. Section 3.1 gives a general overview of

PBE. The overall PBE compilation flow is outlined in Section 3.2. Sections 3.3 and 3.4

present two of PBE’s compilation phases, procedure unification and targeted code special-

ization. The presentation of PBE will continue in Chapter 4, which describes the PBE

dataflow analysis algorithm, and in Chapter 5, which describes how PBE can be fitted into

a region-based compilation framework.

3.1 Overview

PBE removes the restrictions that a program’s division into procedures imposes on opti-

mization. Unlike current methods that address this problem, such as inlining and inter-

procedural analysis, PBE suffers neither from excessive code growth nor from excessive

compile time and memory utilization.
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PBE begins withprocedure unification, which unifies an application’s code into an

analyzable and optimizablewhole-program control-flow graph(WCFG). Similar to Sharir

and Pnueli [47], this is achieved by joining the individual control-flow graphs (CFGs) of

the original procedures through appropriately annotated call and return arcs. To make the

WCFG freely optimizable, PBE then takes several additional actions. Among other things,

calling convention actions are made explicit, local symbol scopes are eliminated in favor of

a program-wide scope, and the stack-like behavior of local variables in recursive procedures

is exposed.

Aggressive inlining realizes performance benefits not just by expanding optimization

scope, but also by specializing procedure bodies to particular call sites. To recover these

benefits, PBE includestargeted code specialization(TCS) routines in the optimization pro-

cess. Such routines duplicate code aggressively enough to obtain significant specialization

benefits, while limiting code growth to where it is likely to be beneficial for optimization.

Since PBE allows arbitrary code transformations to be applied across procedure bound-

aries, optimization and analysis phases are presented with compilation units that are very

different from procedures. Among other things, call and return arcs can have a many-to-

many correspondence, and former procedure boundaries may no longer be recognizable.

Effective optimization requires that such compilation units be accurately analyzed. As

described in Chapter 4, the PBE analysis framework achieves this by extending the inter-

procedural analysis algorithms presented by Sharir and Pnueli [47].

Of course, PBE would be unrealistic if it tried to apply every optimization and analysis

routine on the entire program. For this reason, PBE aggressively appliesregion forma-

tion [22]. This partitions the WCFG into compiler-selected, arbitrarily shaped subgraphs

whose nodes are deemed to be “strongly correlated” according to some heuristic. These

partitions are then completely encapsulated, so as to be analyzable and optimizable as sep-

arate units. For the purposes of optimization, this new partitioning of the program is prefer-

able to its original breakup into procedures because regions, unlike procedures, are selected
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by the compiler for the explicit purpose of optimization. To fit region formation into the

correctness and performance requirements of PBE, both the region formation heuristics and

the way regions are encapsulated were significantly modified from related work. The PBE

region formation algorithm is discussed in Chapter 5.

The end result is that PBE obtains a superset of the benefits of both interprocedural op-

timization and inlining, while avoiding excessive compile-time dilation, unnecessary code

growth, and scalability limitations. As Chapter 6 shows, PBE is able to achieve better per-

formance than inlining with only half the code growth. By allowing the compiler to choose

each compilation unit’s contents, PBE ensures that each unit provides a sufficiently broad

scope for optimization, reducing the need for program-wide analysis. Additionally, the

compiler can control the size of these compilation units (regions) so as to strike a reason-

able balance between optimization effectiveness and compile-time dilation. By enabling

fine-grained specialization decisions, PBE avoids unnecessary code growth. PBE provides

extra freedom to both region formation and optimizations by enabling optimization phases

to deal with free-form compilation units, thus realizing new optimization benefits that were

not available through either inlining or interprocedural optimization.

3.2 PBE Compilation Flow

The overall flow of the compilation process in PBE can be seen in Figure 3.1. A PBE

compiler begins by applying the following three phases:

Unification This phase merges the control-flow graphs (CFGs) of individual procedures

into a single, whole-program control-flow graph (WCFG) and removes all assump-

tions about calling conventions and parameter passing mechanisms.

Region Formation This phase breaks up the WCFG into compiler selected optimization

units, orregions, and encapsulates regions appropriately so that they can be analyzed

and optimized independently.
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Figure 3.2: A code example (a) before and (b) after unification.

Targeted Code Specialization (TCS)This phase is applied separately within each region,

as part of the overall optimization process. It identifies sites in the region where code

specialization is likely to provide optimization opportunities and duplicates code ac-

cordingly. Like any other optimization routine, TCS methods could be applied on

the entire WCFG, before region formation. However, this would be undesirable for

compile time and scalability reasons, as explained in Chapter 5.

The above three phases produce compilation units that bear little resemblance to pro-

cedures. Therefore, the most important component of a PBE compiler is an optimization

and analysis process that can handle these constructs. The analysis algorithm presented in

Chapter 4 forms the centerpiece of this process.

3.3 Procedure Unification

The purpose of procedure unification is to combine the individual control-flow graphs of

a program’s procedures into a whole-program control-flow graph (WCFG). This requires

joining the CFGs of individual procedures with control-flow arcs that represent call and

return transitions. Due to the semantics of procedure invocation, call and return arcs carry

special semantic constraints. On any path corresponding to a real execution of the pro-
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Figure 3.3: Recursive procedure (a) before and (b) after unification.

gram, successive calls and returns must appear in a stack-like fashion, with a return always

matching the call that is topmost on the stack at each point. A call arc and a return arc are

said tomatchif they come from the same original call site. Following the conventions of

the interprocedural analysis bibliography [44], these semantic constraints are represented

by annotating call and return arcs with numbered open and close parentheses respectively.

This notation is convenient, as the matching between calls and returns on a valid program

path exactly follows the standard rules for parenthesis matching.

More specifically, unification begins by assigning unique numbers to all of the pro-

gram’s call sites. LetCi be a call site for a procedurep, and letRi be the corresponding

return site. LetEp be the entry node (procedure header) ofp, andXp be the exit node

(return statement) ofp. In the WCFG, this call is represented by two interprocedural arcs:

a call arcCi
(i→ Ep and a return arcXp

)i→ Ri.

These concepts are illustrated by the example in Figure 3.2. Figure 3.2a shows a small

proceduref with two call sites, one in a “hot” loop in procedureg, and a less frequently

executed one in procedureh. In this figure, and in the examples that follow, rectangu-

lar boxes represent basic blocks. Frequently executed basic blocks are shown with bold

lines. Figure 3.2b shows the same code after unification has been applied. As the figure
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illustrates, the valid program pathC1
(1→ E → M → X

)1→ R1 contains the matching

parentheses(1 )1, whereas the invalid pathC2
(2→ E → N → X

)1→ R1 contains the mis-

matched parentheses(1 )2. The use of parenthesis annotations in analysis will be presented

in Chapter 4.

Perhaps more interesting is the example in Figure 3.3, which shows the result of apply-

ing procedure unification to a recursive procedure. After unification (Figure 3.3b), a single

self-recursive call appears as two loops: one loop for the recursive call, whose back edge

is C2
(2→ R2, and one loop for the recursive return, whose back edge isR2 → X. More-

over, it is easy to see that both these loops are natural, since their headers dominate their

back edges. In later compilation phases, both these loops can benefit from optimizations

traditionally applied to intraprocedural loops, such as loop invariant code motion, loop

unrolling, and software pipelining. Although inlining can achieve effects similar to loop

unrolling by inlining a recursive procedure into itself, and certain interprocedural optimiza-

tion methods can achieve results similar to loop invariant code motion, the way recursion

is handled in PBE is clearly more general.

Apart from their matching and nesting constraints, call and return arcs also have other

implied semantics very different from those of intraprocedural arcs. Traversing a call arc

normally implies saving the return address, setting up a new activation record for the callee,

moving actual parameter values into formal parameters, and generally taking any other ac-

tion dictated by the calling convention. Interprocedural optimizations respect these seman-

tics and work around them appropriately, although this complicates or even hinders their

application. In that case, respecting the calling convention is necessary, since these rou-

tines must preserve a program’s division into procedures for later compilation phases. PBE

takes the opposite approach. Since the rest of the compilation process does not depend on

procedures and the conventions accompanying them, all these implicit actions are made

explicit in the program’s intermediate representation (IR). This frees further optimization

routines from the need to navigate around calling conventions. For example, a redundancy
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elimination routine can now freely stretch the live range of a variable across a call arc,

without having to convert that variable into a parameter. As an added benefit, the compiler

can now optimize those actions previously implicit in calls with the rest of the code, thus

reducing their performance impact.

In order to make call and return arcs behave more like normal arcs, unification applies

the following transformations on the program’s intermediate representation (IR):

• A single, program-wide naming scope is established for variables and virtual regis-

ters. This is accomplished by renaming local variables and virtual registers as neces-

sary. To avoid violating the semantics of recursive calls, placeholder save and restore

operations are inserted before each recursive call and after each recursive return.

(Recursive calls and returns are simply those that lie on cycles in the call graph).

These operations are annotated with enough information to allow the code generator

to expand them into actual loads and stores to and from the program stack.

• Sufficient fresh variables are created to hold the formal parameters of every proce-

dure. Then the parameter passing is made explicit, by inserting assignments of actual

parameter values to formal parameter variables at every call site. The return value is

handled similarly. Later optimizations, such as copy and constant propagation and

dead code elimination, usually remove most of these assignments.

• Call operations are broken up into an explicit saving of the address of the return node

and a jump to the start of the callee procedure. This is done because a call operation

always returns to the operation immediately below it. This in turn makes it necessary

for a return node to always be placed below its corresponding call node. By explicitly

specifying a return address, call and return nodes can move independently of each

other. This ensures that optimizations such as code layout and trace selection can

operate without constraints across call and return arcs. It also allows code special-

ization routines to duplicate call sites without having to duplicate the corresponding
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Figure 3.4: The code of Figure 3.2b (a) before and (b) after superblock formation.

return sites and vice versa.

• Any actions pertaining to the program stack, such as allocating activation frames, are

made explicit in a similar way.

After unification concludes, further code transformations are free to operate on the

whole program, without regard to the program’s original procedure boundaries (except for

the distinction between realizable and unrealizable paths). Eventually, the optimization

process will result in code that looks very different from traditional, procedure-based code.

3.4 Targeted Code Specialization

In order to match the performance benefits of aggressively inlining compilers, a PBE com-

piler must do more than choose the right scope for optimization, as inlining’s benefits
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come not only from increased optimization scope, but also from code specialization. Un-

like inlining, PBE does not cause any code growth while forming compilation units. The

code growth budget thus freed can now be devoted to more targeted code duplication tech-

niques, which can recover the specialization benefits of inlining with much more modest

code growth.

In general, a code specialization technique duplicates selected code segments in order

to break up merge points in the CFG. These control-flow merges generally restrict opti-

mization by imposing additional dataflow constraints. After duplication, on the other hand,

each one of the copies can be optimized according to its new, less restrictive surround-

ings. In this sense, both full and partial inlining are code specialization techniques. Several

intraprocedural code specialization methods have also been proposed [7, 14, 23, 25, 36],

usually in the context of scheduling. Some of these methods can be adapted to the special-

ization needs of PBE. Indeed, PBE gives such methods new freedom, since it allows them

to work across procedure boundaries.

3.4.1 Superblock Formation

Superblock formation [25] is perhaps the simplest and most powerful specialization method.

Using profile information, superblock formation selects “hot” traces and eliminates their

side entrances through tail duplication. This tends to organize frequently executed areas of

the code into long, straight-line pieces of code, which are particularly well suited to both

classical optimization and scheduling. In the context of PBE, superblock formation can

freely select traces containing call and return arcs, which significantly increases its impact.

The effect of applying superblock formation to the code example in Figure 3.2b (repeated

for convenience in Figure 3.4a) can be seen in Figure 3.4b. Excessive code growth dur-

ing superblock formation can be avoided by setting a minimum execution thresholdw of

blocks to use in superblock formation, a limita to the relative profile weight of branches

followed, and an overall code growth limitb. In the experimental compiler presented in

22



Chapter 6,w was set to 100 anda was set to 80%. The code growth factorb was set to

50%, although superblock formation usually stays well below this limit. This occurs for

several reasons. First, the execution threshold prevents superblock formation on cold code.

Second, unbiased branches fall belowa, limiting the scope of superblocks. Finally, because

superblocks are acyclic, backedges form a natural end point.

3.4.2 Area Specialization

Sometimes it makes sense to duplicate portions of the code that are more complicated

than a trace. For example, we may want to specialize an entire loop, or both sides of a

frequently executed hammock. For this reason, the PBE compiler presented in Chapter 6

also uses a method calledarea specialization. Like superblock formation, this method is

purely profile-driven.

Area specialization begins by identifying an important CFG arc leading to a merge

point. It then selects a subgraph of the CFG beginning at the merge point. That subgraph

is duplicated, so that the chosen link has its own copy of the subgraph.

Let A be theduplication area, i.e. the set of basic blocks selected for duplication. The

frontier F of the duplication area comprises all basic blocks that do not belong toA and

have an immediate predecessor in A. That is:

F = {b | b 6∈ A ∧ ∃a : a ∈ A ∧ a → b is a CFG edge}

Each blockb in F is assigned a frontier weightFW , which is the sum of the profile weights

of control-flow arcs beginning inside the duplication area and ending atb. That is:

FW (b) =
∑
a∈A

W (a → b)

whereW (x) is the profile weight ofx.
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The algorithm that selects the duplication area proceeds as follows: First, the area

contains only the merge pointm. In a series of repeated steps, the area is expanded by

adding the frontier blockb for which FW (b) is maximum. The expansion stops when

FW (b)/W (m) < α, whereα is a tuning parameter. In the experimental evaluation of

Chapter 6,α = 0.1. To avoid excessive code growth, the entire area specialization phase

stops when it duplicates more than a certain percentageβ of the region’s code. In Chapter 6,

β = 50%.

The only remaining issue is to choose the merge point arcs for which duplication areas

are selected. Although this selection can be done in many ways, for the evaluation of

Chapter 6 we chose to consider only call arcs. In a sense, this makes area specialization

work like a generalized version of partial inlining. We chose this approach mainly because

it makes the comparison between PBE and inlining more straightforward.

3.4.3 Other Specialization Methods

Although the experimental PBE compiler presented in this paper only employs area spe-

cialization and superblock formation, any other specialization method that has been pro-

posed in the intraprocedural domain can also be applied within the PBE framework. Bodik

et al.’s work on complete redundancy elimination [7] and Havanki’s generalization of su-

perblocks to tree-like form [23] seem especially promising in this respect. By being able to

work across procedure boundaries, any such specialization method is likely to increase its

impact in PBE.
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Chapter 4

PBE Analysis

A context-insensitivedataflow analysis routine could analyze the WCFG without taking

the special semantics of calls and returns into account. However, the analysis results thus

produced would be too conservative. For example, such an analysis routine would con-

clude that any definitions made in blockP of Figure 3.4b could reach blockR2, although

no valid program path fromP to R2 exists. In preliminary trials, we found that the inac-

curacies caused by such an analysis approach have a serious detrimental effect on several

compilation phases, especially register allocation. In one such experiment, a unified ver-

sion of the benchmarkgrep would grow from 837 to 3400 instructions when processed

by the IMPACT compiler’s traditional register allocator, due to the excessive number of

register spill and fill operations.

For this reason, PBE uses acontext-sensitiveanalysis algorithm, derived from thefunc-

tional approachto interprocedural analysis [47]. To put the PBE analysis algorithm in

context, Section 4.2 walks through the steps of this approach. Both Section 4.2 and the pre-

ceding Section 4.1 closely follow the presentation in [47], with the exception that some of

the terminology and conventions have been modernized according to [44]. Based on this,

Section 4.3 describes the PBE analysis algorithm, which deals with the new challenges

presented to the compiler by PBE flowgraphs while staying as close as possible to the tra-
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ditional interprocedural analysis algorithm presented in Section 4.2, Finally, Section 4.4

summarizes this chapter’s contributions.

4.1 Terminology and Background

To simplify the discussion, the rest of this chapter will concentrate onforward dataflow

problems, such as dominators or reaching definitions. Backward dataflow problems, such

as liveness or upwards-exposed uses, can be treated in an entirely symmetric way.

A dataflow frameworkis defined by a pair(L,F), whereL is a semilattice ofdataflow

valuesandF is a space ofL → L functions. Lett denote the semilattice operation of

L, heretofore called a “meet”. We assume thatL contains a smallest element,⊥, nor-

mally corresponding to the “empty” dataflow value, and a largest element,>, normally

corresponding to the “undefined” dataflow value. Further,L is assumed to be closed under

functional composition and meet, to contain an identity mapidL, and to be monotone, i.e.

such that for each functionf ∈ F , x ≤ y impliesf(x) ≤ f(y). For the dataflow analyses

that are of interest to this thesis,L will also be finite. Further,F will distribute overt,

meaning that for eachf ∈ F , f(x t y) = f(x) t f(y).

Given a CFGG, we associate with each noden ∈ G a transfer functionfn ∈ F ,

which represents the change in dataflow as control passes throughn. The notion of transfer

functions can be trivially extended from single nodes to paths: ifp = (n1, ..., nk) is a path

in G, then the transfer function ofp is fp = fnk
◦ · · · ◦ fn1. With the transfer functions

given, the goal of dataflow analysis is to calculate the dataflow values at the entry and exit

of each node, denoted asinn andoutn respectively. To facilitate the following discussion,

we will use pathG(m,n) to denote the (possibly empty) set of all paths inG between nodes

m andn.

Given a program comprising a set of proceduresP1, P2, . . . , Pk with corresponding

CFGsGP1 , GP2 , . . . , GPk
, the program’sinterprocedural control-flow graph(ICFG)G∗ can
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Figure 4.1: Grammars for (a) same-level realizable paths and (b) realizable paths.

be constructed by combining the procedures’ CFGs in much the same way that PBE’s pro-

cedure unification begins: by linking each call sitec with its callee’s entry nodee through a

call edgec
(i→ e, and the callee’s exitx with the corresponding return siter through areturn

edgex
)i→ r, wherei is an index unique to that call site – callee combination. Additionally,

it is convenient to add asummary edgec
Si→ r between the call site and the corresponding

return site. (For indirect call sites, which may have more than one callee, we draw one

summary edge per callee). The entryemain of the program’s main procedure is the entry

node ofG∗.

A path between two nodesm, n ∈ G∗ is called asame-level realizable pathiff the string

of call and return annotations along its edges can be generated by the grammar shown in

Figure 4.1a. Intuitively, a same-level realizable path is a path that begins in a procedure

and ends in the same procedure, possibly traversing callee procedures along the way. The

existence of a same-level realizable path between nodesm andn will be written as:m
SL
 n.

It is easy to see thatm
SL
 n iff there is a path consisting of normal edges and summary

edges, but no call or return edges, betweenm andn.

Given the above definition of same-level realizable paths, we can define more general

realizable pathsas follows: A path betweenm andn is realizable iff the string of call and

return annotations along its edges can be generated by the grammar shown in Figure 4.1b.

Essentially, a realizable path may contain unmatched calls and returns, but nomismatched
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calls and returns. It is easy to see that the above definition of realizable paths exactly

captures the subset of paths inG∗ that do not violate procedure call semantics. All other

paths inG∗ are unrealizable; they cannot occur in any valid program execution. We will

use rpathG∗(m, n) to denote the set of all realizable paths between nodesm, n ∈ G∗.

4.2 Interprocedural Dataflow Analysis: The Functional

Approach

The goal of an intraprocedural dataflow analysis routine on a CFGG with entry node

e is to calculate ameet-over-all-pathssolution, in which the dataflow value at a noden

summarizes the dataflow along all paths frome to n:

inn =
⊔

p∈path(e,n)

fp(⊥)

Kam and Ullman [27] have shown that, for distributive dataflow problems, this solution

can be computed by iteration over the following “local” equations:

ine = ⊥

inn =
⊔

(m,n)∈G

outm for all n ∈ G, n 6= e

outn = fp(inn) for all nodes

In contrast, a context-sensitive interprocedural dataflow analysis algorithm has to cal-

culate ameet-over-all-realizable-pathssolution, that is:

inn =
⊔

p∈rpathG∗ (emain,n)

fp(⊥)

Since realizability is a property of the entire path, rather than a property of individual
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nodes, this solution cannot be arrived at using local calculations only. The obvious way

to calculate this is to annotate each piece of dataflow information on a CFG node with the

path through which it has propagated. This is roughly the solution provided by thecall-

stringsapproach to interprocedural analysis, which was also presented in [47]. However,

this approach is not generally used in precise interprocedural dataflow analyses because it

leads to algorithms with exponential complexity even for simple dataflow problems.

A more promising approach, termed thefunctionalapproach to interprocedural analy-

sis, works by calculating the transfer functions of entire procedures. After this calculation

is done, the dataflow solution can be determined intraprocedurally: the dataflow value of a

return site can be calculated by applying the callee’s transfer function to the dataflow value

of the corresponding call site. More precisely, the algorithm operates in the following two

steps:

Step 1: Procedure transfer functions

Let P be a procedure with CFGGP , entry nodeeP and exit nodexP . For convenience,

let us assume thatGP contains all relevant summary edges, as defined in Section 4.1 (but,

obviously, no call or return edges).

For two nodesm,n ∈ GP , let φ(m,n) be the transfer function of all paths betweenm

andn, that is:

φ(m,n) =
⊔

p∈pathGP
(m,n)

fp

Obviously, the transfer function of the entire procedure will beφP = fxP
◦ φ(eP ,xP ).

We can calculate the transfer functionsφ(ep,n) for every noden ∈ GP by iterating over the

formulae:

φ(eP ,eP ) = idL

φ(eP ,n) =
⊔

(m,n)∈GP

h(m,n) ◦ φ(eP ,m)
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where:

h(m,n) =


φQ if (m, n) is a summary edge with calleeQ

idL if (m, n) is a normal edge

This iteration has to be done on all procedures simultaneously, since the transfer func-

tion of each procedure depends on the transfer functions of its callees.

Step 2: Node dataflow values

Using the transfer functions calculated in the above step, the dataflow values of nodes can

be calculated by iteratively applying the following formulae:

inemain = ⊥

ineP
=

⊔
c: call site ofP

outc for all proceduresP

inn = φ(ep,n)(ineP
) for all n ∈ GP

outn = fn(inn)

Correctness and Efficiency

As mentioned in Section 2.1, the above algorithm has been proven to be correct for a broad

class of dataflow analysis problems [30]. The efficiency of the algorithm mainly depends

on Step 1 above: intuitively, if the dataflow problem’s transfer functions can be represented

in a way that makes compositions and meets of such functions easy to compute, then the

algorithm is efficient. For the particular case of locally separable dataflow problems, trans-

fer functions can be represented as two bit vectors (the GEN and KILL sets). As a result,

computing the meet of two transfer functions is only twice as expensive as computing the

meet of two analysis values. For this subclass of problems, it turns out that the functional

interprocedural analysis algorithm is asymptotically no more expensive than a context-
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insensitive or intraprocedural algorithm; on an ICFG withE edges and a dataflow problem

with D-length bit-vector values, the algorithm’s complexity isO(ED) [31].

4.3 PBE Analysis

PBE analysis faces several challenges that are not present in classical interprocedural analy-

sis and therefore are not handled by the algorithm presented in Section 4.2. Since optimiza-

tion routines are free to operate along call and return arcs, these arcs may be eliminated,

duplicated, or moved. Thus the matching between call and return arcs will generally be

a many-to-many relation. For example, in Figure 3.4b, both return arcsX
)1→ R1 and

X ′ )1→ R′
1 match the single call arcC1

(1→ E. This complicates the semantics of call and re-

turn arcs in a fundamental way. For example, the pathE → N → X ′ → R2 in Figure 3.4b

is clearly not realizable, despite the fact that it contains no mismatching parenthesis anno-

tations. Moreover, the free movement of instructions across call and return arcs and the

free movement of these arcs themselves destroy the notion of procedure membership. Thus

dividing the WCFG into procedure-like constructs for the purposes of analysis will itself

be a task for the analysis algorithm.

The PBE analysis algorithm presented here meets these challenges, while staying as

close as possible to the algorithm described in Section 4.2. The algorithm is presented in

two parts. Section 4.3.1 describes an analysis prepass that performs calculations on the

control-flow graph only. This forms the input to the main dataflow analysis algorithm,

presented in Section 4.3.2.

4.3.1 WCFG Calculations

The first task of the PBE analysis algorithm is to properly classify the WCFG’s nodes, to

construct procedure-like sets of nodes (calledcontexts), and to draw summary edges. Since

the actions presented below are independent of the specific dataflow problem, the results of
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this phase can be reused for multiple analysis passes. This phase of the analysis only needs

to be rerun when the WCFG’s nodes are rearranged.

Step 1: CFG node classification

WCFG nodes are classified according to whether they are sources or destinations of call or

return arcs. Thus, a node that is the source of at least one call arc is acall site. A node that

is the destination of at least one return arc is areturn site. A node that is the destination

of at least one call arc is acontext entry. A node that is the source of at least one return

arc is acontext exit. In addition, the program entryemain will also be considered a context

entry. Similarly, the program exitxmain will be considered a context exit. Note that these

definitions are not mutually exclusive. For example, the special unmatched-call nodeC

used in region encapsulation (Section 5.2) is both a context entry and a call site. Context

entries and exits will play similar roles with those of procedure entries and exits in classical

interprocedural analysis.

Step 2: Creating context-defining pairs

A pair of nodes(e, x) is called acontext-defining pair(CDP) if e is a context entry,x is a

context exit, and at least one of the call arcs ofe matches with some return arc ofx. That

is, (e, x) is a CDP iff there exists a pair of edgesc
(i→ e andx

)i→ r for some value of

i. In this step, the PBE analysis algorithm identifies and stores such pairs. For the rest of

the algorithm, CDPs and the contexts they define (see Step 4) will roughly play the role of

procedures. In this spirit, we call the nodec above acall siteof (e, x) andr a return siteof

(e, x) corresponding to call sitec. Additionally, the special pair(emain, xmain) will also be

considered a CDP.
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Step 3: Drawing summary edges

From here on, a path containing normal edges and summary edges, but no call or return

edges, will be referred to as asame-contextpath (symbol:
SC
 ). The notion of same-context

paths is similar to that of same-level paths in Section 4.2. A CDP(e, x) is calledproper

if there is a same-context pathe
SC
 x. (Generally, the vast majority of CDP’s are proper.

Improper CDP’s usually arise when some optimization, especially branch constant folding,

removes CFG edges, possibly due to constant propagation across former procedure bound-

aries.) For each proper CDP, we will createsummary edgesleading from call sites of(e, x)

to the corresponding return sites. More formally, if(e, x) is a proper CDP, then we will

create a summary edgec
Si→ r for every pair of edgesc

(i→ e andx
)i→ r.

The PBE analysis algorithm discovers proper CDPs and draws summary edges by re-

peatedly running a reachability algorithm that discovers which nodes are reachable from

each context entry along same-context paths. If a context exitx is reachable from a con-

text entrye, we check to see if a CDP(e, x) exists. If it does exist, this CDP is marked

as proper and the corresponding summary edges are drawn. The reachability algorithm is

rerun after the addition of the new summary edges, possibly leading to more proper CDPs

being discovered and new summary edges being drawn. This process has to be repeated

until it converges.

Step 4: Discovering context membership

Each CDP(e, x) defines acontextCTe,x. We will say that a noden belongsto a context

CTe,x iff there are same-context pathse
SC
 n andn

SC
 x. Obviously, the contexts of im-

proper CDPs will be empty. For the PBE analysis algorithm, context membership roughly

corresponds to procedure membership in the classical interprocedural analysis algorithm.

(Note however that a node can belong to more than one context). Since forward reachability

from context entries has already been calculated in the previous step, a similar backward-

reachability pass from context exits is run to determine reachability from context exits.
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Context membership can then be easily determined by combining these two reachability

results.

Step 5: Building the context graph

Just as call relationships between procedures can be represented in a call graph, reachability

relationships between CDPs give rise to a context graph. A directed edgeCTe1,x1 →

CTe2,x2 means that there is a call sitec and a return siter such that bothc andr belong

to CTe1,x1 and there is a call edgec
(i→ e2 and a matching return edgex2

)i→ r. The CDP

graph can be easily calculated by going through the call and return edges in the WCFG

and combining them with the context membership information from the previous step.

The contextCTmain, corresponding to the CDP(emain, xmain), will be the entry node of the

context graph.

4.3.2 Problem-Specific Calculations

Given the results of the prepass in Section 4.3.1, the remainder of the PBE analysis algo-

rithm is similar to the interprocedural analysis algorithm presented in Section 4.2.

Step 1: Context transfer functions

For every contextCTe,x, this step calculates a transfer functionφCTe,x,n from the entrye

to every noden ∈ CTe,x using only paths in that context. More formally, letGCTe,x be

the WCFG subgraph containing all the nodes inCTe,x along with all the normal edges and

summary edges that connect them (but no call or return edges). Then:

φCTe,x,n =
⊔

p∈pathGCTe,x

fp

Note that a noden may be contained in multiple contexts with the same entrye; that’s why

the full context has to be specified in the definition ofφ above. The transfer function of the
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entire contextCTe,x can be defined as:

φCTe,x = fx ◦ φCTe,x,x

Similarly to Step 1 of Section 4.2, these transfer functions can be calculated by itera-

tively applying the formulae:

φCTe,x,e = idL

φCTe,x,n =
⊔

(m,n)∈GCTe,x

hm,n ◦ φCTe,x,m

where:

hm,n =


φCTe′,x′ if (m, n) is a summary edge with “callee”CTe′,x′

idL if (m, n) is a normal edge

This iteration has to be performed on all contexts simultaneously.

Step 2: Computing node values

In a way similar to the algorithm in Section 4.2, the transfer functions calculated above can

be used to calculate the analysis values at all nodes. The only extra complication is that a

node can belong to more than one context. The iterative formulae are:

inemain = ⊥

ine =
⊔

c: call site of aCTe,x for somex

outc for all context entriese

inn =
⊔

CTe,x: n∈CTe,x

φ(CTe,x,n)ine for all other nodes

outn = fn(inn) for all nodes
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4.4 Conclusion

Although interprocedural analysis algorithms have been presented in the past, these algo-

rithms always assume that the code being analyzed conforms to a “traditional” procedural

structure. This in turn limits the compiler’s ability to optimize freely across procedure

boundaries. By using the generalized analysis algorithm presented above, PBE avoids

these limitations. This algorithm draws heavily on existing work on interprocedural analy-

sis, but contains several key additions, namely the prepass in described in Section 4.3.1 and

the modified equations in Section 4.3.2. This algorithm forms the centerpiece of the PBE

compiler presented in Chapter 6.
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Chapter 5

Region-Based PBE

PBE, as presented in Chapters 3 and 4, could operate on the entire program. Indeed, this

would enable code transformations to achieve their maximum performance impact. How-

ever, such an approach would not be scalable to even modestly sized programs. This is

because most optimization and analysis routines are super-linear, causing compile time

and memory utilization to increase very fast with compilation unit size.

Region formation solves this problem by breaking up the WCFG into more manage-

able regions, which are then analyzed and optimized in isolation. Although breaking up

the program into regions is bound to cause some performance loss, the compiler is free to

decide the size and contents of regions according to its optimization needs. Therefore, it is

reasonable to expect that PBE regions will be superior compilation units to the program’s

original procedures, which are chosen according to criteria unrelated to optimization. In-

deed, as seen in Section 2.3, previous research indicates that performance loss due to region

formation is minimal.

Section 5.1 describes the region formation heuristic used by our initial implementa-

tion of PBE. Section 5.2 describes a region encapsulation method that enables PBE’s later

phases to handle each region in isolation.
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5.1 Region Formation

This section describes the profile-driven region formation heuristic used in the initial im-

plementation of PBE (Chapter 6). This heuristic is very different from the one originally

proposed by Hank et al. [22]. Note, however, that the PBE technique does not depend on

any particular region formation heuristic. Simpler or more sophisticated heuristics can be

used, depending on a compiler’s specific needs.

The region formation heuristic presented here has two basic goals. The first is to pro-

duce regions whose size is neither too much above nor too much below a user-specified

size targetS. This is because regions that are too big may overburden the optimizer, while

regions that are too small will expose too few optimization opportunities. Second, tran-

sitions between regions should be as infrequent as possible. This is because a transition

between regions has some runtime overhead, much like the overhead that calls and returns

incur in procedure-based programs. This overhead comes both from unrealized optimiza-

tion opportunities spanning the transition and as a consequence of region-based register

allocation.

The first phase of the region formation heuristic is a greedy clustering algorithm. The

basic blocks of the WCFG are divided into clusters. The size of a cluster is the total number

of instructions contained in its constituent basic blocks. These clusters are connected with

undirected weighted edges. The weight assigned to an edge between two clusters is the

sum of the profile weights of the real WCFG edges between blocks in the two clusters.

At the start of the formation process, each individual basic block will be in a separate

cluster. Clusters are then repeatedly joined by examining the intercluster edge with the

highest weight. If the combined size of the two clusters it connects is less than the size

targetS, then the two clusters are joined, with edges and edge weights being updated

accordingly. This phase of the algorithm terminates when no more clusters can be joined

without exceeding the size target.

The clustering phase usually results in a number of regions with size close toS cen-
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tered around the “hottest” nodes of the WCFG. However, as often happens with greedy

algorithms, there are usually many small one- and two-block clusters left in between. Be-

cause the presence of too many small regions is undesirable, there is a second, “correction”

phase to the heuristic. In this phase, any cluster whose size is less than a certain fraction

αS of the size target is merged with the neighboring cluster with which its connection is

strongest, regardless of size limitations.

For the experimental evaluation presented in Chapter 6, we settled on the valuesS =

500 instructions andα = 0.1 as a good tradeoff between optimizability and compile-time

dilation, after trying several values.

5.2 Region Encapsulation

Once the WCFG has been divided into regions, the compiler must transform each re-

gion into a self-contained compilation unit. As described by Hank et al. [22], this can

be achieved by annotating the virtual registers that are live-in at each region entry and live-

out at each region exit. Analysis routines can then insert special CFG nodes before each

entry and after each exit. These nodes will appear to “define” live-in registers and “use”

live-out registers respectively. Optimization routines can then treat these special nodes con-

servatively. For example, if a virtual register use has reaching definitions from one of the

special region entry nodes, it cannot be a candidate for constant propagation. Similarly, if

a virtual register definition has an upward exposed use coming from one of the special exit

nodes, then that definition will never be considered dead.

There are two challenges in applying this region encapsulation technique to PBE. The

first is that the liveness of registers at region boundaries has to be calculated in a program-

wide analysis pass. As program size grows, this pass can become prohibitively expensive.

To alleviate this problem, the PBE compiler performs this analysis on an abbreviatedpro-

gram skeleton, instead of analyzing the entire WCFG. Since region encapsulation needs
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liveness information on region entries and exits, such nodes have to be present in the skele-

ton. Also, since the PBE analysis presented in Chapter 4 needs to match call and return

arcs in order to produce accurate results, the skeleton graph must also represent call and

return arcs adequately. Still, nodes inside a region that do not relate to calls, returns, or

region entries and exits can be abstracted away intoskeleton edges. Therefore, the program

skeleton consists of the following elements:

• Region entries and exits.

• The original WCFG arcs connecting region exits to region entries.

• Call and return arcs, plus their source and destination nodes.

• Skeleton edges, which summarize the remaining nodes of the WCFG. Such edges

begin at region entries or destinations of interprocedural arcs and end at region exits

or sources of interprocedural arcs. Skeleton edges are annotated with the virtual

registers that may be defined or used along the part of the WCFG they represent.

Since a skeleton edge always represents a subgraph of the WCFG that lies within the

same region and does not contain calls or returns, the annotations of skeleton edges can be

easily computed by applying a simple (intraprocedural) dataflow analysis pass separately

within each region. After the annotations of skeleton edges have been computed, a PBE

analysis pass (see Chapter 4) on the entire program skeleton can yield the liveness infor-

mation for region entries and exits. Since the vast majority of WCFG nodes have been

abstracted away by skeleton edges, analyzing the program skeleton is much cheaper, and

therefore more scalable, than analyzing the entire WCFG.

The second challenge is unmatched call and return arcs that arise from regions se-

lected independently of the program’s procedures. PBE analysis routines, which rely on

the proper matching between calls and returns, can be confused by this. To avoid this prob-

lem, a few special nodes are added to each encapsulated region’s CFG. A nodePE is
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Figure 5.1: (a) A region formed around blocksE, M , N , X, R1, andR2 from Figure 3.2b
with nodes for region entries and exits. (b) The region’s program skeleton form, with blocks
E, M , andN abstracted into two skeleton edges (dashed arrows). (c) The encapsulated
form of the region, with program entry, program exit, call closure, and return closure nodes.
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added to represent the program entry. This node is followed by areturn closurenodeRC

that has edges of the formRC
(i→ RC circling back to it, for every return annotation)i that

appears in the region. In fact,RC only needs a call annotation
(i→ if )i appears in the region

and(i appears at an edge backwards-reachable from one of the region’s entries. However,

enforcing this distinction makes little difference in practice. NodeC is then connected to

all the entries of the current region. Essentially, nodeC provides a matching call arc for

every return arc that may be unmatched in the region. Symmetrically, the encapsulated

region contains a nodePX to represent the program exit, as well as acall closurenode

CC with an edgeCC
)i→ CC circling back to it for every call annotation(i in the region.

These is illustrated in Figure 5.1. Figure 5.1a shows a region formed out of blocksE,

M , N , X, R1, andR2 from Figure 3.2b. The region has two special entry blocks,RA and

RB, to represent flows into the region, and two exit blocks,RX andRY , to represent flows

out of the region. Figure 5.1b shows the skeleton form of this region. Region entries and

exits are present in the skeleton, as well as blocksX, R1, andR2, which are sources and

destinations of return arcs. BlocksE, M , andN , on the other hand, have been abstracted

away through two skeleton edges, shown as dashed arrows in the figure. Finally, Figure 5.1c

shows the fully encapsulated form of the region, with program entry, program exit, return

closure, and call closure nodes. The return closure node has two call edges that match the

two return annotations)1 and)2. The call closure node has no return edges, since no call

annotations appear in this region.

With regions encapsulated as described above, further analysis and optimization rou-

tines do not need to consider the entire WCFG. This avoids scalability problems in later

phases of the compiler, thus allowing PBE to be used on real-world applications.
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Chapter 6

PBE Experimental Evaluation

In order to evaluate the ideas presented in Chapters 3 to 5, an experimental platform was

developed that allows the comparison of a PBE-enabled compilation process to a process

based on aggressive inlining. For that purpose, PBE was implemented in the Liberty

group’s research compiler, called VELOCITY. In the experiments described below, the

VELOCITY compiler was combined with IMPACT [4], an existing research compiler de-

veloped at the University of Illinois at Urbana-Champaign. IMPACT is the best-performing

compiler for the Intel Itanium architecture for SPEC codes, thus providing a credible ex-

perimental baseline.

Section 6.1 describes the experimental setup, based on the above two compilers, in more

detail. Using this experimental setup, Section 6.2 compares PBE with aggressive inlining in

terms of both code growth and generated code performance. Finally, Section 6.3 evaluates

PBE’s compile-time costs.

6.1 Experimental Setup

In our experimental setup IMPACT is used as a front end, compiling C benchmarks to its

low-level IR, called Lcode. IMPACT also annotates Lcode with the results of aggressive

alias analysis [41], which are exploited in later optimization phases. Lcode is then used as

43



input to VELOCITY, which translates it to its own low-level IR.

In order to support the experiment described below, VELOCITY implements an ag-

gressive inlining routine, which very closely follows the inlining routine of the IMPACT

compiler. Needless to say, VELOCITY also implements the various phases of PBE: proce-

dure unification (Section 3.3), region formation and encapsulation (Chapter 5), superblock

formation (Section 3.4.1), and area code specialization (Section 3.4.2).

For later compilation phases, VELOCITY contains an aggressive classical optimizer

that includes global versions of partial redundancy elimination, dead and unreachable code

elimination, copy and constant propagation, reverse copy propagation, algebraic simplifi-

cation, constant folding, strength reduction, and redundant load and store elimination. A

local version of value numbering is also implemented. These optimization routines are

applied exhaustively in a loop, until none of them can find any further transformation op-

portunities. To support this optimizer, VELOCITY contains a general-purpose dataflow

analysis library for bit-vector problems that supports both intraprocedural analysis and the

PBE analysis algorithm (Chapter 4). Finally, VELOCITY includes register allocation and

superblock-based scheduling targeted to the Itanium 2 architecture. The heuristics for both

these routines once again came from the corresponding routines in the IMPACT compiler.

Unfortunately, VELOCITY does not yet handle most of the advanced performance fea-

tures of the Itanium architecture, such as predication, control and data speculation, and

prefetching. Also, the scheduler does not take the Itanium architecture’s bundling con-

straints into account.

Immediately after the Lcode is input into VELOCITY, it is profiled. (Although IM-

PACT also contains a profiler, we chose to reimplement profiling in VELOCITY, mostly

due to difficulties in propagating IMPACT’s profile weights accurately.) The code then

undergoes a first pass of intraprocedural classical optimization. This “cleans up” the code,

making subsequent inlining, region formation, and TCS heuristics more effective. From

then on, each benchmark’s compilation follows three different paths. The first path contains
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neither inlining nor PBE. The results of this path form the baseline in our measurements.

In the second path, the code is subjected to an aggressive inlining pass, closely following

IMPACT’s inlining heuristics. The third path represents PBE. Procedures are unified, the

code is divided into regions, regions are encapsulated, and an area specialization pass is ap-

plied. All three paths continue by applying superblock formation, another pass of classical

optimization, register allocation, and list scheduling.

The above three paths were applied to eight benchmarks from the SPEC suites:

• 124.m88ksim and129.compress from the SPECint95 benchmark suite and

• 164.gzip , 179.art , 181.mcf , 183.equake , 188.ammp, and256.bzip2

from the SPECint2000 benchmark suite.

Unfortunately, it was not possible to run the experiment on the entire SPECint2000 suite,

due to various bugs in VELOCITY’s implementation at the time.

6.2 PBE Performance Evaluation

To compare the performance of PBE versus inlining, we subjected the above eight bench-

marks to the three different compilation paths described in the previous section: strict

procedure-based compilation, inlining, and PBE. Runtime performance was measured

by profiling or running each version of the generated code using the SPEC suite’s train-

ing inputs. We chose to use the training inputs (i.e. the same inputs that are used in the

compiler’s profiling phase) rather than evaluation inputs (i.e. the inputs normally used by

architecture manufacturers for publishing SPEC performance numbers) for this experiment

in order to obtain an accurate assessment of PBE’s capabilities versus inlining, without

being distracted by issues of profile input suitability.

Runtime performance was measured in two different ways. Figure 6.1 measures perfor-

mance by means of dynamic cycle counts. These cycle counts were obtained by profiling
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Figure 6.1: Performance benefits of inlining and PBE on training inputs over strict
procedure-based compilation (dynamic cycle count).

the generated code and then tallying the “predicted cycles” of each basic block, defined as

the product of the block’s schedule height and the block’s profile weight. This is equiva-

lent to simulating the code on an Itanium-like 6-wide uniform VLIW machine with perfect

cache and branch prediction behavior. Figure 6.2, on the other hand, measures the actual

runtime of each executable on an unloaded HP workstation zx2000 with a 900MHz Intel

Itanium 2 processor and 2Gb of memory running RedHat Advanced Workstation 2.1. Run-

time numbers were collected using HP’spfmontool [15]. Finally, Figure 6.3 measures the

code growth caused by inlining and PBE compared to the baseline.

As the dynamic cycle count graph (Figure 6.1) shows, PBE performance beats ag-

gressive inlining, 15% versus 13% on average. PBE’s performance advantage is much

more pronounced in certain individual cases, such as129.compress (32% versus 19%)

and164.gzip (10% versus 3.6%). There is only one benchmark,124.m88ksim , for

which PBE underperforms inlining. This happens mostly because of poor compilation unit

choices by the region formation heuristic. A more sophisticated region selection method,
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Figure 6.2: Performance benefits of inlining and PBE on training inputs over strict
procedure-based compilation (runtime performance).

along the lines described in Section 10.2, would make such pitfalls even more unlikely.

Similar performance gains are shown in the runtime performance graph (Figure 6.2),

though the overall speedup is about half the gain estimated from dynamic cycle count. The

smaller performance differences in the second figure can be attributed to Itanium 2 runtime

overheads that are not handled by VELOCITY in any of the three compilation paths, as

explained in the previous section.

Most importantly, PBE achieves these performance benefits with only about half the

code growth of inlining, 23% versus 45% on average (Figure 6.3). This is important for

several reasons. First, smaller code can often lead to better instruction cache behavior.

Second, unlike experimental compilers such as IMPACT or VELOCITY, most commercial

compilers cannot tolerate code growth like that caused by this experiment’s inlining routine.

As a result, the inlining heuristics used in industrial compilers are much less aggressive. In

such an environment the performance gap between PBE and inlining would be significantly

bigger. These performance versus code growth restrictions are even more pronounced in
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Figure 6.3: Code growth caused by inlining and PBE compared to strict procedure-based
compilation

the embedded system domain, often leading compiler writers to entirely forgo inlining. In

this setting, PBE may be the only way to extend optimization across procedure boundaries.

6.3 PBE Compilation Overhead

The compile-time overhead of PBE is expected to come from two sources: First, PBE starts

by applying procedure unification, region formation, and region encapsulation. Traditional

compilation, on the other hand, does not have to apply these phases. TCS routines that are

not normally present in a non-PBE compiler, such as area specialization, also have to be

added to PBE’s up-front overhead. Figure 6.4 shows the percent of total compile time spent

performing unification, region formation, region encapsulation, and area specialization. As

seen in Figure 6.4, the initial phases of PBE consume between 2% and 5% of compile

time, with a geometric mean of 3%. This shows that the techniques discussed in Chapter 3

cause only a trivial increase in compilation time. In particular, the use of an abbreviated
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Figure 6.4: Overhead of unification, region formation, region encapsulation, and area spe-
cialization as a percentage of total compilation time.

program skeleton during region encapsulation (Section 5.2) avoids the excessive overhead

that occurs when analyzing the whole program.

The second and most important source of PBE compile-time overhead comes from in-

creased effort in later compilation phases. The full overhead of PBE, including startup costs

and increased optimization time, can be seen in Figure 6.5. This figure shows that PBE does

not incur prohibitive compile time costs. On average, a PBE compilation is 70% slower

than an inlining compilation, which is itself twice as slow as the baseline. Since Figure 6.4

showed that the overhead of PBE’s initial phases is relatively small, most of this compile-

time dilation can be ascribed to extra optimization and analysis effort within regions. Partly,

this variance in compile times (especially the extreme cases, such as188.ammp), is due to

the experimental nature of our compiler. Like most experimental compilers, VELOCITY

performs exhaustive dataflow optimization and has to run several dataflow analysis rou-

tines on entire procedures or regions before every optimization routine. Most commercial

compilers do not follow this approach because it leads to compile-time volatility. Compile

time limiting techniques common in industrial-strength compilers, such as restricting most
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Figure 6.5: Compile time dilation for inlining and PBE compared to strict procedure-based
compilation: each bar represents the ratio of the compile time consumed by inlining and
PBE respectively over the compile time consumed by the baseline compiler.

classical optimizations to within basic blocks, capping the number of optimization passes

applied, or tolerating slightly inaccurate dataflow information, could reduce the compile-

time gap further. However, such an approach would not allow us to evaluate the full perfor-

mance impact of either inlining or PBE, and thus would not be appropriate for a research

experiment.
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Chapter 7

The Optimization Decision Problem

While the first part of this dissertation dealt with the problem of optimization scope, the sec-

ond part deals with the performance limitations introduced by the compiler’s difficulty in

reaching the correct optimization decisions. Since modern processors often contain nonuni-

form resources, explicit parallelism, multilevel memory hierarchies, speculation support,

and other advanced performance features, judging the impact of a code transformation on

final code quality cannot be achieved by simple metrics such as instruction count or code

size. Instead, an optimizing compiler has to carefully balance a set of performance factors,

such as dependence height, register pressure, and resource utilization. More importantly,

the compiler must also anticipate dynamic effects, such as cache misses and branch mis-

predictions, and avoid or mask them if possible.

To accomplish this task, a compiler needs a large number of complex transformations.

Unlike traditional compiler optimizations, such as dead code elimination or constant fold-

ing, few of these transformations are universally beneficial. Most of them constitute trade-

offs, improving some performance factors while downgrading others. For example, loop

unrolling increases instruction-level parallelism (ILP) but may adversely affect cache per-

formance, whereas if-conversion avoids branch stalls but increases the number of instruc-

tions that must be fetched and issued. Worse, the final outcome of any code transformation
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ultimately depends on its interactions with subsequent transformations. For example, a

software pipelining transformation that originally seems beneficial may lead to more spills

during register allocation, thus worsening performance.

Clearly, a successful optimizing compiler must not only incorporate a rich set of opti-

mization routines, but must also correctly determine where and when to apply each one of

them. In today’s compilers, this is usually achieved through the use ofpredictive heuristics.

Such heuristics examine a code segment right before an optimization routine is applied on

it, and try toa priori judge the optimization’s impact on final performance. Usually, a great

amount of time and effort is devoted to crafting accurate heuristics. However, a heuris-

tic’s task is complicated not only by the complexity of the target platform, but also by the

fact that it must anticipate the effect of the current code transformation on all subsequent

optimization passes. To make a successful prediction in all cases, each heuristic would

ultimately have to be aware of all other heuristics and optimization routines, and all the

ways they might interact. Furthermore, all heuristics would have to be changed every time

an optimization routine is added or modified. In today’s complex optimizers this is clearly

an unmanageable task. Therefore it is to be expected that real-world predictive heuristics

will make wrong optimization decisions in many cases.

To manage these complications, compiler writers do not fully specify the heuristic and

optimization behavior during compiler development. Instead, they leave several optimiza-

tion parametersopen. For example, the maximum unroll factor that a loop unrolling heuris-

tic may use can be such a parameter. Similarly, an if-conversion parameter may control

exactly how balanced a branch has to be before if-conversion is considered. The values

of such parameters are determined during a tuning phase, which attempts to maximize a

compiler’s performance over a representative sample of applications. In essence, such pa-

rameters give the compiler’s components a limited ability to automatically adapt to the

target architecture, to the target application set, and to each other.

Parameterization and tuning have proven to be very effective in improving a modern
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compiler’s performance. However, they are still an imperfect answer to modern optimiza-

tion needs. No matter how sophisticated a tuning process is, the end result is still a single,

rigid compiler configuration, which then has to be applied to code segments with widely

varying optimization needs. In the end, tuning can only maximize theaverageperformance

across the sample applications. However, this “one size fits all” approach will unavoidably

sacrifice optimization opportunities in many individual cases. This effect is especially pro-

nounced when the compiler is applied on code that is not well represented in its tuning

sample. Section 7.1 elaborates further on the problems caused by this compilation ap-

proach.

To address these limitations of traditional compiler organization,iterative compilation

has been proposed [1, 13, 16, 29, 32, 40, 56, 57]. Instead of relying ona priori pre-

dictions, an iterative compiler applies many different optimization configurations on each

code segment. It subsequently compares the different optimized versions of each segment

and decides which one is besta posteriori. This allows the compiler to adapt to the opti-

mization needs of each code segment. Previous research indicates that iterative compilation

can provide significant performance benefits.

The problem with current iterative compilation approaches is their brute force nature.

Such approaches identify the correct optimization path by considering all, or at least a

great number of, possible optimization paths. This incurs prohibitive compile time costs.

Therefore, iterative compilation has been currently limited to small parts of the optimiza-

tion process, small applications, and/or application domains where large compile times are

acceptable, such as embedded processors and supercomputing. Section 7.2 discusses a

representative sample of the iterative compilation bibliography.
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7.1 Predictive Heuristics and Their Problems

Typically, modern compilers apply a “one size fits all” approach to optimization, whereby

every code segment is subjected to a single, uniform optimization sequence. The only

opportunity to customize the optimization sequence to the needs of each individual code

segment is offered through predictive heuristics. However, the difficulty of characterizing

interactions between optimization routines, as well as the complexity of the target archi-

tecture, make it very hard to make accurate optimization decisionsa priori. As a result, no

single compiler configuration allows optimizations to live up to their maximum potential.

Although such an optimization process can be tuned for maximum average performance,

it will still sacrifice important optimization opportunities in individual cases. Section 7.1.1

strengthens this argument through a bibliographic survey. Section 7.1.2 presents an exper-

imental setup based on the Intel Electron compiler, which will be used both in this chapter

and in the experimental evaluation of Chapter 9. Section 7.1.3 provides a more quantitative

argument through an experimental evaluation of heuristic shortcomings in the Intel Elec-

tron compiler. Finally, Section 7.1.4 briefly surveys the behavior of predictive heuristics in

other compilers.

7.1.1 Predictive Heuristics in Traditional Compilation

Evaluating the full range of predictive heuristic design and use is beyond the scope of this

dissertation. Instead, this section provides a sample of predictive heuristic work, in order

to strengthen the argument that the art ofa priori predicting the behavior and interactions

of compiler optimizations is at best an inexact science.

Whitfield et al. [55] propose an experimental framework for characterizing optimiza-

tion interactions, both analytically and experimentally. This allows a compiler developer

to examine different ways to organize optimization routines and study how they interact.

Studies performed using this framework underscore the fact that optimization routines in-
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teract heavily and in ways that are difficult to predict. Ultimately, no single optimization

organization is ideal for all cases; each compiler configuration exhibits different strengths

and weaknesses, making it well-suited for only a fraction of targeted codes.

Recognizing the difficulty in hand-crafting heuristics, Stephenson et al. [48] let heuris-

tics “evolve” using genetic algorithms. When the genetic algorithm is used to identify the

best overall register allocation heuristic for a given benchmark set, it results in a register

allocation routine offering a 9% performance improvement. However, when the genetic

algorithm is allowed to converge on a different heuristic for each benchmark, the perfor-

mance improvement is 23% on average. Thus this work underscores the fact that a “one size

fits all” optimization approach, even a well-tuned one, is liable to sacrifice performance.

Other work has focused on addressing particularly problematic optimization interac-

tions and developing better heuristics to circumvent performance pitfalls. Heuristics that

try to avoid register spilling due to overly aggressive software pipelining have been pro-

posed [19, 35]. Although the proposed heuristics are quite sophisticated, the authors de-

scribe cases that the heuristics cannot capture. Among the best studied optimization inter-

ferences are those that occur between scheduling and register allocation. Proposed heuristic

techniques seek to minimize harmful interferences by considering these two code transfor-

mations in a unified way [8, 17, 33, 38]. Continuing efforts in this area indicate that none

of the existing heuristics can fully capture these interferences.

Hyperblock formation and corresponding heuristics have been proposed to determine

when and how to predicate code [36]. However, even with these techniques, the resulting

predicated code often performs worse than it did originally. In an effort to mitigate this

problem, techniques that partially reverse predication by reinserting control flow have been

proposed [5]. This need to reexamine and roll back code transformations underscores the

difficulty of makinga priori optimization decisions.

These works are just a sample of the research done to address problems of predictive

heuristics. The continuing effort to design better predictive heuristics and to improve com-
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piler tuning techniques indicates that the problem of determining if, when, and how to

apply optimizations is far from solved.

7.1.2 Experimental Setup

The previous section argued that any traditional compiler, no matter how well-tuned, is

bound to sacrifice performance opportunities due to incorrect optimization decisions. In

order to quantify this performance loss, we used an experimental setup based on the In-

tel C and C++ compiler for the Itanium Processor Family (IPF), also known as Electron.

Since Electron is the SPEC reference compiler for IPF, it provides a credible experimen-

tation base. Also, IPF is an especially interesting target architecture, since its explicit

parallelism and its complicated performance features make the proper application of ag-

gressive optimizations crucial to achieving good performance. For our experimental base-

line we used Electron version 6.0 invoked with the command-line parameters-O2 -ip

-prof use , which enable intraprocedural optimization, interprocedural optimization and

analysis within the same source-code file, and profile information use. This is very close to

the compiler configuration used to report the official SPEC numbers for Itanium. (The exact

SPEC reference command line is-O2 -ipo -prof use , which also enables cross-file

interprocedural optimization and analysis. However, using these settings in conjunction

with our experimental harness proved impossible). Note that the-O2 option is used in-

stead of the more aggressive-O3 , both for the official SPEC measurements and for our

baseline. This is because the more aggressive optimization settings enabled by-O3 often

cause significant performance degradation instead of improvement, especially for nonsci-

entific codes. This makes a study of Electron’s optimization decision failures all the more

interesting.

For this study, the behavior of several Electron optimizations was varied and the impact

of these variations on compiled code performance was observed. The full list of optimiza-

tion parameters studied is given in Table 7.1. The different variations of Electron were
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# Parameter Meaning

1 Optimization level -O2 (default) performs standard optimizations, in-
cluding loop optimizations [26].-O3 performs all
-O2 optimizations plus riskier optimizations that
may degrade performance, including aggressive loop
transformations, data prefetching, and scalar replace-
ment.

2 HLO level Same as above, but affects only the high-level opti-
mizer.

3 Microarchitecture type Optimize for Itanium (default) or Itanium 2. Affects
the aggressiveness of many optimizations.

4 Load/store coalescing On by default. Forms single instructions out of adja-
cent loads and stores.

5 If-conversion On by default.
6 Nonstandard predication Off by default. Enables predication for if blocks

without else clauses.
7 Software pipelining On by default.
8 Software pipeline outer

loops
Off by default.

9 Software pipelining if-
conversion heuristic

On by default. Uses a heuristic to determine whether
to if-convert a hammock in a loop that is being soft-
ware pipelined. If disabled, every hammock in the
loop is if-converted.

10 Software pipeline loops
with early exits

On by default.

11 HLO after loop normal-
ization

Off by default. Forces HLO to occur before loops
are normalized, effectively disabling some optimiza-
tions.

12 Loop unroll limit Maximum loop unrolling factor. Values tried: 0, 2, 4,
12 (default).

13 Update dependences after
unrolling

On by default. If disabled, it effectively limits opti-
mization aggressiveness on unrolled loops.

14 Prescheduling On by default. Runs scheduling beforeandafter reg-
ister allocation. If disabled, runs scheduling only af-
ter register allocation.

15 Scheduler ready criterion Percentage of execution-ready paths an instruction
must be on to be considered for scheduling. Values
tried: 10%, 15% (default), 30%, and 50%.

Table 7.1: Electron optimization parameters used in the experiments of Chapters 7 and 9.
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applied to the following benchmarks:

• The SPECint2000 benchmarks164.gzip , 175.vpr , 176.gcc , 181.mcf ,

186.crafty , 197.parser , 253.perlbmk , 254.gap , 255.vortex ,

256.bzip2 , and300.twolf .

• the SPECcfp2000 benchmarks177.mesa , 179.art , 183.equake , and

188.ammp.

• the SPECint95 benchmarks099.go , 124.m88ksim , 129.compress , and

132.ijpeg .

• the MediaBench benchmarksadpcmdec , adpcmenc , epicdec , epicenc ,

g721dec , g721enc , jpegdec , andjpegenc .

• the parser generatoryacc

Note that252.eon is missing from the SPECint2000 benchmarks above. This is

because our experimental support programs could not handleC++. More benchmarks are

missing from the SPEC95 and MediaBench suites. Quite a few of these benchmarks did not

compile or run on Itanium since they were written for 32-bit architectures. For others, the

compilation process failed for certain configurations tried. This is not surprising, since this

experiment exercises parts of Electron’s optimizer that were not enabled in the officially

released code, and thus were probably not fully debugged.

For the performance measurements, executables were run on unloaded HP i2000 Ita-

nium workstations running Red Hat Linux with kernel version 2.4.18. Execution times

were obtained using the performance counters of the IPF architecture with the help of the

libpfm library [43]. Because most of our experiments required measuring the computa-

tion cycles consumed by each procedure in a benchmark, we developed an instrumentation

system that directly manipulates the assembly language produced by Electron, adding ap-

propriate actions at each procedure entry and exit. These actions involve reading and reset-
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ting IPF’s performance counters and accumulating each procedure’s cycle count in special

memory locations. These cycle counts are printed to a file by an exit function, installed

throughatexit() . Whenever whole program runtimes are reported, these are taken to

be the sum of the cycles spent in a program’s source procedures, excluding time spent in

system calls and precompiled libraries. Reported cycle counts do not contain cycles spent

in the instrumentation system itself. Also, since the instrumentation system works directly

on assembly language, it does not disturb any part of the optimization process. Some cache

interference is unavoidable, but it is limited to a few bytes of data accessed per function

entry or exit. Each benchmark was run enough times to reduce random drift in the mea-

surements to below 0.5%. The times that a benchmark had to be run varied according to

the characteristics of the benchmark and its input sets, from 3 for the bigger benchmarks to

about 20 for the smaller ones.

7.1.3 Heuristic Failure Rates

To quantify the frequency of predictive heuristic failure in Electron, the following exper-

iment was performed. The optimization parameters appearing in Table 7.1 were grouped

into six categories: overall optimization approach (1st to 3rd parameter), load/store han-

dling (4th parameter), predication (5th and 6th parameters), software pipelining (7th to 10th

parameters), other loop optimizations (11th to 13th parameters), and scheduling (14th and

15th parameters). For each one of these categories we determined how often a nonstandard

setting of the category’s parameters produces noticeably faster code than the default set-

ting. For this purpose we tried each possible parameter setting for each category on a group

of code samples comprising the most important procedures in our benchmark set, namely

all procedures that consume at least 10% of their benchmark’s runtime. There are 66 such

functions in our benchmark set.

The results of this experiment can be seen in Figure 7.1. For each category, this graph

shows how often a parameter setting other than the default results in at least 3%, 5%, 10%,
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Figure 7.1: Percentage of procedures for which a setting other than the default of a cate-
gory’s parameters causes a speedup greater than 3%, 5%, 10%, and 20% over Electron’s
default configuration.

and 20% better performance than Electron’s default setting for the category’s parameters.

For columns marked with “R” all procedures count the same, whereas for columns marked

with “W” procedures are weighed by their execution weight in the corresponding bench-

mark.

As we can see in Figure 7.1, the default setting in each category performs well in a

majority of cases. However, a significant number of procedures is not served well by the

compiler’s default configuration. For example, one of every four procedures could improve

its performance by at least 5% if the overall optimization approach were set to different

parameters. Similarly, one out of every five procedures would be at least 10% faster if the

loop optimizations were customized to its needs. These results provide evidence that even

a well-tuned single-configuration compilation process cannot fit all codes, thus leaving

significant performance benefits unrealized.
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7.1.4 Heuristics in Other Compilers

The failure of heuristic-driven compilation to make correct optimization decisions is not a

phenomenon peculiar to Electron. In one small experiment, we varied the loop unrolling

factor used by the IMPACT compiler [4] incrementally from 2 to 64. The benchmark

132.ijpeg performed best for the default loop unrolling factor of 2. However, a perfor-

mance increase of 8.81% was achieved by allowing each function in132.ijpeg to be

compiled with a different loop unrolling factor. In a bigger experiment involving 72 differ-

ent configurations, the individually best configurations for130.li and008.espresso

achieved 5.31% and 11.74% improvement over the globally best configuration respectively.

As noted in Section 7.1.1, the experimental compiler used in [48], which is based on

Trimaran, exhibits similar behavior. Allowing the register allocation strategy to be cus-

tomized on a benchmark by benchmark basis leads to a 13% performance gain over the

globally best register allocation strategy.

The experiment described in [2] focuses on GCC targeting Pentium architectures. Re-

ported results show a performance improvement of up to 6% if the compiler configuration

is customized on a per-program basis.

7.2 Iterative Compilation

As previously discussed, traditional optimizers subject every code segment to a single,

uniform optimization process. Iterative compilation takes a different approach. Instead of

relying ona priori predictions, an iterative compiler applies many different optimization

sequences on each code segment. The different optimized versions of each code segment

are then compared using an objective function, and the best one is output. Thus iterative

compilation is able to find the “custom” optimization approach that best meets each code

segment’s needs. Although this approach usually results in significant performance gains,

it requires prohibitively large compile times. This has prevented iterative compilation from
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being broadly applied. Most importantly, this has rendered iterative compilation unsuitable

for production compilers.

Several iterative compilation approaches have been proposed in the past. Section 7.2.1

presents approaches that focus on dataflow optimization routines and their phase orders.

Works presented in Section 7.2.2 focus more on loop optimizations for small loop kernels

on embedded systems. In an interesting variant to iterative compilation, methods presented

in Section 7.2.3 perform an iterative exploration on an abstraction of the code before the

actual optimization happens.

7.2.1 Iterative Classical Optimization

Cooper et al. [13] propose a compilation framework calledadaptive compilation, which

explores different optimization phase orders at compile time. The results of each phase

order are evaluateda posterioriusing one of several objective functions. This system is

experimentally evaluated on a small FORTRAN benchmark. Depending on the objective

function selected, the adaptive compilation system can produce a 13% reduction in code

size or a 20% reduction in runtime relative to a well-tuned traditional compiler. Although

some rudimentary pruning techniques are used, the system still needs from 75 to 180 trials

before it can identify a solution within 15% of the ideal one.

Instead of traversing possible phase orders in a brute-force manner, Kulkarni et al. [32]

propose a selective exploration of phase orders using a genetic algorithm. In its pure form,

this approach needs to compile and execute each procedure 2000 times. The benefits of

this exploration can be a reduction in the resulting code’s runtime and code size by up to

12% each, with respective averages of 3% and 7%. When applying several search pruning

techniques proposed by the authors, the same benefit can be achieved with about 70% less

compile-time dilation. Although not astronomical, this level of compile-time dilation is ob-

viously too steep for general purpose compilers. For this reason, this optimization method

is targeted towards the embedded systems domain, and it is experimentally evaluated on
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relatively small benchmarks.

7.2.2 Iterative Embedded Loop Kernel Optimization

The OCEANS compiler group [1] has also investigated iterative compilation approaches,

mainly within the context of embedded system applications. An initial study [29] on iter-

ative applications of loop unrolling and tiling on three small numerical kernels proves that

the proposed approach can cause up to a fourfold increase in generated code performance.

A more realistic study [16], involving three loop transformations applied to more sizable

numerical benchmarks, achieves a 10% improvement over an aggressively optimizing tra-

ditional compiler. Despite the presence of pruning techniques, the system still needs to

apply up to 200 different optimization sequences before this performance gain is achieved.

The GAPS compiler project [40] studies the iterative application of loop transforma-

tions on numeric benchmarks for parallel processors. Genetic algorithms are used to guide

the search for the best optimization sequence at compile time. When applied on a numeric

benchmark, the GAPS compiler is able to produce a 75% performance improvement in

comparison to the native FORTRAN compiler. The compile time needed for a single small

benchmark is about 24 hours.

7.2.3 Iterative Predictive Heuristic Methods

In an interesting variant of iterative compilation, Wolf et al. [56] and Zhao et al. [57]

present algorithms for combining high-level loop transformations, such as fusion, fission,

unrolling, interchanging, and tiling. For each set of nested loops the proposed algorithms

consider various promising combinations of these transformations. Instead of fully apply-

ing each transformation sequence, the algorithms preevaluate them by “simulating” their

application using a skeleton of the original code. A performance estimator then selects a

single sequence for actual application. When evaluated on scientific code, [56] reports a

15% performance improvement over noniterative approaches. On the other hand, [57] re-
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ports much larger benefits (up to 120%), but only when using a trivial baseline that applies

the aforementioned optimizations indiscriminately. Although no compile-time results are

included in either paper, the proposed algorithms seem reasonably efficient. However, these

algorithms cannot be generalized to other optimizing transformations or to nonnumerical

applications, since they depend on a thorough understanding of the interactions between

these particular transformations within the numerical application domain.
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Chapter 8

Optimization-Space Exploration

To overcome the optimization decision limitations presented in Chapter 7, this chapter

presents Optimization-Space Exploration (OSE), a novel iterative compilation method.

OSE realizes the performance potential of iterative compilation while addressing the appli-

cability limitations of existing approaches. This makes OSE the first iterative compilation

method suitable for general-purpose, industrial-strength compilers.

Like other iterative compilation approaches, OSE applies different optimization config-

urations to each code segment. The final decision about which optimization configuration

performs best is takena posteriori, that is after the resulting optimized versions of the code

have been examined. However, OSE differs from other iterative compilation approaches in

several crucial ways that allow it to keep compile-time costs in check.

• Although predictive heuristics are unable to anticipate the full impact of an opti-

mization routine on final code quality, they still encode valuable information on an

optimization’s behavior. Using this information, an iterative compiler can make in-

telligent choices as to which part of the optimization space to explore, reducing the

number of different optimization configurations that have to be tried.

• For any given application set, a sizable part of the configuration space causes only

modest performance gains. Thus the configuration space can be aggressively pruned
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during a compiler tuning phase.

• On any given code segment, the performance of different configurations is often cor-

related. This allows the compiler to utilize feedback to further prune the exploration

space at compile time.

• Instead of selecting the best optimized version of the code by measuring actual run-

times, an OSE compiler relies on a static performance estimator. Although this ap-

proach is less accurate, it is much faster and more practical.

The remainder of this chapter examines each of the above ideas in greater detail (Sec-

tions 8.1 to 8.4). The chapter concludes with a brief discussion of OSE in the context of

dynamic optimization and managed runtime environments (Section 8.5).

8.1 Limiting the Configuration Pool through Predictive

Heuristics

As previously noted, predictive heuristics are unable to anticipate the full impact of a code

transformation on final code quality. However, well-crafted heuristics still encode valuable

information about a code transformation’s behavior. OSE takes advantage of this fact in

order to limit the number of different optimization configurations that need to be explored.

Consider loop unrolling as an example. For every loop, an iterative compiler would

have to try a great number of different loop unrolling factors. OSE takes a different ap-

proach. A well-crafted and well-tuned loop unrolling heuristic, like the one found in a

high-performance traditional compiler, is expected to identify the correct loop unrolling

factor for a fair number of cases. To capture the remaining cases, configurations containing

different variants of the original heuristic can be applied. For example, some such variants

could restrict the maximum loop unrolling factor allowed. Configurations that forgo loop

unrolling entirely can also be tried.
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By trying many variants of each optimization’s heuristic, OSE correctly captures the

optimization needs of many more code segments than a traditional compiler. Of course,

since heuristics are imperfect, this approach cannot captureall cases, like an exhaustive

iterative compiler can. This, however, is a worthy tradeoff when considering compile-

time savings. For example, the iterative compiler proposed in [16] has to consider 16

different unroll factors for each code segment. In comparison, the OSE prototype presented

in Chapter 9 only considers 4 different loop unrolling heuristics. For every optimization,

exploiting predictive heuristics causes a similar reduction in the number of choices under

consideration. This leads to an overall reduction of the configuration space by a factor

exponential in the number of optimization phases.

In subsequent discussions, any variable that controls the behavior of a heuristic or an

optimization routine will be referred to as an optimizationparameter. A full assignment

of values to all parameters in an optimizing compiler forms an optimizationconfiguration.

The set of all configurations that an OSE compiler has to explore constitutes theexploration

space.

8.2 Static Configuration Selection

By exploiting heuristics, an OSE compiler has to explore a smaller configuration space than

that of an exhaustive iterative compiler. However, the size of this space is still prohibitively

large. Since every parameter can take at least two values, the total size of the exploration

space is exponential with regard to the number of available parameters. Clearly, explor-

ing this space in its entirety at compile time would be impractical. Therefore a radically

reduced configuration set has to be selected statically, that is during the OSE compiler’s

tuning.

Static configuration selection exploits the fact that all configurations are not equally

valuable. Certain configurations may perform badly in the vast majority of cases. For ex-
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ample, such would be the case of configurations that inline over-aggressively on systems

with small instruction caches. Such configurations can be omitted with little performance

loss. Other configurations may form clusters that perform similarly in most cases. For ex-

ample, on a processor with limited computational resources and small branch misprediction

penalties, configurations differing only on if-conversion parameters would fall under this

category. In such cases, keeping only one representative configuration from each cluster

and pruning the rest would not lead to significant loss of optimization opportunities.

More formally, the goal of the static pruning process is to limit the configuration space

to a maximum ofK configurations with as little performance loss as possible. The perfor-

mance of a configuration set is judged by applying it to a set of representative code samples

S. The exact value ofK is dictated by compile time constraints.

Ideally, the static selection algorithm would determine the best configuration space of

sizeK by considering all possible combinations ofK configurations. However, typical

exploration spaces are so big that a full consideration of them is impractical, even during

compiler tuning. For example, the full exploration space of the OSE prototype described

in Chapter 9 contains217 configurations. On the machines used in the experiments of

Chapter 9, the full traversal of this space would take roughly 45 years. Therefore, the static

selection algorithm has to rely on a partial traversal of the configuration space, even though

this may lead to suboptimal results.

The OSE static selection algorithm consists of anexpansionstep and aselectionstep,

repeatedly applied until new steps do not provide significant new benefits, or until a time

limit is reached.

Beginning with a set of configurationsCS, used as seeds, the expansion step constructs

the setCE of all configurations differing from one of the seeds in only one parameter.

Subsequently, every configuration inCE is applied on every code sample inS, and the

runtimes of the optimized codes thus produced are measured.

The selection step then determines theK-element subset ofCE that maximizes the
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performance of OSE. For that purpose, the “exploration performance” of each such subset

is determined, as follows: LetR(s, c) be the runtime of a code samples when optimized

using an optimization configurationc. Then the exploration value of a set of configurations

C on a set of code samplesS is given by the formula:

EV (C, S) = |S|

√∏
s∈S

min
c∈C

R(s, c)

That is, we calculate the geometric mean of the best-performing version of each code sam-

ple produced by a configuration inC. The selection step simply determines the exploration

value of allK-element subsets ofCE, and selects the one with the best exploration per-

formance. The configurations in the set thus selected become the new seeds, on which the

expansion step is applied again, and so forth.

The effectiveness of the above process depends greatly on the choice of the initial seeds.

A bad choice of seeds may lead to slower convergence, trap the algorithm in local minima,

or both. It is therefore important to start with a configuration that is known to perform well

on average. Such a configuration would roughly correspond to the optimization process of

a well-tuned noniterative compiler.

8.3 Feedback-Directed Compile-Time Pruning

By exploiting feedback, an OSE compiler can dynamically prune the exploration space at

compile time. On any given code segment the compiler can begin by applying a small set

of configurations. Feedback on how these initial configurations performed can help the

compiler make an informed choice on which configurations to try next. Feedback from

these configurations can be used to select the next set to be tried, and so on. Thus only a

portion of the configuration space needs to be explored for each code segment at compile

time.

This approach works because different configurations are generallycorrelated. In
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Figure 8.1: Automatically generated search tree annotated based on a hypothetical run of
OSE.

general, a given configuration performs well on code segments that exhibit certaincode

properties. In many cases, the code properties required by two different configurations

may overlap, whereas in other cases they may be unrelated. For example, a configuration

that emphasizes software pipelining will perform well on code segments containing small,

straight-line loops with complicated dependence chains. On the same code segments, a

configuration applying loop unrolling is also likely to perform well. On the other hand, a

configuration that forgoes loop optimizations is likely to underperform. Consequently, if

an OSE compiler finds out that software pipelining performs well on a code segment, it

can decide to try loop unrolling configurations, while forgoing configurations that do not

concentrate on loops.

The OSE compiler can exploit configuration correlations by organizing the set ofK

configurations, as determined in the static selection phase, into a tree, as shown in Fig-

ure 8.1. For each code segment, configurations at the top level of the tree are tried first, and

the best one is selected. Subsequently, the children of the selected configuration are tried.

After the best of these configurations is selected, its children are in turn tried, and so on.

After the bottom of the tree is reached, the best one of the configurations selected at each

level is the one that prevails.

This configuration tree has to be constructed during the tuning phase of an OSE com-

70



piler. Of course, the notion of code properties is too abstract to be practically useful in this

task. However, correlations between configurations can be determined experimentally. Let

us assume that anL-way tree is desired. From theK configurations remaining after static

pruning, the best-performing combination ofL configurations is selected as the top level of

the tree. Next the setS of code samples can be partitioned intoL subsets,S1, S2, . . . , SL.

SubsetSi contains the code segments for which thei’th configuration,ci, outperforms the

other top-level configurations. For eachi, theL most valuable configurations for the lim-

ited code sample setSi can then be determined. Essentially, these are the configurations

that are most likely to succeed on code segments that respond well toci. Therefore, these

configurations become the children ofci in the tree. Subsequent tree levels can be formed

by repeating the same process on each set of siblings.

8.4 Performance Estimation

Ideally, an OSE compiler would select the best-performing version of each code segment

by measuring actual runtimes. Since code segments cannot be run in isolation, the whole

program would have to be compiled before the performance of a single version of a single

code segment could be evaluated. Furthermore, the performance of each code segment is

dependent not only on its own features, but also on the features of other code segments

in the program. This is due, among other things, to cache and branch prediction effects.

Therefore, an absolutely accurate judgment on a code segment’s performance would have

to be obtained through running it in conjunction with every other possible combination of

optimized versions of all other code segments in the program. This approach is clearly

impractical.

Instead, an OSE compiler makes performance judgments using a static performance

estimator. Such an estimator can make predictions based on a simplified machine model

and on profile data. In general, obtaining a static prediction of a code segment’s runtime
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performance is a non-trivial task [34]. However, the job of an OSE performance estimator

is much simpler, because it only needs to provide arelativeperformance prediction. Rather

than trying to determine the exact runtime of a code segment, this estimator has to compare

two code segments and predict which one is faster. Moreover, since the code segments

compared will actually be differently optimized versions of the same source code, they will

be generally similar, differing in only one or two crucial ways. If, for example, the estimator

has to choose between two differently unrolled versions of the same original loop, one of

the two versions will have a better schedule, whereas the other will have a smaller code

size, with all their other features being very similar. Thus the estimator’s task will come

down to weighing the scheduling gains versus the code size expansion. In this way the

OSE estimator is able to make mostly accurate predictions by simply scoring different code

segments according to several performance indicators, such as static cycle count, code size,

and memory access patterns. Of course, the exact form of these performance indicators and

their relative weight depends on the target architecture and the target application domain.

A concrete OSE performance estimator for the Itanium architecture will be presented in

Section 9.1.2.

8.5 Dynamic OSE

As presented up to now, OSE is primarily a static compilation method. However, there

are obvious ways in which OSE could be implemented in, and benefit from, dynamic op-

timization platforms (DOPs) and managed-runtime environments (MRTEs). Indeed, such

environments would make OSE more successful and accurate by reducing its reliance on

profile data and by eliminating the inaccuracies inherent in static performance estimation.

To respect the generally tighter timing constraints of MRTE compilation, an OSE im-

plementation on such a system would first compile all procedures in the traditional way.

Using a lightweight instrumentation, like the one described in Section 7.1.2, the system
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could then accumulate the execution time spent on each procedure. Once a procedure’s

accumulated runtime exceeds a predetermined limit, the system would judge that this pro-

cedure is “hot”, and thus worthy of further optimization. It would then proceed to produce

differently optimized versions of the procedure using the configurations in the first level of

the compile-time tree (Section 8.3). Calls to the original procedure would be redirected to a

simple harness, which would satisfy each call by randomly invoking one of these versions.

After some time, the system will have gathered enough execution time statistics to know

which of these versions performs best. That version would then replace the original proce-

dure’s code. If the program continues spending a significant amount of execution time on

this procedure, then the system could repeat the above process with the second level of the

tree, and so forth.

In addition to DOPs and MRTEs, which perform optimization during a single invo-

cation of a program, continuous optimization environments (COEs), which can gather

statistics and reoptimize throughout an application’s deployment lifetime, have been pro-

posed [28]. A COE would actually be the ideal environment for OSE. In addition to ap-

plying OSE dynamically as described above, the COE could leverage repeated runs of the

application over an extended time period in order to further explore the full configuration

space, thus overcoming any suboptimal choices made during static configuration selection.

One way to do this would be to obtain random points of the configuration space, as seen

in Section 9.5, and use the best-performing ones as new seeds for the expansion-selection

sequence of Section 8.2. The results of this process could be communicated to the orig-

inal OSE compiler, in order to enhance its performance on non-COE applications and to

provide a better starting point for future COE runs.
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Chapter 9

OSE Experimental Evaluation

In order to evaluate the effectiveness of the OSE approach, the Electron compiler was

retrofitted to implement OSE. The resulting compiler is called OSE-Electron. As men-

tioned earlier, Electron is the SPEC reference compiler for the Itanium platform, thus pro-

viding a credible experimental baseline.

Details of the experimental setup have already been presented in Section 7.1.2. Sec-

tion 9.1 gives details on how the Electron compiler was retrofitted for OSE. Section 9.2

presents OSE-Electron’s tuning process. Section 9.3 presents experimental results on OSE-

Electron’s compiled code performance and compile-time dilation. Section 9.4 gives more

insight into the previous section’s performance results by analyzing a few notable cases.

Finally, Section 9.5 evaluates OSE-Electron’s configuration selection and compile-time

pruning methods by comparing them to a randomized configuration selector.

9.1 OSE-Electron

This section provides the implementation details of OSE in Intel’s Electron compiler for

Itanium. This implementation was used to produce the experimental results presented later

in this section.
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9.1.1 Exploration Driver

The Electron compiler’s optimization framework consists of a profiler, an inlining routine,

a high-level optimizer (HLO), including traditional dataflow and loop optimizations, and an

optimizing code generation (CG) phase, which includes software pipelining, predication,

and scheduling. Optimization proceeds as follows:

E1. Profile the code.

E2. For each procedure:

E3. Compile to the high-level IR.

E4. Perform a lightweight HLO pass.

E5. Perform inlining

E6. For each procedure:

E7. Perform a second, more comprehensive HLO pass.

E8. Perform code generation (CG), including software pipelining, predication,

and scheduling.

In order to build OSE-Electron, we inserted an OSE driver right after inlining (step 5

above). For each procedure the driver decides whether OSE should be applied and which

configurations should be tried. Thus the compilation process of OSE-Electron is as follows:

O1. Profile the code.

O2. For each procedure:

O3. Compile to the high-level IR.

O4. Perform a lightweight HLO pass.

O5. Perform inlining.

O6. For each procedure:

O7. If the procedure is hot:
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O8. Perform OSE on the second HLO pass and CG.

O9. Select the procedure’s best optimized version for emission.

O10. If the procedure is not hot, apply Steps E7-E8 without exploration.

Since OSE-Electron is a retrofit of an existing compiler, it is not an ideal OSE imple-

mentation; it incorporates several sub-optimal implementation choices. For example, due

to certain technical difficulties the exploration omits the first HLO pass and the inlining

process. Also, the exploration is limited to the configuration space described in Table 7.1.

A compiler built for OSE from scratch would make many more optimization parameters

available for exploration. Finally, the performance estimator’s success suffers from the

limited profiling data that Electron makes available, as we will see later in this section.

Although OSE-Electron makes use of the profile weights gathered by the Electron com-

piler, it is important to note that the OSE technique is not crucially dependent on profile

data. Just like any other profile-driven compiler technique, such as inlining or software

pipelining, OSE could work with statically determined profile weight estimates.

9.1.2 Performance Estimation

Two factors drove the design of the static performance estimation routine in OSE-Electron.

The first was compile time. Since the estimator must be run on every version of every

procedure compiled, a simple and fast estimation routine is critical for achieving reason-

able compile times. For this reason, the estimator chosen performs a single pass through

the code, forgoing more sophisticated analysis techniques. The second limitation resulted

from limited information. The final code produced by the Electron compiler is annotated

with basic block and edge execution counts calculated in an initial profiling run and then

propagated through all optimization phases. Unfortunately, without path profiling informa-

tion many code transformations make the block and edge profiles inaccurate. Further, more
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sophisticated profile information, such as branch misprediction or cache miss ratios, could

be useful to the estimator, but is unavailable.

Each code segment is evaluated at compile time by taking into account a number of

performance indicators. The performance estimate for each code segment is a weighted

sum of all such indicators. The indicators used are.

Ideal cycle count The ideal cycle countT is a code segment’s execution time assuming

perfect branch prediction and cache behavior. It is computed by multiplying each basic

block’s schedule height with its profile weight and summing over all basic blocks.

Data cache performance To account for load latencies, a function of data cache perfor-

mance, each load instruction is assumed to have an average latency ofλ. Whenever the

value fetched by a load instruction is accessed within the same basic block, the block’s

schedule height, used in the computation ofT above, is computed using a distance of at

leastλ cycles between the load-use pair.

Another term is introduced to favor code segments executing fewer dynamic load in-

structions. The number of load instructions executed according to the profile,L, provides

another bias toward better data cache performance.

Instruction cache performance The most obvious predictor of instruction cache perfor-

mance is, of course, a segment’s code sizeC. Another performance indicator seeks to bias

the estimator against loop bodies that do not fit into Itanium’s first-level instruction cache.

This is achieved by the formula:

I =
∑

L∈ loops ofS

⌊
size(L)

size(L1 Icache)

⌋
× wt(L)

whereS is the code segment under consideration andwt(X) is the profile weight ofX.

The floor operator is used to model the bimodal behavior of loops that just fit in the cache
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against those that are just a bit too large.

Branch misprediction The Electron compiler does not provide us with detailed branch

behavior profile information. Therefore, OSE-Electron has to approximate branch mispre-

diction ratios using edge profiles. For each code segmentS, the estimator assesses a branch

misprediction penalty term according to the formula:

B =
∑

b ∈ branches ofS

min(ptaken, 1− ptaken)× wt(b)

whereptaken is the probability that the branchb is taken, as determined by the edge profiles,

andwt(b) is the profile weight ofb.

Putting it all together Given a source-code procedureF , let Sc be the version ofF ’s

code generated by a compiler configurationC, and letS0 be the version ofF ’s code gen-

erated by Electron’s default configuration. Then the static estimation value for the code

segmentSc is computed according to the formula:

Ec = α× Tc

T0

+ β × Cc

C0

+ γ × Ic

I0

+ δ × Lc

L0

+ ε× Bc

B0

where terms subscripted withC refer to the code segmentSc, and terms subscripted with

0 refer to the code segmentS0. Whenever two or more versions of a code segment are

compared, the one with the lowest estimation value prevails.

A brute-force grid searching method was used to assign values in the interval[0, 1) to

the weightsα, β, γ, δ, andε. The same search determined the load latency parameterλ. The

grid search used the same sample of procedures that will be used in Section 9.2. The grid

search determined the values ofα, β, γ, δ, ε, andλ that guide the performance estimator

to the best possible choices on the sample. The resulting values are:α = 0.1, β = 0.02,

γ = 0.001, δ = 0.03, ε = 0.0004, andλ = 2.6.
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One might assume that the design of an OSE static performance estimator for IA-64

is facilitated by the processor’s in-order nature, and that it would be difficult to design

similar estimators for out-of-order processors. This, however, is not the case, because of

the fact that the OSE performance estimator only needs to makerelativepredictions. Take

for example the load-use distance parameterλ above. Although the exact number of stalled

cycles because of a cache miss is more difficult to predict on an out-of-order processor, it is

still the case that a version of a code segment with greater load-use distances islesslikely

to incur stalls, and thus is preferable. Of course, the exact value ofλ would have to be

different. However, since parameter values are determined automatically, this would not

present a problem to the compiler designer.

9.1.3 Hot Code Selection

To limit compile time, OSE-Electron limits the exploration to the proverbial 10% of the

code that consumes 90% of the runtime. For this purpose, the smallest possible set of pro-

cedures accounting for at least 90% of a benchmark’s runtime is determined. OSE-Electron

then applies an OSE compilation process on procedures in this set, and a traditional com-

pilation process on the remaining procedures. We experimentally verified that this fraction

yields a good trade-off between compile time and performance by trying a number of other

thresholds.

9.2 OSE Tuning

As described in Chapter 8, an OSE compiler needs to undergo a tuning phase, in which the

configuration space is statically pruned, the configuration tree is formed, and the perfor-

mance estimator is tuned. From the benchmarks described in Section 7.1.2, we chose to use

the SPEC2000 suite as OSE-Electron’s tuning set. More precisely, we formed a set of code

samples comprising all procedures in SPEC2000 benchmarks that consume 5% or more of
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their benchmark’s runtime. There are 63 such procedures in the SPEC2000 suite. The 5%

threshold was chosen because timing measurements of procedures with too short runtimes

tend to exhibit high levels of noise, which might in turn lead OSE-Electron’s tuning phase

to wrong choices. Procedure runtimes were obtained by running the SPEC2000 executa-

bles, using the instrumentation described in Section 7.1.2, with the training inputs specified

by the SPEC2000 suite. The choice of benchmarks for the tuning set was motivated by the

fact that commercial compilers are usually tuned using the SPEC2000 benchmark suite.

The rest of the benchmarks mentioned in Section 7.1.2, which were omitted from the tun-

ing set, will be used later for a fairer evaluation of OSE-Electron’s performance.

The parameters described in Table 7.1 form a space of217 configurations. From these

we selected 25 configurations using the methodology described in Section 8.2. We used

Electron’sO2 and O3 configurations as seeds, and we performed two iterations of the

expansion and selection steps. A third iteration was aborted, because its expansion step

did not produce any significant performance improvements. These 25 configurations were

organized according to the methodology described in Section 8.3 into the 2-level, 3-way

tree shown in Figure 9.1, which contains 12 configurations in all. Finally, the performance

estimator described in Section 9.1.2 was tuned using the 63 SPEC2000 procedures in our

code sample.

The progress of the tuning phase can be seen in Figure 9.2. The runtime performance of

each benchmark when optimized using Electron’s default configuration forms the graph’s

baseline. The first bar in the graph represents the performance of OSE-Electron at the

end of the static selection phase, without static performance estimation or compile-time

pruning. Here each procedure in a benchmark is optimized using the 25 configurations

produced by the static selection phase, and the best version is selected for emission after

measuring actual runtimes. The second bar represents OSE-Electron’s performance em-

ploying static performance estimation, but no compile-time pruning. For the third bar, both

the static estimator and the configuration tree were used. Runtimes of both procedures (in
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the first bar) and benchmarks were determined by the instrumentation system described

in Section 7.1.3, using the benchmarks’ training inputs. Using the same set of inputs for

both tuning and performance measurement allows us to focus on the performance impact

of OSE-Electron’s features, which might be obscured by input set differences. A fairer

evaluation of OSE-Electron, using separate training and evaluation inputs, will be provided

in Section 9.3.

As we can see from the graph, OSE-Electron produces a 5.3% overall improvement

on the performance of SPEC2000 benchmarks over Electron, IPF’s SPEC reference com-

piler. Gains are especially pronounced for164.gzip , 179.art , and256.bzip2 . The

graph also shows that static performance estimation sacrifices a modest amount of perfor-

mance. This is inevitable, since static performance predictions cannot always be accurate.

Interestingly, in some cases the estimator makes better choices than the actual runtime

measurements. This is a result of interactions between procedures not taken into account

in either experiment, but contributing to the final runtimes. While this adds a factor of

uncertainty, note that the average performance improvement due to OSE is well above this

factor. These runtime dependences between procedures also explain why OSE-Electron

with compile-time tuning occasionally outperforms an exhaustive search of the selected

configurations.

Figure 9.2 also shows that the addition of compile-time pruning sacrifices almost no

performance. On the other hand, dynamic pruning causes a very significant reduction in

OSE-Electron’s compile time, as can be seen in Figure 9.3. This figure compares the com-

pile times of OSE-Electron with and without compile-time pruning. The baseline for this

graph is the compile time spent by Electron’s default configuration. As we can see, OSE

can be applied at a compile-time cost of 88.4% compared to a traditional compiler. For

comparison purposes, Electron’s default optimizing configuration (-O2 ) is about 200%

slower than nonoptimizing compilation (-O0 ). Therefore, OSE makes iterative compila-

tion practical enough for the general-purpose domain.
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T: True
F: False

SWP=F
O=2 SWPE=F

SWPO=F
pred=F
SWP=F

ECI=T
GPP=10%

ECI=T
pred=0

LC=T
GPP=10%GPP=50%

uArch=1HL=0GPP=10%GPP=10
SWPO=F

ECI=T
pred=FSWPE=F

BB=T
GPP=50%PS=F

SWP: Perform software pipelining

SWPO: Software pipeline outer loops
SWPE: Software pipeline loops with early exits

BB:  HLO phase order

ECI: Enable non−standard predication

uArch: Microarchitecture type − Merced(0) vs. McKinley(1)

Pred: Enable if−conversion

PS: Enable pre−scheduling
GPP: Scheduler ready criterion 
HL: HLO opti level (0 or 1)
LC: Coalesce load−pairs

Figure 9.1: Tree of configurations for OSE-Electron’s compile-time search.
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Figure 9.3: Compile time dilation for OSE-Electron over standard Electron.

9.3 OSE Performance Evaluation

To obtain a more thorough evaluation of OSE-Electron’s performance benefits, we ap-

plied it on a set of benchmarks different from its tuning set. For this purpose we used

the SPEC95 and MediaBench benchmarks of Section 7.1.2, as well asyacc . The perfor-

mance improvement caused by OSE-Electron compared to Electron’s default optimizing

configuration can be seen in Figure 9.4. Unlike Figure 9.2, we used different training and

evaluation inputs for each benchmark in this experiment. As we can see, OSE-Electron per-

forms 10% better overall, and up to 56% better in individual cases, than Electron’s default

configuration.

Counter-intuitively, OSE-Electron performs better on these benchmarks than on the

benchmarks in its tuning set. This can be explained by the fact that Electron’s heuristics

were probably tuned very carefully with the SPEC2000 suite in mind, whereas they were

not as well tailored to the benchmarks tried here. OSE-Electron, on the other hand, can fit

the optimization needs of both benchmark sets.
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Figure 9.4: Performance of OSE-Electron generated code for non-SPEC benchmarks.

9.4 Postmortem Code Analysis

The significant performance benefits produced by OSE in many of the benchmarks tried

above motivate us to look for the sources of these benefits. Below we examine three of

the most prominent examples of OSE’s performance improvements, and identify how the

configuration exploration and the performance estimator arrived at these results.

9.4.1 SPECint95 benchmark132.ijpeg

Consider the proceduresjpeg fdct islow andjpeg idct islow in the132.ijpeg

SPEC95 benchmark. These procedures compute forward and inverse discrete-cosine trans-

forms on image blocks. When compiled using Electron’s default configuration, these two

procedures account for about 36% of the benchmark’s execution time. Each of these two

procedures contains two fixed-count loops iterating 64 times.

Electron’s high-level optimizer, which is run before the more machine-specific low-

level optimizer in its back end, contains a loop unrolling transformation for fixed count

loops, controlled by a heuristic. Since the code of the four loops described above con-
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tains many data dependencies, which would prevent efficient scheduling, the loop unrolling

heuristic decides to unroll each of these loops 8 times. Subsequently, a second loop un-

rolling transformation in the back-end optimizer unrolls each loop another 8 times.

While full unrolling seems sensible in this case, if the high-level unrolling is turned

off, jpeg fdct islow sees a 120% performance improvement, with similar results for

jpeg idct islow . This is because complete unrolling makes each procedure’s code

bigger than the 16K level-1 instruction cache. The result is that132.ijpeg spends 19%

of its execution time in instruction-cache stalls when the code in these procedures is fully

unrolled, and only 5% when unrolling is not applied on them. This instruction cache per-

formance loss overwhelms any gains due to better scheduling. One is tempted to think that

better high-level loop unrolling heuristics could avoid this problem. However, this is un-

likely, since such heuristics would have to anticipate the usually significant code size effect

of all future optimization passes. On the other hand, the OSE performance estimator has

the advantage of examining both loop-unrolled and non-loop-unrolled versions of the code

at the end of the optimization process, where the problem with loop unrolling is easy to

spot.

9.4.2 SPECint 2000 Benchmark256.bzip2

Another case where OSE is able to achieve a large performance benefit is the procedure

fullGtU in the 256.bzip2 SPEC2000 benchmark. When compiled with Electron’s

default configuration, this procedure accounts for 48% of total running time. When soft-

ware pipelining is disabled, this procedure’s performance improves by 76%.

Software pipelining is applied in order to overlap iterations in a loop while yielding

fewer instructions and higher resource utilization than unrolling. During software pipelin-

ing, the loop’s 8 side exits are converted to predicated code. The conditions for these

side exits, and consequently the conditions on the new predicate define operations in the

pipelined loop, depend on values loaded from memory within the same iteration of the
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loop. Since the remainder of the code in the loop is now data-dependent upon these new

predicates, the predicate defines end up on the critical path. To reduce schedule height,

these predicate defining instructions are scheduled closer to the loads upon which they de-

pend. During execution, cache misses stall the loop immediately at these predicate defines,

causing performance degradation.

The performance of this code depends heavily on the ability of the compiler to separate

these ill-behaved loads from their uses. However, the constraints governing this separation

are difficult to anticipate until after optimization. In this case, the predication causing the

problem only occurs after the software pipelining decision has been made. Anticipating

and avoiding this problem with a predictive heuristic would be extremely difficult. On the

other hand, the OSE compile-time performance estimator can easily identify the problem,

since it can examine the load-use distance after optimization.

9.4.3 MediaBench Benchmarkadpcmenc

Examining the adpcmenc benchmark reveals that over 95% of the execution time is spent

in one procedure,adpcm coder . This procedure consists of a single loop with a variety

of control flow statements. With-O3 turned on Electron aggressively predicates the loop

yielding a 12% decrease in schedule height versus-O2 , which leaves much of the control

flow intact. This accounts for all the speedup observed. The OSE-Electron estimator can

easily pick the shorter version of the code since other characteristics considered are similar

between the versions. While this fact could lead one to conclude that theO3 level is simply

better thanO2, changing Electron’s default configuration toO3 would actually lead to

performance degradation for more than half the benchmarks in our suite. On the other

hand, OSE-Electron is able to deliver the benefits of theO3 configuration while avoiding

its performance pitfalls.
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9.5 Evaluating Configuration Selection Decisions

By following the OSE static selection and compile-time pruning methodologies, OSE-

Electron is able to deliver significant performance benefits by trying just 6 configurations

per code segment, 3 for each tree level. To evaluate the effectiveness of both these method-

ologies, we compare the OSE-Electron described above against a randomized version of

OSE. This version constructs 6 configurations by assigning for each parameter in Table 7.1

a randomly picked value from the parameter’s value set. Each benchmark is then compiled

using these random configurations, and the best version of each procedure is selected by us-

ing OSE-Electron’s static estimator. Figure 9.5 compares the performance of OSE-Electron

with that of its “Monte-Carlo” version.

From the figure we can see that a randomly selected configuration set generally offers

less performance benefits than the configuration set picked by OSE-Electron’s selection

phases. On average, the random configuration set performs about 1% worse than OSE-

Electron on SPEC2000 benchmarks, and about 6% worse on the other benchmarks.

Notice that the random configuration set provides big speedups (over 15%) in only 3

benchmarks, whereas the normal OSE-Electron achieves large speedups in 7 benchmarks.

The few benchmarks, particularly256.bzip2 , where a random configuration selection

performs better than one would expect occur because the performance improvements in

these benchmarks are caused by varying a single optimization parameter: other optimiza-

tion parameters have very little effect. In these cases each random configuration has a 25%

- 50% chance of finding the correct configuration in each random trial. In the experiment

above, we try 6 random configurations, meaning that it will find the correct answer with a

probability between1− (.5)6 and1− (.25)6.

A similar analysis also explains the relatively modest improvement of OSE-Electron

versus random configurations on the SPEC benchmark suite. Since Electron was tuned for

these benchmarks, many heuristic-controlled configurations do quite well, greatly improv-

ing the random configurations’ chances of generating good results. Notice that for non-
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Figure 9.5: Comparison of OSE-Electron’s static and compile-time configuration selection
vs. random configuration selection.

SPEC benchmarks, OSE-Electron significantly outperforms the random configurations. In

short, OSE is even more effective when the compiler encounters codes for which it was not

tuned.
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Chapter 10

Conclusion and Future Directions

This dissertation focused on two fundamental limitations that a conventional compilation

framework imposes on modern optimization routines, and addressed them by proposing

novel compilation techniques. Section 10.1 draws conclusions on these limitations and

their proposed solutions. The dissertation ends with a discussion of future directions in

Section 10.2.

10.1 Conclusions

To deal with the limited optimization scope caused by procedure-based compilation, this

dissertation presented Procedure Boundary Elimination, a compilation approach that al-

lows unrestricted interprocedural optimization. Unlike inlining, which can only extend the

scope of optimization by duplicating procedures, PBE allows optimization scope and code

specialization decisions to be made independently, thus increasing their effectiveness. Un-

like traditional interprocedural optimization, which is constrained by having to maintain a

program’s procedural structure and is too costly for extensive use, PBE allows optimiza-

tion to freely operate across procedures by permanently removing procedure boundaries,

and allows the compiler implementor to balance performance benefits and compile-time

costs through region-based compilation.
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A working PBE prototype has been implemented in VELOCITY, the Liberty Group’s

experimental optimizing compiler. Experiments using this prototype show that PBE can

achieve the performance benefits of aggressive inlining with less than half the latter’s code

growth and without prohibitive compile-time costs. As part of PBE’s development, this

dissertation also made the following individual contributions:

• An extended interprocedural analysis algorithm, necessary for processing flowgraphs

generated by PBE.

• Novel region selection and region encapsulation schemes.

• A novel code duplication method, appropriate for recovering the benefits of aggres-

sive inlining within the PBE framework.

Additionally, this dissertation experimentally demonstrated that predictive heuristics in

traditional, single-path, “one size fits all” compilation approaches sacrifice significant op-

timization opportunities, thus motivating iterative compilation. It then proposed a novel

iterative compilation approach, called Optimization-Space Exploration, that is the first

such approach to be both general and practical enough for modern aggressively optimizing

compilers targeting general-purpose architectures. Unlike previous iterative compilation

approaches, OSE does not incur prohibitive compile-time costs. This is achieved by lever-

aging existing predictive heuristics, by carefully selecting the search space during compiler

tuning, by utilizing feedback in order to further prune the search space at compile time, and

by relying on a fast static performance estimator for generated code evaluation.

The potential of OSE has been experimentally demonstrated by implementing an OSE-

enabled version of Intel’s aggressively optimizing production compiler for Itanium. Ex-

perimental results from this prototype confirm that OSE is capable of delivering significant

performance benefits while keeping compile times reasonable.
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10.2 Future Directions

Although the experimental evaluations in Chapters 6 and 9 have demonstrated the value of

both PBE and OSE, significant opportunities for improvement exist for both methods.

PBE could benefit from more sophisticated region formation methods, especially meth-

ods that concentrate on dataflow properties and “optimizability” measures rather than pro-

file weights. Additionally, PBE’s targeted code specialization phase could be enhanced

with more code duplication techniques, in order to more effectively control code growth

and/or increase performance.

As for OSE, a further exploration of how OSE can fit within managed runtime environ-

ments and dynamic compilation systems (Section 8.5) would be promising. Also, OSE’s

tuning and runtime exploration phases could benefit by incorporating ideas from the use of

artificial intelligence compilation approaches, such as the one described in [48].

More importantly, PBE and OSE are currently being applied on single-threaded codes

only. However, both techniques have significant potential in the increasingly important do-

main of coarse-grained parallelism extraction. Preliminary experiments with thread-level

parallelism techniques, such as the one proposed by Ottoni et al. [42], show that these

techniques could significantly benefit by an increase in optimization scope, such as the one

offered by PBE. Since these techniques mostly focus on loops, PBE’s ability to handle tra-

ditional loops and recursion in a uniform way can also offer significant benefits. However,

several challenges have to be overcome before TLP optimizations can be incorporated in the

PBE framework. The most important practical problem is that region formation heuristics

have to produce parallelism-friendly regions. This is very different from producing regions

that are suitable for more traditional optimizations. Another problem is that, although larger

regions offer more opportunities for parallelism, they may make certain aspects of the TLP

extraction algorithm, especially load balancing, prohibitively expensive. To overcome this

limitation, the idea of using multiple levels of regions is being explored. Instead of having

to consider the entire CFG of a region, the TLP extraction algorithm could then examine a
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“reduced” CFG of sub-regions, and break up or descend into individual sub-regions only

when necessary. These ideas are being actively pursued by other members of the Liberty

Research Group.

Applying OSE to the TLP domain is more straightforward, since good TLP heuristics

are particularly hard to craft. Probably the biggest challenge would be to modify OSE’s

performance estimator so that it can take TLP performance parameters, such as load bal-

ancing and thread synchronization points, into account.
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