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Abstract

In recent years, microprocessor manufacturers have shifted their focus from single-core to

multi-core processors. Since many of today’s applications are single-threaded and since it

is likely that many of tomorrow’s applications will have far fewer threads than there will be

processor cores, automatic thread extraction is an essential tool for effectively leveraging

today’s multi-core and tomorrow’s many-core processors. A recently proposed technique,

Decoupled Software Pipelining (DSWP), has demonstrated promise by partitioning loops

into long-running threads organized into a pipeline. Using a pipeline organization and ex-

ecution decoupled by inter-core communication queues, DSWP offers increased execution

efficiency that is largely independent of inter-core communication latency and variability

in intra-thread performance.

This dissertation extends the pipelined parallelism paradigm with speculation. Us-

ing speculation, dependences that manifest infrequently or are easily predictable can be

safely ignored by the compiler allowing it to carve more, and better balanced, thread-based

pipeline stages from a single thread of execution. Prior speculative threading proposals

were obligated to speculate most, if not all, loop-carried dependences to squeeze the code

segment under consideration into the mold required by the parallelization paradigm. Un-

like those techniques, this dissertation demonstrates that speculation need only break the

longest few dependence cycles to enhance the applicability and scalability of the pipelined

multi-threading paradigm. By speculatively breaking these cycles, instructions that were

formerly restricted to a single thread to ensure decoupling are now free to span multiple

threads. To demonstrate the effectiveness of speculative pipelined multi-threading, this

dissertation presents the design and experimental evaluation of our fully automatic com-

piler transformation, Speculative Decoupled Software Pipelining, a speculative extension

to DSWP.

This dissertation additionally introduces multi-threaded transactional memories to sup-

port speculative pipelined multi-threading. Similar to past speculative parallelization ap-
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proaches, speculative pipelined multi-threading relies on runtime-system support to buffer

speculative modifications to memory. However, this dissertation demonstrates that existing

proposals to buffer speculative memory state, transactional memories, are insufficient for

speculative pipelined multi-threading because the speculative buffers are restricted to a sin-

gle thread. Further, this dissertation demonstrates that this limitation leads to modularity

and composability problems even for transactional programming, thus limiting the potential

of that approach also. To surmount these limitations, this thesis introduces multi-threaded

transactional memories and presents an initial hardware implementation.
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Chapter 1

Introduction

For years, steadily increasing clock speeds and uniprocessor microarchitectural improve-

ments reliably enhanced performance for a wide range of applications. Figure 1.1 illustrates

this historical trend in microprocessor performance by graphing SPECint® [67] scores for

all reported configurations across 3 generations of the benchmark suite (SPEC® CPU92,

CPU95, and CPU2000).1 In the figure, the y-axis measures performance (larger numbers

indicate faster processors) and is logarithmic. The x-axis denotes time and each point on

the graph reflects the SPECint® score for a particular machine configuration that was re-

ported in the given year. As the graph shows, processor performance consistently doubled

approximately every 18 months between the years 1970 and 2004.

However, as the also graph shows, processor performance began to stagnate (or at least

improve much more slowly) in 2004. Among other reasons, the microprocessor industry

fell off past trends due to increasingly unmanageable design complexity; increased vari-

ability in manufacturing processes; power, energy, and temperature as first class design

issues; and diminishing returns from extensions to past microarchitectural optimizations.

Despite this stall in processor performance improvements, Figure 1.2 shows Moore’s

Law still remains in effect. Consistent with historic trends, the semiconductor industry
1Since scores between succeeding generations of the suite are not directly comparable, the data has been

normalized using a machine configuration that had scores reported for two or more generations of the bench-
mark suite.
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continues to double the number of transistors integrated onto a single die every two years.

Since conventional approaches to improving performance with these transistors has fal-

tered, microprocessor manufacturers have begun to use the extra transistors to produce

multi-core processors. For example, in the general purpose processor space, Intel has re-

leased the CoreTM2 Duo and CoreTM2 Quad processors incorporating two and four cores per

die respectively, AMD has released the OpteronTM processor in two and four core config-

urations, IBM has released the POWER6 processor featuring two cores per die, and Sun

has released the UltraSPARC T1 and T2 processors2 each with eight cores. These multi-

core processors can improve system throughput and potentially speed up multi-threaded

applications, but the latency of any single-thread of execution, at best, remains unchanged.

Consequently, to exploit multi-core processors, applications must be multi-threaded, and

they must be designed to efficiently use the resources (i.e., cache memory, off-chip band-

width, etc.) provided by the processor.

1.1 Shortcomings of Existing Approaches

The task of producing efficient multi-threaded code could be left to the programmer, how-

ever, there are several disadvantages to this approach.

First, writing multi-threaded codes is inherently more difficult than writing single-

threaded codes. To ensure correctness, programmers must reason about concurrent ac-

cesses to shared data and insert sufficient synchronization to ensure data accesses are or-

dered correctly. Simultaneously, programmers must ensure that too much synchronization

is not inserted otherwise synchronization overhead and loss of parallelism due to synchro-

nization cause the multi-threaded program to perform no better or worse than its single-

threaded counterpart. Active research in automatic tools to identify deadlock, livelock, race

conditions, and performance bottlenecks [22, 24, 25, 47, 63] in multi-threaded programs is

2Code named Niagara and Niagara 2, respectively.
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a testament to the difficulty of achieving this balance.

Second, there are many legacy applications that are single-threaded. Even if the source

code for these applications were available, it would take enormous programming effort to

translate these programs into well-performing parallel versions.

Finally, even if efficient multi-threaded applications could be written for a particular

multi-core system, these applications may not perform well on other multi-core systems.

The performance of multi-threaded applications is very sensitive to the particular system for

which it was optimized due to, among other factors, the relation between synchronization

overhead and memory subsystem implementation (e.g., size of caches, number of caches,

what caches are shared, coherence implementation, memory consistency model, etc.) and

the relation between number of application threads and available hardware parallelism (e.g.,

number of cores, number of threads per core, cost of context switch, etc.). Writing an

application that is portable across multiple processors (even multiple generations in the

same family of processors) would prove extremely challenging.

A promising alternative approach for producing multi-threaded codes is to let the com-

piler automatically convert single-threaded applications into multi-threaded ones. This ap-

proach is attractive as it takes the burden of writing multi-threaded code off the program-

mer. Additionally, it allows the compiler to automatically adjust the amount and type of

parallelism extracted based on the underlying architecture, just as instruction-level paral-

lelism (ILP) optimizations relieved programmers of the burden of targeting their applica-

tions to complex single-threaded architectures.

In scientific and numerical computing, compilers are routinely used to extract thread-

level parallelism (TLP) with good results. Techniques such as DOALL and to a lesser extent

DOACROSS, are used in this domain to extract tens to hundreds of threads [8, 72]. These

techniques assign loop iterations to threads to execute a loop in parallel. For DOALL,

all the iterations are independent so no communication or synchronization is necessary.

For DOACROSS, loop carried dependences must be communicated between the threads.
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Consequently, these techniques perform well on counted loops manipulating very regular

and analyzable structures consisting mostly of predictable array accesses. This reliance

on regular structure, however, makes these techniques ill-suited for general purpose ap-

plications. These techniques are unable to extract significant parallelism from codes with

unpredictable control flow or data access patterns that are the norm for general-purpose

applications.

Unpredictable control flow and data access patterns force compilers to assume con-

servatively that dependences exist between instructions even when no such dependence

exists or when such dependences manifest only infrequently at run time. Because ex-

cess dependences tend to be the limiting factor in extracting parallelism, speculative tech-

niques, loosely classified as thread-level speculation (TLS), have, in recent years, domi-

nated the literature [7,13,34,38–40,49,66,68,73,80]. Speculating dependences that prohibit

DOALL parallelization or that dramatically restrict DOACROSS parallelization increases

the amount of parallelism that can be extracted. Unfortunately, speculating enough depen-

dences to create DOALL parallelism often leads to excessive misspeculation, dramatically

reducing the benefits of parallelism. Consequently, TLS techniques often produce spec-

ulative DOACROSS parallelizations. Unfortunately, to overcome the serializing effects

of inter-thread communication latency, even speculative DOACROSS requires significant

speculation leading to high misspeculation rates and only small amounts of parallelism.

A more recent technique, Decoupled Software Pipelining (DSWP) [56,61], approaches

the problem differently. Rather than partitioning a loop by placing distinct iterations in

different threads, DSWP partitions a loop’s body into a pipeline of threads, ensuring that

critical path dependences are kept thread-local. This approach creates parallel code which

is tolerant of both variable latency within each thread and long communication latencies

between threads. Consequently, the approach gets better applicability than DOALL par-

allelization since it gracefully handles cross-iteration dependences, and can often out per-

form DOACROSS parallelization by removing inter-thread communication latencies from
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the critical path. However, since the existing DSWP transformation is non-speculative, it

must respect all dependences in the loop. Unfortunately, excess dependences due to static

and conservative dependence analysis dramatically limit the applicability and scalability of

the non-speculative DSWP transformation.

1.2 Contributions

This dissertation extends the pipelined multi-threading (PMT) paradigm used by DSWP

with speculation. Speculation can increase the applicability and scalability of DSWP, just

as it increased the applicability and scalability of DOALL and DOACROSS paralleliza-

tion. More specifically, this dissertation presents Speculative Decoupled Software Pipelin-

ing (SpecDSWP) [74] and an initial automatic compiler implementation of it. SpecDSWP

leverages the latency-tolerant pipeline of threads characteristic of DSWP and combines it

with the power of speculation to break dependence cycles that inhibit DSWP paralleliza-

tion. Like DSWP, SpecDSWP exploits the latent, fine-grained pipeline parallelism present

in many applications to extract long-running, concurrently executing threads, but can ex-

tract more threads on more loops than its non-speculative counterpart.

Unlike DOALL and DOACROSS parallelization, PMT techniques, such as DSWP, do

not presuppose that each thread extracted is responsible for a subset of loop iterations.

Rather, PMT techniques let the code guide the parallelization. Consequently, rather than

speculating many dependences to force code to fit a predetermined mold as in TLS, spec-

ulative PMT in general, and SpecDSWP in particular, can judiciously speculate only those

dependences which improve execution efficiency and that cause minimal misspeculation at

runtime. Identifying the ideal set of dependences to speculate involves solving an NP-hard

problem, so this dissertation presents a novel heuristic algorithm which is demonstrated to

work well in practice.

This dissertation also explores the runtime support necessary to enable SpecDSWP.
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Like TLS, SpecDSWP must buffer speculatively state generated from each loop iteration

until all speculated dependences have been resolved. However, the DSWP execution model

creates several challenges for buffering speculative memory state since the code comprising

a single loop iteration has been distributed across many threads. Despite the goal of facil-

itating speculative parallelization, conventional transactional memories and TLS memory

subsystems are inapplicable because they limit transactions to a single thread. SpecDSWP

requires data for a single loop iteration, which is generated across a multitude of threads,

to be buffered in a single transaction.

To address this problem, this dissertation introduces multi-threaded transactions (MTX)

and a hardware implementation based on an invalidation-based cache coherence protocol.

In addition to supporting Speculative DSWP, MTXs can be used to enable nested paral-

lelism in transactional programs; individual tasks in a transactional program can be further

parallelized. Additionally, they can enable programmers to focus on exposing coarser-

grained task-level parallelism, while letting compilers analyze and extract thread-level par-

allelism within individual tasks. Like its single-threaded counterpart, an MTX represents

an atomic set of memory accesses, however, unlike its single-threaded counterpart, an MTX

can be initiated by one thread, accessed and modified by any number of threads, and then

finally committed by yet another thread. Furthermore, all threads participating in an MTX

can see the results of uncommitted speculative stores executed by other threads in the MTX.

As this dissertation will show, these properties are essential for enabling SpecDSWP.

Finally, this dissertation evaluates the proposed compiler transformations and runtime

support. Using an initial automatic compiler implementation and a simulation infras-

tructure modeling an MTX-enabled memory system, this dissertation demonstrates that

SpecDSWP provides significant performance gains on a multi-core processor running a

variety of codes.
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1.3 Dissertation Organization

Chapter 2 examines existing non-speculative and speculative parallelization techniques

characterizing their applicability and scalability. This discussion will motivate SpecDSWP.

Chapter 3 will describe the non-speculative DSWP transformation upon which SpecDSWP

is based. Chapters 4, 5, and 6 will then describe how to extend DSWP to support specu-

lation. These chapters will detail the algorithm to select dependences for speculation, the

code generation algorithm, and the runtime-system support necessary to support SpecDSWP.

Chapter 7 will discuss related work in transactional memory and describe why existing so-

lutions are inadequate for SpecDSWP. Then, it introduces MTXs and describes a cache-

coherence based implementation. A quantitative evaluation of SpecDSWP and MTXs is

given in Chapter 8. Finally, Chapter 9 describes future avenues of research and summa-

rizes the conclusions of this dissertation.
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Chapter 2

Parallelization Paradigms

The key obstacle in parallelizing applications is dealing with dependences that exist be-

tween the program’s instructions. Once parallelized, the program’s instructions will be

distributed across various threads, and to guarantee correct execution, any dependences be-

tween instructions allocated to different threads must be synchronized or speculated. Since

inter-thread synchronization latency can be large, an application’s partitioning into threads

must be carefully planned to ensure a high-performance multi-threaded application. Since

the cost of misspeculation is also large, synchronization cannot always be eschewed in fa-

vor of speculation. Only speculation that is high reward and that will lead to infrequent

misspeculation will be profitable in practice.

Based on the pattern of communication, multi-threaded applications can be classified

into 3 categories: independent multi-threading (IMT), cyclic multi-threading (CMT), and

pipelined multi-threading (PMT) [59]. Each of these three paradigms has a non-speculative

and speculative variant. This chapter will describe each category using a common paral-

lelization strategy from that paradigm: DOALL [8] for IMT, DOACROSS [23] for CMT,

and DSWP [56, 61] for PMT. To understand the benefits, drawbacks, and applicability of

speculation in each paradigm, this chapter will develop analytical models describing the

performance of each parallelizing transformation in a variety of idealized scenarios. The
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1 for (i = 0; i < N; i++) {
2 doit(a[i]);
3 }

(a) DOALL loop
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Figure 2.1: The loop shown in (a) has no loop carried dependences and can be parallelized
using DOALL. Two possible schedules for the parallelization are shown in (b) and (c).

virtues of pipelined multi-threading, combined with the absence of a speculative pipelined

multi-threading optimization, motivate Speculative Decoupled Software Pipelining, the

topic of the remainder of this dissertation.

2.1 Paradigm Descriptions

This section will introduce each of the paradigms, briefly describe the representative au-

tomatic parallelization, and derive an analytical performance model for each parallelizing

transformation assuming application loop iterations exhibit no variability in latency and

inter-thread communication is no more expensive than intra-thread communication. Later

sections will expand these analytical models by relaxing these assumptions.

2.1.1 Independent Multi-threading and DOALL

Description In independent multi-threading (IMT), there exist no cross-thread depen-

dences, and thus, the threads are independent. DOALL parallelization is the quintessential

IMT loop parallelization. DOALL parallelization can be applied to a loop where each it-

eration is independent of all other loop iterations. Figure 2.1(a) illustrates such a DOALL
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loop. DOALL loops can be parallelized by allocating sets of loop iterations to different

threads. Figure 2.1(b) shows a naı̈ve implementation where iterations are allocated round-

robin to each thread. Figure 2.1(c) shows a more aggressive implementation where, to

promote cache locality, larger contiguous chunks of the iteration space are allocated to

threads, similar to strip mining in vectorization [46].

While many loops in scientific applications are DOALL loops, for those that are not, a

significant body of research exists dedicated to transforming loop nests into a form suitable

for DOALL parallelization. Essentially, these techniques apply affine transformations to

loop induction variables to transform the multi-dimensional loop iteration-space into one

where slices of the space along one dimension are independent of one another. These slices

can then be run in parallel using DOALL parallelization [12].

Analytical Model Under idealized conditions, DOALL parallelization yields speedup

proportional to the number of processor cores available to run the loop. This assumes that

the length of each iteration is constant and is independent of where and when other loop

iterations execute. Specifically, this ignores all microarchitectural affects such as branch

prediction accuracy and cache locality and implies complete homogeneity among loop it-

erations. With these assumptions, the speedup of DOALL parallelization over sequential

execution is given by:

SpeedupDOALL =
NL
N
T
L

= T (2.1)

where N is the number of loop iterations, L is the length of each iteration, and T is the

number of threads used in the parallelization.

2.1.2 Cyclic Multi-threading and DOACROSS

Unfortunately, despite the many transformations to coax loop nests into a form suitable

for DOALL parallelization, for many general purpose loops DOALL is still inapplicable.

For example, consider the loop shown in Figure 2.2(a). Figure 2.2(b) shows the program
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1 cost=0;
2 node=list->head;
3 while(node) {
4 ncost=doit(node);
5 cost += ncost;
6 node=node->next;
7 }

(a) Loop with loop-carried
dependences.

3

6

4

5

(b) PDG

Figure 2.2: The loop shown in (a) has loop carried dependences and cannot be parallelized
with DOALL. It can be parallelized using DOACROSS or DSWP. The PDG for the loop
is shown in 2.2(b).

dependence graph (PDG) [27] corresponding to the code. In the PDG, edges that partici-

pate in dependence cycles are shown as dashed lines. Since the statements on lines 3 and 6

and the statement on line 5 each form a dependence cycle, each iteration is dependent on

the previous one. Since the loop is not counted, techniques to transform the iteration space

into one that is amenable to DOALL are inapplicable. Even if such techniques were appli-

cable to pointer-chasing loops such as the one shown in the figure, no transformation could

unlock DOALL parallelism from this loop since all iterations are directly or transitively

dependent on all earlier iterations. To circumvent this, some researchers have proposed

splitting such loops into two loops, one that traverses the linked list and another which

operates on each node. Unfortunately, after the split, the first loop is executed sequentially,

and only the second is executed in parallel using DOALL [79].

The entire loop however can be parallelized using DOACROSS parallelization, an

instance of cyclic multi-threading (CMT). In cyclic multi-threading, cross-thread depen-

dences exist, and these dependences form a cycle (i.e., thread 1 feeds thread 2, and thread

2 also feeds thread 1). Figure 2.3(a) illustrates how DOACROSS parallelization works

using the loop from Figure 2.2(a). Similar to the naı̈ve implementation of DOALL, loop

iterations are allocated round-robin to threads participating in the parallelization. However,

since each iteration is dependent on the previous one, later iterations synchronize with ear-

lier ones waiting for the cross-iteration dependences to be satisfied. The code between
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Figure 2.3: This figure illustrates how DOACROSS parallelism works. The 2-thread
DOACROSS schedule for the code in Figure 2.2(a) is shown in (a). Figure (b) illustrates a
DOACROSS schedule that is performance limited by the number of available threads. Fig-
ure (c) illustrates a DOACROSS schedule that is performance limited by the dependences
in the loop.
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synchronizations can run in parallel with code executing in other threads. Since, for all

threads t < T , thread t feeds thread t+ 1, and thread T feeds thread 0, the synchronization

between threads forms a cycle making DOACROSS a form of CMT.

Analytical Model With a small finite number of threads the performance of DOACROSS

execution closely resembles the performance of DOALL execution. Figure 2.3(b) shows

the general execution schedule of DOACROSS when the number of threads (cores) exe-

cuting the loop bounds the performance. Assuming the time between when subsequent

iterations start is δ, the performance of DOACROSS is identical to DOALL, with the ex-

ception of the initial synchronization delay (T − 1)δ. With T threads and N iterations

taking L cycles per iteration, the speedup is:

SpeedupDOACROSS,T =
NL

N
T
L+ (T − 1)δ

≈ T (for large N ) (2.2)

For large N the parallelism scales linearly with the number of threads, just as in DOALL.

However, unlike DOALL parallelism, after a certain number of threads, T0, the per-

formance of DOACROSS is limited by the dependence patterns present in the loop. Fig-

ure 2.3(c) illustrates this scenario. Here, the delay between when each iteration starts, δ,

bounds the performance. Assuming T0 or more threads (cores) are available to run the loop,

the speed up of DOACROSS parallelization over sequential execution is:

SpeedupDOACROSS,∞ =
NL

(N − 1)δ + L
≈ L

δ
(for large N ) (2.3)

Assuming inter-thread communication is just as fast as intra-thread communication,

loop iterations exhibit no variable latency (i.e., control flow, cache behavior, branch pre-

diction, etc. do not cause different iterations to take different amounts of time), and that

sufficient instruction-level parallelism (ILP) resources exist to execute dependence cycles

optimally, the constant δ can be bound by considering the dependence height of all depen-

14



dence cycles in the loop. An instruction i in iteration n (denoted in) can only execute after

all of the instructions that feed it have completed. This means the earliest that in+1 can

execute is τc cycles after in if instruction i participates in a dependence cycle with depen-

dence height τc. Since any dependence cycle for any instruction can delay the execution of

an iteration, δ is greater than or equal to the maximum latency of all dependence cycles for

all instructions in the loop.

δ ≥ max
c
τc (2.4)

If there exist dependence cycles with dependence distances greater than one, dc > 1, (i.e.,

iteration n feeds iteration n+dc rather than iteration n+1), then δ can be bound as follows:

δ ≥ max
c

τc
dc

(2.5)

The tightness of this bound on δ depends on how control intensive the loop being paral-

lelized is. The synchronization in DOACROSS follows the producer-consumer paradigm.

This means that the produce and consume instructions must have identical conditions of

execution. Placing a produce instruction in a deeply nested control structure in one thread

requires inserting the consume instruction in a control equivalent region in the consum-

ing thread. However, since different threads are executing different iterations, this control

equivalent point does not exist. Consequently, control intensive loops parallelized with

DOACROSS typically execute all consume operations at the top of each loop iteration.

One or more produce instructions are inserted such that the cumulative condition of exe-

cution for the produce instructions is equivalent to the condition of execution of the loop

iteration (i.e., produce instructions are inserted along all possible paths through a loop iter-

ation). In such a configuration, δ is equal to the delay between the start of an iteration and

the last produce operation. In practice this delay can be considerably greater than the delay

imposed by dependence cycles [78].

Returning to the analytical model, the actual speedup obtained by DOACROSS paral-
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lelization is:

SpeedupDOACROSS = min(SpeedupDOACROSS,∞, SpeedupDOACROSS,T) (2.6)

The number of threads, T0 at which the dependence delay begins to dominate can be com-

puted by equating the denominators (i.e., the time taken to execute the parallel code) in the

speedup formulas (2.2) and (2.3).

(N − 1)δ + L =
N

T0

L+ (T0 − 1)δ (2.7)

Solving equation (2.7) for T0 yields T0 = L
δ

.1 Conceptually, this says the crossover

occurs when the time that all cross-thread dependences for iteration n + T are satisfied is

precisely equal to the time when thread t finishes processing iteration n.

Overall, notice that while DOACROSS exploits iteration-level parallelism, its perfor-

mance scales with the number of threads only up to a fixed number of threads, T0, after

which additional threads offer no more parallelism. Further, T0 is at best determined by the

dependence patterns present in the loop and at worst by the control patterns in the loop that

prevent efficient synchronization.

2.1.3 Pipelined Multi-threading and DSWP

Description Like the CMT approach, applications parallelized in the pipelined multi-

threading (PMT) paradigm possess cross-thread dependences. However, unlike CMT, the

cross-thread dependences form a pipeline (or more specifically, a directed acyclic graph

(DAG)) rather than a cycle. Formally, thread t can feed thread any thread t′ > t. However,

thread t cannot feed any thread t′ < t.

Decoupled Software Pipelining (DSWP) is a loop parallelization transformation pro-

1There also exists the trivial solution where T0 = N . This solution is uninteresting because there is one
thread per loop iteration.
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Figure 2.4: This figure illustrates how DSWP parallelism works. The 2-thread DSWP
schedule for the code in Figure 2.2(a) is shown in (a). Figure (b) illustrates the general
schedule of a DSWP parallelization.

ducing pipelined multi-threaded code. Unlike DOALL and DOACROSS parallelization,

DSWP does not allocate entire loop iterations to threads. Instead, each thread executes a

portion of all loop iterations. The pieces are selected such that the threads form a pipeline.

Figure 2.4(a) illustrates how DSWP would parallelize the code from Figure 2.2(a). In the

figure, thread 1 is responsible for executing statements 3 and 6 for all iterations of the loop,

and thread 2 is responsible for executing statements 4 and 5 for all iterations of the loop.

Since neither statement 4 nor 5 feed statements 3 and 6, all cross-thread dependences flow

from thread 1 to thread 2 forming a thread pipeline.

Analytical Model Since the threads produced by DSWP execute different pieces of each

loop iteration, each thread may complete its portion of each loop iteration at a different

rate. Figure 2.4(b) illustrates the general schedule of DSWP parallelization. Assuming

the rate of completion for each thread, rt, is constant, then the performance of the DSWP

parallelized loop is limited by the slowest thread, tslowest = arg mint rt. Denoting the length

of a loop iteration in thread t as Lt = 1
rt

, the speedup over sequential execution of a DSWP
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parallelization is:

SpeedupDSWP =
NL

(N − 1)Ltslowest
+ L

≈ L

Ltslowest

(for large N ) (2.8)

DSWP can partition the body of the loop being parallelized however it likes provided

the resulting threads form a pipeline. Consequently, there is no single DSWP paralleliza-

tion for a particular loop. Instead, depending on the number of threads being targeted and

heuristic partitioning algorithms in a DSWP implementation many partitions of the code

are possible. However, dependence patterns in the loop being parallelized limit the per-

formance offered by DSWP. Since DSWP must produce a pipeline of threads, no depen-

dence cycle can span multiple threads. Consequently, instructions comprising a strongly

connected component (SCC), a collection of overlapping cycles, in the loop’s dependence

graph must be allocated to the same thread. Assuming sufficient ILP resources to execute

SCCs optimally, the SCC with the largest dependence height bounds the rate of the slowest

thread. Mathematically, if θs is the dependence height of SCC s, then

Ltslowest
≥ θs (2.9)

In contrast to DOACROSS, even for control-intensive general purpose codes, this bound

is tight. If DSWP is provided sufficiently many threads, it can ensure that the SCC with

the largest dependence height is placed in its own thread, and that no other thread’s latency

exceeds the dependence height of the slowest SCC (in the limit, a DSWP implementation

could allocate each SCC to its own thread). Further, since each thread in a DSWP par-

allelized loop executes every original loop iteration, for any program point in one thread,

a control equivalent point can inexpensively be created in all later threads [56]. Conse-

quently, produce-consume synchronization can be inserted anywhere in the loop, including

within deeply nested control structures and inner loops. Compared to the original DSWP

code generation algorithm, synchronization overhead can be further reduced using com-
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munication optimizations that minimize the number of dynamic synchronizations and dra-

matically reduce the amount of control structure replication [55].

DOACROSS and DSWP both seemingly offer similar parallelization potential. As the

number of threads grows, DOACROSS ideally approaches a speedup of L
maxc τc

, and DSWP

ideally approaches a speedup of L
maxs θs

. However, since each dependence cycle is con-

tained in some strongly connected component, maxs θs ≥ maxc τc. Consequently, under

ideal conditions, DOACROSS should always outperform DSWP. However, for several rea-

sons, DSWP often outperforms DOACROSS in practice. First, recall that the performance

bound for DOACROSS is not tight for control-intensive general purpose applications, while

the bound is tight DSWP. Consequently, DSWP parallelizations in practice more closely

track the ideal speedups compared to DOACROSS parallelizations. Second, parallel-stage

DSWP, an extension to DSWP, effectively reduces the latency of any SCC that does not

contain a dependence carried by the loop being parallelized [58]. This often narrows the

gap between the maxs θs and maxc τc. Further, as the next few sections will demonstrate,

DSWP is tolerant to communication latency, dynamic load imbalance, and can often make

better use of speculation. These properties further differentiate DSWP from DOACROSS

in practice.

2.2 Tolerance to Communication Latency

This section explores the sensitivity of the three parallelization paradigms to inter-thread

(inter-core) communication latency. Obviously, the performance of an IMT parallelization

is independent of communication latency since the threads do not communicate. However,

the situation is not so obvious for CMT and PMT.

Figure 2.5 shows DOACROSS and DSWP schedules for the loop from Figure 2.2(a).

Figures 2.5(a) and 2.5(b) show the schedules assuming no inter-thread communication la-

tency (i.e., inter-thread communication is no more expensive than intra-thread communi-
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Figure 2.5: This figure illustrates the sensitivity of DOACROSS and DSWP parallelizations
to long inter-thread communication latency. Figures (a) and (b) show the execution sched-
ules in the presence of no inter-thread communication latency, while Figures (c) and (d)
show the execution schedules with a 1-cycle latency.

cation). Figures 2.5(c) and 2.5(d) shows the schedule assuming an inter-thread communi-

cation latency of 1 cycle. Notice that the organization used by DOACROSS forces it to

communicate dependences that participate in cycles (dashed lines in the PDG from Fig-

ure 2.2(b)) from thread to thread. This puts communication latency on the critical path.

DSWP’s organization allows it to keep these dependences thread-local (in fact the algo-

rithm requires it) thus avoiding communication latency on the critical path. Consequently,

even after the communication latency increase, DSWP completes one iteration every two

cycles. DOACROSS, however, now only completes one iteration every three cycles.

In terms of the analytical models developed in the previous section, the speedup for

DOACROSS in the presence of non-zero communication latency, λ, is

SpeedupDOACROSS,T =
NL

N
T
L+ (T − 1)(δ + λ)

≈ T (for large N ) (2.10)

SpeedupDOACROSS,∞ =
NL

(N − 1)(δ + λ) + L
≈ L

δ + λ
(for large N ) (2.11)

Dependence and communication delay begin to dominate when T > L
δ+λ

. Consequently,

fewer threads are useful and the maximum attainable speedup is smaller. These effects are

20



more pronounced when δ is small2, that is to say, when the sequential portion of the loop is

small.

For DSWP, the speedup in the presence of non-zero communication latency is

SpeedupDSWP =
NL

(N − 1)Ltslowest
+ L+ (T − 1)λ

≈ L

Ltslowest

(for large N ) (2.12)

As the example demonstrated, the speedup for a large number of iterations is completely

unaffected by communication latency. Only the pipeline fill time, L+(T −1)λ, is affected.

This communication latency independence makes DSWP particularly promising given that

the latency of inter-thread synchronization is often high compared to the latency of compu-

tation. Further, this latency can only be expected to increase as more cores are integrated

onto multi-core processors.

2.3 Tolerance to Load Imbalance

Thus far it has been assumed that loop iterations exhibit no variability in latency, and con-

sequently, the threads produced by parallelization are inherently balanced. This section

considers the efficiency of each paradigm in the presence of load imbalance.

Load imbalance can be divided into static and dynamic load imbalance. Static load im-

balance is caused by different threads executing different code which may not be balanced.

Dynamic load imbalance, on the other hand, is caused by runtime effects. Variability in

the execution time of loop iterations due to input data, differing control flow paths, cache

effects, branch prediction, etc. are all instances of dynamic load imbalance.

Since all threads in a DOALL or DOACROSS parallelization execute the same code,

there is no possibility for static load imbalance. DSWP, conversely, partitions a loop’s

body allocating different pieces to different threads. Statically, the work allocated to each

thread may not be balanced, and the pipeline requirement DSWP imposes may inhibit load

2More precisely, when λ is large compared to δ
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Figure 2.6: Comparison of DOACROSS and DSWP on dynamically imbalanced work-
loads.

balancing. This imbalance leads to under-utilization of processor cores executing lightly

loaded threads. However, this dissertation shows, in practice, that DSWP typically only

produces two lightly-loaded threads with the remaining threads being roughly balanced.

Consequently, the resource under-utilization is not significant. Further still, since these

under-utilized threads do not lie on the critical path, it is possible for these threads to share

a single processor core via traditional operating system scheduling.

Dynamic load imbalance, on the other hand, affects all three parallelization paradigms.

For DOALL, and more generally IMT, dynamic load imbalance can be overcome using

work queues. The approach works by placing all tasks to be completed (sets of loop itera-

tions in DOALL parallelization) into a queue. When a thread completes one task, it goes to

the queue to acquire another task. Since in IMT, all tasks are independent, the work queue

can be populated with all tasks that need completion before any thread begins processing.

Using this approach, all processor cores are kept occupied until the work queue is empty,

leading to high utilization.

The same approach, unfortunately, cannot be used by DOACROSS, or more generally

CMT, parallelizations since each task (a loop iteration in DOACROSS) is dependent on all

previous tasks being at least partially completed. Figure 2.6(a) shows how a DOACROSS

parallelization responds to dynamic load imbalance. In the example, each iteration can start
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processing after a short code region at the beginning of the previous iteration completes.

Before completing an iteration, however, each thread must synchronize once more with the

previous iteration to guarantee that output is generated sequentially. The figure illustrates

how large variability in the “meat” of the loop (the code between the two synchronizations)

leads to under-utilization of many processor cores. While its tempting to use more threads

than cores and rely on OS scheduling to fill the slack time, this may be counter productive

since all threads lie on the critical path. This implies time spent context switching a thread

that is ready to execute adds to the length of the critical path potentially slowing the parallel

execution.

While not applicable to CMT, the work queue approach to smoothing out load imbal-

ance in IMT can be simply adapted to work for PMT. With IMT, since all tasks are inde-

pendent a single shared work queue can be populated with all the tasks before any thread

begins processing. In PMT, not all tasks are independent. Consequently, tasks can only

be enqueued when all data necessary to execute the task is available. DSWP adopts this

model by implementing the cross-thread producer-consumer synchronization with queues.

Essentially, this amounts to using a private per-thread work queue although, in practice,

it is implemented with a collection of scalar queues. Multiple values can be buffered be-

tween the stages allowing each stage to execute unhindered by stalls or varying load in

other threads provided the queues are neither full nor empty.

Figure 2.6(b) illustrates how this works for DSWP. In the example, each loop iteration

is broken up into three pieces, each comprising a stage in the DSWP pipeline. These pieces

correspond to the code before the first DOACROSS synchronization, the code between the

first and second DOACROSS synchronization, and the code following the last DOACROSS

synchronization. Since the second stage does not depend on data produced in the stage in

previous iterations, the stage can be replicated and executed by multiple threads using an

extension to DSWP known as parallel-stage DSWP (this will be described more thoroughly

in Section 3.2) [58]. Notice that cores 1 and 4 are not fully utilized due to static load
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1 cost=0;
2 node=list->head;
3 while(cost<T && node) {
4 ncost=doit(node);
5 cost += ncost;
6 node=node->next;
7 }

(a) Loop

3

6

4

5

(b) PDG

Figure 2.7: The loop shown in (a) is similar to the loop in Figure 2.2(a), but cannot be
parallelized with either DOACROSS or DSWP. It can, however, be parallelized with TLS
and Speculative DSWP. The PDG for the loop is shown in 2.2(b).

imbalance. However, core 1 is not stalled by the variability in execution time in the second

pipeline stage; it simply enqueues more work for the later stages to complete. Cores 2 and

3 are fully utilized despite dynamic load imbalance benefitting from the work enqueued

by core 1. Core 4 is delayed by the dynamic load imbalance, however, as it is not on the

critical path, this delay is of little consequence. Further, as the number of cores used for the

replicated stage increases, the fraction of under-utilized cores diminishes. This tolerance

to dynamic load imbalance is yet another distinguishing factor making DSWP attractive in

practice.

2.4 Applicability of Speculation

While DOALL, DOACROSS, and DSWP (or more generally, non-speculative IMT, CMT,

and PMT transformations) can parallelize a certain class of loops, for many loops the de-

pendence patterns preclude effective non-speculative parallelization. In the case of DOALL,

any loop carried dependence makes the transformation inapplicable. For DOACROSS, if

δ + λ is a significant fraction of the length of a loop iteration L, then only small speedups

are attained. Similarly, for DSWP, if the dependence height of the largest SCC, Ltslowest
, is

too large, then little to no speedup is attainable.

For example, neither DOALL, DOACROSS, nor DSWP can effectively parallelize the

loop shown in Figure 2.7(a). This loop is almost identical to the loop in Figure 2.2(a)
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Figure 2.8: TLS and SpecDSWP schedules for the loop shown in Figure 2.7(a).

(which could be parallelized by DOACROSS and DSWP) except this loop can exit early if

the computed cost exceeds a threshold. Since all the loop statements participate in a single

dependence cycle (they form a single strongly-connected component in the dependence

graph), DSWP is unable to parallelize the loop. Similarly, the dependence height of the

longest cycle in the dependence graph is equal to the dependence height of the entire loop

iteration (i.e., δ = L) rendering DOACROSS ineffective as well.

In response to this, there have been many proposals for thread-level speculation (TLS)

techniques which speculatively break various loop dependences [7,13,34,38–40,49,66,68,

73, 80]. Once these dependences are broken, DOACROSS and sometimes even DOALL

parallelization is possible. In the example, if TLS speculatively breaks the loop exit control

dependences (the dependences originating from statement 3), then the execution schedule

shown in Figure 2.8(a) is possible. This parallelization offers a speedup of 4 over single

threaded execution.

In this example, to achieve DOACROSS parallelization, only one dependence needed

to be speculated. Assuming that the loop iterates many times, this speculation will yield

little misspeculation and effectively parallelizes the loop (provided the communication la-

tency λ is not large compared to a loop iteration’s execution time). In general, to improve

performance, a TLS implementation must reduce δ, meaning that it must only speculate

the loop-carried dependences on the longest dependence cycles. Each speculation, elimi-

nates the longest cycle from the application, reducing the bound on δ, and making the next
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longest dependence cycle the bottleneck. In the limit, if all cycles are broken by spec-

ulation, TLS has transformed the loop into speculative DOALL, rather than speculative

DOACROSS.

However, there are two key problems with this approach. First, TLS requires that the

loop-carried dependence along a dependence cycle be speculated. In practice, this depen-

dence may not be easily speculatable while another dependence along the cycle may be.

A TLS implementation must choose between not speculating the dependence or speculat-

ing it and incurring large misspeculation penalties at runtime. In either case, the speedup

obtained is greatly reduced. Second, reducing the dependence height of the longest cycle

does not always improve performance. Recall that the dependence height of the longest

cycle, maxc τc, is only a lower bound on δ (see Equation (2.4)). In practice, the set of

instructions participating in the longest cycle often cannot be optimally scheduled due to

control flow within each loop iteration. To circumvent restrictions due to control flow, TLS

implementations are forced to speculate that certain control flow paths will not occur, al-

lowing more flexibility in scheduling [78]. However, the branches that must be speculated

may not be heavily biased making them difficult to speculate. A TLS implementation must

once again choose between a sub-optimal parallelization or costly runtime misspeculation.

When combined with the other shortcomings of DOACROSS (communication latency on

the critical computation path and sensitivity to dynamic load imbalance), TLS typically

offers only modest performance improvements on inner program loops.

This dissertation proposes Speculative DSWP. Speculative DSWP can be considered

the DSWP analogue of TLS. Just as adding speculation to DOALL and DOACROSS

expanded their applicability, adding speculation to DSWP allows it to parallelize more

loops. Returning to the example in Figure 2.7, Figure 2.8(b) shows the execution schedule

achieved by applying SpecDSWP. Just as in TLS, by speculating the loop exit control de-

pendence, the largest SCC is broken allowing SpecDSWP to deliver a speedup of 4 over

single-threaded execution.
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Despite the similarity in this example, the flexibility of DSWP (and the PMT paradigm

in general) allows Speculative DSWP to avoid many of the pitfalls of TLS. Recall that

the performance of a loop parallelized with DSWP is determined by the performance of

the slowest thread. This performance is in turn bound by the maximum dependence height

of all the SCCs in the dependence graph, maxs θs. Therefore, theoretically, the perfor-

mance of DSWP can be improved by speculatively breaking the SCCs with the largest

dependence heights. However, unlike TLS, theory meets practice. Rather than limiting the

compiler to speculate only loop-carried dependences, Speculative DSWP is free to spec-

ulate any dependence that breaks an SCC. This gives the compiler the freedom to select

the most predictable dependence. Further, recall that the bound on the performance of the

slowest thread (see Equation (2.9)) is tight. This means any reduction in the dependence

height of the largest SCCs directly translates to performance in practice. Coupled with

the other practical benefits of DSWP (insensitivity to communication latency and decou-

pled execution to smooth dynamic load imbalance), this freedom to speculate intelligently

makes Speculative DSWP a promising automatic parallelization framework. The remain-

der of this dissertation describes Speculative DSWP in more detail, introduces the runtime

system necessary to support Speculative DSWP, and evaluates its performance on range

of control-intensive general purpose applications. The next chapter begins the detailed

description of Speculative DSWP by reviewing the details of the non-speculative DSWP

transformation.
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Chapter 3

Decoupled Software Pipelining

This chapter describes the DSWP transformation, from which the Speculative DSWP al-

gorithm is built. DSWP is a non-speculative pipelined multi-threading transformation that

parallelizes a loop by partitioning the loop body into stages of a pipeline. Like conven-

tional software pipelining (SWP), each stage of the decoupled software pipeline operates

on a different iteration of the loop, with earlier stages operating on later iterations. DSWP

differs from conventional SWP in three principal ways. First, DSWP relies on thread-level

parallelism (TLP), rather than instruction-level parallelism (ILP), to run the stages of the

pipeline in parallel. Each pipeline stage executes within a thread and communicates to

neighboring stages via communication queues. Second, since each pipeline stage is run in

a separate thread and has an independent flow of control, DSWP can parallelize loops with

complex control flow. Third, since inter-thread communication is buffered by a queue, the

pipeline stages are decoupled and insulated from stalls in other stages. Variability in the

execution time of one stage does not affect surrounding stages provided sufficient data has

been buffered in queues for later stages and sufficient space is available in queues fed by

earlier stages [61].

DSWP has four main steps (see [56] for a detailed discussion):

1. The program dependence graph (PDG) is constructed for the loop being parallelized.
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C: cost += node−>cost

H: cnt += calc(node, cost)

A: if (node−>cost > 0) jump BB1

B: jump BB2

I: node = node−>next

J: if (node != null) jump BB0

D: if (node−>error < T) jump BB3

E: jump BB4

G: jump BB5

F: cnt += fix(node, cost)

node = head

cost = 0

cnt = 0

// cnt is live

BB0

BB3

BB1

BB4

BB5

BB6

BB2

(a) CFG

THREAD

SCC

JA

I

C

D

HF

(b) PDG

Figure 3.1: Loop illustrating how the DSWP transformation operations. Figure (a) shows
the CFG for the loop. Figure 3.1(b) shows the PDG for the loop, highlights the SCCs in
the dependence graph, and shows one possible partition of the operations.
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The PDG contains all register, memory, and control dependences present in the loop.1

2. All dependence cycles are found in the PDG by identifying its strongly-connected

components (SCCs). To ensure that there are no cyclic cross-thread dependences

after partitioning, the SCCs will be the minimum scheduling units.

3. Each SCC is allocated to a thread ensuring that no cyclic dependences are formed be-

tween the threads. SCCs are partitioned among the desired number of threads accord-

ing to a heuristic that tries to minimize the static imbalance between the threads [56].

4. Based on the SCC allocation, DSWP generates the parallel code.

Figure 3.1(b) illustrates steps 1–3 of this process on the loop in Figure 3.1(a).

3.1 Code Generation

Figure 3.2 illustrates the code would be generated for the partition shown in Figure 3.1(b).

The following paragraphs explain how this code is generated. To start, DSWP encapsulates

each thread it produces in a function allowing the thread to be spawned using traditional

operating system or library calls such as clone or pthread create.

Handling Live-Ins After creating a function for each thread, the DSWP transformation

inserts code to initialize each thread by synchronizing any loop live-in values needed by a

particular thread. The set of registers that need synchronization is easily computed using

the upwards-exposed uses data flow analysis and comparing the uses exposed at the loop

header with the operations allocated to each thread. In the example, the variables node,

cost, and cnt are live into the loop and are used by thread 2. Consequently, in the loop

preheader, these variables are synchronized between the threads.

1Register anti- and output-dependences are ignored since each thread will have an independent set of
registers.

30



node = head

cost = 0

cnt = 0

produce(node)

produce(cost)

produce(cnt)

B: jump BB2

A: if (node−>cost > 0) jump BB1

   produce(node−>cost)

C: cost += node−>cost

   produce(cost)

J: if (node != null) jump BB0

I: node = node−>next

   produce(node)

BB5

// cnt is live

cnt = consume()

BB6

BB0

BB1

(a) Thread 1

cost = consume()

H: cnt += calc(node, cost)

jump BB2’

if (tmp > 0) jump BB1’

tmp = consume()

node = consume()

if (node != null) jump BB0’

D: if (node−>error < T) jump BB3’

E: jump BB4’

G: jump BB5’

F: cnt += fix(node, cost)

produce(cnt)

node = consume()

cost = consume()

cnt = consume()

BB3’

BB1’

BB4’

BB5’

BB6’

BB2’

BB0’

(b) Thread 2

Figure 3.2: Parallel code produced by DSWP for the loop in Figure 3.1(a).

Block Creation After inserting code to synchronize live-ins, basic blocks are created to

hold the operations for each thread. A basic block from the original single-threaded loop

is needed in a thread t if some instruction from that block has been allocated to thread

t, or if thread t will have a consume operation in that block. In the example, thread 1

needs basic blocks 0, 1, and 5 because operations A, C, I, and J were allocated to it (note,

unconditional jumps do not get allocated to any thread). Thread 2 needs basic blocks 2,

3, and 4 because operations D, F, and H were allocated to it. Additionally, it needs basic

blocks 0, 1, and 5 to hold synchronization operations. The set of blocks where thread t

will have consumes is computed iteratively. The set is initialized with all the basic blocks

containing instructions that are the source of cross-thread dependences feeding thread t.

For thread 2 in the example, this seed set is blocks 1 and 5. Then, any block containing a

branch that controls a block in the set is added to the set. In the example, since operation A

controls basic block 1, block 0 is added to thread 2. This process iterates until convergence.
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Control Flow After the blocks are created, the basic control flow in each thread is created

by linking basic blocks with unconditional jumps. For each original block that ended with

an unconditional jump, an unconditional jump is placed at the end of the corresponding

blocks in each thread. In the example, unconditional jumps are placed at the end of basic

blocks 0, 2, and 3. Since the target of an unconditional jump at the end of a basic block in

the single-threaded code may not exist in all threads, the target of the inserted unconditional

jump is calculated by traversing the post-dominator tree. For example, the unconditional

jump at the end of basic block 0 originally pointed to basic block 2. However, in thread 1,

since basic block 2 does not exist, the inserted unconditional jump targets block 5, the first

block that exists in thread 1 and that post dominates basic block 2 (in the original code).

Instruction Allocation After the initial control flow has been established, each thread is

populated with the instructions allocated to it. Each instruction is placed in the basic block

corresponding to the basic block in the single-threaded code from which the instruction

came. When a branch instruction is placed, its targets must be updated to point to blocks

in its thread. Once again, since not all basic blocks exist in all threads, branch targets are

updated using the post-dominator tree.

Synchronization Next, synchronization is inserted to preserve the original loop’s seman-

tics. For each dependence in the PDG that crosses between two threads, a produce-consume

pair must be inserted. Each produce explicitly identifies the recipient thread2, and the com-

piler must ensure that each dynamic produce is matched with a corresponding dynamic

consume in the target thread. For register and memory dependences, this is guaranteed by

inserting a produce immediately after a defining instruction, and a consume in the corre-

sponding location in the consuming thread. For a register dependence, the value contained

in the register is passed between the threads. For example, since the variable cost is de-

fined in thread 1 and used in thread 2, a cross-thread dependence exists. Assuming that

2In the example, the target thread numbers are omitted since there are only two threads.
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cost is stored in a register, a produce operation is inserted immediately after the variable

is defined in block 1, and in thread 2, a consume operation is inserted in the corresponding

location in its copy of the block.

For memory dependences, a produce consume pair is used only to synchronize the two

threads, not to communicate a value. To ensure loads performed by the consuming thread

observe stores performed by the producing thread, the produce and consume operations

used for memory synchronization must have the appropriate barrier semantics for the ar-

chitecture’s memory consistency model.

For control dependences, produce-consume pairs are inserted before the controlling

branch. One pair is used to communicate each value used by the branch instruction. Just as

for register dependences, the consumes are placed in the corresponding location in the con-

sumer thread. In the example, thread 1 communicates the value of node->cost to thread

2 in basic block 0 to synchronize the control dependence between operation A and basic

block 1. Additionally, however, the consuming thread also inserts a copy of the branch

instruction updating the branch targets appropriately. This effectively communicates con-

trol flow from one thread to another. In the example, the branch instruction immediately

following the consume operation in BB0’ in thread 2 is a copy of operation A.

Note, this algorithm for inserting synchronization does not optimize the location of the

synchronization. For example, if cost were synchronized in BB2 rather than in BB1, it

would have been unnecessary to communicate the value of node->cost from thread 1

to thread 2. Ottoni et al. have proposed a more sophisticated algorithm that would perform

this and other optimizations [55].

Handling Live-Outs Finally, code generation concludes by inserting synchronization of

loop live out values. These values may be defined in any thread and must be communicated

back to the primary thread. In the example, the variable cnt is live out of the loop, but its

value is stored locally in thread 2. To return this value to thread 1, a produce-consume pair
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1 cost=0;
2 node=list->head;
3 while(node) {
4 state = node->start_state;
5 i = 0;
6 while (!state->end) {
7 state = xfer(state, node->in[i]);
8 i++;
9 }

10 cost += state->cost;
11 node=node->next;
12 }

(a) Loop

6

4 5

8

11 3

7

10

(b) PDG

Figure 3.3: A loop amenable to PS-DSWP. In Figure (b) dashed edges participate in a
SCC.

is inserted in basic block 6.

3.2 Parallel-Stage DSWP

As Chapter 2 mentioned, the performance of DSWP is limited by the SCC with the largest

dependence height. Speculation can be used to reduce this dependence height, but in certain

cases, the non-speculative technique, parallel-stage DSWP (PS-DSWP), can effectively re-

duce this dependence height without incurring the overhead of misspeculation. This section

will describe how the technique works conceptually through an example. The details of the

code generation algorithm can be found in the literature [58].

Consider the loop and dependence graph shown in Figure 3.3. The loop contains three

non-trivial SCCs: the statements in the inner loop, the cost update, and the node update.

Assuming the iteration count for the inner loop is large, then the dynamic dependence

height of that SCC will be the large and will limit the speedup offered by DSWP.

However, while the statements in the inner loop do form an SCC in the dependence

graph, none of the dependences in the SCC are carried by the outer loop. Consequently, the

dependence height of this SCC can be effectively divided by an arbitrary factor by unrolling

the outer loop. Figure 3.4 illustrates the dependence graph for the outer loop unrolled once.
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Figure 3.4: The PDG from figure 3.3(b) unrolled once. In the figure dashed edges partici-
pate in a SCC.
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For the SCC that computed cost and the SCC that updated node, the original instructions

and their duplicates form a single SCC in the unrolled code. However, each copy of the

inner loop forms its own independent SCC. Disregarding the effects of single-threaded

scheduling, if the dependence height of a single iteration of the original outer loop is L,

then the dependence height of the unrolled loop is 2L. If the dependence height of the

inner loop SCC is Ls, then the bound on speedup obtainable by DSWP doubles from L
Ls

to

2L
Ls

. Unrolling can continue until the available cores are exhausted or this SCC no longer

has the largest dependence height.

The code growth due to excessive unrolling may be undesirable, however, Raman et

al. propose an extension to the code generation algorithm described in the previous section

that does not require unrolling [58].
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Chapter 4

Speculative DSWP

Despite the success of DSWP and PS-DSWP, these non-speculative transformations do

not leverage the fact that many dependences are easily predictable or manifest themselves

infrequently. If these dependences were speculatively ignored, large dependence recur-

rences (SCCs) may be split into smaller ones with more balanced performance characteris-

tics. These smaller recurrences provide DSWP with more scheduling freedom, leading to

greater applicability, scalability, and performance.

4.1 Execution Model

Before describing the compiler transformation used by speculative DSWP, this section out-

lines the basic execution paradigm and hardware support necessary. SpecDSWP transforms

a loop into a pipeline of threads with each thread’s loop body consisting of a portion of

the original loop body. SpecDSWP speculates certain dependences to ensure no depen-

dence flows between a later thread and an earlier thread. In the absence of misspeculation,

SpecDSWP achieves decoupled, pipelined multi-threaded execution like DSWP.

To manage misspeculation recovery, threads created by SpecDSWP conceptually check-

point architectural state each time they initiate a loop iteration. When misspeculation is

detected, each thread is resteered to its recovery code, and jointly the threads are respon-

37



sible for restoring state to the values checkpointed at the beginning of the misspeculated

iteration and re-executing the iteration non-speculatively. The SpecDSWP implementation

described in this dissertation uses software to detect misspeculation and recover register

state. It, however, relies on multi-threaded transactions implemented in hardware (see

Chapter 7) to rollback the effects of speculative stores.

4.2 Compiler Transformation Overview

To generate parallel code, a Speculative DSWP compiler executes the steps below.

1. Build the PDG for the loop to be parallelized.

2. Select a candidate set of dependences to speculate. (See Section 5.1).

3. Build the speculative PDG – a PDG with the candidate set of speculated dependences

removed.

4. Find the dependence cycles in the speculative PDG by identifying its SCCs.

5. Allocate each SCC to a thread ensuring that no cyclic dependences are formed be-

tween the threads (ignoring the candidate set of speculated dependences).

6. Using the partition, compute the final set of speculation necessary to guarantee pipelined

execution. (See Section 5.2.)

7. Transform the single-threaded code to realize the speculation, and insert code to

detect misspeculation. Update the partition to reflect the code changes. (See Sec-

tions 6.1 and 6.2.)

8. Apply the non-speculative DSWP code generation algorithm. (See Chapter 3.)

9. Insert code to recover from misspeculation (See Section 6.3).

Before describing each step in more detail, this chapter will illustrate these steps using

the loop from Figure 4.1(a). First, a SpecDSWP compiler builds the program dependence

graph for the loop being parallelized (Step 1). Figure 4.1(b) shows the PDG for the loop

in Figure 4.1(a). Using this PDG, the compiler then analyzes each dependence deciding
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1 cost=0;
2 node=list->head;
3 while(cost<T && node) {
4 ncost=doit(node);
5 cost += ncost;
6 node=node->next;
7 }

(a) Loop

3

6

4

5

(b) PDG

Figure 4.1: A loop demonstrating Speculative DSWP. This example reproduces the loop
from Figure 2.7. The loop is not amenable to DSWP or DOACROSS since all the instruc-
tions form a single dependence cycle.

THREAD

SCC

356 4

Figure 4.2: The speculative PDG for the loop in Figure 4.1(a) formed by speculating the
loop exit control dependences originating from statement 3.

whether it is sufficiently predictable to be sepculated (Step 2). In the example, the data

dependences always manifest, so assuming they cannot be value predicted, they are not

candidates for speculation. Assuming the average number of loop iterations per invocation

is large, the loop exit control dependences (i.e., the dependences originating from statement

3) are easily predicted, so the compiler selects these as speculation candidates. The com-

piler then removes these dependences from the PDG forming the speculative PDG shown

in Figure 4.2 (Step 3). The compiler next identifies the SCCs in the speculative PDG

(Step 4) so that it can schedule the SCCs to threads (Step 5). Figure 4.2 shows the SCCs

in the speculative PDG and shows one possible allocation of SCCs to threads. In the last

step before code generation, the compiler identifies which of the speculation candidates are

backwards dependences in the chosen partition. These speculations are retained while all

others are discarded. Since the speculated control dependences are all backwards in the

selected partition, the compiler would retain all the speculations (Step 6).

To realize the speculation, the compiler inserts the necessary value speculation and mis-

speculation detection code in to the single-threaded loop. Figure 4.3 shows the results of
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1 cost=0;
2 node=list->head;
3 loop:
4 if(cost<T && node) misspec;
5 ncost=doit(node);
6 cost += ncost;
7 node=node->next;
8 goto loop;

Figure 4.3: The code from Figure 4.1(a) after Step 7 is applied.

1 node=list->head;
2 produce(T2, node);
3 produce(T4, node);
4 loop:
5 node=node->next;
6 produce(T2, node);
7 produce(T4, node);
8 goto loop;

(a) Thread 1

1 node=consume(T1);
2 loop:
3 ncost=doit(node);
4 produce(T3, ncost);
5 node=consume(T1);
6 goto loop;

(b) Thread 2

1 cost=0;
2 produce(T4, cost);
3 loop:
4 ncost=consume(T2);
5 cost += ncost;
6 produce(T4, cost);
7 goto loop;

(c) Thread 3

1 node=consume(T1);
2 cost=consume(T3);
3 loop:
4 if(cost<T && node) misspec;
5 cost=consume(T3);
6 node=consume(T1);
7 goto loop;

(d) Thread 4

Figure 4.4: The code from Figure 4.3 after Step 8 is applied.

applying Step 7 to the example loop. Notice, the loop is now infinite reflecting the spec-

ulation that the loop will not exit. However, the loop exit condition is still computed, and

if it is true, misspeculation is flagged. After realizing speculation, the compiler applies the

non-speculative DSWP code generation algorithm (Step 8) generating the code shown in

Figure 4.4. Just as in the single-threaded code, the loop contains no exits in all threads.

However, the misspeculation detection code was allocated to thread 4, and it will flag mis-

speculation whenever the original loop would have exited.

The next two chapters will provide more details on the SpecDSWP transformation.

Details on selecting what to speculate (Steps 2 and 6) are described in Chapter 5. Details

regarding code generation (Steps 7 and 9) are described in Chapter 6.
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Chapter 5

Selecting Speculation

Since the scheduling freedom enjoyed by SpecDSWP, and consequently its potential for

speedup, is determined by the number and performance (dependence height) of the SCCs

in a loop’s dependence graph, SpecDSWP ideally would speculate only to remove depen-

dences which break the “slowest” SCCs. Unfortunately, finding this set of speculations is

difficult. To break an SCC into multiple SCCs with lower dependence heights, SpecDSWP

must break the longest cycle in any given SCC. Unfortunately, finding the longest cycle is

NP-complete [29] and large SCCs make exhaustive search intractable in practice. Conse-

quently, SpecDSWP uses a heuristic solution. First, SpecDSWP provisionally speculates

all dependences which are highly predictable. Next, the partitioning heuristic allocates in-

structions to threads using a PDG with the provisionally speculated edges removed. Once

the partitioning is complete, SpecDSWP identifies the set of speculations necessary to per-

mit the partition. Speculations not in this set (i.e., speculations that eliminate dependences

between a thread and one of its successors) are unspeculated. Since these speculations are

not passed to the code generator, they cannot cause misspeculation at runtime.

This chapter describes this process in detail. Section 5.1 describes the profile-guided

algorithms to produce the set of provisionally speculated dependences. The section con-

cludes by describing how the set of speculations are used to form the PDG used by the
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partitioning heuristic. Section 5.2 then describes how the set of provisionally speculated

dependences are pruned to the final set of speculations using the partition generated by

the heuristic. It describes the challenges created by inter-dependent speculations (sets of

speculations that jointly eliminate a dependence) and introduces new data flow analyses to

overcome these challenges to efficiently identify the final set of speculations.

5.1 Selecting Edges to Speculate

A SpecDSWP implementation can speculate any dependence that has an appropriate mis-

speculation detection mechanism and, for value speculation, that also has an appropriate

value predictor. Each misspeculation detection mechanism and value predictor can be im-

plemented either in software, hardware, or a hybrid of the two. The implementation used

for this dissertation, relies solely on software for value prediction and misspeculation detec-

tion. The remainder of this section will detail the speculation carried out by the SpecDSWP

compiler used for this dissertation.

5.1.1 Biased Branch Speculation

As the example presented earlier (Figures 2.7, 4.2, 4.3, and 4.4) showed, speculating bi-

ased branches can break dependence recurrences. Recall from the example that the loop

terminating branch (statement 3) was biased provided that the loop ran for many iterations.

Consequently, the compiler can speculatively break the control dependences between the

branch and other instructions. Figures 2.7(b) and 4.2 show the dependence graph before

and after speculation, respectively.

Biased branch speculation can additionally break data dependences by altering the con-

trol flow of the program. For example, consider the code shown in Figure 5.1. If the

control flow edge between B and C (or equivalently, between A and B) is speculated not

to occur, then the control dependence between B and C (A and B) is broken. Additionally,
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A: if (f(x))

B: if (f(y))

C: p = g(q)

D: p = g(p)

E: q = g(p)

10%

90%10%

90%

(a) CFG

E

A

B

C D

(b) PDG

Figure 5.1: This figure illustrates how control speculation (both biased branch and infre-
quent block speculation) can eliminate data dependences. When the edge from B to C is
speculated, the dependence cycle between statements C, D, and E is broken.

any data dependences originating from or terminating at statement C can be ignored be-

cause, if at runtime execution would have reached operation C, then misspeculation will be

flagged. Consequently, the control speculation breaks the data dependence cycle between

statements C, D, and E by eliminating the dependence between instruction C and D, and

the dependence between E and C.

Our SpecDSWP compiler assumes that all branches that exit the loop being parallelized

are biased and speculates the loop will not terminate. For other branches, profile informa-

tion is used to compute an edge probability for each control edge originating at the branch.

The edge probability is equal to the edge’s weight divided by the profile weight of the

branch instruction. Given a speculation threshold T and the probability for each edge pi, n

edges will be speculated by sorting the edges in ascending order by probability, and spec-

ulating the first n edges such that
∑n

i=0 pi < T . For a two way branch, this will speculate

the low probability branch direction provided the branch is sufficiently biased.

Additional care must be taken when speculating branches within inner loops. While
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a branch itself may be biased, the low probability path may occur frequently with respect

to the loop being parallelized. The quintessential example of this phenomenon is an inner

loop exit branch. If an inner loop has a high trip count, then the inner loop exit will be

highly biased. However, for each invocation of the inner loop, the loop exit will be taken

exactly once. Consequently, if the inner loop is invoked once per outer loop iteration, then

with respect to the outer loop, the exit branch has probability 1. Since misspeculation rolls

back execution to the beginning of the outer loop iteration, speculating the inner loop exit

would yield a 100% misspeculation rate.

To avoid this, the compiler places additional restrictions on branch bias speculation.

The compiler represents biased branch speculations using a set of control flow edges that

are expected not to execute frequently. First, this set is filtered to remove any edge that has

a high probability of execution with respect to the loop being parallelized. This probability

is computed by dividing the number of outer loop iterations where the edge was traversed

by the total number of outer loop iterations. Second, since an inner loop can have multiple

exits, it is possible for each exit itself to have low probability even with respect to the outer

loop. If all such exits were speculated, it would once again be tantamount to speculating

that the inner loop is not invoked. To avoid this scenario, the compiler also ensures that

some set of exits from inner loops are preserved.

5.1.2 Infrequent Basic Block Speculation

While speculating biased branches is successful in many cases, it can miss important spec-

ulation opportunities. Reconsider the example shown in Figure 5.1. If the branch bias

threshold is set to 5%, then neither the control edge from A to B nor the control edge from

B to C will be speculated. Further, notice that, despite not being the target of a sufficiently

biased branch, operation C only has a 1% chance of execution. Since its execution is very

unlikely, SpecDSWP will assert that the basic block containing operation C is infrequent

and consequently speculatively remove all the control flow edges entering the block. Just
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as was described earlier, this speculation breaks the dependence cycle between statements

C, D, and E.

In general, SpecDSWP will break all incoming control flow edges in blocks whose

execution probability fall below a certain threshold. Just as with biased branch speculation,

it is important that block execution probabilities be computed with respect to the loop being

parallelized. Additionally, if infrequent block speculation results in all of the control flow

edges leaving an instruction to be speculatively removed, then the result is tantamount to

speculating that all the control flow edges entering that instruction also do not execute. If

all of those edges have not been selected for speculation, then the SpecDSWP compiler

will conservatively discard the infrequent block speculations that lead to this condition.

5.1.3 Silent Store Speculation

In addition to control speculation, our SpecDSWP compiler speculates memory flow de-

pendences originating at frequently silent stores [41]. To enable this speculation, the com-

piler first profiles the application to identify silent stores. Then, the compiler transforms

a silent store into a hammock that first loads the value at the address given by the store,

compares this value to the value about to be stored, and only if the two differ perform the

store. After this transformation, the biased branch speculation mechanism described above

is applied. The compiler will predict that the store will never occur, and if it does occur,

misspeculation will be flagged.

5.1.4 Alias Speculation

Silent store speculation removes memory dependences when stores frequently write to a

location, but do not change the location’s value. However, a compiler’s static, conserva-

tive approximation of memory aliasing contains many dependences that do not manifest in

practice. Static analyses necessarily over estimate an application’s memory dependences

for two reasons. First, an application at runtime may use an unbounded amount of memory,
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however, the compiler’s analysis must bound its memory usage and complete in finite time.

This restriction introduces conservativeness in memory dependence analysis. Second, the

results of the compiler’s analysis must indicate what memory dependences can occur, even

if such dependences manifest rarely in practice. While some analyses have been devel-

oped to estimate the frequency of an alias [18, 65], understanding the dynamic memory

dependence pattern is difficult without representative input.

Consequently, our SpecDSWP compiler speculates memory flow dependences based on

the results of memory alias profiling. In its simplest form, a memory alias profile reports the

number of times a load aliases with a store. This information is valuable, however it does

not capture important path information. In the context of SpecDSWP, knowing what loop

back edge carries the dependence greatly affects the scheduling freedom. For example,

consider a loop nest with an outer and inner loop. If a load and store in the inner loop

alias with one another, and the compiler is attempting to parallelize the inner loop, then the

memory dependence is only relevant if the dependence is either frequently intra-iteration or

frequently carried around the inner loop’s back edge. If the dependence is primarily carried

around the outer loop back edge, then for one invocation of the inner loop, the dependence

will rarely manifest and it can be safely ignored speculatively. Conversely, if the outer loop

is being parallelized and the dependence is primarily intra-iteration (for the inner loop)

or carried around the inner-loop back edge, then the outer loop is a prime candidate for

speculative parallel-stage DSWP; if the memory dependence creates an SCC, the SCC

will not have any outer loop-carried dependences allowing the compiler to replicate the

pipeline stage containing the SCC.

To capture this information, our SpecDSWP compiler relies on a loop-aware memory

profiler (LAMP). LAMP profiles an application in much the same way as a traditional

memory profiler, however each time a loop back edge or exit is traversed, alias information

is summarized onto various loops in the loop hierarchy. The details of the implementation

of LAMP are beyond the scope of this thesis.
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1 int stack[STACK_SIZE];
2 int stack_index = 0;
3

4 ...
5 while(...) {
6 for (i = 0; i < 10; i++)
7 stack[stack_index++] = ...;
8 ...
9 for (i = 0; i < 10; i++)

10 ... = stack[stack_index--];
11 }

Figure 5.2: Loop illustrating a committed value speculation opportunity. While analysis
reveals a dependence from the last store to stack index in one iteration of the outer
loop to the first load of stack index in the subsequent iteration of the outer loop,
stack index is easily predictable since its value is always the same at the beginning
of each iteration.

5.1.5 Committed Value Speculation

While alias speculation eliminates memory flow dependences that do not manifest fre-

quently in practice, there are many memory flow dependences that manifest frequently,

but where the loaded value is predictable. The literature is abound with value speculation

mechanisms [21, 43–45, 50, 54, 70]. Our SpecDSWP implementation relies on committed

value speculation to allow more pipeline stages to be replicated with parallel-stage DSWP.

Bridges et al. observed that in many applications, certain loads are frequently fed by

stores within the same loop iteration, or they load a constant value [14]. While the locations

loaded from may change value frequently, the application tends to reset the value to con-

stant before the iteration completes. For example, consider the code shown in Figure 5.2.

In each iteration of the outer loop, stack index is modified many times. Consequently,

data flow analysis would reveal a dependence between the last store to stack index in

one iteration of the outer loop and the first load of stack index in the subsequent it-

eration of the outer loop. However, since the increments to stack index are perfectly

balanced with the decrements, the variable’s value is always the same at the beginning of

each outer loop iteration, thus making the dependence easily predictable. This constant

value may not be known at compile time (e.g., the value may be non-zero depending on
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what code executes before the outer loop), however, the value is a runtime constant for each

invocation of the outer loop.

In such instances, the memory subsystem itself proves to be an effective value predic-

tor to break the loop-carried dependence. Since SpecDSWP relies on runtime support to

rollback speculative execution, the runtime allows loads to specify a version (in this case a

loop iteration) from which to retrieve a value. For loads which follow the observed pattern,

if a value is found in the version corresponding to the current iteration (i.e., if the load is

being fed by stores within the same iteration), it is the correct value for the load. However,

if a value is unavailable in the current version, then the value stored in the non-speculative,

committed state is likely to be the correct value. Using this value breaks the loop-carried

dependence and consequently enables speculative parallel-stage DSWP.

To identify loads which follow this pattern, SpecDSWP once again relies on profiling.

Here, the profiler simply snapshots the state of memory at the header of the loop being

targeted for parallelization. The profiler retains the last several snapshots, and for each load

records two facts. First, it records whether the load was fed by a store within the current

loop iteration or a previous iteration. Second, if the load was fed by a prior iteration, it

records whether the loaded value is equal to the value from the retained snapshots. During

compilation, depending on the number of threads being targeted, the compiler can estimate

how many loop iterations will be uncommitted when a load executes. Given this distance,

it consults the profile to see if snapshots a greater distance in the past accurately predict the

value that will be loaded. If so, all loop-carried memory dependences feeding the load can

be speculatively removed.

5.1.6 False Memory Dependence Removal

Finally, our compiler disregards all memory anti- and output-dependences. Since our re-

covery mechanism relies on a versioned memory (see Chapter 7) to recover from misspec-

ulation, loads and stores can explicitly target a particular memory version. The compiler
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can ensure that two memory operations with a false dependence between them execute in

different memory versions. Consequently, the false memory dependences no longer need

to be respected. As will be seen in Chapter 6, the ability to safely ignore false memory

dependences is essential for software-only alias misspeculation detection. Since the com-

piler is removing edges from the PDG, removing false memory dependences is similar to

speculation, but since these dependences truly do not need to be respected, there is no need

to detect misspeculation or initiate recovery.

5.1.7 Building the Speculative PDG

Once the candidate set of speculations is computed, the compiler must create a PDG with

the speculated dependences removed. The speculations described above fall into two cat-

egories. The first type defines a control edge that should be speculatively removed from

the CFG. The second defines a set of memory dependences that should be ignored. Up-

dating the PDG to reflect the effects of speculation from the second category is trivial; the

respective dependence edges simply need be removed from the PDG. However, updating

the PDG to reflect the speculations in the first category is not as straightforward.

First, removing a control edge from the program’s CFG directly eliminates control

dependences. These control dependences must be removed from the PDG. However, as

Figure 5.3(a) illustrates, by eliminating paths in the program, removing a control flow edge

can also transform a transitive control dependence (which are not represented in the PDG)

into a direct control dependence. In the example, initially control flow edge 2 controls block

D, and therefore block B controls block D. Since block A controls block B, transitively

block A controls block D although either path from block A can reach block D. However,

if edge 3 is speculatively removed from the CFG, then edge 1 (and therefore block A)

directly controls block D. This new direct control dependence must be added to the PDG.

Second, removing a control flow edge also eliminates data dependences. An obvious

example is a data dependence originating or terminating in code predicted not to execute.
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A

B C

D

E

1

2

3

(a) Example 1

A: y = f(x)
B: z = g(y)

C: x = h(z)

D: x = 0

1

2

(b) Example 2

Figure 5.3: Examples illustrating how speculation affects program dependences. Figure (a)
illustrates a transitive control dependence turning into a direct control dependence. Fig-
ure (b) illustrates how removing a control flow edge non-locally affects data flow depen-
dences.
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However, other data dependences can also be affected. Figure 5.3(b) illustrates how a con-

trol flow speculation non-locally affects a register-flow dependence. Prior to speculation,

statement C and D both potentially feed statement A. However, if control flow edge 2 is

speculated away, then statement D always overwrites the assignment of x in statement C.

Consequently, after speculation, no dependence exists between statements C and A even

though neither statement was speculated not to execute. These data flow effects also need

to be reflected in the PDG.

Rather than try to compute directly which dependences are affected by control specula-

tion, SpecDSWP simply reruns the analyses to build the PDG using a modified CFG with

the speculated control flow edges removed. This newly built PDG will naturally not have

the dependences eliminated by control speculation. Then, the PDG is updated to reflect the

results of memory speculation by removing all the dependence edges indicated by those

speculations. The resulting PDG is fed to the partitioning heuristic to decide the allocation

of operations to threads.

5.2 Unspeculation

After the partitioning heuristic allocates instructions to threads, SpecDSWP determines

what speculations must be retained to ensure pipelined execution and what speculations

can be undone to lower runtime misspeculation. SpecDSWP must ensure that all specula-

tions that removed backward dependences (i.e., dependences that flow from later pipeline

stages to earlier stages, as determined by the partitioning heuristic) are retained. All other

speculations can be undone. Unfortunately, identifying the smallest set of speculations to

retain is non-trivial.

The example in Figure 5.3(b) illustrates this difficulty. Consider the scenario where

the SpecDSWP compiler tentatively speculates that the edges marked 1 and 2 will not

execute, and the partitioning heuristic allocates instructions A and D to stage 1, instruction
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B to stage 2, and instruction C to stage 3. After partitioning, there is one speculatively

removed backward dependence, the data flow dependence between instruction C (in stage

3) and instruction A (in stage 1). This dependence is removed either by speculating that the

control edge marked 1 will not execute (because the instruction C becomes unreachable)

or by speculating that the control edge marked 2 will not execute (making instruction D’s

definition of x unconditional). It is unnecessary for the compiler to retain both speculations.

Consequently, the compiler has choice in its unspeculation.

While not shown by the example, it is also possible that a collection of speculations

jointly eliminate a backwards dependence. Given that choice exists and that collections of

speculations may jointly eliminate dependences, the compiler must consider all possible

combinations of retained speculations to determine which are legal, and among the legal

ones, estimate which would lead to the least misspeculation at runtime. Since, as the pre-

vious section showed, it is difficult to determine what dependences exist for a given set of

control speculations, it would appear that the compiler needs to build a speculative PDG,

and therefore run a suite of data flow analyses, for all possible combinations of retained

speculation. Given the vast number of options and the expense of running data flow analy-

sis, this solution would be untenable.

However, recall that speculation does not affect the results of data flow analysis pro-

vided that the speculation does not affect the control flow graph.1 Consequently, only one

set of data flow analysis needs to be run per potential CFG (i.e., per combination of re-

tained control speculation). While this too would be prohibitively expensive, this section

introduces conditional analysis which conceptually analyzes all the possible CFGs simul-

taneously. Rather than analyzing each CFG independently, a conditional analysis analyzes

a single conditional CFG that conceptually represents all possible CFGs created by control

speculation. The results of conditional analysis can be used to build a conditional PDG

that the compiler can use to determine what speculation to retain.

1In particular, memory speculation only removes dependences from the speculative PDG; it does not
affect the results of data flow analysis.
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The next section will describe the conditional analysis in detail, and the subsequent

section will describe how the results of this analysis, combined with the set of non-control

speculations can be used to build the conditional PDG. Finally, this section concludes with

the algorithm to unspeculate dependences based on the conditional PDG.

5.2.1 Conditional Analysis

Classical data flow analyses (e.g., reaching definitions, liveness, dominators, etc.) can be

formulated in the gen-kill data flow framework [6]. In this framework, a data flow analysis

is defined by a set of equations formed from the CFG that relate information at various

program points. In these equations, there are two variables per node in the CFG being

analyzed: one corresponding to the data flow facts at the entry to the node inn, and one

corresponding to the data flow facts at the exit to the node outn. Data flow facts come from

a predefined set of values V for the analysis, and the variables inn and outn take on values

that are subsets of V . The result of the data flow analysis is obtained by simultaneously

solving the set of equations.

The equations defining the data flow analysis having the following form:

outn = genn ∪ (inn \ killn) (5.1)

inn =
⊕

m∈pred(n)

outm (5.2)

In Equation 5.1, genn and killn are given by the analysis. In Equation 5.2, the analysis

decides whether the confluence operator (⊕) is either set union or intersection. Finally,

pred(n) returns the set of predecessor nodes for n in the CFG. These equations can be

solved by iteratively evaluating them until inn and outn converge using initial values for

inn provided by the analysis.

For example, reaching definitions fits into the framework as follows. The set of data

flow facts V is the set of instruction, destination register pairs. The gen set for an instruction
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is the subset of V where the instruction in the pair is the given instruction. Similarly, the

kill set for an instruction is the subset of V where the destination register is contained in the

set of registers defined by the given instruction. Finally, the confluence operator is set union

and the initial values for inn are ∅. Conceptually, this parameterization of the framework

has definitions flow forward along all control flow paths until a redefinition halts the flow.

To extend gen-kill analyses to conceptually operate on many control flow graphs simul-

taneously, the set of possible control flow graphs are represented in a single conditional

CFG. Figure 5.4(a) shows a conditional CFG, and Figures 5.4(b)–(e) show the correspond-

ing traditional CFGs represented by it. A conditional CFG is identical to a traditional CFG

except some control flow edges are annotated with boolean variables (in the figure, two

edges are labeled with the variables α and β respectively). If the boolean variable associ-

ated with an edge is true, then the edge is considered to exist, otherwise it is considered

absent. Consequently, each variable assignment corresponds to a single traditional CFG.

Using conditional CFGs, traditional gen-kill data flow analyses can be adapted to gen-

erate a set of data flow facts conditioned with a boolean formula. Conceptually, the result of

the conditional data flow analysis represents the results of the traditional data flow analysis

on all the traditional CFGs represented by the conditional CFG. For any particular variable

assignment, substituting the variables’ values into the boolean formula associated with a

data flow fact determines whether the fact exists in the traditional analysis operating on the

corresponding traditional CFG.

While conditional analysis may resemble predicate-aware data flow analysis [11], the

two analyses are quite different. Predicate-aware data flow analysis reconstructs the control

flow graph for predicated code in a single hyperblock (basic block with predicated code).

By performing analysis on the reconstructed control flow graph, it enables “path” sensitive

analysis within a hyperblock. On the other hand, by annotating control flow edges with

boolean predicates, conditional analysis effectively provides path sensitivity across many

blocks (rather than within a single block) in the control flow graph.
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A: y = f(x)
B: z = g(y)

C: x = h(z)

D: x = 0

α

β

(a) Conditional CFG

A: y = f(x)
B: z = g(y)

C: x = h(z)

D: x = 0

(b) ᾱβ̄

A: y = f(x)
B: z = g(y)

C: x = h(z)

D: x = 0

(c) αβ̄

A: y = f(x)
B: z = g(y)

C: x = h(z)

D: x = 0

(d) ᾱβ

A: y = f(x)
B: z = g(y)

C: x = h(z)

D: x = 0

(e) αβ

Figure 5.4: Figures(b)–(e) show the traditional CFGs represented by the conditional CFG
in Figure (a). Each traditional CFG is labeled with the variable assignment that realizes it.
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To see how to make a gen-kill analysis conditional, first consider a simplified analysis

where data flow facts are just boolean values rather than sets.2 One can think of this simpli-

fication as the “slice” of the data flow analysis with respect to one element v ∈ V . Making

this analysis conditional, only requires modifying the confluence operator. Assuming the

traditional analysis’s confluence operator is ∨ (∪), then the boolean values entering a node

from all of its predecessors get logically ORed. This can be conditioned using variables

annotated on the conditional CFG edges. Using c1,n, c2,n, . . . , cm,n to denote the variables

annotated onto the incoming control edges for node n, the new confluence will be:

inn =
∨

m∈pred(n)

(cm,n ∧ outm) (5.3)

Notice, using the variable assignment that reduces a conditional CFG to a particular tradi-

tional CFG, the conditional confluence operator reduces to the the traditional confluence

operator. If an edge is absent, its corresponding variable will be 0, and by logically ANDing

it to the incoming data flow fact, its effect is nullified. Similarly, for an edge that is present,

its corresponding variable will be 1, and the logical AND operation is just the identity

function. Leveraging the duality between the two confluence operators, the conditional

confluence operation corresponding to ∧ (∩) is:

inn =
∧

m∈pred(n)

(¬cm,n ∨ outm) (5.4)

Unfortunately, in this formulation, the conditional confluence operator is not constant

for the whole analysis, but rather varies per node in the CFG. This is unsatisfying because

it deviates from the underlying theory behind data flow analysis; one cannot define a lattice

over the data flow facts. However, the formulation can be salvaged by using the traditional

confluence operators and introducing a transfer function (i.e., a gen and kill) along each

2All the data flow equations are still valid since both ({true, false}, ∧, ∨, ¬) and (V , ∪, ∩, ¬) are boolean
algebras.
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edge in the conditional CFG that is annotated with a variable. The transfer function to be

used is:

oute = false ∨ (ine ∧ ¬ (¬ce)) (if confluence is ∨) (5.5)

oute = ¬ce ∨ (ine ∧ ¬false) (if confluence is ∧) (5.6)

For the confluence operator ∨, the gen value is false and the kill value is ¬ce. Following

duality, for the confluence operator ∧, the gen value is ¬ce and the kill value is false.

Recognizing that for an edge between nodes m and n, inm,n = outm, for the confluence

operator ∨ substituting Equation 5.5 into Equation 5.2 yields Equation 5.3.

inn =
∨

m∈pred(n)

outm,n (5.7)

inn =
∨

m∈pred(n)

(false ∨ (inm,n ∧ ¬ (¬cm,n))) (5.8)

inn =
∨

m∈pred(n)

(inm,n ∧ cm,n) (5.9)

inn =
∨

m∈pred(n)

(outm ∧ cm,n) (5.10)

The substitution works similarly for the operator ∧.

inn =
∧

m∈pred(n)

outm,n (5.11)

inn =
∧

m∈pred(n)

(¬cm,n ∨ (inm,n ∧ ¬false)) (5.12)

inn =
∧

m∈pred(n)

(¬cm,n ∨ inm,n) (5.13)

inn =
∧

m∈pred(n)

(¬cm,n ∨ outm) (5.14)

Thus far, the conditional analysis formulation has been with respect to one value v ∈ V .
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A complete conditional analysis is built by repeating the process for each value in V . The

Section 5.2.2 will describe a practical implementation that simultaneously computes the

results of a conditional analysis for all members of the set V .

Before describing the practical implementation of conditional analysis, let us re-consider

the example in Figure 5.4(a) to illustrate how conditional analysis works in the context of

reaching definitions analysis. Since only two edges have been annotated with boolean vari-

ables, for all the other edges the transfer function is simply the identity transfer function.

For the two annotated edges, since the confluence operator for reaching definitions is set

union, the transfer functions are:

outα = inα ∧ α (5.15)

outβ = inβ ∧ β (5.16)

In the first iteration of the analysis, along the edge marked α,, the incoming data flow facts

are {(A, y) : >, (B, z) : >}. Applying the edge transfer function, the incoming data flow

facts at node C are {(A, y) : α, (B, z) : α}. Propagating the analysis through node C yields

the data flow facts {(A, y) : α, (B, z) : α, (C, x) : >}. Applying the confluence operator at

the merge point leaves the data flow facts unchanged. Propagating them through the edge

marked β yields {(A, y) : α ∧ β, (B, z) : α ∧ β, (C, x) : β}. Applying the confluence op-

erator at the second merge point yields {(A, y) : α ∧ β, (B, z) : α ∧ β, (C, x) : β, (D, x) : >}.
The analysis would continue until it converged. The analysis reveals that there are two

reaching definitions for the variable x at the header of the loop {(C, x) : β, (D, x) : >}.
Looking at the conditions, one observes that if β is false, the definition from instruction

C does not reach the loop header, making the definition from instruction D an uncondi-

tional define. One may have expected the definition from instruction C to have also been

conditioned on α. However, since reaching definition analysis propagates forward through

the control flow graph, α does not condition the definition coming from statement C. Sec-
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tion 5.2.3 will demonstrate how to merge the results of conditional reaching definition

analysis with conditional reachability analysis to ensure that unreachable instructions do

not cause dependence edges to appear in the conditional PDG.

5.2.2 Practical Implementation of Conditional Analysis

To practically implement a conditional analysis there are two principle obstacles to over-

come. First, since the analysis iterates until it reaches a fixed point, to determine whether a

fixed point has been reached it is necessary to check if two boolean formulae are equal. For

this check to be efficient, it requires a canonical form for boolean formulae. Second, the

conditional analysis must be able to concurrently operate on many data flow facts (mem-

bers of the set V ) simultaneously. Implementations that require one round of analysis per

value are untenable because |V | often scales with the number of nodes in the CFG and

CFGs can exceed thousands of nodes.

The first obstacle is overcome using reduced ordered binary decision diagrams (BDD) [16].

A BDD represents a boolean formula using a directed acyclic graph. Each node in the graph

represents a boolean variable, the value true, or the value false. Each boolean variable node

has two out edges. The target of one edge is connected to the subgraph corresponding to

the function if the variable is true, and the other edge is connected to the subgraph corre-

sponding to the function if the variable is false. The true and false nodes have no out edges.

One can evaluate the boolean function represented by a BDD by traversing from the root

of the BDD to one of the terminal nodes, following the edges corresponding to the variable

assignment. If the traversal ends at the true (false) node, then the function is true (false).

If BDDs are reduced and the variables ordered, they canonically represent a boolean func-

tion. Additionally, formulae can be efficiently combined (i.e., logically ANDed or ORed

together). Not only do reduced ordered BDDs offer efficient equality checks between for-

mulae, they also conserve memory by using only a single in-memory data structure for

common sub-expressions between two formulae.
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The second obstacle is overcome by recognizing that a set of (value, logical formula)

pairs can be represented using a boolean formula. Further, any operation that need be per-

formed between all corresponding formula in two sets can, instead, directly be performed

on the formula representing the two sets. Consequently, the conditional data flow analy-

sis can be performed on all values simultaneously. The encoding that achieves this is as

follows. First, B = dlog2 |V |e variables are used to represent values in the set V . Each

assignment of these B variables uniquely identifies one element from the set V . Conse-

quently each value v ∈ V can be represented with a minterm mv. A pair (v, F ), where

v ∈ V and F is a boolean formula, can then represented with the boolean formula mv ∧F ,

and a set of such pairs can be represented by taking the disjunction of the formula for each

pair, (mv1 ∧ Fv1) ∨ (mv2 ∧ Fv2) ∨ . . .. In this representation, the formula for a particular

value v can be extracted by restricting the set’s formula with mv. Further, observe that

the logical OR of formulae representing two sets is equal to the formula representing the

logical OR of corresponding formulae from each set.

(
(mv1 ∧ Fv1) ∨ (mv2 ∧ Fv2) ∨ . . .

)
∨
(
(mv1 ∧ F ′v1) ∨ (mv2 ∧ F ′v2) ∨ . . .

)
= (5.17)(

mv1 ∧ (Fv1 ∨ F ′v1)
) ∨ (mv2 ∧ (Fv2 ∨ F ′v2)

) ∨ . . .
Similarly, the logical AND of formulae representing two sets is equal to the formula repre-

senting the logical AND of corresponding formulae from each set.

(
(mv1 ∧ Fv1) ∨ (mv2 ∧ Fv2) ∨ . . .

)
∧
(
(mv1 ∧ F ′v1) ∨ (mv2 ∧ F ′v2) ∨ . . .

)
(5.18)

=
(
mv1 ∧ (Fv1 ∧ F ′v1)

) ∨ ((mv1 ∧mv2) ∧ (Fv1 ∧ F ′v2)
)∨(

mv2 ∧ (Fv2 ∧ F ′v2)
) ∨ ((mv1 ∧mv2) ∧ (F ′v1 ∧ Fv2)

) ∨ . . .
=
(
mv1 ∧ (Fv1 ∧ F ′v1)

) ∨ (mv2 ∧ (Fv2 ∧ F ′v2)
) ∨ . . . (5.19)

The above equality holds since mi∧mj is always false if i 6= j. Finally, the logical NOT of
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a set’s formula is equal to the formula for the set where each contained formula is inverted.

¬
(
(mv1 ∧ Fv1) ∨ (mv2 ∧ Fv2) ∨ . . .

)
= (¬mv1 ∨ ¬Fv1) ∧ (¬mv2 ∨ ¬Fv2) ∧ . . . (5.20)

=

((∧
i 6=1

¬mvi

)
∧ ¬Fv1

)
∨
((∧

i 6=2

¬mvi

)
∧ ¬Fv2

)
∨ . . . (5.21)

= (mv1 ∧ ¬Fv1) ∨ (mv2 ∧ ¬Fv2) ∨ . . . (5.22)

The above equality holds since
∧
i 6=j ¬mvi

= mvj
and the terms not shown in the equations

are subsumed by the terms shown.

5.2.3 Building the Conditional PDG

These conditional analyses can be used to build a conditional PDG by annotating depen-

dence edges in the PDG with the condition guarding their existence. In particular, register

flow dependences can be computed with conditional reaching definition analysis, control

dependences can be computed using conditional post dominator analysis, and memory de-

pendences can be computed with a conditional memory analysis. Additionally, these anal-

yses can be further refined using conditional reachability analysis.

Returning to the example in Figure 5.4(a), conditional reaching definition analysis

would conclude that the reaching definitions for the variable x at the instruction A is

{(C, x) : β, (D, x) : >}. Consequently, the conditional PDG would have a data depen-

dence edge between instruction C and A, annotated with the condition β, and another data

dependence edge between D and A, annotated with the condition true.

However, no dependence can exist between instructions C and A if instruction C is

unreachable. Therefore, conditional reachability analysis can be used to refine the results

of the conditional reaching definition analysis. Traditional reachability analysis identifies

what CFG nodes are reachable from the entry of the control flow graph. Analogously, con-

ditional reachability defines the condition under which each CFG node is reachable from
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the CFG entry. Using conditional reachability, the condition on any dependence between

two nodes can be refined by logically ANDing the reachability condition for each of the

nodes. For the register dependence edge between instructions C and A in Figure 5.4(a),

reachability analysis would conclude that instruction A is always reachable, and instruc-

tion C is reachable if α is true. Thus, the condition on the dependence edge would be

α∧ β. Such refinements work equally well for register, control, and memory dependences.

In fact, since most points-to memory analyses do not fall directly into the gen-kill data flow

framework, refinement through reachability is the most expedient method of incorporating

differences in control flow due to speculation with memory analysis.

Thus far, the edges in the conditional PDG are conditioned only by the effects of con-

trol speculation. Control speculation introduces variables in the conditional PDG which

propagate through the various conditional analyses onto the dependence edges in the PDG.

If any such variable is true, the control flow edge is presumed to exist meaning that the

corresponding speculation has been discarded. Conversely, if any such variable is false,

the control flow edge is presumed absent meaning the corresponding speculation has been

retained. To account for the affects of non-control speculation (i.e., alias speculation and

committed value speculation), new boolean variables are introduced for each non-control

speculation. Similarly to control speculation, if the variable corresponding to a non-control

speculation is false, any dependences removed by the speculation should be absent from

the conditional PDG. Recall that the relation between non-control speculation and depen-

dences removed from the PDG is straightforward, unlike for control speculation. Conse-

quently, for each dependence edge eliminated by a non-control speculation, its condition in

the conditional PDG should be logically ANDed with the boolean variable associated with

the speculation.
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5.2.4 Finalizing Speculation

After building the conditional PDG, for a given set of retained speculation, the compiler

can quickly determine which dependence edges will exist and which will be absent. This

computation is at the heart of deciding the final set of speculations to retain. Given a par-

tition, to ensure that it corresponds to pipeline parallelism, the compiler must ensure that

no dependences flow from later pipeline stages to earlier ones. Thus, the compiler collects

this set of backwards dependences from the conditional PDG. For each such dependence,

the compiler must ensure that the condition on the dependence edge is false. While the

compiler could trivially set all variables to false (i.e., the compiler could retain all the pro-

visional speculations), the compiler would also like to eliminate unnecessary speculation

to minimize the runtime cost of misspeculation.

Finding a set of speculation that guarantees pipelined execution and that minimizes

the number of speculations can be found by formulating the problem as an instance of

MinCostSAT [42]. MinCostSAT is a variation of the boolean satisfiability problem where

variables are assigned a cost. A solution to the problem is a variable assignment that satis-

fies a given boolean formula and that minimizes the sum of the costs for the variables set

to true. The unspeculation problem can be formulated as MinCostSAT as follows. If the

condition on a dependence edge is false, then the set of speculations eliminates the depen-

dence. Since the compiler requires all such backwards edges to be speculated, any variable

assignment that satisfies the logical AND of the complement of the conditions of all back-

wards dependence edges in the conditional PDG is sufficient. Next, since each variable in

the formula corresponds to a speculation, the compiler can assign a cost to each variable

based on a misspeculation estimate for the given speculation. Finally, the resulting formula

and costs can be fed to a MinCostSAT solver, such as MinCostChaff [28], to identify the

set of speculations to retain. Note, since a speculation is discarded if its corresponding

variable is true, the compiler wishes to maximize the number of variables set to true. Since

MinCostSAT tries to reduce the number of true variables, before passing the problem to
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MinCostSAT, all the variables should be inverted.

Let us once again return to the example from Figure 5.4(a). Assume that the compiler

tentatively speculated the control flow edges marked α and β in the figure. Further assume

that the partitioning heuristic assigned instructions A and D to thread 1, instruction B to

thread 2, and instruction C to thread 3. The only backwards dependence in the conditional

PDG would be between instructions C and A. The condition on this dependence would be

α∧β. The complement of this formula is¬α∨¬β. To prepare the formula for MinCostSAT,

all the variables must be inverted. Letting α′ = ¬α and β′ = ¬β, then the formula that

would be passed to the MinCostSAT solver is α′ ∨ β′. The compiler would then estimate

the misspeculation rate for each of the two speculations and assign an appropriate cost.

Assuming the cost for α′ is greater than the cost for β′, the MinCostSAT solver would

return the satisfying assignment α′ = false, β′ = true. Consequently, α = true and

β = false meaning that the edge marked α would not be speculated, while the edge marked

β would be speculated.
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Chapter 6

Code Generation

The previous chapter described how a SpecDSWP compiler decides what to speculate. This

chapter describes how the base DSWP code generation algorithm is extended to implement

this speculation. Code generation involves three principle parts. First, code must be in-

serted to realize the speculation; branches must be updated for control speculation, value

predictors must be inserted for committed value speculation, branches inserted for silent

store speculation, etc. Second, code must be inserted to detect misspeculation. Finally,

code must be inserted to recover from misspeculation once it is detected. This chapter

will describe each of these parts, and it will describe the necessary runtime support for

misspeculation detection and recovery.

6.1 Realizing Speculation and Detecting Misspeculation

To implement speculation and detect misspeculation SpecDSWP inserts code directly into

the single-threaded program rather than inserting it during or after multi-threaded code

generation (MTCG). Code must be inserted for each speculation retained during the first

phase of compilation. After inserting the code, the compiler updates the partition provided

by the partitioning heuristic to include newly added instructions and to elide instructions

that were removed. After updating the partition, the non-speculative MTCG algorithm can
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A: if (x < 10) jump BB2

B: jump BB3
BB1

C: ...

D: jump BB4
BB2

E: ...

F: jump BB4
BB3

G: ...BB4

(a) Before

A: if (x < 10) jump BB2

B: jump BB5
BB1

C: ...

D: jump BB4
BB2

E: ...

F: jump BB4
BB3

G: ...BB4

H: misspec

I: jump BB2
BB5

(b) After

Figure 6.1: This figure illustrates how control misspeculation is detected. Misspeculation
code is inserted along the speculated control flow edge (the dashed edge). The misspecu-
lation code then jumps back into the normal program flow to eliminate all control depen-
dences due to the speculated control flow path.

be used to generate the parallel code. The next few sections describe the transformation

that occurs for each speculation type.

6.1.1 Control Speculation

Recall from the previous chapter that biased branch speculation and infrequent block spec-

ulation both ultimately specify an edge in the control flow graph that is unlikely to be

traversed. To realize this speculation, the code must be transformed to remove any control

or data dependences arising due to program paths including the speculated edges. Addi-

tionally, misspeculation must be detected whenever the speculated edge would have been

executed. Figure 6.1 illustrates how code is transformed to achieve this. Assume that the

dashed edge in Figure 6.1(a) has been speculated not to execute. At runtime, if x were

greater than 10, then misspeculation has occurred. Misspeculation is detected by redirect-

ing the speculated edge to a new basic block. In Figure 6.1(b), this corresponds to updating

operation B to point to basic block 5. The code in this new block is responsible for initiating

misspeculation recovery (represented by operation H in the figure).

At runtime, once misspeculation has been detected, the program state will be reverted
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A: store(addr, size, value)

B: ...
BB1

(a) Silent Store

C: tmp = load(addr, size)

D: if (value != tmp) jump BB2

E: jump BB3

BB1

A: store(addr, size, value)

F: jump BB3
BB2

B: ...BB3

(b) After Silent Store Check

C: tmp = load(addr, size)

D: if (value != tmp) jump BB4

E: jump BB3

BB1

A: store(addr, size, value)

F: jump BB3
BB2

B: ...BB3

G: misspec

H: jump BB3
BB4

(c) After Control Speculation

Figure 6.2: This figure illustrates how silent store misspeculation is detected. First, the
store is translated into a hammock that checks to see if it is silent (Figure (b)). Then,
control speculation is applied to the edge going to the store (Figure (c)).

to the state at the beginning of the current iteration, and the iteration will be re-executed

non-speculatively. Consequently, the compiler should understand that the misspec op-

eration restores program state (i.e., defines all live registers and memory locations) and

jumps back to the loop header (or loop exit if the iteration that misspeculated is the final

loop iteration). If this approach were used, subsequent data flow analysis would correctly

identify that any data dependences arising due to program paths including the speculated

edge are now absent. However, control dependences due to the speculated edge would

still exist since the controlling branch’s outcome determines whether or not recovery code

executes. To avoid this, our SpecDSWP implementation treats the misspec instruction

like a no-op (it acts only as a place holder) and inserts an unconditional jump to one of

the other targets of the source basic block. In the figure, operation I jumps to basic block

2. This transformation eliminates both the control and data dependences arising from the

speculated edge by folding the paths originating at the speculated edge into existing paths

in the program. The corresponding branch is retained only for misspeculation detection.
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6.1.2 Silent Store Speculation

Silent store speculation is implemented by inserting code that conditionally executes the

speculated store only when the value to be stored is different than the value already in

memory. Since the store is frequently silent, the inserted branch controlling the store is

biased, and is speculated using the control speculation transformation described in the pre-

vious section.

Figure 6.2 illustrates the transformation. Figure 6.2(a) shows the silent store and Fig-

ure 6.2(b) shows the code after the store is made conditional. Operations C, D, E in basic

block 1 compare the value currently stored in memory with the value to be stored. If the

values are different, the code jumps to block 2 and executes the store. Otherwise, the store

is skipped by jumping to block 3. Figure 6.2(c) illustrates the code after the control specula-

tion transformation is applied. The code in block 2 is replaced with a misspec operation

and a jump to block 3. After the transformations are applied, the store instruction is no

longer reachable, thus future data flow analyses will no longer find any data dependences

originating from the speculated store.

In addition to the transformation just described, the compiler must allocate operations

C, D, and G (the three new operations, excluding unconditional jumps, inserted by the

transformation) to some pipeline stage. Operation C depends on the values addr, size,

and the value stored in the corresponding memory location. Similarly operation D depends

on value. If the silent store was allocated to thread t, then addr, size, and value can

be communicated to thread twithout introducing any backward dependences. However, the

value in memory at address addrmay not be available in thread t because it may be written

in some thread t′ > t. However, since operation C only feeds operation D, operation D only

controls operation G, and operation G is not the source of any dependence, the compiler is

free to move this group of instructions to any later thread. In particular, if t′ is the latest

thread that writes to the address addr, then the compiler must choose some thread t′′ ≥ t′.

Our SpecDSWP implementation will allocate these operations to thread t′′, however an
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A: store(st addr, size, st value)

B: value = load(addr, size)

C: f(value)

BB1

(a) Sequential Code

A: store(st addr, size, st value)

B: value = load.spec(addr, size)

D: tmp = load(addr, size)

E: if (value != tmp) jump BB2

F: jump BB3

BB1

G: misspec

H: jump BB3
BB2

C: f(value)BB3

(b) Value Speculation and
Alias Check

B: value = load.spec(addr, size)

produce(value)

F: jump BB3

BB1

A : store(st addr, size, st value)

B’: value = consume()

D : tmp = load(addr, size)

E : if (value != tmp) jump BB2

F’: jump BB3

BB1’

G: misspec

H: jump BB3
BB2’

C: f(value)BB3 ...BB3’

Thread 1 Thread 2

(c) Partitioned Code

Figure 6.3: This figure illustrates how alias and committed value speculation is imple-
mented. The original load is converted into a speculative load to break the dependence (op-
eration B in Figure (b)), and value misspeculation code is inserted to detect misspeculation
(operations D–H in (b)). When the code is partitioned (Figure (c)), the value speculation is
allocated to an early thread, and the misspeculation detection is allocated to a late thread. In
the figure the solid thread to thread arrows represent synchronized dependences, whereas
the dashed arrows represent unsynchronized speculated dependences.

implementation may use more sophisticated heuristics to ensure these new operations do

not significantly upset the thread load balance.

6.1.3 Alias Speculation and Committed Value Speculation

Consider the example in Figure 6.3. Assume that in the single-threaded program alias

analysis determines that the load, operation B in Figure 6.3(a), potentially aliases with the

store, operation A. Further, profiling reveals this dependence is in infrequent so it can be

speculated. The partitioner then chooses to allocate the load to thread 1 and the store to

thread 2. Since this creates a backwards memory dependence from thread 2 to thread 1, the

code generator must insert code to break this dependence. To implement this speculation,

the code generator converts the alias speculation into a value speculation. This requires

inserting a software value predictor and a software misspeculation detector. Figure 6.3(b)

illustrates this new code in bold. First, the original load instruction is converted to a specu-
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lative load instruction. A speculative load differs from its non-speculative counterpart only

in that the multi-threaded code generator knows that it need not synchronize the load with

potentially aliasing stores. To avoid speculating all store to load memory dependences at a

particular load, the load is annotated with the points-to set that need not be synchronized.

Next, a non-speculative duplicate load is inserted (operation D in the example). The re-

sult of the duplicate load is then compared to the speculative load, and if the results differ,

misspeculation is flagged (operations E–H). Otherwise execution continues unfettered.

While the duplicate misspeculation-detecting load seems redundant with the specula-

tive load (implying misspeculation will never be detected), its purpose becomes evident

after considering the code produced by MTCG illustrated in Figure 6.3(c). In the par-

titioned code, the speculative load (operation B) and its dependent operation (operation

C) are allocated to thread 1. The misspeculation detection code, including the redundant

load, are allocated to thread 2, the thread containing the store operation (operation A). The

MTCG will communicate the value loaded by the speculative load to thread 2 so it can com-

pare the speculative and non-speculative values (illustrated by the solid arrow connecting

the produce and consume operations in Figure 6.3(c)). However, the backwards memory

dependence between operation A and B is not synchronized (illustrated by the dashed ar-

row between operations A and B in Figure 6.3(c)). Consequently, the speculative load can

execute before the store operation. Since the load and store alias only infrequently, the

speculative load typically produces the correct value. However, if the load executes before

the store, and the load and store reference the same address, then misspeculation has oc-

curred. The speculative load (operation B) will have read the wrong value (provided the

store is not silent) since it will have executed before the store, and the duplicate load (op-

eration D) will read the correct value since it always executes after the store. Since the two

values differ, the misspeculation comparison (operation E) will cause thread 2’s control

flow to be directed to block 2, and misspeculation will be flagged.

The code generator is responsible for allocating the code it inserts to pipeline stages.
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The value speculative load remains in the thread where the original load was allocated.

The misspeculation detection code (including the redundant load) is allocated to the thread

containing the store operation, or some later thread. This guarantees the backwards flow

memory dependence is broken, and no new backwards flow dependences are created. How-

ever, new backwards false memory dependences can be created by the redundant load. For

example, if another potentially aliasing store were allocated to thread 1, then such a back-

wards dependence would be created. The next section will discuss how such backwards

false memory dependences are removed.

Committed value speculation differs from alias speculation only in the choice of value

speculator. The alias speculation mechanism uses the latest value stored at the given loca-

tion as a guess of the true value to be read. Committed value speculation however uses the

value of the location stored in committed state or a value produced in the current loop iter-

ation. As described earlier, this predictor works well when a memory location is changed

frequently within an iteration, but is often constant across loop iterations. Unlike alias spec-

ulation where, at runtime, the speculative load is just a traditional load instruction, commit-

ted value speculation requires runtime support to perform the committed value load. This

support will be described in more detail in the Chapter 7.

6.1.4 False Memory Dependence Removal

While alias speculation and committed value speculation can remove flow memory depen-

dences from the program, false memory dependences (anti- and output-dependences) are

handled differently. As the previous section demonstrated, the ability to remove false mem-

ory dependences is particularly important because, in addition to removing false memory

dependences that naturally occur in the program, it must also be used to eliminate back-

wards false memory dependences created by the alias and committed value misspeculation

detection code. Additionally, as Section 6.2 will demonstrate, all speculation can create

new false memory dependences that were not discovered by the memory analysis. Ensur-
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A: value = load(addr, size)

B: f(value)

C: store(addr, size, st value)

BB1

(a) Sequential Code

D: enter(i, 0)

A: value = load(addr, size)

B: f(value)

E: enter(i, 1)

C: store(addr, size, st value)

BB1

(b) Memory Versioned Code

E: enter(i, 1)

C: store(addr, size, st value)
BB1

D: enter(i, 0)

A: value = load(addr, size)

B: f(value)

BB2

Thread 1 Thread 2

(c) Partitioned Code

Figure 6.4: This figure illustrates how memory versioning can be used to break false mem-
ory dependences. In Figure (a), the load and store alias because the both access address
addr. In Figure (b), the enter instructions cause the load and store to access differ-
ent memory versions. Figure (c) illustrates that no synchronization is necessary after the
versioned code is parallelized.

ing these dependences are not violated is critical to ensuring correct execution.

Consider the code shown in Figure 6.4(a). Since the load (operation A) and the store

(operation C) access the same location, the two operations are anti-dependent. If the store

were to execute before the load, the load would read st value instead of what was previ-

ously stored in memory. Similar problems would occur for an output dependence between

two stores. Consequently to guarantee correct execution, if the load and store are in dif-

ferent threads the two must be synchronized to ensure the load executes before the store.

However, if the store is allocated to an early thread and the load is allocated to a later thread,

the synchronization creates a backwards memory dependence. Consequently, synchroniza-

tion cannot be used to enforce backwards false memory dependences.

Rather than synchronizing false memory dependences, our SpecDSWP compiler relies

on runtime support to version memory. Memory versioning renames memory locations

allowing a load or store to specify from which renamed instance (a version) it will read or

to which it will write. Figure 6.4(b) illustrates how this would work in the example. Before

the load, an enter operation is inserted which causes future memory operations to access

the memory version (i, 0), where i represents the current loop iteration number. Before

the store, an enter operation is inserted which enters the memory version (i, 1). In the
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parallel code, Figure 6.4(c), the load and store can execute unsynchronized because the

load explicitly specifies that it should read from (i, 0) and the store side effects the later

version (i, 1). Versioning guarantees that loads always read the correct value and that the

correct store persists in memory. Consequently, there is no need to insert code to detect

misspeculation. Section 6.2 will explain how the compiler chooses where to insert enter

operations and describes why two-dimensional version numbers are necessary. Chapter 7

will describe the semantics of a versioned memory system in detail and will also describe

a concrete implementation.

6.2 Memory Versioning

This section describes how enter instructions are inserted into the code. The algorithm

described in this section assigns a version to each instruction in the program. This ver-

sion assignment is used to insert an enter operation before each load, store, or external

(library) function call. Redundant enter operations are then eliminated using a post-

pass. The algorithm guarantees that two operations are in different versions if there exists a

backwards false memory dependence between them. This section begins by describing ad-

ditional false memory dependences created by speculation. Then it describes the versioning

algorithm for acyclic code regions without function calls. The algorithm is then generalized

to handle loops by using two-dimensional version numbers, and finally to handle function

calls and recursion.
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A: V = load(addr, size)

B: store(addr2, size, f(V))

C: addr4 = load(addr3, size)

D: store(addr4, V2)

BB1

(a) Single-Threaded Code

C: addr4 = load.spec(addr3, size)

produce(addr4)

G: jump BB3

BB1

A: V = load(addr, size)

B: store(addr2, size, f(V))

C’: addr4 = consume()

E : tmp = load(addr3, size)

F : if (addr4 != tmp) jump BB2

G’: jump BB3

BB1’

H: misspec

I: jump BB3
BB2’

D: store(addr4, V2)BB3 ...BB3’

Thread 1 Thread 2

(b) Multi-Threaded Code

Figure 6.5: This figure illustrates how speculation can induce new false memory depen-
dences. Figure (a) shows single-threaded code with no false memory dependences. Fig-
ure (b) shows the corresponding multi-threaded code assuming the flow memory depen-
dence between operations B and C is speculated. The dashed arrow in the figure shows the
false memory dependence created by the alias speculation.

6.2.1 Speculation Induced False Memory Dependences

This section will illustrate how speculation creates false memory dependences between

operations that were previously had no false memory dependences between them. Ensur-

ing these dependences are respected is critical to guaranteeing that the various software

misspeculation detection mechanisms operate as expected. Consider the code shown in

Figure 6.5(a). In the example, assume

1. addr is never equal to addr2, addr3, or addr4,

2. addr2 is never equal to addr4, but is infrequently equal to addr3,

3. and addr3 is never equal to addr4.

Since operation B only infrequently aliases with operation C, assume the SpecDSWP com-

piler speculates this dependence. Given this speculation, assume the compiler allocates

operations C and D to thread 1, and operations A and B to thread 2. With this alloca-
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tion, the compiler would generate the multi-threaded code shown in Figure 6.5(b). Notice,

since there are no false memory dependences between any of the operations, no enter

operations are necessary and all the operations execute in a single memory version.

Given this multi-threaded code, consider what happens if the operations C and D exe-

cute before operations A and B, and if operations B and C alias (i.e., misspeculation should

be flagged). Under these conditions, operation C will read the wrong value because it ex-

ecutes before operation B and the two operations alias. Consequently, when operation D

executes, it will store to the wrong address. It is possible that the address written to is

addr, an address that the compiler statically proved could not be written to (in the absence

of speculation). Consequently, when operation A executes, it reads the wrong value. The

compiler did not anticipate that operation A would read the wrong value and consequently

did not insert code to ensure correct execution. Reading this incorrect value is benign pro-

vided that thread 2 reaches the misspeculation detection code (operations C’, E, F, and H).

However, for example, it is possible that the incorrect value causes f(V) to loop infinitely

thus preventing the code from ever reaching the misspeculation detection code.

If the compiler had anticipated the false memory dependence from operation A to op-

eration D, then it would have ensured that the two operations were in different memory

versions. This would have protected operation A from the side effects of operation D and

thus would have guaranteed that the misspeculation code was executed.

To ensure that the effects of these speculation induced false memory dependences are

considered, during versioning the compiler uses a set of synthetic false memory depen-

dences in addition to the false memory dependences identified by memory analysis. The

set of synthetic dependences is computed by first calculating the forward slice for each load

that is the target of some speculated memory dependence (e.g., operation C in the exam-

ple). Any store in the slice is considered poisoned because it can write to an unanticipated

address. Consequently, a synthetic false memory dependence is created between all prior

memory operations and the poisoned stores. The versioning algorithm described in the

75



A: ...= load(addr, ...) 0
T3

BB1

B: ...= load(addr, ...) 0
T3

BB2

C: ...= load(addr, ...) 0
T3

D: store(addr, ...) 0
T3

E: store(addr2, ...) 0
T2

BB3

F: store(addr, ...) 1
T2

BB4 G: ...= load(addr3, ...) 0
T3

BB5

H: ...= load(addr2, ...) 1
T3

BB6

I: store(addr3, ...) 2
T1

BB7

Figure 6.6: Example program demonstrating memory versioning. Only load and store
operations are shown. The superscript adjacent to each operation represents the static mem-
ory version assigned to each operation. The adjacent subscript indicates to which thread the
operation was allocated. The code within the dashed box is an inner loop and is versioned
independently of the enclosing outer loop.

next few sections will guarantee that version numbers monotonically increase in the code.

Consequently, when computing the forward slice it is unnecessary to traverse memory de-

pendences since any store at the head of a memory dependence in the slice will be poisoned

and monotonicity will guarantee that any subsequent operation is versioned appropriately.

This greatly reduces the number of synthetic memory dependences that must be inserted.

6.2.2 Versioning Acyclic Regions

Given the memory dependences (including the synthetic false dependences) in the program,

the compiler can now compute where to insert memory versioning code. This section will

describe where memory versioning code must be inserted for an acyclic region without any

function calls. The next two sections will generalize the algorithm to cyclic regions, and
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regions that contain function calls.

Consider the acyclic code region within the dashed box in Figure 6.6 (ignoring the

inner loop back edge). In the figure, the subscript Tn next to each instruction indicates

the thread to which the instruction has been allocated, and the superscript number indicates

the version number assigned to each instruction by the algorithm described in this section.

Ignoring the loop back edge and considering only the acyclic loop body, the code contains

three false memory dependences,

1. the anti-dependence between C and D,

2. the anti-dependence between C and F,

3. and the output-dependence between D and F,

and one (forward) flow memory dependence, the dependence between E and H.

Since operations C and D are in the same thread, they are guaranteed to execute in

order and no special memory versioning is required. However, since operations C and

F are in different threads, and the backwards anti-dependence between them will not be

synchronized, there is no guarantee that operation C will execute temporally before op-

eration F. Consequently, for the backwards anti-dependence between C and F, the version

assignment must ensure that even if operation F (a store) executes first, operation C (a load)

reads the value that existed in memory before the store. To guarantee this, operation C’s

version number (0) must be less than operation F’s version number (1). Similarly, for the

backwards output dependence between operations D and F, the version assignment must be

such that the value written by operation F persists in memory even if operation D executes

temporally after operation F. Thus, operation D’s version number (0) is less than operation

F’s version number (1). For the forward memory flow dependence, to ensure that the load

H observes the result of the store E, the version assignment must ensure that operation H’s

version number (1) is greater than or equal to operation E’s version number (0) even though

the dependence will cause threads 2 and 3 to synchronize.
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In general, to guarantee correct execution, the versioning algorithm must ensure two

properties. First, if there is a backward false memory dependence between two operations

then the version assigned to a dynamic instance of the source of the dependence must be

strictly less than the version for a later (in the single-threaded execution) dynamic instance

of the destination of the dependence. Second, if there is a flow memory dependence be-

tween two operations then the version assigned to a dynamic instance of the source of

the dependence must be less than or equal to the version for a later dynamic instance of

the destination of the dependence. The algorithm described below further guarantees that

in any particular thread, version numbers increase monotonically to avoid unnecessarily

jumping between memory versions. This latter requirement subsumes the flow dependence

requirement for acyclic regions.

For an acyclic code region, these constraints suggest a graph based version allocation

strategy. Given the control flow graph for an acyclic region of code, the instructions can be

versioned in topological order. For each instruction, two version numbers are computed.

The first, denoted P , is the maximum of the version numbers for the instruction’s imme-

diate predecessors. The second, denoted F , is the maximum of the version numbers for

all instructions feeding this instruction through a false, backwards memory dependence.

Because the algorithm processes instructions in topological order, if the source of a depen-

dence is unversioned, the dependence must come from outside the region or be loop-carried.

Since this algorithm is only versioning the given acyclic region, when computing P or F it

is safe to assume the version number for such unversioned instructions is 0. Given P and

F for an instruction, the version number given to the instruction is:

V = max(P, F + 1) (6.1)

The variable P in the maximum enforces the monotonicity constraint described earlier.

The term F + 1 enforces the false dependence constraint, including the strict inequality of
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version numbers. The version numbers for operations in the inner loop body (operations in

the dashed box) in Figure 6.6 illustrate the result of this algorithm.

6.2.3 Handling Loops using Two-Dimensional Version Numbers

The constraints on version numbers described in the previous section are just as valid on

cyclic regions as they are on acyclic ones. Unfortunately, the above algorithm breaks down

when considering cyclic regions. Reconsider the code within the dashed box in Figure 6.6

including the loop back edge. When considering the cyclic region, it is no longer safe to

ignore loop-carried dependences. Thus, the loop-carried flow memory dependence from

operation F to C implies that the version number for operation F (1) in iteration i of the

inner loop should be less than or equal to the version number for operation C (0) in iteration

j > i. Similarly, the loop-carried, backwards, false memory dependence from operation H

to operation E implies that operation H’s version number (1) in iteration i should be strictly

less than operation E’s version number (0) in iteration j > i. Unfortunately, both these

requirements are violated by the current version assignment.

These problems illustrate that different dynamic instances of a single static operation

must be versioned differently. The obvious solution is to use a base + offset versioning

strategy. With this solution, the acyclic versioning algorithm is run on a loop’s body. Then,

assumingN distinct version numbers were used, the version number for a dynamic instruc-

tion is Ni + v where i is the loop iteration number, and v is the version number assigned

by the acyclic versioning algorithm. Applying this to the example, where N = 2, observe

that all the versioning constraints are satisfied. For the flow dependence from operation

F to C, the dynamic assignment yields viF = 2i + 1 ≤ 2j + 0 = vjC where viF is the

version assigned to operation F in iteration i and j > i. Similarly, for the backwards,

false memory dependence from operation H to operation E, the dynamic versioning yields

viH = 2i+ 1 < 2j + 0 = vjE.

Handling dependences between an inner loop and the body of an enclosing loop also
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merits further consideration. Returning to Figure 6.6, consider the backwards anti-dependence

between operations G and I. To guarantee correct execution, the dynamic version number

for operation I in iteration i of the outer loop must be strictly greater than the dynamic

version number for all dynamic instances (across all inner loop iterations) of operation G.

While seemingly benign, handling this situation with a naı̈ve versioning strategy will intro-

duce true backwards data dependences. In a given iteration of the outer loop, 2T versions

will be used by the inner loop, where T is the trip count of the inner loop. Consequently,

operation I’s dynamic version number must be larger than 2T . However, observe that oper-

ation I has been allocated to thread 1, and no operation in the inner loop has been allocated

to thread 1. Since thread 1 has no operations in the loop, it cannot count the number of

iterations, and therefore the inner loop trip count must be communicated to it. However,

only threads 2 and 3 can count the iterations and communicating this value back to thread

1 yields a backwards dependence.

This pattern is an instance of nested parallelism [5]. The outer loop has been paral-

lelized and invokes the inner loop, which itself has also been parallelized. Speculative

DSWP relies on two-dimensional version numbers to handle versioning in the presence of

nested parallelism. The version numbers are assigned using a structural approach. First the

loop nest tree is built1 with the loop being parallelized at the root of the tree. Version as-

signment starts at the leaves of the loop nest tree and proceeds upward toward the outermost

loop being parallelized. Operations in each loop’s body are first assigned a static integer

version number using the algorithm described in Section 6.2.2. However, if the loop body

contains an inner loop, the inner loop is reduced to a single instruction in the parent loop’s

body. The inner loop body is assumed to load from and store to all possible addresses so

the compiler assumes that all stores in the parent loop are anti-dependent on the inner loop

and all loads in the inner loop are anti-dependent on stores from the parent loop. Further, it

is assumed that these loads and stores in the inner loop exist in all threads for which some

1This approach only works if the code contains no irreducible loops. If the code contains irreducible
loops, tail duplication can be used to eliminate them.
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(1, 0) (1, 1) (1, 2) (1, 3) (1, 4) (1, 5)
. . .

(2, 0) (2, 1) (2, 2) (2, 3)
. . .

(3, 0) (3, 1) (3, 2) (3, 3)
. . .

Outer Loop Invocation 1

Inner Loop Invocation 1 Inner Loop Invocation 2

{ Iteration 1 { Iteration 2

{
Iteration 1

{
Iteration 2

{

Iteration 1

{

Iteration 2

Figure 6.7: This figure illustrates the version tree that results from versioning the code in
Figure 6.6. Each dotted box represents a memory version subspace (corresponding to some
loop invocation). Each solid box represents a memory version. Each version is labeled with
its identifier. The first number in the 2-tuple identifies the memory version subspace and
the second identifies the specific version within the subspace. The figure further illustrates
where inner loop version subspaces are embedded within the outer loop version space.

operation in the inner loop has been allocated. Using this approach, when versioning the

outer loop in Figure 6.6, the inner loop shown in the dashed box would be reduced to a

single operation. According to the acyclic versioning algorithm described previously, the

inner loop operation would be assigned the version number 1 because it is presumed to be

anti-dependent on the load operation A. Similarly, the store operation I is assigned version

number 2 because it is assumed to be anti-dependent on the inner loop.

Just as was described earlier, each dynamic instruction will execute in version Ni + v

whereN is the number of versions assigned in a given loop, i is the current iteration number

for that loop, and v is the static version number assigned to the instruction. However, for

an inner loop, these version numbers are not absolute. Rather, they represent a subspace in

their parent loop’s version space2. Figure 6.7 illustrates the resulting version tree. In the

figure, each shaded box represents one loop invocation. Each loop invocation is allocated a

unique number, and the versions within the invocation are identified with two-dimensional

version numbers. The first number in the pair is the number assigned to the loop invocation

2Note, as an optimization, if an inner loop does not contain any backwards false memory dependences
(either intra-iteration or loop-carried), then the inner loop does not need to be versioned independently of its
parent and therefore does not need a separate version space.
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and the second number is the dynamic version number (Ni + v). The version number

assigned to the inner loop in the parent loop’s versioning identifies where the inner loop

version space is embedded in the parent loop’s version space. The figure illustrates the

inner loop being invoked twice in the outer loop. Each invocation of the inner loop is in

its own version space embedded into versions (1, 1) and (1, 4) of the outer loop’s version

space.

Figure 6.8 illustrates the code that would be generated to realize this dynamic version-

ing for thread 3 from the running example. The allocate operations (J and P) return

unique numbers to identify a version subspace and the operands to allocate indicate

where the subspace should be embedded in the parent space 3 For the outer loop, the parent

space is specified as (0, 0) indicating the committed memory state. The variables x and y

track the identifier for the outer and inner loop version spaces, respectively. The variables

i and i2 track the current iteration number for the outer loop (i2 is just used to store the

next iteration number to avoid introducing code along the loop back edge). Similarly, j and

j2 track the current iteration number for the inner loop. Before each load and store opera-

tion, the code generator has inserted a enter instruction to enter the appropriate memory

version. Notice that all operations in the inner loop specify a version relative to the memory

subspace identified by y (indicated by using y as the first operand to enter) and, in the

outer loop, x is used instead. Further, the second operand to each enter operation is the

dynamic version number given by Ni+ v.

The observant reader will notice that several of the enter operations are redundant.

For example, since operation N dominates operation operation O, and there are no redef-

initions of x or i between N and O, operation O is unnecessary and can be removed.

Similarly, operation V is redundant with operation U. A SpecDSWP compiler would elim-

inate these redundancies using variants of any classical redundancy elimination optimiza-

tion (e.g., common subexpression elimination, partial redundancy elimination [52], global

3In reality, the allocate operations would exist in thread 1 and would be communicated to threads 2
and 3. However, they are shown in thread 3 for illustrative purposes.
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L: i = i2

M: i2++

N: enter(x, 3*i+0)

A: ...= load(addr, ...)

BB1

O: enter(x, 3*i+0)

B: ...= load(addr, ...)
BB2

R: j = j2

S: j2++

T: enter(y, 2*j+0)

C: ...= load(addr, ...)

U: enter(y, 2*j+0)

D: store(addr, ...)

BB3

V: enter(y, 2*j+0)

G: ...= load(addr3, ...)
BB5

W: enter(y, 2*j+1)

H: ...= load(addr2, ...)
BB6

BB7

J: x = allocate(0, 0)

K: i2 = 0
BB8

P: y = allocate(x, 3*i+1)

Q: j2 = 0
BB9

Figure 6.8: This figure illustrates the versioned code that would be generated from Fig-
ure 6.6 for thread 3. The code includes enter operations before each load and store
to enter the proper memory version. Additionally, it includes allocate operations to
allocate the necessary version subspaces creating the version tree shown in Figure 6.7.
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value numbering [9]). Each enter operation would be treated as defining a single free

temporary (essentially representing the runtime state that remembers the current version

number) as a function of its two operands. Whenever the classic redundancy elimination

optimization would eliminate redundant computation and insert a move, the enter elim-

inating variant would just delete the enter operation (without inserting a compensating

move operation).

6.2.4 Handling Functions and Recursion

Versioning code with function calls can be handled similarly to code with inner loops.

First, the call graph is built and function bodies are versioned from the leaves to the root.

Two strategies exist to version a function call within an acyclic region. First, a version

subspace could be allocated for the callee (akin to the subspace that was allocated to inner

loops). This approach is necessary for calls to self-recursive functions or functions that are

part of mutually recursive groups. Alternatively, since the call graph is processed bottom-

up, when versioning the call site, the callee has already been versioned. Consequently, the

version numbers allocated to operations in the callee can be used as offsets from the version

number allocated to the call site. Using this strategy, the dynamic version number for the

call site would be passed as an argument to the callee, and the callee would add the the

version numbers assigned to its operations to this base to generate final dynamic version

number1s at runtime. Finally, when versioning operations in the caller dependent on the

call operation, the version number of the call site will be assumed to be the last version

used by the callee.

6.3 Misspeculation Recovery

Section 6.1 described how misspeculation is detected. This section describes what

action is taken to recover from misspeculation. Recall from Section 4.1 that SpecDSWP
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1 while (true) {
2 produce_reg_chkpt(commit_thread);
3 status = loop_iteration();
4 produce(commit_thread, status);
5

6 if (status == EXIT)
7 break;
8 else if (status == MISSPEC)
9 wait_for_resteer();

10 else if (status == OK)
11 continue;
12

13 recovery:
14 produce_resteer_ack(commit_thread);
15 flush_queues();
16 regs =
17 consume_reg_chkpt(commit_thread);
18 restore_regs(regs);
19 }

(a) Worker Thread

1 do {
2 regs = consume_reg_chkpts(threads);
3 status = poll_worker_status(threads);
4

5 if (status == MISSPEC) {
6 resteer_threads(threads);
7 consume_resteer_acks(threads);
8 rollback_memory();
9

10 regs = full_loop_iteration(regs);
11 produce_reg_chkpts(threads, regs);
12 } else if (status == OK ||
13 status == EXIT) {
14 commit_memory();
15 }
16 } while (status != EXIT);

(b) Commit Thread

Figure 6.9: Pseudo-code for (a) a SpecDSWP worker thread and (b) the SpecDSWP com-
mit thread.

handles misspeculation at the iteration level. When thread j in a pipeline of T threads

detects misspeculation, several actions must be taken to recover. In this discussion, assume

that, when misspeculation is detected, thread j is executing iteration nj . These are the

actions that need to be performed:

1. The first step in recovery is waiting for all threads to complete iteration nj − 1.

2. Second, speculative state must be discarded and non-speculative state must be re-

stored. This includes reverting the effects of speculative stores to memory, specula-

tive writes to registers, as well as speculative produces to cross-thread communica-

tion queues. Since values produced to communication queues in a particular iteration

are consumed in the same iteration, it is safe to flush the communication queues (i.e.,

after all threads have reached iteration nj , there are no non-speculative values in the

queues).

3. Third, the misspeculated iteration must be re-executed. Since re-executing the spec-

ulative code may again result in misspeculation, a non-speculative version of the

iteration must be executed.

4. Finally, speculative execution can recommence from iteration nj + 1.
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To orchestrate the recovery process, SpecDSWP relies on an additional commit thread,

which receives state checkpoints and status messages from each of the worker threads.

Pseudo-code for a worker thread and the commit thread are shown in Figure 6.9. The next

few sections describe the co-ordination between the worker threads and the commit thread.

6.3.1 Saving Register State

Each worker thread starts by collecting the set of live registers that need to be checkpointed

and sending them to the commit thread. The commit thread receives these registers and

locally buffers them. Since recovery occurs at iteration boundaries, each thread need only

checkpoint those registers which are live into its loop header, since these are the only reg-

isters necessary to run the loop and code following the loop. In addition to high-level

compiler temporaries (virtual registers), it is necessary to checkpoint machine-specific reg-

isters which may be live into the loop header such as the stack pointer, global pointer, or

register window position.

Callee-saved (preserved) registers must be handled specially. While the function con-

taining the loop being parallelized may not use or modify (and thus not spill) a particular

callee-saved register, misspeculation may cause the register’s value to change. For exam-

ple, assume the function A contains the loop being parallelized, and the loop contains a call

to function B. Since misspeculation recovery is initiated with an asynchronous resteer, the

thread containing the call to B may be redirected to recovery code from the middle of the

body of function B. Since B could have modified a callee-saved register and was not given

a chance to restore it, even after recovery the register’s value could be lost. To remedy

this, if the compiler cannot prove a callee-saved register will not be changed, it must be

checkpointed. However, it is only necessary to checkpoint and restore callee-saved regis-

ters once at the entry and exit, respectively, of the function containing the SpecDSWPed

loop. Consequently, if a function contains more than one SpecDSWPed loop, the cost of

checkpointing these registers can be amortized over all the loops.
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The set of registers to be checkpointed can be optimized by recognizing that registers

that are live into the loop entry, but that are not modified in the loop (loop invariants in the

speculative code), need not be checkpointed each iteration, since their values are constant

for the loop execution. Instead, these registers can be checkpointed once per loop invoca-

tion. While these loop invariant registers can be checkpointed once per invocation, upon

misspeculation, they must be recovered since, due to misspeculation, unexpected code may

have executed and modified their values.

6.3.2 Saving Memory State

To support rolling back of speculative memory updates, Speculative DSWP relies on run-

time system support. Section 6.2 described how SpecDSWP encapsulates the memory

operations performed by the loop being parallelized in memory versions. In addition to

using these versions to break backwards, false memory dependences, SpecDSWP relies on

being able discard a given memory version (rollback) or to merge the version into architec-

tural state (commit). Chapter 7 describes multi-threaded transactions which support this

behavior.

6.3.3 Initiating Recovery

After checkpointing architectural state, each worker thread executes the portion of the orig-

inal loop iteration allocated to it. Execution of the loop iteration generates a status: the loop

iteration completed normally, misspeculation was detected, or the loop iteration exited the

loop. The worker thread sends this status to the commit thread, and then, based on the

status, either continues speculative execution, waits to be redirected to recovery code, or

exits the loop normally.

The commit thread collects the status messages sent by each thread and takes appropri-

ate action. If all worker threads successfully completed an iteration, then all the memory

versions corresponding to the current iteration are committed to architectural state, and the
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register checkpoint is discarded.4 If any thread detected misspeculation, the commit thread

initiates recovery.

By collecting a status message from all worker threads each iteration, it is guaranteed

that no worker thread is in an earlier iteration than the commit thread. Consequently, when

recovery is initiated, step 1 is already complete. Recovery thus begins by asynchronously

resteering all worker threads to thread-local recovery code. Once each thread acknowledges

that it has been resteered, step 2 begins. The resteer acknowledgment prevents worker

threads from speculatively modifying memory or producing values once memory state has

been recovered or queues flushed. To recover state, the commit thread discards all writes

to memory versions corresponding to the current or later loop iterations. Additionally, the

worker threads flush all queues used by the thread.

6.3.4 Iteration Re-execution

Lastly, the misspeculated iteration is re-executed. The commit thread uses the register

checkpoint to execute the original single-threaded loop body. The register values after the

iteration has been re-executed will then be distributed back to the worker threads so that

speculative execution can recommence. Note, while the commit thread is re-executing the

misspeculated iteration, the worker threads can concurrently execute some of their recovery

code. In particular, our experiments have shown that the time to flush queues and restore

certain microarchitectural registers (whose values are unaffected by iteration re-execution)

can be significant. Consequently, overlapping this recovery with re-execution can consid-

erably reduce the misspeculation penalty.

Note that the commit thread incurs overhead that scales with the number of worker

threads. While this code is very light weight, with small loops or many worker threads

it is possible that one iteration in the commit thread takes longer than any worker thread.

4Since the register checkpoint is saved in virtual registers in the commit thread, no explicit action is
required to discard the register checkpoint.
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Various solutions to this problem exist. First the commit thread code is parallelizable.

Additional threads can be used to reduce the latency of committing a loop iteration. Second,

the problem can be mitigated by unrolling the original loop. This effectively increases the

amount of time the commit thread has to complete its bookkeeping. This can potentially

increase the misspeculation penalty, but provided misspeculation is infrequent, the tradeoff

should favor additional worker threads.
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Chapter 7

Multi-Threaded Transactions

Chapter 6 described how Speculative DSWP relies on memory versioning to enable mem-

ory speculation and to support memory rollback in case of misspeculation. In addition

to SpecDSWP, other speculative automatic parallelization approaches, such as TLS, rely

on memory versioning to enable parallelization. Even on the manual parallelization front,

memory versioning has begun to gain popularity in the form of transactional programming

models [33], a promising approach to mitigating the correctness issues associated with fine-

grained locks and the performance issues associated with coarse-grained locks. All three

approaches rely on atomicity to ease the burden of parallelization.

Atomicity eases the burden of manual parallelization by allowing developers to simply

mark regions of code as atomic, rather than designing complicated locking protocols to

guarantee mutual exclusion and proper synchronization. Regions marked atomic execute as

if no other threads were concurrently executing. Run-time systems can guarantee atomicity

by logically checkpointing state at the beginning of an atomic region and optimistically

executing it concurrently with other threads while checking for access conflicts. In the

event of a conflict, the checkpointed state is restored, and the atomic region is re-executed.

Atomicity eases the burden of automatic parallelization by allowing the compiler to

speculatively execute potentially dependent regions of single-threaded code concurrently.
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The compiler marks such regions atomic, and, if a speculated dependence manifests, the

runtime system can rollback any state updates and re-execute the regions sequentially. This

frees the compiler from relying on heroic analysis to prove independence between code re-

gions or from being restricted because a dependence could occur even though dynamically

such a dependence is rare.

Most transactional programming systems rely on transactional memories [37] and spec-

ulative parallelization techniques rely on TLS memory systems [30] to guarantee atomic-

ity. Unfortunately, all proposed hardware and software implementations of transactional

and TLS memories only provide atomicity of single-threaded regions. We refer to this

as single-threaded atomicity. Supporting only single-threaded atomicity presents two key

problems that we collectively refer to as the single-threaded atomicity problem.

First, providing only single-threaded atomicity precludes combining nested parallelism [5]

with transactional programming. With nested parallelism, threads in a parallel section of

code spawn more threads to exploit parallelism to complete a subtask. However, if the

thread is executing within a transaction, single-threaded atomicity precludes the spawned

threads from executing in the spawning thread’s transaction. This limits the amount of par-

allelism that can be expressed in transactional code. Intel has recognized the importance of

nested parallelism for non-transactional programs, and they fully support it in version 2.1

of their Threading Building Blocks library [3]. For transactional programs, applications

not leveraging nested parallelism may be able to saturate today’s multi-core processors,

but future generation processors will offer many more cores. Saturating these processors

will almost certainly require explicit support for nested parallelism in transactional code

to allow both automatic and manual parallelization of individual transactions in today’s

transactional programs.

For automatic parallelization, the presence of only single-threaded atomicity forces the

compiler to use atomic regions that do not span threads. Just as for manual paralleliza-

tion, this forces the compiler to parallelize at one program level since the lack of nested
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parallelism precludes simultaneously parallelizing an outer and inner loop.

Second, and perhaps more important, for both automatic and manual parallelization the

lack of nested parallelism breaks modularity; the implementation of a function is exposed to

the user (or compiler). For example, a single-threaded implementation of a library routine

can be invoked from within a transaction, but a parallel one cannot. For both a devel-

oper and a compiler, this proves problematic since the implementation of many functions

are unavailable during development or compilation. More distressing, for languages that

support polymorphism (e.g., object-oriented languages) or function pointers, a single call

site may invoke many different implementations, some single-threaded others potentially

multi-threaded. Consequently, while parallelized code may work during testing, at runtime

unanticipated code may be invoked leading to many subtle, hard to debug errors. In prac-

tice, the absence of nested parallelism will significantly inhibit the adoption of transactions,

both in transactional programming and automatic parallelization.

To address the single-threaded atomicity problem, this chapter introduces the concept

of multi-threaded transactions (MTXs). Like distributed transactions from the database

world, an MTX represents an atomic set of memory accesses where these accesses may

originate from many threads. Like its single-threaded counterpart, all the stores in an MTX

will be merged with architectural state, or they will all be rolled back. Depending on im-

plementation, either the runtime system or the software client is responsible for detecting

conflicts between concurrently executing MTXs. However, unlike its single-threaded coun-

terpart, MTXs support multi-threaded atomicity. Many threads can concurrently access a

single MTX, yet these accesses will all commit atomically or all rollback.

In summary, this chapter will:

1. Illustrate how single-threaded atomicity is a crucial impediment to modularity in

transactional programming and efficient speculation in automatic parallelization (Sec-

tion 7.1).

2. Introduce multi-threaded transactions, a generalization of single-threaded transac-
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1 atomic {
2 int *results =
3 get_results(&n);
4 sort(results, n);
5 for (i = 0; i < 10; i++)
6 sum += results[i];
7 }

(a) Application code.

1 void sort(int *list, int n) {
2 if (n == 1) return;
3 atomic {
4 sort(list, n/2);
5 sort(list + n/2, n - n/2);
6 merge(list, n/2, n - n/2);
7 }
8 }

(b) Sequential library implementation.

1 void sort(int *list, int n) {
2 if (n == 1) return;
3 atomic {
4 tid = spawn(sort, list, n/2);
5 sort(list + n/2, n - n/2);
6 wait(tid);
7 merge(list, n/2, n - n/2);
8 }
9 }

(c) Parallel library implementation.

Figure 7.1: Transactional nested parallelism example.

tions that supports multi-threaded atomicity (Section 7.2).

3. Propose an implementation of multi-threaded transactions based on an invalidation-

based cache coherence protocol (Sections 7.3 and 7.4).

7.1 The Single-Threaded Atomicity Problem

This section explores the single-threaded atomicity problem, first with a transactional pro-

gramming example, then with an automatic parallelization example. Both examples illus-

trate how the lack of nested parallelism and modularity preclude parallelization opportuni-

ties. The section concludes by describing two necessary properties to enable multi-threaded

atomicity.

7.1.1 Transactional Programming

Consider the code shown in Figure 7.1(a). This code gathers a set of results, sorts the

results, and then accumulates the first ten values in the sorted set. The code is executing

within an atomic block, so the underlying runtime system will initiate a transaction at the
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beginning of the block and attempt to commit it at the end of the block. Figures 7.1(b)-

(c) show two possible implementations of the sort routine. Both sorts partition the list

into two pieces and recursively sort each piece. The two sorted pieces are then merged to

produce a fully sorted list. The first sort implementation is sequential and is compatible

with the code executing in the atomic block. The atomic block contained inside the sort

function creates a nested transaction, but not nested parallelism. The second sort imple-

mentation is parallel and delegates one of the two recursive sorts to another thread. Since

nested parallelism is unsupported by proposed transactional memory (TM) systems, the

parallel sort will not run correctly.

Problems first arise at the call to spawn. Since current TM proposals only provide

single-threaded atomicity, the spawned thread necessarily does not run in the same trans-

action as the spawning thread. Consequently, the newly spawned thread cannot read the

list it is supposed to sort since the data is still being buffered in the uncommitted spawn-

ing thread. Even if the data were available, the problem resurfaces in the call to merge.

The merge function must be able to read the results of stores executed in the spawned

thread. Unfortunately, those stores are not executed in the transaction containing the call to

merge. Transaction isolation ensures that these stores are not visible.

Avoiding these problems means that the spawning thread has to commit its transac-

tion before spawning the recursive call to sort and before the call to merge. Similarly,

the spawned thread must commit its transaction before returning. However, if a transac-

tion in another part of the system conflicts with the code executing in the atomic block

in Figure 7.1(a), the modifications made within the block must be able to roll back. Un-

fortunately, if any of the commits just described occur, such a roll back is impossible.

Consequently, current TM systems cannot support this nested parallelism.

As was discussed earlier, forbidding nested parallelism both limits parallelism and

breaks modularity by exposing an interface’s implementation. If the code in Figure 7.1(a) is

object-oriented, then get results can return one of many implementations of a List
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interface. If sort is a virtual function in the List interface, the developer writing the

atomic region does not know if the sort function is implemented with sequential or par-

allel code. While such information could be added to the function signature, to maintain

composability, all parallel functions would also require a sequential counterpart. As mod-

ularity and code reuse are the cornerstone of software engineering, the single-threaded

atomicity problem will significantly inhibit the use of transactional programming in large

systems.

7.1.2 Automatic Parallelization

This section illustrates how the single-threaded atomicity problem can inhibit automatic

parallelization, specifically for SpecDSWP.

Figure 7.2(a) shows pseudo-code for a loop amenable to the SpecDSWP transforma-

tion. The loop traverses a linked list, extracts data from each node, computes a cost for

each node based on the data, and then updates each node. If the cost for a particular node

exceeds a threshold, or the end of the list is reached, the loop terminates.

Figure 7.2(b) shows the dependence graph among the various statements in each loop

iteration (statements 1, and 6 are omitted since they are not part of the loop). Easily spec-

ulated dependences are shown as dashed edges in the figure. If no dependences are spec-

ulated, statements 3, 4, 5, 8, and 9 participate in a single recurrence. Consequently, non-

speculative DSWP would be forced to put all five statements into a single thread. While

the call to update (statement 7) could be placed into a separate thread, assuming the bulk

of the runtime is spent in extract, calc, and in cache misses traversing the linked list

(statement 8), such a partition would yield very little parallelism.

The loop can be effectively parallelized with SpecDSWP. Assuming cost will rarely

exceed the threshold, the control dependence between the early exit (statement 4) and the

subsequent statements can be speculated. After speculation, each statement will be in its

own trivial SCC allowing SpecDSWP to schedule each statement into its own thread.
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1 if (!node) goto exit;
2 loop:
3 data = extract(node)
4 cost = calc(data);
5 if (cost > THRESH)
6 goto exit;
7 update(node);
8 node = node->next;
9 if (node) goto loop;

10 exit:

(a) Single-Threaded Code

3

5

8

4

9 7

(b) PDG

1 if (!node) goto exit;
2 loop:
3 data = extract(node);
4 produce(T2, data);
5 update(node);
6 node = node->next;
7 produce(T2, node);
8 if (node) {
9 produce(CT, OK);

10 goto loop;
11 }
12 exit:
13 produce(CT, EXIT);

(c) Parallelized Code Thread 1

1 loop:
2 data = consume(T1);
3 cost = calc(data);
4 if (cost > THRESH)
5 produce(CT, MISSPEC);
6 node = consume(T1);
7 if (node) {
8 produce(CT, OK);
9 goto loop;

10 }
11 exit:
12 produce(CT, EXIT);

(d) Parallelized Code Thread 2
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Figure 7.2: This figure illustrates the single-threaded atomicity problem for SpecDSWP.
Figures (a)–(b) show a loop amenable to SpecDSWP and its corresponding PDG. Dashed
edges in the PDG are speculated by SpecDSWP. Figures (c)–(d) illustrate the multi-
threaded code generated by SpecDSWP. Finally, Figures (e)–(f) illustrate the necessary
commit atomicity for this code if it were parallelized using SpecDSWP and TLS respec-
tively. Stores executed in boxes with the same color must be committed atomically.
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Figures 7.2(c) and (d) show the parallel code that results from applying SpecDSWP

targeting two threads (misspeculation recovery code has been omitted for clarity). In the

figure, statements 3, 7, 8, and 9 (using statement numbers from Figure 7.2(a)) are in the

first thread, and statements 4 and 5 are in the second thread. Statements in bold have been

added for communication, synchronization, and misspeculation detection. Figure 7.2(e)

shows how the parallelized code would run assuming no misspeculation.

As Chapter 6 described, SpecDSWP relies on runtime support to rollback the effects of

speculative stores in the event of misspeculation. Unfortunately existing transactional and

TLS memory systems are inadequate for SpecDSWP. To understand why, first consider

how TLS buffers speculative state. Figure 7.2(f) shows a potential execution schedule for

a two-thread TLS parallelization of the program from Figure 7.2(a) assuming the code has

been scheduled such that the regions labeled A and B correspond to the code assigned to

the first and second threads, respectively, from the SpecDSWP parallelization. TLS exe-

cutes each speculative loop iteration in a TLS epoch. In the figure, blocks participating in

the same epoch are shaded in the same color. One particular epoch is outlined for illustra-

tion. TLS epochs resemble transactions except TLS epochs have a predetermined commit

order, while transactions compete for commit order. Epochs are assigned according to the

single-threaded program order and define the logical order for memory instructions. Stores

executed during each iteration are buffered in the epoch, and when a particular epoch be-

comes the oldest in the system, it is allowed to commit. If an epoch conflicts with a later

epoch, all later epochs roll back.

Figure 7.2(e) shows the corresponding execution schedule that would be used by SpecDSWP.

The blocks contained in the outlined TLS epoch are similarly outlined in the figure. Since

SpecDSWP also uses loop iterations as the unit of speculative work, it also must be able to

rollback the effects of the outlined region in the event of a misspeculation. Notice, however,

that the outlined region spans threads and potentially multiple cores. Consequently TLS

epochs and conventional transactions are inapplicable because they only provide single-
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threaded atomicity.

An alternate possibility is to wrap each iteration from each thread in a distinct epoch. In

Figure 7.2(e), each block would be in a distinct epoch. Epochs 1 and 2 would be assigned to

the first iteration in threads 1 and 2 respectively. Since epoch 1 is the oldest epoch, the stores

from the first iteration in thread 1 would be treated as non-speculative. Unfortunately, the

stores in thread 1’s first iteration are indeed speculative. If thread 2 detects misspeculation

(line 4 in Figure 7.2(d)) in the first iteration, thread 1 needs to be rolled back to undo the

stores in the call to update. Attempts to salvage the system by reassigning epoch numbers

also do not work since epochs will not be ordered according to the single-threaded program

order.

The problem could be solved if four epochs, rather than two, were used per iteration.

The first thread would execute statements 2 and 3 in epoch 1 and statements 4–9 in epoch

3. The second thread would execute statements 1–4 in epoch 2 and statement 5 in epoch

4. This assignment of epoch numbers matches single-threaded program order thus guar-

anteeing correctness (it also matches the assignment of version numbers described in Sec-

tion 6.2). However, the number of epochs needed per loop iteration scales with the degree

of speculation. In general, even with modest speculation, many epochs will be necessary.

While such a system works in theory, in practice it is untenable since it requires that the state

of all live registers and the contents of the inter-thread communication queues in addition

to the state of memory be checkpointed at the beginning of each epoch. With many epochs

per iteration, the overhead of such aggressive checkpointing can easily overtake the benefits

parallelization. Even if the register and queue checkpointing overhead were not significant,

traditional epochs would still not be a complete solution since epoch numbers are single-

dimensional (not multi-dimensional as was discussed in Section 6.2.3) and consequently

do not support nested parallelism. Consequently, just as in transactional programming, the

single-threaded atomicity problem significantly impairs automatic parallelization.
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7.1.3 Supporting Multi-Threaded Atomicity

Given the problems just described, it is clear that systems which provide only single-

threaded atomicity are insufficient. Here, we identify two key features which extend con-

ventional transactional memories to support multi-threaded atomicity.

Group Transaction Commit The first fundamental problem faced by both examples was

that transactions1 were isolated to a single thread. This limitation could not be avoided by

using one transaction for each thread participating in a logically atomic region since these

transactions did not all commit atomically. Section 7.2 introduces the concept of an MTX

that encapsulates many sub-transactions (subTX). Each subTX resembles a TLS epoch, but

all the subTXs within an MTX can commit together providing group transaction commit.

Uncommitted Value Forwarding Group transaction commit alone is still insufficient

to provide multi-threaded atomicity. It is also necessary for speculative stores executed

in an early subTX to be visible in a later subTX (at least within the same MTX). While

many TLS implementations support uncommitted value forwarding between epochs as an

optimization [75], uncommitted value forwarding between subTXs is necessary to guar-

antee multi-threaded atomicity. Ensuring that uncommitted values are forwarded between

threads allows the threads executing in a single MTX, but different subTXs, to execute

cooperatively. Specifically, it allows threads participating in an MTX to synchronize, thus

preventing misspeculation, even for ambiguous memory dependences.

In the nested parallelism example (Figure 7.1), the recursive call to sort must be able

to see the results of uncommitted stores executed in the primary thread, and the call to

merge must be able to see the results of stores executed in the recursive call to sort.

Uncommitted value forwarding facilitates this store visibility. Similarly, in the SpecDSWP

example (Figure 7.2), if each loop iteration executes within a single MTX, and each itera-

1For the remainder of the paper, we will refer to both transactions and epochs as transactions. A distinction
will be made only where necessary.
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Instruction Arguments Description
allocate VID Returns an unused MTX ID setting its parent to the specified VID.
deallocate MTX ID Indicate that the specified MTX ID is no longer being used.
enter VID Enter the specified MTX and subTX.
commit.p1 MTX ID Commit phase 1. Mark the specified MTX as non-speculative and ac-

quire the commit token from the parent version. Future conflicts must
rollback the other conflicting transaction.

commit.p2 VID Commit phase 2. All the stores from the current MTX in the specified
subTX will be committed to architectural state or the parent version.
SubTXs within a particular MTX must be committed in order. Threads
must issue enter to enter a legitimate MTX or committed state.

commit.p3 MTX ID Commit phase 3. Return the commit token to the parent version.
rollback MTX ID All the stores from the specified MTX will be discarded, and the MTX

deallocated. Threads must issue enter to enter a legitimate MTX or
committed state.

Table 7.1: Instructions for managing MTXs.

tion from each thread executes within a subTX of that MTX, uncommitted value forwarding

is necessary to allow the stores from extract to be visible to loads in calc.

7.2 The Semantics of Multi-Threaded Transactions

MTXs provide the illusion of a private memory for the threads participating in the trans-

action. Conceptually, the private memory is initialized with the contents of architectural

memory at the time the MTX is created. Loads are serviced from the private memory, and

stores update the private memory without affecting other threads not participating in the

MTX. If an MTX commits, then all threads can observe the effects of the stores executed

in the transaction. The following sections will more formally define an MTX and introduce

new instructions for managing them. For reference, the set of instructions added to the ISA

are listed in Table 7.1.

7.2.1 Basics

An MTX provides atomicity and isolation for a collection of memory operations originating

from one or more threads. Two MTXs are said to produce an inter-transaction conflict if

one transaction writes a location that the other reads without first writing. Such conflicts
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lead to non-serializable accesses, and one of the conflicting MTXs should be rolled back.

To allow programs to define a memory order a priori, MTXs are decomposed into

subTXs. While separate MTXs compete for commit order, the commit order of subTXs

within an MTX is predetermined just like TLS epochs (Section 7.2.2). A particular subTX

within an MTX is identified by a pair of identifiers, (MTX ID, subTX ID), called the ver-

sion ID (VID). Note that an MTX comprised of only one subTX implements the semantics

of a conventional single-threaded transaction.

An MTX is created by the allocate instruction which returns a unique MTX ID. A

discussion of allocate’s argument is deferred to Section 7.2.3. A thread enters an MTX

by executing the enter instruction indicating the desired MTX ID and subTX ID. If the

specified subTX does not exist, the system will automatically create it. However, the soft-

ware is responsible for managing and assigning unique subTX IDs. A thread may leave a

particular subTX and enter another (in the same or different MTX) by issuing a subsequent

enter instruction. The VID (0, 0) is reserved to represent committed architectural state.

Consequently, a thread may leave all MTXs and resume issuing non-speculative memory

operations by issuing enter(0,0).

7.2.2 Intra-Transaction Memory Ordering

Within a subTX, memory operations are ordered in accordance with single-threaded pro-

gram order. SubTXs within an MTX are well ordered (like TLS epochs), and this order

defines the semantic order of memory operations across threads. Consequently, values

stored in one subTX are visible in all subsequent subTXs. Stores to the same address

from different subTXs are legal, and subsequent loads will observe the value stored by the

nearest earlier subTX. This provides uncommitted value forwarding as was discussed in

Section 7.1.3.

However, to allow memory alias speculation within an MTX (e.g., TLS applied to a sin-

gle task in a transactional program, or non-loop carried memory speculation in SpecDSWP),
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if an address is written in a particular subTX after the corresponding address has been read

in a later subTX, then an intra-transaction conflict has occurred and the entire MTX should

be rolled back.

To avoid intra-transaction conflicts, the threads participating in an MTX may synchro-

nize to guarantee that a store in an earlier subTX has executed before a dependent load is

issued in a later subTX. Conventional memory-based synchronization or out-of-band (non-

memory) synchronization [60, 61] can be used. Since memory-based synchronization may

itself trigger an intra-transaction conflict, the ISA must also be extended with synchroniza-

tion primitives (e.g. compare-and-swap) that do not trigger such conflicts.

7.2.3 Nested Transactions

Many threads participating in a single MTX may be executing concurrently. However, a

thread executing within an MTX may not be able to spawn additional threads and appropri-

ately insert them into the memory ordering because no sufficiently sized gap in the subTX

ID space has been allocated. As was discussed in Section 6.2, allocating a sufficiently large

gap is not always possible due to nested parallelism.

To remedy this and to allow arbitrarily deep nesting, rather than decomposing subTXs

into sub-subTXs, an MTX may have a parent subTX (in a different MTX). When such an

MTX commits, rather than merging its speculative state with architectural state, its state is

merged with its parent subTX. Consequently, rather than directly using a subTX, a thread

may choose to allocate a new MTX specifying its subTX as the parent. The thread may

then spawn more threads providing them with subTXs within the newly created MTX. An

MTX’s parent subTX is specified as the argument to the allocate instruction. The VID

(0, 0) can be used as the argument to specify that an MTX has no parent.

To provide uncommitted value forwarding, values are forwarded from parent subTXs

to all descendants and vice-versa. To resolve memory ordering ambiguities between direct

accesses to a subTX and accesses resulting from a nested MTX committing to its parent
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subTX, direct accesses to a subTX that is the parent of another MTX are forbidden. Addi-

tionally, no inter-transaction conflict should be detected in response to a read from a child

(parent) MTX receiving a value forwarded from any ancestor (descendant), even though

the definition of inter-transaction conflict provided earlier would deem such accesses as

conflicting. However, inter-transaction conflicts can still occur between peers (i.e., MTXs

that share a common ancestor subTX). In all other respects, the child MTX behaves like

any other independent MTX.

7.2.4 Commit and Rollback

An MTX commits to architectural state or, if it has a parent, to its parent subTX. The state

modifications in an MTX are committed using a three-phase commit. Commit is initiated

by executing the commit.p1 instruction. This instruction marks the specified MTX as

non-speculative and acquires the commit token from the parent subTX (or architectural

state). After an MTX is marked non-speculative, if another MTX conflicts with this one,

the other MTX must be rolled back. Additionally, only one commit token exists per subTX,

so multiple MTXs cannot commit to architectural state or the same parent subTX simulta-

neously. If the commit token is unavailable when this instruction issues, the issuing thread

blocks until the token becomes available. Next, to avoid forcing hardware to track the set of

subTXs that exist in each MTX, software is responsible for committing each subTX within

an MTX, but they must be committed in order (the results of out-of-order commit are unde-

fined). This is accomplished with the commit.p2 instruction. This instruction atomically

commits all the stores for the subTX specified by the VID. Since the commit token for the

parent subTX is acquired prior to executing commit.p2 instructions, the commit of an

MTX is guaranteed to be atomic. Finally, the commit token is returned to the parent subTX

(or architectural state) by executing the commit.p3 thus unblocking stalled committers.

Finally, the MTX ID for the committing MTX is returned to the system by executing the

deallocate instruction. Note, a partial MTX commit is possible if not all subTXs are
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committed before executing commit.p3, or if new subTXs are entered after executing

commit.p3. In both cases, the deallocate instruction must appear after the given

MTX has fully committed.

Rollback is simpler than commit and involves only a single instruction. The rollback

instruction discards all stores from all subTXs from the specified MTX and all of its de-

scendants.

After either a commit or rollback, all threads that were still participating in a subTX that

was committed or rolled back must execute an enter instruction prior to issuing memory

operations. This ensures that the threads enter the committed state or another valid subTX

prior to accessing memory.

7.2.5 Putting it Together

This section revisits the examples from Sections 7.1.1 and 7.1.2 demonstrating how MTXs

can be used to support nested parallelism and modularity in transactional programming and

speculative state buffering in SpecDSWP. The section begins with the SpecDSWP example

since it requires fewer code modifications and then proceeds to the slightly more involved

transactional programming example.

Speculative DSWP

Recall the Speculative DSWP example from Figure 7.2. Figure 7.3 reproduces the code

from Figures 7.2(c) and 7.2(d) with MTX management instructions added in bold. The par-

allelized loop is enclosed in a single MTX, and each iteration uses two subTXs. Thread 1

starts in subTX 0 and then moves to subTX 2 to break a false memory dependence between

calc and update. Thread 2 operates completely in subTX 1. Since MTXs support un-

committed value forwarding, the data stored by thread 1 in the extract function will

be visible in thread 2 in the calc function. Further, this communication through mem-

ory will never cause a transaction conflict because the accesses are synchronized using
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1 if (!node) goto exit;
2 mtx_id = allocate(0, 0);
3 produce(T2, mtx_id);
4 produce(CT, mtx_id);
5 iter = 0;
6 loop:
7 enter(mtx_id, 3*iter+0);
8 data = extract(node);
9 produce(T2, data);

10 enter(mtx_id, 3*iter+2);
11 update(node);
12 node = node->next;
13 produce(T2, node);
14 if (node) {
15 iter++;
16 produce(CT, OK);
17 goto loop;
18 }
19 exit:
20 produce(CT, EXIT);
21 enter(0,0);

(a) Parallelized Code Thread 1

1 mtx_id = consume(T1);
2 iter = 0;
3 loop:
4 enter(mtx_id, 3*iter+1);
5 data = consume(T1);
6 cost = calc(data);
7 if (cost > THRESH)
8 produce(CT, MISSPEC);
9 node = consume(T1);

10 if (node) {
11 iter++;
12 produce(CT, OK);
13 goto loop;
14 }
15 exit:
16 produce(CT, EXIT);
17 enter(0,0);

(b) Parallelized Code Thread 2

1 mtx_id = consume(T1);
2 iter = 0;
3 do {
4 ...
5 if (status == MISSPEC) {
6 ...
7 rollback(mtx_id);
8 ...
9 mtx_id = allocate(0, 0);

10 produce(T1, mtx_id);
11 produce(T2, mtx_id);
12 iter = 0;
13 ...
14 } else if (status == OK || status == EXIT) {
15 commit.p1(mtx_id);
16 commit.p2(mtx_id, 3*iter+0);
17 commit.p2(mtx_id, 3*iter+1);
18 commit.p2(mtx_id, 3*iter+2);
19 commit.p3(mtx_id);
20 }
21 iter++;
22 } while (status != EXIT);
23 deallocate(mtx_id);

(c) Commit Thread

Figure 7.3: Speculative DSWP example with MTXs.
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produce/consume synchronization.

In the event of misspeculation, the commit thread rolls back the MTX (line 7 of Fig-

ure 7.3(c)) and allocates a new MTX. With memory state recovered, the recovery code can

then re-execute the iteration non-speculatively. If no misspeculation is detected, the commit

thread uses group commit semantics, and partial MTX commit, to atomically commit both

subTXs comprising the the iteration (lines 15–19 of Figure 7.3(c)). Finally, after finishing

the loop, threads 1 and 2 resume issuing non-speculative loads and stores by executing the

enter(0,0) instruction, while the commit thread deallocates the MTX.

Transactional Programming

Figure 7.4 reproduces the transactional programming example from Figures 7.1(a) and

7.1(c) with code to manage the MTXs. As before, new instructions are shown in bold.

In addition to the new code shown in bold, Figure 7.4(c) shows the implementation of a

support library used for transactional programming. Finally, to help follow the discussion

below, Figure 7.5 shows the MTXs that would be created by executing the above code

assuming build results returns a list of size 4.

To manage the nested parallelism in the recursive sort procedure, this example uses the

ability to commit an MTX into a subTX of a different MTX. The atomic support library

provides three functions: a function to enter a new atomic region, a function to leave an

atomic region, and a function to advance to the next subTX within the current atomic

region. Additionally, a thread-local global variable, vid, is used to track the current MTX

and subTX for a given thread.

The application code (Figure 7.4(a)) begins by starting a new atomic region. In the

support library, this causes the thread to enter a new MTX to ensure the code marked atomic

in Figure 7.1(a) is executed atomically. To create the new MTX, the begin atomic

function first stores the current VID into a local variable. Then it executes an allocate

instruction to obtain a fresh MTX ID, and sets the current subTX ID to 0. Finally, it
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1 version_t parent =
2 begin_atomic();
3 int *results = get_results(&n);
4 sort(results, n);
5 for (i = 0; i < 10; i++)
6 sum += results[i];
7 end_atomic(parent);

(a) Application code.

1 void sort(int *list, int n) {
2 if (n == 1) return;
3 version_t parent =
4 begin_atomic();
5 thread = spawn(sort, list, n/2);
6 sort(list + n/2, n - n/2);
7 wait(thread);
8 next_stx();
9 merge(list, n/2, n - n/2);

10 end_atomic(parent);
11 }

(b) Parallel library implementation.

1 typedef struct {
2 int mtx_id;
3 int s_id;
4 } version_t;
5

6 __thread version_t vid = {0, 0};
7

8 version_t begin_atomic() {
9 version_t parent = vid;

10 vid.mtx_id = allocate(parent.mtx_id, parent.s_id);
11 vid.s_id = 0;
12 enter(vid.mtx_id, vid.s_id++);
13 return parent;
14 }
15

16 void end_atomic(version_t parent) {
17 for(int i = 0; i < vid.s_id; i++)
18 commit(vid.mtx_id, i);
19 vid = parent;
20 enter(vid.mtx_id, vid.s_id++);
21 }
22

23 void next_stx() {
24 enter(vid.mtx_id, vid.s_id++);
25 }

(c) Atomic library implementation.

Figure 7.4: Transactional nested parallelism example with MTXs.

(1, 0) (1, 1)

(2, 0) (2, 1) (2, 2)

(3, 0) (3, 1) (4, 0) (4, 1)

Figure 7.5: MTXs created executing the code from Figure 7.4.
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enters the newly allocated MTX and advances the subTX pointer indicating that subTX

0 is being used. After returning from begin atomic, the application code proceeds

normally eventually spawning a new thread for the sort function.

When it starts, the spawned thread will be in the same subTX as the thread that spawned

it. The spawn primitive is responsible for copying the thread-local global variable vid

to the new thread allowing future calls to begin atomic and end atomic to function

properly. Recall, with single-threaded transactions the spawned thread would not have been

able to see the results of the list construction (line 3 in Figure 7.4(a)) because the spawning

transaction was isolated from other transactions. With MTXs, however, since the spawned

thread is in the same subTX as the spawning thread, the values are visible. The spawned

sort function, after checking for the recursive base case, immediately allocates a new

MTX whose parent is the version identified by the thread-local variable vid. Even after

creating this new MTX, uncommitted value forwarding ensures that the list construction

is visible to the spawned thread. Further, by creating a new MTX, the sort function

ensures that even through many recursive calls, this particular call to sort will execute

atomically and will not use many subTXs in the caller’s MTX potentially violating the

intended memory order. Additionally, the parent-child relationship between the caller’s

current subTX and the newly created MTX ensure that sort’s side-effects will be visible

to the caller.

After the main thread recursively invokes sort, it waits for the spawned thread to

complete sorting its portion of the list. The sort function proceeds to the next subTX

since writes are not allowed in any subTX that is the parent of another MTX. The function

then merges the results of the two recursive sort calls. Once again uncommitted value for-

warding allows the primary thread to see the sorted results written by the spawned thread.

Finally, sort completes by calling end atomic which commits the current MTX into

its parent subTX.

After the call to sort returns, the application code uses the sorted list to update sum.
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Figure 7.6: Cache architecture for MTXs.

After sum is updated, the application code commits the MTX (using end atomic) it

allocated. Since all the data generated throughout the execution is buffered in this MTX it

will all commit atomically, or, in the event of a conflict, can all be rolled back.

7.3 Implementing Multi-Threaded Transactions

This section and the next section describe a complete implementation of MTXs. Like other

transactional memory and TLS implementations [20, 33, 35, 37, 69, 75], the proposed im-

plementation of MTXs buffers speculative state in the processor caches and relies on a

modified cache coherence protocol to forward both speculative and non-speculative data,

and to detect misspeculation. Figure 7.6 shows the general architecture of the system.

The circles marked P are processors. Boxes marked C are caches. Shaded caches store

speculative state (speculative caches), while unshaded caches store only committed state

(non-speculative caches). Notice that both private and shared caches can store speculative

state. The boundary between speculative and non-speculative caches is referred to as the

speculation level [69]. To facilitate easier understanding, the full system will be incre-

mentally described. This section describes an MTX system that does not perform conflict

detection, and Section 7.4 describes how to support conflict detection.
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Tag VID V X M S P1 W1 U1 D1 . . . Pn Wn Un Dn

V = Valid M = Modified Pk = byte k Present Dk = byte k Data
X = eXclusive S = Stale Wk = byte k Written Uk = byte k Upwards exposed

Figure 7.7: MTX cache block.

7.3.1 Cache Block Structure

To support MTXs, blocks in speculative caches are augmented with additional metadata.

Figure 7.7 shows the data stored in each cache block. Like traditional coherent caches, each

block stores a tag, status bits (V, X, and M) to indicate the coherence state, and actual data.

The MTX cache block additionally stores the VID of the subTX to which the block belongs

and a stale bit indicating whether later MTXs or subTXs have modified this block. Finally

each block stores three bits per byte (Pk, Wk, and Uk) indicating whether the particular

data byte is present in the cache (a sub-block valid bit), whether the particular byte has

been written in this subTX, and whether the particular byte is upwards exposed. This status

is maintained at the byte-level to avoid conflicts due to false sharing. The Uk bits will be

discussed in Section 7.4.

In a traditional coherent cache, the status bits indicate what accesses are legal on a given

block. The presence of the valid bit indicates that reads are legal, and the presence of both

the valid and exclusive bits indicates that writes are legal. Similarly, in an MTX cache,

the metadata dictates what accesses are legal. In addition to an address, all cache accesses

carry a VID. A read access is a hit if:

• the block is valid (V = 1),
• the cache tags match,
• the particular bytes being read are present (Pk = 1), and
• either

– the request VID is equal to the block VID, or
– the request VID is greater than the block VID, and the block is not stale (S = 0).

The greater than check follows the partial order among VIDs. Two VIDs within the

same MTX are comparable, and the order is defined by the subTX ID. VIDs from different

MTXs are compared by traversing the parent pointers until parent subTXs in a common
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Tag VID P1 D1 P2 D2 P3 D3 P4 D4

0x8001 (3, 7) 1 0xAB 0 - 1 0xBE 0 -
0x8001 (3, 8) 1 0xDE 0 - 0 - 0 -
0x8001 (3, 6) 0 - 1 0xAD 0 - 1 0xEF
0x8001 (3, 9) 1 0xDE 1 0xAD 1 0xBE 1 0xEF

Request Tag: 0x8001
Request VID: (3,9)
Merged Result: 0xDEADBEEF

Figure 7.8: Matching cache blocks merged to satisfy a request.

MTX are found. If the parent subTXs are identical, then the two original VIDs are incom-

parable. Otherwise, the order is once again defined by the subTX IDs. The greater than

comparison can be efficiently performed for two VIDs in the same MTX. Section 7.3.4

describes additional support to facilitate comparing VIDs from different MTXs.

To allow multiple versions of the same variable to exist in different subTXs (within a

single thread or across threads), caches can store multiple blocks with the same tag but

different VIDs. Using the classification developed by Garzarán et al., this makes the sys-

tem described here MultiT&MV (multiple speculative tasks, multiple versions of the same

variable) [30]. This ability implies that an access can hit on multiple cache blocks (multiple

ways in the same set). If that occurs, then data should be read from the block with the great-

est VID. To satisfy the read request, it may be necessary to rely on version combining logic

(VCL) [75] to merge data from multiple ways. Figure 7.8 illustrates how three matching

blocks would be combined to satisfy a read request. Note that this definition of cache hit

implicitly forwards speculative data between subTXs.

On the other hand, a write access (or a read exclusive access) is a hit if the block is valid

and exclusive, the cache tags match, and the VIDs are equal. Note that even if the P bits

are unset, the write is still a hit, and, in fact, the write will assert the corresponding P bits.

Additionally, the write will set the W bits for written bytes and the M bit for the block.

7.3.2 Handling Cache Misses

In the event of a cache miss, a cache contacts its lower level cache to satisfy the request.

A read miss will issue a read request to the lower level cache, while a write miss will
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VIDrequest < VIDblock VIDrequest = VIDblock VIDrequest > VIDblock

Read No response If block is modified, write back and clear M. Clear X.
Read Excl. Set Pk = Wk for all bytes in

the block.
If block is modified, write
back and clear M. Clear V.

If block is modified, write
back and clear M. Clear X and
set S.

Figure 7.9: Cache response to a snooped request.

issue a read-exclusive request (or an upgrade request if the block is already present in the

requesting cache).

Peer caches to the requesting cache must snoop the request (or a centralized directory

must forward the request to sharers of the block) and take appropriate action. Figure 7.9

describes the action taken in response to a snooped request. Note that if the request VID and

block VID are incomparable (i.e., from different unordered MTXs), no action is necessary.

The column where VIDrequest = VIDblock describes the typical actions used by an inval-

idation protocol. Both read and read exclusive requests force other caches to write back

data. Read requests also force other caches to relinquish exclusive access, whereas read

exclusive requests force block invalidation. The other two columns in the table describe

actions unique to an MTX cache.

First, consider the case where VIDrequest < VIDblock. Here, the snooping cache does

not need to take action in response to a read request since the request thread is operating

in an earlier subTX. As per the semantics of MTXs, this means data stored in the block

should not be observable to the requester. For a read exclusive request, however, action

must be taken. The read exclusive request indicates that an earlier subTX may write to the

block. Since such writes should be visible to threads operating in the block’s subTX, the

snooping cache must invalidate its block to ensure subsequent reads get the latest written

values. Instead of invalidating the entire block, the protocol invalidates only those bytes

that have not been written in the block’s subTX. This is achieved simply by copying each

Wk bit into its corresponding Pk bit. After such a partial invalidation, reads that access data

written in the same subTX still hit in the cache.

Next, consider the case where VIDrequest > VIDblock. Here the snooping cache may
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have data needed by the requester since MTX semantics require speculative data to be

forwarded from early subTXs to later subTXs. Consequently, the snooping cache takes

two actions. First, it writes back any modified data from the cache since it may be the latest

data (in subTX order) that has been written to the address. Next, it relinquishes exclusive

access to ensure that prior to any subsequent write to the block, other caches have the

opportunity to invalidate their corresponding blocks. Similar action is taken in response

to a read exclusive request. Data is written back and exclusive access is relinquished.

Additionally, the snooping cache marks its block stale (by setting the S bit), ensuring that

accesses made from later subTXs are not serviced by this block (recall that if VIDrequest >

VIDblock, a read is only hit if the block is not marked stale).

For correct operation, even the requesting cache must “snoop” in response to its own

requests. This is necessary since the cache may contain blocks relevant to the request, but

that did not cause the access to hit because the blocks were stale, or the request was a write

and the VIDs did not match exactly.

The requesting cache can assemble the complete response to its request by using the

VCL on all blocks written back and the response from the lower level cache. The assembled

cache block can be inserted into the requesting cache using the largest VID of all blocks

fed into the VCL. Since all bytes will be returned in response to the request, all its P bits

should be asserted. Finally, the stale bit can be copied from the returned block with the

largest VID. Similarly, the M and W bits can be set based on the corresponding bits from a

returned block where VIDrequest = VIDblock. If no such block is returned, the M and W bits

can be cleared.

7.3.3 Crossing the Speculation Level

The implementation discussed thus far has implicitly assumed that each cache’s lower level

cache is also speculative. Obviously, this is untrue for the speculative cache right above the

speculation level. We will refer to these caches as speculative boundary caches. These
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caches must react slightly differently than other speculative caches since:

1. They cannot write back speculative data to their lower level cache, and

2. They are responsible for allocating cache blocks for new VIDs.

To handle the inability to write back speculative data to a lower level cache, two mod-

ifications are necessary. First, any eviction of a modified speculative block must cause the

corresponding MTX to be rolled back. This is identical to how many other transactional

proposals handle overflow of speculative state [33, 37]. Note, stalling the subTX that has

overflowed is not permissible since that may cause the corresponding MTX to deadlock.

Virtualizing MTXs is possible but is deferred to future work.

Second, write backs of speculative state necessitated by the coherence protocol must be

handled specially. The cache must still respond to the request, forwarding the speculative

data it possesses. This resembles a write back, but differs in that if VIDrequest > VIDblock,

the cache should not clear its modified (M) bit for the block. This means a cache block can

potentially be in the modified state, but not exclusive. As Section 7.3.5 will describe, such

a state indicates that when the subTX commits, the cache must acquire exclusive access for

the block before it can merge the data into committed state or another subTX. This approach

does not introduce any new data merging problems since two peer caches will never have

the same line (in the same version) in the modified state concurrently. Consequently, the

data is always consistent, and at commit, at any particular level of the cache hierarchy the

cache with the line in the modified state will cause the other caches to invalidate their copy.

Speculative boundary caches are also responsible for allocating blocks with new VIDs.

This occurs because all read exclusive requests for a newly allocated subTX will necessarily

miss in all higher level caches. The request will also miss in the speculative boundary

cache. The cache should proceed normally, propagating the request to the next memory

level. This provides peer caches with an opportunity to snoop the request and supply any

relevant data. The lower level, non-speculative cache will always respond with committed

state. Using these responses, the speculative boundary cache can assemble a block with
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the latest available data. Rather than returning this block as a normal speculative cache

would, it should replace the VID in the response with the request VID, thereby allocating

the address in the requested subTX. To ensure correctness, the newly allocated line must

be marked stale if the line has previously been allocated with a larger VID.

7.3.4 Nested Transactions

As mentioned earlier, for each cache access, it is necessary for a cache to compare the

request VID to the VID stored in a potentially matching cache block. Comparing two

VIDs within the same MTX is simply a straight-forward comparison of the subTX IDs.

However, comparing two VIDs from different MTXs is more complicated due to nested

MTXs.

In order to compare two VIDs from different MTXs, it is necessary to track the trans-

action hierarchy. A special region of memory is allocated to store the VID of the parent of

each MTX. This memory area is organized as an array indexed by MTX IDs that stores the

corresponding parent VID. Values are written into this area by the allocate instruction.

Since the hierarchy must be accessed on each cache request, parts of the hierarchy

should be cached. Each data cache maintains a dedicated MTX hierarchy cache that is

indexed by MTX ID and that stores the first n ancestors of the given MTX (where n deter-

mines the hierarchy cache’s line size). Each line also contains an additional bit to indicate

whether the line contains an MTX’s entire ancestry or just the first n ancestors.

For each cache access, the MTX hierarchy cache must be accessed once for the request

version, and once for each VID from tag-matching cache blocks. Two VIDs from different

MTXs can be compared using the results from the hierarchy cache. The first common

ancestor between the versions is found, and their subTX IDs are then compared. The

results of the comparisons are fed to the VCL to allow it to filter out cache lines that should

not be read.

Accesses to the MTX hierarchy cache can happen concurrently to the tag and data
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accesses in the data caches. The initial access to the hierarchy cache uses the request VID

and can occur concurrently with the data cache tag access. Matching VIDs read during

from the tag array can then be fed sequentially into the MTX hierarchy cache concurrently

with the data cache data array access. Consequently, the hierarchy cache only appears on

the critical path if many cache blocks match the requested address necessitating many serial

lookups into the hierarchy cache.

Finally, misses to the MTX hierarchy cache require that the in-memory MTX tree be

accessed. Just as for virtual to physical address translation, dedicated hardware can walk

the memory data structure, or the responsibility can be passed onto a software handler.

Additionally, many cold misses can be avoided by inserting entries into the cache after an

allocate instruction executes using information about the parent which may already be

stored in the cache.

7.3.5 Commit and Rollback

Commit and rollback are easily handled within the design. The commit.p1 and commit.p3

instructions simply need to acquire and release a lock based on the VID of the parent

subTX. This can be implemented using conventional memory locks. To handle the commit.p2

instruction, for each modified block contained in the cache whose version equals the com-

mitting version, the cache must acquire exclusive access to the corresponding line in the

parent version. Then, the committing block can be merged into the parent block, and fi-

nally the committing block can be discarded. Commit should proceed from higher level

caches to lower level caches. This prevents the commit of a line in a lower level cache

from causing the corresponding line in a higher level cache from being displaced. Note,

commit performance can be improved using a structure similar to the ownership-required

buffer (ORB) [69] to prevent scanning the entire cache on commit.

Rollback is much simpler, with each cache in the system discarding any cache block

whose VID is greater than or equal to the VID of the rollback request. To ensure child
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MTXs also get rolled back, the transaction hierarchy must be consulted to generate appro-

priate rollback messages for all child MTXs. Since rollback does not need to block the

execution of any core in the system, its performance is not important.

7.4 Detecting Conflicts

The system described in the previous section implements the semantics of MTXs without

hardware conflict detection. The system described thus far is what is used by the current

implementation of SpecDSWP. For completeness, this section describes how to augment

the system to detect conflicts.

Recall that an intra-transaction conflict occurs if a subTX writes a location after a later

subTX has read the location without first writing it. An inter-transaction conflict occurs if

one subTX writes a location that another, incomparable subTX reads without first writing.

Given these definitions, the system must track which locations have been read without

first having been written to detect conflicts. We refer to such reads as upwards-exposed

uses [68]. The MTX system uses the Uk bit stored per byte to track upwards-exposed uses

(see Figure 7.7)2.

The MTX cache system must set Uk to Uk ∨Wk each time it reads data from the cache.

This ensures any bytes that are satisfied by a block whose VID is less than this block’s VID

are marked. The coherence protocol is then extended to detect intra-transaction conflicts

when invalidating bytes. If a coherence request forces bytes to be invalidated (i.e., on a read

exclusive request with IDrequest < IDblock), Uk is set, and Pk is to be cleared, then a conflict

has occurred. To detect inter-transaction conflicts, the coherence protocol must also handle

the case when IDrequest and IDblock are incomparable. In particular, for an incomparable read

request, if Wk is set for any byte in the block then a conflict has occurred. Similarly for

an incomparable read exclusive request, if Uk is set for any byte in the block then a con-

2If conflict detection is not implemented in hardware, the Uk bits are unnecessary.
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flict has occurred. In all conflicting cases, either the requesting transaction, the snooping

transaction, or both may be rolled back.

The system requires one more change to support conflict detection. Recall that a read

request hits if a cache has a block whose VID is less than the request ID and the block is

not stale. Read requests, however, now also modify cache blocks by potentially setting U

bits. Since the access should not modify blocks from previous subTXs, such “hits” should

cause the cache line to be duplicated for the request version (i.e., the block ID should be

set to the request ID). Since such duplication can occur at arbitrary caches in the hierarchy,

strict inclusion will no longer be satisfied. A higher level cache can contain a block with a

specific VID that its lower level cache does not contain. Consequently all coherence actions

must affect all caches in a particular sub-tree of the hierarchy.

7.5 Other Implementation Possibilities

This chapter has focused on describing an extension to an invalidation-based cache coher-

ence protocol to implement multi-threaded transactions. The literature, however, is abound

with implementation alternatives for traditional, single-threaded transactional memories.

This section briefly surveys some of these alternate methodologies and identifies challenges

in adapting these strategies to multi-threaded transactions.

Some implementations of transactional memories use eager, rather than lazy, version

management. In lazy versioning systems, speculative writes to a location are stored in

a speculative buffer while the non-speculative value safely remains in the virtual address

space of the process. In the event of a rollback, one simply discards the speculative buffers.

Commit, however, requires copying data from the speculative buffers into the virtual ad-

dress space. In the MTX implementation described in this chapter and in many lazy ver-

sioning, single-threaded hardware transactional memories, the speculative buffer is simply

comprised of the processor’s cache memories.
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Recognizing that commit is often more common than rollback, eager implementations,

such as LogTM [51] and UTM [10], store speculative values directly in the virtual address

space of the process, and non-speculative values are buffered in a rollback log. In these sys-

tems, commit does require any special processing, and rollback requires restoring values

in the virtual address space using the rollback log. This approach, unfortunately, is funda-

mentally at odds with MTXs. Recall that with MTXs many versions can exist per address

and each version can be directly addressed. This approach however, relies on only a single

speculative version existing per address and immediately detects a conflict if a different

version is accessed. It may be possible, however, to use the spirit of this approach as an

optimization to an MTX implementation. To improve commit speed, the oldest speculative

version could be stored directly in the virtual address space. The current committed state

could be stored in a rollback log under the assumption that it will be never be accessed or

accessed only infrequently. Younger versions can be buffered in caches as was described

in this implementation. This approach optimizes for commit, rather than rollback, and can

help keep commit off the critical path.

In addition to different version management approaches, researchers have proposed

alternate methodologies for performing conflict detection. Ceze et al. propose bulk disam-

biguation, a novel mechanism where, rather than having processor cores generate invali-

dation messages each time a speculative cache line changes state, each core maintains two

signatures representing the set of addresses read from and written to [17]. During commit,

these signatures are broadcast and compared at each processor core to detect whether or

not a conflict has occurred. Using careful construction of the signatures and certain ver-

sioning restrictions, the set of addresses written in a particular version can be reconstructed

from the signature, thus allowing a cache to properly commit or rollback. This approach is

appealing because it dramatically reduces the design complexity of conflict detection and

reduces the space overhead of tracking the read set and write set of a speculative version.

For an MTX system that does hardware conflict detection, a Bulk-like approach could be
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used to reduce overhead and design complexity. However, Bulk does not address any of the

issues related to finding what cache contains the freshest speculative version of data that is

older than a given request version. Consequently, the data locating pieces of the coherence

protocol described in this chapter would still be necessary.

In addition to hardware schemes, many have proposed implementing transactional se-

mantics purely in software [4, 36, 48, 62]. Both IBM and Intel have recently released STM

implementations to the research community [1, 2]. Software transactional memory (STM)

systems come in a variety of flavors, however the design choices are similar to the ones for

hardware transactional memories. First, an STM may buffer speculative state in dedicated

buffers, or store it directly at the target location and use an undo log to recover state in the

event of a conflict. Second, STM systems must identify conflict. Due to the expense of

checking for conflict on each access, most STM systems log their read and write sets dur-

ing transaction execution. At commit, the STM verifies that no other thread has committed

values to locations in the read set after the values were read. Once this is verified, the thread

merges its speculative data into committed state. Depending on the speculative buffering

scheme, this may simply involve broadcasting the write set and discarding the undo log, or

it may involve copying data from the speculative buffers into architectural state.

The STM approach to transactional memory is exciting because it enables the transac-

tional approach on today’s hardware. However, the key obstacle in these systems has been

performance. Managing the transactional meta data associated with each transactional ob-

ject significantly introduces the overhead of each load and store operation. Researchers

have shown that with increased thread counts, this overhead can be overcome [62]. How-

ever, naı̈vely extending STMs to support MTXs would certainly increase this overhead by

necessitating expensive search operations to find the latest copy of a datum. Developing

an STM MTX implementation that scales well remains an interesting avenue of future re-

search.
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Chapter 8

Evaluation of Speculative DSWP

This section evaluates our implementation of Speculative DSWP in the VELOCITY back-

end optimizing compiler [71]. VELOCITY uses the IMPACT [64] compiler as its front-

end. IMPACT reads in C code and emits a low-level intermediate representation that vir-

tualizes the Intel Itanium® 2 architecture. VELOCITY relies on IMPACT’s pointer analy-

sis [19, 53] to identify both call targets of function pointers and the points-to sets of load,

stores, and external functions.

The VELOCITY backend targets the Intel Itanium® 2 architecture and contains an ag-

gressive classical optimizer, which includes global versions of partial redundancy elimina-

tion, dead and unreachable code elimination, copy and constant propagation, reverse copy

propagation, algebraic simplification, constant folding, strength reduction, and redundant

load and store elimination. VELOCITY also performs an aggressive inlining, superblock

formation, superblock-based scheduling, and register allocation.

The VELOCITY implementation of Speculative DSWP supports both speculative parallel-

stage DSWP and interprocedural parallelization. Further, the implementation supports the

speculation types described in Chapter 5. This section evaluates SpecDSWP on bench-

marks from the SPEC® CPU2000, SPEC® CPU92, and Mediabench suites.

Evaluating SpecDSWP on parallelizations containing up to 32 threads on loops ac-
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Figure 8.1: The measurement flow for evaluating SpecDSWP parallel performance.

counting for up to 95% of the application’s run time precluded using conventional cycle-

accurate simulation due to excessive simulation time. Section 8.1 describes the simulation

methodology used to evaluate SpecDSWP. Section 8.2 will present summary results for

the parallelized applications and will present several case studies deconstructing the results

further highlighting strengths of SpecDSWP and MTXs.

8.1 Experimental Methodology

For many of the benchmarks studied, SpecDSWP was applied to the outer most loop in

the application. Native executions of these applications ran for tens to hundreds of bil-

lion cycles with each loop iteration often taking in excess of a billion cycles. Unfortu-

nately, using traditional cycle-accurate simulators on such large code regions with as many

as 32 threads would require excessive simulation time. Further, sampling methodologies

like SMARTS [77], TurboSMARTS [76], or SimPoint [57] are inapplicable for evaluating

multi-threaded applications. Further, since SpecDSWP relies on the synchronization array

(SyncArray) [61] for inter-thread scalar communication and MTXs for speculative state

buffering, evaluation on today’s multi-core processors was also not possible.

Consequently, to evaluate the performance of a loop parallelized with SpecDSWP,

a combination of native execution, to evaluate the single-threaded performance of each

thread, coupled with simulation, to measure the effects of parallelism and MTX cache

coherence, was used to measure parallel performance. Figure 8.1 illustrates the overall

measurement flow. The emulation stage is used to verify application correctness and to

identify misspeculation that occurs at runtime. A specially synchronized native binary is
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then used to measure the performance of each sequential region across all threads in the ap-

plication. An MTX cache simulator is then used to calculate the effects of cache coherence

on performance. Finally, a scheduler collates the information to estimate the application’s

performance. Each of these steps is described in more detail below.

8.1.1 Emulation

The SpecDSWP code emitted by VELOCITY cannot be run on existing multi-core Itanium® 2

processors for three reasons.

1. First, the code assumes the existence of a SyncArray. The SyncArray works as a set

of scalar queues with efficient enqueue and dequeue operations1. The Itanium® 2 ISA

was extended with produce and consume instructions for inter-thread communi-

cation. As long as the SyncArray queue is not empty, a consume and its dependent

instructions can execute in back-to-back cycles.

2. Second, the parallel code relies on hardware support for MTXs. The Itanium® 2 ISA

was extended with the operations shown in Table 7.1.

3. Third, SpecDSWP relies on an asynchronous resteer instruction that interrupts

the execution of the specified core and restarts its execution at the given address.

To check correctness of the parallel code, a library was used to emulate the behavior

of the above operations. Instances of produce and consume were replaced with calls

into a library that managed a virtual SyncArray. MTX operations were also replaced to

call into an MTX emulation library. Additionally, since MTXs change the semantics of

loads and stores after an enter operation, all loads and stores were replaced with calls

into an the MTX emulation library. This library maintained each memory version as a

hash table. Consequently, stores were emulated with a hash table insertion, and loads were

1The latency between an enqueue and a dequeue need not be low. However, SpecDSWP does assume that
the latency within a thread for executing a enqueue or dequeue operation is low.
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emulated using a series of hash table lookups searching for the memory version with the

latest value for a given address. Finally, resteer operations were replaced with calls

into the emulation library. Resteer was emulated using POSIX signals to interrupt the

execution of a thread. The signal handler changed the register state saved by the kernel’s

signal handling mechanism so that returning from the signal handler jumps to the desired

recovery code. The standard recovery code, as emitted by the compiler, was used to recover

from misspeculation.

In addition to emulating the behavior of the missing architectural features, the code is

instrumented to record the set of loop iterations that suffered misspeculation, and to record

a memory trace. The former is used to drive the native execution phase of the simulation

infrastructure, while the latter is used to drive the cache simulation.

8.1.2 Native Execution

Since the emulation libraries are heavy weight measuring the performance of the emulation

runs is not representative. There are three primary sources of performance degradation in

the emulation runs.

1. The performance of load and store functions in the MTX emulation library is sig-

nificantly slower than a native load or store, and significantly slower than would be

offered by a hardware MTX implementation.

2. The performance of produce and consume functions in the emulation library is sig-

nificantly worse than the performance of native produce and consume instructions.

3. Substituting function calls for instructions destroys ILP around the respective opera-

tions.

To estimate performance without suffering from these performance penalties, a spe-

cially prepared application binary, which will be referred to as the performance binary, is
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run on native Itanium® 2 hardware, and the processor’s performance counters are used to

record performance.

To avoid the first and third pitfalls, the performance binary uses native load and store

operations rather than replacing them with function calls into an emulation library. Execu-

tion correctness is guaranteed by carefully orchestrating the order in which the threads run.

Recall that for SpecDSWP, the set of memory versions used are totally ordered. Provided

that rollback is unnecessary, and all operations in one memory version execute prior to any

operation in a subsequent version, conventional load and store operations will faithfully

implement the semantics of MTXs.

The performance binary uses the misspeculations recorded during the emulation run to

avoid corrupting memory state with speculative stores. This obviates the need to support

rollback. For each iteration that would misspeculate, each thread in the performance binary

jumps directly to the recovery code rather than using the asynchronous resteer mechanism.

The threads then execute the remainder of the misspeculated iteration normally.

To ensure that memory operations execute in version order, only one thread is allowed

to execute at a time. This is achieved using an execution token that is passed from thread

to thread. Only the thread with the token is permitted to execute. The performance binary

records the current memory version, and the first thread in the pipeline is allowed to execute

until it encounters an enter instruction attempting to enter a version later than the current

memory version. Just as during emulation, the enter instruction is replaced with a library

call, however, the implementation for the performance library simply passes the execution

token to the next thread in the pipeline. When the commit thread passes the execution

token back to the first thread, the current memory version is incremented by one. Using

this approach, all threads are permitted to make forward progress, but the semantics of

MTXs can be preserved while using conventional load and store operations.

Since only one thread executes at a time, wall time is an inappropriate performance

measure. Instead, hardware performance counters are used to measure the number of cy-
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cles spent in each sequential region of execution in each thread. These values are summed

to compute the total number of cycles spent by each thread in each iteration. Since pro-

duce, consume, and MTX operations are still implemented with library calls (the second

performance pitfall from above), the performance counters are stopped before each library

call and restarted after the call returns. The serialization between disabling and re-enabling

the performance counters simulates these operations as single-cycle operations. Since ILP

is still disturbed near these function calls, the measurements from this simulation infras-

tructure are conservative approximations of the actual execution times for the sequential

regions.

The experiments described below were run on an unloaded HP workstation zx2000

with a 900MHz Intel Itanium 2 processor and 2GB of memory, running CentOS 4.5.

Runtime numbers were gathered using version 3.1 of the libpfm performance moni-

toring library [26]. The runtime of an application was determined by monitoring the

CPU CYCLES. Since an MTX cache simulation is used to measure cache effects, the in-

frastructure also monitored the BE EXE BUBBLE GRALL and BE EXE BUBBLE GRGR

events. These events measure the total number of cycles stalled in the integer pipeline and

the total number of cycles stalled in the integer pipeline due to non-memory dependences,

respectively. The difference between these counters is a conservative estimate2 of the num-

ber of cycles lost due to cache misses. This difference is subtracted from the total cycles

measured to estimate the performance of each sequential region modulo cache effects.

8.1.3 Cache Simulation

In the native executions, cycles spent stalled on cache misses were discounted. To account

for cache effects, both local and due to coherence, the memory traces generated during the

emulation runs were fed into an MTX cache simulator. Table 8.1 shows the parameters

2The estimate is conservative because it does not account for stalls due to floating point loads and stores,
and it does not account for lost ILP due to cache misses. It only accounts for cycles where no instructions
could execute due to cache misses in the integer pipeline.
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L1D L2 L3 L4
Size 16 KB 256 KB 12 MB 64 MB
Line size 64 bytes 128 bytes 128 bytes 128 bytes
Associativity 4 way 8 way 12 way 256 way
Minimum Latency 1 cycle 5 cycles 10 cycles 50 cycles
Merge Latency 1 cycle 2 cycles 7 cycles 25 cycles(per line)
Commit Latency 1 cycle 1 cycle 1 cycle 1 cycle(per line)
Sharing Private Private Shared Shared

Table 8.1: MTX cache parameters

for the caches simulated. All caches stored speculative state making the speculation level

between the L4 cache and main memory. The latency for a cache access is given by the

minimum latency shown in the table plus the merge latency multiplied by the number of

lines that were merged to satisfy a given request. For commits, the simulation modeled peer

caches committing in parallel. However, different levels of caches committed sequentially

starting from the L1 caches and proceeding toward the L4 cache. For each cache, the total

time to commit is given by the commit latency multiplied by the number of cache lines

present in the given cache in the committing memory version. For rollback, all caches

discarded speculative data in parallel. Within each cache, a flash rollback mechanism was

modeled. Finally, the simulated caches did not support hardware conflict detection as this

is handled in the code generated by the VELOCITY SpecDSWP implementation.

This cache configuration was used for all simulations, regardless of the number of

threads generated by SpecDSWP. For all the applications explored, speculative state never

overflowed from the speculative caches.

The cache simulator outputs a cycle count per thread per loop iteration. Adding the

results of the cache simulation to the native execution measurements estimates the total

time taken per loop iteration by each thread by conservatively assuming no instructions (on

the core executing the memory operation) execute in the shadow of a cache miss.
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8.1.4 Scheduling

Given the execution time for each loop iteration in each thread, a scheduler is used to com-

pute the total loop execution time accounting for parallelism between the threads. The

scheduler models a 32-core Itanium® 2 system. Each thread is assigned to a core, and

the scheduler starts a particular loop iteration for a thread only when the respective thread

has completed executing the previous loop iteration assigned to it and when all data de-

pendences (i.e., produce/consume dependences) are satisfied. The scheduler only starts a

particular iteration for a given thread after the entire iteration has completed in a dependent

thread. This models the worst case where a produce instruction at the end of an iteration

feeds a consume at the beginning of the corresponding iteration. Misspeculation is mod-

eled by forcing all threads to synchronize, then using the measured performance for the

misspeculated iteration. Speculative execution recommences after the misspeculated itera-

tion completes. The execution time for the parallel loop is taken to be the latest time that

any core completes its last loop iteration.

8.1.5 Measuring Baseline Performance

To ensure a fair comparison, the baseline, single-threaded performance was measured us-

ing a similar methodology. The single-threaded code was instrumented to measure the

execution time of each loop iteration using the hardware performance counters. Just as in

the multi-threaded case, the raw cycle count was adjusted to discount time spent stalled

on cache misses. A memory trace from the single-threaded execution is fed to the cache

simulator to compute the time taken by each loop iteration in the memory system. The sum

of the adjusted cycle count with the result of the cache simulator gives the time taken for

each loop iteration. The sum of these times determines the total time taken to execute the

original, single-threaded loop.
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Average Largest SCC # of % of
% of Iterations Weight Saved Speculation Iters. with

Benchmark Function Runtime per Invoc. N/S Spec. Regs Types Misspec.
175.vpr try swap 99% 5971.0 99.57% 3.31% 13 A, CV, CF, MV 9.1%
181.mcf primal net simplex 75% 17428.8 98.37% 44.55% 10 CF, SS, MV 0.2%
197.parser batch process 98% 345.0 99.31% 0.01% 9 CV, MV 0.0%
256.bzip2 compressStream 77% 12.0 99.88% 1.58% 10 A, MV 0.0%
052.alvinn main 98% 30.0 78.56% 38.33% 9 MV 0.0%
mpeg2enc dist1 56% 6.3 100.00% 1.64% 10 CF 15.9%

N/S = Non-Speculative, A = Alias, CV = Committed Value, CF = Control Flow, SS = Silent Store, MV = Memory Versioning

Table 8.2: Benchmark Details

8.2 Experimental Results

Table 8.2 shows statistics about the loops chosen for parallelization. These loops account

for between 56% and 99% of the total benchmark execution time. Table 8.2 also presents

statistics about the largest SCC in the PDG for each loop both before and after speculating

dependences. The weights are estimated by summing the profile weights in each SCC and

normalizing by the sum of the profile weights for all the operations in the loop. If an SCC

did not have any dependences carried by the loop being parallelized, it was a candidate

for inclusion in a parallel stage. Consequently, its weight is never considered the largest.

Notice that for all the benchmarks, speculation dramatically decreases the weight of the

largest SCC. As was described in Chapter 2, this dramatically increases the maximum

speedup attainable by SpecDSWP.

All loops were compiled to generate 3 worker stages. In each case, the compiler was

given the freedom to use parallel-stage DSWP to replicate any stage and use at most 31

threads. One thread was reserved to act as the commit thread. Figure 8.2 shows the speedup

over single-threaded execution for these parallelizations. For each loop, the loop speedup

and the benchmark speedup (assuming only the given loop is parallelized) are shown. In

addition, the graph shows the number of threads needed to attain this speedup. Note, in the

graph the speedup is absolute (not percent speedup) and both y-axes are logarithmic. All

benchmarks exhibit considerable loop speedup ranging from 1.6x to 18.1x. The average

speedup over all parallelized loops was 3.23x. The rest of this section examines the results

of several of benchmarks in more detail to highlight interesting features of SpecDSWP and
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Figure 8.2: Speedup vs. single threaded code.

MTXs.

8.2.1 A Closer Look: Misspeculation

Of the loops that were parallelized, only mpeg2enc and 175.vpr suffered a significant

performance loss due to misspeculation. This performance loss is directly attributable to

the delay in detecting misspeculation, the significant misspeculation rate, and the cost of

recovery. For 175.vpr, the misspeculation and its penalty are unavoidable for the par-

allelization chosen by the heuristic (see Section 8.2.3. However, for mpeg2enc, the loss

may be avoidable.

In mpeg2enc, only loop exits were speculated. However, as Table 8.2 shows, mpeg2enc

has only a few iterations per invocation. This translates to significant misspeculation. As

SpecDSWP is currently implemented, upon misspeculation, state is rolled back to the state

at the beginning of the iteration, and the iteration is re-executed non-speculatively. How-

ever, in the case of a loop exit misspeculation, observe that no values have been incorrectly

computed, only additional work has been done. Consequently, provided no live-out values

have been overwritten, it is only necessary to squash the speculative work; the iteration
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does not have to be rolled back and re-executed. The savings can be significant. For ex-

ample, in mpeg2enc, on average a single-threaded loop iteration takes 120 cycles. The

parallelized loop iteration, conversely, takes about 53 cycles. After one misspeculation, due

to a cold branch predictor, the recovery iteration took 179 cycles to execute. Reclaiming

these 179 cycles would significantly close the performance gap between the iterations with-

out misspeculation and all the iterations. Estimating the resulting speedup by ignoring the

last iteration of each loop invocation yields a 2.24x loop speedup corresponding to a 1.45x

benchmark speedup. Augmenting the SpecDSWP implementation with this optimization

has been left to future work.

8.2.2 A Closer Look: Unspeculation

Recall from Section 5.2 that unspeculation allows SpecDSWP to consider many depen-

dences for speculation and then select only those that are important for a particular paral-

lelization. For the loops parallelized in this evaluation, unspeculation played a particularly

important role in 175.vpr and 181.mcf. In both of these applications, it was not pos-

sible to select alias frequency and branch bias thresholds that would allow the compiler to

speculate dependences important for parallelization without causing the compiler to spec-

ulate extraneous dependences that lead to degraded runtime performance. In fact, without

unspeculation, all values of the parameters either lead to no parallelization opportunity or a

runtime slow down when compared to the single-threaded execution. Unspeculation, how-

ever, allowed the set of speculated dependences to be selected intelligently leading to loop

speedups of 1.99 and 1.67, respectively. While not shown here, applying SpecDSWP to

several SPEC® applications, hand-modified to expose parallelism [14], also necessitated

unspeculation to provide the compiler sufficient freedom to speculate dependences inhibit-

ing parallelization while not causing over-speculation.
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8.2.3 A Closer Look: Committed Value Speculation

Two of the parallelized loops, 175.vpr and 197.parser, benefited from committed

value speculation. Recall, this speculation allows a thread to read the value of a memory

location from committed state as opposed to using the most recent speculative value. In the

context 197.parser, the main loop reuses several variables from iteration to iteration.

However, rather than re-initializing these variables at the beginning of each iteration, the

code relies on canceling operations in the previous iteration. For example, each iteration in-

serts items into a linked list, however each item is removed before the iteration completes.

Consequently, at the beginning of each loop iteration the list is empty. However, com-

piler analyses could not prove the absence of a loop-carried dependence this dependence

prevents a large SCC from being allocated to a parallel-stage. However, the loop-carried

dependence can be speculatively broken with committed value speculation. Since the state

of the list in committed memory is always empty, the speculation never fails and enables

197.parser to be parallelized with no runtime misspeculation. Notice that alias mis-

speculation would not suffice because the list’s contents do frequently change meaning that

corresponding loads and stores do frequently alias.

In 175.vpr, the parallelized loop is attempting to find the optimal placement of logic

blocks in a circuit. The application uses simulated annealing to estimate the optimal place-

ment. In the algorithm, given an initial block placement, two logic blocks are selected at

random and their positions are swapped. If the swap improves the quality of the placement,

the logic blocks remain in their new positions. If the quality decreases, the algorithm ran-

domly decides whether to keep the blocks in their new positions. The random decision is

controlled by “temperature”. The higher the temperature, the more likely the algorithm will

retain an swap that reduced the placement’s quality. This allows the algorithm to escape a

local minimum in search of a better global minimum. With each invocation of the loop, the

temperature is decreased to ultimately converge to a final placement.

Parallel-stage SpecDSWP was used to parallelize the loop. In the first pipeline stage
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in the parallelization, several random numbers are computed. This process is sequential

since a pseudo-random number generator is used. The parallel stage was responsible for

using the random numbers to swap blocks, check the quality change, and swap back if

necessary. Two instances of the parallel stage should not conflict if the blocks selected

for swapping were different and did not affect the quality calculation, or if the earlier

instances of the parallel-stage ends up undoing its swap. Unfortunately, with traditional

alias speculation, even if the blocks are swapped and then unswapped, the loads from the

subsequent iteration will be flow dependent on the unswapping stores from the previous

iteration. Committed value speculation once again allows the later iterations to assume that

the earlier ones will not retain their swap thus enabling parallelism. While the temperature

is high, the speculation fails frequently leading to little if any parallelism. However, in later

loop invocations, when the temperature is low, few swaps are retained leading to significant

parallelism.

The performance of 175.vpr could be improved further if the architecture allowed

a thread to push a cache line to another thread. Recall from Section 6.1.3 that alias and

committed value misspeculation is detected in software. This means for each dynamic

speculation, two threads will load the same address; one thread will speculatively load a

value and then another will non-speculative reload the value to confirm the speculation. In

175.vpr, the second load was almost always an L2 cache miss slowing the thread verify-

ing speculation. However, if the thread executing the first load were to “prefetch” the value

for the second thread, then this penalty could be avoided. Figure 8.3(c) shows the perfor-

mance of 175.vpr with and without this optimization. The points labeled “Base” do not

use the optimization, while the points labeled “Push” measure the performance had the op-

timization been available. On average, this optimization improved the performance by 5%

over single-threaded execution. Other applications were not affected by this optimization

since the cache miss in the misspeculation detection code represented a small fraction of

the execution time of the corresponding thread.
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8.2.4 A Closer Look: Memory Versioning

While all parallelized loops rely on MTXs to rollback speculative stores, the loops from

052.alvinn, 197.parser, 256.bzip2, and 181.mcf benefit from the effective

privatization provided by MTXs. In 052.alvinn, MTXs were used to privatize several

arrays. The parallelized loop contains several inner loops, and each inner loop scans an

input array and produces an output array that feeds the subsequent inner loop. While the

loop is not DOALL (dependences exist between invocations of the inner loops), each inner

loop can be put in its own thread. Each stage in the SpecDSWP pipeline, therefore, is one

of the inner loops. However, privatization is needed to allow later invocations of an early

inner loop to execute before earlier invocations of a later inner loop have finished. Note that

052.alvinn did not require any true speculation. False dependences broken by memory

versioning were sufficient to achieve parallelism.

The privatization necessary in 052.alvinn could be achieved statically without so-

phisticated array dependence analysis. In 256.bzip2, however, static privatization is not

as simple. In 256.bzip2, each loop iteration reads data from the input file, run-length

encodes (RLE) it storing the results to a global array, and then applies the remainder of the

bzip2 compression algorithm to the data stored in the array. Since the RLE phase can pro-

duce variable sized output, the amount of data stored in the array is tracked by a separate

global variable, last. Later phases of the compression algorithm iterate over the entire

contents of the array using last as the upper bound for the iteration. Simple points-to

analysis concludes that accesses to the array from later iterations of the loop could read

values stored into the array from earlier iterations. Identifying that this is impossible is

necessary for privatization, and therefore also necessary to allow for many SCCs in the

dependence graph to be replicated with parallel stage SpecDSWP. Unfortunately, proving

this impossibility statically would require whole-program array dependence tests. MTXs

provide the privatization dynamically without relying on such analyses. The pattern exhib-

ited by 197.parser is similar.
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Finally, in 181.mcf a linked data structure was privatized by MTXs. In the paral-

lelized loop, execution of the function refresh potential could be overlapped with

other code within the primal net simplex loop by speculating that refresh potential

would not change a node’s potential (using silent store speculation). MTXs allow subse-

quent iterations of the loop to modify the tree data structure used by refresh potential

without interfering with refresh potential’s computation. Due to the complexity of

the left-child, right-sibling tree data structure, it is unlikely that compiler privatization could

ever achieve the effects of the memory versioning provided by MTXs.

8.2.5 A Closer Look: Scalability

Of the application loops parallelized, 197.parser, 256.bzip2, and 175.vpr bene-

fitted from having a stage of the pipeline replicated by parallel-stage SpecDSWP. Con-

sequently, while Figure 8.2 showed the speedup for a fixed number of threads, fewer or

more threads could be used depending on the system being targeted. Figure 8.3 shows the

performance across a wider range of threads.

Each of the three applications exhibits different scalability behavior. For 197.parser

more threads continues to improve the performance of the application all the way up to

32 threads. The speedup attained is not linearly related to the number of threads due to

imbalance in the workload. There are several loop iterations which take 10 to 100 times

longer to execute than the other iterations. If each of these iterations is executed by a

different thread, the benefit of an additional thread diminishes.

For 256.bzip2, after 12 threads, the performance saturates. Looking at Table 8.2,

this is not surprising as, on average, the loop only iterates 12 times per invocation. Con-

sequently, additional threads never receive any work. Larger input sets would be able to

leverage many more threads.

Finally, for 175.vpr, the performance also peaks after 12 threads. Unlike in 256.bzip2,

this is not due to small input size, but rather due to misspeculation. As was mentioned
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Figure 8.3: Scalability of parallel-stage SpecDSWP.
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above, in early invocations, nearby iterations are frequently dependent leading to a high

misspeculation rate. This eliminates the benefits of replicating a stage using parallel-stage

SpecDSWP. In later invocations, on average 30 iterations can execute before a misspecula-

tion. However, after 12 threads, Amdahl’s law predicts the diminishing returns; improving

the performance of later invocations does not significantly reduce the application’s runtime

because the early invocations dominate.

In addition to these applications, Bridges et al. have shown that with several small

modifications to the application, parallel-stage SpecDSWP is a promising approach for

extracting scalable parallelism [14, 15].
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Chapter 9

Future Directions and Conclusions

The shift to multi-core processors has marked a major upheaval in the computing land-

scape. Previously, newer microprocessors delivered increased computing power improving

the performance of existing applications and enabling new ones. Compilers smoothed the

transition from one microarchitecture to the next by tuning the compiled code for the id-

iosyncrasies of each processor. However, with multi-core processors, the hardware contin-

ues to provide additional compute power, but existing applications do not directly benefit.

To leverage this additional compute power, applications must be multi-threaded. Unfortu-

nately, as decades of experience has shown, manually writing correct and well-performing

multi-threaded applications is tedious and difficult. Additionally, outside of certain niche

domains, compilers have been unable to help programmers automatically translate their

applications to leverage multiple processors.

Since pushing the burden of parallelization on to developers would dramatically slow

the pace of innovation in computing applications, compilers must overcome the myriad of

challenges and bridge the gap between simple programming models understandable by hu-

mans and the multi-core programming model exposed by modern hardware. Building on

recent promising research, this thesis pushes the state of the art in automatic parallelization

forward by introducing powerful speculative mechanisms to extend the reach and appli-
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cability of pipelined parallelism transformations. Before concluding the dissertation, Sec-

tion 9.1 discusses several promising areas of future research. Then Section 9.2 summarizes

the contributions of this work.

9.1 Future Directions

This thesis has demonstrated the utility of Speculative DSWP in automatically paralleliz-

ing applications. While the groundwork for the technique is presented here, there remain

several challenges for this technology to be adopted by main stream developers. Here we

summarize the most important future research directions.

• Dynamic Compilation and Efficient Profiling - The techniques presented in this dis-

sertation heavily leverage profiling to enable the compiler to optimize for the com-

mon case (while preserving correctness) rather than pessimistically assuming the

worst case manifests frequently. However, profiling requires application develop-

ers to find representative input data to drive the feedback directed optimization. In

certain domains, finding representative input is difficult or simply can not be found

because many different usage patterns exist.

Applying the techniques discussed in this dissertation dynamically is a promising

approach to mitigating the problem of finding representative inputs. However, to en-

able applying SpecDSWP dynamically, novel low-cost methods to profile running

applications are necessary. In particular, low cost techniques to profile memory de-

pendences and value locality are essential.

• Static Analysis - While profiling is essential to avoid optimizing for the worst case,

profiling is often also used to overcome the limitations of conservative analysis. Just

in the applications parallelized in the experimental evaluation of SpecDSWP, there

were several instances where speculation was used to break a dependence, when,
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in reality the dependence did not really exist. Improving the accuracy of analysis,

particularly memory dependence analysis, can reduce the dependence on profiling

and potentially improve execution efficiency. If fewer dependences need be profiled,

the cost of profiling can be reduced significantly, allowing the profiling to occur at

runtime. Similarly, knowing that a dependence is absent avoids introducing code and

burdening limited hardware resources to detect and recover from misspeculation. For

example, informing the compiler that a false memory dependence does not exist may

allow it to not create a new memory version to isolate the two instructions. Research

in memory shape analysis [31, 32] seems to be a promising approach to improve

memory dependence analysis.

• Software MTXs - SpecDSWP relies on MTXs to enable its speculation. Unfortu-

nately, support for even single-threaded transactions has not yet appeared in main-

stream microprocessors since introducing support will not benefit any existing appli-

cations. Similarly, developers and commercial compilers are not using transactional

memories due to the lack of hardware support. Breaking this cycle relies on an effi-

cient software implementation. While a software implementation of MTXs may not

perform as well as a hardware one, it can certainly provide the impetus for compiler

writers and application developers to begin targeting MTXs. The experience gained

with this initial deployment of MTXs will allow hardware manufacturers to iden-

tify the degree of hardware support necessary. Ideally, little or no hardware support

would be incorporated to directly support MTXs, but instead more general mecha-

nisms upon which fast MTXs as well as other yet to be conceived techniques could

be built.

• Programmer Support - Finally, this dissertation focused on parallelizing applica-

tions automatically, without any assistance from the application developer. While

this exercise was enlightening and demonstrated that parallelization is possible in
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many cases, limited support from the application developer is likely to extend the

applicability of the techniques discussed in this work. For example, work by Bridges

et al. has shown that two simple annotations can enable a SpecDSWP compiler to ex-

tract parallelism from applications where the techniques described in this dissertation

would prove insufficient [14]. Enabling wide-spread use of such annotations requires

further research into their general applicability, usability studies to understand how

developers would use and misuse these annotations, and new compiler analyses to

protect programmers from unintended consequences of such annotations.

9.2 Conclusions

This dissertation extends the state-of-the-art in automatic parallelization by bringing spec-

ulation to pipeline parallelism. Past work has demonstrated the virtues of pipeline paral-

lelism. In particular, how it gracefully maps dependences within a loop to acyclic inter-

thread communication. This allows for efficient execution even in the face of long inter-

core communication latency and dynamic variability in thread performance. This thesis

extends the pipeline parallelism paradigm with speculation technology that breaks criti-

cal path dependences improving the scalability and applicability of pipeline parallelism.

This dissertation demonstrates how pipeline parallelism offers the flexibility to speculate

only those dependences which are predictable and will yield significant improvements in

performance. Further, the dissertation introduced a heuristic algorithm for selecting these

dependences to speculate. This algorithm relied on conditional analysis, a novel analysis

approach, introduced in this thesis, that allows data flow analysis to be performed on many

related CFGs simultaneously.

To support SpecDSWP, this dissertation also introduces multi-threaded transactions.

Transactional memories, in general, have emerged as a promising platform for multi-

threaded programming since they provide a foundation for programmers and compilers to
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optimize their applications while ignoring infrequent dependences that inhibit paralleliza-

tion. MTXs are a generalization of conventional transactions that allows multiple threads

to cooperatively or speculatively participate in a single transaction. While designed with

SpecDSWP as its initial application, MTXs provide a unified platform for code written

in a transactional programming model and for programs automatically parallelized using

speculation. MTXs open the door for wider-scale adoption of transactional programming

by lifting the barriers imposed by the single-threaded atomicity problem. With MTXs,

automatic parallelization frameworks are free to balance the cost of buffering speculative

state with the cost of misspeculation recovery. Further, with MTXs, compilers, application

writers, and library writers are free to parallelize functions nested within atomic regions in

transactional code providing modularity and composability to parallel programs.

In conclusion, this thesis demonstrates that Speculative DSWP is a promising tool in

a compiler writer’s tool box. Similarly, a runtime system equipped with MTXs opens

the door to many potential parallelization techniques. This dissertation demonstrated the

promise of these technologies through an implementation of Speculative DSWP in the

VELOCITY compiler running on an MTX enabled multi-core processor. The evaluation

demonstrated a mean 2.31x speedup across the applications parallelized with misspecula-

tions rates ranging from 0% to only 16%. The techniques presented in this dissertation

provide a solid foundation for future work in unlocking the potential of multi-core proces-

sors and larger scale parallel systems.
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