
HARDWARE MULTITHREADED TRANSACTIONS:

ENABLING SPECULATIVE MULTITHREADED

PIPELINE PARALLELIZATION FOR COMPLEX

PROGRAMS

JORDAN FIX

A DISSERTATION

PRESENTED TO THE FACULTY

OF PRINCETON UNIVERSITY

IN CANDIDACY FOR THE DEGREE

OF DOCTOR OF PHILOSOPHY

RECOMMENDED FOR ACCEPTANCE

BY THE DEPARTMENT OF

COMPUTER SCIENCE

ADVISER: DAVID I. AUGUST

JANUARY 2020

c© Copyright by Jordan Fix, 2019.

All Rights Reserved

Abstract

Speculation with transactional memory systems helps programmers and compilers pro-

duce profitable thread-level parallel programs. Prior work shows that supporting transac-

tions that can span multiple threads, rather than requiring transactions be contained within

a single thread, enables new types of speculative parallelization techniques for both pro-

grammers and parallelizing compilers.

Unfortunately, software support for multi-threaded transactions (MTXs) comes with

significant additional inter-thread communication overhead for speculation validation. This

overhead can make otherwise good parallelization unprofitable for programs with sizeable

read and write sets.

Some programs using these prior software MTXs overcame this problem through sig-

nificant efforts by expert programmers to minimize these sets and optimize communica-

tion, capabilities which compiler technology has been unable to achieve to date. Instead,

this dissertation makes speculative parallelization less laborious and more feasible through

low-overhead speculation validation, presenting the first complete design, implementation,

and evaluation of hardware MTXs.

Even with maximal speculation validation of every load and store inside transactions of

tens to hundreds of millions of instructions, profitable parallelization of complex programs

can be achieved. Across 8 benchmarks, this system achieves a geomean speedup of 104%

over sequential execution on a multicore machine with 4 cores, with modest increases in

power and energy consumption. This work could be used as a building block to enable

more realistic automatic parallelization of complex programs, by providing low-overhead,

long-running, resilient transactions that support a diverse set of parallel paradigm options.

iii

Acknowledgments

I would first like to thank my advisor Professor David I. August for the many years of

support he provided me. Through so many years of research guidance and long nights of

paper and proposal deadlines, he has helped me develop into a much better researcher and

writer. He helped inspire a variety of different projects I was fortunate to be a part of during

my many years in Princeton. Additionally, the culture he set in the Liberty Research Group

created a spirit of friendship, selflessness, and camaraderie that made my time in graduate

school so much more fulfilling.

I very much appreciate the time he and Dr. David Callahan spent reading and providing

feedback and guidance for this dissertation. Additionally, I want to thank Professor An-

drew Appel, Professor Margaret Martonosi, and Professor David Wentzlaff for serving as

examiners on my committee, and for providing early feedback on how I could make my

research stronger.

Next, the members of the Liberty Research Group made possible all of my work and

growth as a computer scientist from my very first day in Princeton. They are all deserving

of my gratitude – Arun Raman, Tom Jablin, Hanjun Kim, Prakash Prabhu, Nick Johnson,

Feng Liu, Matt Zoufaly, Stephen Beard, Taewook Oh, Soumyadeep Ghosh, Heejin Ahn,

Hansen Zhang, Nayana Prasad Nagendra, Sergiy Popovych, Sotiris Apostolakis, and So-

phie Qiu. The many long hours of writing and rewriting papers, of coding and running

experiments, of perfecting every pixel on every slide of presentations, and of complaining

about graduate school with all of you made my years in Princeton something I will never

forget, for better or for worse.

I especially want to thank Nayana, Sotiris, Hansen, and Deep for helping with different

parts of the project behind this dissertation, from writing code to proofreading papers and

nit-picking presentations. I could not have gotten past the finish line without your help,

and your years of help are greatly appreciated. Additionally, I would like to thank Neil

Vachharajani for blazing the very beginning of this project. His work provided a starting

iv

point for me that was an invaluable source of inspiration.

I also want to thank other members of the Computer Science department, including

Nicki Gotsis and Melissa Lawton, the graduate coordinators during my time at Princeton,

who helped me navigate the many requirements during my generals, pre-FPO and FPO.

Outside of my academic time in Princeton, I would not have survived without 6 Madi-

son. My roommates Aaron, Ed, and Pawel made our many years so much fun. I enjoyed

our many ski, surf, and beach trips, BBQs and cocktails alongside cornhole in the backyard,

and so much more. To everyone else who were regular faces in our house and on our many

outings, including Tanya, Alex, Julia, Daniel, Harvey, and so many others, thank you for

listening to me blow off steam in between all of the fun.

To my wife Rotem, thank you for pushing me to finish this dissertation. I am not sure

I would have gotten to the end without you. I so very appreciate the support you have

provided across the past few years. My final years in Princeton were made so much more

amazing thanks to you, whether in the beginning while taking many back and forth trips to

Philly, or Skyping across the world with you.

Lastly, I want to thank my parents and sister, who were also instrumental in pushing me

not just to finish graduate school but to start in the first place. I would never have gotten

through all of these years of education without your advice and support, and it will always

be appreciated.

I appreciate all of the support I received while in school. My time at Princeton and the

research in this dissertation was funded by a variety of sources, including: “XPS: Exploit-

ing Parallel & Scalabilty” (NSF Award DMS-1439085); “SI2-SSI: Software Infrastructure

for Sustained Innovation - Scientific Software Integration” (NSF Award OCI-1047879);

and “SPARCHS: Symbiotic, Polymorphic, Automatic, Resilient, Clean-slate, Host Secu-

rity” (DARPA Award FA8750-10-2-0253).

v

For my parents, who supported me through too many years of education.

vi

Contents

Abstract . iii

Acknowledgments . iv

List of Tables . x

List of Figures . xii

1 Introduction 1

2 Background and Motivation 6

2.1 Thread Level Parallelization Techniques 6

2.2 Speculation . 8

2.3 Past Multithreaded Transaction Proposals 10

3 Design Overview of the HMTX System 14

3.1 Overview . 14

3.2 New HMTX Instructions . 15

3.3 MTX Instruction Usage . 17

3.4 Supporting Complex, Long-Running Transactions 20

4 Detailed Design of the HMTX System 22

4.1 Cache Coherence Protocol Modifications 22

4.2 Cache Line Versioning . 23

4.3 Description and Operation of Speculative Lines and Requests 26

vii

4.4 Operation of Speculative Accesses . 30

4.5 Implementing Commits and Aborts 34

4.6 Efficient VID Comparisons . 35

4.7 Changing Between VIDs and Store-To-Load Forwarding 37

4.8 Miss Status Holding Registers . 39

4.8.1 Background on Miss Status Holding Registers 39

4.8.2 Miss Status Holding Registers in HMTX 40

4.9 Aborting Transactions and Memory Overflow 41

4.10 Privatized Versions of Memory . 43

4.11 Operating System and Program Support 44

5 Supporting and Optimizing For Complex, Long-Running Transac-

tions 46

5.1 Squashed Loads and False Misspeculation 46

5.2 Surviving Interrupts and Exceptions 49

5.3 Commit and Abort Handling . 50

5.3.1 Efficient per Commit Action 50

5.3.2 Lazy Commit Processing via VID Overflow and Reset 51

5.3.3 Abort Processing . 52

5.3.4 Summary of Commit and Abort Design 53

5.4 Speculative Memory Overflowing the Caches 54

6 Complete Design Overview 55

7 Preserving Original Program Semantics 58

7.1 Argument For Respecting Original Program Data Hazards 58

7.2 Exhaustive Analysis of All Possible States 61

7.3 Memory Consistency Model and HMTX Speculative Memory 70

viii

8 Evaluation 72

8.1 Methodology . 72

8.2 Benchmarks . 73

8.3 Hot Loop Speedup . 75

8.4 Aborted Transactions . 76

8.4.1 Aborts Due to Incorrect Speculative Assumptions 77

8.4.2 Aborts Due to Lack of Capacity for Speculative Memory . . . 78

8.5 Study of Performance vs. Cache Sizes 78

8.5.1 Speedups Across Varying Cache Configurations 80

8.5.2 Cache Miss Rates Across Varying Cache Configurations 83

8.5.3 Area, Power, and Energy . 85

8.6 Cost Benefit Analysis of HMTX Extensions 88

9 Related Work 90

9.1 MTX by Vachharajani [1] . 90

9.2 SMTX and DSMTX . 91

9.3 Single-Threaded TM Systems . 92

10 Future Work 95

10.1 Automatic Parallelization . 95

10.2 Automatic Tuning to Support Optimal Parallelism and Performance . 96

10.3 “Shared by Default” vs. “Privatized By Default” 97

10.4 Speculative Memory Leaving the Cache 97

10.5 Scaling to More Cores and Bigger Workloads 98

10.6 Better Software Support for Needed Speculative Operations 99

10.7 Using HMTX With Programs That Are Already Multithreaded . . . 99

10.8 Bringing HMTX Into Real World Usage 100

11 Conclusion 101

ix

List of Tables

3.1 New instructions added to the ISA. Note that all of these instructions

include an implicit memory barrier. 16

4.1 Properties of the speculative coherent states. 27

4.2 Description of speculative states. (m,h) represents the modVID and

highVID. Note that VIDs correspond to the execution order of the

original sequential program. Therefore, speculative modifications to

lines that have already been read or written by a larger VID signal a

potential data hazard and misspeculation. 28

4.3 Permitted cache states of a cache line. Note that the MOESI portion of

the table (upper left quadrant) is unchanged from the default MOESI

implementation. Each row represents the state for a line that exists in

the cache system. The column in each row represents if another line

with the same address and different VID must exist (XX), may exist

(X), or cannot exist (5) in the cache system. For example, if an S-O

line exists, then in the cache system there must be an S-M version

(XX), and there may be another S-O version or S-S copy (X). Note

that a line cannot exist in both a speculative and non-speculative state

simultaneously, as seen in the the lower left and upper right quadrants.

That is, if a speculative line exists, then no non-speculative valid line

(MOES) can also exist, and vice versa. 31

x

8.1 Architectural Configuration in gem5. 73

8.2 Statistics from simulated speculative execution using HMTX, and from

native sequential non-speculative execution. 74

8.3 Area, power, and energy results on a simulated 4-core machine. “All”

represents all evaluated benchmarks, while “Comp.” represents only

those benchmarks with an equivalent SMTX version to compare against.

Note the difference in geomean (GM) energy between “Comp.” and

“All” is largely due to the short execution time of ispell compared to

other benchmarks. 87

8.4 Area and Leakage for both HMTX with L1 of 32kB and L2 of 16MB,

and Sequential and SMTX with L1 of 64kB and L2 of 32MB. 89

9.1 Comparison of HMTX to other works. 94

xi

List of Figures

2.1 Execution timing diagram of the first iterations of a loop for DOACROSS,

DSWP, and PS-DSWP with different inter-core latencies. 7

2.2 On an MTX STM system, whole program speedup over sequential

execution with a minimal R/W set vs. a substantial R/W set. 12

3.1 Pseudocode of execution paradigm options for an example program,

with sequential (a), DOACROSS with TLS (b), and speculative DSWP

with HMTX (c, d) versions. In DSWP, Stage 1 (c) does not commit;

after each iteration, it produces the VID of the transaction it just

completed for Stage 2 (d) to consume and continue with execution.

On abort, both stages execute their handler functions (set prior by

MTX INIT), and the queues would be flushed. 18

4.1 State diagram for speculative accesses. All accesses are assumed to

be speculative, i.e. with non-zero VID. If a transition label does not

mention a condition check for an access (e.g. “Write < h”), then it is

assumed the access hit the version of the line given the conditions men-

tioned in Chapter 4.3. O, S, and I states are not shown for simplicity;

they would follow the same path as M or E once acquiring exclusive

access. 24

xii

4.2 Circuit diagram displaying the basic logic needed to implement new

hit logic required for the HMTX speculative coherence protocol. “St”

represents the status bits per cache line, i.e. Valid, Writable, Dirty,

and the newly added Speculative. Items in green are added for HMTX. 29

4.3 Pseudocode and cache states of the Figure 3.1 example. Step 0 signi-

fies the state prior to entering the parallelized loop. Note that cache

state is only shown for address 0xa. All of these lines could exist any-

where in the cache. Lines with solid green backgrounds have had their

coherent state and/or VIDs changed but not the data from the line

itself. Lines with checkered yellow backgrounds have additionally had

the data modified. 32

4.4 Commit state diagram. 35

4.5 Abort state diagram. Note that S-E lines must have modVID == 0,

hence S-E has no transition for modVID > 0. Also note that on an

abort, all speculative memory in the cache is flushed, hence there is no

concept of an “abort VID”. 35

6.1 Final Overview. Those items highlighted in red are added for HMTX.

St represents each line’s coherent status before addition of the Specu-

lative Bit SB. 56

6.2 Structure of a cache line. Those components highlighted in red are

part of the HMTX design. In total, 13 bits are added per line: 1 bit

for the Speculative bit, and 6 bits each for modVID and highVID. . . 57

xiii

7.1 Depiction of all possible cache states as the system receives two requests

with the same VID. The yellow section on the far left represents all

possible initial cache states. The green section in the middle represents

all possible cache after a write request with VID a. Given these new

states, the blue section in the upper right represents all possible cache

states after another write request with VID a. The red section in the

lower right represents all possible cache states after a read request with

VID a instead of a write request. 64

7.2 Depiction of all possible cache states as the system receives two requests

with the same VID. The yellow section on the far left represents all

possible initial cache states. The green section in the middle represents

all possible cache after a read request with VID a. Given these new

states, the blue section in the upper right represents all possible cache

states after a write request with VID a. The red section in the lower

right represents all possible cache states after a read request with VID

a instead of a write request. 65

7.3 Depiction of all possible cache states as the system receives two requests

with VIDs a and b in that order. The yellow section on the far left

represents all possible initial cache states. The green section in the

middle represents all possible cache after a write request with VID a.

Given these new states, the blue section in the upper right represents all

possible cache states after write request with VID b. The red section in

the lower right represents all possible cache states after a read request

with VID b instead of a write request. 66

xiv

7.4 Depiction of all possible cache states as the system receives two requests

with VIDs a and b in that order. The yellow section on the far left

represents all possible initial cache states. The green section in the

middle represents all possible cache after a read request with VID a.

Given these new states, the blue section in the upper right represents all

possible cache states after write request with VID b. The red section in

the lower right represents all possible cache states after a read request

with VID b instead of a write request. 67

7.5 Depiction of all possible cache states as the system receives two requests

with VIDs b and a in that order. The yellow section on the far left

represents all possible initial cache states. The green section in the

middle represents all possible cache after a write request with VID b.

Given these new states, the blue section in the upper right represents all

possible cache states after write request with VID a. The red section in

the lower right represents all possible cache states after a read request

with VID a instead of a write request. 68

7.6 Depiction of all possible cache states as the system receives two requests

with VIDs b and a in that order. The yellow section on the far left

represents all possible initial cache states. The green section in the

middle represents all possible cache after a read request with VID b.

Given these new states, the blue section in the upper right represents all

possible cache states after write request with VID a. The red section in

the lower right represents all possible cache states after a read request

with VID a instead of a write request. 69

xv

8.1 Hot loop speedup over sequential using 4 cores. SMTX versions have

minimal read and write sets due to expert manual transformation.

HMTX versions perform speculation validation on every read and write

inside a transaction, i.e. the maximum possible read and write set.

Note that there is no SMTX comparison for 186.crafty and ispell; ac-

cordingly, “Comp.” represents those benchmarks with an SMTX com-

parison, while “All” represents all benchmarks. 76

8.2 (Top) Bar chart depicting average size of the read and write sets in

kilobytes. (Bottom) Table displaying the raw data. 79

8.3 HMTX and SMTX speedup over sequential execution for 130.li ((a),

(c), (e)) and 256.bzip2 ((b), (d), (f)) over various cache configurations.

Across the x-axis, one or both of the L1 and L2 are halved for each

configuration. If a configuration has an asterisk, a dirty speculative

memory overflowed the L2 cache. 81

8.4 Cache miss rates for 130.li ((a) and (c)) and 256.bzip2 ((b) and (d))

across various cache configurations. Cache sizes are halved across the x-

axis, with the same configurations as from Figure 8.3. For HMTX and

SMTX, the miss rate shown is an average of the threads which are on

the critical path, i.e. those threads which are part of the parallel stage

(PS) for these benchmarks. For Sequential, there is only one thread,

and so its miss rate is across the whole loop, meaning it also includes

the logic from other stages not measured for HMTX and SMTX. If a

configuration has an asterisk, a dirty speculative memory overflowed

the L2 cache. 84

xvi

8.5 Hot loop speedup over sequential using 4 cores. SMTX and Sequential

versions use an L1 of 64kB and an L2 of 32MB, while HMTX versions

use an L1 of 32kB and L2 of 16MB. SMTX versions have minimal

read and write sets due to expert manual transformation. HMTX

versions perform speculation validation on every read and write inside

a transaction, i.e. the maximum possible read and write set. If a

benchmark has an asterisk, for the HMTX version dirty speculative

memory overflowed the L2 cache. 88

xvii

Chapter 1

Introduction

Due to fundamental constraints on power usage and heat dissipation, microprocessor man-

ufacturers have resorted to multicore processors with multiple individual processing cores.

However, multicore processors do not improve sequential program performance; programs

must be modified to incorporate thread-level parallelism (TLP) to take advantage of these

parallel resources, whether through data or task parallelism.

Static parallelization that conservatively respects all potential dependences has achieved

success in some domains, such as streaming applications [2], MapReduce applications [3],

and embarrassingly parallel DOALL [4] tasks such as matrix multiplication. For exam-

ple, scientific codes are often vector-based with affine accesses and are therefore trivially

thread-level parallelizable in a DOALL fashion, where each iteration of their hottest loops

is fully independent and can be executed in parallel.

In order to extract other forms of TLP from more complex programs, DOACROSS [4]

and pipeline parallelism-based techniques such as Decoupled Software Pipelining (DSWP) [5,

6, 7] have been invented. However, modern software is often so complex that it is hard to

statically eliminate the possibility of dependence violations through accesses to shared data,

even if such violations cannot manifest during execution. It is often hard or impossible for a

compiler or programmer to determine if these techniques can be applied to a program. Ad-

1

ditionally, there may be opportunities for parallelization that are limited due to dependences

that may manifest but rarely do. Thus, equivalent success has not been found for general

purpose, complex programs, such as those with irregular pointer-chasing data structures.

Past works have shown that consumer grade systems continue to be underutilized; even 4

cores appears to be over-provisioning for most applications [8, 9, 10].

To allow for more aggressive TLP extraction on these programs without explicit depen-

dence synchronization via locks or communication, speculative execution and transactional

memory (TM) systems have been explored. TM systems allow for loads and stores inside

a critical region to atomically execute or roll back together. This atomic unit of work is

called a transaction. Multiple transactions can speculatively execute in parallel safely; if

any transactions conflict with each other then the TM system will roll back the transactions.

Almost all prior TM systems depend upon either DOALL or DOACROSS style par-

allelization. DOALL is not widely applicable outside of scientific codes. Additionally,

DOACROSS [4] performance depends upon the inter-core latency of the system, as it re-

quires that loop carried dependences be communicated to other cores for every iteration.

As an alternative, speculative parallel pipeline techniques such as speculative DSWP

can be used [1, 11, 12, 13]. These past works have found that speculatively pipeline par-

allelizing a program often has better performance than other parallelization schemes using

traditional Thread Level Speculation (TLS).

Unfortunately, most TM systems used for TLS [14, 15, 16, 17, 18] do not provide

sufficient support for speculative pipelined parallelism, which split individual transactions

across multiple pipelined threads. Speculative pipeline parallelism requires TM systems

that support multithreaded transactions (MTXs), wherein multiple threads can collaborate

on a single transaction that can atomically commit or rollback.

Some software TM (STM) systems [12, 13] have been developed to include MTX sup-

port, allowing speculative pipeline parallelism techniques to be used on commodity hard-

ware. However, these systems suffer from high runtime overheads, which can curtail the

2

performance of what would otherwise be well-performing parallel programs. Most trou-

blesome is the overhead from communication of large read and write sets for transaction

validation, which can be prohibitively costly [19].

Thus, to be useful for complex programs, these STM systems must limit the amount of

speculation validation performed. This requires laborious expert manual transformation to

avoid these overheads and achieve speedup. Without further advances in compiler analyses

to eliminate the need for significant amounts of validation checks, these STM systems are

not ideal for automatic speculative parallelization of complex programs.

Prior work [20] examined the importance of static dependence analysis in a specu-

lative automatic parallelizing compiler for simple programs with affine accesses such as

matrix multiplication. Scalable speedup turned into significant slowdown when using

weaker dependence analysis due to increased speculation validation overhead. Even with

the strongest modern static analyses, more complex programs have not been profitably par-

allelized due to required speculation validation.

These aliasing issues cannot be ignored; they are often hard or impossible to reason

about, making speculation an attractive alternative solution to statically determining them.

And even if a legitimate may-alias relationship between two pointers or addresses is stat-

ically determined, that aliasing may never manifest, resulting in a missed opportunity for

parallelization. Therefore, supporting low-overhead alias speculation support is essential.

Thus, a TM system with low-overhead speculation validation is essential to achieve au-

tomatic parallelization of complex programs and more widespread use of speculative par-

allel execution. Hardware TM (HTM) systems can provide this low-overhead speculation

validation. However, no HTM systems with MTX have been comprehensively explored.

Additionally, existing HTM systems do not provide sufficient support for long-running and

complex programs that often require long-running and complex transactions for speculative

execution.

For example, Intel HTM in Haswell processors are limited to fitting their entire write

3

sets inside the L1 [21], meaning transactions cannot speculatively write very much data

without forcing an abort. Additionally, many modern processors aggressively execute loads

out of order, some of which end up squashed due to branch misprediction. Without extra

care being taken, squashing loads that were also marked as speculative by the TM system

could result in unnecessary transaction aborts, degrading performance.

This dissertation overcomes the limitations of prior TM systems, presenting the first

complete design, implementation, and evaluation of a TM system with support for hardware

multi-threaded transactions (HMTXs) [22]. In this system:

• Multiple threads can collaborate on a single transaction, with uncommitted memory

modifications visible to all threads working on the transaction, and with the ability for

these modifications (potentially spread across many caches) to atomically commit to-

gether.

• Multiple transactions can execute on a single core without requiring any of them to com-

mit or abort, allowing for a thread to finish work on one transaction and begin on another

without interfering with the first (which may still be uncommitted).

Additionally, in order to provide for long-running and complex transactions, in this

system:

• Transactions are resilient; they are novel by avoiding false misspeculation due to branch

misprediction, supporting large read and write sets, and allowing for interrupt and ex-

ception handling.

• A lazy commit scheme is used, efficiently processing large read and write sets (up to tens

of megabytes of data in the evaluated benchmarks).

The combination of these features allows for the HMTX system to achieve profitable

parallelization of complex, long-running programs with large amounts of speculation vali-

dation. This overcomes a large barrier to achieving automatic parallelization, and makes it

easier for compilers and programmers alike to create well performing parallel programs.

This dissertation presents 8 benchmarks (7 from the SPEC benchmark suite [23, 24],

4

and 1 from MiBench [25]) that are speculatively parallelized with the maximal possible

amount of speculation validation, i.e. conservatively adding every load and store inside a

transaction (often made of up of tens to hundreds of millions of instructions) to the read

and write set. Despite such large amounts of validation, this system achieves a geomean

speedup of 104% over sequential execution on a multicore machine with 4 cores, exhibit-

ing the limits to which transactional memory can be used while sustaining good parallel

performance, and with modest increases in power and energy consumption.

5

Chapter 2

Background and Motivation

This section motivates the need for MTX support. Non-speculative TLP techniques are de-

tailed in Chapter 2.1. Speculative versions of these techniques are discussed in Chapter 2.2.

Current state-of-the-art TM systems with MTX support are described in Chapter 2.3.

2.1 Thread Level Parallelization Techniques

Techniques such as DOALL, DOACROSS [4, 26], and pipeline parallelization [5, 6, 7]

have been used in order to better leverage multicore architectures via TLP. In DOALL,

each iteration of a loop is fully independent of the others and therefore each iteration can

be executed in parallel. This is mostly applicable only to scientific programs that perform

affine operations on regular data structures.

DOACROSS can extract parallelism from more complex loops with loop-carried de-

pendences. Consider a linked list in which some work function is performed on each node.

Each iteration needs to know the previous iteration’s node to find its own node, which

means this dependence is loop-carried, and DOALL is therefore inapplicable.

6

Cr
iti

ca
l P

at
h

N
on

-C
rit

ic
al

 P
at

h

Cr
itc

al
 P

at
h

In
st

ru
ct

io
n

N
on

-C
rit

ca
l P

at
h

In
st

ru
ct

io
n

Th
e

Fi
rs

t I
te

ra
tio

n

A
:

w
h
i
l
e
(
n
o
d
e
-
>
n
e
x
t
)

B
:

n
o
d
e

=

n
o
d
e
-
>
n
e
x
t

C
:

v
a
l
u
e

=

w
o
r
k
(
n
o
d
e
)

D
:

c
o
u
n
t
[
v
a
l
u
e
]

+
=

1

0 1 2 3 4 5 6 7 8 9 10 11

Co
re

 1
Co

re
 2

(a
) D

O
AC

RO
SS

co
m

m
. l

at
en

cy
: 2

 c
yc

le
s

3
cy

cl
es

/it
er

at
io

n

A 1 B 1 D 1C 1
A 2 B 2 D 2C 2 A 4 B 4

A 3 B 3 D 3C 3

(c
) D

SW
P

co
m

m
. l

at
en

cy
: 4

 c
yc

le
s

3
cy

cl
es

/it
er

at
io

n

0 1 2 3 4 5 6 7 8 9 10 11

Co
re

 1
Co

re
 2

A 1 B 1

D 1C 1 D 2C 2

A 2 B 2 A 4 B 4 A 5 B 5 A 6A 3 B 3

(d
) P

S-
D

SW
P

co
m

m
. l

at
en

cy
: 4

 c
yc

le
s

2
cy

cl
es

/it
er

at
io

n

0 1 2 3 4 5 6 7 8 9 10 11

Co
re

 1
Co

re
 2

Co
re

 3

A 1 B 1

D 1C 1

D 2C 2

C 3

A 2 B 2 A 4 B 4 A 5 B 5 A 6A 3 B 3

(b
) D

O
AC

RO
SS

co
m

m
. l

at
en

cy
: 4

 c
yc

le
s

5
cy

cl
es

/it
er

at
io

n

0 1 2 3 4 5 6 7 8 9 10 11

Co
re

 1
Co

re
 2

A 1 B 1 D 1C 1

A 2 B 2 D 2C 2

A 3

Fi
gu

re
2.

1:
E

xe
cu

tio
n

tim
in

g
di

ag
ra

m
of

th
e

fir
st

ite
ra

tio
ns

of
a

lo
op

fo
r

D
O

A
C

R
O

SS
,D

SW
P,

an
d

PS
-D

SW
P

w
ith

di
ff

er
en

ti
nt

er
-c

or
e

la
te

nc
ie

s.

7

DOACROSS parallelizes this program in the following fashion. Core c1 finds the first

node n1 (seen in code line/visualized as box B), and then sends the next node n2 to core c2.

c1 continues processing n1, calling the work function; meanwhile, c2 can start processing

n2 in parallel, and repeat this process by passing n3 to another core. This execution model

can be seen in Figure 2.1(a) and (b).

This loop could also be pipeline parallelized, for example by using Decoupled Software

Pipelining (DSWP)[5], seen in Figure 2.1(c). Using DSWP, the work of each iteration

is separated into a pipeline across multiple cores. In a DSWP parallelized version of the

previous linked list example, core c1 would iterate on finding every location ni in the linked

list, while sending these locations to c2 for it to separately process the node by calling the

work function.

Parallel-Stage DSWP (PS-DSWP) [6, 27] recognizes that the resulting work in the sec-

ond stage of the pipeline can now be done in a DOALL fashion. This makes PS-DSWP

more scalable than DSWP, performing much better than DSWP or DOACROSS. This can

be visualized in Figure 2.1(d).

DOACROSS performance depends upon the inter-core latency of the system, because

the loop carried dependence must be communicated between cores for every iteration.

Meanwhile, pipeline parallelization techniques like DSWP and PS-DSWP are insensitive

to inter-core latency, and only pay this price at the start of execution. Past works have

found that DSWP style parallelism and its variants often have better performance than

DOACROSS [12, 13, 1]. Figure 2.1 shows that DOACROSS and DSWP could only prof-

itably make use of two cores; meanwhile, PS-DSWP can use many more cores.

2.2 Speculation

Due to the limits of static analysis, compilers and programmers often find it hard or im-

possible to make use of profitable parallelization opportunities. This is due to dependences

8

between would-be threads that rarely or never manifest, whose absence would allow for

profitable parallelization. For example, there may be memory accesses into hard to analyze

structures which prevent parallelization, requiring expensive synchronization or communi-

cation to ensure a correctly working parallel version of a program.

Additionally, there may be other inhibitors of parallelization based on control flow,

e.g. error condition checks in a hot loop could prevent parallelization of a loop due to

possible side exits from the loop. These inhibitors may be input dependent. For example,

even if static analysis determines that two pointers into such structures may alias, this

relationship may not manifest given program inputs and therefore may unnecessarily inhibit

profitable parallelization. Even if these speculative assumptions about programs are not

input dependent, they are often hard or impossible to prove, especially via a compiler’s

static analyses.

To overcome inhibiting problems such as hard to analyze structures or unlikely control

flow, speculative parallelization is an attractive solution, allowing for optimistic parallel

execution. If any speculative assumption is incorrect at runtime, misspeculation will be

detected and the program state will roll back to a previously committed, valid state, undoing

any potentially harmful effects.

Even if inhibitors of parallelization are input dependent, speculating them away can still

be done highly confidently, for example based on profiling the program. Still, validation

must be performed even if the inhibitors never manifest and trigger misspeculation. This

means that low overhead speculative validation support is very important even if speculative

parallelization is done with high confidence.

Many past TM systems provide low overhead validation support for speculative DOALL

and DOACROSS via thread-level speculation (TLS) [14, 15, 16, 17, 28]. However, all past

TLS systems are insufficient for speculative DSWP, which has been shown to often have

better applicability and/or performance than speculative DOALL and DOACROSS [1, 11,

12, 13].

9

Speculative-DSWP requires multi-threaded transactions (MTXs), wherein transactions

can span multiple threads. In DSWP, each iteration (wrapped in a transaction) is equivalent

to a loop iteration, and each loop iteration is executed across multiple pipelined stages,

which are executed on different threads. This means that each transaction is split across

multiple pipelined threads1 , as seen in Figure 2.1 (c) and (d). Therefore, when a thread ex-

ecuting the first stage of the pipeline makes some speculative modifications to memory as

part of a transaction, those modifications should be visible to some other thread executing

the second stage of the pipeline when continuing with execution of that same transaction,

even though that transaction has not yet committed. Additionally, all speculative modifi-

cations that are part of a single transaction should atomically be committed at once, even

though they are executed by different threads that are executing different pipeline stages.

2.3 Past Multithreaded Transaction Proposals

Vachharajani [1] described the general concept of multi-threaded transactions (MTXs). The

proposal gives each MTX a version ID (VID). Speculative memory accesses from an MTX

mark memory they touch with their VID. Versioning memory allows for key properties

(described in detail in Chapter 3) which are requirements of an MTX system. While Vach-

harajani described an initial design for a hardware TM system with MTXs, no detailed

implementation or evaluation was ever published. Additionally, parts of the design were

unrealistic or left incomplete (Chapter 9).

Later MTX proposals opted for software based TM systems to allow for speculative

DSWP execution on commodity hardware [12, 13, 29, 30]. These systems follow in the

same path as Vachharajani, assigning a VID to each transaction. They provide for multiple

1Using DSWP’s pipeline partitioning algorithm, instructions inside a parallelized loop’s body are not
necessarily kept in order with respect to the original program when partitioned across different pipeline
stages. When combined with commonly used control flow speculation, it is insufficient to use traditional
TLS transactions for each stage’s individual portion of each iteration (e.g. in Figure 2.1(c) and (d), putting
A1 and B1 in a separate TLS transaction from C1 and D1.)

10

versions of memory by forking the main process multiple times for each parallel worker.

There is an additional process called the commit process, which contains and manages the

committed non-speculative state. This design allows the other forked, speculative worker

processes to execute transactions, which modify their own versions of memory safely by

for example relying on copy-on-write support in the OS [12]. Transactions then rely on

the TM system both to access the correct version of memory given some VID, and to

atomically commit all speculative writes of a transaction, even if they come from different

threads given the VID.

In these systems, explicit communication is required both for passing speculatively

memory modifications between pipeline stages (uncommitted value forwarding), and for

sending records of speculative memory accesses to the commit process (speculation vali-

dation). This is because these systems all use a “privatized by default” memory model via

process separation. Because all memory is privatized through forking except for that which

is explicitly mmap’d to shared memory, any accesses that need speculative verification must

be explicitly communicated to the commit process via software queues.

Additionally, all speculative memory modifications and their addresses that may be

needed by later pipeline stages must be explicitly sent via software queues to later pipeline

stages working on the same transaction, in addition to the commit process. This must be

done both for uncommitted value forwarding and for speculation validation.

The amount of this required communication and the resulting performance impact it

has is dependent upon the complexity of the program being parallelized and the abilities of

the method of parallelization (e.g. automatic vs. manual). For example, in prior MTX STM

systems [12, 13], expert programmers performing laborious manual pipeline parallelization

ensured that speculation validation was low via minimal read and write sets in order to

achieve speedup on complex programs.

Figure 2.2 demonstrates how heavily performance depends upon read and write sets

sizes when using these systems. Whole program speedup is compared for two versions

11

Figure 2.2: On an MTX STM system, whole program speedup over sequential execution
with a minimal R/W set vs. a substantial R/W set.

of programs using an MTX STM system: one with a minimal read and write set that was

manually transformed by an expert, and one with speculation validation added to shared

data accesses to approximate what a compiler might require with basic static analysis. As

expected, more speculation validation turns slight speedups into substantial slowdowns.

Similar results have been presented in the context of automatic speculative paralleliza-

tion. For example, one past work [29] used an MTX STM system to automatically pipeline

parallelize a script interpreter specialized with simple scripts. Performance was again lim-

ited by the overheads of software speculation validation; significant effort was spent on

optimizing speculation validation communication. Speedup was achieved by scaling up

the number of threads to overcome these overheads, making the technique not well suited

for consumer grade systems.

Similarly, Johnson [20] demonstrated the need for low overhead speculation validation

in the context of automatic parallelization. He found that for simple benchmarks executing

12

in a DOALL fashion using an STM system [30, 31], “imprecise analysis forces the compiler

to compensate with more speculation . . . Increased validation overheads cause application

slowdown.” More complex programs (such as those from the SPEC benchmark suite [32])

require parallelization models such as DOACROSS or DSWP, and many have yet to be

profitably automatically parallelized.

Thus, even with the strongest modern static analyses, automatic parallelization often

requires speculation with sizeable read and write sets. The resulting validation overheads

can make it difficult for these parallelized programs to achieve speedup. Instead of hop-

ing for future heroic static analyses, or relying on significant expert programmer effort for

manual parallelization, this dissertation embraces an alternative approach: make specula-

tion validation cheap in order to make speculative parallelization less laborious and more

feasible.

13

Chapter 3

Design Overview of the HMTX System

By providing support for low-overhead, resilient multi-threaded transactions, HMTX en-

ables the profitable parallelization of complex programs with substantial speculation val-

idation. This section provides an overview of the first HMTX design that overcomes the

challenges required to execute complex parallelized programs in modern systems.

3.1 Overview

Similar to past MTX proposals, the HMTX system allows for different versions of memory,

where multiple versions of a single address can exist simultaneously. Every transaction is

assigned a version ID (VID), and all memory operations inside each transaction are labeled

with this VID.

These VIDs are unsigned integers of some specific bit width (see Chapter 5.3.2 for

more details). Note that VID = 0 represents non-speculative state; for example, normal,

non-speculative loads and stores use VID = 0.

VIDs correspond to the original, sequential program order of the transactions; given a

speculative store with VID x, a speculative load with VID < x should not see that specu-

lative store, while a speculative load with VID ≥ x should see it. If an address is read by a

transaction with VID y > x and then a speculative write occurs to that address with VID x,

14

all transactions with VID ≥ y should abort due to a read-after-write data hazard violation.

To facilitate this, speculative memory accesses from an HMTX mark memory in the caches

they touch with their VID, allowing for two key properties which are requirements of an

MTX system:

1. Group transaction commit: The speculative modifications from many distinct threads

working on the same transaction should be atomically committed as a group. These

threads are likely on different cores; hence, atomic commit must be provided for

all speculatively accessed memory from this transaction across multiple cores and

caches.

2. Uncommitted value forwarding: An uncommitted memory modification from one

pipeline stage of a transaction should be seen by later pipeline stages working on

the same transaction. Additionally, uncommitted values from a transaction should

be visible to later transactions according to the original sequential execution order

of the program. Many works provide uncommitted value forwarding as an optimiza-

tion [33, 15, 28, 34, 35, 36], however for MTXs it is a requirement.

To provide support for group transaction commit, VIDs that need to be committed are

sent to the memory system, and then all lines with these VIDs can be committed together.

To provide support for uncommitted value forwarding, speculatively modified memory

marked with VID x can be seen by accesses marked with VID y ≥ x. Program cor-

rectness will be maintained because these VIDs correspond to original sequential program

order (Chapter 7).

3.2 New HMTX Instructions

New instructions must be added to the instruction set architecture (ISA) in order to support

MTX, listed in Table 3.1.

First, transactions must signal when they begin and end. End does not mean commit;

15

Instruction Description
MTX BEGIN(VID) Enter or exit a transaction. Used to move between dif-

ferent MTXs or back to non-speculative execution (VID
equal to zero). Sets the VID register in the core to VID.

MTX COMMIT() Atomically group commit a transaction with VID of
the current active transaction in the VID register set by
MTX BEGIN().

MTX ABORT(VID) Abort all transactions active in the system. All
threads should be interrupted and redirected
to the handler function they registered with
MTX INIT(handlerFunction).

MTX INIT(handlerFunction) Before speculative execution begins, set the location of
a recovery handler function that must be run in the event
of an abort. Should be called by all speculative worker
threads.

Table 3.1: New instructions added to the ISA. Note that all of these instructions include an
implicit memory barrier.

the current pipeline stage may simply be done with its work on its part of the transaction,

and can begin work on the next transaction, or work on another task entirely as long as it is

not dependent upon its previous speculative tasks.

This proposal uses a single instruction to accomplish this: MTX BEGIN(VID). This

instruction can be called to move between different MTXs or back to non-speculative ex-

ecution (VID equal to zero). When called, it sets a newly added VID register in the core,

specific to the thread context, to the provided VID. This VID is attached to all memory

operations in the system that follow MTX BEGIN in program order.

Next, a MTX COMMIT(VID) instruction is added in order to signify that a particular

MTX should atomically group commit. Commit must only be called once by one of the

threads participating in the transaction, and only when no more speculative accesses will be

made using this VID. In DSWP, this is once the final pipeline stage has finished. Commits

are must be executed in order, as coordinated by software.

An MTX ABORT(VID)1 instruction is also added in order to explicitly signal an abort

1This is similar to resteer as discussed by Vachharajani [1]. This allows for one thread to preempt
execution of other threads that are participating in speculative parallel execution during abort, and “resteer”
them to thread-local recovery code.

16

due to some misspeculation condition detected by the software, such as control flow mis-

speculation. During an abort, either triggered explicitly or implicitly via a misspeculated

load or store, there must be some recovery code for the threads to jump to in order to take

some action and continue execution. Therefore an MTX INIT(handlerFunction) in-

struction must be used to set the location of this recovery code prior to speculative execution

beginning on every thread.

Note that all of these instructions include an implicit memory barrier. Without this,

complications could arise in the design of the HMTX system, as the coherence protocol

design is intended to handle and track all dependences between different VIDs which rep-

resent different transactions. Otherwise, there could be memory operations reordered with

incorrect VIDs, or forwarding between memory operations from different transactions that

are not seen by the protocol. These instructions are relatively rare and so this does not have

a meaningful performance impact.

3.3 MTX Instruction Usage

Figure 3.1 shows a code example comparing the sequential, DOACROSS with TLS, and

speculative DSWP with MTX versions of a simple linked list traversal program, where the

DSWP version uses the instructions from Chapter 3.2.

First, note that in the sequential version (Figure 3.1(a)), the early exit check if (w

> MAX) limits parallelization. If this control dependence is not somehow bypassed or

deferred then profitable parallel execution is very difficult to achieve, as the next parallel

iteration cannot begin until the majority of the current iteration’s work is complete. In-

stead, DOACROSS and DSWP control flow speculate this dependence does not exist. In

DOACROSS it is not checked until at the end of each loop. In DSWP is not checked until

stage 2, after later iterations (in original program order) have already begun in parallel. If

this speculation is incorrect in either case then all later transactions are aborted.

17

(a) Original Non-Speculative Sequential Program
while (node):

w = work(node); // May modify order of list
if (w > MAX): break;
node = node->next;

(b) DOACROSS with TLS
// Assume initial node already produced
while ((node = consumeNode()) != nullptr):

beginTX();
produceNode(node->next);
w = work(node->data); // May modify order of list
commitTX();
if (w > MAX): abortRestOfTXs();

(c) Speculative DSWP Stage 1 Parallel Version, Using HMTX
MTX INIT(abortHandlerFunction);
register vid = 0; // Stored in register
register leaveLoop = (node == nullptr); // Stored in register
while (!leaveLoop):

vid += 1;
MTX BEGIN(vid);
// Creates new version of node w/ VID=vid:
node = node->next; // Note: node is global/visible to all threads
leaveLoop = (node == nullptr);
MTX BEGIN(0); // Does not commit
produceVID(vid);

produceVID(0); // Signal end of the loop

(d) Speculative DSWP Stage 2 Parallel Version, Using HMTX
MTX INIT(abortHandlerFunction)
while (vid = consumeVID()):

MTX BEGIN(vid); // Continue TX started in Stage 1
// Finds correct node version w/ VID=vid:
w = work(node); // May modify order of list
// Commit the current active vid from the most recent MTX BEGIN(vid):
MTX COMMIT();
if (w > MAX): MTX ABORT(); // Aborts all uncommitted transactions

Figure 3.1: Pseudocode of execution paradigm options for an example program, with se-
quential (a), DOACROSS with TLS (b), and speculative DSWP with HMTX (c, d) ver-
sions. In DSWP, Stage 1 (c) does not commit; after each iteration, it produces the VID of
the transaction it just completed for Stage 2 (d) to consume and continue with execution.
On abort, both stages execute their handler functions (set prior by MTX INIT), and the
queues would be flushed.

18

Transactions are first started by the initial pipeline stage (Figure 3.1(c)) via

MTX BEGIN(VID). All memory operations from this thread from this point forward come

from this transaction, and hence any memory read or written will be marked as such. Once

stage 1 has completed its portion of the transaction, it calls MTX BEGIN(0), which repre-

sents that the program is moving back to non-speculative execution, but is not committing.

All work done between MTX BEGIN(0) and MTX BEGIN(vid) at the top of the loop

is essentially bookkeeping, e.g. producing to stage 2 (via a software queue) the VID of

the transaction it just finished its portion of work on, and checking that the loop should

continue iterating.

Next, note that instead of requiring explicit queue operations for communicating depen-

dences between stages, HMTX’s versioned memory can be leveraged. For example, node

can be communicated by stage 1 to stage 2 via a single speculative store to the shared global

producedNode, and stage 2 can load it via a single speculative load to producedNode.

All speculative modifications are marked with the VID of each transaction, meaning each

transaction’s version of producedNode exists in memory, identified by their VID. These

versions are accessible by other threads if they are using the same VID (Chapter 4.1).

Figure 3.1(d) shows stage 2, where transactions can continue with execution and even-

tually commit. A stage 2 thread continues with execution of some transaction that was

previously started by stage 1 with VID (determined via a consume from a software queue),

entering that transaction via MTX BEGIN(VID), just as stage 1 did. All memory opera-

tions are again marked with the VID of the transaction, meaning that any memory modifi-

cations done by the prior thread inside the same transaction are visible to this thread, even

though they were performed by a different thread and remain uncommitted.

Additionally, note that stage 1 speculatively accesses node->next. This is done with

some VID = x. If at some later time a transaction in stage 2 with VID y < x attempts to

modify node->next (e.g. during the work function), then an abort is triggered due to a

read-after-write violation (Chapter 7).

19

Finally, stage 2 completes its part of the transaction and then commits it entirely, in-

cluding all modifications from the stage 1 thread. This is done via MTX COMMIT(VID),

which commits that specific VID and returns to non-speculative execution.

While this code works as a two thread pipeline, it could also be executed via PS-DSWP,

with multiple threads executing stage 2. Any data dependence issues between concurrent

calls to the work function would again be detected thanks to the HMTX system, and an

abort would be triggered (Chapter 7).

3.4 Supporting Complex, Long-Running Transactions

Prior HTM systems [14, 15, 16, 17, 18] do not provide sufficient support for long-running

and complex transactions that are often required for long-running and complex programs.

Chapter 5 discusses solutions to the following problems that would otherwise inhibit per-

formance or make parallelization impossible:

• False misspeculation due to branch misprediction (Chapter 5.1): In processors with

large pipelines and branch prediction, loads are often speculatively executed based on

branch prediction. If a branch is mispredicted, any corresponding squashed loads that

were dependent upon this branch that have already executed have no impact other than

moving data around in the caches. However in the HMTX system, VIDs are marked on

memory that is HMTX-based speculatively read. This can result in spurious misspec-

ulations if not resolved, as memory is incorrectly marked as speculatively accessed by

VIDs due only to branch misprediction. To our knowledge, no past work has recognized

or solved this issue, likely because most past systems either used relatively small trans-

actions, parallelized programs without complex control flow that resulted in significant

branch misprediction, or both.

HMTX solves this by introducing a new structure similar in complexity to a store

queue to track HMTX-speculative loads that are executed branch-speculatively.

20

• Aborts caused by processor interrupts (Chapter 5.2): Given long-running transac-

tions with complex memory access patterns, interrupts and exceptions are commonplace,

e.g. due to preemption or virtual memory management. These operations must not cause

misspeculation.

HMTX solves this by differentiating between instructions that are part of the original

program and those that come from the operating system that do not impact correctness

of the HMTX-speculatively executing program.

• Long-running and expensive commit processing (Chapter 5.3): A naı̈ve system may

need to keep track of all speculatively accessed memory in order to explicitly transition

them on commit. This would require some structure in hardware or software to scale

along with the amount of accessed memory (which is quite large in the evaluated bench-

marks (Chapter 8.4)), increasing complexity and degrading performance of the system

in execution time and energy.

HMTX solves this through a simple commit scheme that allows for speculative cache

lines to lazily transition to non-speculative state.

• Aborts caused by large read sets overflowing cache (Chapter 5.4): Speculatively

modified values must have their original non-speculative counterparts backed up until

commit. These backups can increase cache pressure, and potentially force an abort if

all speculatively modified memory cannot fit inside the caches. Most prior systems that

allow for overflow of speculatively accessed memory outside of caches require book-

keeping to track this speculative memory, which increases complexity and/or degrades

performance.

HMTX solves this by the design of its protocol, allowing for some speculatively read

lines to be evicted from the last level cache.

21

Chapter 4

Detailed Design of the HMTX System

This Chapter details the design of the HMTX system, including the cache coherence pro-

tocol extensions (Chapter 4.1) to support multiple versions of cache lines (Chapter 4.2);

detailed descriptions of speculative states and their implementation (Chapter 4.3); how re-

quests and lines operate in this system (Chapter 4.4); how commits and aborts are handled

(Chapter 4.5); efficient comparisons for VIDs in the cache system (Chapter 4.6); han-

dling moving between versions (Chapter 4.7); handling outstanding requests from caches

in the HMTX system (Chapter 4.8); what happens when different speculative lines over-

flow caches (Chapter 4.9); privatizing different versions of memory (Chapter 4.10); and

operating system and program support required for software using HMTX (Chapter 4.11).

4.1 Cache Coherence Protocol Modifications

The base design of the system uses a snoopy MOESI cache coherence protocol [37]. In

MOESI, there are 5 states: Modified (M), Owned (O), Exclusive (E), Shared (S), and In-

valid (I). Modified and Exclusive lines are writable, meaning there are no other copies in

the cache system and therefore writes can proceed unhindered. Owned and Shared lines

are read only, allowing for the sharing of data across many caches. If a line in Owned or

Shared needs to be written then an upgrade must be issued, invalidating other copies in the

22

cache system. Lastly, Modified and Owned lines are dirty, and must eventually be written

back to memory. Shared and Exclusive lines are clean and can be silently invalidated and

replaced if necessary.

The behavior of the MOESI protocol is unchanged when all lines and requests are

non-speculative. VID = 0 represents non-speculative requests and lines, while VID > 0

represents speculative. When a line is speculatively accessed, it will transition to one of the

newly introduced “speculative” coherent states: Speculative-Modified (S-M), Speculative-

Owned (S-O), Speculative-Exclusive (S-E), and Speculative-Shared (S-S). This is similar

to others [15].

In HMTX, differentiating between a Speculative coherent state versus its base non-

speculative MOESI analog is accomplished via a bit called the “Speculative Bit” (SB).

This bit is added to every line, alongside the other bits used for tracking MOESI States.

For example, a line in the Modified MOESI state is the same as a line in the Speculative-

Modified state, except it also has its SB asserted as well, while the non-speculative Modified

state does not.

If SB is set to true (and thus the line is in a speculative coherent state), then hits and

misses behave differently per these speculative coherent states. This is explained further in

Chapter 4.4.

4.2 Cache Line Versioning

Multiple versions of the same cache line can exist in a single cache set. In order to differ-

entiate these versions, each line has two VIDs added to it: the modifier VID (modVID), and

the highest accessor VID (highVID). The modVID corresponds to the VID of the transac-

tion that created this version of the line due to a speculative modification. Meanwhile, the

highVID corresponds to the highest VID which accessed this version of the line.

The notation S-M(m,h) means that an S-M line has modVID m and highVID h. The

23

M E

S-M
(m,h)

S-O
(m,h)

S-E
(m,h)

S-S
(m,h)

ABORT

Unmodified Copy Created
Peer Requeseteor Receives

Line in Local State

(m,h) = (modVID, highVID)

Read

Write
Write

Read

Read

Read

Read

Read

Write
Write

<h

Write

Write
==h
and
==m

Write > h
or (== h and != m)

Write
>=h

Write
< h

Snooped
Read

Snooped
Read

Snooped
Read

(New cache
line copy)

(New cache
line copy)

(New cache
line copy)

(New
cache

line
copy)

Figure 4.1: State diagram for speculative accesses. All accesses are assumed to be specu-
lative, i.e. with non-zero VID. If a transition label does not mention a condition check for
an access (e.g. “Write < h”), then it is assumed the access hit the version of the line given
the conditions mentioned in Chapter 4.3. O, S, and I states are not shown for simplicity;
they would follow the same path as M or E once acquiring exclusive access.

VIDs are always listed in this order when seen in this tuple notation.

Non-speculative lines continue to determine hits and misses based on tag comparison

and the line’s coherent state. For speculative lines, an additional check is required; hits and

misses are dependent upon comparing the VID of the request to modVID and highVID.

Note that the request’s cache set index is still dependent only on the request’s address.

24

If a cache set fills up, then any of the versions can be written back to the next level cache

as normal. The writeback must include the modVID and highVID along with the address

and data of the line. Note that selecting some speculative versions of cache lines as a victim

for writeback past the last level cache supporting MTXs forces an abort (Chapter 4.9).

As noted above, the modVID corresponds to the VID of the transaction that created

this version of the line due to a speculative modification. As previously mentioned, all

non-speculative versions of a line have a modVID of zero (for example, a line in S-E with

modVID = 0 represents a non-speculative line that has been speculatively accessed). A

speculative modification creates a new cache line in state S-M and sets its modVID to the

VID of the speculative store. An unmodified copy of the line is kept in S-O, retaining the

modVID of the original line and its original data.

This can be seen in Figure 4.1, with any speculative modifications that do not trigger an

abort going to state S-M, and also creating an unmodified copy in S-O. Using these lines,

reads with lower VIDs can find their correct version of the line, avoiding write-after-read

hazards.

As mentioned, the highVID corresponds to the highest VID which accessed this version

of the line. A naı̈ve scheme might only keep a single VID per line to track what version

it came from. However, this means that if a transaction only reads a line then we need

to create a new copy of the line with the same data but different modVID. Instead, high-

VIDs allow for tracking reads without creating duplicate lines. This allows for supporting

uncommitted value forwarding more efficiently and reduces cache pressure.

The use of these two VIDs allows us to represent multiple conceptual cache line ver-

sions with a single physical line, assuming those versions all share the same data. Addi-

tionally, it allows a speculative modification to check a single cache line to determine if

an abort must be triggered due to a dependence violation. Finally, it is used to determine

which particular lines should hit given the accesses’ VID, and for simplifying discarding

versions of a line that are no longer needed during commit.

25

4.3 Description and Operation of Speculative Lines and

Requests

Qualitatively, the states can be thought of as follows:

Speculatively Modified (S-M) lines represent the “latest” dirty speculative version of

the line, meaning this version of the line is the latest with respect to original program order,

and so no version of the line exists with a higher modVID. The highest VID to access

this line is set to highVID. Thus, if the VID of a speculative write is greater than or equal

to highVID, it can proceed without triggering an abort, as no “later” access has already

occurred to the line.

Speculatively-Owned (S-O) lines represent lines that were previously speculatively

modified but can no longer be written without triggering an abort due to a potential de-

pendence violation, as some “later” access already occurred to the line. Specifically, some

other speculative write must have occurred with VID == highVID, and that speculative

write created a new copy of the line in S-M line with its speculative modifications, leaving

this line in S-O behind unmodified.

Speculatively-Exclusive (S-E) lines are essentially the same as S-M, except no mod-

ifications to the line have occurred, whether speculatively or non-speculatively. Conse-

quently, on commit the line can return to a clean non-speculative state (Exclusive or Shared)

instead of a dirty non-speculative state (Modified or Owned), preventing unnecessary write-

back to memory. This state can never have modVID > 0.

Speculatively-Shared (S-S) lines are used to allow for shared copies of speculatively

accessed lines to exist in different caches. This enables efficient sharing of read-only spec-

ulative accessed data, which is important for many TLP programs. This version of the line

does not respond to snoops, as one of the S-M, S-O, or S-E versions will respond instead.

Table 4.1 shows some properties of these states, and Table 4.2 qualitatively describes

each of these states in further detail.

26

Line Coherent State Speculatively Modified? “Latest” Version?
S-M modVID == 0 ? N : Y Y
S-O modVID == 0 ? N : Y N
S-E N (modVID must equal 0) Y
S-S modVID == 0 ? N : Y N

Table 4.1: Properties of the speculative coherent states.

Hits and misses are determined by combining the address and coherent state of the line

(including the Store Bit (SB)) as in traditional coherent cache systems with these VIDs of

the line and the VID of the received request. Given some speculative line, for an incoming

request with VID a:

• S-M/S-E(m,h): if (a ≥ m)⇒ hit

• S-O/S-S(m,h): if (a ≥ m) and (a < h)⇒ hit

The basic additions necessary for implementing this logic can be seen in Figure 4.2.

If the line has m == 0 (i.e. it is the non-speculative version of the line) then (a ≥ m)

must be true, and so non-speculative requests (with a == 0) will always hit S-M/S-E lines.

Additionally, in the base protocol, it is assumed that h > 01, which means non-speculative

requests will always hit S-O/S-S lines as well. This intuitively makes sense, as if the

line has m == 0 then this is a non-speculative version of the line that was speculatively

accessed. Thus, all non-speculative versions of lines will be hit by all non-speculative

requests.

These are the same conditions used to determine hits for snooped requests on the bus.

However, as noted, S-S lines ignore snooped requests, similar to the S state in the normal

MOESI protocol.

The modVID and highVID essentially act as a minimum-maximum range of VIDs, used

to determine what accesses hit what lines, and when to trigger misspeculation. The protocol

is designed such that an incoming request to a cache knows if it should hit, miss, or trigger

misspeculation solely by using the coherent state of each line, their modVID and highVID,

and the VID of the request. For example, there is no “potential” hit case, wherein global

1This assumption is relaxed for efficient commit process handling, discussed further in Chapter 5.3.

27

State What is m? What is h? Description

S-M(m,h) m represents
the transac-
tion which
created and
modified this
line.

h represents
the “latest”
transaction
which read
this line.

Speculative-Modified: A dirty version of a cache line. Trans-
actions with VIDs≥ m may have speculatively read this line,
with the greatest of these VIDs being h. Note that m can be
== 0, representing a dirty non-speculative line was read by
one or more transactions. Otherwise m > 0, and so this ver-
sion was created and modified by one or more writes from
transaction with VID m. If m > 0, then there must exist an-
other version of the line in the cache system in S-O(m’,
h’), with h′ = m, containing the previous data in the line
prior to speculative modification by transaction with VID m.
There may exist other speculatively modified versions of the
line in S-O, as well as S-S lines to allow for efficient sharing
of data. No S-E version of the line exists.

S-O(m,h) m represents
the transac-
tion which
created and
modified this
line.

h represents
the “latest”
transaction
which tried to
write to this
line after m.

Speculative-Owned: Some version of a line which had a
“later” transaction (i.e. VID > m) attempt to write to it.
Thus, this line was left as a copy from transaction VID m,
but without the modifications by VID h. Note that m can be
equal to 0, representing some non-spec version of a line was
speculatively modified by the transaction with VID h. For
example, if the line existed in M (i.e. non-speculative modi-
fied) and then was written to by a transaction with VID = 2,
then we would end up with two lines: one in S-M(2,2)
with the speculative modification, and one in S-O(0,2)
without the speculative modification. S-O lines are never a
version of the “latest” transaction, and as such any writes that
hit such a line signify that an abort should occur. Note that m
cannot equal h, because S-O lines can only be created when
some S-M or S-E line had a write from transaction with VID
> m, or some M or E line (i.e. VID 0) had any speculative
write (i.e. VID > 0). No S-E version of the line can exist
anywhere in the cache if this version exists.

S-E(m,h) m must
equal 0, i.e.
the non-
speculative
VID.

h represents
the “latest”
transaction
which read
this line.

Speculative-Exclusive: The non-speculative version of the
cache line, which has been speculatively read by largest VID
h. Only speculative reads have occurred to addresses in this
line; no speculative writes have been made to addresses in
this line by any transaction. No other version of the line can
exist in the cache system (except potentially S-S for efficient
sharing of read-only data).

S-S(m,h) m represents
the transac-
tion which
created and
modified this
line.

h represents
the “latest”
transaction
which may
have written
to this line
after m.

Speculative-Shared: A read-only copy of another speculative
line. There may be other S-S versions in different caches.
There must be an S-M, S-E, or S-O version of the line in
another cache. This version of the line is simply used to fa-
cilitate performant sharing across caches. It does not respond
to snoops. It can be silently evicted.

Table 4.2: Description of speculative states. (m,h) represents the modVID and high-
VID. Note that VIDs correspond to the execution order of the original sequential program.
Therefore, speculative modifications to lines that have already been read or written by a
larger VID signal a potential data hazard and misspeculation.

28

Req Addr [b bits]
b:m m:n n:0

Index

Data BlocksStmodVID highVID Tag
. . .

Valid Dirty Writeable SpeculativeTag

=?

Hit

<?

• S-M/S-E(m,h): if (a ≥ m) ⇒ hit

• S-O/S-S(m,h): if (a ≥ m) and (a < h) ⇒ hit

≥?

v
Req VID

m h St Tag Data

Figure 4.2: Circuit diagram displaying the basic logic needed to implement new hit logic
required for the HMTX speculative coherence protocol. “St” represents the status bits per
cache line, i.e. Valid, Writable, Dirty, and the newly added Speculative. Items in green are
added for HMTX.

knowledge of all versions of this line must be gathered before determining if a request in

the local cache should have hit or missed this line. Note that this is an important property

of any cache coherence system in order to be performant, but it is non-trivial to maintain

this property when implementing a cache system with multiple versions spread across the

cache hierarchy.

Global knowledge of the state of every version of the line is either implicit or not re-

quired to determine the correct course of action. Requests will only hit on one version of

the line. If that version is not present, a request is broadcast on the bus with the request’s

VID. Only one cache will respond, with the line that should have hit for this request had it

been in the same cache.

29

Finally, lines do not need to know the state of other lines in other caches to determine

what state to transition to in the case of a commit or abort (Chapter 4.5). This enables more

efficient commit and abort processes. Similar to before, this is a property that other HTM

systems often have as well, but it is harder to maintain when dealing with multiple versions

of lines spread across the cache hierarchy.

The following is a list of invariants that always hold for the states and VIDs of the lines,

even when they are changed due to a new read, write, commit, or abort:

• There can only be one S-M version of the line at a time;

• If there is an S-O version of the line then there must exist an S-M version of the line;

• If there is an S-E version of the line then there may not be any other versions of the

line except in S-S;

• The S-E version of the line represents the latest committed, non-speculative version

of the line (with modVID == 0);

• The line with the greatest highVID of any lines can only ever be in S-M or S-E;

• For states S-M, S-E, and S-O, there cannot be another line in one of these states with

the same modVID;

• If there exists an S-S line, there must be some other S-M, S-E, or S-O line with the

same modVID, and with ≥ highVID.

Table 4.3 summarizes the allowed states for other versions of the line in the cache

(columns) given some version with a particular state exists (rows), displaying some of

these invariants.

4.4 Operation of Speculative Accesses

When a line is first speculatively accessed, writable (M or E) access must be gained for the

line in the L1 cache, as seen in Figure 4.1. This means if the line is not in the cache then

a read exclusive request is sent out on the bus. If the line is in the L1 but is not writable

30

M O E S I S-M S-O S-E S-S

M 5 5 5 5 X 5 5 5 5

O 5 5 5 X X 5 5 5 5

E 5 5 5 5 X 5 5 5 5

S 5 X 5 X X 5 5 5 5

I X X X X X X X X X

S-M 5 5 5 5 X 5 X 5 X

S-O 5 5 5 5 X XX X 5 X

S-E 5 5 5 5 X 5 5 5 X

S-S 5 5 5 5 X X X X X

Table 4.3: Permitted cache states of a cache line. Note that the MOESI portion of the
table (upper left quadrant) is unchanged from the default MOESI implementation. Each
row represents the state for a line that exists in the cache system. The column in each row
represents if another line with the same address and different VID must exist (XX), may
exist (X), or cannot exist (5) in the cache system. For example, if an S-O line exists, then in
the cache system there must be an S-M version (XX), and there may be another S-O version
or S-S copy (X). Note that a line cannot exist in both a speculative and non-speculative
state simultaneously, as seen in the the lower left and upper right quadrants. That is, if a
speculative line exists, then no non-speculative valid line (MOES) can also exist, and vice
versa.

(i.e. Shared or Owned), then an invalidation must be broadcast in order to gain exclusive

access.

Once the cache has a writable copy, the request can proceed. In the case of a read, the

line is moved to S-E (if the line was still clean (E)) or S-M (if the line was already dirty

(M)) with the VID x of the request set on the line as the highVID. modVID is left as zero

because this is a read, so the non-speculative version of the line feeds the read and no new

version is created. Figure 4.3 shows an example of this case at instruction 1 with VID 1,

resulting in state S-E(0,1).

If a speculative write with VID y ≥ x is received, then a copy is made of the line

to preserve the non-speculative state, which was the version x used. The resulting states

would be S-O(0,y) and S-M(y,y). Again, this is seen in Figure 4.3, with VID 1 at

instruction 2, and corresponding new versions S-O(0,1) and S-M(1,1).

31

n Instruction
Execution Step n

State VIDs
S-O (0,1)

S-S (1,2)

S-M (2,2)

State VIDs
I N/A

S-S (0,2)

S-M (2,2)

State VIDs
S-O (0,1)

S-O (1,2)

S-M (2,2)

State VIDs
S-O (0,1)

S-M (1,1)

State VIDs
S-E (0,1)

State VIDs
E N/A

work 1

MTX_BEGIN(1)

r1=M[0xa]

. . .

//call work()

. . .

MTX_COMMIT(1)

next 1

MTX_BEGIN(1)

//load node

r1=M[0xa]

//node=node->next

M[0xa]=M[r1]

. . .

MTX_BEGIN(0)

Thread 1 Thread 2
0

1

2

4

1

2

5

6
6

0
Cache 1 Cache 2

State VIDs
S-O (1,2)

5

State VIDs
S-O (0,2)

6

5

State VIDs
I N/A

0

n Cache State After Executing
Instruction at Step n

State VIDs
I N/A

1

State VIDs
I N/A

2

State VIDs
I N/A

4

State VIDs
S-O (0,1)

S-M (1,2)

3
State VIDs
I N/A

3

next 2

MTX_BEGIN(2)

//load node

r1=M[0xa]

//node=node->next

M[0xa]=M[r1]

. . .

MTX_BEGIN(0)

3

4

State Change Only
State & Data Change

(Data is same as in
Cache 1 at Step 5)

Figure 4.3: Pseudocode and cache states of the Figure 3.1 example. Step 0 signifies the state
prior to entering the parallelized loop. Note that cache state is only shown for address 0xa.
All of these lines could exist anywhere in the cache. Lines with solid green backgrounds
have had their coherent state and/or VIDs changed but not the data from the line itself.
Lines with checkered yellow backgrounds have additionally had the data modified.

32

Continuing with the example in Figure 4.3, a speculative read occurs with VID 2 at

instruction 3. In this case the S-M(1,1) version simply updates its highVID to 2, as it is

now the highest VID to have accessed this line. Note that modVID stays the same as no

new version was created of this line because this was not a write.

Next, a speculative write executed for VID 2 at instruction 4. In this case the

S-M(1,2) version transitions to S-O(1,2), keeping highVID at 2 and keeping the data

the same. Additionally a new version of the line including the speculative modifications

is created with modVID and highVID set to the VID of the write, S-M(2,2). Three

different versions of the line now exist with different modVIDs and data.

When a read with VID 1 is received at instruction 5, it is broadcast on the bus and

hits the S-O(1,2) version of the line due to the scheme as described in Chapter 4.1.

The response is sent in S-O(1,2), as seen in Figure 4.1. If an access with VID greater

than or equal to 2 was received it would hit the S-M(2,2) version. Because these VIDs

correspond to original program order, this ensures correctness of execution, as reads with

VID 1 should not see the speculative updates by transaction VID 2 but any accesses with

VID greater than or equal to 2 should see the modifications by VID 2.

Lastly, Figure 4.3 shows the final state after Thread 2 commits. The commit process is

explained further in Chapter 4.5.

Note that many speculative copies of lines are kept across the cache system, and most

cannot overflow the caches without forcing an abort (discussed further in Chapter 5.4). This

means there is greater cache pressure. This can negatively impact performance, depending

on cache sizes and the access patterns of the parallelized program. This effect is evaluated

and discussed in Chapter 8.5.

33

4.5 Implementing Commits and Aborts

To reason about how commits and aborts occur, assume for now that on a commit or abort

every line in each cache is inspected and immediately transitioned to a new state if neces-

sary depending on its VIDs and state. An optimized, lazy version is introduced in Chap-

ter 5.3.

A commit or abort for some VID is processed via a broadcast on the shared L1-L2 bus

along with the VID. The software must ensure that commits always occur consecutively

(Chapter 4.11); otherwise behavior of the system is undefined.

On a commit for some VID x, lines transition as follows:

• S-M/S-E: If x ≥ highVID, the line moves to M if in S-M or E if in S-E. Else the line

stays in its current coherent state, and if x == modVID then the line’s modVID is

set to zero. In either case, this version of the line is now the non-speculative version.

• S-O/S-S: If x ≥ highVID, this version of the line is invalidated. Else if x ==

modVID, the line’s modVID is set to zero, as this version of the line is now the

non-speculative version.

A state diagram for these commit transitions can be seen in Figure 4.4. Intuitively

based on the design of the protocol, all lines with modVID == x are now the committed

non-speculative version, and hence they set their modVID = 0, as this represents non-

speculative state. Additionally all lines with highVID ≤ x no longer need to be marked

speculative at all, because all transactions that accessed them are complete. Therefore these

lines can move to non-speculative coherent states (i.e. S-M/S-E→ M/E, and S-O/S-S

→ I). Examples of such transitions can be seen in Figure 4.3, where a commit occurs at

instruction 6, and cache lines transition accordingly.

On an abort for any VID, all uncommitted, speculatively modified memory in the cache

system is flushed. This facilitates a simpler implementation; aborts should be very rare

when a program is parallelized efficiently and thus the common case is optimized for, while

slowdowns are pushed to the rare abort case. Aborts are further discussed in Chapter 4.9.

34

CommitVID >= h

CommitVID < h:
if CommitVID == m

=> set m = 0

IM

S-M
(m,h)

S-O
(m,h)

S-S
(m,h)

E

S-E
(m,h)

(m,h) = (modVID,highVID)

Figure 4.4: Commit state diagram.

M

S-S
(m,h)

E

S-M
(m,h)

S-E
(m,h)

I

S-O
(m,h)

m > 0

m == 0

(m,h) = (modVID,highVID)

Figure 4.5: Abort state diagram. Note that S-E lines must have modVID == 0, hence
S-E has no transition for modVID > 0. Also note that on an abort, all speculative memory
in the cache is flushed, hence there is no concept of an “abort VID”.

Intuitively based on the design of the protocol, lines that have modVID == 0 are non-

speculative, and therefore they should not be invalidated if they are dirty with respect to

main memory. Otherwise, all other lines should be invalidated. This is reflected in the state

diagram (Figure 4.5).

4.6 Efficient VID Comparisons

The majority of the area and power increases (Chapter 8.5.3) come from the two m-bit

VIDs per line, along with comparing them to the incoming request VID when checking for

35

a hit.

In the evaluated implementation, m = 6. Instead of doing two full 6-bit comparisons

on every cache set check, note that it is highly likely that VIDs in use by the system at

any given time are equal or very close to each other. This is because each transaction has

a single VID, and VIDs are used consecutively between transactions. Thus, a full 6-bit

comparison is unnecessary for the large majority of accesses.

Instead, the highest 3-bits can check for equality while the low 3-bits can check for

magnitude comparison. This keeps dynamic energy consumption low without compromis-

ing on the common case cache hit latency. In the very rare case that the low 3-bits are not

equal, a cascading comparison can continue for the high 3-bits, delaying a cache hit while

the comparison is completed.

Additionally, note that VIDs are unsigned integers. Recall that given some incoming

request VID a, the comparisons against the per-line VIDs that are performed are a ≥

modVID and a < highVID. If either of modVID or highVID == 0, representing non-

speculative state, we can simply skip its comparison. That is, we know that that a ≥ 0 will

always be true, and a < 0 will always be false. Thus we can skip the comparison in these

cases. This is common for much of the read set of a transaction, i.e. lines with modVID

= 0 and in a speculative coherent state.

Lastly, when checking if an access hits a line in a non-speculative coherent state (i.e.

lines with their Speculative bit set to false), no VID comparison is needed. These lines’

VIDs are irrelevant; speculative and non-speculative accesses proceed based simply on tag

comparison as usual and according to the normal MOESI hit logic.

36

4.7 Changing Between VIDs and Store-To-Load For-

warding

Care must be taken to ensure that the semantics of the HMTX system are sustained when

moving between VIDs. The HMTX system relies on the coherence protocol design in

the cache to ensure accesses to different versions of memory with different VIDs is well

tracked. That is, it must ensure that loads and stores see the correct view of their versions of

memory, and track what accesses hit what cache lines to ensure that aborts occur correctly.

Because of this reliance on the modified cache coherence protocol, store-to-load for-

warding cannot forward between stores and loads from different VIDs (that is, between

stores and loads from different transactions).

Store-to-load forwarding is a well known optimization technique wherein, given a store

followed by a load to the same address, the store (yet to be committed and waiting in the

store queue (SQ)) forwards its value to the load which is also uncommitted and waiting in

load queue (LQ). Note that the load gets its value directly from the SQ in the core and so

does not need to be sent to the cache.

An example is presented to illustrate why store-to-load forwarding cannot occur be-

tween stores and loads with different VIDs. Assume some memory location located at 0xa

has value 0 and exists on a line in non-speculative Modified state in some L1 cache. Then,

we get the following series of instructions:

// Assume initially M[0xa] = 0

i1: MTX_BEGIN(register1) // Assume register1 = 1

i2: store M[0xa] = register2 // Assume register2 = 2

i3: MTX_BEGIN(register3) // Assume register3 = 3

i4: load register4 = M[0xa] // register4 should now equal 2

First, assume that instructions execute and are committed one at a time, i.e. without

store-to-load forwarding. Once instruction i1 completes, the VID of all subsequent in-

37

structions should use VID 1 until a new MTX BEGIN() instruction executes. Thus when

i2 completes, it uses VID 1 when sent to the cache. Once it is complete, there would be

two versions in the cache of the line containing 0xa: one in S-O(0,1) that contains the

original data 0, and another in S-M(1,1) that contains the new data 2. Next, i3 would

execute, changing the VID of subsequent instructions to 3. Finally, i4 would execute,

which would hit S-M(1,1) and move it to S-M(1,3), and set register4 = 2.

Instead, now assume that we have a LQ and SQ, and multiple instructions can exist in

the pipeline at once, with stores forwarding to loads regardless of their VIDs. When i2

executes, it now sits in the SQ waiting to be committed and sent to the core’s L1 cache.

Now assume i3 changes the VID register to 3, and then we get to i4. It will sit in the LQ

and i2 would forward its value to i4. Now assume that i2 is committed and finally sent

to the cache. Again as before, there would be two version of the line containing 0xa: one

in S-O(0,1) that contains the original data 0, and another in S-M(1,1) that contains

the new data 2. At this point, i4 is also retired, but is not sent to the cache system because

it has already received its data from i2. Thus, from the perspective of the cache system and

coherence protocol, the transaction with VID 3 does not contain 0xa in its read set (i.e.,

S-M(1,1) never moved to S-M(1,3) as before). This could mean misspeculation is

missed if for example a store occurred to 0xa with VID 2 on another thread, and therefore

the semantics of the original program are not respected.

Note that it is not a problem to forward from stores to loads if they have the same VID;

this would have no impact on the HMTX coherent state of the line. Thus this is only a

problem when switching between VIDs, i.e. at the boundaries of different transactions.

There are a few different ways to solve this problem. One would be to allow this

forwarding to occur, but still send the load to the cache to ensure that the line updates

its highVID correctly. While this mostly defeats the purpose of store-to-load forwarding

entirely, it does not have a large impact on performance as changing between VIDs is

relatively rare, because this only happens on the border of changing between transactions.

38

Alternatively, we could tag on all of the VIDs of loads that a store forwards its loads

onto. However, this comes with more complexities; if there is a branch between the store

and the load, then the load could be squashed if the branch is misspeculated, meaning the

store would need to track what VIDs to keep track of.

Instead, HMTX takes a simpler approach: disallow such forwarding entirely. Note

that this does not have much of a performance impact, as HMTX is targeted toward long

running transactions, so switching between VIDs is the very uncommon case. However,

this is a place where future optimizations of the HMTX design could be targeted used if

HMTX is used to parallelize programs where this overhead becomes impactful.

4.8 Miss Status Holding Registers

4.8.1 Background on Miss Status Holding Registers

Miss status holding registers (MSHRs) [38] are a well known and widely used architectural

technique used by non-blocking caches to keep track of outstanding misses and ensure

future misses are processed correctly and efficiently.

On a normal cache miss, if there is no current prior outstanding miss for this cache line

(a “primary” miss), then an MSHR entry is created and a request is sent out on the bus

for this line. All future misses to this cache line prior to this primary miss being filled are

considered “secondary”; these misses will see there is an outstanding primary miss for this

cache line due to the existence of the primary MSHR, and so will create a secondary MSHR

which waits on the already-outstanding request to be filled before attempting to satisfy its

own request.

In snoopy coherent protocols like MOESI, each cache must snoop on its peers’ requests

to determine if it needs to respond to the request. For example, if an L1 has a line in the

Owned (Dirty and not Writable) state, and it snoops a read request from a peer cache, it

should respond to that read request instead of letting that request travel through to the L2

39

and beyond.

Therefore because MSHRs are markers of outstanding misses, they also signify what

actions if any a cache should perform once an outstanding request is filled if it snooped

any requests for the same line on the bus from other peer caches while the request was

outstanding.

This responsibility of responding to peers’ requests based on the cache’s own outstand-

ing misses (tracked as MSHRs) is known based on the design of the cache system. For

example, a cache may only respond to a snooped request from a peer cache if it knows its

own outstanding request which missed will be filled by the line in a Dirty state (Modified

or Owned). This can only happen when the original miss was a write request.

As a more concrete example, assume some read request r0 is outstanding for some line

from a cache L1A, and then L1A snoops a read request r1 for the same line from a peer

cache L1B. At this point L1A knows it is not responsible for responding to r1 from L1B

once it has satisfied r0. This is because r0 was a read request and so the line to fill this

request must be returned in a non-dirty state, and so once r0 is filled L1A is not responsible

for responding to r1.

4.8.2 Miss Status Holding Registers in HMTX

In HMTX, it is no longer the case that a cache with an MSHR for some outstanding request

knows whether it is responsible for responding to snooped requests. For example, again

assume some line does not exist in some cache L1A, and a read request r0 for it has missed

and a primary MSHR has been created, and then r1 is received from L1B. The line returned

to L1A that satisfies r0 may or may not be able to satisfy the response for r1, and it is not

always possible to know a priori whether it will or will not.

This is because HMTX combines many conceptual versions of a line into a single line,

as discussed in Chapter 4.2, and additionally because there can be only a single instance

of that line anywhere in the cache system which responds to snoops. For example, if r0

40

is a read request with VID = 2, there are many possible instances of a line which could

satisfy that request which could exist somewhere in the cache system. All r0 needs is for

its VID 2 to hit that line; that is, the line could be in S-M/S-E(m,h) with 2 ≥ m, or in

S-O/S-S(m,h) with 2 ≥ m and 2 < h.

So if r1 with VID = 1 is sent out by L1B while r0 from L1A is waiting for a response,

then L1A must wait for r0 to be filled before knowing whether it can respond to r1. For

example, both S-M(1,2) and S-M(2,2) are valid possible responses for r0. But r1 can

only be satisfied by S-M(1,2) and would need a response by L1A, while S-M(2,2)

cannot satisfy r0 and would not need a response by L1A.

Thus, in HMTX, L1A must conservatively keep track of r1 in its MSHR as a potential

request to respond to even though it may not actually respond to r1. Due to the design of

the protocol, there is only ever a single line in the cache system that may respond. Thus,

if the line comes back for r0 in a state that cannot satisfy r1, then it can safely ignore r1,

knowing that some other cache or main memory will respond to r1.

4.9 Aborting Transactions and Memory Overflow

As mentioned in Chapter 4.5, aborts should be made very rare when speculatively paral-

lelizing a program in order to achieve a performance speedup. When it comes to paralleliz-

ing outer loops with long-running iterations of the loop made into transactions, this is even

more critical when compared to the small transactions more traditionally associated with

TM systems.

One kind of abort is due to invalid speculative assumptions. Some examples here are

control or alias speculation that failed. This is the main motivation of TM systems; for

example, to speedup multiple threads who all contain a critical section with accesses to

the same memory address(es). For example, if two active transactions write to the same

address, one of them must abort and retry. While this can heavily impact performance, such

41

a program is generally still able to complete execution, though it must strive to avoid issues

with starvation and livelock. This sort of abort is seen in both software and hardware TM

systems.

Another kind of abort is due to the read and write sets of a transaction not fitting inside

the TM system’s data structures. This is more of a meta-problem related to the ability

and efficiency of the TM system to track these read and write sets. This is a problem

generally seen by hardware TM systems. For example, if a TM system is designed with data

structures that can only handle a specific size of read and write sets, and then a transaction

attempts to speculatively access more addresses than can fit in these data structures, then

the transaction must abort.

Aborts due to this lack of capacity for tracking speculative state are an entirely different

problem than aborts due to alias or control misspeculation. If a single transaction has

read and write sets that are simply too large to be supported by the TM system, the entire

speculatively parallelized version of the program cannot make progress. That transaction

must proceed non-speculatively before speculative execution can resume, or else another

execution paradigm must be used.

The HMTX system is intended to enable speculative execution of very long running

loops, and thus the set of memory addresses accessed is very large, up to tens of megabytes

in the evaluated benchmarks (Chapter 8.4.2). However, the design of the HMTX system

indeed has a limitation of the size of the read and write set. If some speculatively accessed

line overflows the LLC then the transaction must abort (with some exceptions as noted in

Chapter 5.4.

As noted in Chapter 10.1, an auto-tuning parallelization system could increase or de-

crease the amount of parallelism used by a program in order to gracefully minimize or

avoid capacity aborts.

42

4.10 Privatized Versions of Memory

Programmers tend to reuse data structure between iterations of loops. While this can often

make programming easier and/or use less memory, it can introduce spurious misspecula-

tions in HMTX. For example if a hot loop reuses some data structure in a parallel section

of a hot loop that has been speculatively parallelized, then that data structure will be ac-

cessed by many transactions at once. However, each loop iteration could use its own private

version of that data structure, preventing such misspeculation.

Privatization [39, 40, 41, 42, 43, 44] is a useful way to enable parallelization in such

cases, by “privatizing” data structures in order to provide each transaction its own private

version in memory to work with. As mentioned in Chapter 2.3, the SMTX and DSMTX

systems spawn parallel workers through process forking, thus all memory is automati-

cally “privatized by default” via process separation, and any accesses that need speculative

verification must be explicitly communicated to the commit process. Additionally, any

dependences between pipelined threads must explicitly be sent via these software queues.

In contrast, the HMTX system’s parallel workers are threads in the same address space,

because its versioned memory is based on different versions of cache lines and their physi-

cal addresses. This model is “shared by default,” meaning that all privatization needs to be

explicit.

This comes with a couple benefits. First, instead of needing to rely on an extra com-

mit process that manages all versions of memory and replays speculative memory modi-

fications, the HMTX coherence protocol handles this without much overhead through its

commit scheme discussed in Chapters 4.5 and 5.3.

Second, pipelined workers do not need to explicitly pass dependences down through

software queues. Any dependences needed by a later pipelined stage from an earlier

pipelined stage are naturally communicated and found during normal speculative stores

and loads they share the same VID. This means a compiler or programmer parallelizing the

program does not need to worry about passing these dependences explicitly.

43

In order for each thread to know which privatized version of memory to access, each

thread must have some notion of its privatized version ID with respect to the others. This

is accomplished by a single thread ID register added to the thread context. This allows for

a thread to quickly determine which privatized area of memory is its own.

4.11 Operating System and Program Support

Parallelized programs must be able to query the system they are running on to determine

the maximum number n of MTXs that can execute on the system at any given time. This is

due to the fact that log2 n bits are used to represent VIDs in HMTX. Once all n MTXs have

been used the program must stall and take action before resuming speculative execution.

This is discussed further in Chapter 5.3.2.

Additionally, the parallelized program is responsible for ensuring that the active VIDs

in the system correspond back to original program order in order to ensure that correctness

is maintained. It must also ensure that commits occur in consecutive order, e.g. VID

2 commits only after 1 and before 3. Otherwise, the behavior of the HMTX system is

undefined.

Other requirements for transforming a program to use HMTX speculation include:

• If a program needs to perform allocation during speculative sections of the pro-

gram, it must use some pre-allocated thread-local chunk of memory, for example

nedmalloc [45]2. Otherwise there will be false misspeculations forced through calls

to sys brk.

• Inputs and outputs must be handled specially inside a transaction. Inputs must be

read non-speculatively either before or during a hot loop and potentially rewound if

misspeculation occurs, while outputs must be explicitly buffered to ensure no specu-

2Note that the chunks of memory pre-allocated for nedmalloc should be aligned to cache line boundaries;
otherwise accesses to memory from separate transactions may end up interacting and cause false misspecu-
lation.

44

lative outputs occur until commit.

• Data structures accessed during speculative sections of the program must be priva-

tized, as discussed in Chapter 4.10.

• Any thread performing speculative operations should not exit until all transactions

they participated in commits have occurred. Otherwise their stacks (which are

marked as speculative) will be reclaimed by the operating system, causing misspec-

ulation.

45

Chapter 5

Supporting and Optimizing For

Complex, Long-Running Transactions

Most existing HTM systems do not provide sufficient support for long-running and com-

plex transactions that are often required for long-running and complex programs. This

section introduces important enabling optimizations that prevent false misspeculation due

to branch-speculative loads getting squashed (Chapter 5.1); allow for interrupts and ex-

ceptions without forcing aborts (Chapter 5.2); enable extremely fast and simple atomic

commits across the cache hierarchy (Chapter 5.3); and allow for certain speculatively read

lines to overflow the last level cache without forcing a conservative abort (Chapter 5.4).

5.1 Squashed Loads and False Misspeculation

As discussed in Chapter 3.4, cache lines may become incorrectly marked as speculatively

accessed due to branch misprediction inside of a transaction, leading to spurious misspec-

ulations.

For example, assume some load from address 0xa with VID 1 occurs, where the line

containing 0xa has not yet been speculatively accessed at all. When sent to the cache,

the request will mark the line containing 0xa as having been speculatively read by VID

46

1. However, if that load is squashed because branch prediction was incorrect, then the line

has been incorrectly marked as speculatively read, which may cause false misspeculation.

Note that this is a performance issue and not a correctness issue.

To overcome this problem, the speculative load acknowledgment (SLA) is introduced.

When a branch-speculative load is executed it does not immediately mark the line it ac-

cesses with its VID. Once the load is actually committed, then it is safe to mark the line

with its VID. At this point an SLA is sent to the cache system, which includes the value

which was loaded, the address of the load, and the VID of the load. A structure similar to

the store queue buffers these SLAs until they should be sent. The cache system receives

this request, verifies that the original value loaded in the SLA is the same as the current

one at that address, and then transitions the line to the correct speculative state. Otherwise

an abort is triggered. Depending on the parallelized program, this optimization may avoid

many false misspeculations (Chapter 8.4.1).

Note that this does not cause a race condition between transactions that can cause in-

correctness. This essentially defers the update of the VID of the load to the line in the

cache. However SLAs only impact correctness for interactions between accesses of dif-

ferent VIDs, the ordering of which are naturally tracked through the HMTX VID scheme.

For example, if a line is speculatively read by some transaction with VID x and some other

transaction with VID y stores to this same location, the temporal order of these accesses

does not matter, including whether and when an SLA is sent. If x < y then the store should

always succeed without any issue. If x > y then if x occurs temporally first then the store

for y will cause an abort because of a read-after-write violation. If y occurs temporally first

then the value written should flow correctly into the load for x. This all holds regardless of

whether the load for x required an SLA.

Importantly, SLAs may not always be necessary to send. For example, an SLA does

not need to be sent for an access to a line that already has logged that the VID accessed it,

either from an earlier confirmed speculative load with the same VID, or from a speculative

47

store with the same VID. Thus, to ensure sending SLAs does not greatly negatively impact

performance, when a speculative load executes, it is returned with a bit representing if an

SLA is required. This way when the load is committed due to correct branch prediction it

knows whether or not to send an SLA. Thanks to memory access locality, the number of

SLAs that need to be sent is low (Chapter 8.4.1).

SLAs have some similar characteristics to compare-and-swap (CAS) instructions. A

CAS instruction takes three operands: an address, an old value, and a new value. If the

value at the address matches the old value, then the new value should be stored, and other-

wise the new value is not stored. This is similar to SLAs in that the originally read value

is stored in the SLA queue along with an address, and once the SLA is sent it checks that

the value at the address is the same as the value in the SLA (compare). If so then the line is

marked with the VID of the SLA. Otherwise, the transaction is aborted.

Similar to CAS instructions, SLAs are susceptible to the ABA [46] problem. This is

where some original value A from a memory location is saved somewhere (e.g. in a register

in the core), for example for a CAS or SLA to use. The memory location is then modified

to some new value B, and then changed back to A before the CAS or SLA has a chance to

check its stored version A against the new version. Then the CAS or SLA checks the value

and observes the value is still A, even though it was in fact changed to B and back to A.

Note that this problem is not something that can occur in HMTX as long as any given

VID is only in use by a single thread at a time, which is the case for all benchmarks

evaluated in this dissertation. If the intermediate modifications occur from some thread

using a different VID then they access another version of memory, and so the value cannot

be “silently” modified.

Still, if some use case desires to use a single VID by multiple threads concurrently,

the ABA is a well studied problem and, similar to CAS, could be solved by for example by

adding some extra meta information (perhaps in unused bits in the address) like the number

of times the address has been modified to check that the value has in fact not been changed.

48

5.2 Surviving Interrupts and Exceptions

In order for transactions to survive interrupts (e.g. for context switches) and exceptions (e.g.

for virtual memory management), the operating system must be able to non-speculatively

perform memory operations once interrupted. This is especially important for long run-

ning transactions and those which access large or irregular pointer-chasing data structures.

Even programs without such memory access patterns may require non-speculative excep-

tion handling, as operating systems often lazily load pages on-demand and thus would need

to non-speculatively ensure all required memory inside a transaction is already loaded prior

to speculative execution.

Note that all such non-speculative actions do not result in actions that impact correct-

ness of the system as a whole. Context switches are a common and natural part of execution

of a program; the fact that a speculative program is switched out should not be a reason to

abort a program, and causes no issues of correctness. Similarly, moving entries around in

the page table of a process does not impact correctness of other processes or the system as

a whole. Therefore it is safe to do these operations non-speculatively while in the middle

of speculative execution.

To support this, the parallelized programs are statically linked, and then the program

informs the HMTX system of the range of the program’s text segment, so that it will only

add the VID onto loads and stores that fall into this PC range. This results in functioning

non-speculative interrupts. Dynamically linked programs could also be supported if the

system is made aware of the addresses of the libraries.

This is implemented via two speculative PC range registers added to the core. When

an instruction is fetched its PC is compared against these registers; if the PC falls into the

range then this instruction should be considered MTX-speculative, and the VID set in the

VID register is appended to the instruction if it’s a memory instruction.

Additionally, note that unlike most hardware TM systems, speculative threads can mi-

grate between cores; their data can be found in other caches naturally through the VID

49

of the transaction. Thus the OS is free to interrupt and move a thread participating in a

transaction from one core to another without issue.

5.3 Commit and Abort Handling

As noted in Chapter 3.4, a naı̈ve scheme such as that presented in Chapter 4.5 may need

to keep track of all speculatively accessed lines in order to explicitly transition them on

commit, or else use a lot of time or hardware complexity to commit them quickly. This

could require some structure in hardware or software to scale along with the number of ac-

cessed lines (which is quite large in the evaluated benchmarks (Chapter 8.4.2)), increasing

complexity and degrading performance of the system in execution time and energy.

For example, something similar to an ownership required buffer (ORB) [15] could be

used, which simply holds the addresses of all lines for every speculative access. Processing

this buffer would take a significant amount of time as it would need to be searched and

cleared for every address. This would need to happen for all caches that have speculative

state, which in the evaluation includes a large last level cache.

To improve upon this scheme, the HMTX system is able to take advantage of the design

of the protocol, as well as adapts an approach used by other works [18, 34, 47] by using

lazy commit processing.

5.3.1 Efficient per Commit Action

To efficiently handle commits, a new register is added to each cache representing the latest

committed VID (LCVID). On commit for some commitVID, all caches simply set their

LCVIDs to commitVID. This is the only action required on commit. This is done atomi-

cally across the system once broadcasted on the shared bus between the L1 and L2.

For every speculative access that arrives, the cache continues using the same hit and

miss logic as before, as described in Chapter 4.1. Non-speculative accesses (those with

50

VID = 0) however instead use VID = LCVID just for determining if there is a hit. This in-

tuitively makes sense, as non-speculative accesses should access the last committed version

of a line.

When a line is selected as a victim for eviction to the next level cache, it can be lazily

transitioned before sending to the next level if necessary (i.e. it may have been invalidated).

It may additionally be lazily processed after a VID reset, discussed in the next section.

5.3.2 Lazy Commit Processing via VID Overflow and Reset

VIDs are limited to a finite m bits. When running many iterations of a loop speculatively

with HMTX, it is likely that we will eventually commit 2m−1 transactions, meaning we run

out of VIDs. All transactions from a single group of 2m − 1 transactions (i.e. transactions

with VIDs from 1→ 2m − 1) are called a “flight” of transactions.

The parallelized program needs to be able to somehow query the system to determine

this 2m−1 maximum number of VIDs that constitute a flight, as mentioned in Chapter 4.11.

Once the last transaction of a flight commits, first the software must delay all new

transactions until the one with VID = 2m has committed. Next, a VID Reset signal should

be sent to the memory system, which triggers two actions once broadcasted on the shared

L1-L2 bus:

1. All cache lines set their VIDs to (0,0).

2. All caches set LCVID = 0.

Once this is complete, a new flight can begin, with the first transaction of the flight

starting again with VID = 1. Note that only one flight can be active at a time, and all

transactions from a flight must be successfully committed before that flight is retired and a

new flight can begin.

This works thanks to the design of the protocol (Chapter 4.1); the combination of these

three actions results in following the exact commit state diagram from Figure 4.4:

• The “latest” versions of the line in S-M/S-E will now have VIDs (0,0). This

51

effectively commits them even though they are not yet moved to M/E, because they

have their modVID set to non-speculative state (i.e. == 0), and their hit condition

simply checks for the request’s VID ≥ 0, which will always be true regardless of

whether the request is speculative or not. The next time this line is accessed, the line

lazily sets SB = 0, which officially moves S-M to M and S-E to E.

• The “non-latest” speculative versions of the line in S-O/S-S(0,0) can never hit

for an access because their hit condition checks for the access VID < 0 which can

never be true. Thus they are effectively invalidated. These lines will simply be

invalidated when selected as a victim for eviction.

This elegantly and quickly allows for commits to proceed and for VID overflows to

occur without requiring very much complexity in hardware or software.

Note that when using DSWP, VID Resets can be costly because they stall the DSWP

pipeline until the transaction with maximum VID = 2m commits. Thus the decision of how

many bits should be used for VIDs leaves a tradeoff of execution time vs. implementation

complexity and energy consumption. 6 was settled on as a fair compromise.

5.3.3 Abort Processing

As discussed in Chapter 4.5, on an abort for any VID, all uncommitted transactional mem-

ory in the cache system is flushed.

When an abort occurs, it is broadcast on the shared L1-L2 bus. Then, for each line,

if SB is set , then it is transitioned according to the state diagram in Figure 4.5 with one

change: instead of checking if modVID == 0 and modVID > 0, it checks if the line would

be hit by LCVID or not, respectively.

For example, assume the cache had lines in S-O(0,2), S-O(2,5), and S-M(5,7),

and LCVID = 3 . Following the above logic, S-O(0,2) and S-M(5,7) would not be

hit by VID 3 and so would be invalidated based on the abort state diagram. Meanwhile,

S-O(2,5) would be hit by VID 3, and so would move to M based on the abort state

52

diagram.

Note that all lines from previously committed flights have already been committed as

discussed in Chapter 5.3.2, and so the abort logic does not impact these lines here. Addi-

tionally, because the condition for determining if something has been committed is based

on the hit logic with LCVID, all lines already committed based on the current value of

LCVID are also left as committed, while other lines are invalidated.

Additionally, note that the hit logic needed for determining how to proceed on an abort

already exists in the cache for normal hit and miss processing. However, cache sets cannot

all be checked at once. Hence the abort transition will take an amount of time that scales

with the number of cache lines in the cache. This is an intentional design choice because

aborts should be extremely rare, and so we limit the complexity of the system and push the

common case commit to the fast path while allowing the rare abort case to take longer.

5.3.4 Summary of Commit and Abort Design

This design includes limited complexity for cache operations on commit or abort. On

the common-case path of commits and unavoidable VID overflow, execution can proceed

quickly without waiting for an expensive or costly cache operation where, all at once, every

line must be explicitly transition based on the commit or abort state machine.

This scheme is made possible by the design of the coherence states, which allow for a

line to transition to its next state without needing to query for the state of any other lines

in the system, and due to the elegance of resetting VIDs to (0,0) effectively perform-

ing a commit. This commits all lines from a completed flight, while the LCVID enables

understanding of what has been committed in a partially completed flight.

Summarizing the protocol for commits, completed flights, and aborts:

• On commit of a single transaction inside a flight, simply set all caches’ LCVID to

the VID of the commit. This keeps commits on the fast path and makes their imple-

mentation and cost very low.

53

• On a completed flight, software pauses speculative execution and:

1. All cache lines set their VIDs to (0,0). This effectively commits and transi-

tions all lines from all transactions in the flight.

2. All caches set LCVID = 0. This allows for a new flight to begin back at

VID = 1.

• On abort, every cache line checks if LCVID hits the line to determine how to transi-

tion the line for abort. Checking for a hit allows for the correct transition to be made

in an equivalent fashion to the abort state diagram in Figure 4.5.

5.4 Speculative Memory Overflowing the Caches

Each cache line’s modVID and highVID enable different versions of memory as well as

tracking and verifying the ordering of accesses to these versions. Naı̈vely, this means that

all speculatively accessed lines would need to stay inside the caches for the system to

function correctly.

Note however that the scheme saves many non-speculative versions (in S-O with mod-

VID = 0). Because these lines are non-speculative, they are safe to write back to memory.

However, it must be guaranteed that they can be retrieved back in a speculative state that

ensures correct execution. The protocol ensures this because if there is a line in S-O, there

must also be an S-M line also somewhere in the cache hierarchy (as seen in Table 4.3). If

an S-M line snoops a request with VID = y for a line that has the same address but does

not hit due to VID comparison, it asserts that the line was already speculatively modified.

If the request then misses all caches, it knows that it should have hit an S-O version with

modVID = 0 that must have been written back to memory. Thus when the request is sat-

isfied by memory it is returned in S-O(0,y+1), and speculative execution can resume.

This preserves correctness while allowing for larger read and write sets.

54

Chapter 6

Complete Design Overview

This Chapter provides a review of all of the architectural changes required for HMTX.

Figure 6.1 shows a graphical depiction of these changes.

Each core is augmented with:

• A VID register (Chapter 3.2), which represents the current active VID to use for all

memory operations.

• Two speculative PC range registers (one low and one high) (Chapter 5.2), which

represent the range of PCs from which memory instructions should have the VID

register added to the memory operation, allowing for interrupts and exceptions to be

handled.

• Speculative Load Acknowledgment (SLA) Queue (Chapter 5.1), used for sending

confirmation when a branch-speculative load that is also MTX speculative is com-

mitted.

New HMTX instructions are added to the ISA (as discussed in Table 3.1):

• MTX INIT(handlerFunction): Registers a fallback abort handler function.

Should be called by all speculative threads prior to speculative execution beginning.

• MTX BEGIN(vid): Marks the beginning location of using some VID for all mem-

ory operations that follow. Sets the VID register in the core to vid.

55

CPU

Instruction Set:

-MTX_INIT(pc)
-MTX_BEGIN(VID)
-MTX_COMMIT()
-MTX_ABORT()

Bus and Cache Controller

Coherence Protocol

+

MTX Extensions

VID
Reg

LQ SQ
SLA

Q

Spec PC
Range
Regs

L1/L2 Caches

Latest Committed VID

SB cVIDs St Tag Data

1 12 3 31/39 512

CacheVIDs = (ModifierVID, HighestAccessorVID)
ModifierVID = Transaction which created this version of the line
HighestAccessorVID = “Highest” transaction to access this line

Figure 6.1: Final Overview. Those items highlighted in red are added for HMTX. St repre-
sents each line’s coherent status before addition of the Speculative Bit SB.

• MTX COMMIT(): Commits the currently active transaction, based on the most re-

cently entered transaction via MTX BEGIN.

• MTX ABORT(): Aborts all active transactions. All speculative threads will fall back

to the handler function specified by MTX INIT(handlerFunction).

Caches include support for multiple versions of lines based on VIDs. This must be done

at least for the closest level cache to the core, and can be expanded to the next level after in

order to provide for larger transaction sizes. In the presented implementation, this includes

both the L1 and L2 caches.

Each cache includes a Latest committed VID (LCVID) (Chapter 5.3.1), used for repre-

senting the latest VID to have been committed in the current flight of transactions.

For every line in these caches, the following is added (visualized in Figure 6.2):

• Cache line VIDs are added to every line, which is a tuple of the (modVID,

56

Tag Valid Writable Dirty Speculative modVID highVID Data

Figure 6.2: Structure of a cache line. Those components highlighted in red are part of the
HMTX design. In total, 13 bits are added per line: 1 bit for the Speculative bit, and 6 bits
each for modVID and highVID.

highVID), each 6 bits in the presented implementation (Chapter 4.2):

– Modifier VID (modVID) represents the the transaction which created this ver-

sion of the line.

– Highest Accessor VID (highVID) represents the “latest” transaction to have

accessed this line.

• Speculative bit representing if this line is in a speculative coherent state (Chapter 4.1).

Using this state on a per cache line basis, logic is added to track the coherent state of

lines as they receive accesses and snoop requests on the bus. Comparators must be added

alongside tag comparisons (e.g. the cascading comparators mentioned in Chapter 4.6).

The state machine for the traditional MOESI coherence model is extended to include the

transitions described in Chapter 4.1.

57

Chapter 7

Preserving Original Program Semantics

This Chapter provides a discussion of the correctness of the HMTX system. Chapter 7.1

provides an argument that, given some parallel program that uses HMTX as intended, the

program behaves as described in this dissertation and respects data hazards given some

original sequential ordering of the program mapped to HMTX with VIDs. Chapter 7.2 lays

out an exhaustive analysis of all possible coherence states the system can move through

given two requests, and how those requests respect data hazards. Chapter 7.3 outlines

how HMTX would be integrated with an ISA like Alpha which uses a weakly-consistent

memory model.

7.1 Argument For Respecting Original Program Data

Hazards

Parallel transformation of a sequential program to use versioned memory using HMTX is

essentially assigning each dynamic instruction of that program a VID, and then executing

each on one or more threads with correct synchronization between transactions and stages.

The presented analysis assumes that this transformation and assignment is done cor-

rectly, i.e. that VIDs are assigned in order corresponding to the original sequential ex-

58

ecution order of the program, and thus they can be used to respect dependences during

speculative execution, ensuring the original program’s semantics are preserved.

This section focuses on the interactions between inter-transaction loads and stores. Note

that while a thread is using a particular VID, no protections against data races are provided

if another thread is concurrently using that VID. In the programs evaluated in this disser-

tation, a VID is only in use by a single thread at a time. Intra-transaction operations can

assume the same semantics as a normal non-versioned memory system. Further analysis is

provided in Chapter7.2.

Inter-transaction operations require more reasoning than intra-transaction operations.

Given two transactions with VIDs x and y where x < y, all memory operations with VID x

should occur logically before those with VID y, as x represents some dynamic sequence of

instructions that came before instructions with VID y in the original sequential program. If

this logical order is not respected during execution then then an abort should be triggered.

Assume for the following cases that the system receives two memory operations, at

least one of which is a store, with VIDs x and y with no intervening accesses. Additionally

assume that their VIDs are the highest two VIDs to access this line; if this were not the

case, then some version of the line would have highVID > the VID of at least one store,

which would trigger misspeculation.

True Dependences (read-after-write): Assume a store with VID x, sx, to the same

address as a load with VID y, ly. The value stored by sx should be loaded by ly, or else an

abort should be triggered.

• Dependence Respected: If sx occurs temporally first, then the version of the line

with this modification will exist in S-M(x,x). When ly occurs, it will hit this

version of the line because y > x, and the line will move to S-M(x,y). Thus the

correct value will be loaded thanks to uncommitted value forwarding.

• Dependence Not Respected: If ly occurs temporally first, then a version of the line

must exist with highVID == y in either S-M, S-E, or S-O. When sx occurs mis-

59

speculation will be detected because of a store to a line with VID < the highVID of

the line, y, and an abort will be triggered because the dependence was not respected.

Anti-Dependences (write-after-read): Assume a load with VID x, lx, to the same

address as a store with VID y, sy. The value stored by sy should not interfere or replace the

value loaded by lx.

• Dependence Respected: If lx occurs temporally first, then a version of the line will

exist with highVID == x in either S-M, S-E, or S-O. Note that if S-O, there must

exist some other S-M with modVID == y from a store that occurred earlier; oth-

erwise if S-M or S-E, modVID must be ≤ x. Then when sy occurs, it will hit an

S-M or S-E of the line because one of these lines must exist with modVID = x or

y. If the line hit was not S-M(y,y), then a new copy of the line will be created in

S-M(y,y), and the original version of the line will be left in S-O with highVID y.

• Dependence Respected: If sy occurs temporally first, then a version of the line

will be created or already exist in S-M(y,y), and then some other line in S-O

with highVID == y will exist with modVID < y. When lx occurs it will hit this

S-O version of the line because x < y. The correct value will be loaded and false

misspeculation will be avoided.

Output Dependences (write-after-write): Assume two stores with VIDs x, sx, and

y, sy.

• Dependence Respected: If sx occurs temporally before sy, then the version of the

line with this modification will exist in S-M(x,x). When sy occurs, it will hit this

version of the line because y > the modVID of the line, x. A new copy of the line

will be created in S-M(y,y), and the original version of the line will be left in

S-O(x,y). Two versions of the line will exist and false misspeculation is avoided.

• Dependence Not Respected: If sy occurs temporally before sx, then a version of the

line will be created in S-M(y,y), and some line in S-O must exist with highVID

== y. When sx occurs misspeculation will be conservatively triggered because of a

60

store to this S-O version of the line. Note that this is necessary because of the cache

line granularity of tracking speculative accesses. If sx writes to a different part of the

line than sy, and some read occurs with VID y after sy to the location sx wrote to,

then that read would not read the correct value.

Thus, all dependences will be respected, and the original program’s sequential seman-

tics will be preserved.

7.2 Exhaustive Analysis of All Possible States

An exhaustive analysis is presented in this section. In general, there are many dimensions

to consider when determining what may happen between two accesses1:

• Whether the accesses are reads or writes

• Whether the accesses have the same or different VIDs

• The order of the accesses

Six figures are presented (Figure 7.1 through Figure 7.6) enumerating all possible com-

binations of interactions for two accesses given these possibilities. The following repre-

sents all such combinations, where r and w represent reads and writes respectively, and the

subscript represents the VID of the access:

• Two accesses using the same VID, i.e. VID a then a:

– wa, ra (Figure 7.1)

– wa, wa (Figure 7.1)

– ra, ra (Figure 7.2)

– ra, wa (Figure 7.2)

• Correct ordering of two accesses based on VID, i.e. VID a then b:

1Note that in addition, these accesses could come from the same or different threads. To limit the search
space, threads are abstracted away from this analysis. The design of HMTX limits modifications to S-M and
S-E lines, of which there can only exist one in the system for a specific cache line. If a write request needs
access to one of these lines it will request it on the bus an get it. Thus, when discussing any two accesses, it
is assumed the lines could exist anywhere in the cache system, and the accesses could come into any L1 in
the cache system.

61

– wa, rb (Figure 7.3)

– wa, wb (Figure 7.3)

– ra, rb (Figure 7.4)

– ra, wb (Figure 7.4)

• Incorrect ordering of two accesses based on VID, i.e. VID b then a:

– wb, ra (Figure 7.5)

– wb, wa (Figure 7.5)

– rb, ra (Figure 7.6)

– rb, wa (Figure 7.6)

Given this exhaustive analysis, it is possible to see that all data hazards are identified

and either all dependences are preserved, or else an abort is triggered.

For example, Figure 7.3 depicts a write request with VID a followed by two possible

secondary requests: a write with VID b, or a read with VID b. The yellow section on the

left enumerates all possible initial cache states. The green section in the middle enumerates

all possible resulting cache states given a write with VID a. The blue section in the upper

right enumerates final states given a write with VID b, while the red section in the lower

right enumerates final states if instead the second request is a read with VID a.

Each block consisting of one or more lines represents one possible cache state; the lines

in that block could exist anywhere in the cache system, and if a request misses in its local

cache that line will be the one that hits for this request. It will be transferred to the L1

initially which received the request.

For example, S-M(<a,≤a) is one line in a possible cache state represented by its

containing block. The block includes one or more other lines in S-O, including one with

modVID 0. Given this cache state, if a write was received somewhere in the cache with

VID a for value 0x8, then the resulting cache state would include S-M(a,a) with the

new data 0x8, as well as the previous cache line data in S-M(<a,a) with the old data

0x2. From there a read (red arrows/section) or write (blue arrows/section) with VID b is

62

shown to occur with each of their possible resulting cache states. If it’s a write then again

we have a new S-M(b,b) line with the new data 0x9 as well as the old line in S-O(a,b)

with the old data 0x8. In contrast if it’s a read then the S-M line simply updates highVID,

resulting in S-M(a,b) line with the same data 0x8.

Note that no S-S lines are used in this analysis. This is because these lines are always

unmodifiable copies of other lines in the cache, and can only represent some “frozen”

version of a line (i.e. it can never represent the “latest” version and thus no writes can be

performed to them, and no reads can occur that wouldn’t occur to the version of the line that

they came from). For example, if a line in S-M(a,b) spawns a S-S(a,b) version, the

hit logic for S-S prevents requests with VID b from hitting this line, and thus it can only

serve as a base for reading already frozen lines which cannot be speculatively modified

without an abort being triggered. Thus they respond to reads between ≥ a and < b just

as the S-M(a,b) line would, and otherwise requests ≥ b will miss and eventually hit the

S-M(a,b) line.

63

S-E (0,≤a) 0x1

M/O/E/S 0x1

S-M (0,≤a) 0x1

S-O (0,_) 0x1

S-O (...) ...

S-O (<a,a) 0x2

S-M (a,a) 0x3

S-O (0,_) 0x1

S-O (...) ...

S-M (<a,≤a) 0x3

S-O (0,_) 0x1

S-O (...) ...

S-M (_,>a) 0x2

S-E (0,>a) 0x1

S-M (0,>a) 0x1

S-O (0,a) 0x1

S-M (a,a) 0x8

S-O (0,_) 0x1

S-O (...) ...

S-O (<a,a) 0x2

S-M (a,a) 0x8

S-O (0,a) 0x1

S-M (a,a) 0x8

S-O (0,_) 0x1

S-O (...) ...

S-O (<a,a) 0x2

S-M (a,a) 0x8

All Possible Cache
States After First Req

All Possible Cache
States After Second Req

WriteReq 0x8, VID=a

WriteReq 0x9, VID=a

ReadReq, VID=a

All Possible Initial
Cache States

ABORT

S-O (0,a) 0x1

S-M (a,a) 0x9

S-O (0,_) 0x1

S-O (...) ...

S-O (<a,a) 0x2

S-M (a,a) 0x9

Hit to this line
Miss to this line

RAW and WAW if they come
from the same transaction

Figure 7.1: Depiction of all possible cache states as the system receives two requests with
the same VID. The yellow section on the far left represents all possible initial cache states.
The green section in the middle represents all possible cache after a write request with VID
a. Given these new states, the blue section in the upper right represents all possible cache
states after another write request with VID a. The red section in the lower right represents
all possible cache states after a read request with VID a instead of a write request.

64

S-E (0,≤a) 0x1

M/O 0x1

S-M (0,≤a) 0x1

S-O (0,_) 0x1

S-O (...) ...

S-O (≤a, >a) 0x2

S-M (>a,>a) 0x3

S-O (0,_) 0x1

S-O (...) ...

S-M (<a,≤a) 0x2

S-O (0,_) 0x1

S-O (...) ...

S-M (≤a,>a) 0x2

S-E (0,>a) 0x1

S-M (0,>a) 0x1

S-M (0,a) 0x1

S-O (0,_) 0x1

S-O (...) ...

S-M (<a,a) 0x2

All Possible Cache
States After First Req

All Possible Cache
States After Second Req

ReadReq, VID=a

WriteReq 0x8, VID=a

ReadReq, VID=a

E/S 0x1
S-E (0,a) 0x1

S-O (0,_) 0x1

S-O (...) ...

S-O (≤a, >a) 0x2

S-M (>a,>a) 0x3

S-E (0,>a) 0x1

S-M (0,>a) 0x1

S-O (0,_) 0x1

S-O (...) ...

S-M (≤a,>a) 0x2

All Possible Initial
Cache States

Hit to this line
Miss to this line

WAR and RAR if they come
from the same transaction

ABORT

S-O (0,a) 0x1

S-M (a,a) 0x8

S-O (0,_) 0x1

S-O (...) ...

S-O (<a,a) 0x2

S-M (a,a) 0x8

S-O (0,_) 0x1

S-O (...) ...

S-M (a,a) 0x2

S-O (0,_) 0x1

S-O (...) ...

S-M (a,a) 0x2

S-O (0,_) 0x1

S-O (...) ...

S-M (a,a) 0x8

S-M (0,a) 0x1

S-O (0,_) 0x1

S-O (...) ...

S-M (<a,a) 0x2

S-E (0,a) 0x1

S-O (0,_) 0x1

S-O (...) ...

S-O (≤a, >a) 0x2

S-M (>a,>a) 0x3

S-E (0,>a) 0x1

S-M (0,>a) 0x1

S-O (0,_) 0x1

S-O (...) ...

S-M (≤a,>a) 0x2

S-O (0,_) 0x1

S-O (...) ...

S-M (a,a) 0x2

Figure 7.2: Depiction of all possible cache states as the system receives two requests with
the same VID. The yellow section on the far left represents all possible initial cache states.
The green section in the middle represents all possible cache after a read request with VID
a. Given these new states, the blue section in the upper right represents all possible cache
states after a write request with VID a. The red section in the lower right represents all
possible cache states after a read request with VID a instead of a write request.

65

S-E (0,≤a) 0x1

M/O/E/S 0x1

S-M (0,≤a) 0x1

S-O (0,_) 0x1

S-O (...) ...

S-O (<a,a) 0x2

S-M (a,a) 0x3

S-O (0,_) 0x1

S-O (...) ...

S-M (<a,≤a) 0x3

S-O (0,_) 0x1

S-O (...) ...

S-M (_,>a) 0x2

S-E (0,>a) 0x1

S-M (0,>a) 0x1

S-O (0,a) 0x1

S-M (a,a) 0x8

S-O (0,_) 0x1

S-O (...) ...

S-O (<a,a) 0x2

S-M (a,a) 0x8

S-O (0,a) 0x1

S-O (a,b) 0x8

S-M (b,b) 0x9

S-O (0,_) 0x1

S-O (...) ...

S-O (<a,a) 0x2

S-O (a,b) 0x8

S-M (b,b) 0x9

S-O (0,a) 0x1

S-M (a,b) 0x8

S-O (0,_) 0x1

S-O (...) ...

S-O (<a,a) 0x2

S-M (a,b) 0x8

All Possible Cache
States After First Req

All Possible Cache
States After Second Req

WriteReq 0x8, VID=a

WriteReq 0x9, VID=b

ReadReq, VID=b

All Possible Initial
Cache States

ABORT

Hit to this line
Miss to this line

RAW and WAW if they
come in the correct order

Figure 7.3: Depiction of all possible cache states as the system receives two requests with
VIDs a and b in that order. The yellow section on the far left represents all possible initial
cache states. The green section in the middle represents all possible cache after a write
request with VID a. Given these new states, the blue section in the upper right represents
all possible cache states after write request with VID b. The red section in the lower right
represents all possible cache states after a read request with VID b instead of a write request.

66

ReadReq, VID=a

ReadReq, VID=b

S-E (0,≤b) 0x1

M/O 0x1

S-M (0,≤b) 0x1

S-E (0,>b) 0x1

S-M (0,>b) 0x1

S-M (0,≤b) 0x1

S-M (0,b) 0x1

S-O (0,_) 0x1

S-O (...) ...

S-M (≤a,b) 0x2

All Possible Initial
Cache States

All Possible Cache
States After First Req

All Possible Cache
States After Second Req

WriteReq 0x9, VID=b

E/S 0x1
S-E (0,≤b) 0x1

S-E (0,b) 0x1

S-E (0,>b) 0x1

S-E (0,>b) 0x1

S-M (0,>b) 0x1

S-M (0,>b) 0x1

S-O (0,_) 0x1

S-O (...) ...

S-M (≤a,>b) 0x2

S-O (0,_) 0x1

S-O (...) ...

S-M (≤a,≤b) 0x2

S-O (0,_) 0x1

S-O (...) ...

S-M (≤a,≤b) 0x2

S-O (0,_) 0x1

S-O (...) ...

S-M (≤a, >b) 0x2

S-O (0,_) 0x1

S-O (...) ...

S-M (≤a, >b) 0x2

S-O (0,b) 0x1

S-M (b,b) 0x9

S-O (0,_) 0x1

S-O (...) ...

S-O (≤a, b) 0x2

S-M (b, b) 0x9

S-O (0,_) 0x1

S-O (...) ...

S-O (≤a,b) 0x2

S-M (b,b) 0x3

S-O (0,_) 0x1

S-O (...) ...

S-O (≤a,b) 0x2

S-M (b,b) 0x3

S-O (0,_) 0x1

S-O (...) ...

S-O (≤a,b) 0x2

S-M (b,>b) 0x3

S-O (0,_) 0x1

S-O (...) ...

S-O (≤a,b) 0x2

S-M (b,>b) 0x3

S-O (0,_) 0x1

S-O (...) ...

S-O (≤a,b) 0x2

S-M (b, >b) 0x3

S-O (0,_) 0x1

S-O (...) ...

S-O (≤a,b) 0x2

S-M (b,b) 0x3

ABORT

S-O (0,_) 0x1

S-O (...) ...

S-O (≤a, >b) 0x2

S-M (>b,>b) 0x3

S-O (0,_) 0x1

S-O (...) ...

S-O (≤a, >b) 0x2

S-M (>b,>b) 0x3

S-O (0,_) 0x1

S-O (...) ...

S-O (≤a, >b) 0x2

S-M (>b,>b) 0x3

Hit to this line
Miss to this line

WAR and RAR if they
come in the correct order

Figure 7.4: Depiction of all possible cache states as the system receives two requests with
VIDs a and b in that order. The yellow section on the far left represents all possible initial
cache states. The green section in the middle represents all possible cache after a read
request with VID a. Given these new states, the blue section in the upper right represents
all possible cache states after write request with VID b. The red section in the lower right
represents all possible cache states after a read request with VID b instead of a write request.

67

S-E (0,≤b) 0x1

M/O/E/S 0x1

S-M (0,≤b) 0x1

S-O (0,_) 0x1

S-O (...) ...

S-O (≤a,b) 0x2

S-M (b,b) 0x3

S-O (0,_) 0x1

S-O (...) ...

S-M (≤a,≤b) 0x3

S-O (0,_) 0x1

S-O (...) ...

S-M (_,>b) 0x2

S-E (0,>b) 0x1

S-M (0,>b) 0x1

S-O (0,b) 0x1

S-M (b,b) 0x9

S-O (0,_) 0x1

S-O (...) ...

S-O (≤a,b) 0x2

S-M (b,b) 0x9

S-O (0,a) 0x1

S-M (a,b) 0x8

S-O (0,_) 0x1

S-O (...) ...

S-O (≤a,b) 0x2

S-M (b,b) 0x9

All Possible Cache
States After First Req

All Possible Cache
States After Second Req

WriteReq 0x9, VID=b

WriteReq 0x8, VID=a

ReadReq, VID=a

All Possible Initial
Cache States

ABORT

ABORT

Hit to this line
Miss to this line

RAW and WAW if they
come in the incorrect order

Figure 7.5: Depiction of all possible cache states as the system receives two requests with
VIDs b and a in that order. The yellow section on the far left represents all possible initial
cache states. The green section in the middle represents all possible cache after a write
request with VID b. Given these new states, the blue section in the upper right represents
all possible cache states after write request with VID a. The red section in the lower right
represents all possible cache states after a read request with VID a instead of a write request.

68

S-E (0,≤b) 0x1

M/O 0x1

S-M (0,≤b) 0x1

S-O (0,_) 0x1

S-O (...) ...

S-O (≤a,b) 0x2

S-M (b,≥b) 0x3

S-O (0,_) 0x1

S-O (...) ...

S-M (≤a,≤b) 0x2

S-O (0,_) 0x1

S-O (...) ...

S-M (≤a,>b) 0x2

S-E (0,>b) 0x1

S-M (0,>b) 0x1

S-M (0,b) 0x1

S-O (0,_) 0x1

S-O (...) ...

S-M (≤a,b) 0x2

S-M (0,b) 0x1

S-O (0,_) 0x1

S-O (...) ...

S-M (≤a,b) 0x2

All Possible Cache
States After First Req

All Possible Cache
States After Second Req

ReadReq, VID=b

WriteReq 0x8, VID=a

ReadReq, VID=a

ABORT

E/S 0x1
S-E (0,b) 0x1

S-E (0,b) 0x1

S-O (0,_) 0x1

S-O (...) ...

S-O (≤a,b) 0x2

S-M (b,≥b) 0x3

S-E (0,>b) 0x1 S-E (0,>b) 0x1

S-M (0,>b) 0x1

S-M (0,>b) 0x1

S-O (0,_) 0x1

S-O (...) ...

S-M (≤a,b) 0x2

S-M (b,≥b) 0x3

S-O (0,_) 0x1

S-O (...) ...

S-M (≤a,>b) 0x2

S-O (0,_) 0x1

S-O (...) ...

S-M (≤a,>b) 0x2

All Possible Initial
Cache States

S-O (0,_) 0x1

S-O (...) ...

S-O (≤a,>b) 0x2

S-M (>b,_) 0x3

S-O (0,_) 0x1

S-O (...) ...

S-O (≤a,>b) 0x2

S-M (>b,_) 0x3

S-O (0,_) 0x1

S-O (...) ...

S-O (≤a,>b) 0x2

S-M (>b,_) 0x3

Hit to this line
Miss to this line

WAR and RAR if they
come in the incorrect order

Figure 7.6: Depiction of all possible cache states as the system receives two requests with
VIDs b and a in that order. The yellow section on the far left represents all possible initial
cache states. The green section in the middle represents all possible cache after a read
request with VID b. Given these new states, the blue section in the upper right represents
all possible cache states after write request with VID a. The red section in the lower right
represents all possible cache states after a read request with VID a instead of a write request.

69

7.3 Memory Consistency Model and HMTX Speculative

Memory

HMTX was modeled using the Alpha ISA, which has a weakly-consistent memory model.

Accordingly, synchronization barrier instructions are required to enforce an ordering in

specific circumstances to ensure a bug-free program. This must be considered in the context

of buffered transactional memory state and how and when this state becomes visible to

other threads on other cores.

Similar to the discussion in Section 4 of [48] about transactions in the Power ISA which

contains “Load and Reserve” (larx) and “Store Conditional” (stcx) instructions, Alpha con-

tains load-locked and store-conditional instructions. As discussed in [48], these instruc-

tions’ correctness relies on the fact that a pair of these instructions will fail even if the load

reads a stale value, i.e. some other store has already occurred elsewhere in the system but

the value read by the load has not yet been updated.

This concept is then related to implementing transactional memory in a weakly-

consistent ISA like Power; they note:

“[A] transactional store must gain control of the coherence mechanism for the

given location to ensure that the transactional write will enter the coherence or-

der for the location as the most recent value, and that no store by another thread

will subsequently be serialized into the coherence order for that location before

the transaction commits. This is typically achieved by gaining write ownership

of the location in the coherence protocol and either holding that ownership un-

til the transaction commits successfully or failing to hold that ownership due

to a conflict with another transactional or non-transactional access and failing

the transaction.

Additionally, a major difference between transactional semantics and larx/stcx

semantics is that, unlike larx/stcx pairs for which the stcx can succeed once

70

the write has been serialized into the coherence order and before the write

has propagated to all processors to eliminate stale copies, the transaction must

propagate (or at least appear to propagate) to all processors and make any stale

cached copies of the locations un-readable before a transaction can success-

fully commit. This is necessary to prevent non-transactional loads on other

threads observing an inconsistent image of the aggregate store.”

A similar argument can be made for HMTX using the Alpha ISA which has its load-

locked and store-conditional instructions. HMTX requires that any cache line that is ac-

cessed by a transaction holds exclusive write access. Specifically, if a cache line is specula-

tively accessed, it cannot exist in any non-speculative state, meaning that write ownership is

provided to at most one transaction, and no non-speculative writes can occur without forc-

ing an abort for all transactions in the system. Additionally, the commit protocol (Chap-

ter 4.5) ensures that all writes by a transaction appear atomically across the system.

In addition, again similar to [48], HMTX instructions all include implicit memory barri-

ers. This simplifies the programming model and ensures that all stores within a transaction

are seen as a single store that is ordered with respect to its surrounding code. Because

transactions tend to be very large and are in the evaluated benchmarks, the overhead here

is trivial.

71

Chapter 8

Evaluation

8.1 Methodology

The HMTX system is modeled and evaluated using the gem5 simulator [49] in full system

mode with a 4-core out-of-order processor. Table 8.1 shows the hardware configuration.

Note that the cache sizes in the table are used for the base evaluation; a study on the impact

of changing cache sizes on a subset of benchmarks is discussed in Chapter 8.5.

Speedup of the hottest loop of each benchmark speedup is compared. Approximately

15% of the iterations of the hot loops are measured and evaluated due to limitations of the

simulation environment. Table 8.2 shows the percentage of execution time spent in the

evaluated hot loop for each benchmark on a real x86 processor.

As discussed in Chapter 4.11, if a program needs to allocate memory inside an HMTX-

speculatively parallelized section of the program, it cannot call into the standard library’s

malloc because it will result in misspeculation. Accordingly, all memory allocation was

performed using nedmalloc [45], which uses some pre-allocated chunk of memory which is

thread local. To set a fair baseline of performance comparison, versions of the benchmarks

compared against (i.e. SMTX and Sequential versions) were also made to use nedmalloc.

72

Feature Parameter

Architecture Alpha 21264

Processor Cores 4

Clock Speed 2.0 GHz

L1 I and D Caches 64KB, 8-way set associative, 2 cycle latency

Shared L2 Cache 32MB, 32-way set associative, 40 cycle latency

Cache Line Size 64B

Base Cache Coherence Protocol MOESI

Memory 1GB, 200 cycle latency

Operating System Linux Version 2.6.27.6

Compiler GCC Alpha Cross Compiler, Version 4.3.2

Table 8.1: Architectural Configuration in gem5.

8.2 Benchmarks

An evaluation of 8 benchmarks (7 from the SPEC benchmark suite, and 1 from MiBench) is

presented, all of which need speculation for efficient TLP transformation. Of these bench-

marks, 6 were also evaluated by SMTX [12]; replicated SMTX results for these 6 are di-

rectly compared against. Focus was mostly placed on those benchmarks that use the DSWP

execution paradigm, as they require MTX support. The same parallelization paradigm was

used for both the SMTX and HMTX versions. Table 8.2 shows the benchmarks and their

parallelization paradigms, as well as the percentage of the execution time the hot loop runs

for on a native x86 machine.

The benchmarks were speculatively parallelized manually for both the SMTX and

HMTX versions. However, even though the HMTX versions were manually transformed,

all loads and stores inside a transaction were added to the read and write sets, meaning

speculation validation is performed for every memory access inside a transaction. This is

the maximum amount of speculation validation possible for speculative parallel execution.

Therefore, this represents the worst possible case for validation overhead, regardless of

automatic or manual parallelization.

73

B
en

ch
m

ar
k

Pa
ra

lle
l

Pa
ra

di
gm

H
ot

L
oo

p

N
at

iv
e

E
xe

c

Ti
m

e
%

Av
g

N
um

be
r

of
Sp

ec
M

em

A
cc

es
se

sP
er

T
X

N
um

be
r

of
T

X

A
bo

rt
sA

vo
id

ed

vi
a

SL
A

Pe
r

T
X

%
of

Sp
ec

L
oa

ds

N
ee

di
ng

SL
A

%
of

B
ra

nc
h

In
st

sI
ns

id
e

H
ot

L
oo

p

B
ra

nc
h

M
is

pr
ed

R
at

e
In

si
de

H
ot

L
oo

p

05
2.

al
vi

nn
D

O
A

L
L

85
.5

%
2,

71
3,

12
2

0.
1

1.
36

%
11

.5
%

0.
24

7%

13
0.

li
PS

-D
SW

P
10

0%
18

1,
64

0,
67

5
23

.7
4.

21
%

20
.5

%
3.

65
%

16
4.

gz
ip

PS
-D

SW
P

98
.4

%
6,

24
7,

86
2

3.
82

7.
08

%
14

.6
%

2.
69

%

18
6.

cr
af

ty
PS

-D
SW

P
99

.5
%

4,
39

3,
79

3
1.

79
5.

01
%

13
.1

%
5.

59
%

19
7.

pa
rs

er
PS

-D
SW

P
10

0%
24

,7
27

,9
41

22
.8

2.
56

%
19

.2
%

1.
05

%

25
6.

bz
ip

2
PS

-D
SW

P
98

.5
%

13
1,

24
7,

20
2

22
.3

6.
04

%
12

.6
%

1.
33

%

45
6.

hm
m

er
PS

-D
SW

P
10

0%
1,

70
7,

33
2

0.
10

9
1.

74
%

4.
83

%
1.

03
%

is
pe

ll
PS

-D
SW

P
86

.5
%

43
,6

95
0.

01
04

0
13

.1
%

16
.6

%
2.

8%

Ta
bl

e
8.

2:
St

at
is

tic
s

fr
om

si
m

ul
at

ed
sp

ec
ul

at
iv

e
ex

ec
ut

io
n

us
in

g
H

M
T

X
,a

nd
fr

om
na

tiv
e

se
qu

en
tia

ln
on

-s
pe

cu
la

tiv
e

ex
ec

ut
io

n.

74

Meanwhile, the SMTX versions retained the advantage of negligible speculation val-

idation thanks to expert transformation, with minimal read and write sets. As noted, this

is not a reasonable expectation for automatic parallelization or non-expert programmers

(Chapter 2.2). Even with this large advantage, HMTX compares favorably to SMTX.

8.3 Hot Loop Speedup

As seen in Figure 8.1, the HMTX system with 4 cores provides a geomean speedup of

2.04x over sequential execution on all 8 benchmarks. On the 6 benchmarks evaluated by

both HMTX and SMTX, HMTX has a speedup of 2.08x, outperforming SMTX with a

speedup of 1.58x.

HMTX achieves better performance than SMTX even though it performs significantly

more speculation validation. One reason for the HMTX speedup is that SMTX requires an

extra commit process for processing speculative memory operations (Chapter 2.3), taking

up one core’s resources.

Even if SMTX did not require this extra commit process, the performance compari-

son is not apples-to-apples. As previously noted in Chapter 2.3, because of expert manual

transformation, the SMTX versions of the benchmarks perform very little alias specula-

tion validation. Meanwhile, benchmarks using the HMTX system performs speculation

validation for every memory access inside a transaction.

Recall that in Figure 2.2, when programs parallelized with SMTX perform more spec-

ulation validation (though still less than the HMTX versions), their performance degrades

badly. Thus, these systems do not provide a realistic path forward for automatic paralleliza-

tion. Meanwhile, HMTX achieves good performance with the largest possible read and

write set. Thus, even with alias analysis that cannot disprove many potential dependences

between threads, good performance could still be achieved with more realistic expectations

of a compiler. Accordingly, the HMTX system could provide a solid building block toward

75

Figure 8.1: Hot loop speedup over sequential using 4 cores. SMTX versions have minimal
read and write sets due to expert manual transformation. HMTX versions perform specu-
lation validation on every read and write inside a transaction, i.e. the maximum possible
read and write set. Note that there is no SMTX comparison for 186.crafty and ispell; ac-
cordingly, “Comp.” represents those benchmarks with an SMTX comparison, while “All”
represents all benchmarks.

enabling automatic parallelization.

8.4 Aborted Transactions

As discussed in Chapter 4.9, there are two potential sources of aborts in HMTX: those due

to invalid speculative assumptions (such as control or alias misspeculation) (Chapter 8.4.1),

and those aborts due to a lack of capacity in the cache for tracking speculative state (Chap-

ter 8.4.2). Neither kind of abort occurred in the benchmarks that were evaluated.

76

8.4.1 Aborts Due to Incorrect Speculative Assumptions

Potential sources of aborts such as control or alias misspeculation were not experienced, as

only high confidence speculative parallelization is performed. This is the same as what was

found by the SMTX system, which was evaluated on 6 of the same 8 benchmarks using

similar parallelization schemes. Aborts are costly regardless of the underlying TM system,

and so are generally avoided.

In addition, thanks to speculative load acknowledgments (SLA) (Chapter 5.1), all

benchmarks avoided false misspeculation due to branch misprediction. Recall that this

is a possibility if an already-dispatched HMTX-speculative load is squashed due to branch

misprediction, and the load incorrectly marks the cache line as speculatively accessed by

some transaction. An SLA prevents marking such lines as speculative and thus avoids false

misspeculation.

The number of avoided misspeculations, seen in Table 8.2, varies for each benchmark

depending upon the data access patterns given their complex data structures and control

flow. Table 8.2 shows these number of misspeculations that were avoided thanks to SLAs,

as well as the branch misprediction rate and the percentage of instructions that are branches.

In general, the higher the branch misprediction rate and percentage of branch instruc-

tions, the higher the number of avoided aborts. For example, 052.alvinn and 456.hmmer

have low misspeculation rates and low rate of branches overall, and both require less SLAs

and avoided less false misspeculations per transaction. For example, 130.li makes large use

of function pointers and thus indirect jumps, leading to a high branch misprediction rate

(3.65%). Combined with its high rate of branches (20.5%), 130.li has a very high number

of false misspeculations avoided.

Table 8.2 additionally shows the number of SLAs that are sent as a percentage of the

number of speculative loads performed by the system. Thanks to memory locality, most

speculative accesses are to lines that have already been marked as speculative with that

specific VID. Thus, there is not a significant amount of extra requests sent to the caches,

77

and there is minimal impact on performance.

8.4.2 Aborts Due to Lack of Capacity for Speculative Memory

An abort could also be triggered if certain speculatively modified lines overflow the caches

(Chapter 4.9). However, this was not seen in the evaluated benchmarks. Only 197.parser

and 256.bzip2 had the allowed non-speculative versions of speculatively read lines overflow

the caches, which does not cause an abort (Chapter 5.4).

Figure 8.2 shows the average size of the read and write sets. Clearly there is wide vari-

ation of the size of each transaction depending on the benchmark. The largest transaction

sizes belong to 256.bzip2. However, note that this does not perfectly correspond to the

number of speculative memory accesses as seen in Table 8.2; 256.bzip2 has the second

largest number of speculative memory accesses, while 130.li has the first even though it

is below average in transaction sizes. This is due to memory locality; 130.li tends to ac-

cess the same speculatively accessed memory repeatedly, while 256.bzip2 has less locality,

spreading its accesses more throughout memory.

8.5 Study of Performance vs. Cache Sizes

As previously mentioned in Chapter 4.4 and Chapter 5.4, many speculative copies of lines

are kept across the cache system, and most cannot overflow the caches without forcing an

abort. This means that there is greater cache pressure as the size of transactions becomes

very large. Given that the initial evaluation is done using relatively large cache sizes, a

study was performed on two benchmarks, varying the cache sizes in order to gauge how

cache sizes impact it.

78

B
en

ch
m

ar
k

05
2.

al
vi

nn
13

0.
li

16
4.

bz
ip

19
7.

pa
rs

er
25

6.
bz

ip
45

6.
hm

m
er

18
6.

cr
af

ty
is

pe
ll

G
eo

m
ea

n
R

ea
d

Se
t (

kB
)

10
85

34
2

87
7

41
75

93
02

63
6

14
8

35
67
3

W
ri

te
 S

et
 (k

B
)

44
4

33
1

76
2

35
62

69
21

59
6

61
3

37
0

C
om

bi
ne

d
Se

ts
 (k

B
)

15
29

67
3

16
39

70
03

13
90
4

12
32

20
9

39
10
64

Fi
gu

re
8.

2:
(T

op
)B

ar
ch

ar
td

ep
ic

tin
g

av
er

ag
e

si
ze

of
th

e
re

ad
an

d
w

ri
te

se
ts

in
ki

lo
by

te
s.

(B
ot

to
m

)T
ab

le
di

sp
la

yi
ng

th
e

ra
w

da
ta

.

79

This study was performed on 130.li and 256.bzip2. 130.li was about average for trans-

action size and thus speculative memory usage, while 256.bzip2 was the largest. Thus, they

appear to be good candidates for performing this evaluation.

Note that as the cache sizes shrink, there is less space for speculative memory. Thus,

it’s natural that at some point speculative memory that must stay in the caches to avoid an

abort will in fact overflow the caches and would normally force an abort to occur.

In order to perform a study on performance in spite of this, such speculative memory

was allowed to overflow caches and execution was allowed to proceed. This was accom-

plished by implementing versioned memory that saves the speculative state of cache lines.

Thus, the evaluation assumes that a speculative version of a line is able to be stored and re-

trieved from memory using normal memory latency. Such configurations are marked with

an asterisk on their configuration. This occurred for many of the bzip2 configurations, and

one 130.li configuration. In the figures, configurations with an asterisk represent that this

overflow into memory occurred.

Across these experiments, some cache configuration consisting of L1 and L2 cache

sizes was selected, and then run on the sequential, SMTX, and HMTX versions of the

benchmark.

Note that the HMTX system uses extra cache lines to store multiple versions of lines,

representing different access patterns by the many transactions which may be reading and

writing them. Thus, there is more cache pressure. As caches sizes shrink it is expected

that the impact of this extra cache pressure will be comparatively worse speedups (Chap-

ter 8.5.1) and worse cache hit rates (Chapter 8.5.2).

8.5.1 Speedups Across Varying Cache Configurations

Speedup in this section is calculated by comparing the sequential performance on a specific

cache configuration with the SMTX and HMTX performance on that same cache configu-

ration.

80

(a) (b)

(c) (d)

(e) (f)

Figure 8.3: HMTX and SMTX speedup over sequential execution for 130.li ((a), (c), (e))
and 256.bzip2 ((b), (d), (f)) over various cache configurations. Across the x-axis, one or
both of the L1 and L2 are halved for each configuration. If a configuration has an asterisk,
a dirty speculative memory overflowed the L2 cache.

81

First, an experiment is show where both L1 and L2 cache sizes were halved repeat-

edly to examine performance degradation. As seen in Figure 8.3a, performance of 130.li

clearly degraded as the cache sizes shrink; speedup degradation appears to accelerate as

the caches are shrunk, from a speedup of 1.91x in the original cache configuration of

{L1=64kB, L2=32MB}, down to 1.69x once the caches are dropped all the way to

{L1=8kB, L2=4MB}. Note that these cache sizes are much smaller than some mobile

processors; the 2017 Apple A11 found in iPhones had larger caches, with L1=64kB and

L2=8MB [50].

Additionally, Figure 8.3b shows the performance of 256.bzip2. Here the performance

of the benchmark varies much less as the cache sizes are halved. Taking the L1 cache

size down to 8kB and the L2 cache size down to 4MB showed only a marginal decrease

in speedup from 2.28x to 2.21x, a slight 3% difference. However also note that from the

second configuration on, the L2 cache is already overflowing with speculatively accessed

lines which force abort.

In order to determine the cause of this performance degradation, additional experiments

were run holding the L2 cache size constant while varying the L1 cache size, and vice versa.

Figure 8.3c shows speedups on 130.li as the L1 cache size is shrunk from 64kB down to

4kB, holding the L2 cache size constant at 32MB. As seen in the figure, HMTX 130.li is

very sensitive to the L1 cache size. Meanwhile SMTX seems to slowdown initially but sees

almost no overall speedup loss on the smallest L1 cache size.

Figure 8.3e shows that shrinking the L2 size had minimal impact on speedup; HMTX

had a slight decrease in speedup, while SMTX showed no difference. Clearly the perfor-

mance loss in HMTX seen in Figure 8.3a was mostly due to the L1 cache size shrinking.

These same experiments were run on 256.bzip2, varying either only the L1 or L2.

256.bzip shows different sensitivity to shrinking cache sizes compared to 130.li. As seen in

Figure 8.3d, L1 cache sizes seem to have no impact on 256.bzip2 speedup over sequential

execution. The speedup degradation only comes into play when decreasing the size of

82

the L2 cache, as seen in Figure 8.3f. Essentially the opposite is seen here versus 130.li.

Again note that from the second configuration on, the L2 cache is already overflowing with

speculatively accessed lines which force abort.

8.5.2 Cache Miss Rates Across Varying Cache Configurations

The speedup degradation over sequential execution as cache sizes vary as shown in the

previous section is expected. To look deeper into the impact of the shrinking cache sizes

and its impact on performance, the L1 and L2 cache miss rates are displayed across these

same cache configurations for HMTX, SMTX, and Sequential execution in Figure 8.4.

Note that this is not an apples-to-apples comparison; while Sequential execution is sin-

gle threaded, HMTX and SMTX use multiple worker threads and processes, respectively.

Taking an average of all the threads for HMTX and SMTX would not be representative

of the impact on speedup, because there are threads off of the critical path which do not

impact speedup.

Instead of averaging all of the threads’ miss rates, the miss rate shown is an average of

the threads which are on the critical path, i.e. those threads which are part of the parallel

stage for these two benchmarks. For Sequential, there is only one thread and critical path,

and so its miss rate is across the whole loop.

Figure 8.4a shows the miss rates for 130.li on the L1 while it varies in size. As expected,

the L1 has a higher miss rate than the SMTX and Sequential versions of the benchmark.

As the L1 shrinks, all L1 miss rates increase. However, the gap between HMTX and both

SMTX and Sequential grows as the L1 shrinks, for example compared to SMTX from a

difference of 2.1% at 64kB to 3.0% at 4kB.

Examining 256.zip2, it has somewhat similar L1 miss rate characteristics in Figure 8.4b.

All configurations see their miss rate increase as the L1 cache sizes shrink, and similar to

130.li the gap between HMTX and its counterparts grows, for example compared to SMTX

from a difference of 0.18% at 64kB to 0.27% at 4kB.

83

(a) (b)

(c) (d)

Figure 8.4: Cache miss rates for 130.li ((a) and (c)) and 256.bzip2 ((b) and (d)) across
various cache configurations. Cache sizes are halved across the x-axis, with the same con-
figurations as from Figure 8.3. For HMTX and SMTX, the miss rate shown is an average
of the threads which are on the critical path, i.e. those threads which are part of the parallel
stage (PS) for these benchmarks. For Sequential, there is only one thread, and so its miss
rate is across the whole loop, meaning it also includes the logic from other stages not mea-
sured for HMTX and SMTX. If a configuration has an asterisk, a dirty speculative memory
overflowed the L2 cache.

84

Additionally, Figure 8.4c shows the miss rates for 130.li on the L2 while it varies in

size. Again, miss rates increase as the L2 shrinks. However, the L2 miss rate increases

significantly for HMTX from 0.02% at 32MB to 2.36% at 2MB, while miss rates stay very

low for both SMTX and Sequential paradigms (though still growing slightly).

For 256.bzip2 in Figure 8.4d, all configurations see a large increase in L2 miss rates as

the L2 shrinks. Note though that HMTX’s miss rate increases at a faster rate.

As seen in both Figure 8.4c and Figure 8.4d, with the initial cache configuration, HMTX

has a better L2 hit rate than SMTX. One reason for this is that SMTX relies on copy-on-

write semantics at the page level for keeping versions of memory separate. This means

that there is potential for a lot of unnecessary memory duplication; for example if during

a transaction only a single byte on a page is written to, the entire 4kB page is duplicated,

whereas in HMTX only that cache line would have a new version created.

Another reason for this is that SMTX requires an extra commit process for managing

speculative state. This means there is an entire extra copy of all pages with speculative

memory modifications that exists.

These two factors combined mean that there could be a lot of extra memory pressure

in SMTX not seen in HMTX, depending on the access patterns of the benchmark. Still,

such extra memory can spill over the L2 to memory in SMTX, while in HMTX it must fit

in caches. Thus as the L2 shrinks there is less space for non-speculative memory to fit and

miss rates increase at a faster rate for HMTX.

8.5.3 Area, Power, and Energy

Area and power are modeled with McPAT [51]. The 22nm technology node is used. Power

gating and low L2 cache standby power are utilized. Table 8.3 displays statistics gathered.

An HMTX system with 4 cores has a total area of 111.1 mm2, 4.0 mm2 larger than the

base system with the same cache sizes and core count (107.1 mm2), which was used for

SMTX evaluation. The largest source of these increases in the HMTX system is adding 12

85

bits to every line in the cache, 6 each for the modVID and highVID, as well as the low-high

cascading comparators as discussed in Chapter 4.6.

McPAT uses CACTI [52] in order to model caches, which performs architectural mod-

eling of SRAM based caches. Total leakage increases marginally when adding in HMTX

extensions (Table 8.3). Additionally, geomean runtime dynamic power consumption in-

creases for HMTX due to the aforementioned logic and cache modifications for HMTX.

Overall, energy consumption with HMTX is lesser than for SMTX, largely due to the dif-

ference in execution time.

Applications running on hardware with HMTX extensions would still have an increase

in energy consumption even if they do not utilize HMTX functionality. To evaluate this

impact, the same SMTX and sequential benchmarks were run on HMTX hardware through

McPAT. Note that this has no impact on execution time. Overall, geomean runtime dynamic

power and energy consumption increased marginally (Table 8.3). This highlights the low

impact of HMTX extensions.

86

H
ar

dw
ar

e
E

xe
c

M
od

el
A

re
a

(m
m

2
)

To
ta

lL
ea

ka
ge

(W
)

G
M

R
un

tim
e

D
yn

am
ic

(W
)

G
M

E
ne

rg
y

(J
)

C
om

m
od

ity
Se

qu
en

tia
l(

A
ll)

10
7.

1
5.

51
5

3.
57

8
7.

32
2

Se
qu

en
tia

l(
C

om
p.

)
3.

65
5

10
.9

13

SM
T

X
,M

in
R

/W
13

.7
33

14
.8

46

C
om

m
od

ity
+

H
M

T
X

E
xt

en
si

on
s

Se
qu

en
tia

l(
A

ll)

11
1.

1
5.

60
7

3.
61

9
7.

43
0

Se
qu

en
tia

l(
C

om
p.

)
3.

69
6

11
.0

73

SM
T

X
,M

in
R

/W
13

.9
45

15
.0

81

H
M

TX
,M

ax
R

/W
(A

ll)
14

.6
17

7.
95

6

H
M

TX
,M

ax
R

/W
(C

om
p.

)
14

.7
23

11
.5

53

Ta
bl

e
8.

3:
A

re
a,

po
w

er
,a

nd
en

er
gy

re
su

lts
on

a
si

m
ul

at
ed

4-
co

re
m

ac
hi

ne
.

“A
ll”

re
pr

es
en

ts
al

le
va

lu
at

ed
be

nc
hm

ar
ks

,w
hi

le
“C

om
p.

”
re

pr
es

en
ts

on
ly

th
os

e
be

nc
hm

ar
ks

w
ith

an
eq

ui
va

le
nt

SM
T

X
ve

rs
io

n
to

co
m

pa
re

ag
ai

ns
t.

N
ot

e
th

e
di

ff
er

en
ce

in
ge

om
ea

n
(G

M
)

en
er

gy
be

tw
ee

n
“C

om
p.

”
an

d
“A

ll”
is

la
rg

el
y

du
e

to
th

e
sh

or
te

xe
cu

tio
n

tim
e

of
is

pe
ll

co
m

pa
re

d
to

ot
he

rb
en

ch
m

ar
ks

.

87

Figure 8.5: Hot loop speedup over sequential using 4 cores. SMTX and Sequential ver-
sions use an L1 of 64kB and an L2 of 32MB, while HMTX versions use an L1 of 32kB
and L2 of 16MB. SMTX versions have minimal read and write sets due to expert manual
transformation. HMTX versions perform speculation validation on every read and write
inside a transaction, i.e. the maximum possible read and write set. If a benchmark has an
asterisk, for the HMTX version dirty speculative memory overflowed the L2 cache.

8.6 Cost Benefit Analysis of HMTX Extensions

HMTX extensions require additional processor area and complexity. Instead of adding

the requisite logic for HMTX, processor architects could instead opt to use that extra area

and complexity for other purposes, such as larger cache sizes. This section provides some

context and quantitative evidence that the performance gain from larger cache sizes does

not provide close to the same speedup potential as HMTX provides, and thus that the

benefits of adding HMTX extensions outweigh the benefits gained by another potential

use of processor area.

Figure 8.5 shows the results of an experiment where benchmarks parallelized using

88

Sequential and SMTX; L1=64kB, L2=32MB HMTX; L1=32kB, L2=16MB

Area (mm2) 107.1 82.59

Leakage (W) 5.515 5.477

Table 8.4: Area and Leakage for both HMTX with L1 of 32kB and L2 of 16MB, and
Sequential and SMTX with L1 of 64kB and L2 of 32MB.

HMTX were run with half the cache sizes of the sequential and SMTX versions. This

illustrates that a smaller, less complex system that includes HMTX extensions outperforms

a more larger, more complex system without HMTX extensions thanks to the low-overhead

transactional memory support HMTX provides. Thus, the opportunity cost of choosing

greater cache sizes instead of HMTX extensions is quite high.

The geomean speedup on all benchmarks using HMTX is still significant at 1.84x.

Additionally the comparison benchmarks for both HMTX and SMTX still show that the

geomean speedup using HMTX (1.95x) is higher than SMTX (1.55x). Note that 197.parser

with HMTX provides a speedup of 1.69x, which is slightly slower than the speedup using

SMTX of 1.76x.

Additionally, again recall that SMTX uses a minimal read and write set, while HMTX

uses a maximal one, so although the gap between the two becomes closer, HMTX is still

performing significantly more transactional coverage. Also note that as discussed in Chap-

ter 8.5, 197.parser, 256.bzip2, and 186.crafty using HMTX overflows the L2 cache with

speculative memory. This means these benchmarks would not be able to use HMTX exten-

sions; however, future work (Chapter 10) discusses ways to allow for these benchmarks to

use HMTX with a processor with such smaller sized caches.

Lastly, Table 8.4 shows a comparison of area and leakage for HMTX with halved caches

versus the base configuration used by Sequential and SMTX. HMTX uses significantly less

area, as it is 77% the size of the base configuration without HMTX extensions. Addition-

ally, leakage is marginally less as well.

89

Chapter 9

Related Work

9.1 MTX by Vachharajani [1]

The HMTX system follows Vachharajani’s lead by adding version IDs to each cache line,

as noted in Chapter 2.3. However, there are some important differences between the two

works.

Speculative Memory Processing Efficiency. Vachharajani’s commit protocol is pro-

hibitively expensive, both in complexity and time. On commit, the entire cache must be

searched for every line with the committed VID (similar to the naı̈ve version in Chap-

ter 4.5). Even with an ORB-like structure [15] that holds the address of every speculatively

accessed line, processing every speculative line individually on every commit would still

be very slow. Additionally, the protocol requires broadcasting an invalidation for each

speculatively modified line to gain exclusive access to it. This would lead to considerable

bus contention and further degrade performance. Lastly, the abort implementation is not

discussed in detail, and VID overflow is not considered.

In contrast, HMTX is designed so that the state of other versions of the same line does

not need to be known, nor does there need to be an invalidation or interaction with them to

perform a commit (Chapter 4.5). This allows for commits to occur lazily, similar to other

90

works [34, 47]. This simpler, lazy approach is not bursty or time consuming in searching

an entire cache or processing all lines at once, allowing for transactions that speculatively

access large amounts of data to commit quickly and efficiently.

Cache Pressure. Vachharajani’s work creates a new version of a cache line for every

read from a new version. This may lead to unnecessary cache pressure as many read-only

lines redundantly store the same data. In contrast, HMTX only creates new lines when a

speculative write occurs to a line that has not yet been speculatively written for the given

transaction’s VID. In addition to reducing cache pressure, this also allows for transactions

with larger read and write sets.

Commit Granularity. Vachharajani’s byte-level commit granularity requires much

higher space and complexity. In contrast, HMTX uses cache line-level granularity. This

reduces the complexity of implementation at the cost of potential false misspeculation;

however, the evaluated benchmarks did not experience any such false misspeculation due

to only performing high-confidence speculative parallelization.

Evaluation. Vachharajani’s work only provided a description of its design. This design

was not modeled or evaluated in any way. In contrast HMTX presented in this dissertation

was modeled in the gem5 simulator using full system mode, meaning evaluated bench-

marks run on top of a real Linux kernel, providing a real-world environment to evaluate

on.

9.2 SMTX and DSMTX

SMTX [12] and DSMTX [13] are software-only MTX TM systems. They are able to

achieve good results on commodity systems. Both of these systems use a “privatized by

default” memory model, as discussed in Chapter 4.10. To accomplish this, SMTX and

DSMTX use Copy-On-Write (COW) and Copy-On-Access (COA) semantics, respectively,

at the page granularity to manage multiple versions of memory. SMTX’s COW semantics

91

mean it will duplicate pages when one of the worker threads attempts to write to a page

that it has not yet written to. Meanwhile DSMTX’s COA does the same but on first access

instead of write.

Because these systems create copies of memory at the page boundary, this can result

in significant unnecessary memory duplication, which can hurt cache hit rates as discussed

in Chapter 8.5.2. In contrast, HMTX uses a “shared by default” approach to managing

speculative versions of memory, meaning all memory is in a single memory space, and

if privatization is necessary it must be done explicitly. Because HMTX creates multiple

versions of memory at the cache line granularity, less memory needs to be duplicated.

Additionally, both SMTX and DSMTX use software queues to communicate all specu-

lative reads and writes between each other and to separate processes that manage validating

speculative accesses and committed, non-speculative program state. Note that benchmarks

for these systems are manually transformed and thus are expertly tuned with minimal read

and write sets to avoid the validation overhead that would be required during automatic

parallelization, or by transformation by a non-expert. As shown in Figure 2.2, performance

heavily depends upon read and write set sizes. Meanwhile, HMTX uses a single memory

space and relies on the modified cache coherence protocol combined with VIDs on each

access and all cache lines to implicitly use the correct version of memory in a low-overhead

manner.

9.3 Single-Threaded TM Systems

No past hardware TM systems have sufficient support for multi-threaded transactions via

both uncommitted value forwarding and group transaction commit. Consequently, these

systems cannot support speculative pipeline parallel execution. By contrast, HMTX can

support a wide range of speculative execution paradigms, from TLS to DSWP-style execu-

tion.

92

Similar to HMTX, versioned memory is used by some TM systems to manage transac-

tions [15, 17, 33, 34, 47, 53, 54]. This enables lazy commits and holding speculative state

from multiple tasks in a single cache, which are both used by HMTX. However, none of

these systems allow for a single transaction’s speculative memory to migrate to other peer

caches, which is a requirement for pipeline parallelization (Chapter 2.3).

Many past systems provide an ordering for transactions as HMTX does, allowing for

uncommitted value forwarding as an optimization [15, 28, 33, 35, 36, 55, 56, 57]. However,

as noted in Chapter 2.3, group commit is also required in order to ensure that all speculative

modifications from a single transaction, likely spread across multiple caches, are atomically

committed.

Additionally, while some TM systems support large read and write sets [47, 58, 59, 60],

most cannot support transactions as large as those in the parallelized benchmarks presented.

Thus, even if they did support uncommitted value forwarding and group transaction com-

mit, they would be unable to perform speculative pipeline parallelization.

HMTX utilizes a transactional state that is similar to the “executed but not committed”

described in the STM presented in [61]. However, while this is a performance optimization

in that work, it is a requirement for collaboration on a single transaction with pipelined

parallelism using HMTX, as it allows a thread to move on to executing its next part of

a transaction as part of a pipeline, expecting future threads to complete and commit the

transaction.

Lastly, all prior systems are susceptible to false misspeculations due to branch mispre-

diction, which HMTX overcomes via SLAs (Chapter 5.1).

93

T
M

Sy
st

em
M

ul
tit

hr
ea

de
d

Tr
an

sa
ct

io
n

Su
pp

or
t

L
itt

le
to

no
O

S
Su

pp
or

tR
eq

ui
re

d

N
o

R
un

tim
e

Sy
st

em
/

M
et

a
T

hr
ea

ds
Sc

al
ab

le
In

te
r-

T
X

U
nc

om
m

itt
ed

Va
lu

e
Fo

rw
ar

di
ng

G
ra

nu
la

ri
ty

H
M

T
X

[2
2]

(t
hi

sw
or

k)
X

X
X

X
X

L
in

e

M
T

X
by

Va
ch

ha
ra

ja
ni

[1
]

X
X

X
5

5
B

yt
e

SM
T

X
[1

2]
X

5
5

X
5

B
yt

e

D
SM

T
X

[1
3]

X
5

5
X

5
B

yt
e

T
C

C
[1

8]
5

X
X

5
5

L
in

e

H
yd

ra
[2

8]
5

X
X

5
X

B
yt

e

SV
C

[3
4]

5
X

X
5

X
B

yt
e

M
D

T
[1

7]
5

X
X

X
X

W
or

d

Sc
al

ab
le

T
L

S
[1

5]
5

X
X

X
5

B
yt

e

H
er

lih
y

an
d

M
os

s[
62

]
5

X
X

5
5

L
in

e

In
te

lH
as

w
el

lT
M

[6
3]

5
X

X
X

5
L

in
e

Ta
bl

e
9.

1:
C

om
pa

ri
so

n
of

H
M

T
X

to
ot

he
rw

or
ks

.

94

Chapter 10

Future Work

10.1 Automatic Parallelization

A large motivation of this work is to take a big step closer to automatic parallelization. The

hope is that a compiler could achieve profitable automatic speculative parallelization with

the help of low overhead speculation validation via HMTX.

Significant prior work in automatically parallelizing compilers has been done by many

researchers, including those of the Liberty Research Group at Princeton University. As

mentioned in Chapter 2.3, Johnson [20] found that in such automatic compilers [30, 31],

“imprecise analysis forces the compiler to compensate with more speculation . . . Increased

validation overheads cause application slowdown.”

If HMTX was integrated into such an automatically parallelizing compiler, and poten-

tially combined with other techniques such as privatization mentioned in Chapter 4.10 and

auto-tuning mentioned in Chapter 10.2, automatic parallelization would likely take a big

leap forward.

95

10.2 Automatic Tuning to Support Optimal Parallelism

and Performance

As discussed in Chapter 2.1, there are multiple parallel paradigms to choose from when

parallelizing a loop. Once one paradigm is chosen, we also need to then choose the number

of threads used to execute this loop with this paradigm.

In general, we ideally would attempt to use all parallel resources available when par-

allelizing a program. That could be with DOALL-style parallelism in which all parallel

resources perform the same task, or PS-DSWP-style parallelism in which there are parallel

DOALL stages, or even DOACROSS style-parallelism in which we could attempt to use

more threads to execute each iteration of a loop.

However, ramping up the number of threads means there is more speculative memory

in caches. Thus, the more speculative parallelism that is employed, the higher the chance

that an abort due to lack of cache capacity (Chapter 4.9) will be forced. Thus, there is a bal-

ance here we want to strike: increase the number of parallel speculative threads executing

without increasing parallelism so much as to force a capacity abort.

In this dissertation, benchmarks have been configured to execute given a specific num-

ber of threads. This number does not deviate during execution. Instead, a system such

as Parcae [64] would be well-suited to take on such a task. It could be made more aware

of speculative TM-based execution schemes, in addition to information about previous at-

tempts to increase the number of parallel threads for a program. It could then use this

information to tune the number of threads at runtime, increasing the number of threads

only when it is confident that capacity aborts will not occur, which would degrade program

performance.

96

10.3 “Shared by Default” vs. “Privatized By Default”

As mentioned in Chapter 4.10, the SMTX and DSMTX systems spawn parallel workers

through process forking. This means that all memory is automatically “privatized by de-

fault” via process separation, and any accesses that need speculative verification must be

explicitly communicated to the commit process. In contrast, HMTX uses “shared by de-

fault”, wherein all memory is shared between worker threads, and any private memory for

threads must be explicitly privatized.

Future work could attempt to use a hybrid of these two models, instead of privatizing

everything by default like SMTX or nothing by default like HMTX. Memory locations that

need speculation validation or that communicate dependences between threads would be

allocated in shared memory between the processes and registered with the HMTX system.

All other memory that should be privatized would use its own address space. This could al-

low for the speculative pressure to be much lower in HMTX for some programs, potentially

enabling more workloads, allow for smaller caches to support the presented workloads, or

both.

A system such as Privateer [44] could be used with HMTX to automatically privatize

memory when needed, perhaps in conjunction with Parcae [64] mentioned in Chapter 10.2.

10.4 Speculative Memory Leaving the Cache

In the presented implementation, all caches in the system have MTX support. If certain

speculative lines are selected as victims to be written back to main memory, the speculative

information of the lines (metadata about transactions which accessed the line, speculatively

modified data of the line, or both) would be lost when written back. Therefore, transactions

greater than or equal to the lowest VID in the line would need to abort.

In order to prevent this required abort from occurring, a structure could be added on

the path to main memory, similar to [47]. When the last level cache picks a speculative

97

line as a victim, the structure could store information about this line. If the line was not

speculatively modified then the structure saves the address, VIDs, and coherent state of the

line. If the line was speculatively modified then the line’s data is also stored in the structure.

In practice, the clean case is much more common than the dirty case.

When a new access comes in for this line to main memory, the line can be correctly

sent back with the VIDs and coherent state it had before it was ejected. On commit, the

only required action is updating the latest committed VID. On abort, the structure must

transition lines according to the abort state diagram described in Chapter 4.5.

This structure is only necessary for applications which have very large sets of specula-

tively accessed lines, such that speculative memory overflows caches (Chapter 8.4.2).

Alternatively, schemes based on logging [65] and/or probabilistic methods such as

Bloom filters [16, 66, 56] could be used to track speculatively accessed lines that overflow

the cache. This could also be done via paging or other software mechanisms [58, 59, 60].

10.5 Scaling to More Cores and Bigger Workloads

Consumer grade systems continue to be underutilized; past work shows that even 4 cores

appears to be over-provisioning for most applications [8, 9, 10]. Still, future work could

explore performance across more cores. This could be done by adapting the HMTX coher-

ence scheme to a directory-based protocol to allow for more efficient scaling. To deal with

overflowing memory from scaling these systems up(Chapter 4.9), techniques such as those

discussed in Chapter 10.4 could be utilized.

98

10.6 Better Software Support for Needed Speculative Op-

erations

As discussed in Chapter 4.11, there are limitations on programs that must be worked around

before the program can be speculatively parallelized with HMTX.

One such limitation is on calls into the kernel. All such calls must be non-speculative.

This includes I/O operations; inputs must be read without side effects, and outputs must be

buffered until commit time. HMTX benchmarks explicitly read inputs non-speculatively

and buffered outputs until committed. Prior work [30] created a transactional I/O system to

overcome this instead, which could be used if adapted to work with HMTX. Alternatively

this sort of support could be integrated more directly into the OS.

This also includes memory allocation through the operating system. This is because

the system calls such as sys brk in Linux that are used to implement malloc, free,

mmap, etc. will end up interacting with each other and causing spurious misspeculations.

Better support could be integrated into the OS for memory allocation that is HMTX aware.

10.7 Using HMTX With Programs That Are Already

Multithreaded

Much of the focus of this dissertation is on parallelizing benchmarks which are originally

single-threaded, sequential programs. However, HMTX can also be used with programs

that are already made up of multiple threads.

One common use of transactions is for multiple threads executing in a DOALL manner,

for example in database applications where multiple threads perform atomic operations on

a database. HMTX could be used by such programs; assigning each transaction a VID

works nicely in this model, and allows for uncommitted value forwarding in the same way

that past systems have, by assigning the transactions some order and allowing younger

99

transactions to forward uncommitted data to older transactions.

Another way a multithreaded program could use HMTX is for each thread to use

HMTX to speculatively parallelize multiple loops. For example, if two threads have their

own hot loops that they would like to parallelize using PS-DSWP, then they could do so.

The downside here is that there would need to be some coordination between the two hot

loops to make sure that they do not share VIDs. This means that they would also need to

synchronize when they jointly used up all VIDs in a flight. Additionally, if one of the loops

had misspeculation then both would need to fall back, as there is no ability to differentiate

between the origin of an VID. Future work could also try to address this if it is found to be

problematic.

10.8 Bringing HMTX Into Real World Usage

There is much work to be done to get HMTX to be usable in real world environments,

so that it is a realistic tool for programmers and compilers. Some questions that must be

investigated and resolved include:

• How can languages be extended to more naturally use HMTX if a programmer would

like to explicitly parallelize their program? For example, how might HMTX be used

by the C++ atomics operations library, and in what ways could it be extended to e.g.

make speculative pipeline parallelism more accessible?

• How can HMTX be used in conjunction with debuggers to aid in debugging specula-

tively parallelized programs? What should be the debugging workflow if a program-

mer needs to set a breakpoint inside an HMTX-speculative loop?

• How can HMTX be used by performance profilers? How can profilers be extended

to make it easier for programmers to determine potential performance pitfalls when

using HMTX? For example, false sharing could cause false misspeculation due to

cache line granularity of VIDs, which is especially important to uncover proactively.

100

Chapter 11

Conclusion

Hardware Multithreaded Transactions provide a path forward for extracting pipelined

thread-level parallelism from sequential programs. This dissertation details a design and

evaluates an implementation of HMTX that uses very large transactions which are required

when parallelizing programs that are hard to prove are thread-level parallelizable. This is

often the case due to the limits of static analysis, which makes it hard or impossible to make

use of profitable parallelization opportunities.

While HMTX supports speculative thread-level pipeline parallelization such as specu-

lative PS-DSWP, an important class of parallel execution techniques, this is a superset of

parallelization paradigms supported. More traditional DOALL or DOACROSS paralleliza-

tion schemes are also supported. All of these paradigms benefit from techniques introduced

in this dissertation, such as avoiding false misspeculations via speculative load acknowl-

edgments (Chapter 5.1); providing for resilient transactions which can survive interrupts

and exceptions (Chapter 5.2); and allowing for performant, very large transaction sizes

through techniques such as lazy commit processing (Chapter 5.3).

Thus, HMTX provides MTX as well as resilient, long-running transactions without ex-

cessive hardware cost. On a multicore machine with 4 cores, a geomean speedup of 104%

is achieved over sequential execution, mostly using speculative PS-DSWP, and with mod-

101

est increases in power and energy consumption. Future work using HMTX could utilize

it alongside automatic parallelization, potentially unlocking much better performance on

multicore processors with little burden to programmers who would prefer to write single-

threaded programs.

102

Bibliography

[1] Neil Vachharajani. Intelligent Speculation for Pipelined Multithreading. PhD the-

sis, Department of Computer Science, Princeton University, Princeton, New Jersey,

United States, November 2008.

[2] William Thies, Michal Karczmarek, and Saman Amarasinghe. StreamIt: A language

for streaming applications. In Proceedings of the 12th International Conference on

Compiler Construction, 2002.

[3] Jeffrey Dean and Sanjay Ghemawat. MapReduce: simplified data processing on large

clusters. In OSDI’04: Proceedings of the 6th conference on Symposium on Opearting

Systems Design & Implementation, pages 10–10, Berkeley, CA, USA, 2004. USENIX

Association.

[4] Ken Kennedy and John R. Allen. Optimizing compilers for modern architectures: a

dependence-based approach. Morgan Kaufmann Publishers Inc., San Francisco, CA,

USA, 2002.

[5] Guilherme Ottoni, Ram Rangan, Adam Stoler, and David I. August. Automatic thread

extraction with decoupled software pipelining. In Proceedings of the 38th Annual

IEEE/ACM International Symposium on Microarchitecture (MICRO), pages 105–118,

2005.

103

[6] Easwaran Raman, Guilherme Ottoni, Arun Raman, Matthew Bridges, and David I.

August. Parallel-stage decoupled software pipelining. In Proceedings of the Annual

International Symposium on Code Generation and Optimization (CGO), 2008.

[7] William Thies, Vikram Chandrasekhar, and Saman Amarasinghe. A practical ap-

proach to exploiting coarse-grained pipeline parallelism in C programs. In Proceed-

ings of the 40th Annual IEEE/ACM International Symposium on Microarchitecture

(MICRO), pages 356–369, 2007.

[8] Cao Gao, Anthony Gutierrez, Madhav Rajan, Ronald G. Dreslinski, Trevor Mudge,

and Carole-Jean Wu. A study of mobile device utilization. In Proceedings of the 2015

IEEE International Symposium on Performance Analysis of Systems and Software,

ISPASS ’15, 2000.

[9] Yifan Zhang, Xudong Wang, Xuanzhe Liu, Yunxin Liu, Li Zhuang, and Feng Zhao.

Towards better cpu power management on multicore smartphones. In Proceedings of

the Workshop on Power-Aware Computing and Systems, HotPower ’13, pages 11:1–

11:5, New York, NY, USA, 2013. ACM.

[10] Geoffrey Blake, Ronald G. Dreslinski, Trevor Mudge, and Krisztián Flautner. Evo-

lution of thread-level parallelism in desktop applications. In Proceedings of the 37th

Annual International Symposium on Computer Architecture, ISCA ’10, pages 302–

313, New York, NY, USA, 2010. ACM.

[11] Neil Vachharajani, Ram Rangan, Easwaran Raman, Matthew J. Bridges, Guilherme

Ottoni, and David I. August. Speculative decoupled software pipelining. In PACT

’07: Proceedings of the 16th International Conference on Parallel Architecture and

Compilation Techniques, pages 49–59, Washington, DC, USA, 2007. IEEE Computer

Society.

104

[12] Arun Raman, Hanjun Kim, Thomas R. Mason, Thomas B. Jablin, and David I. Au-

gust. Speculative parallelization using software multi-threaded transactions. In Pro-

ceedings of the Fifteenth International Symposium on Architectural Support for Pro-

gramming Languages and Operating Systems (ASPLOS), 2010.

[13] Hanjun Kim, Arun Raman, Feng Liu, Jae W. Lee, and David I. August. Scalable

speculative parallelization on commodity clusters. In Proceedings of the 43rd Annual

IEEE/ACM International Symposium on Microarchitecture (MICRO), 2010.

[14] J. Gregory Steffan and Todd C. Mowry. The potential for using thread-level data

speculation to facilitate automatic parallelization. In Proceedings of the 4th Interna-

tional Symposium on High-Performance Computer Architecture, pages 2–13, Febru-

ary 1998.

[15] J. G. Steffan, C. B. Colohan, A. Zhai, and T. C. Mowry. A scalable approach to thread-

level speculation. In Proceedings of the 27th International Symposium on Computer

Architecture, pages 1–12, June 2000.

[16] Luis Ceze, James Tuck, Josep Torrellas, and Calin Cascaval. Bulk disambiguation of

speculative threads in multiprocessors. In Proceedings of the 33rd Annual Interna-

tional Symposium on Computer Architecture, 2006.

[17] Marcelo Cintra, José F. Martı́nez, and Josep Torrellas. Architectural support for scal-

able speculative parallelization in shared-memory multiprocessors. In Proceedings of

the 27th Annual International Symposium on Computer Architecture, pages 13–24,

New York, NY, USA, 2000. ACM Press.

[18] Lance Hammond, Vicky Wong, Mike Chen, Brian D. Carlstrom, John D. Davis,

Ben Hertzberg, Manohar K. Prabhu, Honggo Wijaya, Christos Kozyrakis, and Kunle

Olukotun. Transactional memory coherence and consistency. In Proceedings of the

31st Annual International Symposium on Computer Architecture, 2004.

105

[19] Calin Cascaval, Colin Blundell, Maged Michael, Harold W. Cain, Peng Wu, Stefanie

Chiras, and Siddhartha Chatterjee. Software transactional memory: Why is it only a

research toy? Queue, 6(5):46–58, 2008.

[20] Nick P. Johnson. Static Dependence Analysis in an Infrastructure for Automatic Par-

allelization. PhD thesis, Department of Computer Science, Princeton University,

Princeton, New Jersey, United States, September 2015.

[21] Dave Dice, Tim Harris, Alex Kogan, and Yossi Lev. The influence of malloc place-

ment on TSX hardware transactional memory. CoRR, abs/1504.04640, 2015.

[22] Jordan Fix, Nayana P. Nagendra, Sotiris Apostolakis, Hansen Zhang, Sophie Qiu,

and David I. August. Hardware multithreaded transactions. In Proceedings of the

Twenty-Third International Conference on Architectural Support for Programming

Languages and Operating Systems, ASPLOS ’18, pages 15–29, New York, NY, USA,

2018. ACM.

[23] John L. Henning. Spec cpu2000: Measuring cpu performance in the new millennium.

Computer, 33(7):28–35, July 2000.

[24] John L. Henning. Spec cpu2006 benchmark descriptions. SIGARCH Comput. Archit.

News, 34(4):1–17, September 2006.

[25] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and R. B. Brown.

MiBench: A free, commercially representative embedded benchmark suite. In Pro-

ceedings of the Workload Characterization, 2001. WWC-4. 2001 IEEE International

Workshop, pages 3–14, Washington, DC, USA, 2001. IEEE Computer Society.

[26] Simone Campanoni, Timothy Jones, Glenn Holloway, Vijay Janapa Reddi, Gu-Yeon

Wei, and David Brooks. Helix: automatic parallelization of irregular programs for

chip multiprocessing. In CGO, 2012.

106

[27] Jialu Huang, Arun Raman, Yun Zhang, Thomas B. Jablin, Tzu-Han Hung, and

David I. August. Decoupled Software Pipelining Creates Parallelization Opportu-

nities. In Proceedings of the 2010 International Symposium on Code Generation and

Optimization, April 2010.

[28] Lance Hammond, Mark Willey, and Kunle Olukotun. Data speculation support for

a chip multiprocessor. In Proceedings of the Eighth International Conference on

Architectural Support for Programming Languages and Operating Systems, pages

58–69, New York, NY, USA, 1998. ACM Press.

[29] Taewook Oh, Stephen R. Beard, Nick P. Johnson, Sergiy Popovych, and David I.

August. A generalized framework for automatic scripting language parallelization.

In Proceedings of the 2016 International Conference on Parallel Architectures and

Compilation, PACT ’17, 2017.

[30] Hanjun Kim. ASAP: Automatic Speculative Acyclic Parallelization for Clusters. PhD

thesis, Department of Computer Science, Princeton University, Princeton, New Jer-

sey, United States, September 2013.

[31] Hanjun Kim, Nick P. Johnson, Jae W. Lee, Scott A. Mahlke, and David I. August. Au-

tomatic speculative doall for clusters. International Symposium on Code Generation

and Optimization (CGO), March 2012.

[32] Standard Performance Evaluation Corporation (SPEC).

http://www.spec.org/.

[33] Jose Renau, James Tuck, Wei Liu, Luis Ceze, Karin Strauss, and Josep Torrellas.

Tasking with out-of-order spawn in tls chip multiprocessors: Microarchitecture and

compilation. In Proceedings of the 19th Annual International Conference on Super-

computing, ICS ’05, pages 179–188, New York, NY, USA, 2005. ACM.

107

[34] T.N. Vijaykumar, S. Gopal, James E. Smith, and Gurindar Sohi. Speculative ver-

sioning cache. IEEE Transactions on Parallel and Distributed Systems, 12(12):1305–

1317, 2001.

[35] Marı́a Jesús Garzarán, Milos Prvulovic, José Marı́a Llaberı́a, Vı́ctor Viñals, Lawrence

Rauchwerger, and Josep Torrellas. Tradeoffs in buffering speculative memory state

for thread-level speculation in multiprocessors. ACM Transactions on Architecture

Code Optimization, 2(3):247–279, 2005.

[36] G. S. Sohi, S. Breach, and T. N. Vijaykumar. Multiscalar processors. In Proceedings

of the 22th International Symposium on Computer Architecture, June 1995.

[37] P. Sweazey and A. J. Smith. A class of compatible cache consistency protocols and

their support by the ieee futurebus. In Proceedings of the 13th Annual International

Symposium on Computer Architecture, ISCA ’86, pages 414–423, Los Alamitos, CA,

USA, 1986. IEEE Computer Society Press.

[38] D. Kroft. Lockup-free instruction fetch/prefetch cache organization. In Proceedings

of the 8th Annual International Symposium on Computer Architecture, May 1981.

[39] David Dice, Ori Shalev, and Nir Shavit. Transactional locking II. In DISC, pages

194–208, 2006.

[40] Yang Ni, Adam Welc, Ali-Reza Adl-Tabatabai, Moshe Bach, Sion Berkowits, James

Cownie, Robert Geva, Sergey Kozhukow, Ravi Narayanaswamy, Jeffrey Olivier, Ser-

guei Preis, Bratin Saha, Ady Tal, and Xinmin Tian. Design and implementation of

transactional constructs for C/C++. In OOPSLA, pages 195–212, 2008.

[41] Francis H. Dang, Hao Yu, and Lawrence Rauchwerger. The R-LRPD test: Speculative

parallelization of partially parallel loops. In IPDPS ’02: Proceedings of the 16th

International Parallel and Distributed Processing Symposium, pages 20–29, 2002.

108

[42] Mojtaba Mehrara, Jeff Hao, Po-Chun Hsu, and Scott Mahlke. Parallelizing sequential

applications on commodity hardware using a low-cost software transactional memory.

In Proceedings of the 2009 ACM SIGPLAN Conference on Programming Language

Design and Implementation, 2009.

[43] Chen Tian, Min Feng, and Rajiv Gupta. Supporting Speculative Parallelization in the

Presence of Dynamic Data Structures. In Proc. of PLDI, 2010.

[44] Nick P. Johnson, Hanjun Kim, Prakash Prabhu, Ayal Zaks, and David I. August. Spec-

ulative separation for privatization and reductions. Programming Language Design

and Implementation (PLDI), June 2012.

[45] ned Productions - nedmalloc.

https://www.nedprod.com/programs/portable/nedmalloc/.

[46] D. Dechev, P. Pirkelbauer, and B. Stroustrup. Understanding and effectively prevent-

ing the aba problem in descriptor-based lock-free designs. In 2010 13th IEEE Inter-

national Symposium on Object/Component/Service-Oriented Real-Time Distributed

Computing, pages 185–192, May 2010.

[47] Milos Prvulovic, Marı́a Jesús Garzarán, Lawrence Rauchwerger, and Josep Torrellas.

Removing architectural bottlenecks to the scalability of speculative parallelization. In

Proceedings of the 28th Annual International Symposium on Computer Architecture,

pages 204–215, New York, NY, USA, 2001. ACM Press.

[48] Harold W. Cain, Maged M. Michael, Brad Frey, Cathy May, Derek Williams, and

Hung Le. Robust architectural support for transactional memory in the power archi-

tecture. In Proceedings of the 40th Annual International Symposium on Computer

Architecture, ISCA ’13, pages 225–236, New York, NY, USA, 2013. ACM.

[49] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Reinhardt, Ali Saidi,

Arkaprava Basu, Joel Hestness, Derek R. Hower, Tushar Krishna, Somayeh Sar-

109

dashti, Rathijit Sen, Korey Sewell, Muhammad Shoaib, Nilay Vaish, Mark D. Hill,

and David A. Wood. The gem5 simulator. SIGARCH Comput. Archit. News, 39(2):1–

7, August 2011.

[50] The iPhone XS & XS Max Review: Unveiling the Silicon Secrets.

https://www.anandtech.com/show/13392/

the-iphone-xs-xs-max-review-unveiling-the-silicon-secrets/

2.

[51] Sheng Li, Jung Ho Ahn, Richard D. Strong, Jay B. Brockman, Dean M. Tullsen, and

Norman P. Jouppi. Mcpat: An integrated power, area, and timing modeling frame-

work for multicore and manycore architectures. In Proceedings of the 42Nd Annual

IEEE/ACM International Symposium on Microarchitecture, MICRO 42, pages 469–

480, New York, NY, USA, 2009. ACM.

[52] Sheng Li, Ke Chen, Jung Ho Ahn, Jay B. Brockman, and Norman P. Jouppi. Cacti-p:

Architecture-level modeling for sram-based structures with advanced leakage reduc-

tion techniques. In Proceedings of the International Conference on Computer-Aided

Design, ICCAD ’11, pages 694–701, Piscataway, NJ, USA, 2011. IEEE Press.

[53] S. Gopal, T. Vijaykumar, J. Smith, and G. Sohi. Speculative versioning cache. In

Proceedings of the 4th International Symposium on High-Performance Computer Ar-

chitecture, HPCA ’98, pages 195–, Washington, DC, USA, 1998. IEEE Computer

Society.

[54] Jose Renau, Karin Strauss, Luis Ceze, Wei Liu, Smruti R. Sarangi, James Tuck, and

Josep Torrellas. Energy-efficient thread-level speculation. IEEE Micro, 26:80–91,

2006.

[55] Ye Zhang, Lawrence Rauchwerger, and Josep Torrellas. A unified approach to spec-

ulative parallelization of loops in dsm multiprocessors. Technical report, 1998.

110

[56] Mark C. Jeffrey, Suvinay Subramanian, Cong Yan, Joel Emer, and Daniel Sanchez. A

scalable architecture for ordered parallelism. In Proceedings of the 48th International

Symposium on Microarchitecture, MICRO-48, pages 228–241, New York, NY, USA,

2015. ACM.

[57] M. C. Jeffrey, V. A. Ying, S. Subramanian, H. R. Lee, J. Emer, and D. Sanchez.

Harmonizing speculative and non-speculative execution in architectures for ordered

parallelism. In 2018 51st Annual IEEE/ACM International Symposium on Microar-

chitecture (MICRO), pages 217–230, Oct 2018.

[58] Weihaw Chuang, Satish Narayanasamy, Ganesh Venkatesh, Jack Sampson,

Michael Van Biesbrouck, Gilles Pokam, Brad Calder, and Osvaldo Colavin. Un-

bounded page-based transactional memory. In Proceedings of the 12th International

Conference on Architectural Support for Programming Languages and Operating

Systems, pages 347–358, New York, NY, USA, 2006. ACM Press.

[59] C. Scott Ananian, Krste Asanovic, Bradley C. Kuszmaul, Charles E. Leiserson, and

Sean Lie. Unbounded transactional memory. In Proceedings of the 11th Interna-

tional Symposium on High-Performance Computer Architecture, pages 316–327, Los

Alamitos, CA, USA, 2005. IEEE Computer Society.

[60] Ravi Rajwar, Maurice Herlihy, and Konrad Lai. Virtualizing transactional memory. In

Proceedings of the 32nd International Symposium on Computer Architecture, pages

494–505, June 2005.

[61] M. A. Gonzalez-Mesa, Eladio Gutierrez, Emilio L. Zapata, and Oscar Plata. Effective

transactional memory execution management for improved concurrency. ACM Trans.

Archit. Code Optim., 11(3):24:1–24:27, August 2014.

111

[62] Maurice Herlihy and J. Eliot B. Moss. Transactional memory: Architectural sup-

port for lock-free data structures. In Proceedings of the 20th Annual International

Symposium on Computer Architecture, 1993.

[63] James Reinders. Transactional Synchronization with Intel Core 4th Gener-

ation Processor. https://software.intel.com/en-us/blogs/2012/02/07/transactional-

synchronization-in-haswell.

[64] Arun Raman, Ayal Zaks, Jae W. Lee, and David I. August. Parcae: a system for

flexible parallel execution. In Proceedings of the 33rd ACM SIGPLAN conference

on Programming Language Design and Implementation, PLDI ’12, pages 133–144,

New York, NY, USA, 2012. ACM.

[65] K.E. Moore, J. Bobba, M.J. Moravan, M.D. Hill, and D.A. Wood. LogTM: Log-

based transactional memory. In Proceedings of the 12th International Symposium on

High-Performance Computer Architecture, pages 254–265, Feb. 2006.

[66] Luke Yen, Jayaram Bobba, Michael R. Marty, Kevin E. Moore, Haris Volos, Mark D.

Hill, Michael M. Swift, and David A. Wood. LogTM-SE: Decoupling hardware trans-

actional memory from caches. In Proceedings of the 13th IEEE International Sympo-

sium on High Performance Computer Architecture, 2007.

112

