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Abstract

High-level hardware modeling via simulation is an essential
step in hardware systems design and research. Despite the im-
portance of simulation, current model creation methods are
error prone and are unnecessarily time consuming. To ad-
dress these problems, we have publicly released the Liberty
Simulation Environment (LSE), Version 1.0, consisting of a
simulator builder and automatic visualizer based on a shared
hardware description language. LSE’s design was motivated
by a careful analysis of the strengths and weaknesses of ex-
isting systems. This has resulted in a system in which models
are easier to understand, faster to develop, and have perfor-
mance on par with other systems. LSE is capable of model-
ing anysynchronous hardware system. To date, LSE has been
used to simulate and convey ideas about a diverse set of com-
plex systems including a chip multiprocessor out-of-order IA-
64 machine and a multiprocessor system with detailed device
models.

1 Introduction

High-level modeling is a crucial design evaluation tool used
by both researchers and designers of hardware systems. Cur-
rent analytical models, despite having many desirable prop-
erties, are only sufficient to provide accurate guidance for
special cases. As a result, designers and researchers rely on
high-level (e.g. microarchitecture level) software simulation
models to evaluate designs [3, 5, 8].

Unfortunately, existing simulator model creation techniques
are not well suited for modeling hardware. Models built with
existing approaches either are difficult to understand, are hard
to validate, are unnecessarily time-consuming to develop, or
suffer from some set of these problems [16, 15, 17]. To ad-
dress these problems, we developed the Liberty Simulation
Environment (LSE) after performing a careful analysis of ex-
isting systems. This analysis allowed LSE to incorporate the
strengths of existing systems while avoiding their shortcom-
ings.

This paper is an overview of the Liberty Simulation Envi-

ronment, Version 1.0. LSE is a high-level hardware model-
ing system designed to permit therapid, accuratespecifica-
tion of models. Like some existing systems, LSE employs
a concurrent-structural modeling methodology. This allows a
natural specification of hardware in which the model structure
parallels the hardware structure.

In addition to the benefits inherent in the concurrent-structural
method of modeling, LSE has several other benefits not found
in other concurrent-structural systems. First, LSE models can
be constructed more rapidly because LSE utilizes a unique
combination of specification language techniques that make
reusing and building flexible components practical [15, 17].
This reuse makes development easier and improves collabora-
tion as users can easily leverage another’s model components
in their own models. Second, LSE provides an abstraction
that simplifies the time-consuming and tedious specification
of timing control, which often cannot be modeled by reusing
components. Third, LSE descriptions are statically analyz-
able. This enables, for example, simulator construction op-
timizations to improve simulator execution performance [10]
and tools for automatic model visualization [2, 17].

The remainder of this paper is organized as follows. Sec-
tion 2 motivates LSE by giving an overview of the strengths
and weaknesses of existing approaches. Section 3 gives an
overview of LSE. Section 4 relays some of our experiences
with LSE to date, and Section 5 quantifies the benefits of LSE.
Section 6 concludes and gives a glimpse LSE’s future.

2 Motivation

Our analysis of existing modeling systems revealed that the
lack of model clarity, the lack of high levels of easy reuse
within and across models, and restricted domains of applica-
bility prevent rapid andaccuratemodel creation. This sec-
tion briefly examines how existing modeling methodologies
measure up in terms of model clarity, reuse, and generality.
These methodologies can be classified into three groups: ar-
chitecture description languages, sequential simulators, and
concurrent-structural modeling tools.



2.1 Architectural Description Languages
Architecture description languages (ADLs) exist as a method
to automate modeling of processors [6, 9, 11]. ADL mod-
els are easy to understand as they abstract away many con-
founding details of modern processors by making assump-
tions about the hardware target. Unfortunately, these assump-
tions dramatically reduce the generality of the tools, limiting
the class of processors that can be modeled [16, 15].

2.2 Sequential Simulators
The most popular method for constructing simulation models
is manually coding a simulator in sequential language such
as C or C++1 [3, 8]. This method is popular because it does
not limit what can be modeled and because designers are very
familiar with these languages for other reasons. However, fa-
miliarity with the language does not necessarily translate to
model clarity.

Hardware is designed using a divide and conquer strategy in
which designers divide the system’s complex functionality
into simpler communicating hardware components and de-
sign each individually. The final system is built by assembling
the individually designed components. To ensure the compo-
nents will interoperate when reassembled, designers agree on
the communication interface for each component. This inter-
face fully encapsulates the functionality of each component.
Other parts of the system can change without affecting a par-
ticular component provided its communication interface is re-
spected.

Unfortunately, the partitioning of behavior permitted by func-
tion calls and function interfaces in sequential languages does
not match the partitioning of hardware into components and
port interfaces. This means that traditional software compo-
nents cannot directly correspond to arbitrary hardware com-
ponents. This, in turn, means that models built by mapping
a hardware design to a sequential program will be difficult
to understand and validate because they do not resemble the
hardware they model. Also, since this mapping process can-
not be standardized, reuse of software components is limited.
This is evidenced by the incompatibility of simulator compo-
nents that are independently developed. Even code commonly
thought of and provided as a single entity cannot be encapsu-
lated into a reusable component in practice [16, 15, 17]. For
example, caches are often provided as a software module but
are typically modified to allow coupling to various other parts
of the simulator to allow correct modeling of timing [4].

2.3 Concurrent-structural Systems
Concurrent-structural modeling [7] avoids many of the prob-
lems experienced by sequential simulator construction even
while retaining the same level of generality. Concurrent-
structural modeling does not require breaking hardware com-
ponent encapsulation. Since this encapsulation is preserved,
the models resemble hardware and, in general, are clear. Fur-

1In the 30th International Symposium on Computer Architecture in 2003,
at least 23 of 37 papers used this simulator construction methodology.

ther, since hardware behavior is encapsulated within model
components, these components could potentially be reused.

Unfortunately, existing implementations of the approach do
not live up to this ideal. Some systems that appear to be con-
current and structural do not eliminate all the problems as-
sociated with sequential simulators [16]. The remaining sys-
tems preclude component-based reuse in practice. If reusable
components are too difficult to build or reuse, users will
not actually reuse components [12]. Existing systems force
a trade-off between ease of using and ease of constructing
reusable components. This trade-off makes components too
cumbersome to build and use, precluding reuse in practice. A
detailed analysis of these systems is beyond the scope of this
paper but more information can be found elsewhere [15, 17].

3 An Overview of LSE

For full model generality and clarity, we chose a concurrent-
structural modeling methodology for the Liberty Simula-
tion Environment (LSE). Like other concurrent-structural sys-
tems, users build models by instantiating components and
specifying their interconnections. However, unlike other
high-level concurrent-structural systems, LSE provideslow-
overheadcomponent-based reuse in practice. Additionally,
LSE provides a mechanism to simplify timing-control speci-
fication further easing hardware modeling tasks.

This section gives an overview of the features found in LSE,
Version 1.0 release. These are: component-based reuse, easy
timing-control specification, a library of components, and a
set of tools made possible by compile-time knowledge of the
hardware model structure.

3.1 Component-based Reuse
Component-based reuse is appealing in hardware model-
ing because many hardware blocks within and across de-
signs share high-level functionality (e.g. queues, arbiters, and
switches). However, since most hardware blocks are custom
built for each design, they contain variations in their behav-
ior. Thus, to enable component reuse, LSE supports a variety
of features to permit the creation and use offlexiblecompo-
nents that can be customized to match these variations. Fur-
thermore, to ensure that these features are practical, LSE pro-
vides several mechanisms to reduce the overhead of building
and using these flexible components.

Each component in an LSE specification is instantiated from
a template, called a module, that dictates the interface of the
component and specifies its behavior. Each module has a set
of parameters that can be set by the user. When construct-
ing an instance, these parameters are used to determine an
instance’s ports (i.e its communication interface) and behav-
ior.

There are two types of modules in LSE, leaf modules and hi-



m
em

_r
eq

ue
st

m
em

_r
es

po
ns

e

cores[n]

m
em

_r
eq

ue
st

m
em

_r
es

po
ns

e

cores[0]

...

mem_arbiter

out

in

nproc

memory_request memory_response

response_fanout

Figure 1: Block diagram of ann-processor module.

1 module nproc {
2 parameter n:int;
3
4 outport mem_request:request_t;
5 inport mem_response:response_t;
6
7 var cores:instance ref[];
8 cores=new instance[n]("cores", cpucore);
9

10 instance response_fanout:tee;
11 instance mem_arbiter:arbiter;
12
13 /* Customization code for the arbiter */
14 ...
15
16 var i:int;
17
18 mem_response -> response_fanout.in;
19 mem_arbiter.out -> mem_request;
20 for(i=0;i<n;i++) {
21 cores[i].mem_request->mem_arbiter.in[i];
22 response_fanout.out[i] -> cores[i].mem_response;
23 }
24 };

Figure 2: LSE module declaration for ann-processor module.

erarchical modules. Leaf modules are basic templates whose
instances’ behavior is specified via sequential code that uti-
lizes API calls to send and receive data via an instance’s ports.
Hierarchical modules, on the other hand, obtain their behavior
by composing instances of other modules.

LSE supports flexible hierarchical modules by allowing the
structure of hierarchical module instances to be specified al-
gorithmically and to be controlled by the values of module
parameters, rather than requiring it to be statically and explic-
itly specified by the user. For example, it is possible to create
a module that models a collection of processor cores where
the number of cores is controlled by a parameter,n. Note that
in LSE, each of these cores would themselves be hierarchical
modules.

A block diagram of ann-processor module is shown in Fig-
ure 1. Figure 2 shows the LSE code for this module, Figure 3
shows the LSE code to use this module to model 3 proces-

1 instance memory:mem_hierarchy;
2 instance procs:nproc;
3
4 procs.n=3;
5
6 procs.mem_request -> memory.request_in;
7 memory.response -> procs.mem_response;

Figure 3: Use of the module in Figure 2 withn = 3

sor cores connected to a common memory. Notice how the
for-loop algorithmically specifies the structure of thenproc
instances. The same features used in this example can be
used to parametrically control the number of functional units
in a processor model, the number of stages in a pipeline, and
many other model structures. Note that, although the example
shows a counted for-loop, any normal programmatic structure
can be used in LSE specifications.

In order to allow scalable communication interfaces such as a
register file module with a customizable number of read ports,
each port in LSE is actually a variable length array ofport in-
stances. Rather than connecting two ports together to have
two instances communicate, one connects two port instances
together. To create a two-ported instance calledrf of a mod-
ule namedregister file , one could type:

1 instance rf:register_file;
2
3 decode_stage.reg1 -> rf.read_reg[0];
4 decode_stage.reg2 -> rf.read_reg[1];

The model code in Figure 2 uses these port arrays for
fanout with thetee module and for the input port of the
memarbiter instance.

In the register file example above, the two connections made
from thedecode stage module to therf instance auto-
matically sets the number of read ports to 2. The number of
connections made to theread reg port (called the width of
the port) automatically appears as a parameter to the construc-
tor of the register file module. Thus, the user is not
burdened with making two connections and thenredundantly
setting a parameter stating the number of register file read
ports (connections). The author of theregister file
module similarly does not have to worry about declaring and
naming extra ports based on anum read ports parame-
ter, the system provides this automatically. This reduces the
overhead of using and building reusable components.

In addition to normal parameters and parameters that control
structure, LSE allows modules to be customized via algo-
rithmic parameters, calleduserpoints. Userpoints can con-
tain fragments of code that module instances can call at
run-time to implement their behavior. Thus, these algorith-
mic parameters allow users to extend and override existing
modules, much like inheritance and method overriding in
object-oriented programming languages allow customization



of classes. This feature can be used to customize the arbi-
tration logic in a generic arbiter module or control the cache
replacement policy in a cache controller.

LSE also supports a number of other features designed to al-
low low-overhead use and creation of flexible modules. One
such feature is polymorphism. Data types for ports and other
entities in LSE can be declared to be polymorphic (i.e. have
many types). For example, thearbiter module used earlier
can arbitrate any LSE data type, though any given instance
can only manage one particular type. To reduce the overhead
of using polymorphism, the appropriate type for polymorphic
entities is determined automatically when possible.

More information on polymorphism, automatic type infer-
ence, userpoints, flexible interfaces, and other LSE features
for flexible components is available elsewhere [15, 17].

3.2 Timing-Control
While component-based reuse dramatically improves mod-
eling speed, the timing-control specification of a hardware
model typically does not benefit from reuse because of its
global nature. In existing concurrent-structural systems, tim-
ing control, the portion of the control logic responsible for
computing when to stall and distributing stall signals, is of-
ten tedious and time-consuming to specify. To address this,
LSE provides a timing-control abstraction mechanism that
lifts some of the burden from the user making timing-control
specification easier.

LSE’s timing-control abstraction is enabled by partitioning
timing control into two pieces: stall generation and stall dis-
tribution. Although timing-control specifications in general
do not benefit from reuse, each subtask of timing control does
benefit from some amount of reuse.

Reuse in stall generation logic is enabled by recognizing that
stalls come in two varieties: semantic stalls and structural
stalls. Semantic stalls are those that must occur due to the
exact nature of the computation the hardware is perform-
ing (e.g. data-hazard stalls in a processor). Structural stalls are
ones that usually occur due to local resource limitations (e.g.
a pipeline stalls because there are no more slots free in a
queue). It is very difficult to automate the detection of seman-
tic stalls in a general way because they are so tightly coupled
to the overall microarchitecture. However, reusable compo-
nents can automatically generate stall signals for many struc-
tural stalls.

Stall distribution logic can also benefit from reuse by observ-
ing that stalls usually propagate in a very regular way: all
hardware earlier in the datapath communicating with a com-
ponent generating a stall usually stalls as well. For exam-
ple, in the n-processor example shown in Figure 1 (which
has a blocking memory sub-system), if the memory hierar-
chy stalls, the arbiter and the requesting processor core will
usually stall.

Figure 4: Visualization ofnproc with n = 3.

LSE leverages these facts to alleviate the burden of specify-
ing much of the timing-control logic. Instances of modules in
the LSE module library automatically detect any local struc-
tural stalls that they can. Each connection in LSE not only
carries data, but provides additional lines to carry stall sig-
nals. Module instances automatically propagate stall signals
from their outputs to the appropriate inputs, eliminating the
need for explicit stall distribution in most cases. Semantic
stalls can be injected by custom logic and propagate using
these same lines. Of course, users are free to override and
customize this behavior as they see fit. More details can be
found elsewhere [16, 17].

3.3 Component Libraries
Since LSE supports the creation of flexible reusable compo-
nents, it is natural that it also has a collection of component
libraries for use across many models. Currently, the LSE re-
lease comes with a set of core modules useful across many
designs. Modules in this library include queues, routers, ar-
biters, control modules, and other utility modules.

There also exists a collection of components for modeling
processor components such as caches, branch predictors, and
issue windows. Other groups have contributed module li-
braries for modeling I/O devices and on chip interconnect
networks. The ease of building models in LSE improves as
additional flexible modules are released to the public. The
National Science Foundation under the Next Generation Soft-
ware program is supporting work by several groups to do ex-
actly that.

3.4 Exploiting Model Structure
In addition to low-overhead specification, LSE has a number
of additional capabilities enabled by analyzing the structure
of LSE models. While some existing concurrent-structural
tools rely on the dynamic execution of constructed simula-
tors to achieve the flexibility described earlier, the structure
of LSE models is known statically. This allows LSE to use
the model structure statically to perform type inference (as



described above), to infer port widths (also described above),
to visualize the model structure, to allow the orthogonal spec-
ification of code that collects data during simulation, and to
perform static scheduling and optimization of the model when
building a simulator.

The LSE visualizer allows users to see a block diagram of
their textual specifications, and can also display on the di-
agram data sent by the data collection code in the running
simulator. Figure 4 shows a screenshot of the visualizer dis-
playing the specification of Figure 3. More information about
the visualizer as a tool for exploring models statically and as
a tool for visualizing system activities during simulation can
be found in other work [2, 13].

LSE’s static scheduling and optimization engine allow LSE
generated simulators to perform better than other concurrent-
structural modeling systems that use user-customized mod-
ules for speed. Performance numbers and information about
LSE’s scheduling and optimization can also be found else-
where [10]. Note that the optimizations currently performed
are fairly limited and LSE’s performance should be able to
surpass that of existing concurrent-structural systems by even
larger margins as LSE’s analysis engine becomes more so-
phisticated.

4 Experience with LSE

This section recounts one of the many experiences that serve
as anecdotal evidence of the benefits derived from the LSE
features described in the prior section. The next section will
recount experiments that quantify these benefits.

In June 2003, a number of visitors from a corporation visited
the Liberty research group to evaluate LSE. At the end of our
demonstration of a processor model, the visitors asked if this
processor core could be used in a multiprocessor model since
they were interested in modeling front-side bus designs that
support multiple processors.

While this model had never been used in a multiprocessor
specification before, we were confident that a simple multi-
processor specification should be relatively straight-forward
to construct because of LSE’s support for encapsulation and
flexible components. In the presence of the visitors, we re-
moved module instances for the memory hierarchy from the
processor model and wrapped the processor core into its own
hierarchical module. Then, using only modules from the core
library, we were able to construct a simple bus arbiter and
connect multiple core instances to it. After some minor up-
dates so that the cores’ load-store units (LSU) could han-
dle losing arbitration of the memory bus, we had a working
shared memory multiprocessor model. This entire process
took only a few hours in the presence of the visitors. The
resulting specification was similar to that shown in Figure 2.

LSE’s features played a critical role in the simplicity of creat-

ing this model. First, LSE is a concurrent-structural system,
and thus the processor core model could easily be instanti-
ated multiple times and expected to behave correctly. Second,
modifying the LSU to handle losing arbitration of the data-
bus was simple because any stalls that needed to propagate
due to the unavailability of memory occurred automatically.
Third, LSE’s component customization features made it easy
to compose and customize modules from the component li-
brary to create a simple bus arbiter.

Users have been able to rapidly construct and modify a num-
ber of other complex models in addition to the one described
here. In addition to the models described in the next section,
these include clustered architecture models, a chip multipro-
cessor system with detailed device models, and a model of
power consumption in on-chip interconnect networks [18].

5 Quantifying LSE’s Benefits

This section quantifies the benefits of LSE by summarizing
data that measures the the clarity of LSE models, the time
taken to build various models, and the amount of reuse seen
in LSE models.

5.1 Model Clarity
To measure the clarity of LSE models, we ran an experiment
in which users were asked to identify various features of a
processor architecture modeled in LSE. As a reference, sub-
jects were asked the same questions about a model written in
C. On average subjects were able to answer questions 33%
more accurately with LSE [14, 17].

5.2 Modeling Speed
Within our own research group, LSE has been used to model
several machines including an IA-64 processor core, a chip
multiprocessor model that utilizes that core, two Tomasulo-
style machines that execute the DLX instruction set, and a
model that is cycle-equivalent to the popular SimpleScalar
sim outorder.c [3] sequential simulator. Each model
was built by a single student, and took less than 5 weeks to
develop. Some models took only a few days to build. For
example, the chip multiprocessor version of the IA-64 model
took only 1.5 developer-days to produce once the core model
was complete. These development times are quite short. By
comparison, SimpleScalar represents at least 2.5 developer-
years of effort [1].

5.3 Quantity of Component-Based Reuse
In the models described above, there is a considerable amount
of component reuse both within and across models. Within
each model, modules are used 3-10 times on average. Further-
more, a significant percentage (73-89%) of instances come
from modules in the LSE module library. Reuse across mod-
els is even more dramatic. Over all specifications taken to-
gether, each module is used an average of 20 times with 80%
of instances coming from the module library. This signifi-



cant reuse is a largely a result of LSE’s features to reduce
specification overhead. Models built before many of the LSE
reuse features were available contain the largest number of
non-trivial custom modules relative to the models’ size [17].

6 Conclusion

The Liberty Simulation Environment (LSE), Version 1.0 is a
high-level hardware modeling system designed to enable the
rapid andaccuratecreation of hardware models. Experience
with LSE demonstrates that it successfully meets its design
goals. Models developed in LSE are easy to understand and
can be automatically visualized to enhance model clarity. Ad-
ditionally, LSE models are quick to develop and can be auto-
matically compiled to efficient simulators. LSE is currently in
use at several universities and is freely available for both com-
mercial and non-commercial users. More information about
LSE, future developments, and LSE itself can be found at the
LSE web site [13].
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