
FastForward for Efficient Pipeline Parallelism

John Giacomoni, Tipp Moseley, and Manish Vachharajani
University of Colorado at Boulder

Abstract

High-rate core-to-core communication is critical for ef-
ficient pipeline-parallel software architectures. This pa-
per introduces FastForward, a software-only low-overhead
high-rate queue algorithm for pipeline parallelism on mul-
ticore architectures. FastForward uses an architecturally-
tuned domain-specific adaptation of concurrent lock-free
queues to provide low-latency and low-overhead core-to-
core communication. Enqueue and dequeue times on a
2 GHz Opteron 270 based system are as low as 36 ns, up
to 4x faster than Lamport’s solution.

1 Design and Initial Results

Traditionally, improvements in processor design and fab-
rication technology have permitted software developers to
deliver next generation applications, including modern ge-
nomics and software define radios. The challenge with mul-
ticore systems is to develop a set of techniques or hard-
ware modifications that help application level developers
continue to harness the power of systems.

This work introduces a new concurrent lock-free single-
producer/single-consumer queue algorithm (FastForward)
that is up to 4x faster than Lamport’s queue [2] on com-
modity cache-coherent processors, permitting developers to
achieve performance improvements with fine-grain paral-
lelism [1]. FastForward does this by eliminating the cache-
unfriendly implicit coupling in Lamport’s queue.

Observe that alternating queue operations with Lam-
port’s algorithm (Figure 1(a)) necessitate the transfer of
the head and tail indices between caches for every op-
eration. FastForward counter-intuitively decouples opera-
tion by coupling control and data transfer into the storage
buffer (Figure 1(b)). Decoupled operation is ensured by
separating the producer and consumer in time, thus per-
mitting each processor to operate concurrently on sepa-
rate cache lines without interference. Hardware prefetching
masks the cost of cache transfers for the storage array itself.

The references [1] prove that “in the program order of the
consumer, the consumer dequeues values in the same order

1 if(NEXT(head) == tail){
2 // Handle full queue.
3 }
4 buf[head] = data;
5 head = NEXT(head);

(a) Lamport

1 if(NULL != buf[head]){
2 // Handle full queue.
3 }
4 buf[head] = data;
5 head = NEXT(head);

(b) FastForward

Figure 1. Enqueue operation pseudo code.

0

50

100

150

200

N
an

os
ec

on
ds

pe
r

O
pe

ra
tio

n

64 128 256 512

Queue Size

0 ns
50 ns
100 ns
200 ns
400 ns
800 ns

(a) Lamport

0

50

100

150

200

N
an

os
ec

on
ds

pe
r

O
pe

ra
tio

n

64 128 256 512

Queue Size

0 ns
50 ns
100 ns
200 ns
400 ns
800 ns

(b) FastForward

Figure 2. Performance Comparison.

that they were enqueued in the producer’s program order,”
for strong to weakly ordered consistency models, showing
that FastForward works even on relaxed memory models.

Figure 2 shows that FastForward outperforms Lamport’s
queue, for pipeline parallelism, on a 2GHz AMD Opteron
270 with 4 cores by up to 4x while being invariant with re-
spect to both queue size and “work” time between queue
operations. Additional results demonstrate equivalent per-
formance across dies, with memory fences for pointer pay-
loads, and highlight the prefetch unit’s contribution [1].

In conclusion, FastForward allows one to develop effi-
cient fine-grain pipeline parallel applications on commod-
ity cache-coherent architectures, without hardware modi-
fications. Additionally, the decoupling techniques used in
FastForward can be applied to other parallel organizations
if there is sufficient data to ensure decoupled operation.

References

[1] J. Giacomoni, T. Moseley, and M. Vachharajani. FastForward
for efficient pipeline parallelism. Technical Report CU-CS-
1028-07, Univerity of Colorado at Boulder, 2007.

[2] L. Lamport. Specifying concurrent program modules. ACM
Trans. Program. Lang. Syst., 5(2):190–222, 1983.


