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Abstract—Emerging many-core chip multiprocessors will in-

tegrate dozens of small processing cores with an on-chip in-

terconnect consisting of point-to-point links. The interconnect

enables the processing cores to not only communicate, but to

share common resources such as main memory resources and

I/O controllers. In this work, we propose an arbitration scheme

to enable equality of service (EoS) in access to a chip’s shared

resources. That is, we seek to remove any bias in a core’s access

to a shared resource based on its location in the CMP.

We propose using probabilistic arbitration combined with

distance-based weights to achieve EoS and overcome the lim-

itation of conventional round-robin arbiter. We describe how

nonlinear weights need to be used with probabilistic arbiters

and propose three different arbitration weight metrics – fixed

weight, constantly increasing weight, and variably increasing

weight. By only modifying the arbitration of an on-chip router,

we do not require any additional buffers or virtual channels

and create a simple, low-cost mechanism for achieving EoS. We

evaluate our arbitration scheme across a wide range of traffic

patterns. In addition to providing EoS, the proposed arbitration

has additional benefits which include providing quality-of-service

features (such as differentiated service) and providing fairness in

terms of both throughput and latency that approaches the global

fairness achieved with age-base arbitration – thus, providing a

more stable network by achieving high sustained throughput

beyond saturation.

Keywords- on-chip network; age-based arbitration; fairness;

quality of service (QoS);

I. INTRODUCTION

Emerging many-core chip multiprocessors will integrate
dozens of small processing cores with an on-chip interconnect
consisting of point-to-point links. The interconnect enables
the processing cores to not only communicate, but to share
common resources such as main memory resources and I/O
controllers. In particular, accessing memory from shared mem-
ory controllers is especially performance sensitive and these
types of systems will introduce non-uniformity into memory
and I/O access. We find ourselves in the tenuous design space
of being capable of implementing many cores, with only a
few memory and I/O controllers. This brings new light to old
problems of providing equality of service to a set of shared
resources regardless of where, or which processing core, is
scheduled to execute a thread.

The on-chip network is crucial to providing equality of
service among the shared resources; providing consistent la-
tency and bandwidth characteristics regardless of the origin
or destination of the communication. The goal is to provide

bandwidth and latency characteristics that are consistent for
all processors on chip. Applications should be insensitive to
where, within the on-chip network, the thread is scheduled
to execute. Achieving this goal will reduce the variance in
the execution time among threads and will provide more
efficient synchronization when transitioning between parallel
and sequential code regions. For instance, we seek to prevent
a core from receiving unfair and unequal bias to a neighboring
memory controller resource, compared with a core located
further away. Thus, equality of service (EoS) provides equal
access to shared network resources regardless of location.

Recently, cost-efficient quality of service (QoS) for on-
chip networks have been proposed [1], [2]. Unlike QoS,
which strives to provide differentiated service and hard (or
soft) guarantees for end-to-end latency or bandwidth profile,
EoS does not provide guarantees yet provides equal access
to shared on-chip resources. 1 In this work, we propose
and evaluate an arbitration mechanism to achieve equality of
service and predictable performance. By tackling arbitration in
the interconnect, we ensure the packets delivered to a shared
CMP resource are not unfairly biased by source location.
However, for on-chip networks, arbitration must be fast and
simple to reduce overheads.

In this paper, we introduce distance-based arbitration by
taking into account the distance or the hop count which a
packet travels en route to its destination – allowing nodes lo-
cated many hops from the edge to get equal service compared
to a node close to the edge. We propose using probabilistic
arbitration with a distance-based selection algorithm to achieve
EoS while providing a low complexity, livelock-free arbitration
allowing for consistent latency and bandwidth characteristics
for all cores. Since nodes that are farther away are serviced at
a ratio that is geometrically proportional to the hop count, we
propose using nonlinear weights in probabilistic arbitration to
provide fairness to nodes that are farther away. Three different
arbitration weight metrics are proposed which all provide
EoS but have varying trade-off in terms of complexity and
performance degradation on different traffic patterns.

Specifically, the contributions of this work include the
following:

• We introduce distance-based arbitration as a metric to
approximate ages with hop count.

1EoS can be considered a subset of QoS.



Fig. 1: 8-ary 1-mesh example where all nodes are sending to
P7 and merging traffic at each hop.

• To provide fairness using priority-based arbitration [3]
with distance as a metric, we propose a distributed
probabilistic arbitration where arbitration decisions are
made probabilistically at each router based on the weights
of input requests.

• We propose how nonlinear weights are required to
achieve equality-of-service (EoS) and describe three dif-
ferent arbitration weight metrics based on the hop count
and the degree of contention.

• We show how distance-based, probabilistic arbitration can
provide additional benefits which include providing QoS-
like characteristics and provide stronger fairness than
conventional round-robin arbitration to enable a more
stable network.

II. MOTIVATION
A. Need for Equality of Service

There are many different examples of when equality of
service (EoS) is needed in future CMP processors. EoS is
crucial to achieve good utilization of hardware resources with
multi-threaded programs under non-uniform access time to a
critical shared resource since execution time of the slowest
thread determines the overall performance. With EoS, the need
for topology-aware mapping of threads and tasks reduces as
equality of service can be achieved regardless of placement.
For hot-spot traffic that occur such as with core-memory traf-
fic [4] where fewer number of memory controllers compared to
cores create hotspot traffic around memory controllers and EoS
is required for this traffic as well. In this work, we describe
how probabilistic arbitration with the proposed distance-based
metrics can provide this EoS without the complexity of
supporting age-based arbitration.

B. EoS problem in On-Chip Network
As traffic flows through the network, it merges with newly

injected packets and traffic from other directions in the net-
work. This merging of traffic from different sources causes
packets that have further to travel (more hops) to receive
geometrically less bandwidth. For example, consider the 8-ary
1-mesh in Figure 1 where processors P0 thru P6 are sending to
P7. The switch allocates the output port by granting packets
fairly among the input ports. With a round-robin arbitration
policy, the processor closest to the destination (P6 is only one
hop away) will get the most bandwidth — 1/2 of the available
bandwidth. The processor two hops away, P5, will get half
of the bandwidth into router R6, for a total of 1/2×1/2 =
1/4 of the available bandwidth. That is, every two arbitration
cycles P7 will deliver a packet from source P6, and every
four arbitration cycles it will deliver a packet from source
P5. As a result, P0 and P1 each receive only 1/64 of the

available bandwidth into P7, a factor of 32 times less than
that of P6. Reducing the variation in bandwidth is critical for
application performance, particularly as applications are scaled
to higher processor counts. Although round-robin arbitration
provides local fairness at each router, it does not provide any
global fairness across all routers. Age-based arbitration [5]
is known to provide global fairness as when two or more
packets arbitrate for a shared resource, the packet with the
oldest age wins the arbitration. However, it become complex
to implement in an on-chip network constraint.

In this work, we avoid the complexity with age-based
arbitration by proposing to approximate the age of a packet
with distance or hop count. By using information already
present in the packet, such as source node, current node, or
destination node and using distance as a proxy for the packet’s
age, age-based arbitration is greatly simplified. To understand
how hop count can approximate age, the age of a packet
corresponds to the latency (T ) of a packet from the source
node to its destination.

T = Th + Ts + Tw + Tc

= Htr + Ts +Htw +Htq

= H(tr + tw + tq) + Ts

where Th is the header latency, Ts is the serialization latency,
Tw is the wire delay, and Tc is the contention and queuing
latency. For all packets, Ts is constant, regardless of the total
latency and is only dependent on the channel bandwidth and
packet size. For all the other parameters, they are directly
proportional to the total hop count (H) from source to des-
tination and other parameters such as per-hop router latency
(tr), per-hop wire delay (tw), and per-hop queuing delay (tq).
Since we assume a 2D mesh topology, all tw are identical. We
approximate Tc with Htq since we assume per-hop queuing
latency dominates the contention latency. Thus, the age of a
packet is directly proportional to the hop count (H) and can be
used to approximate the packet’s age. In this paper, we show
how the hop count can be used with probabilistic arbitration
and nonlinear weight priorities to provide equality of service.

III. ARBITRATION DESIGN

In order to use hop count as an arbitration metric, we need
to guarantee fairness since by providing preference based on
weights, there is potential for livelock and starvation. In this
section, we propose probabilistic arbitration which can provide
fairness while using hop count to determine the weight of
packets. We also present how nonlinear weights are required
using hop count and different weight metrics are presented.

A. Probabilistic Arbitration
Previous arbitration architectures are deterministic– that is,

given a set of input requests and the switch’s current state
(such as a state of the arbitration pointer or priorities), the
output grants are always deterministically assigned. For sorted
priority-based arbitration [3] such as age-based arbitration,
arbitration is done deterministically based on the relative
age of the requests. Starvation is inherently not a problem
with age-based arbitration. By using priority based on hop



Fig. 2: High-level block diagram of a probabilistic arbiter.

Fig. 3: 8x8 2D-mesh block diagram with several hotspots
highlighted. The details of hotspot traffic to these nodes are
shown in Figure 4.

count, livelock and fairness issues are problematic because
packets with a lower priority (i.e., a lower hop count) can
continually lose arbitration because of a constant stream of
newly injected traffic with higher priority. To overcome this
problem while still using hop count as the weight, we propose
probabilistic arbitration where the output of the arbitration is
probabilistically determined based on the weight of the input
requests.

Assume an arbiter shown in Figure 2 with two request
r1 and r2, each with a corresponding weight w1 and w2.
The probability of each grant g1 and g2 being asserted with
probabilistic arbitration is equal to the following.

P (g1) =
w1

w1 + w2

P (g2) =
w2

w1 + w2

Since both grants cannot be asserted in the same cycle, the
arbiter needs to probabilistically select one of the two requests
based on this probability. If the incoming weights are identical
(i.e. w1 = w2), the arbiter behaves like a random arbiter –
randomly selecting one of the two requests. In general, for a
request ri into an arbiter with m requests, the probability of
ri being granted is

P (gi) =
wi�j=m

j=1 wj

A request in probabilistic arbitration will not starve indefi-
nitely, since with probability one, it will be granted regardless
of the weight. However a request can incur significant wait
time if it continuously loses arbitration. Further discussion of
starvation is discussed in Section VI-A.

Fig. 4: Merging traffic in 8x8 2D-mesh. The fraction numbers
represent the amount of bandwidth that the corresponding
nodes would be received if a locally fair, round-robin arbitra-
tion is implemented. The highlighted node represents hotspot
traffic in a 2D mesh network shown in Figure 3.

B. Linear Weight

The hop count can be implemented as linear weights in
probabilistic arbiter – i.e., w = hx or w = hx + hy where hx

and hy represent the hop count from source to destination in
each dimension. However, probabilistic arbitration using linear
weight hop count cannot provide EoS since farther nodes
will be serviced linearly instead of geometrically. The weight
inputs to the probabilistic arbiter will only differ linearly and
not be able to provide EoS to farther nodes. For example,
for two packets that are separated by x hop count, the linear
weights for the two packets will be w and w − x – assuming
both packets have the same destination. The probability of
each packet winning an arbitration is w

2w−x and w−x
2w−x , re-

spectively. For large values of w (w � x) or for small values
of x, the probability of each packet winning the arbitration is
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Fig. 5: Accepted throughput per source node by a hotspot resource (indicated by arrow) using (a) age-based arbitration, (b)
round-robin arbitration, (c) probabilistic arbitration with linear weights, and (d) probabilistic arbitration with non-linear weights.

approximately 1/2. Thus, the result of probabilistic arbitration
with linear weight is very similar to round-robin arbitration.
This is shown with the results in Figure 5(c) for hotspot traffic
where all traffic is sent to a single node. 2 The resulting
acceptance rate of each node is very similar to the round-
robin arbitration shown in Figure 5(b) and does not provide
the equality of service as shown in Figure 5(a) with an ideal
age-based arbitration.
C. Nonlinear Weight

As shown earlier in Figure 1, nodes that are farther away
are serviced at a rate that is exponentially proportional to the
hop count – for example, packets that are h hops away are
serviced at a rate of (1/2)h and the service rate is not linearly
proportional to the hop count. To account for this difference,
we introduce nonlinear weights based on the distance. Instead
of using a weight which is equal to the hop count (i.e., w = h),
we introduce nonlinear weights in probabilistic arbitration –
i.e., w = C

h where C is the contention degree or the number
of packets contending for the same output port. By using
nonlinear weights, better fairness is provided for nodes that are
farther away. For example, in Figure 4(a), if nodes are serviced
at a rate of 1

2 ,
1
4 ,

1
8 ,

1
16 , ..., in order to provide EoS, each

node needs to be prioritized with a weight of 2, 4, 8, 16, ...,
respectively. Thus, for the traffic pattern shown in Figure 4(a),
w = 2h can be used with probabilistic arbitration to achieve
EoS. C = 2 value is used since for each output, there are
two flows contending for a router output. With XY routing,
packets traveling in the x-dimension will merge similar to the
traffic shown in Figure 4(a).

For hotspot traffic shown in Figure 4(b), when traversing the
y-dimension, there are 3 traffic flows merging at each router,
resulting in each flow being serviced at a rate of 1/3. Thus,
weight used for y-dimension is w = 3h. For traffic shown in
Figure 4(c) where the destination node is located in the non-
edge location of a 2D mesh network, the number of flows
merging is 4, thus w = 4h needs to be used to provide fairness
across all nodes.
D. Arbitration Weight Metrics

To better understand some of the design tradeoffs, we
first define several metrics that can be used as an input to

2Simulation setup is described in Section IV.

TABLE I: Arbitration metrics to determine weight of prob-
abilistic arbitration where h is the hop count and C is the
contention degree.

h C description
static static fixed weight (FW)

dynamic static constantly increasing weight (CW)
static dynamic N/A

dynamic dynamic variably increasing weight (VW)

probabilistic arbitration. The hop count weight used can be
categorized as either static or dynamic. With a static arbitration
metric, the priority of the packet is known beforehand at the
time the packet is injected into the fabric. On the other hand,
dynamic metrics will cause the priority of a packet to change
en route. Leveraging the nonlinear weight (Ch), the different
metric can be categorized based on whether C and h are either
static or dynamic as summarized in Table I. In describing the
different metrics, we assume that a packet is sent from a source
node located at (sx, sy) to a destination at (dx, dy) and the
current location is (cx, cy). Throughout this work, we assume
dimension-ordered routing (DOR) with XY routing.

1) Fixed Weight (FW): The total number of hops a packet
must travel from its source to its destination is a static value in
a mesh network with minimal routing (e.g., dimension-ordered
routing). This value is known when the packet is injected into
the network. Using this distance, packets which have a longer
distance to travel are biased by giving them higher priority at
each hop along the way. The static value of the hop count is
used based on the source and destination node.

hx = |sx − dx|
hy = |sy − dy|

Using these hop count, the weight is calculated according
to the dimension being traversed with a contention degree C.
While traversing in the x-dimension, w = 2hx is used and
when traversing in the y-dimension, w = 2hx × C

hy is used.
When traveling in the y-dimension, the weight from the x-
dimension is included as well to properly prioritize packets
that have traversed longer overall distance. However, the y-
dimension weight C

hy is not included while traversing the
x-dimension since when a packet only needs to traverse the
x-dimension, a packet that needs to traverse both the x and
the y-dimension will be unfairly biased. With this metric, the



weight of each packet remains constant or fixed throughout
the network.

The value of C is dependent on the location of the destina-
tion. For a radix-k 2D mesh topology (i.e., k × k mesh),

C =

�
3 dx = 0 � dx = k − 1
4 otherwise.

Since 2D mesh is a non-edge symmetric topology, for desti-
nation located on the edge of the 2D mesh network, C = 3
while C = 4 is used for all other destination.

2) Constantly Increasing Weight (CW): Instead of relying
on static values, another metric for arbitration is using dynamic
values, which is based on how much distance a packet has
traversed. The distance traveled arbitration metric is defined
as the number of hops from the current position to the packet
source. A packet’s weight increases as it gets closer to its
destination. The dynamic value of the hop count is from the
following.

hx = |cx − sx|
hy = |cy − sy| (1)

Similar to the fixed weight (FW) metric, when traveling
in the x-dimension, the weight is 2hx calculated based on
the distance traveled (Equation (1)) and when traveling in
the y-dimension, 2hx × C

hy is used where C is based on
the destination location as described earlier. When the packet
reaches the destination, the weight will be identical to the
weight using FW.

Another way to view this metric is to assume that when a
packet is injected, it is assigned a weight of 1. As a packet
traverses the network, the weight is continually increased. In
the x-direction, the weight is multiplied by a factor of 2 at
each hop and when traveling in the y-dimension, the weight
is multiplied by a factor of C at each hop.

3) Variably Increasing Weight (VW): Instead of a assuming
a constant C value at each hop in each dimension, we also
evaluate a metric where the value of C per hop is variably
changed. Packets are injected with a priority of 1 and the
priority also increases dynamically as the packet traverse
the network to its destination, similar to CW. However, the
increase in weight is not constant as in CW but is dynamic
based on the actual contention degree (C) for the output port.
The contention degree is defined as the number of packets
that are destined for the same router output port. The range of
values for C is 1 ≤ C ≤ (p − 1) where p is the number
of router ports. 3 For example, if there are 3 packets that
need to be routed through one output port of a router, each of
these packets will have a contention degree of 3. Thus, when
these packets are forwarded to the next router, their priorities
are increased by 3×. However, if there are no other packets
contending for the same output in a given cycle, the weight
of the packet remains constant and does not change.

3Since we assume no U-turn routing, the maximum value of C is p− 1.

TABLE II: Synthetic traffic simulation parameters

Parameters Values

network size 64
topology 2D mesh
routing XY routing
router latency 3 cycle
buffers 16 flit entry per input port
virtual channels 1
packet size bimodal(50% 1 flit and 50% 4 flits)

4) Other Metric Considerations: As shown earlier in Ta-
ble I, another possible weight metric is using static hop count
and dynamic contention degree. However, this metric is not
applicable since if the hop count is static or determined from
the source, the entire weight needs to be fixed at the source
– otherwise, the weight would increase by C

h per hop and
will not provide EoS as significant more priority is provided
to nodes that are farther away. In addition, the dynamic
hop count can be obtained from the distance or hop count
remaining, which is the number of hops to the destination
from its current location in the network. This metric would
decrease the packet’s priority as it approaches the destination.
However, decreasing the weight can negate the effect of using
probabilistic arbitration. For example, in Figure 4(a), if each
packet begins with a fixed weight at its source and if the
packet’s weights were decreased by C = 2 at each hop,
the packets that are merged at each router will have equal
weights – resulting in an arbitration very similar to round-
robin arbitration and not be able to provide any EoS.

IV. METHODOLOGY

We evaluate distance-based probabilistic arbitration using
a cycle-accurate interconnection network simulator [6]. To
evaluate the latency-throughput, the simulator is warmed up
under load without taking measurements until steady-state is
reached. Then, a sample of injected packets is labeled during
a measurement interval. The simulation is run until all labeled
packets exit the system. Different synthetic traffic patterns
including hotspot traffic, uniform random, bit complement, bit
reverse, shuffle, tornado, random permutation, and transpose
were used to evaluate probabilistic arbitration. Due to page
constraints, only selected results are presented in the next
section.

Parameters used in the synthetic simulations are described
in Table II. Distance-based, probabilistic arbitration does not
require additional VCs so we use a single virtual channel (VC).
We assume a FIFO buffer structure – i.e., packet reordering
is not allowed at each router input buffer. If additional VCs
are required for protocol deadlock, probabilistic arbitration
can support additional VCs for different classes of traffic as
long as packets stay within the same VCs from source to its
destination. The only change required is that VC allocation
needs to implement probabilistic arbitration based on distance
as well. For the long packets, the head flit goes through switch
arbitration using probabilistic arbitration.

The following different arbitration algorithms are compared
in the evaluation.



TABLE III: Packet latency variation
mean(cycles) max(cycles) std dev

RR 739 3153 1026
AGE 62.93 63 0.088
VW 62.93 66.2 1.20
CW 62.96 68.8 1.96
FW 62.92 65.5 1.25

• round-robin arbitration (RR) : a locally fair, round-
robin arbitration at each router node.

• age-based arbitration (AGE) : an ideal implementation
of age-based arbitration where each packet is times-
tamped at injection and the age continues to increase
every cycle.

• probabilistic arbitration : arbitration determined prob-
abilistically by the following different weights.

– fixed weight (FW)

– constantly increasing weight (CW)

– variably increasing weight (VW)

To complement the evaluation of synthetic workload, we
also evaluate using traces from PARSEC applications [7] using
the Simics/GEMS [8] simulator. We simulate 64 in-order cores
with 16 memory controllers, 32KB L1 cache and a shared
16MB L2 cache. We obtain traces from a selected number of
benchmarks, including from blackscholes, canneal, and dedup
and use the sim-large input dataset.

V. EVALUATION
A. Hotspot Traffic

We first evaluate probabilistic arbitration on hotspot traffic
where all nodes send traffic to a single destination. As shown
in Figure 5, we verify that equality of service is achieved
by measuring the accepted throughput across all nodes. The
different metrics (FW, CW, VW) all provide very similar
results so only the result for CW is shown in Figure 5(d).
As a result, by approximating age with hop count and using
nonlinear weight with probabilistic arbitration, we can match
the performance of age-based arbitration in hotspot traffic and
achieve equality of service.

Latency variation is also an important factor in determining
overall performance – thus, minimizing the variance is also
critical in providing EoS. In Table III, we measure the packet
latency variation in hotspot traffic. The packet latency variation
is calculated using latency difference for consecutive packets
within one flow where a flow is defined as the traffic from
a source to the hotspot destination. Age-based arbitration
provides the tightest distribution with the lowest variance but
all three arbitration weight metric also achieve a very tight
distribution with slightly higher variance while the average
values are nearly identical. However, locally fair round-robin
arbitration not only has a higher mean value but also has a
significantly higher variation.

B. Memory Controller Traffic
We also evaluate probabilistic arbitration with multiple

hotspot traffic (such as the traffic to memory controller) in
future many-core processors. We evaluate a diamond place-
ment of memory controllers [4] with 16 memory controllers

and assume a uniform random distribution to 1 of 16 memory
controllers. Figure 6 plots the accepted throughput of all the
nodes that is sending traffic to the memory controllers. The 16
nodes with zero accepted throughput are the location of the
memory controllers. As shown in Figure 6(a), although the
diamond placement was shown to provide good performance
for on-chip network memory traffic, if round-robin arbitration
is used, unfairness is created in reaching the distributed num-
ber of MCs – nodes in the middle of the chip are able to send
more traffic than the nodes in the corner. Age-based arbitration
is able to provide a global fairness and achieve the same
throughput for all nodes (Figure 6(b)). Using probabilistic
arbitration (Figure 6(c)), we are able to significantly reduce
the unfairness compared to round-robin arbitration.

C. Differentiated Service
As shown in the previous subsections, we showed how prob-

abilistic arbitration can provide equality of service. However,
some applications will require providing differential services
across different nodes – while still providing EoS within a
region. By simply modifying the weights of the packet when
injected, the priority of the packets can be varied and with
probabilistic arbitration, differentiated service can be provided.
For example, with the VW metric, packets are injected with
a priority of 1. However, if we increase this priority value,
then differentiated service can be provided and the amount
of differentiated service is proportional to the increase in
the initial priority. In Figure 7, we re-simulate the hotspot
traffic pattern used in Section V-A but we now partition all
nodes into 4 groups – with each group having a priority
of 1,2,4,and 8. The results show how each group is able
to achieve differentiated service which is proportional to its
initial priority while still achieving EoS within each region.
Similar results have been shown with different on-chip QoS
mechanisms [1] but we show how with probabilistic arbitration
and a simple heuristics based on hop count, differentiated
service can also be provided without significant complexity.

D. Performance on PARSEC Applications
The performance evaluation using probabilistic arbitration

with traces from PARSEC is shown in Figure 8. In Figure 8(a),
we compare the performance (network latency) and in Fig-
ure 8(b), we compare the network latency in the presence of
synthetic hotspot traffic that is added to evaluate the impact
of hotspot traffic on the performance of the PARSEC appli-
cations. By using probabilistic arbitration (with VW metric),
we are able to reduce the interconnect network latency by up
to 12% compared to RR (Figure 8(a)). With hotspot traffic,
RR arbitration cannot differentiate the traffic but by providing
preference to application traffic, we are able to minimize the
impact of the hotspot traffic.

E. Performance on Synthetic Traffic Pattern
In this section, we evaluate the impact of probabilistic

arbitration on the performance of different synthetic traffic
patterns and evaluate its impact on performance. The latency
vs. throughput curve for different traffic patterns are shown
in Figure 9. Since we only modify the switch arbitration, the
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Fig. 6: Performance across multiple hotspots of (a) round-robin, (b) age-based, and (c) probabilistic arbitration.
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Fig. 8: (a) Performance comparison of PARSEC traces and (b)
performance in the presence of hotspot synthetic traffic.

zero-load latencies of the different arbitration are all identical
for a given traffic pattern. For some traffic patterns such as
bitrev (not shown), all of the different arbitration mechanism
achieve nearly identical latency vs. throughput curves. How-
ever, for other traffic patterns, the different weight metrics
with probabilistic arbitration result in different throughput.
For example, with uniform random traffic, CW reduces the
saturation throughput by approximately 13% compared to RR
while VW and FW provide better performance than CW.
For tornado traffic pattern, VW approximately matches the
throughput of RR – thus, the ability of providing EoS has
minimal impact of performance. Across all traffic patterns,
VW generally provides the highest performance compared to
FW or CW because of its ability to adapt to the contention
by calculating the contention degree at each router before
increasing the weight.

In addition to latency vs. throughput curve, we also plot the
offered load vs. minimum accepted throughput for the different
traffic patterns in Figure 10. For traffic patterns such as UR,

regardless of the arbitration mechanism, the network continues
to accept same amount of traffic past saturation. However, it
is known that simple round-robin arbitration can create an
unstable network for different permutation traffic [6] – i.e.,
beyond the maximum saturated accepted throughput, as the
load continues to increase, the accepted throughput actually
decreases. By providing globally fairness with age-based arbi-
tration, the maximum accepted throughput can be maintained
as offered load continues to increase as shown in Figure 10.
For RR, the throughput drop significantly because of global
unfairness. The different weight metrics (FW, CW, VW)
provide similar saturation throughput but differ significantly on
the accepted throughput as load increases beyond saturation.
For example, with transpose traffic pattern in Figure 10(a),
after saturation around 0.14, as load continues to increase,
the throughput drop by approximately 67% for FW while
CW and VW maintains stability. For bitcomp (Figure 10(b)),
probabilistic arbitration still provides better stability than RR,
with VW again providing the highest stability compared to
CW and FW. However, VW cannot achieve high sustained
throughput as age-based arbitration and it is noticeable in the
tornado traffic (Figure 10(c)).

In order to understand the limitations of CW and FW, we
use the traffic patterns shown in Figure 11 and Figure 12.
Figure 11 highlights the limitation of the FW metric. Assume
P1, P2, and P3 sends traffic to P4, P5 and P6, respectively.
With this traffic pattern, all of the packets will have a hop
count of hx = 3, hy = 0 and use a weight of w = 23. As
a result, the arbitration at each router (R2, R3, R4, R5) will
be round-robin arbitration because of the equal weights. Thus,
more bandwidth will be serviced to P3 while the bandwidth
used by packets from P1 and P2 will be reduced geometrically
– thus, reducing the minimum accepted throughput beyond
saturation.

The traffic pattern in Figure 12 highlights the limitation of
CW probabilistic arbitration. Assume P0 sends traffic to P7
and P5 sends traffic to P6 and assume the other nodes in
the row P1 - P4 are sending traffic to another node in the
same column and does not require traversing any channel
within this row. With a static constant degree metric using
CW, the weight of packet injected at P0 continues to increase
and once it reaches R5, it has a weight of 32. However, the
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Fig. 9: Latency throughput curve for (a) uniform random, (b) tornado, and (c) bitcomp traffic patterns.
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Fig. 10: Offered load vs. minimum accepted throughput for (a) transpose, (b) bitcomp, and (c) tornado traffic patterns.

Fig. 11: Traffic pattern that highlights the limitation of the
fixed weight probabilistic arbitration.

Fig. 12: Traffic pattern that highlights the limitation of the
constantly increasing weight probabilistic arbitration. r1, w1

represents a packet from P0 and r2, w2 represents a packet
from P5.

packet injected from P5 at R5 will have weight of 1. Thus,
using probabilistic arbitration, P0 will receive 32/33 of the
bandwidth from the channel between R5 and R6 while P5
will only obtain 1/33 of the bandwidth – unfairly, biasing the
packet that have traveled long distance. Ideally, since there
is only 2 flow sharing the channel between R5 and R6, each

should access 1/2 the bandwidth. In order to overcome the
limitation of CW, variably increasing weight metric is needed.
Thus, for packet that is injected at P0, it does not encounter
any contention until it reaches R5 and maintains a weight of
1. At R5, w1 = w2 = 1 and each flow from P0 and P5 will
be serviced approximately equally.

F. Performance Comparison to GSF
In this section, we compare the performance of probabilistic

arbitration described in this work with a QoS scheme for on-
chip networks, GSF(globally synchronized frames) [1]. GSF
takes a frame-based approach as time is coarsely quantized
into frames, and injection control logic at each source node
controls bandwidth allocation by restricting the number of flits
that each traffic flow can inject into each frame.

Figure 13 shows minimum accepted throughput versus in-
jection rate using both GSF and probabilistic arbitration (VW)
with multiple buffer configurations for three traffic patterns.
The throughput of GSF suffers when the buffer size is small
and clearly shows how GSF is sensitive to the number of
virtual channels (VCs). For example, when the number of VCs
is only two (GSF(2×4) in Figure 13), the network utilization of
GSF is low because there is only one future frame (assuming
one VC per frame), which is not sufficient to hide the drain
time of the head frame. On the other hand, probabilistic
arbitration shows generally higher minimum throughput for the
same buffer size (e.g., GSF(2×4) vs. VW(1×8) and GSF(4×4)
vs. VW(1×16)). However, for traffic such as tornado traffic,
the performance of VW and probabilistic arbitration suffers
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Fig. 13: Performance comparison using GSF and probabilistic arbitration for (a) uniform random, (b) tornado, and (c) bitcomp
traffic pattern. V × B in parentheses indicates buffer configuration: the number of virtual channels (VCs) per physical link
(V ) × buffer size per VC (B).

at high load because of the limitation of contention-based
arbitration that is used with VW weight metric.

VI. DISCUSSION

A. Starvation and Livelock
As mentioned earlier in Section III-A, probabilistic arbiter

can create starvation. For example, in Figure 2(a), the proba-
bility that r1 with w1 will not be serviced for n consecutive
cycles is (1− P (g1))n, assuming r2 also has a request for n
consecutive cycles with the same weight w2. Theoretically, as
n → ∞, all requests will be eventually served but n can get
very large. In Figure 14, we plot the probability of a packet
not being serviced for n consecutive cycles as we vary P (gi).
For P (gi) > 0.1, the probability quickly converges to zero
and there is minimal impact of starvation using probabilistic
arbitration. For P (gi) ≤ 0.1, in the worst case, there is chance
that a packet will not be serviced for large number of cycles
and will get only worse with smaller values of P (gi).

However, even with a globally fair arbitration such as age-
based arbitration or weighted fair queueing [9], in a traffic
pattern like hotspot traffic, each node’s traffic will only be
serviced every N cycles where N is the number of nodes in
the network. Thus, for N = 64, the probability of a packet
being serviced within 64 cycles (n = 64) with probabilistic
arbitration (P (gi) = 0.01) will be approximately 0.5. In
addition, Figure 14 is an upper bound on the probability of
a packet not being serviced as we assume other requests are
continually asserted such that P (gi) remains constant. If in
the next cycle the number of requests is reduced, P (gi) will
increase – thus, reducing the probability of a packet not being
serviced.

In Figure 15, we plot the total number of times (or cycles)
each packet loses arbitration for the different weight metrics
on the x-axis and the percentage of packets in the y-dimension.
We obtain this metric by counting the total number of requests
made to the probabilistic arbiter for each packet en route to
its destination and subtract the hop count from source to its
destination, which corresponds to the number of successful
arbitration. We use the hotspot traffic from Section V-A since
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Fig. 14: Probability of packet not being serviced for n con-
secutive cycles.

that represents a worst-case traffic pattern for starvation as
some packet needs to traverse the maximum network diameter
to reach its destination – resulting in the highest weight and
creating the highest probability of starvation for packets near
the hotspot destination. We use an injection rate of 0.015 at
each node which approximately corresponds to the maximum
achievable throughput for each node with the hotspot traffic
(≈ 1/64). As shown in Figure 15, FW and CW take very
long for it converge to 100% while with VW, the convergence
occurs much faster as the number of times a packet loses
probabilistic arbitration is under 20. With VW, packet’s weight
does not always constantly increase and minimizes packets
with large values – resulting in higher values of P (gi) and
fewer number of cycles waiting for lost arbitration.

However, if starvation avoidance needs to be guaranteed,
the probabilistic arbiter can have a fall-back mechanism – for
example, if a request is not serviced for n cycles, the arbiter
falls back to a simple round-robin arbiter for some number of
cycles to ensure that everyone does get serviced at least once
every n cycles.
B. Implementation

To support probabilistic arbitration, the only change re-
quired in an on-chip network router is the switch arbitration.
The cost (in terms of area and power) of an on-chip router
is dominated by the buffers and the crossbar [10], [11], [12].
Prior work have shown that the area and power consumption
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Fig. 16: Block diagram of a probabilistic arbiter implementa-
tion.

impact of arbitration is minimal [13] – for example, the power
consumption of arbitration was approximately 2.5% of the
total power consumption [14]. Thus, the additional complexity
of implementing distance-based, probabilistic arbitration on
the router area and energy should be relatively small. However,
the latency of arbitration is often the critical path in a router [6]
and if not implemented properly, probabilistic arbiter can
create a bottleneck.

A block diagram of a probabilistic arbiter is shown in
Figure 16. 4 The arbiter is broken into three steps : 1) weight
calculation, 2) adding all the weights together, and 3) the
random weighted arbiter. In the first step, the nonlinear weights
need to be calculated based on the h and C parameters and an
exponential calculation (EXP) is needed. In the second step,
all the weights are summed together to calculate wT . Based
on this value wT , the last step involves generate a random
number (RNG) between 0 and wT − 1 and depending on the
range of this random number, the appropriate grant is asserted.

In this section, we focus on VW instead of CW or FW
because of its performance advantage. The critical path shown
in Figure 16 can be reduced using different techniques. For
a random number generator (RNG), a linear feedback shift
register can be implemented. However, the random number
is dependent on the wT which increases the critical path. To
avoid this critical path, the random number can be pregener-
ated based on the maximum weight possible in the network.
Once wT is calculated, the random value can be selected based
on using the lower log(wT ) bits of the pregenerated random
number. By using this technique, we estimate the arbitration
delay of probabilistic arbitration (VW) to be approximately

4For simplicity, an arbiter with only two requests is shown. In a 2D mesh
topology, the arbiter will need to support up to 4 requests since U-turns are
not allowed.

age-based arbitration VW
arbitration deterministic probabilistic

weight metric age, clock hop count, contention
weight global management needed per-packet based

management within each router
to track packets
in each epoch

weight rollover counter saturation, not needed
starvation

weight update every clock cycle every hop

TABLE IV: Qualitative comparison of age-based arbitration
and VW algorithm. Age-based arbitration is based on the
implementation from Cray XT3 [5].

15 FO4 which includes the adder, mux, comparator, and the
selector logic, compared with a conventional arbiter at 10 or 11
FO4 [15]. The critical path can be further reduced by trading-
off complexity and accuracy. For example, the weights can be
approximated by using only m of n bits. Additional design
trade-off can be made between router complexity and on-chip
bandwidth – i.e., increase router complexity by completely
recalculating the weight at each router or increase on-chip
bandwidth usage by carrying around the weight (or partial
weight) within the head flit as this simplifies the calculation
of the new weight.

In addition, we qualitatively compare VW with age-based
arbitration in Table IV. Assuming both arbitration carry a n-
bit field to represent the weight, the main difference is how
this weight maintained. For VW, this weight is only updated
once per router and does not need any special maintenance.
However, with age-based arbitration, the age field will eventu-
ally saturate and reach the maximum value. As a result, careful
maintenance is need such that when the counter does roll-over,
proper age is maintained while starvation is avoided [5].

VII. RELATED WORK
Probabilistic techniques for centralized arbitra-

tion/scheduling have been proposed in OS scheduling and
system-on-chip shared bus system. Lottery scheduling [16]
chooses a thread to run using random numbers and
Lotterybus [17] uses probabilistic arbitrations to choose the
owner of a shared bus. Probabilistic arbitration has also been
proposed within memory schedulers [18]. These works have
a single centralized arbiter/scheduler, however, our work uses
multiple distributed probabilistic arbiters in on-chip networks
and we presents novel weight metrics to achieve fairness with
probabilistic arbiter. Distance or hop count was also used
in the arbitration within Aérgia architecture [19] where they
used hop count to determine slack calculation and provide
application-level fairness.

Although EoS has been well investigated in other fields such
as computer networking and real-time system, their solutions
cannot be easily applied to on-chip environment because of
different constraints, compared to off-chip. We divide the
solution space into two classes. The first class of approaches
is based on injection rate control. Injection rate control can
be placed at either the injection point of each source or the
input channel of each intermediate node to limit the maximum
number of flits a network or an individual node can service for



each flow over a period of time. This time period of bandwidth
accounting is called frame in some proposals [20], [1], [3].
Æthereal [21] uses pipelined time-division-multiplexed (TDM)
circuit switching to implement guaranteed performance ser-
vices. Each flow is required to explicitly set up a channel on
the routing path before transmitting the first payload packet,
and a flow cannot use more than its fair bandwidth share even
if the network is underutilized. SonicsMX [22] can support
EoS without explicit channel setup. However, each node has to
maintain per-thread queues, which make it only suitable for a
small number of threads. QNoC [23] takes a source regulation
approach and requires each source to fetch credit tokens from
the destination (hotspot) node before sending out payload
packets. It requires only minimal modifications to network
routers because most of the intelligence is at end nodes.
However, QNoC requires a sophisticated secondary network
(either logical or physical) for credit token request/reply not
to slow down the source injection process and potentially
penalizes short-lived flows because of credit token fetch.

The second class of approaches proposes sophisticated
arbitration techniques to provide EoS. (Weighted) Fair Queue-
ing [9] and Virtual Clock [24] are best-known queueing
and scheduling algorithms in this class. They are developed
for EoS in long-haul IP networks where large buffers are
available. These achieve fairness and high network utilization,
but each router is required to maintain per-flow state and
queues which would be impractical in an on-chip network. The
MediaWorm router [25] evaluates the performance of both Fair
Queueing and Virtual Clock in a multiprocessor environment
using multimedia traffic. Weighted round-robin arbiter [6] is
a degenerated form of Fair Queueing, which does not take
packet size into account.

VIII. CONCLUSIONS

In this work, we presented distance-based, probabilistic
arbitration to provide equality-of-service (EoS) in many-core
CMPs. By only modifying the arbitration of on-chip net-
work routers, we showed how the proposed arbitration can
approach the behavior of ideal age-based arbitration without
requiring any significant complexity and relying only on local
arbitration. We described how simple heuristics based on
hop count can be used to approximate age. Along with a
probabilistic arbiter, we were able to achieve livelock-free
arbitration that avoids starvation. Three different arbitration
weight metrics including fixed weight, constantly increasing
weight, and variably increasing weight were described which
rely on nonlinear weights to provide EoS to nodes that are
farther away. Our simulation results also show how there is
minimum degradation of performance across a wide range
of traffic patterns in evaluating non-EoS aspect of using
probabilistic arbitration. By providing better global fairness,
distance-based, probabilistic arbitration is also able to provide
a more stable network as it is able to continue delivering
throughput that is close to the peak throughput when the
offered load is beyond the saturation throughput.
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