
AsmDB: Understanding
and Mitigating Front-End
Stalls in Warehouse-Scale
Computers

Nayana Prasad Nagendra

Princeton University

Grant Ayers

Google

David I. August

Princeton University

Hyoun Kyu Cho and Svilen Kanev

Google

Christos Kozyrakis

Stanford University

Trivikram Krishnamurthy

Nvidia

Heiner Litz

University of California, Santa Cruz

Tipp Moseley and

Parthasarathy Ranganathan

Google

Abstract—It is well known that the datacenters hosting today’s cloud services waste

a significant number of cycles on front-end stalls. However, prior work has provided little

insights about the source of these front-end stalls and how to address them. This work

analyzes the cause of instruction cachemisses at a fleet-wide scale and proposes a new

compiler-driven software code prefetching strategy to reduce instruction cachesmisses

by 90%.

& DUE TO THE continued growth of cloud-based

digital services, warehouse-scale computers

(WSC) are now serving billions of devices across

the world. This massive growth necessitates

improving the cost and efficiency of WSCs

through microarchitectural and system software

based optimizations.

WSC workloads are characterized by deep

software stacks in which individual requests can

traverse many layers of data retrieval, data

Digital Object Identifier 10.1109/MM.2020.2986212

Date of publication 16 April 2020; date of current version 22

May 2020.

Theme Article: Top PicksTheme Article: Top Picks

56
0272-1732 � 2020 IEEE Published by the IEEE Computer Society IEEE Micro

Authorized licensed use limited to: Princeton University. Downloaded on May 29,2020 at 00:21:53 UTC from IEEE Xplore. Restrictions apply.

processing, communication, logging, and moni-

toring. As a result, the instruction working set

sizes of WSC workloads today are often 100�
larger than server-class L1 instruction caches (i-

cache)1 and are currently expanding at rates of

over 20% per year.2 As cache sizes have not

improved significantly over the last many years,

WSC workloads are becoming increasingly front-

end bound. Thus, processors are no longer able

to sustain a high instruction fetch rate, manifest-

ing itself in large unrealized performance gains

due to front-end stalls, which are dominated by

increased i-cache misses. While prior work has

identified the growing impor-

tance of this problem, to date,

there has been little analysis of

the sources of these misses

and of available opportunities

to address them.

We corroborate this chal-

lenge for our WSCs on Google

web search leaf servers, in

which 13.8% of the total per-

formance potential is wasted

due to “front-end latency,”

principally caused by i-cache

misses. We also measured L1

i-cache miss rates of 11 misses

per kilo-instruction, and a

hot steady-state instruction

working set of approximately

4 MiB. This is significantly

larger than the sizes of the L1 and L2 caches on

today’s server CPUs, but small and hot enough

to easily fit and remain in the shared L3 cache

(typically 10 s of MiB).1

To understand and improve the i-cache

behavior of WSC applications, we focus on tools

and techniques for “broad” acceleration* of thou-

sands of WSC workloads. At the scale of a typical

WSC server fleet, performance improvements

of a few percentage points (and even sub-1%

improvements) lead to millions of dollars in

cost and energy savings, as long as they are

widely applicable across workloads. To that end,

our work provides three primary contributions:

i) Amethodology for analyzing instruction profiles

at a fleet-wide scale; ii) detailed insights about

code fragmentation and the perils ofmicro-optimi-

zation; and iii) a novel software-based code pre-

fetch algorithm for reducing i-cache misses at

fleet-wide scales.

AsmDB: A WSC ASSEMBLY
DATABASE

To enable the necessary horizontal analysis

and optimization across the server fleet, we built

a continuously updated assembly database

(AsmDB) to collect instruction- and basic-block-

level information for most observed CPU cycles

across the thousands of real produc-

tion services executing across the

Google fleet. AsmDB aggregates

instruction and control-flow data col-

lected from hundreds of thousands of

machines each day and grows by mul-

tiple TiB each week. We have been

continuously populating AsmDB over

several years with the goal of provid-

ing easy-to-query assembly-level infor-

mation for nearly every unique

instruction executed in our WSCs. We

demonstrate several cases where

AsmDB proves invaluable for front-

end optimization, including spotting

opportunities for manual optimiza-

tions, finding areas for improvement

in existing compiler passes, as well as

for serving as a data source for a

novel compiler-driven technique to improve i-

cache hit rates.

AsmDB is an always-on, massive-scale fleet-

wide performance monitoring system. It uses

hardware support to collect bursty execution

traces, performs fleet-wide temporal and spatial

sampling, and leverages sophisticated offline post-

processing to construct full-program dynamic

control-flow graphs. Collecting and processing

profiling data from hundreds of thousands of

machines is a daunting task by itself. However, we

have carefully designed the system architecture

such that it can capture and process profiling data

in a cost-efficient way while still processing tera-

bytes of data eachweek.

A fleet-wide assembly database, such as

AsmDB, provides a scalable solution to search

for performance antipatterns and opens up new

To enable the

necessary horizontal

analysis and

optimization across the

server fleet, we built a

continuously updated

assembly database

(AsmDB) to collect

instruction- and

basic-block-level

information for most

observed CPU cycles

across the thousands

of real production

services executing

across the

Google fleet.

*
“Deep” acceleration would involve focusing on a handful of workloads and

trying to recover most of the � 15% performance opportunity.

May/June 2020 57
Authorized licensed use limited to: Princeton University. Downloaded on May 29,2020 at 00:21:53 UTC from IEEE Xplore. Restrictions apply.

opportunities for performance and total-cost-of-

ownership optimizations. WSC servers typically

execute thousands of unique applications, so

the kernels that matter most across the fleet

(the “datacenter tax”2) may not be significant for

a single workload and are easy to overlook

in application-by-application investigations.

We leverage AsmDB’s fleet-wide data in several

case studies to understand and improve the

i-cache utilization and IPC of WSC applications.

We further correlate AsmDB with hardware

performance counter profiles collected by a

datacenter-wide profiling system—Google-wide

profiling (GWP)4—to reason about specific pat-

terns that affect front-end performance.

WSC APPLICATION ANALYSIS WITH
AsmDB

WSC applications are well-known for their long

instruction tails and flat execution profiles.2

Figure 1 shows that i-cache misses inWSCs have a

similar long tail. It plots the cumulative distribu-

tion of dynamic instructions, and L1-I and L2-I

misses over unique i-cache lines over a week of

execution, fleet wide. The zoomed-in view of the

graph shows that themiss cumulative distribution

function (CDF) initially has a more significant

slope than the instruction CDF, suggesting that

there exist some pointwise manual optimizations

with high potential performance gains. However,

the distribution of misses quickly tapers off. In

particular, addressing just two-thirds of dynamic

misses requires optimizations in � 1M code loca-

tions, which is only conceivable leveraging auto-

mation. This points us toward exploring scalable,

automated solutions—with compiler and/or hard-

ware support and no developer intervention—to

exploit these behaviors.

EFFECTS OF CODE FRAGMENTATION
ON CACHES

Code bloat and unnecessary instruction com-

plexity, especially in frequently-executed code,

can lead to excessive i-cache pressure. We ana-

lyze code bloat in Figure 2, leveraging AsmDB-
data—it plots the normalized function hotness

(how often a particular function is called over a

fixed period) versus the function’s size in bytes

for the 100 hottest functions in our WSCs. Per-

haps unsurprisingly, it shows a loose negative

correlation: Smaller functions are calledmore fre-

quently. It also corroborates prior findings that

low-level library functions (“datacenter tax”2),

and specifically memcpy and memcmp, are

among the hottest in our examinedworkloads.

However, despite smaller functions being sig-

nificantly more frequent, they are not the major

source of i-cache misses. Overlaying miss pro-

files from GWP onto Figure 2 (shading), we

notice that most observed cache misses lie in

functions larger than 1 KiB in code size, with

over half in functions larger than 5 KiB. Most

functions of 5 KiB or larger exhibit inlined call

stacks of ten or more layers in depth.

While deep inlining is crucial for performance

in workloads with flat callgraphs, it exponen-

tially increases the amount of code loaded into

the i-cache at each inline level, of which often

only a small fraction is hot. Cold code brought

Figure 1. Fleet-wide distribution of executed

instructions, and L1- and L2-instruction misses over

unique cache lines. Like instructions, misses also

follow a long tail.

Figure 2. Normalized execution frequency versus function size

for the top 100 hottest fleet-wide functions.memcmp is a clear

outlier.

Top Picks

58 IEEE Micro

Authorized licensed use limited to: Princeton University. Downloaded on May 29,2020 at 00:21:53 UTC from IEEE Xplore. Restrictions apply.

into the cache, in addition to the necessary hot

instructions leading to hot/cold fragmentation

and thus suboptimal utilization of the limited

cache resources.

We more formally define fragmentation to be

the fraction of code (in bytes) that is necessary

to cover the last 10%, 1%, or 0.1% of executions

of a function. Because functions are sequentially

laid out in memory, these cold bytes are very

likely to be brought into the cache by next-line

prefetchers. Intuitively, this definition measures

the fraction of i-cache capacity potentially

wasted by loading cold cache lines.

We find that intrafunction fragmentation is

especially prevalent. Even after compiling with

feedback-directed optimization, 50% of the

codes in all functions are cold, frequently

interleaved with hot code sections, and thus

practically never executed despite being likely

to be in the cache. This is true even among the

hottest and most well-optimized functions in

our server fleet.

Using AsmDB data, we calculate the measure

of fragmentation for the top 100 functions by

execution count in our server fleet. Figure 3 plots

it against the containing function size. If we con-

sider code covering the last 1% of execution as

“cold,” 66 functions out of the 100 are comprised

of more than 50% cold code. Even with a stricter

definition of cold (<0.1%), 46 functions have

more than 50% cold code. Perhaps not surpris-

ingly, there is a loose correlation with function

size—larger (more complex) functions tend to

have a larger fraction of cold code.

We attribute the intrafunction fragmentation

to the deep inlining that the compiler needs

to perform when optimizing typical WSC flat

execution profiles. Hence, this suggests that

combining inlining with more aggressive hot/

cold code splitting can achieve better i-cache uti-

lization, freeing up the scarce capacity.

On a finer granularity, we find that the indi-

vidual cache lines are also often fragmented

and waste cache capacity, especially for small

functions. Unlike cold cache lines within a

function, cold bytes in a cache line are always

brought in along with the hot ones, introduc-

ing an even more significant performance

issue. This suggests that there exist opportuni-

ties to improve the basic-block layout, at link

or postlink time, when compiler profile infor-

mation is precise enough to reason about spe-

cific cache lines.

We provide a concrete example of optimizing

code bloat and fragmentation by focusing on

memcmp, one of the hottest functions contribut-

ing to cache misses. memcmp clearly stands

out of the correlation between call frequency

and function size in Figure 2. It is both extremely

frequent, and at almost 6 KiB of code, 10� larger

than memcpy, which is conceptually of similar

complexity. Examining its layout and execution

patterns (see Figure 4) suggests that it does

suffer from a high amount of fragmentation, as

we observed fleet wide in the previous section.

While covering 90% of executed instructions in

memcmp only requires two cache lines, getting

up to 99% coverage requiring 41 lines or 2.6 KiB of

cache capacity. Not only is more than 50% of the

code cold, it is also interspersedwith hot regions,

increasing the likelihood to be brought in by next-

line prefetchers. Such code bloat is costly—

Figure 3. Fraction of hot code within a function among the 100 hottest fleet-wide functions. From the left-hand

side to right-hand side, “hot code” defined as covering 90%, 99%, and 99.9% of execution.

May/June 2020 59
Authorized licensed use limited to: Princeton University. Downloaded on May 29,2020 at 00:21:53 UTC from IEEE Xplore. Restrictions apply.

performance counter data collected by GWP indi-

cate that 8.2% of all i-cache misses among the 100

hottest functions are frommemcmp alone.

While conceptually simple, our version of

memcmp was highly optimized for microbench-

marks and contained many code paths for specific

input variations. We show that in WSC environ-

ments where cache capacity is especially con-

strained, it is actually better to provide a reduced

version of memcmp containing only a few paths

and that doing so improves fleet-wide performance

by up to 1%.

SOFTWARE PREFETCHING
FOR CODE

Looking into the instructions that lead to i-

cache misses, we find that, while not particularly

concentrated in specific code regions, most i-

cache misses still share common characteristics.

Specifically, missing instructions are often the

target of control-flow-changing instructions with

large jump distances.3 We find that distant

branches and calls that are not amenable to tra-

ditional cache locality or next-line prefetching

strategies account for a large fraction of cache

misses among WSC applications.

For misses at the target of a distant jump, we

propose and evaluate a profile-driven optimiza-

tion technique that intelligently injects software

prefetch instructions for code into the binary

during compilation. We outline the design of the

necessary “code prefetch” instruction, which is

similar in nature to existing data prefetch instruc-

tions, except that it fetches into the L1 i-cache

and utilizes the I-TLB instead of the D-TLB. The

implementation of such an instruction has negli-

gible hardware cost and complexity compared to

pure hardware methods and is commercially via-

ble today. While it can be implemented on top of

a wide variety of hardware front-ends, we demon-

strate its viability on a system that employs only

a next-line instruction prefetcher.

Prefetching represents a prediction problem

with a limited window of opportunity. Effective

prefetches are both accurate and timely—they

only bring in useful miss targets and do so

neither too early nor too late in order to mini-

mize early evictions and cache pollution. As a

result, an effective prefetcher would have high

overall miss coverage. Our prefetch insertion

algorithm uses profile feedback information

from AsmDB and performance counterprofiles

to ensure timely prefetches with minimal

overhead.

Some of the challenges that arise among soft-

ware prefetching techniques include—fan-in, the

number of potential paths leading to a miss

increases as the prefetch injection site is moved

backward from a missed target. Figure 5 shows

the fan-in for the top 20 i-cache misses from a web

search profile. In several cases, the number of

paths leading in to a single miss exceeds 100 even

with a lookback of only ten instructions. Our

approach leverages profiling information to only

insert helpful prefetches, increasing coverage and

minimizing fan-in. Fan-outposes another challenge

in finding the prefetch injection site as not all exe-

cution paths are likely to lead to the miss. We

address this by pruning paths that exceed a maxi-

mum fan-out threshold. Furthermore, instruction

prefetches themselves increase the code footprint

and hence need to be inserted carefully.

Figure 5. Fan-in for some misses can grow very fast

with distance, especially for library functions.

Figure 4. Instruction execution profile formemcmp. 90% of

dynamic instructions are contained in 2 cache lines, covering 99%

of instructions requiring 41 i-cache lines.

Top Picks

60 IEEE Micro

Authorized licensed use limited to: Princeton University. Downloaded on May 29,2020 at 00:21:53 UTC from IEEE Xplore. Restrictions apply.

At its core, our prefetch injection strategy

leverages the observation that the injection site

of a prefetch instruction can be freely moved

within the window of opportunity to minimize

fan-in and fan-out. We call this approach dynamic

window injection. At a high level, our prefetch

procedure first constructs the execution history

for each miss and then traverses the control

flow graph in the reverse direction until it

reaches the end of the instruction window, cal-

culated based on the application-level IPC. Next,

prefetch injection sites are searched for each

miss among each of its execution paths, which

have minimal fan-in and fan-out. Prefetch

instructions are then automatically inserted in

the selected injection sites for the correspond-

ing misses as part of the final linking steps.

We prototype the effects of our proposed

software prefetching technique on memory

traces from several WSC workloads. We evaluate

on a modified version of the zsim simulator,5 by

using the system parameters modeled against an

Intel Haswell datacenter-scale server processor.

We focus primarily on three WSC applications—

a web search leaf node, an ads matching service,

and a knowledge graph back-end. For each work-

load, we collect traces during a representative

single-machine load test, which sends realistic

loads to the server under test.

Figure 6 shows that our prefetching tech-

nique is able to eliminate 91%–96% of all i-cache

misses, with a performance improvement pro-

portional to the front-end boundedness of the

application and the gap left from NLP. In all

cases, fewer than 2.5% of additional dynamic

instructions are added for code prefetches.

LONG-TERM IMPLICATIONS
With increased technological growth, WSCs

now serve billions of devices and applications

across the planet. Due to their success, we expect

an ever-greater reliance on WSCs in the near

future, providing faster, more reliable, and more

secure services to society. These increasing dem-

ands necessitate achieving higher performance for

WSCs in order to be cost- and energy-efficient for

WSC companies and their customers while simul-

taneously reducing the environmental impact on

our world.

In combination with the slowdown of Moore’s

law, improving the efficiency of existing hardware

in WSCs becomes even more critical. We analyzed

a web search binary, showing that 68% of the CPU

performance potential is lost due to pipeline stalls,

of which 13.8% are due to the front-end not being

able to deliver instructions fast enough.

This article addresses the front-end bottle-

neck on following fronts.

� First, we have built a tool that is capable of

collecting data from live datacenter applica-

tions at the granularity of instructions and at

the scale of a WSC. We have described the

architecture design decisions in detail,

enabling other WSC operators to reproduce

our system.

� Second, this article is the first work that

shows detailed characterization studies of

the processor front-end at the scale of a WSC

describing previously unreleased perfor-

mance characteristics of WSC workloads.

� Third, we have proposed and evaluated a

novel software-based code prefetch strategy

to automatically and effectively reduce i-

cache misses across large WSC workloads.

This work provides a powerful methodology to

perform further at-scale research to obtain a

detailed understanding of the microarchitectural

characteristics and the interplay between current

software and hardware. In addition, its reproduc-

ibility enables other WSC companies to perform

similar research. Overall, such research would

Figure 6.Miss coverage and performance

improvement for the best-performing configuration

for each workload.

May/June 2020 61
Authorized licensed use limited to: Princeton University. Downloaded on May 29,2020 at 00:21:53 UTC from IEEE Xplore. Restrictions apply.

enable hardware vendors to work closely with

software developers to better design future

processors.

Our front-end characterization studies benefit

the compiler and architecture communities both

in academic and industrial set-

tings. Our results onmicro-optimi-

zations, fragmentation, and code-

bloat can help in fine-tuning com-

piler passes, optimizing inlining

strategies, and basic block lay-

outs. Similarly, our studies pro-

vide valuable information to

architecture researchers exposing

existing software loop holes that

can be addressed with next-gener-

ation hardware designs.

Our work on software code prefetching

proves as a strong case study for hardware ven-

dors to provide support for a software code pre-

fetch instruction and to implement such an

instruction in the instruction set architecture

(ISA). With this, compiler writers and software

developers can leverage code prefetching and

its resulting performance improvements in an

automatic and scalable way.

More broadly, this article provides two

insights, which we believe will have a significant

and long-lasting impact on future research in the

performance optimization and computer architec-

ture domain. The first insight teaches the impor-

tance of enabling fleet-wide performance

optimizations, which we also refer to as the

Amdahl’s law of WSC performance. Traditionally,

performance optimizations have been focused on

individual applications. In this approach, applica-

tions are profiled to determine the most compute-

intensive regions, resulting in the largest perfor-

mance gains when optimized. However, this

approach no longer applies to WSCs as datacen-

ters run thousands of different applications

simultaneously. As a result, compute-intensive

application-specific kernels are no longer worth

optimizing. Instead, performance engineers need

to focus on code that is shared among many appli-

cations in the fleet, representing the largest aggre-

gated percentage of compute cycles.

The second insight teaches the importance of

designing domain-specific general-purpose pro-

cessors. WSCs have grown to a size at which

designing domain-specific accelerators becomes

feasible and cost-efficient. However, while this

approach has proven successful for domains

such as deep learning, most of the fleet cycles are

still executed on general-purpose processors as

many applications are too complex

and rapidly changing to render

custom-designed hardware feasi-

ble. Nevertheless, as this article

showed, the performance charac-

teristics of WSC applications are

fundamentally different from tradi-

tional applications such as the

SPEC benchmark suite. WSC pro-

cessors may differ with capabilities

such as our proposed instruction

prefetching mechanism, which may

be of little use to SPEC applications, but which

delivers significant performance gains for data-

center applications.

In summary, the evidence is strong that this

article will promote the research and develop-

ment of new compiler techniques, new proces-

sor designs, and new ways of collecting and

analyzing behaviors at the warehouse scale.

CONCLUSION
This work focused on understanding and

improving i-cache behavior, which is a critical per-

formance constraint for WSC applications.

We developed AsmDB, a database for instruction

and basic-block information across thousands of

WSC production binaries, to characterize i-cache

miss-working sets and miss-causing instructions.

We used these insights to motivate fine-grain lay-

out optimizations to split hot and cold codes and

better utilize limited i-cache capacity. We also pro-

posed a new feedback-driven optimization that

inserts software instructions for code prefetching

based on the control-flow information and miss

profiles in AsmDB. This prefetching optimization

can cover up to 96% of i-cache misses without sig-

nificant changes to the processor andwhile requir-

ing only very simple front-end fetchmechanisms.

ACKNOWLEDGMENTS
This work was supported by the NSF Award

CCF-1823559. Nayana Prasad Nagendra and

Grant Ayers contributed equally to this work.

Wedeveloped AsmDB,

a database for

instruction and basic-

block information

across thousands of

WSCproduction

binaries, to characterize

i-cachemiss-working

sets andmiss-causing

instructions.

Top Picks

62 IEEE Micro

Authorized licensed use limited to: Princeton University. Downloaded on May 29,2020 at 00:21:53 UTC from IEEE Xplore. Restrictions apply.

& REFERENCES

1. G. Ayers, J. H. Ahn, C. Kozyrakis, and

P. Ranganathan, “Memory hierarchy for web search,”

in Proc. IEEE Int. Symp. High Perform. Comput.

Archit., 2018, pp. 643–656.

2. S. Kanev et al., “Profiling a warehouse-scale

computer,” in Proc. Int. Symp. Comput. Archit., 2015,

pp. 158–169.

3. R. Kumar, B. Grot, and V. Nagarajan, “Blasting through

the frontend bottleneck with shotgun,” in Proc. Archit.

Support Program. Lang. Oper. Syst., 2018, pp. 30–42.

4. G. Ren, E. Tune, T. Moseley, Y. Shi, S. Rus, and

R. Hundt, “Google-wide profiling: A continuous

profiling infrastructure for data centers,” IEEE Micro,

vol. 30, no. 4, pp. 65–79, Jul./Aug. 2010.

5. D. Sanchez and C. Kozyrakis, “ZSim: Fast and accurate

microarchitectural simulation of thousand-core systems,”

inProc. Int. Symp. Comput. Archit., 2013, pp. 475–486.

Nayana Prasad Nagendra is currently working

toward the Ph.D. degree with the Department

of Computer Science, Princeton University. Her

research interests include performance analysis and

microarchitectural design with a focus on data

centers. This work was done while she was an intern

at Google. She is a student member of IEEE and

ACM. Contact her at nagendra@cs.princeton.edu.

Grant Ayers is currently a Software Engineer at

Google. His research interests include computer

architecture, security, and accelerators. He joined

Google after receiving the Ph.D. degree in computer

science from Stanford University. This work was

done while he was an intern at Google. Contact him

at ayers@cs.stanford.edu.

David I. August is currently a Professor with the

Department of Computer Science, Princeton Univer-

sity, where he directs the Liberty Research Group. His

research interests include compilers and computer

architectures. August received the Ph.D. degree in

electrical and computer engineering from the Univer-

sity of Illinois at Urbana–Champaign. Contact him at

august@princeton.edu.

Hyoun Kyu Cho is currently a Software Engineer at

Google. His research interests include compiler optimi-

zation, parallel computing, and performance analysis.

Cho received the Ph.D. degree in computer science

and engineering from theUniversity of Michigan at Ann

Arbor. Contact him at netforce@google.com

Svilen Kanev is currently a Software Engineer at

Google, working on translating datacenter perfor-

mance analysis insights into performance and TCO

gains. He is broadly interested in anything that strad-

dles the hardware-software interface. Kanev received

the Ph.D. degree in computer science from Harvard

University. Contact him at skanev@google.com

Christos Kozyrakis is currently a Professor of elec-

trical engineering and computer science with Stanford

University. His research interests include hardware

architectures and system software for cloud computing

and emerging workloads. Kozyrakis received the Ph.D.

degree in computer science from the University of

California Berkeley. He is a Fellow of IEEE and ACM.

Contact him at christos@cs.stanford.edu.

TrivikramKrishnamurthy is currently aSenior Engi-

neeringManager at Nvidia. Before joiningNvidia, hewas

a Software Engineer at Google. Krishnamurthy received

the M.S. degree in electrical and computer engineering

from the University of California Santa Barbara. Contact

himat trivikram.krishnamurthy@gmail.com.

Heiner Litz is currently an Assistant Professor in the

Computer Science and EngineeringDepartment, Uni-

versity of California, Santa Cruz (UCSC) and the Asso-

ciate Director of the Center for Research in Storage

Systems. His main research interests include com-

puter architecture, operating systems, and storage

with a focus on data centers. Before joining UCSC, he

was a Researcher at Google. Litz received the Ph.D.

degree from Mannheim University. He is a member of

IEEE and ACM. Contact him at hlitz@ucsc.edu.

Tipp Moseley is currently a Principal Software Engi-

neer at Google, where he works on datacenter-scale

performance analysis. His research interests include

compilers, operating systems, performance analysis,

runtime systems, fault tolerance, and optimized lock-

free data structures. Moseley received the Ph.D.

degree in computer science from the University of

Colorado at Boulder. Contact him at tipp@google.com.

Parthasarathy Ranganathan is currently a

Distinguished Engineer at Google, where he is design-

ing their next-generation systems. His research inter-

ests include systems architecture and management,

power management, and energy efficiency for servers

and datacenters. Ranganathan received the Ph.D.

degree in computer engineering from Rice University.

He is a Fellow of IEEE and ACM. Contact him at

partha.ranganathan@google.com.

May/June 2020 63
Authorized licensed use limited to: Princeton University. Downloaded on May 29,2020 at 00:21:53 UTC from IEEE Xplore. Restrictions apply.

mailto:nagendra@cs.princeton.edu
mailto:august@princeton.edu
mailto:christos@cs.stanford.edu
mailto:trivikram.krishnamurthy@gmail.com
mailto:hlitz@ucsc.edu
mailto:tipp@google.com
mailto:partha.ranganathan@google.com

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

