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Abstract

Until recently, a steadily rising clock rate and other
uniprocessor microarchitectural improvements could be re-
lied upon to consistently deliver increasing performance for
a wide range of applications. Current difficulties in main-
taining this trend have lead microprocessor manufacturers
to add value by incorporating multiple processors on a chip.
Unfortunately, since decades of compiler research have not
succeeded in delivering automatic threading for prevalent
code properties, this approach demonstrates no improve-
ment for a large class of existing codes.

To find useful work for chip multiprocessors, we propose
an automatic approach to thread extraction, called Decou-
pled Software Pipelining (DSWP). DSWP exploits the fine-
grained pipeline parallelism lurking in most applications to
extract long-running, concurrently executing threads. Use
of the non-speculative and truly decoupled threads pro-
duced by DSWP can increase execution efficiency and pro-
vide significant latency tolerance, mitigating design com-
plexity by reducing inter-core communication and per-core
resource requirements. Using our initial fully automatic
compiler implementation and a validated processor model,
we prove the concept by demonstrating significant gains for
dual-core chip multiprocessor models running a variety of
codes. We then explore simple opportunities missed by our
initial compiler implementation which suggest a promising
future for this approach.

1 Introduction

For years, a steadily growing clock speed and other
uniprocessor microarchitectural improvements could be re-
lied upon to consistently deliver increased performance for
a wide range of applications. Recently, however, this ap-
proach has faltered. Meanwhile, the exponential growth in
transistor count remains strong, tempting major micropro-
cessor manufacturers to add value by producing chips that
incorporate multiple processors. Unfortunately, while chip
multiprocessors (CMPs) increase throughput for multipro-
grammed and multithreaded codes, many important appli-
cations are single threaded and thus do not benefit.

Despite the routine use of powerful instruction-level par-
allelism (ILP) compilation techniques on a wide variety of

unmodified applications, compiler writers have been unable
to repeat such success for thread-level parallelism (TLP) de-
spite the pressing need. While success of this type has not
been achieved, progress has been made. Techniques dedi-
cated to parallelizing scientific and numerical applications
are used routinely in such domains with good results [13].
Such techniques perform well on counted loops manipulat-
ing very regular, analyzable structures, consisting mostly
of predictable array accesses. In many cases, sets of com-
pletely independent (DOALL) loop iterations occur natu-
rally or are easily exposed by loop traversal transforma-
tions. Unfortunately, the prevalence of control flow, recur-
sive data structures, and general pointer accesses in ordinary
programs renders these techniques unsuitable.

Since automatic thread extraction has been hard for com-
piler writers to achieve, computer architects have turned to
speculative [5, 12, 24, 25, 29, 32] and multiple-pass [14, 3]
techniques to make use of additional hardware contexts.
These techniques are promising, but generally require sig-
nificant hardware support to handle recovery in the case
of mis-speculation or to effect the warming of microarchi-
tectural structures. These approaches are also limited by
the increasing mis-speculation rates and penalties encoun-
tered as they become more aggressive. Even the best of
these techniques do not replace the need for automatic, non-
speculative thread extraction. Instead, they play an impor-
tant and largely orthogonal role.

In this paper, we propose an effective,fully automaticap-
proach to non-speculative thread extraction, calledDecou-
pled Software Pipelining(DSWP). DSWP exploits the fine-
grainedpipeline parallelismlurking in most applications
to extract long-running, concurrently executing threads.
Since extracting fine-grained pipelined parallelism requires
knowledge of microarchitectural properties, automating
DSWP frees the programmer from the difficult and even
counter-productive involvement at this level. DSWP also
complements coarser-grained manual threading, specula-
tive threading, and prefetch threading techniques. Oper-
ating at the instruction level also allows compiler writers
to leverage decades of ILP compilation work and, as we
demonstrate, allows thread extraction to be easily added to
existing compiler back-ends.

Use of the non-speculative and truly decoupled threads
produced by DSWP can increase execution efficiency and



provide significant latency tolerance, mitigating design
complexity by reducing inter-core communication and per-
core resource requirements. Using our initial fully auto-
matic compiler implementation and a validated processor
model, we prove the concept by demonstrating significant
gains for a dual-core chip multiprocessor running a variety
of codes. We also explore simple opportunities missed by
our initial compiler implementation, which suggest a very
promising future for this approach.

This paper first presents the details of the DSWP algo-
rithm in Section 2. Section 3 then describes the specifics of
our implementation of DSWP on an aggressive ILP com-
piler. Section 4 presents an evaluation of DSWP, and Sec-
tion 5 analyzes several case studies for added insight. Prior
work is visited in Section 6. Finally, Section 7 concludes.

2 Decoupled Software Pipelining

One way to understand why decoupled software pipelin-
ing (DSWP) is effective is to start with an examination
of the salient properties of DOACROSS parallelism [13].
DOACROSS parallelism is interesting for non-scientific
codes because loops in these codes often have dependences
among the iterations of the loop. DOACROSS parallelism is
characterized by the concurrent execution of parts of each
loop iteration across multiple cores. Dependences are re-
spected by forwarding values from core to core by some
means, often through memory with synchronization.

Consider the linked list traversal of Figure 1. In the
DOACROSS case, each iteration is assigned alternately to
each core on a dual-core machine. The pointer chasing load
dependence is forwarded from core to core on each itera-
tion. While DOACROSS overlaps the execution of the body
of the loop in the current iteration with the next field traver-
sal load in the next iteration, communication costs may
more than completely negate such gains. This is a conse-
quence of routing the loop critical path (the pointer chasing
load recurring dependence) between the cores on each iter-
ation, extending the critical path (and hence the completion
of the loop body) by at least the average communication
latency multiplied by the number of iterations.

The simple, key insight of DSWP is that the loop critical
path dependence need not even once be routed from core
to core to achieve pipelined parallelism. This alternative is
illustrated in the right side of Figure 1. In this case, rather
than placing each iteration alternately on each core, DSWP
breaks the loop iteration up, placing the first part, the pointer
chasing load, on Core 0 and placing the second part, the
body of the loop, on Core 1. As a consequence of this,
the loop critical path dependence remains on Core 0 and is
therefore not subject to delay by communication latency.

Unlike techniques exploiting DOACROSS parallelism
and other prior non-speculative partitioning techniques [17,
21], DSWP demands that the flow of data among cores is
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Figure 1. A simple linked list traversal loop
executed as DOACROSS and DSWP. For il-
lustration purposes, the pointer-chasing load
is labeled “LD” and the body of the loop is
labeled “X”.

acyclic. This implies that the instructions of each recur-
rence (there may be several) must be scheduled on the same
core as all other instructions of that same recurrence. This
acyclic flow creates an opportunity for decoupling when
inter-core queues are used to buffer inter-core values. Dif-
ferent recurrences are often assigned to different cores in
practice, since by definition the dependences among them
are acyclic. Section 4 shows that this insight provides de-
coupling of up to thousands of instructions between cores
even with relatively small inter-core queues. Overall, in ad-
dition to utilizing parallel resources (cores) better, DSWP
allows for superior latency tolerance through decoupled ex-
ecution.

Clearly, the DSWP requirement that all instructions in
a recurrence remain within a thread may limit the loops
amenable to DSWP. For example, one could construct a
loop consisting of only a single cross-iteration dependence
chain. In such a case, DSWP would not be applicable with-
out help, but neither would any other non-speculative tech-
nique. Section 5 describes our experience regarding the ap-
plicability of DSWP on existing codes in the face of this
limitation. That such cases are rare in codes after ILP op-
timizations have been performed is one key observation of
this paper.

While DSWP does impose a restriction regarding recur-
rences, it does not have other limitations associated with
DOACROSS techniques. The extraction of DOACROSS
parallelism is often more restricted than implied in the prior
discussion. In many cases, such transformations require
loops to be counted, to operate solely on arrays, to have
regular memory access patterns, or to have simple (or even
no) control flow [6, 13]. Observe in subsequent discussions
that DSWP as presented in this paper does not have any of
these restrictions.



2.1 Communication and Synchronization Archi-
tectural Model

The DSWP architectural model assumed here has a sim-
ple message passing mechanism that can communicate one
word of data per message, similar to what is available in
scalar operand networks, and which can be implemented
very efficiently in the hardware [28]. Two special instruc-
tions, produce and consume , are used to send and to
receive values respectively. For clarity and ease of use,
the produce andconsume instructions take an operand
that identifies a communication channel (queue) to oper-
ate upon. Theproduce and consume instructions are
matched in order, and the compiler can rely on this property
to correctly transform the code.

While queue latency is not important (as described above
and measured later in Section 4), synchronization overhead,
as it affects the forward progress of a thread individually, is
very important because it may slow the critical path recur-
rence. To avoid the synchronization overhead associated
with software implemented shared queues, theproduce
andconsume instructions block only when enqueuing to a
full queue and when dequeuing from an empty queue, but
otherwise operate freely. Others describe how such inter-
core queues can be implemented [20, 23].

2.2 The DSWP Algorithm

This section illustrates the DSWP algorithm as it oper-
ates on the code of Figure 2(a), which traverses a list of lists
of integers and computes the sum of all the element values.
After performing DSWP on the outer loop in Figure 2(a), it
is transformed into two threads shown in Figures 2(d)-(e).
In this example, the loop in Figure 2(d) is executed as part
of the main thread of the program, the one which includes
the un-optimized sequential portions of the code.

There are several important properties of the transformed
code to be observed. First, the set of original instructions is
partitioned between the two threads with one instruction in
both (BasBandB’ ). Also notice that DSWP doesnot repli-
cate the control-flow graph completely, but only the parts
that are relevant to each thread. In order to respect depen-
dences,produce andconsume instructions are inserted
as necessary. For example, instructionCwrites a value into
r2 that is then used by instructionsD, F, andH in the other
thread. Queue 2 is used to communicate this value as indi-
cated in the square brackets. Note that, within the loop, the
dependences only go in one direction, from the producer to
the consumer thread. This acyclic nature, along with the
queue communication structures, provides the decoupling
described earlier while executing the body of the loop. Out-
side the loop, this property need not be maintained; the main
thread produces loop live-in values for the other thread and
consumes loop live-out values after consumer loop termina-
tion.

BB1
r1 is live

r10 is live

BB2
p1 = r1 == 0
br p1, BB7

BB3

BB4

r2 = M[r1+20]

r1 = M[r1+10]
jump BB2

A:
B:

C:

D:p2 = r2==0
br p2, BB2E:

BB5

r10 = r10 + r3
r3 = M[r2+30]F:

G:
r2 = M[r2]H:
jump BB4I:

J:
K:

BB6

BB7
r10 is live

(a) Original code (b) Dep. graph (c)
DAGSCC

PRODUCE [2] = r2

PRODUCE [0] = r10

PRODUCE [1] = p1

CONSUME r10 = [3]
BB7’

BB2’

BB1’

BB3’

BB6’

p1 = r1 == 0A:

br p1, BB7’B:

r2 = M[r1+20]C:

r1 = M[r1+10]J:
jump BB2’K:

(d) Producer thread

   CONSUME r10 = [0]

CONSUME r2 = [2]

CONSUME p1 = [1]

PRODUCE [3] = r10
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p2 = r2==0
br p2, BB2’’

D:
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r2 = M[r2]
r10 = r10 + r3
r3 = M[r2+30]

jump BB4’’

F:
G:
H:
I:
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BB7’’

br p1, BB’’B’:

(e) Consumer thread

Figure 2. DSWP example.

Figure 3 shows the pseudo-code for the DSWP algo-
rithm. It takes as input a loopL to be optimized in an inter-
mediate representation, and modifies it as a side-effect. The
following subsections describe each step of the algorithm in
detail.

2.2.1 Step 1: Building the Dependence Graph – Line 1

The first step in the DSWP algorithm is to build the depen-
dence graphG for loop L [13]. In this graph, each vertex
corresponds to one instruction ofL, and the arcs represent
the dependences among the instructions (u → v indicates
thatu must execute beforev). This dependence graph must



DSWP (loopL)
(1) G← build dependencegraph(L)
(2) SCCs← find stronglyconnectedcomponents(G)
(3) if |SCCs| = 1 then return
(4) DAGSCC ← coalesceSCCs(G, SCCs)
(5) P ← TPPalgorithm(DAGSCC , L)
(6) if |P| = 1 then return
(7) split codeinto loops(L,P)
(8) insertnecessaryflows(L,P)

Figure 3. DSWP algorithm.

be complete in that it contains all data, control, and memory
dependences, both intra-iteration and loop-carried, conser-
vatively including a dependence when its absence cannot be
proved. For register data dependences, the compiler needs
only to account for true (flow) dependences. Output- and
anti-dependences can be ignored since, when instructions
related by such a dependence are put in different cores, they
will run in different threads, naturally using a different set of
registers. Additional control dependences are added just for
the purposes of DSWP, for reasons described in Section 2.3.

Figure 2(b) illustrates the dependence graph for the loop
in Figure 2(a). The arcs for intra-iteration dependences are
represented with solid lines; inter-iteration (or loop-carried)
dependences are represented with dashed lines. Data de-
pendence arcs are annotated with the corresponding register
holding the value. Control dependence arcs have no label.
In this example, there are no memory dependences. Spe-
cial nodes are included in the top (bottom) of the graph to
represent loop live-in (live-out) registers.

2.2.2 Step 2: Thread Partitioning – Lines 2-6

The second step in the algorithm is to ensure an acyclic
partitioning by finding the strongly connected components
(SCCs) and creating the directed acyclic graph of them, the
DAGSCC [27]. The SCCs correspond to instructions col-
lectively participating in a dependence cycle, the loop re-
currences. As such, DSWP requires all instructions in the
same SCC to remain in the same thread. Step (3) stops the
transformation ifG has a single SCC, since such a graph is
not partitionable into multiple threads. Step (4) coalesces
each SCC inG to a single node, obtaining theDAGSCC .
Figure 2(b) shows the SCCs delimited by rectangles, and
Figure 2(c) shows the correspondingDAGSCC .

Using the concepts above, we now define avalid parti-
tioningof theDAGSCC .

Definition 1 (Valid Partitioning) A valid partitioning P
of the DAGSCC is a sequenceP1, P2, . . . , Pn of sets of
DAGSCC ’s vertices (i.e.Pis are sets of SCCs) satisfying
the following conditions:

1. 1 ≤ n ≤ t, wheret is the number of threads that the
target processor can execute simultaneously.

2. Each vertex inDAGSCC belongs to exactly one parti-
tion inP.

3. For each arc(u → v) in DAGSCC , with u ∈ Pi and
v ∈ Pj , we havei ≤ j.

A valid partitioning guarantees that all members of par-
tition Pi ∈ P can be assigned to a thread loopLi, and that
this loop Li can be executed in its own context. Condi-
tion (3) in Definition 1 guarantees that each arc in the de-
pendence graphG either flows forward to a loopLj where
j > i or is internal to its partition. In other words, this
condition guarantees an ordering between the partitions that
permits the resulting loops to form a pipeline.

The Thread-Partitioning Problem(TPP) is the problem
of choosing avalid partitioningthat minimizes the total ex-
ecution time of the resulting code. The optimal partitioning
of theDAGSCC that minimizes this cost is machine depen-
dent, and can be demonstrated to be NP-complete through
a reduction from thebin packingproblem [8]. In practice,
we use a heuristic to maximize the load balance among the
threads. This is a commonly used criterion in scheduling
and parallelization problems and, as experiments in Sec-
tion 4 show, generally performs well here. As in a proces-
sor pipeline, the more balanced the DSWP stages are, the
greater its efficiency. In other words, the thread pipeline is
limited by the stage with the longest average latency.

Our heuristic computes theestimated cyclesnecessary to
execute all the instructions in each SCC by considering the
instruction latency and its execution profile weight. Ideally,
function call latencies should include the average latency
to execute the callee. The algorithm keeps a set of candi-
date nodes, whose predecessors have already been assigned
to a partition, and proceeds by choosing the SCC node in
this set with the largest estimated cycles. When the total
estimated cycles assigned to the current partition (Pi) gets
close to the overall estimated cycles divided by the desired
number of threads, the algorithm finishes partitionPi and
starts assigning SCC nodes to partitionPi+1. In order to
minimize the cost of necessary flows between the threads,
the heuristic breaks ties by choosing a candidate SCC that
will reduce the number of outgoing dependences from the
current partition. The partitioning chosen in Figure 2 puts
the top two SCC nodes inP1, and the remaining three inP2.

After a partitioning is made, the algorithm estimates
whether or not it will be profitable by considering the cost of
theproduce andconsume instructions that need to be in-
serted. The TPPalgorithm may indicate that no partitioning
is desirable by returning a single partition. In such cases, the
algorithm in Figure 3 simply terminates in step (6). Other-
wise, it continues by splitting the code of the original loop
L according to the partitioningP. In our splitting scheme,
loop L1, the one corresponding to the first partitionP1, re-
mains part of the main program thread. The other threads



are placed in new auxiliary threads. Section 3 describes this
process in more detail.

2.2.3 Step 3: Splitting the Code – Line 7

Splitting the code involves the following steps:

1. Compute the set of relevant basic blocks (BBs) for
each partitionPi. Naturally, this set includes all the
BBs in the original loop that contain an instruction as-
signed toPi. This set also contains BBs which con-
tain an instruction upon which an instruction inPi de-
pends, to allow for the proper placement ofproduce
andconsume instructions at the point where depen-
dent values are defined in the code. This preserves the
condition under which the dependence occurs. This
occurs in BB3” in Figure 2(e).

2. Create the BBs forPi.
3. Place instructions assigned toPi in the corresponding

BB, maintaining their original relative order within the
BB.

4. Fix branch targets. In cases where the original target
does not have a corresponding BB in the same thread,
the new target is set to be the BB corresponding to the
closest relevant post-dominator BB of the original tar-
get. This is illustrated in the new loop in Figure 2(d)
by the arc going from the BB3’ to BB6’.

With the above steps, control flow will be respected be-
cause branch instructions were assigned toPi directly (e.g.
instructionE in Figure 2(e)), or they were duplicated to im-
plement a control dependence enteringPi (e.g. instruction
B’ in Figure 2(e)). Additional jumps may be necessary,
however, depending on the layout of the BBs in the new
loop and subsequent code layout optimizations.

2.2.4 Step 4: Inserting the Flows – Line 8

The last step of the DSWP algorithm inserts the necessary
produce andconsume instruction pairs (calledflows) to
guarantee correctness of the transformed code. The flows
created can be classified into three categories based upon
the dependence type respected by them.

1. Data Dependence: a data value is transmitted.
2. Control Dependence: a flag indicating a branch direc-

tion is transmitted to a duplicated branch. This is il-
lustrated by the control dependence emanating from
instructionB in Figure 2(b), implemented using queue
1 in Figures 2(d)-(e).

3. Memory/synchronization Dependence: no value is
transmitted. The flow itself is used as a token to en-
force operation ordering constraints. This is useful for
preserving necessary memory operation ordering and
the ordering of system calls.

Flows can also orthogonally be classified by their posi-
tion relative to the loop.

1. Loop Flow: when an instruction in loopLj depends on
an instruction in loopLi, a pair of flow instructions are
inserted inside loopsLi andLj . As already mentioned,
the necessaryproduce and consume instructions
are inserted in the points corresponding to the source
instruction for this dependence, so as to keep the cor-
rect condition under which this dependence occurs.
This is illustrated in Figures 2(d)-(e).

2. Initial Flow: when an instruction in a loopLi, i > 1,
uses a value that is loop-invariant in the original loop
L, a flow is inserted prior to the loopsL1 andLi to
deliver the loop-invariant values every time the trans-
formed loop is invoked.

3. Final Flow: when an instruction in a loopLi, i > 1,
produces a value that is live out of the original loopL,
a flow from Li to the main thread delivers the value
after the last iteration for subsequent use.

Redundant flow elimination can be used to avoid com-
municating a value more than once inside the loop. In ad-
dition, code motion can be performed to move initial (final)
flow instructions as early (late) as possible to enhance paral-
lelism by overlapping the fill (spill) portion of the DSWP’ed
loop with other work.

2.3 Dependence Graph Details

As mentioned in Section 2.2.1, DSWP requires a few
extensions to the traditional concept of control dependence.
Each of the following subsections describes an extension
necessary to make the DSWP transformation correct.

2.3.1 Loop-Iteration Control Dependences

In DSWP, the queues are reused every iteration and, de-
pending on the control-flow path executed, the set of queues
used can vary from one iteration to another. Therefore,
in order to guarantee correctness, the compiler needs to
make sure that values from different loop iterations are cor-
rectly delivered. For this purpose, the thread control flow
is matched iteration by iteration. This requires some ad-
ditional control dependences to be inserted which are not
accounted for in standard control dependences [13]. We
call such dependencesloop-iteration control dependences.
As an example, consider the code in Figure 4(a). Fig-
ure 4(b) shows the corresponding standard control depen-
dence graph, in which no instructions are dependent on
branchF. However, this branch determines whether or not
the loop will skip to the next iteration. Additionally, there is
no traditional control dependence from branchB to F. Yet,
depending on the direction thatB takes,F might be executed
in this iteration.
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Figure 4. Example of loop-iteration control de-
pendences.

In order to capture such loop-iteration control depen-
dences, we conceptually peel the first iteration of the loop,
so that each instruction is duplicated as shown in Fig-
ure 4(c). The algorithm then computes the standard control
dependences for the peeled version of the code for use on
the original code. Figure 4(d) shows the control dependence
for Figure 4(c), with the dashed lines corresponding to de-
pendences between different loop iterations. The control
dependence graph used for DSWP is then obtained by coa-
lescing corresponding pairs of nodes in the control depen-
dence graph for the peeled code. This is illustrated in Fig-
ure 4(e). The resulting control dependence graph includes
both standard and loop-iteration control dependences.

2.3.2 Conditional Control Dependences

For dependences that may or may not occur, it is not enough
to simply communicate the dependence, but one must also
communicate when the dependence occurs. To do this, ad-
ditional flows are used to communicate theconditionunder
which such dependences occur. Consider the example CFG
in Figure 5(a), in which there is a data dependence flowing
from instructionD to instructionU. In this example, clearly
D is control dependent on branchB, while U is not. If D
andU are assigned to different threads, keeping the seman-
tics of the dependence the same as in the original code in-
volves determining when to enact the flow of data fromD
to U through a inter-core flow. To indicate whenU should

A:  r1 = ...
B:  branch p1

C:  r1 = ...
D:  branch p2

F:  branch p3

. . .
B:  branch p1

D:  r1 = ...

U:  ... = r1

r1 is live

BB3

BB2

BB1
BB1

BB2

BB3

Exit

(a) (b)

Figure 5. (a) CFG illustrating the need for con-
ditional control dependence. (b) CFG show-
ing the live output dependence problem.

get its value fromD, the algorithm inserts a dependence arc
from B to U. This dependence ensures that whenU andD
are put in different partitions, the dependence condition is
communicated to the consuming thread indicating whether
to use the current value or to consume a new value fromD
in the producing thread.

A similar problem occurs with the live-out values at the
loop exit, if multiple definitions of a live-out value reaching
the loop exit are assigned to different threads. This is illus-
trated byr1 in Figure 5(b) if instructionsA andCare put in
different threads. Additional information would need to be
maintained in order to know which definition would occur
last in the sequential execution. Alternatively, we adopt a
simple solution in this case, which is to not ignore the out-
put dependences among these definitions. This effectively
forces these instructions to be on the same SCC, thus exe-
cuting in the same thread and making it trivial to determine
which thread produces the final value. Although this solu-
tion can potentially reduce the number of SCCs, we did not
observe this drawback in practice.

3 Compiler Implementation

To evaluate DSWP, we implemented it in the back-end
of the IMPACT compiler [2]. The IMPACT compiler per-
forms a large number of sophisticated ILP techniques (in-
cluding Software Pipelining [15]) and delivers exceptional
code quality when targeting Itanium 2, often matching or
beating Intel’s reference compiler on the SPEC-CPU2000
benchmark suite [22]. The compiler we created targets a
dual-core Itanium 2 processor.

DSWP was added as a pass in the back-end, operating on
ILP optimized predicated code at the assembly level. Mem-
ory analysis is the accurate but conservative memory anal-
ysis available in the IMPACT compiler [7]. Standard IM-
PACT profiling tools were used to obtain control flow arc
weight used by the DSWP partitioning heuristics. However,
function call latencies currently do not include an estimate



of the cycles taken to execute the callee, what can lead to
poor partitioning decisions for loops with function calls. No
optimizations other than scheduling (which includes both
traditional software pipelining and acyclic list scheduling)
and register allocation are performed after DSWP.

Since we target a dual-core processor model, only two
threads are created by the algorithm. These threads are the
main thread and one auxiliary thread. To amortize the cost
of thread creation, the auxiliary thread is created once, at
the beginning of the program. A system call to create a
new thread is used, which takes, among other arguments,
the address of the function containing the new thread. This
auxiliary threadfunction is created by the compiler.

For each optimized loop, the compiler creates a new
function containing the corresponding code to be executed
by the auxiliary thread. Before entering an optimized loop,
the main thread sends to the auxiliary thread the address
of the corresponding auxiliary function on a specific queue
(the master queue). The auxiliary thread, blocked on a
consume operation on this queue, wakes up and simply
calls the function whose address it receives. Upon termi-
nation of a loop, the corresponding auxiliary function re-
turns to the master auxiliary function, which loops back to
theconsume instruction. The auxiliary thread then blocks
again on the master queue, waiting for the new request from
the main thread. The auxiliary thread is terminated by a spe-
cial terminate signal composed of a NULL function pointer.

4 Evaluation

In this section, we evaluate our implementation of the
DSWP compilation technique targeting a dual-core chip
multiprocessor. The selected benchmark set includes ap-
plications drawn from SPEC-CPU2000, Mediabench [16],
and the Unix utility ‘wc’. Applications were discarded
from this initial evaluation if they failed to compile in the
unmodified development version of IMPACT upon which
DSWP is based. They were also discarded if, even after
aggressive inlining, no long running loops were visible to
the compiler. The164.gzip benchmark was the only one
in which DSWP was unable to find a multi-SCCDAGscc.
While not evaluated with the other benchmarks, it is de-
scribed later in Section 5. For each application, DSWP is
applied to the most important visible loop that executes at
least 50 iterations on average each time it is entered.

4.1 Candidate Loop Statistics

Table 1 presents profile statistics for the chosen loops.
These loops account for between 16% and 98% of the total
benchmark execution time. IMPACT’s front-end preforms
aggressive function inlining, which is the reason why most
of the loops have no function calls before DSWP. Table 1
also presents the number of SCCs for each loop and gives

Benchmark Loop Nest BBs Func. Instr. SCCs # Flows
Ex.% Calls Init. Loop Final

129.compress 16 1 1 0 20 18 2 2 1
179.art 21 1 1 0 9 7 3 3 2
181.mcf 36 2 13 0 71 23 2 20 2
183.equake 67 2 4 0 202 33 0 23 1
188.ammp 64 3 38 3 630 244 1 47 1
256.bzip2 17 3 161 18 917 127 2 116 5
adpcmdec 98 1 21 0 52 38 3 7 2
epicdec 29 1 2 0 28 4 3 4 1
jpegenc 20 1 1 0 15 13 5 4 2
wc 90 1 2 0 17 13 3 3 4

Table 1. Statistics for the selected loops in the
benchmark suite.

the number of flows (produce/consume pairs) that were cre-
ated by the automatic partitioning as per the heuristic in
Section 2.2.2.

Note that three of the selected loops are actually DOALL
loops, namely the ones from129.compress , 179.art ,
and jpegenc . Although DSWP can be applied to these
loops, as presented in this work, parallelizing them as inde-
pendent threads is likely more efficient because it avoids all
overhead of inter-thread communication during loop execu-
tion.

4.2 Performance Evaluation: Dual-Threaded vs.
Baseline

To evaluate the performance of DSWP, we used a
validated cycle-accurate Itanium 2 processor [11] perfor-
mance model (IPC accurate to within 6% of real hard-
ware for benchmarks measured [19]) to build a dual-core
CMP model comprising two Itanium 2 cores connected by
thesynchronization arraycommunication mechanism pro-
posed in [20]. The models were built using the Liberty Sim-
ulation Environment [30].

The synchronization array (SA) in the model works as
a set of low-latency queues. In our implementation, there
is a total of 256 queues, each one with 32 elements. The
SA has a 1-cycle read access latency and has four request
ports that are shared between the two cores. The IA-64
ISA was extended withproduce andconsume instruc-
tions for inter-thread communication. These instructions
use the M pipeline, which is also used by memory instruc-
tions. This imposes the limit that only 4 of these instructions
(minus any other memory instructions) can be issued per
cycle on each core, since the Itanium 2 can issue only four
M-type instructions in a given cycle. While theconsume
instructions can access the SA speculatively, theproduce
instructions write to the SA only on commit. As long as
the SA queue is not empty, aconsume and its dependent
instructions can execute in back-to-back cycles.

The highly-detailed nature of the validated Itanium 2
model prevented whole program simulation. Instead, de-
tailed simulations were restricted to the loops in question
in each benchmark. We fast-forwarded through the remain-
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Figure 6. Performance summary: full-width Itanium 2 baseline.

ing sections of the program while keeping the caches and
branch predictors warm.

The first comparison made was between the dual-
threaded, DSWP version of the selected loops against their
single-threaded, base versions. In this experiment, the la-
tency to produce/consume a value to/from the synchroniza-
tion array was set to 1 cycle in our simulator (minimum 2
cycles core-to-core). In order to evaluate both the effec-
tiveness of our partitioning heuristic (from Section 2.2.2)
and the potential of better heuristics, Figure 6(a) presents
two speedup bars per benchmark loop. The first bar is the
fully automated DSWP, using the heuristic. The second one
corresponds to the best performing partitioning found by it-
eratively specifying the desired partitioning to the compiler
and measuring its resulting performance. Figure 6(a) shows
that in many cases the heuristic found the best partitioning
we were able to find in our iterative search. The geometric
mean across these benchmark loops is 14.4% and 19.4%,
for the automatically created and manually specified par-
titions respectively. In terms of whole-program speedup,
these geometric means translate into 6.6% and 9.2% respec-
tively. The average baseline IPC is 1.65 and the IPC aver-
ages for the producer and consumer cores are 0.88 and 1.24
respectively as shown in Figure 6(b). Notice that these IPC
numbers do not include theproduce andconsume in-
structions inserted by DSWP.

For simplicity, the simulator used did not model the cost
of coherence protocol. To gauge the effect of this coher-
ence cost on our results, we analyzed, for all benchmarks,
the memory traces of both cores for false-sharings. Notice
that true-sharings cannot occur inside the loop because of
the memory dependence arcs in the dependence graph. If
a load and a store may access the same memory address,
there will be arcs in both directions between these instruc-
tions, because of the RAW and WAR dependences (one loop
carried, and the other intra-iteration). This makes both in-
structions part of the same SCC, assigning them to the same
core. Future work may relax this condition.

In order to analyze false-sharings, we replayed the mem-
ory accesses from the traces in an invalidation-based co-
herence model offline. Out of the nine applications, only
three (181.mcf , 256.bzip2 , and jpegenc ) exhib-
ited false-sharing. In181.mcf and jpegenc , the false-
sharing was always caused by writes in the consumer core to
locations already present in the producer core’s L1D cache.
While in 181.mcf , the miss-rate of the producer core’s
L1D went up by 0.01% to 98.62%, injpegenc , there
wasno change in the miss-rate of both cores. The reason
why the miss-rate is unaffected is because although there
is false-sharing, the producer core always runs ahead and
accesses any locations it needsbefore those locations are
invalidated by writes to memory from the consumer’s core.
256.bzip2 has a slightly more interesting behavior. We
find that a particular store from the producer core causes
a lot of false-sharing and hence invalidations in the con-
sumer’s L1 data cache. Since the consumer trails the pro-
ducer, any extra latency arising out of such events could ad-
versely affect the consumer thread and ought to have been
modeled. However, on examining the code in detail, we
found thatall these coherence conflicts are caused by false-
sharing due to a write to a global variable (bsLive ) in the
producer core. We promoted this global variable to a regis-
ter and used the modified version of 256.bzip2 for all exper-
iments. Thus, even without coherence modeling, our results
are valid and not overstated.

Figure 7 illustrates the importance of balancing work
across threads when partitioning loops. The figure shows
theDAGSCC for the target loop in181.mcf . Each SCC
is labeled with the number of instructions it contains. Each
left-to-right line crossing theDAGSCC illustrates one pos-
sible way of partitioning it into two threads. For each
possible partitioning, the figure also illustrates the result-
ing speedup, the corresponding synchronization array oc-
cupancy for a sample period and the cumulative cycle dis-
tribution at each possible occupancy level. An occupancy of
negative one means the corresponding queue is empty and



0

0

0

0

1

1

1

1

0

0

0

0

2

2

2

0

0

0

3

3

3

100

0

0

0

C
C

C
C

u
u

u
u

m
m

m
m

u
u

u
u

l
l

l
l

a
a

a
a

t
t

t
t

i
i

i
i

v
v

v
v

e
e

e
e

C
C

C
C

y
y

y
y

c
c

c
c

l
l

l
l

e
e

e
e

s
s

s
s

(
(

(
(

i
i

i
i

n
n

n
n

%
%

%
%

)
)

)
)

−

−

−

−

1

1

1

1

0

0

0

0

1

1

1

1

2

2

2

2

3

3

3

3

4

4

4

4

5

5

5

5

6

6

6

6

7

7

7

7

8

8

8

8

9

9

9

9

1

1

1

1

0

0

0

0

1

1

1

1

1

1

1

1

1

1

1

1

2

2

2

2

1

1

1

1

3

3

3

3

1

1

1

1

4

4

4

4

1

1

1

1

5

5

5

5

1

1

1

1

6

6

6

6

1

1

1

1

7

7

7

7

1

1

1

1

8

8

8

8

1

1

1

1

9

9

9

9

2

2

2

2

0

0

0

0

2

2

2

2

1

1

1

1

2

2

2

2

2

2

2

2

2

2

2

2

3

3

3

3

2

2

2

2

4

4

4

4

2

2

2

2

5

5

5

5

2

2

2

2

6

6

6

6

2

2

2

2

7

7

7

7

2

2

2

2

8

8

8

8

2

2

2

2

9

9

9

9

3

3

3

3

0

0

0

0

3

3

3

3

1

1

1

1

Occupancy

Occupancy

Occupancy

Occupancy

+48 %

−2 %

+43 %

+45 %

 0

 5

 10

 15

 20

 25

 30

 35

 440000  460000  480000  500000  520000  540000  560000  580000  600000

O
cc

up
an

cy

Time (cycles)

 0

 5

 10

 15

 20

 25

 30

 35

 440000  460000  480000  500000  520000  540000  560000  580000

O
cc

up
an

cy

Time (cycles)

1

1 1

1

1 1

11

1 1 1 1

1

1

1 1 1

1

1

1

38

2

11

 0

 5

 10

 15

 20

 25

 30

 35

 640000 660000 680000 700000 720000 740000 760000 780000 800000 820000
O

cc
up

an
cy

Time (cycles)

 0

 5

 10

 15

 20

 25

 30

 35

 440000  460000  480000  500000  520000  540000  560000  580000

O
cc

up
an

cy

Time (cycles)

Figure 7. Importance of balancing: DAGSCC for 181.mcf with different partitions. Numbers in each
DAGSCC node indicate the number of instructions in the SCC. Graphs on the right illustrate the
occupancy of the synchronization array for a sample interval, and the distribution of the occupancy
over the whole execution.

the consumer is stalled. The occupancy graphs illustrate
the decoupling effect between the threads, and how they are
able to make progress concurrently – a thread is only stalled
by the other when the synchronization array is either full or
empty. The partitioning chosen automatically by our heuris-
tic is the one corresponding to 43% speedup. Note that all
partitionings result in good speedups, except for the last one
in which the threads are not well balanced. This imbalance
can be seen by the fact that the synchronization array is usu-
ally empty, because too much work was assigned to the first
thread, in particular the three load instructions difference
between it and the compiler partitioning, causing the sec-
ond thread to be blocked most of the time.

Figure 8 summarizes the occupancy histograms for all
benchmarks. These give us an idea of how well the thread-
balancing heuristic works in practice. In particular, these
graphs provide vital feedback to the compiler designer, so
that the heuristics can be designed to avoid stalls resulting
from full or empty queues.

4.3 Performance Compatibility: Simpler Cores

Future CMP’s are very likely to have simpler cores
and so we evaluated the performance compatibility of
the automatically-generated DSWP codes versus baseline
codes across full-width and half-width models. We use a
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Figure 8. Cumulative cycle distribution at all
occupancy levels.

variant of the validated Itanium 2 model described earlier
with half of the instruction fetch and dispersal width of the
baseline Itanium 2 model.

Figure 9(a) presents the performance results, for both
the single-threaded and the DSWP versions. On average,
DSWP on a CMP with half-width cores performsbetter
than a full-width core running the single-threaded (ST)
version. The graph shows that DSWP-compiled codes
have better performance compatibility than standard ILP-
compiled codes across architectures with varying pipeline
widths. Additionally, note that the speedup of half-width
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Figure 9. Performance compatibility and sensitivity analyses: full-width Itanium 2 baseline.

DSWP over half-width ST is greater than the speedup of
full-width DSWP over full-width ST. This occurs because
DSWP sometimes trades ILP for TLP. Thus, the simpler
and less powerful a core is, the more pronounced the bene-
fits of DSWP are.

4.4 Sensitivity Analyses: Communication La-
tency and Queue Size

In order to quantify the importance of communication
latency for DSWP, we ran our experiments again with the
full-width CMP model, modified to have communication
latencies of 10 and 100 cycles between the two cores. We
modeled this pipelined delay in theproduce instructions,
while consume instructions continued to take one cycle
(representing queue locality at the receiving side). The re-
sults are presented in Figure 9(b) and they show that DSWP
is not very sensitive to the communication latency. In fact,
this was expected due to the design of the DSWP transfor-
mation, as discussed in Section 2.

We also evaluated the impact of queue size on perfor-
mance by varying the queue size to 8 and 128. We found
that DSWP executions are fairly insensitive to queue size,
with the mean slowdown with size 8 being 2% and the av-
erage speedup with size 128 being 1% compared to 32-
element queues. The highest slowdown was 6% and the
peak speedup was 7% respectively.

5 Detailed Analysis

As already mentioned, DSWP is not applicable in cases
where the loop dependence graph has a single SCC. Ad-
ditionally, even with multiple SCCs, DSWP does not have
good partitioning opportunities if there exists large SCCs
that create a thread imbalance. In our experiments, we
found that DSWP is generally applicable in spite of this
requirement. Nevertheless, a few cases were encountered
where this restriction was limiting. This section describes
these cases and highlights opportunities to mitigate or elim-
inate the problem.

(1) for (i=0; i<x_size*y_size; i++)
{

(2) dtemp = result[i] / scale_factor;
(3) if (dtemp < 0) result[i] = 0;
(4) else if (dtemp > 255) result[i] = 255;
(5) else result[i] = (int) (dtemp + 0.5);

}

Figure 10. Important loop for epicdec .

5.1 Case Study:epicdec loop

Despiteepicdec ’s simplicity, it illustrates the poten-
tial of having a more accurate memory analysis for DSWP.
The source code of the loop in question is shown on Fig-
ure 10. In the IMPACT compiler, this loop is unrolled once.
During this process, we notice that both memory loads of
theresult array (line (2)) become memory dependent on
all the stores. Because of this, the resulting dependence
graph has only 4 SCCs, with all the loads and stores as part
of a single SCC. Despite this, DSWP achieves a speedup.
Closer inspection revealed that these were false memory de-
pendences, conservatively inserted by earlier optimizations.
A solution proposed in [10] addresses this problem by per-
forming accurate memory analysis at the assembly level.

Better scheduling and partitioning resulting from re-
moval of these false memory dependences gave the DSWP
and the base codes a 98% and an 87% speedup over the
original base code. We then measured the average instruc-
tions per cycle (IPC), for both new versions, and verified
that the base had an average of 2.33, while the average for
the DSWP threads were 1.26 and 1.37 respectively. This
showed us that DSWP was trading ILP for TLP, and that ad-
ditional ILP optimizations could potentially improve the re-
sults. We then applied more aggressive unrolling (8x), and
recompiled both versions once again. The new DSWP’ed
version resulted in a 45% speedup relative to the new base
version by better utilizing the dual-core resources.

5.2 Case Study:adpcmdec loop

Lack of predicate-aware dependence analysis for DSWP
caused spurious dependences to be inserted in our depen-



(1) for (ti=0;ti<numf1s;ti++)
(2) Y[tj].y += f1_layer[ti].P * bus[ti][tj];

Figure 11. Important loop for 179.art .

dence graphs. We manually identified many spurious de-
pendences inadpcmdec . We circumvented this problem
by applying DSWP to the same loop without hyperblock
formation and this resulted in an increased number of SCCs
(38, up from 4) with a better distribution of instructions
(largest SCC had 15% of instructions, as opposed to 94%
in the original). This allowed us to see a 10% speedup, as
reported in Section 4. We suspect that predication may be
hindering application of DSWP in other benchmarks too.

5.3 Case Study:179.art loop

The source code of the179.art loop is shown in Fig-
ure 11. Performing accumulator expansion [18] on the sum-
ming variable (Y[yj].y) allows the compiler to obtain 14
SCCs, 7 up from the original, giving a 60% speedup with
an IPC of 0.17 and 0.12 for the two cores. Accumulator
expansion also improves baseline scheduling resulting in a
56% speedup (over the original base) with an IPC of 0.21.
The differences in the IPCs suggest that performing aggres-
sive unrolling on the producer and consumer threads, can
further improve DSWP performance, like inepicdec .

5.4 Case Study:164.gzip

In general, the producer must contain the loop termi-
nation condition. Sometimes, like in thedeflate fast
loop of 164.gzip , computation of this condition may be
highly serialized resulting in one huge SCC, making it unfit
for DSWP. A simple and likely profitable fix is to move loop
termination detection to the consumer and provide support
that will allow the latter to correctly reconcile all producer
thread side-effects with the architectural state. Such specu-
lation support will improve the applicability of DSWP.

6 Related Work

While statically-scheduled processors cannot deal very
well with variable latencies, even dynamically-scheduled
out-of-order machines exhibit poor in-order-like behavior
in practice due to instruction window size limitations. Rec-
ognizing this, Rangan et al. proposed the idea of Decou-
pled Software Pipelining (DSWP) for thread-parallel ar-
chitectures [20] and evaluated it with hand-modified codes
of recursive data structure loops. They showed how
DSWP is complimentary to dynamic out-of-order instruc-
tion scheduling and speculative techniques like prefetching
(even perfect prefetching). This paper builds on [20], by
establishing DSWP as a more general parallelization tech-
nique, proposing the first compiler algorithm for it, and
evaluating it with a fully automated implementation across
a diverse set of benchmarks.

While similar in name, Software Pipelining (SWP) [15]
rearranges loop instructions to create an instruction
pipeline, whereas DSWP partitions and schedules loop code
to create a pipeline of threads. Although SWP is a very ef-
fective ILP technique, it performs poorly in the presence of
variable latency instructions (e.g. loads) [22]. DSWP, on
the other hand, is able to achieve better latency tolerance,
thanks to the exploitation of coarse-grained parallelism and
the decoupled execution of the thread pipeline. Both SWP
and DSWP can be applied simultaneously and, in fact, are
in the compiler used in this work.

DSWP was inspired in part by decoupled access-execute
architectures (DAE) [23, 4, 31, 21], which tolerate latency
by decoupling memory accesses from other work. Since
dependences go both ways between the Access and the Ex-
ecute cores, no single thread of execution can run ahead and
exploit any coarse-grained parallelism [26]. DSWP avoids
this problem at thread-pipeline creation time, by avoiding
circular dependencies amongst threads.

Other general-purpose, non-speculative parallelization
techniques exist, but these techniques often require spe-
cial programming languages with parallel constructs [1].
Success has also been achieved for streaming applications,
through the use of specialized programming languages [9],
in effect requiring the programmer to rewrite the application
to expose parallelism. These techniques ultimately rely on
the programmer to identify thread-level parallelism.

Other means to unearth coarse-grained parallelism in-
clude a variety of thread-level speculation techniques [5, 12,
24, 25, 29, 32] which are orthogonal to DSWP and can com-
pliment it.

7 Conclusion

This paper presentedDecoupled Software Pipelining
(DSWP), a new compilation technique to extractnon-
speculativethread-level parallelism from application loops.
Contrary to traditional parallelization techniques, DSWP
handles all kinds of dependences, effectively exploiting
pipeline parallelismfound in ordinary, general-purpose ap-
plications. The experimental results showed that DSWP is
applicable to most application loops. Using a dual-core sim-
ulator built on top of validated Itanium 2 core models and
an implementation in a high-quality optimizing compiler,
DSWP achieves a mean speedup of 19.4% on important
benchmark loops, translating to a mean of 9.2% over en-
tire benchmarks. When executing on a reduced complexity
core, DSWP turns a 17.1% slowdown for the loops in the
original single threaded codes to a slight speedup, suggest-
ing a decent performance compatibility for simpler cores.

In addition to the promising initial results achieved in
this work, this paper showed that these results can be fur-
ther improved by subsequent work. More accurate memory
analysis, additional optimizations to break dependence cy-



cles, more elaborate partitioning heuristics, and new opti-
mizations to reduce the number of flows are among the di-
rections for future work. We believe that DSWP can be an
enabler for related TLP research in as much as instruction
scheduling has been for ILP, with new optimizations being
discovered as more is learned about DSWP in practice.
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