
AsmDB: Understanding and Mitigating
Front-End Stalls in Warehouse-Scale Computers

Grant Ayers∗
Stanford University

Nayana Prasad Nagendra∗
Princeton University

David I. August
Princeton University

Hyoun Kyu Cho
Google

Svilen Kanev
Google

Christos Kozyrakis
Stanford University

Trivikram Krishnamurthy∗
Nvidia

Heiner Litz∗
UC Santa Cruz

Tipp Moseley
Google

Parthasarathy Ranganathan
Google

ABSTRACT
The large instruction working sets of private and public cloud
workloads lead to frequent instruction cache misses and costs in
the millions of dollars. While prior work has identified the growing
importance of this problem, to date, there has been little analysis
of where the misses come from, and what the opportunities are to
improve them. To address this challenge, this paper makes three
contributions. First, we present the design and deployment of a
new, always-on, fleet-wide monitoring system, AsmDB, that tracks
front-end bottlenecks. AsmDB uses hardware support to collect
bursty execution traces, fleet-wide temporal and spatial sampling,
and sophisticated offline post-processing to construct full-program
dynamic control-flow graphs. Second, based on a longitudinal anal-
ysis of AsmDB data from real-world online services, we present
two detailed insights on the sources of front-end stalls: (1) cold code
that is brought in along with hot code leads to significant cache
fragmentation and a corresponding large number of instruction
cache misses; (2) distant branches and calls that are not amenable
to traditional cache locality or next-line prefetching strategies ac-
count for a large fraction of cache misses. Third, we prototype
two optimizations that target these insights. For misses caused by
fragmentation, we focus on memcmp, one of the hottest functions
contributing to cache misses, and show how fine-grained layout
optimizations lead to significant benefits. For misses at the targets
of distant jumps, we propose new hardware support for software
code prefetching and prototype a new feedback-directed compiler
optimization that combines static program flow analysis with dy-
namic miss profiles to demonstrate significant benefits for several
large warehouse-scale workloads. Improving upon prior work, our
proposal avoids invasive hardware modifications by prefetching
via software in an efficient and scalable way. Simulation results
∗Work performed while these authors were at Google.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ISCA ’19, June 22–26, 2019, Phoenix, AZ, USA
© 2019 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-6669-4/19/06.
https://doi.org/10.1145/3307650.3322234

show that such an approach can eliminate up to 96% of instruction
cache misses with negligible overheads.

ACM Reference Format:
Grant Ayers, Nayana Prasad Nagendra, David I. August, Hyoun Kyu Cho,
Svilen Kanev, Christos Kozyrakis, Trivikram Krishnamurthy, Heiner Litz,
Tipp Moseley, and Parthasarathy Ranganathan. 2019. AsmDB: Understand-
ing and Mitigating Front-End Stalls in Warehouse-Scale Computers. In The
46th Annual International Symposium on Computer Architecture (ISCA ’19),
June 22–26, 2019, Phoenix, AZ, USA. ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/3307650.3322234

1 INTRODUCTION
Nearly every device across the world, from IOT and mobile de-
vices to self-driving cars, is now being served by services hosted
in huge datacenters, which are dubbed Warehouse-Scale Comput-
ers (WSC) [3, 13, 26]. The continued growth in cloud-based, digital
services has ledWSCs to process increasingly large datasets with in-
creasingly complex applications. WSC workloads are characterized
by deep software stacks in which individual requests can traverse
many layers of data retrieval, data processing, communication, log-
ging, and monitoring. As a result, data and instruction footprints
have been growing for decades.

The instruction footprint ofWSCworkloads in particular is often
over 100 times larger than the size of a L1 instruction cache (i-cache)
and can easily overwhelm it [2]. Studies show it expanding at rates
of over 20% per year [16]. This results in instruction cache miss
rates which are orders of magnitude higher than the worst cases in
desktop-class applications, commonly represented by SPEC CPU
benchmarks [9].

Because the performance of a general-purpose processor is criti-
cally dependent on its ability to feed itself with useful instructions,
poor i-cache performance manifests itself in large unrealized perfor-
mance gains due to front-end stalls. We corroborate this challenge
for our WSCs on a web search binary. Figure 1 presents a Top-
Down [33] breakdown of a web search loadtest running on an Intel
Haswell CPU. 13.8% of total performance potential is wasted due
to “Front-end latency,” which is dominated by instruction cache
misses. We also measured L1 i-cache miss rates of 11 misses per kilo-
instruction (MPKI). Using the simulation methodology described
in Section 5.5, we measured a hot steady-state instruction working

https://doi.org/10.1145/3307650.3322234
https://doi.org/10.1145/3307650.3322234


ISCA ’19, June 22–26, 2019, Phoenix, AZ, USA Ayers and Nagendra, et al.

Frontend
latency

13.8
Frontend

bandwidth

9.7

Backend
memory

20.5

Backend
core

8.5

Bad
Speculation

15.4

Retiring

32.0

Figure 1: CPU performance potential breakdown (Top-
Down) on a web search binary.

set of approximately 4 MiB. This is significantly larger than L1
instruction caches and L2 caches on today’s server CPUs, but small
and hot enough to easily fit and remain in the shared L3 cache
(typically 10s of MiB). Thus, it is reasonable to assume that most
i-cache misses are filled by the L3 cache in the worst case.

In this paper, we focus on understanding and improving the
instruction cache behavior of WSC applications. Specifically, we
focus on tools and techniques for “broad” acceleration1 of thousands
of WSC workloads. At the scale of a typical WSC server fleet, per-
formance improvements of few percentage points (and even sub-1%
improvements) lead to millions of dollars in cost and energy sav-
ings, as long as they are widely applicable across workloads. In order
to enable the necessary horizontal analysis and optimization across
the server fleet, we built a continuously-updated Assembly Data-
base (AsmDB) with instruction- and basic-block-level information
for most observed CPU cycles across the thousands of production bi-
naries executing them (Section 2). We further correlate AsmDB with
hardware performance counter profiles collected by a datacenter-
wide profiling system – Google-Wide Profiling (GWP) [30] – in
order to reason about specific patterns that affect front-end perfor-
mance. Collecting and processing profiling data from hundreds of
thousands of machines is a daunting task by itself. In this paper, we
present the architecture of a system that can capture and process
profiling data in a cost-efficient way, while generating terabytes of
data each week.

A fleet-wide assembly database such as AsmDB provides a scal-
able way to search for performance anti-patterns and opens up
new opportunities for performance and total-cost-of-ownership
(TCO) optimizations. WSC servers typically execute thousands of
different applications, so the kernels that matter most across the
fleet (the “datacenter tax” [16]) may not be significant for a single
workload, and are easy to overlook in application-by-application
investigations. We leverage AsmDB’s fleet-wide data in several case
studies to understand and improve i-cache utilization and IPC of
WSC applications.

We start with extensive analysis of AsmDB data, identifying the
instructions that miss in the i-cache. We find that, while not partic-
ularly concentrated in specific code regions, most i-cache misses

1“Deep” acceleration would involve focusing on a handful of workloads and trying to
recover most of the ≈ 15% performance opportunity.

still share common characteristics (Section 3). Specifically, missing
instructions are often the targets of control-flow-changing instruc-
tions with large jump distances. This points us towards exploring
scalable automated solutions – with compiler and/or hardware
support and no developer intervention – which can exploit these
behaviors.

On the compiler side (Section 4), we outline several opportuni-
ties to target code bloat and fragmentation, which put unnecessary
pressure on i-cache capacity. We find that intra-function fragmen-
tation – where cold cache lines are brought in unnecessarily along
with the hot portions of a function – is especially prevalent. Even
after compiling with the necessary feedback-directed optimization
(FDO) to eliminate guesswork, 50% of the majority of functions’
code is cold, but frequently mixed with the hot parts. On a finer
granularity, individual cachelines are also often fragmented and
waste cache capacity, especially so in small functions. This suggests
that classic compiler code layout optimizations such as inlining and
hot/cold splitting can be more effectively and aggressively tuned,
perhaps at link- or post-link time, when precise information about
global control flow is available.

We prove this concept by manually applying similar optimiza-
tions to the most extreme case of code bloat uncovered by AsmDB –
the library function memcmp. We demonstrate that, given the high
front-end pressure of WSC applications, optimizing memcmp for
better i-cache behavior can be a net performance win, even despite
lower throughput numbers in isolated microbenchmarks.

Finally, we propose and evaluate a profile-driven optimization
technique that intelligently injects software prefetch instructions
for code (program instructions) into the binary during compilation
(Section 5). We outline the design of the necessary “code prefetch”
instruction, which is similar in nature to existing data prefetch
instructions, except that it fetches into the L1-I cache and utilizes
the I-TLB instead of the D-TLB. The implementation of such an in-
struction has negligible hardware cost and complexity compared to
purely hardware methods and is commercially viable today. While
it can be implemented on top of a wide variety of hardware front-
ends, we demonstrate its viability on a system which employs only
a next-line instruction prefetcher. Our prefetch insertion algorithm
uses profile feedback information from AsmDB and performance
counter profiles to ensure timely prefetches with minimal over-
head. We prototype its effects on memory traces from several WSC
workloads and show that it is possible to eliminate up to 96% of
all L1-I cache misses while only adding 1.5% additional dynamic
instructions for code prefetches.

2 ASMDB
We built the Assembly Database (AsmDB) with the goal to pro-
vide assembly-level information for nearly every instruction exe-
cuted in our WSCs in an easy-to-query format. AsmDB aggregates
instruction- and control-flow-data collected from hundreds of thou-
sands of machines each day, and grows by multiple TiB each week.
We have been continuously populating it over several years. In this
section, we highlight the system design decisions which enable such
scale and compare it with previous systems for datacenter-wide
performance monitoring.



AsmDB: Front-End Stalls in WSC ISCA ’19, June 22–26, 2019, Phoenix, AZ, USA

SELECT
SUM(count) /

(SELECT SUM(count) FROM ASMDB.last3days)
AS execution_frac,
asm.feature_name AS feature

FROM ASMDB.last3days
GROUP BY feature ORDER BY execution_frac DESC;

Figure 2: Example AsmDB SQL query which ranks x86 exten-
sions (e.g. SSE, AVX) by execution frequency across ourWSC
fleet.

While the initial motivation for building AsmDB was manually
answering simple horizontal questions about instruction mixes (“is
x87 usage negligible?”), we have been increasingly using it for more
sophisticated analyses, and especially so for finding instruction-
cache-related optimization opportunities. This paper demonstrates
several cases where AsmDB proves invaluable for that purpose: for
spotting opportunities for manual optimizations, finding areas for
improvement in existing compiler passes, as well as serving as a
data source for new compiler-driven techniques to improve i-cache
hit rates.

AsmDB is a specialization of generic datacenter-wide profiling
systems like Google-wide-profiling (GWP) [30], which collect many
different types of performance profiles. AsmDB is implemented in
the GWP framework in order to share large portions of the under-
lying infrastructure. However, unlike more traditional performance
profiles, AsmDB data requires extensive offline post-processing to
reach a form that is easy to query by end users. It also has loftier
coverage goals (“nearly every instruction executed in our WSCs”),
which both enables new types of analyses, as well presents new
scalability challenges, especially in dealing with the necessary stor-
age.

Schema. AsmDB is a horizontal columnar database. Each row
represents a unique instruction along with observed dynamic infor-
mation from production – the containing basic block’s execution
counts, as well as any observed prior and next instructions. Each
row also contains disassembled metadata for the instruction (assem-
bly opcode, number/type of operands, etc.). This makes population
studies trivial, as illustrated by the query in Figure 2 which ranks
the relative usage of x87/SSE/AVX/etc. instruction set extensions.
In addition, each row has metadata for the function and binary
containing every instruction, which allows for queries that are
more narrowly targeted than the full fleet (Section 4.4). Finally,
each instruction is tagged with loop- and basic-block-level informa-
tion from dynamically-reconstructed control-flow graphs (CFGs).
This enables much more complex queries that use full control-flow
information (Section 5).

Collection. AsmDB uses profiling data collected from a random
sample of production machines using hardware last-branch-records
(LBRs) – which capture bursts of execution traces of up to 32 ba-
sic blocks each. Most importantly, unlike traditional performance
counters, LBR samples contain the destinations of all control-flow-
changing instructions. This enables faithful and accurate recon-
struction of dynamic program control flow. Collection is built on
top of the data source for AutoFDO [5], which similarly uses LBRs

0.0 0.2 0.4 0.6 0.8 1.0
Unique cache lines (Million)

0

20

40

60

80

100

E
x
e
cu

te
d
 i
n
st

ru
ct

io
n
s 

(C
D

F
%

)

Instructions L1I Misses L2I Misses

Figure 3: Fleet-wide distribution of executed instructions,
L1-, and L2-instruction misses over unique cache lines. Like
instructions, misses also follow a long tail.

to reconstruct basic block execution counts for compiler feedback-
directed optimization. Overheads are similarly low: <1% when trac-
ing, which only occurs for about 10 seconds per machine, per day.

Post-processing. Collected LBR samples only contain the addresses
and counts of basic blocks. AsmDB requires an additional post-
processing pass to produce instruction-level information suitable
for querying. This offline pass fetches the binary bytes for each
basic block, disassembles the contents, and fills out the metadata
described earlier. We extend our existing symbolization service
(which discovers, parses and indexes debugging symbols for every
binary built in our WSCs) to also handle the actual binary bytes
as well and to serve them on demand. Since debugging symbols
are usually 10× larger than the binary they represent, this only
increases complexity and does not hinder scalability.

In addition, post-processing discovers basic block predecessors
and successors and identifies loops using Havlak’s algorithm [12,
14] for full control-flow-graph (CFG) reconstruction.

With tens of thousands of binaries in a WSC, this step can be
extremely costly in both computation and storage.We keep resource
consumption reasonable by ignoring the very long tail and only
populating AsmDB from the top 1000 binaries by execution cycles.
This still captures 90% of observed cycles. Post-processing a single
days’ worth of collected data takes ≈ 8 hours with a 400-machine
MapReduce [7], and produces ≈ 600 GiB compressed output. Thus,
a years’ worth of AsmDB data only takes up ≈ 200 TiB.

Design considerations. The main design goal for AsmDB is wide
coverage – it contains assembly for 90+% of fleet-wide execution cy-
cles. In addition, coverage is high within a binary itself – using LBR
traces along with offline postprocessing allows us to capture rela-
tively cold portions of the binary, which traditional sampling-based
profiling (e.g. GWP) is likely to miss. This difference is particularly
important for studies on cold code (Section 4).

In addition to post-processing feasibility, the main design con-
straint is restricting data cardinality to keep storage costs from
exploding, while keeping enough metadata to enable useful queries.
The recorded metadata in AsmDB is carefully limited to fields that
compress well in columnar stores. For example, it explicitly ex-
cludes any runtime attributes (job names, datacenter names, etc.),
for which the data typically has high variance and would compress
poorly.



ISCA ’19, June 22–26, 2019, Phoenix, AZ, USA Ayers and Nagendra, et al.

0 5 10 15 20
Instruction composition (%)

Knowledge-
graph

Ads

Websearch

Fleet-wide

Direct branch

Indirect branch

Direct call

Indirect call

Return

Figure 4: Control-flow instruction mixes for several WSC
workloads. The remaining 80+% are sequential instructions.

3 WHERE ARE THE MISSES COMING FROM?
We begin our investigation into front-end stalls by characterizing
and root-causing instruction-cache misses. We first use fleetwide
miss profiles to confirm that, as many other WSC phenomena, i-
cache misses also follow a long tail, and sooner or later that must
be addressed by some form of automation. We then start looking
for patterns that automated optimization can exploit by combining
datasets from Google-Wide Profiling (GWP) and AsmDB. We focus
on miss-causing instructions and find that indirect control-flow, as
well as distant calls and branches are much more likely to be the
root causes for misses.

3.1 Miss working sets
Working set sizes can tell us in broad strokes how to prioritize
optimization efforts. For example, image processing workloads
typically have tiny instruction working sets and manually hand-
optimizing their code (similar to Section 4.4), is usually beneficial.
On the contrary, WSC applications are well-known for their long
tails and flat execution profiles [16], which are best addressed with
scalable automatic optimization over many code locations.

Figure 3 shows that i-cache misses in WSCs have similarly long
tails. It plots the cumulative distributions of dynamic instructions,
L1-I, and L2-I misses over unique i-cache lines over a week of ex-
ecution, fleetwide. Misses initially rise significantly steeper than
instructions (inset), which suggests there are some pointwise man-
ual optimizations with outsized performance gains. However, the
distribution of misses tapers off, and addressing even two-thirds of
dynamic misses requires transformations in ≈ 1M code locations,
which is only conceivable with automation. In the rest of the pa-
per, we show how a global database of assembly instructions can
be useful in both the manual (Section 4.4) and automated cases
(Section 5).

3.2 Miss-causing instructions
When optimizing instruction cache misses, it is not only impor-
tant to identify the instructions that miss themselves, but also the
execution paths that lead to them. These are the miss-causing in-
structions.

In the vast majority of cases, the predecessor of a particular in-
struction in execution is simply the previous sequential instruction.
Figure 4 illustrates this for several large WSC binaries, along with
a fleetwide average from AsmDB. More than 80% of all executed

0 5% 10% 15% 20% 25% 30% 35% 40%

Direct
branch

Indirect
branch

Direct
call

Indirect
call

Return

Miss-Causing Instructions

Figure 5: Instructions that lead to i-cache misses on a web
search binary.

-0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0
Target jump distance in cache lines (Million)

0

20

40

60

80

100

D
is

tr
ib

u
ti

o
n
 o

f 
co

n
tr

o
l-

fl
o
w

 
 i
n
st

ru
ct

io
n
s 

(C
D

F
 %

)

Direct branch

Indirect branch

Direct call

Indirect call

Figure 6: Fleetwide distribution of jump target distances.

instructions are sequential (continuous or non-branching). The ma-
jority of the remainder (>10%) are direct branches, which are most
typically associated with intra-function control-flow. Direct calls
and returns, which jump into and out of functions, each represent
only 1-2% of total execution. Indirect jumps and calls are even rarer.

Sequential instructions have high spatial locality and are thus
inherently predictable. They can be trivially prefetched by a simple
next-line prefetcher (NLP) in hardware. While there are no public
details about instruction prefetching on current server processors,
NLP is widely believed to be employed. And because NLP can
virtually eliminate all cache misses for sequential instructions, it is
the relatively small fraction of control-flow-changing instructions
– branches, calls, and returns – which ultimately cause instruction
cache misses and performance degradation.

Intuitively, branches typically jump within the same function so
their targets are more likely to be resident in the cache due to reuse
(temporal locality) for backward-pointing branches such as loops,
and either reuse or NLP (with sufficiently small target offsets) for
forward-pointing branches. On the other hand, we expect calls to
miss more often because they jump across functions which can
span a wide range of distances in the address space. This defeats
NLP and is more difficult to capture by reuse due to limited cache
sizes and flat callgraphs of WSC binaries.

In order to test this intuition, we send a full instruction trace
from a web search binary through a simple L1 cache simulator with
a next-two-line prefetcher, and mark each access that is a miss.
For each miss, we look at the previous instruction in the program
sequence which, assuming “perfect” (triggering on every access)



AsmDB: Front-End Stalls in WSC ISCA ’19, June 22–26, 2019, Phoenix, AZ, USA

Discontinuity Type Miss Percent Miss Intensity
Direct Branch 38.26% 2.08
Indirect Branch 7.71% 59.30
Direct Call 36.27% 54.95
Indirect Call 16.54% 71.91
Return 1.22% 1.37

Table 1: Instruction miss intensities for web search

0 5 10 15 20
Number of targets

0

20

40

60

80

100

In
st

ru
ct

io
n
 d

is
tr

ib
u
ti

o
n
 

 (
C

D
F
 %

)

Indirect branch

Indirect call

Figure 7: Cumulative distribution of number of targets for
indirect jumps and calls.

NLP, is necessarily a control-flow-changing instruction. By count-
ing these by type we built a profile of “miss-causing” instructions
shown in Figure 5.

Interestingly, despite having higher temporal locality and being
more amenable to NLP, direct branches are still responsible for 38%
of all misses. These misses are comprised mostly of the small but
long tail of direct branch targets that are greater than two cache
lines away in the forward direction (18% of the profile). Perhaps
more surprising is that direct calls account for 36% of all cache
misses despite being only 1-2% of all executed instructions. This
confirms that the probability of causing a miss is much higher for
each call instruction, compared to that of a branch. Indirect calls,
which are often used to implement function pointers and vtables,
are even less frequently executed but also contribute significantly to
misses. In contrast, returns rarely cause misses because they jump
back to code that was often recently used. We summarize these
probabilities in a dimensionless “miss intensity” metric, defined as
the ratio of the number of caused misses to the execution counts for
a particular instruction type. In other words, miss intensity helps
us rank instruction classes by how likely they are to cause misses
in the cache. We see from Table 1 that the miss intensities of direct
branches and returns are much lower than the other types, which
indicates their targets are more inherently cacheable.

We can confirm this is not limited to web search or due to the
cache model used to tag misses by looking into fleetwide AsmDB
jump distances. Figure 6 presents this data as a cumulative distri-
bution function (CDF) of distances in bytes to the next instruction.
Around 99% of all direct branches fleetwide jump to targets that
are fewer than 500 cache lines away, and hence they are sharply
centered around zero in the figure which is depicted at the scale
of million cache lines. On the other hand, over 70% of direct calls
have targets more than 100,000 cache lines (6.4 MiB) away. While
such distances do not guarantee a cache miss, they do increase the
likelihood that simple prefetchers without knowledge of branch
behavior will be insufficient to keep the data cache-resident.

0 5 10 15 20
Function size (KiB)

100

101

102

103

104

105

106

107

N
o
rm

a
liz

e
d
 e

x
e
cu

ti
o
n
 

 f
re

q
u
e
n
cy

 (
lo

g
sc

a
le

)

memcpy memcmp

0

2

4

6

8

10

12

L1
I 
M

is
s 

(%
)

Figure 8: Normalized execution frequency vs. function size
for the top 100 hottest fleetwide functions. memcmp is a clear
outlier.

Indirect calls and branches roughly track the behavior of their di-
rect counterparts. However, they are so infrequent that their targets
are relatively cold (and unlikely to be resident in the cache), leading
to the high miss intensity in Table 1. Note that, in practice, indirect
calls and branches tend to have a very small number of targets per
instruction (Figure 7 – 80+% of indirect calls and 58% of indirect
branches always jump to a single address), which implies that they
are very easily predictable with profile guided optimization.

In summary, the key takeaways from our instruction miss analy-
sis are that 1) calls are the most significant cause of cache misses,
and 2) branches with large offsets contribute significantly to misses
because they are not fully covered by reuse and simple next-line
prefetching.

4 CODE BLOAT AND FRAGMENTATION
Before we focus our attention to optimizing the targets of very
distant branches in Section 5, we outline some opportunities for
improving i-cache behavior on a much finer granularity. Namely,
we identify reducing cache fragmentation on the intra-function and
intra-cacheline level with feedback-driven code layout. A global
database of assembly instructions and their frequencies such as
AsmDB critically enables both prototyping and eventually produc-
tionizing such optimizations.

Briefly, fragmentation results in wasted limited cache resources
when cold code is brought into the cache in addition to the necessary
hot instructions. Such negative effects get increasingly prominent
when functions frequently mix hot and cold regions of code. In
this section we show that even among the hottest and most well-
optimized functions in our server fleet, more than 50% of code is
completely cold. We attribute this to the deep inlining that the com-
piler needs to perform when optimizing typical WSC flat execution
profiles. This suggests that combining inlining with more aggres-
sive hot/cold code splitting can achieve better i-cache utilization
and free up scarce capacity.

4.1 Code bloat
One common symptom for excessive i-cache pressure is code bloat,
or unnecessary complexity, especially in frequently-executed code.
Figure 8 is an attempt to diagnose bloat from AsmDB data – it plots
normalized function hotness (how often a particular function is
called over a fixed period) versus the function’s size in bytes for
the 100 hottest functions in our WSCs. Perhaps unsurprisingly, it



ISCA ’19, June 22–26, 2019, Phoenix, AZ, USA Ayers and Nagendra, et al.

0 2 4 6 8 10 12 14 16
Function size (KiB)

0

20

40

60

80

100
C

u
m

u
la

ti
v
e
 d

is
tr

ib
u
ti

o
n
 (

%
)

1KiB

~31%

256 bytes

~34%

~67%

Function count

Function execution

Figure 9: Distribution of execution over function size.

0 5 10 15 20 25 30
Function size (KiB)

0

5

10

15

20

25

M
a
x
im

u
m

 i
n
lin

e
d
 s

ta
ck

 d
e
p
th

Figure 10: Maximum inlining depth versus function size for
the 100 hottest fleetwide functions.

shows a loose negative correlation: Smaller functions are called
more frequently. It also corroborates prior findings that low-level
library functions (“datacenter tax” [16]), and specifically memcpy
and memcmp (which copy and compare two byte arrays, respectively)
are among the hottest in the workloads we examined.

However, despite smaller functions being significantly more fre-
quent, they are not the major source of i-cache misses. Overlaying
miss profiles from GWP onto Figure 8 (shading), we notice that
most observed cache misses lie in functions larger than 1 KiB in
code size, with over half in functions larger than 5 KiB.

This contradicts traditional optimization rules of thumb, like
“Most [relevant] functions are small”. But it also holds for execution
cycles – as illustrated in Figure 9 – only 31% of execution fleetwide is
in functions smaller than 1 KiB. Small functions are still prevalent:
67% of all observed functions by count are smaller than 1 KiB.
However, a large portion of them are very cold. This suggests that,
as expected for performance, small hot functions get frequently
inlined with the help of profile feedback2.

The ubiquity and overall aggressiveness of inlining is best illus-
trated in Figure 10, which plots the depth of observed inline stacks
over the 100 hottest functions. Most functions 5 KiB or larger have
inlined children more than 10 layers deep. While deep inlining is
crucial for performance in workloads with flat callgraphs, it brings
in exponentially more code at each inline level, not all of which
is necessarily hot. This can cause fragmentation and suboptimal
utilization of the available i-cache.

2At the time of collection, over 50% of fleet samples were built with some flavor of
profile-guided optimization.

0 5 10 15 20 25 30
Function size (KiB)

0

20

40

60

80

100

H
o
t 

co
d
e
 (

%
)

50

0 5 10 15 20 25 30
Function size (KiB)

0

20

40

60

80

100

H
o
t 

co
d
e
 (

%
)

50

0 5 10 15 20 25 30
Function size (KiB)

0

20

40

60

80

100

H
o
t 

co
d
e
 (

%
)

50

Figure 11: Fraction of hot code within a function among the
100 hottest fleetwide functions. From left to right, “hot code”
defined as covering 90%, 99% and 99.9% of execution.

0 5 10 15 20 25 30
Function size (KiB)

0

20

40

60

80

100

F
ra

g
m

e
n
te

d
 l
in

e
s 

(%
)

0 5 10 15 20 25 30
Function size (KiB)

0

20

40

60

80

100

F
ra

g
m

e
n
te

d
 l
in

e
s 

(%
)

Figure 12: Intra-cacheline fragmentation vs function size for
hotness thresholds of 90%, and 99%.

4.2 Intra-function fragmentation
In order to understand the magnitude of the potential problem,
we quantify code fragmentation on the function level. We more
formally define fragmentation to be the fraction of code that is
definitely cold, that is the amount of code (in bytes) necessary to
cover the last 10%, 1%, or 0.1% of execution of a function. Because
functions are sequentially laid out in memory, these cold bytes are
very likely to be brought into the cache by next-line prefetching.
Intuitively, this definition measures the fraction of i-cache capacity
potentially wasted by bringing them in.

Using AsmDB data, we calculate this measure for the top 100
functions by execution counts in our sever fleet. Figure 11 plots it
against the containing function size. If we consider code covering
the last 1% of execution “cold”, 66 functions out of the 100 are com-
prised of more than 50% cold code. Even with a stricter definition of
cold (< 0.1%), 46 functions have more than 50% cold code. Perhaps
not surprisingly, there is a loose correlation with function size –
larger (more complex) functions tend to have a larger fraction of
cold code. Generally, in roughly half of even the hottest functions,
more than half of the code bytes are practically never executed, but
likely to be in the cache.

4.3 Intra-cacheline fragmentation
Fragmentation in the i-cache also manifests itself at an even finer
granularity – for the bytes within each individual cacheline. Unlike
cold cache lines within a function, cold bytes in a cache line are
always brought in along the hot ones, and present a more severe
performance problem. We defined a similar metric to quantify intra-
cacheline fragmentation: counting the number of bytes (out of 64)
necessary to cover 90% or 99% of the line’s accesses. Similarly to



AsmDB: Front-End Stalls in WSC ISCA ’19, June 22–26, 2019, Phoenix, AZ, USA

0 1 2 3 4 5 6
Relative instruction address (KiB)

10-2

10-1

100

101

102

103
N

o
rm

a
liz

e
d
 d

y
n
a
m

ic
 

e
x
e
cu

ti
o
n
 c

o
u
n
t 

(l
o
g
sc

a
le

)

Region A Region B

Figure 13: Instruction execution profile for memcmp. 90% of
dynamic instructions are contained in 2 cache lines; cover-
ing 99% of instructions requires 41 i-cache lines.

the last section, we declare a line fragmented if it only uses 50% or
fewer of its bytes to cover execution. Figure 12 shows the fraction
of fragmented lines for each of the top 100 functions in our server
fleet. At least 10% of functions have more than 20% of cache lines
that are fragmented, and fragmentation is more common for small
functions. In other words, while these functions are executing, at
least 10% of i-cache capacity is stranded by fragmented lines. This
suggests opportunities in basic-block layout, perhaps at link, or
post-link time, when compiler profile information is precise enough
to reason about specific cache lines.

4.4 Memcmp and the perils of
micro-optimization

To illustrate the potential gains from more aggressive layout opti-
mization, we focus on the most extreme case of bloat we observed
in AsmDB – the library function memcmp.

memcmp clearly stands out of the correlation between call fre-
quency and function size in Figure 8. It is both extremely frequent,
and, at almost 6 KiB of code, 10× larger than memcpy which is
conceptually of similar complexity. Examining its layout and execu-
tion patterns (Figure 13) suggests that it does suffer from the high
amount of fragmentation we observed fleetwide in the previous
section. While covering 90% of executed instructions in memcmp
only requires two cache lines, getting up to 99% coverage requires
41 lines, or 2.6 KiB of cache capacity. Not only is more than 50%
of code cold, but it is also interspersed between the relatively hot
regions, and likely unnecessarily brought in by prefetchers. Such
bloat is costly – performance counter data collected by GWP indi-
cates that 8.2% of all i-cache misses among the 100 hottest functions
are from memcmp alone.

A closer look at the actual code from glibc can explain the ex-
ecution patterns in Figure 13. It is hand-written in assembly and
precompiled, with extensive manual loop unrolling, many condi-
tional cases for the various alignments of the two source arrays,
and large jump tables.

In our experience, code usually evolves into similar state from
over-reliance onmicro-optimization andmicro-benchmarking.While
writing in assembly can in rare cases be a necessary evil, it prevents
the compiler from doing even the most basic feedback-directed code
layout optimizations. For example, it cannot duplicate or move the
“compare remainders” and “exit” basic blocks marked RegionA and
RegionB in Figure 13 closer to the cases that happen to call them

the most (in this case the beginning of the function). This results in
expensive and hard-to-prefetch jumps, and cache pollution. Simi-
larly, whenmostly evaluated onmicrobenchmarks, all relevant code
usually fits in the i-cache, which is certainly not the case for large
applications. This encourages developers to add more elaborate
corner cases (e.g. for alignment) that improve the microbenchmark
without regard to bloat.

We tested this hypothesis by macro-benchmarking a version
of memcmp that is specifically optimized for code size (only 2 i-
cache lines) and locality. In short, it only special-cases very small
string sizes (to aid the compiler in inlining very fast cases) and falls
back to rep cmps for larger compares. Even though it achieves
slightly lower throughput numbers than the glibc version in micro-
benchmarks, this simple proof-of-concept is a net performance gain.
On large-footprint workloads like websearch, it reduced cycles in
memcmp more than twofold and showed an overall 0.5%-1% end-to-
end performance improvement.

AsmDB allows us to spot extreme cases such as memcmp over
thousands of applications. In this case, memcmp was the single im-
mediately apparent outlier both in terms of code bloat and i-cache
footprint. Manually optimizing it for code size was practical and
immediately beneficial.

However, manual layout optimization does not scale past ex-
treme outliers. Generalizing similar gains is in the domain of com-
pilers. Compiler optimizations like hot/cold splitting [6] and partial
inlining [32] aim to address fragmentation by only inlining the
hot basic blocks of a function. However, they have recently been
shown to be particularly susceptible to the accuracy of feedback pro-
files [25], especially with sampling approaches like AutoFDO [5].

The high degree of fragmentation we observed suggests there
is significant opportunity to improve i-cache utilization by more
aggressive and more precise versions of these optimizations than
found in today’s compilers. Alternatively, post-link optimization
could be a viable option which does not suffer from profile accuracy
loss. The latter approach has been shown to speed up some large
datacenter applications by 2-8% [25].

5 SOFTWARE PREFETCHING FOR CODE
While addressing fragmentation and code bloat can recover a frac-
tion of the i-cache capacity being wasted, the multi-megabyte in-
struction working sets in WSC applications suggest that even re-
moving all fragmentation will not suffice to eliminate frontend
bottlenecks. In Section 3 we showed that distant branches and
calls cause the largest fraction of cache misses. Prior work has ad-
dressed these misses with significant hardware architectural modifi-
cations [10, 11, 18–20, 20, 22] or static control flow analysis [24, 28].
However, in WSC environments it has been commercially infeasi-
ble to implement these large hardware changes, and it is likewise
intractable to optimize the nearly boundless number of possible
control flow combinations in binaries hundreds of megabytes in
size.

We improve upon prior work by leveraging the control flow infor-
mation from AsmDB, and propose a novel compiler optimization that
automatically inserts code prefetch instructions into performance-
critical execution paths within the application binary. Specifically,



ISCA ’19, June 22–26, 2019, Phoenix, AZ, USA Ayers and Nagendra, et al.

Figure 14: A prefetch is never late, nor is it early, it arrives
precisely when it means to.

our approach reconstructs the control flow graph of the applica-
tions from AsmDB and enriches it with instruction miss profiles to
select prefetch targets. This combined information allows us to
inject low-overhead, high-accuracy software prefetching for the
front-end using a new code prefetch instruction. As a result, we
are able to achieve as much as 96% miss coverage with negligible
application binary growth.

5.1 Requirements
Prefetching represents a prediction problem with a limited window
of opportunity. Effective prefetches are both accurate and timely –
they only bring in useful miss targets and do so neither too early
nor too late in order to minimize early evictions and cache pollu-
tion. A prefetcher is effective if it generates effective prefetches
and has high overall miss coverage. We begin this section with a
discussion of the required information and hardware support which
is necessary to ensure accuracy, timeliness, and coverage for WSC
applications.

Finding prefetch targets. In the simplest sense, the set of targets
to prefetch is merely the set of instruction addresses that miss in the
cache. This set is often estimated heuristically. For instance, next-
line prefetchers always predict the next cache block will be used,
and static code analysis can assume some control flow and deter-
mine constructs such as loops which might be amenable to prefetch-
ing [24]. In contrast, our approach leverages AsmDB to augment
heuristic information with empirical observations about top miss
candidates and dominant control flow. This allows us to achieve
high coverage while minimizing the overheads of prefetching in
terms of bandwidth, energy, and performance in case the prefetch
is not useful or accurate. Alternatively, performance counters or
binary instrumentation tools can also provide information about
top misses [4, 23].

Determining prefetch injection sites. The placement of prefetches
in the execution stream determines their timeliness. An effective
prefetch will initiate within a window of time prior to the miss that
is neither too early (and thus evicted before use), nor too late (and
doesn’t arrive before the miss), as represented by w in Figure 14.
Existing compiler based approaches [24] insert prefetches at a fixed
number of instructions before the miss to roughly match the mem-
ory access latency. However, onmodern OOO architectures, IPC can
vary by orders of magnitude for different applications which leads
to untimely prefetch injections. (For instance, in SPEC CPU2006,
mcf has an IPC of 0.2 whereas dealII has an IPC of almost 2.0 [27].)
Our approach addresses this issue by leveraging per-application IPC
obtained from profiling data to calculate optimal prefetch distances.

Distance behind each miss instruction

U
ni

qu
e 

in
st

ru
ct

io
n 

pa
th

s

0

50

100

150

200

250

01020304050

Figure 15: Fan-in for some misses can grow very fast with
distance, especially for library functions.

In addition to being on time, a prefetch instruction needs to be
on an execution path that is likely to actually lead to the target miss.
This requires knowledge of the program’s control flow, along with
probabilities for specific paths. Some form of profile feedback is
required to obtain this information – whether by hardware-enabled
tracing (e.g., last-branch records or Intel Processor Trace), or soft-
ware binary instrumentation (statically-inserted by a compiler or
dynamically-inserted through systems like Pin or DynamoRIO).
Static program analysis alone is insufficient since it must guess
branch outcomes, realized indirect branch targets (this is especially
problematic given that they’re a frequent cause of misses, Section 3),
and ultimately cannot determine the important control flow paths
of the application. Our approach leverages AsmDB and additional
profiling data to construct the control flow graph. Importantly, we
do not rely on obtaining complete graphs; in fact we further prune
the graph data to contain only paths of high execution frequency.

5.2 Software prefetch challenges
Knowledge of cache misses, execution history, and system details
are necessary but not sufficient for effective software instruction
prefetching. A number of second-order challenges arise that can
make practical implementations difficult.

Fan-in. When moving backward from a miss target in the execu-
tion sequence, the number of potential instructions leading to that
miss generally increases. In fact, it grows exponentially with the
branching factor of the control-flow graph. High fan-in to a miss
poses a challenge because it requires additional prefetch instruc-
tions to be injected (adding overhead), and each injection site has a
smaller overall impact in reducing misses.

Figure 15 shows the fan-in for the top twenty instruction cache
misses from a web search profile. In several cases, the number of
paths leading in to a single miss exceeds 100 even when looking
backward only 10 instructions. These are usually common library
calls (for example, the top line is memcmp). For other hot misses, the
fan-in is much less significant, even when looking backward over
50 instructions. Both situations can be addressed by prefetching,
but low-fan-in targets will incur significantly smaller overheads.
Prior approaches [24] had to aggressively insert prefetches in all
paths to obtain high coverage, and then resort to filtering out su-
perfluous prefetches in hardware, thus wasting hardware resources



AsmDB: Front-End Stalls in WSC ISCA ’19, June 22–26, 2019, Phoenix, AZ, USA

and instruction cache capacity. Our approach leverages profiling in-
formation to only insert helpful prefetches which increase coverage
and minimize overhead and fan-in.

Fan-out. When selecting an injection site for a miss, landing
in the window (see Figure 14) is necessary but not sufficient. The
window could contain code that is running in a loop, or which is a
hot library function that returns to a large number of callers. In these
situations, adding prefetch injections will cause a large number of
untimely or useless requests that waste resources. Instead, we want
to insert prefetches in execution paths that are likely to lead to the
miss, or in other words, which have low fan-out. We address this
in Section 5.3 by pruning paths which exceed a maximum fan-out
threshold.

Instruction overhead. Software prefetch instructions carry over-
heads, even if optimized. At the very least, they need to be stored
in instruction caches, as well as decoded and issued by the pipeline.
While these overheads should generally beminimal, overly-aggressive
prefetching can end up causing performance degradation instead
of improvement. Our injection algorithm selects prefetch sites for
those that resolve the highest number of misses and reduce overall
instruction overhead.

5.3 Ensuring timeliness
Prefetch timeliness critically requires that we initiate prefetch re-
quests within a “sweet spot” window of time that is neither too
early nor too late. Specifically, we need to determine the distance
d and window size w (see Figure 14, measured in instructions).
As outlined in Section 5.1, d and w are ultimately defined by the
microarchitecture and memory system.

More formally, we define the distance d as the shortest amount
of time before a miss that a prefetch for that cache line can be
made without causing stalls. It is the sum of the latency of the
prefetch instruction itself and the time required by the memory
system to bring the block into the cache. We assume the prefetch
instruction latency is minimal (due to lack of register dependencies
and pipeline pruning) and focus on the delay of the memory system.
Since the instruction working set easily fits in the L3 cache of a
server processor (Section 1), d in instructions is simply the latency
of the L3 cache in cycles, multiplied by the application specific
average IPC. For this work, we use long-term IPC averages for each
application. As IPC can vary further with program phase behavior,
future work can leverage fine-grain IPC measurements from a local
phase to vary the prefetch distance depending on the code location.

The window w allows for some leeway in choosing prefetch
sites further than the minimum distance d . Normally we want
to minimize to d in order to reduce the risk of high fan-in (see
Figure 15). On the other hand, larger windows allow us to minimize
the risk of fan-out. By considering all of the candidate injection
sites within the window we can optimize for both. Consider the
three scenarios in Figure 16, assuming d = 1:

Instruction D (at distance 1 from the miss) has minimal fan-out
because it always leads to the miss. In addition, choosing D instead
of its predecessors helps to minimize fan-in to the miss. Thus D is
a good prefetch insertion candidate.

F

Miss

DB

C E

A

Figure 16: Example instruction execution history tree.

Instruction B is also at distance 1 from the miss. Unfortunately,
B jumps to many other locations and only leads to the miss 5% of
the time (due to high fan-out). However, if all of these paths from B
to the miss are from a single predecessor instruction (for example,
A) which is still within the window, then that is clearly a better
prefetch location.

Instruction F is part of a loop. Inserting prefetches anywhere
in the loop body (instructions F and E) would cause redundant
prefetch requests and excessive instruction overhead. Thus even
though F only leads to two instructions, it has high execution fan-
out. If a window size of two or greater allows us to insert a prefetch
at the earlier instruction C (distance 3), then we can maximize the
covered execution paths and avoid the execution fan-out of F and
E.

The maximum window size is the limit after which prefetch
injections would lead to early misses, or would otherwise evict
useful data to the detriment of performance. For a fully-associative
LRU cache, the upper-bound maximum window size would be the
cache capacity divided by the average instruction size, or 8,192 for a
32-KiB cache and 4-byte average instruction size. Empirically, we’ve
found that window sizes larger than about 200 instructions cause
enough evictions of useful data to reduce overall performance.

5.4 Prefetch injection procedure
Having a profile of miss instructions, the program execution se-
quence, and the window parameters d andw , we are equipped to
compute and inject software prefetches into the execution stream.
At a high level, the process is threefold: First, construct the exe-
cution history for each miss going back to the end of the window
(d +w). Second, find prior instructions within the window with
low enough fan-out. These instructions may be located on one or
more execution paths. Third, insert prefetches for each miss target
at the computed injection locations in the program.

This approach provides four key contributions over prior static
approaches: First, we determine prefetch targets based on miss fre-
quency instead of guessing viable candidates. Second, we leverage
application-specific IPC to determine the optimal prefetch distance,
instead of relying on a fixed heuristic. Third, we introduce a maxi-
mumwindow size and corresponding scan that allows us to discover
non-intuitive prefetch optimizations (such as prefetching ahead
of loops) without requiring detailed knowledge of program flow



ISCA ’19, June 22–26, 2019, Phoenix, AZ, USA Ayers and Nagendra, et al.

semantics. Fourth, we use profiling information to prune low prob-
ability prefetches in cases of high fan-in or fan-out, thus reducing
the instruction execution and footprint overhead over more conser-
vative static approaches. We next discuss the three steps in more
detail.

Construct per-miss execution histories. The purpose of this step
is to identify all possible prefetch injection sites for each miss. For
each miss location (identified as described in Section 5.1), we start
a bottom-up walk of the control-flow graph starting from the miss,
adding basic-block counts at every level. We terminate the walk at
every node where it reaches d +w , leaving us with an execution
history graph for the miss, similar to Figure 16. If instead of the full
control-flow graph, we have an instruction trace, we can similarly
reconstruct the history graphs with a single pass over the trace.

Compute prefetch injection locations. The injection calculation
step selects the best locations (if any) of the execution graphs in
which to prefetch each miss. It begins by selecting all prior in-
structions at distance d , which is the minimum time required for
a prefetch to be timely. Each of these priors is recursively com-
pared against its own predecessors, up to the maximum window
size (d +w). Selecting among them choses a node that leads to the
target miss most often, with some minimum threshold percentage
to limit fan-out. At the end of the injection computation, a (possibly
empty) set of injection sites is available for each miss.

Inject prefetches. Finally, after identifying profitable prefetch
sites, we can insert each computed (injection, target) address pair
into the program. This process will vary for each production envi-
ronment. Without loss of generality, we assume that this is done as
post-link step of the compilation process, and only requires reassem-
bly and relinking, not a full recompilation. Thus, we unburden the
programmer from having to deal with the time and complexity of
injecting prefetches manually in the source code.

Implementation. Our prefetch mechanism is software-based but
relies on a “code prefetch” instruction to load cache blocks directly
into the L1-I cache or adjacent prefetch buffer. In practice, these
instructions often do not exist in commercial server-class processors
(x86), or have inconsistent or implementation-defined semantics
(pli for ARM), or don’t provide the required level of control (icbt
on POWER). From an architectural standpoint, a code prefetch
instruction is simple to implement, and would require the following
properties:

(1) Requests are loaded into the L1-I or prefetch cache (mini-
mum) or additionally the L2 and L3 caches (optional).

(2) Requests utilize the instruction TLB, if any, and not the data
TLB.

(3) Blocks are brought into the cache in the S state, not the E
state (for MESI-like cache coherent systems).

(4) The instruction has no register dependencies. Target ad-
dresses are encoded in the instruction. If possible, prefetches
are pruned from the back-end portions of the processor
pipeline to minimize overheads and latency.

We imagine that a code prefetch instruction would be an exten-
sion of – or very similar to – existing data prefetch instructions

Parameter Value
CPU Intel Haswell E5 18-core
L1 Instruction cache 32 KiB, 8-way
L2 Unified cache 256 KiB, 8-way
L3 Unified cache Shared 2.5 MiB/core 22-way
All-core turbo frequency 2.8 GHz
L3 cache latency 27 ns / 76 cycles (measured)

Table 2: System Configuration

such as prefetcht* and prefetchnta on x86, pli on ARM, and
icbt on POWER.

5.5 Evaluation methodology
While we envision an end-to-end system that uses fleetwide profile
information and a compiler, we prototyped our proposal usingmem-
ory traces and simulation. We require simulation because current
server-class processors do not include a suitable prefetch instruc-
tion for code. In addition, replaying trace-driven simulation allows
us to perform limit studies and compare our prefetch insertion
approach against an ideal instruction cache.

Data collection. We use DynamoRIO’s [4] memtrace client to
capture instruction and data memory traces for our target applica-
tions. We limit traces to 2 billion instructions during steady-state
execution which is more than sufficient for instruction cache stud-
ies.

We use the traces both to construct dynamic control-flow graphs
of observed execution, as well as to identify instruction cachemisses
(after simulation). This is for prototyping convenience and repro-
ducibility only. A real system can use dynamic CFGs collected from
last-branch records (as reconstructed in AsmDB) and instructionmiss
profiles collected with Precise Event-Based Sampling (PEBS) [8],
which allow us to identify individual instructions that miss in the
L1 or L2 instruction caches.

Simulation. Weuse amodified version of the ZSim simulator [31].
We included a trace-driven execution mode, as well as models for
our best guess of an Intel-Haswell-based server processor, with
parameters described below. We model a single core and allow 10
MiB of L3 capacity in order to ensure that the instruction working
set fits in the L3 cache (see Section 1). We also extended ZSim to
include an access-driven next-2-line prefetcher for the instruction
cache.

System parameters. We use parameters modeled against an Intel
Haswell datacenter-scale server processor. It has 18 cores, each with
a private 32-KiB L1 instruction cache and unified 256 KiB L2 cache.
All 18 cores share a unified 45-MiB L3 cache. The detailed system
parameters are summarized in Table 2. Based on these parameters
and a per-application average IPC, we can estimate the minimum
prefetch distance d . In the case of web search the average IPC is
0.67, leading to d = 76 * 0.67 = 51 instructions on average.

Workloads. We focus primarily on three WSC applications – a
web search leaf node, an ads matching service, and a knowledge
graph back-end. For each workload, we collect traces during a rep-
resentative single-machine loadtest, which sends realistic loads to



AsmDB: Front-End Stalls in WSC ISCA ’19, June 22–26, 2019, Phoenix, AZ, USA

75

80

85

90

95

100

M
is

s 
co

v
e
ra

g
e
 (

%
)

Next-Line Prefetch Software Prefetch

0.0 0.5 1.0 1.5 2.0 2.5
Instruction Overhead (%)

0

2

4

6

8

10

12

P
e
rf

o
rm

a
n
ce

im
p
ro

v
e
m

e
n
t 

(%
)

Figure 17: Overall performance improvement and miss cov-
erage vs. instruction cost for several prefetch configurations
on web search.

the server-under-test. We also include three SPEC CPU2006 appli-
cations (400.perlbench, 445.gobmk, 471.omnetpp) to demon-
strate that the prefetching technique generalizes across workloads.
Since most of SPEC CPU suite has a tiny instruction working set,
we simulated 400.perlbench and 471.omnetpp with only 8KiB
of private L1 i-caches. This results in MPKI rates of the same order
of magnitude as our WSC workloads.

5.6 Prefetching results
We fixed the distance at 51 instructions and varied the injection
threshold, window size, and miss coverage. Figure 17 shows de-
tailed results for web search. It combines the multidimensional
configurations into a single flattened view in terms of instruction
overhead and the percentage of misses that were eliminated. Here,
“instruction overhead” refers to the additional dynamic prefetches
executed by the processor. It is not the time overhead or increase in
the static program size (in all cases the static program size growth
is less than 1%). All performance improvements measure IPC over
a system without any prefetching.

Our goal is to prefetch the misses we observe in the fleet which
are caused nearly universally by control-flow changing instructions.
These misses lie in the gap between a perfect instruction cache and
what an effective sequential prefetcher (NLP) can provide, as shown
in the miss coverage subplot of Figure 17. In other words, while
NLP covers over 80% of instruction cache misses for web search,
the performance opportunity measured in Figure 1 comes from the
gap.

Our prefetching technique is able to increase the overall miss
coverage of web search up to 96% with no other front-end assump-
tions than a next-line prefetcher. Similarly, Figure 18 shows that we
can achieve miss coverage between 91%-96% for all other workloads,
with a performance improvement proportional to the front-end-
boundedness of the application and the gap left from NLP. In all
cases the dynamic instruction execution overhead due to prefetches

web
search

ads knowledge-
graph

400.
perlbench

445.
gobmk

471.
omnetpp

0

20

40

60

80

100

M
is

s 
C

o
v
e
ra

g
e
 (

%
)

web
search

ads knowledge-
graph

400.
perlbench

445.
gobmk

471.
omnetpp

0

2

4

6

8

10

12

14

IP
C

 I
m

p
ro

v
e
m

e
n
t 

(%
)

Next-line Prefetch

Software Prefetch

Figure 18: Miss coverage and performance improvement for
the best-performing configuration for each workload.

is less than 2.5%, and the static program growth due to prefetches
is between 0.01% and 1%.

6 RELATEDWORK
Datacenter-wide profiling. Modern systems for always-on profil-

ing trace their beginnings to DCPI [1]. Of these, AutoFDO [5] (built
on top of Google-wide-profiling (GWP) [30]) is perhaps the most
similar to AsmDB. Both AutoFDO and this work use continuously-
collected LBR samples for compiler optimization. AutoFDO summa-
rizes them into basic block counts and maps them back to source
code for traditional feedback-directed optimization during compi-
lation. In contrast, this work fully materializes a program’s control-
flow graph and uses it both for offline analysis and for post-link
time prefetch insertion on the binary level.

Profiling efforts, both on production WSCs [16] and on isolated
benchmarks [9, 15, 17], have previously identified i-cache misses
as a significant performance bottleneck. This work stems from
the same observations and dives into root-causes and solutions.
Recently, BOLT [25] was inspired by i-cache fragmentation findings
on benchmarks, confirmed by the fleetwide AsmDB results presented
here.

Front-end prefetching. Researchers have proposed a number of
prefetching techniques for reducing front-end stalls. Temporal
streaming prefetchers capture and replay instruction sequences
with high accuracy. However, they typically have enormous on-
chip storage costs in the range of hundreds of kilobytes per core [10,
11, 20] or per chip [18]. Recent streaming prefetchers have reduced
the required amount of on-chip storage [18–20]. However, they
still require several megabytes of total chip storage, making them
difficult to implement in commercial processors.

More recently, Boomerang [22] combines fetch-directed instruc-
tion prefetching [29] with BTB prefetching in a unified front-end
solution that addresses branch misspeculation in addition to in-
struction cache misses. However, it is still limited by BTB capacity.
Shotgun [21] addresses this limitation by optimizing BTB storage



ISCA ’19, June 22–26, 2019, Phoenix, AZ, USA Ayers and Nagendra, et al.

for macro-level control flow (i.e., unconditional branches) and lever-
aging spatial locality to capture micro-level conditional branch dis-
continuities. All these techniques rely on major hardware changes
– adding a prefetch engine, fetch target queue, prefetch buffer, an
instruction pre-decoder, and an entirely new BTB design (in the
case of Shotgun). These have not made it into datacenter-scale pro-
cessors so far, and each assumes significant complexity, cost, and
risk to implement.

Luk and Mowry [24] have the most similar approach to reduc-
ing i-cache misses compared to this work. They also insert code
prefetches with compiler help, after static control-flow analysis.
Static analysis relies on heuristics for branch outcomes, indirect
targets, and control flow which limits accuracy and significantly in-
creases size overheads. We leverage empirical dynamic program be-
havior to target only paths that are performance-critical. More cru-
cially, they rely on additional hardware to filter spurious prefetches
– both an active prefetch filter and additional metadata bits in all
i-caches. Our approach avoids spurious prefetches without the com-
plexities of additional hardware with a combination of dynamic
control-flow analysis and instruction miss profiles.

7 CONCLUSION
This paper focused on understanding and improving instruction
cache behavior, which is a critical performance constraint for WSC
applications. We developed AsmDB, a database for instruction and
basic-block information across thousands of WSC production bi-
naries, to characterize instruction cache miss working sets and
miss-causing instructions. We used these insights to motivate fine-
grain layout optimizations to split hot and cold code and better
utilize limited instruction cache capacity. We also proposed a new,
feedback-driven optimization that inserts software instructions for
code prefetching based on the control-flow information and miss
profiles in AsmDB. This prefetching optimization can cover up to
96% of instruction cache misses without significant changes to the
processor and while requiring only very simple front-end fetch
mechanisms.

ACKNOWLEDGMENTS
We would like to thank the anonymous reviewers and David Xin-
liang Li for their constructive feedback on drafts of this manuscript.
We reserve our special thanks for our colleagues at Google: the
platforms performance team for invaluable help with performance
measurement, the memtrace team for the infrastructure capable
of tracing large applications, and the GWP team for building and
maintaining WSC-scale profiling infrastructure.

REFERENCES
[1] Jennifer Anderson, Lance Berc, George Chrysos, Jeffrey Dean, Sanjay Ghemawat,

Jamey Hicks, Shun-Tak Leung, Mitch Lichtenberg, Mark Vandevoorde, Carl A
Waldspurger, et al. 1998. Transparent, low-overhead profiling on modern proces-
sors. In Workshop on Profile and Feedback-Directed Compilation.

[2] Grant Ayers, Jung Ho Ahn, Christos Kozyrakis, and Parthasarathy Ranganathan.
2018. Memory hierarchy for web search. In High Performance Computer Architec-
ture (HPCA).

[3] Luiz André Barroso, Urs Hölzle, and Parthasarathy Ranganathan. 2018. The data-
center as a computer: Designing warehouse-scale machines. Synthesis Lectures
on Computer Architecture (2018).

[4] Derek Bruening. 2004. Efficient, transparent, and comprehensive runtime code
manipulation. Ph.D. Dissertation. Massachusetts Institute of Technology.

[5] Dehao Chen, David Xinliang Li, and Tipp Moseley. 2016. AutoFDO: Automatic
feedback-directed optimization for warehouse-scale applications. In Code Gener-
ation and Optimization (CGO).

[6] Robert Cohn and P Geoffrey Lowney. 1996. Hot cold optimization of large
Windows/NT applications. In Microarchitecture (MICRO).

[7] Jeffrey Dean and Sanjay Ghemawat. 2004. MapReduce: simplified data processing
on large clusters. In Operating Systems Design and Implementation (OSDI).

[8] Stéphane Eranian. 2008. What can performance counters do for memory subsys-
tem analysis?. In Workshop on memory systems performance and correctness.

[9] Michael Ferdman, Babak Falsafi, Almutaz Adileh, Onur Kocberber, Stavros Volos,
Mohammad Alisafaee, Djordje Jevdjic, Cansu Kaynak, Adrian Daniel Popescu,
and Anastasia Ailamaki. 2012. Clearing the clouds. In Architectural Support for
Programming Languages and Operating Systems (ASPLOS).

[10] Michael Ferdman, Cansu Kaynak, and Babak Falsafi. 2011. Proactive instruction
fetch. In Microarchitecture (MICRO).

[11] Michael Ferdman, Thomas F Wenisch, Anastasia Ailamaki, Babak Falsafi, and An-
dreas Moshovos. 2008. Temporal instruction fetch streaming. InMicroarchitecture
(MICRO).

[12] Paul Havlak. 1997. Nesting of reducible and irreducible loops. Transactions on
Programming Languages and Systems (TOPLAS) (1997).

[13] John L Hennessy and David A Patterson. 2012. Computer architecture: a quanti-
tative approach.

[14] Robert Hundt. 2011. Loop recognition in C++/Java/Go/Scala. Scala Days (2011).
[15] Zhen Jia, Lei Wang, Jianfeng Zhan, Lixin Zhang, and Chunjie Luo. 2013. Charac-

terizing data analysis workloads in data centers. InWorkload Characterization
(IISWC).

[16] Svilen Kanev, Juan Pablo Darago, Kim Hazelwood, Parthasarathy Ranganathan,
Tipp Moseley, Gu-Yeon Wei, and David Brooks. 2015. Profiling a warehouse-scale
computer. In Computer Architecture (ISCA).

[17] Harshad Kasture and Daniel Sanchez. 2016. TailBench: A benchmark suite and
evaluation methodology for latency-critical applications. In Workload Character-
ization (IISWC).

[18] Cansu Kaynak, Boris Grot, and Babak Falsafi. 2013. Shift: Shared history instruc-
tion fetch for lean-core server processors. In Microarchitecture (MICRO).

[19] Cansu Kaynak, Boris Grot, and Babak Falsafi. 2015. Confluence: Unified instruc-
tion supply for scale-out servers. In Microarchitecture (MICRO).

[20] Aasheesh Kolli, Ali Saidi, and Thomas F Wenisch. 2013. RDIP: Return-address-
stack directed instruction prefetching. In Microarchitecture (MICRO).

[21] Rakesh Kumar, Boris Grot, and Vijay Nagarajan. 2018. Blasting through the
front-end bottleneck with shotgun. In Architectural Support for Programming
Languages and Operating Systems (ASPLOS).

[22] Rakesh Kumar, Cheng-Chieh Huang, Boris Grot, and Vijay Nagarajan. 2017.
Boomerang: A metadata-free architecture for control flow delivery. In High
Performance Computer Architecture (HPCA).

[23] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff
Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. 2005. Pin:
Building customized program analysis tools with dynamic instrumentation. In
ACM SIGPLAN.

[24] Chi-Keung Luk and Todd C Mowry. 1998. Cooperative prefetching: Compiler
and hardware support for effective instruction prefetching in modern processors.
In Microarchitecture (MICRO).

[25] Maksim Panchenko, Rafael Auler, Bill Nell, and Guilherme Ottoni. 2019. BOLT:
A Practical Binary Optimizer for Data Centers and Beyond. In Code Generation
and Optimization (CGO).

[26] David A Patterson. 2008. The data center is the computer. Commun. ACM (2008).
[27] Tribuvan Kumar Prakash and Lu Peng. 2008. Performance characterization of

spec cpu2006 benchmarks on intel core 2 duo processor. ISAST Transactions on
Computer Software Engineering (2008).

[28] Muhammad Yasir Qadri, Nadia N Qadri, Martin Fleury, and Klaus D McDonald-
Maier. 2015. Software-Controlled Instruction Prefetch Buffering for Low-End
Processors. Journal of Circuits, Systems and Computers (2015).

[29] Glenn Reinman, Brad Calder, and Todd Austin. 1999. Fetch directed instruction
prefetching. In Microarchitecture (MICRO).

[30] Gang Ren, Eric Tune, TippMoseley, Yixin Shi, Silvius Rus, and Robert Hundt. 2010.
Google-wide profiling: A continuous profiling infrastructure for data centers.
IEEE Micro (2010).

[31] Daniel Sanchez and Christos Kozyrakis. 2013. ZSim: fast and accurate microarchi-
tectural simulation of thousand-core systems. In Computer Architecture (ISCA).

[32] Tom Way and Lori Pollock. 2002. Evaluation of a region-based partial inlining
algorithm for an ILP optimizing compiler. In Parallel and Distributed Processing
Techniques and Applications (PDPTA).

[33] Ahmad Yasin. 2014. A Top-Down method for performance analysis and counters
architecture. (2014).


	Abstract
	1 Introduction
	2 AsmDB
	3 Where are the misses coming from?
	3.1 Miss working sets
	3.2 Miss-causing instructions

	4 Code bloat and fragmentation
	4.1 Code bloat
	4.2 Intra-function fragmentation
	4.3 Intra-cacheline fragmentation
	4.4 Memcmp and the perils of micro-optimization

	5 Software Prefetching For Code
	5.1 Requirements
	5.2 Software prefetch challenges
	5.3 Ensuring timeliness
	5.4 Prefetch injection procedure
	5.5 Evaluation methodology
	5.6 Prefetching results

	6 Related work
	7 Conclusion
	Acknowledgments
	References

