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Abstract

Hyperthreaded (HT) and simultaneous multithreaded
(SMT) processors are now availablein commodity wor ksta-
tions and servers. This technology is designed to increase
throughput by executing multiple concurrent threads on a
single physical processor. These multiple threads share the
processor’s functional units and on-chip memory hierarchy
in an attempt to make better use of idle resources. Most
OpenMP applications have been written assuming an Sym-
metric Multiprocessor (SMP), not an SMT, model. Threads
executing on the same physical processor have interactions
on data locality and resource sharing that do not occur on
traditional SMPs. Thiswork focuses on tuning the behavior
of OpenMP applications executing on SMPswith SMT pro-
cessors. We propose two adaptive loop schedulers that de-
termine effective hierarchical schedulersfor individual par-
allel loops. We compare the performance of our two pro-
posed schedulers against several standard schedulers and
the per-region adaptive scheduler proposed by Zhang et al.
using the SPEC and NAS OpenMP benchmark suites. We
show that both of our proposed schedulers outperform all
other schedulers on average, and increase speedup on av-
erage by over 25% when all thread contexts are used.

1. Introduction

Hyperthreaded (HT) [5] and simultaneous multithreaded
(SMT) [10] processors are now available in commodity sys-
tems®. SMTs allow multiple threads to execute concurrently
on a single physical processor. In this work, we focus on
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1 Weshall use SMT and HT interchangeably in this paper

tuning the behavior of OpenMP applications executing on
Hyperthreaded SMPs. OpenMP and SMT processors repre-
sent emerging entry-points for new parallel programmers.
It is therefore important for the success of both technolo-
gies that they work well together.

Unfortunately, understanding and controlling the perfor-
mance of OpenMP applications on SMT processors is non-
trivial. To understand their combined performance, three
application characteristics must be considered: (1) inter-
thread data locality, (2) instruction mix and (3) SMT-related
load imbalance.

The choice of threads to be co-located on a processor is
important to exploit inter-thread data locality. Data that has
been recently accessed by a thread can be accessed more
quickly by a co-located thread (a thread executing on the
same physical processor) than by a non-co-located thread.
Likewise, the instruction mix of each thread affects com-
bined performance, since they compete for functional units.
Finally, most OpenMP applications have been written as-
suming an SMP model. Given the unique interaction of data
locality and instruction mix on program performance, codes
executing on a Hyperthreaded SMP may show load imbal-
ances for loops that are well balanced on a true SMP.

To address these issues, Zhang et al. [13] proposed a
self-tuning OpenMP loop scheduler. We refer to the sched-
uler from [13] as a Region-based adaptive scheduler (RBS).
RBS is designed to react to behavior caused by the three im-
portant application characteristics outlined above, automat-
ically selecting the number of threads and scheduling pol-
icy that should be used for each parallel region.

However, RBS was designed under the assumption that
parallel regions contain a single parallel loop. In [13], RBS
was evaluated on the SPEC OpenMP benchmarks, where
this assumption often holds. RBS was shown to outper-
form a wide range of traditional single-level non-adaptive
schedulers. In this paper, we show that RBS does not per-
form well on benchmarks that break this assumption. To ad-
dress this issue, we propose two alternative adaptive sched-



ulers: (1) a Loop-based Scheduler (LBS) that makes deci-
sions at the granularity of individual parallel loops and (2)
a Hardware-Counter Directed Scheduler (HCS) that uses
hardware counters to sample performance of parallel loops
and quickly decide on a good scheduler using a decision
tree that is created off-line. We show that both the LBS
and HCS outperform a number of single-level non-adaptive
schedulers as well as RBS for a range of benchmarks.

2. Related Work

The OpenMP API The OpenMP API has become the in-
dustry standard for loop-level shared-memory parallel pro-
gramming [2, 9, 8]. In this work, we extend the Omni
OpenMP research compiler [7]. The OpenMP API supports
general parallel regions, parallel sections and parallel loops.
Figure 1 shows an example of a parallel OpenMP loop in C.

#pragma onp parall el

#pragma for shared(a,b) private(i,j) \
schedul e(runti ne)

for (i =0; i < 100; i++) {

for (j =0; j <100; j++) {

ali][j] =ali][j] + b[i][jl];
}
}

Figure 1. An example of a parallel loop in
C. The schedul e(runti ne) clause specifies
that the scheduler will be selected by the user
at runtime through an environment variable.

Adaptive Loop Scheduling Properly selecting the schedul-
ing policy for parallel loops can result in large performance
gains. A number of groups have investigated runtime tech-
niques for selecting loop schedules to improve performance.
In [1], an adaptive scheduler is designed for the IBM XLF
OpenMP compiler that derives the best scheduling policy
for each parallel loop at runtime. In [1], the target system
is an SMP and no decisions are made to reduce the num-
ber of threads used by the loops.

In [3], a system is proposed that adaptively adjusts the
number of threads assigned to applications to increase the
throughput of a multiprogram workload on an SMP. In con-
trast to [3], our work focuses on the speed of applications
on a dedicated system. In [12], parallel loops are dynam-
ically serialized to avoid overheads that cannot be amor-
tized by parallel execution. Unlike our work, the work in
[12] finds loops that have sufficient work to amortize par-
allelization overheads. The work presented here proposes a
general self-tuning loop scheduler.

Zhang et al. [13] propose an adaptive hierarchical sched-
uler that targets SMPs builts from SMT nodes. Their sched-
uler, referred to as Region-based Scheduler (RBS) in this
paper, makes decisions at the granularity of parallel regions.
This paper extends the work in [13]. Our evaluation is also
performed on both the SPEC and NAS OpenMP bench-
marks suites, whereas in [13] only the SPEC benchmarks
were evaluated.

3. Standard and Novel Loop Schedulers

In OpenMP, a parallel loop can be specified using an onp
f or construct in a C/C++ program and an onp do direc-
tive in a Fortran program. Figure 1 shows an example of
a parallel loop written in C and Fortran using the OpenMP
API. While the example shows only a single loop in the par-
allel region, there may be more than one parallel loop per
parallel region. The OpenMP compiler converts the paral-
lel regions into thread-based code with calls to the OpenMP
runtime library to perform synchronization and scheduling
of the parallel loops, as shown in Figure 2.

_onmpc_runtinme_sched_init (_p_i_0, _p_i_1,
_p_i_2);
while (_ompc_runtine_sched_next (& p_i_0,
& p_i_1)) {
for (i = _p_i_0;
i < _p_i_1;
i += _p_i_2) {
for (j =0; j < (100; j++) {
} ali][j] =a[illi] + b[i]l[j];
}
}

Figure 2. A loop with a schedule(runtime)
pragma as transformed by the Omni com-
piler.

The region shown in Figure 2 has been outlined into a
subroutine by the Omni compiler. At the location in the code
where the region is to be executed, a call to the Omni sched-
uler (_ompc_do_par al | el ) is made with a pointer to the
outlined function as an argument. The runtime system cre-
ates a team of threads to execute the region and passes each
of them a copy of the function pointer. As each thread ex-
ecutes a parallel loop in the outlined code, they make a
call to _onpc_runti ne_sched.i nit which initializes
the user-selected scheduler for that loop. In each iteration of
the while loop, the call to _.onpc _r unt i me_sched_next
returns a chunk of iterations for the thread to perform.



Each thread continues to execute the while loop until
_onpc_runti me_sched_next returns zero.

3.1. Single-level Schedulers

In this paper, we evaluate several different adaptive
scheduling methods and their effect on the performance of
applications executed on a Hyperthreaded SMP. Table 1
describes the traditional single-level schedulers we com-
pared our techniques to, including the standard OpenMP
loop schedulers (static, dynamic and guided), as well as two
advanced schedulers from the literature (affinity and trape-
zoidal self-scheduling). These schedulers were designed to
target symmetric multiprocessors. As described in Table 1,
each scheduler was designed to improve the performance
of particular classes of loops, i.e. loops with poor load bal-
ance or specific data locality patterns.

As will be demonstrated in Section 4, none of the loop
schedulers described in Table 1 effectively react to OpenMP
applications executing on SMPs with SMT nodes. In the
next sections, we describe three self-tuning algorithms that
are designed to exploit the unique features of SMPs built
from SMT nodes.

3.2. RBSAdaptiveHierarchical Scheduler

Zhang et al. [13] proposed an advanced self-tuning
scheduler tailored specifically for this domain, which we
shall refer to as the Region-based Scheduler (RBS). We will
first provide an overview of the RBS and then present our
extensions of this approach.

As shown in Table 2, most execution time in the SPEC
and NAS benchmarks is spent in parallel loops that are ex-
ecuted more than 40 times. RBS leverages this behavior, by
using the runtime history of a loop to better select a sched-
uler for it. A pseudo-code description of RBS is found in
Figure 3 and is described in detail in this section.

RBS uses a two-level hierarchical scheduler as shown
in Figure 4. Two-level scheduling is based on the obser-
vation that not all processors in a Hyperthreaded SMP are
equal: the virtual processors and their physical siblings
share the same cache and functional resources. The hierar-
chical scheduler exploits this aspect by grouping the pro-
cessors into nodes (e.g., on our 2-way Hyperthreaded 4-
processor system, we have 4 nodes of 2 processors each).
The scheduler assigns iterations to nodes by using what we
will hereafter refer to as “the upper algorithm”, and then at
each node the iterations will be further distributed between
the two siblings using a “lower algorithm” 2.

Since it is difficult to make an a priori decision about
which scheduler to use for any given region, RBS is

2 While our system provides only 2 threads per physical processor, this
scheme can easily be generalized for nodes with T threads.

Benchmark | < 10 times | 10 <times <40 | > 40 times |

ammp 0% 0% 84.20%
apsi 0% 0% 82.55%
art 100% 0% 0%
equake 0.05% 0% 98.23%
mgrid 0% 0.11% 95.95%
swim 0.09% 0% 99.25%
wupwise 0.12% 0% 99.49%
bt.W 0% 0% 100%
cg.A 0.92% 3.5% 92.57%
ep.A 100% 0% 0%
mg.A 12.73% 12.87% 71.91%
sp.W 1.02% 0% 92.71%

Table 2. Number of calls to parallel loops and
their percentage of total execution time

also adaptive. It samples the performance of a number of
scheduling methods at runtime to determine which sched-
uler performs the best for each region. RBS samples all of
the schedulers described in Table 1. It begins by searching
for a best upper-level algorithm. Only 1 thread is used per
physical processor during this Upper-level search phase. At
each invocation of each parallel region, a different schedul-
ing method is used for all of the parallel loops within the re-
gion and the execution time is collected. After all schedul-
ing methods have been sampled for a given region, the al-
gorithm with the smallest execution time is selected as best.

At each invocation, the complexity of the region, as
calculated from the loop bounds of the contained parallel
loops, is also passed to the runtime system. If the work
varies between invocations, the sampling will be inaccurate
and the system bails out, using affinity scheduling with 4
threads for all subsequent invocations of the region.

After the Upper-level search phase is complete, RBS has
selected an upper-level algorithm that has the best perfor-
mance for that region. This choice will be fixed as the up-
per algorithm. The scheduler will then enter a Lower-level
search phase (see Figure 3). During this phase it will use 2
threads per SMT processor.

It begins by sampling the per-thread execution times for
this region when using the static scheduler as the lower al-
gorithm for all parallel loops in the region. If per-thread
timings indicate that no load imbalance is seen between
sibling threads across all loops, there is no need to exam-
ine other schedulers, and static will be asserted as the best
lower-level choice. If during the Lower-level search phase,
per-thread execution times exhibited by the static scheduler
show an imbalance, other load balancing scheduling algo-
rithms must be sampled.

The execution time obtained by the best performing two-
level algorithm (using 2 threads per node) will be compared



Algorithm | Description

Static The static OpenMP scheduler divides the iterations of a loop among the threads by handing out chunks of N iterations in a round-robin
fashion. The size of the chunks can be statically set by the user by explicitly specifying an n in the schedul e directive.

If no chunk size is provided, the iterations are divided into P evenly sized contiguous chunks, where P is the number of processors.
Since the schedule can be statically determined, this method has the least runtime overhead.

Dynamic

The dynamic scheduler divides the iterations among the threads by handing out chunks of n iterations on a first-come, first-served
basis. If no chunk size is specified, a single iteration is provided. In this paper, we will assume that dynamic scheduling always
uses a chunk size of 1. Dynamic schedulers are used for computations that have a load imbalance if distributed statically.

Guided The guided scheduler works in a fashion similar to the dynamic scheduler, except that the size of the assigned chunks decreases
exponentially (to n, if one is specified, and to 1 otherwise). Each time a new chunk is assigned, its size is approximately the

number of remaining (i.e., unassigned) iterations divided by the number of threads. The chunk sizes in guided scheduling begin large
and slowly decrease in size, resulting in fewer synchronizations than with dynamic scheduling, while still providing load balancing.

Affinity

The affinity-based scheduler [4] addresses the problem of the significant communication

overhead incurred by addressing non-local data on shared-memory multiprocessors. It uses work queues for each processor, to which it
statically distributes the iterations of the loop. Each processor retrieves only a small fraction of these iterations at a time; when

a processor’s queue is empty, it removes a fraction of the iterations from the most loaded processor’s queue. Load imbalance is
addressed by dynamic reassignment of iterations from the most loaded processors to the idle ones. This scheduling algorithm is
particularly efficient when the same data is used repeatedly by the same processor during different invocations of a parallel loop.

Trapezoidal

Trapezoid self-scheduling[11], like both dynamic and guided scheduling, is designed to distribute work more evenly to threads
by doing runtime load balancing. TSS provides a linearly decreasing number of iterations per request. It is argued in [11] that
this linear function is faster to compute than the exponential function used by guided, and that the decreasing chunk size will still
yield substantially fewer synchronizations than dynamic scheduling.

BEG N Upper - | evel search phase
deactivate | ower-level sched
activate only 1 thread per SMI node
FOR al | sched s
| F wor kl oad vari es THEN bai |l out ENDI F
sanpl e performance using sched s
ENDFOR
SET upper-level to best perform ng sched
SET T1 to execution time with best sched
END Upper -1 evel search phase

BEG N Lower - | evel search phase
activate 2 threads per SMI node
activate the | ower-I|evel sched
SET | ower -1l evel sched to static
sanpl e 2-1evel best-upper-alg/static sched
| F per-thread tinmes show i nbal ance across
si bli ngs
FOR all sched s
sanpl e performance of best-upper-alg/s
if per-thread times are now bal anced
end | oop
ENDFOR
ENDI F
SET T2 to execution tine with best 2-1eve
SET | ower -1l evel sched to best 2-1evel sched
IFT1 < T2
deactivate | ower-|evel sched
activate only 1 thread per SMI node
ENDI F
END Lower -1 evel search phase

Figure 3. The adaptive hierarchical schedul-
ing algorithm used by RBS and LBS.

against the execution time of the best upper-only execution
time (using 1 thread per node). If the 1-thread-per-SMT ver-
sion performs better, the second thread on each SMT will be
disabled for subsequent executions of this region, and the
previously determined best upper-algorithm will be used to
schedule iterations across the physical processors only. Oth-
erwise, the best two-level scheduler will be used for all sub-

[ Loop Iterations |
Upper Level
Scheduler

[ terations for Processor 0| [ lterations for Processor1 | 000

Iterations for Processor P

Lower Level
Scheduler
Tterations for |[ Iterations for
sibling 0 sibling 1

Lower Level Lower Level
Scheduler Scheduler

Iterations for | terations for
sibling 0 sibling 1

Iterations for || Iterations for
sibling 0 sibling 1

Figure 4. The structure of the hierarchical
scheduler used by RBS, LBS and HCS.

sequent executions.

Since the default loop scheduler used by an OpenMP
runtime library is implementation dependent [9, 8], loops
that do not include a schedul e pragma cannot assume
that any particular thread will execute any of its iterations.
However, all threads must (and will) execute code not found
within work-sharing constructs (such as parallel loops).
Therefore 8 threads are used to execute all code that falls
outside of parallel loops but within the parallel region, en-
suring correct execution.

To reduce the complexity of the required book keep-
ing, our implementation allows only 1 parallel loop to be
active at a time. This requires the addition of a barrier
at the beginning of _onpc_runti me_sched.init. In
OpenMP, there are implicit barriers at the end of paral-
lel loops that can be removed by the use of a NOMI T
pragma. Due to the added barrier in our implementation
of both RBS, two consecutive parallel loops will always
be separated by a barrier even if a NOMI T pragma is
specified by the user. However, since the barrier occurs in
_onpc_runti me_sched. ni t, it is a subsequent paral-



lel loop that includes the barrier. Therefore a NOMI T loop
will continue to execute code after the parallel loop until a
subsequent parallel loop is encountered.

In [13], RBS was evaluated across a subset of the SPEC
OpenMP Benchmarks and was shown to outperform all
other single-level schedulers. It should be noted that in Ta-
ble 3, the parallel regions in the SPEC benchmarks often
have only 1 parallel loop per region. Only wupwi se has
a region with more than 1 parallel loop. Therefore the as-
sumption made by RBS that the scheduler can be set per re-
gion is acceptable for these benchmarks. However, it is clear
for other applications, such as those in the NAS OpenMP
benchmark suite, this assumption does not hold.

3.3. LBSAdaptive Hierarchical Scheduler

As shown in Table 3, there are often multiple parallel
loops per region. To address this, we propose a Loop-based
(LBS) implementation of Figure 3. The algorithm remains
unchanged, except that instead of making decisions at the
granularity of a parallel region, decisions are made at the
granularity of each parallel loop.

To reduce the complexity of the required book keeping,
our implementation of LBS contains the same additional
barrier used by RBS in _onpc_runti ne_sched. nit.
However, dropping the 1-loop-per-region assumption com-
plicates the design of the system and adds the need for ad-
ditional synchronizations. In RBS, timestamps are taken
by each thread only at the beginning and end of each
parallel region. In LBS, timestamps must be collected at
each call to _.onpc_runti me_sched.init and at the
last call by each thread to _onpc r unt i ne_sched_next
for the loop being sampled. Therefore, during the initial
sampling phase, an additional barrier is enforced at the
end of each parallel loop so that accurate timings can
be made. This additional end-of-loop barrier can be re-
moved for NOWAI T loops after a final decision on the
configuration for this loop has been made. The barrier in
_onmpc_runti nme_sched.i ni t however remains.

LBS allows decisions to be made at the loop level; how-
ever it requires more instrumentation (timestamps at each
loop) as well as forces additional barriers between parallel
loops in the same region even if NOWAI T has been speci-
fied 3.

3.4. HCS Scheduler
Our Hardware-Counter Directed Scheduler (HCS) short-

circuits the sampling phases of Figure 3 by choosing the
runtime scheduler according to the characteristics of a loop,

3 We are currently investigating methods for removing these extra bar-
riers in both RBS and LBS

such as its cache miss rate, number of floating point oper-
ations, load imbalance etc. HCS measures metrics during
a single invocation of a loop and uses a decision tree, cre-
ated off-line, to immediately select the appropriate hierar-
chical scheduler. The decision tree is created automatically
in an off-line step that profiles benchmarks using the vari-
ous schedulers and feeds the profile data to clustering soft-
ware to generate the selection rules. This step creates a sin-
gle tree that is used across all benchmarks. Figure 5 shows
the modified algorithm used by HCS.

BEG N HCS schedul i ng

activate only 1 thread per SMI node
execute the loop in the first warmup run

activate 2 threads per SMI node
SET upper-level scheduler to Static
SET | owerer-1level scheduler to Static

col l ect nunber of mcro-operations
nunber of |oad/store instructions
nunber of floating point operations
nunber of cache mi sses
in this run

apply decision tree to make a decision for
subsequent executions

Figure 5. The modified adaptive loop sched-
uler algorithm used by the HCS scheduler.

To generate the decision tree used in Figure 5, training
data is collected from a subset of the benchmarks in Ta-
ble 3. The data collected for each parallel loop includes: the
number of micro-operations executed, the number of load-
store operations, the number of floating point operations,
the number of cache misses and the load imbalance (the dif-
ference between the fastest thread and slowest thread). The
training phase executes each loop with all possible schedul-
ing configurations, noting which configuration shows the
best execution time.

The data collected during the training phase is used by
the C4.5 [6] classification software to automatically gen-
erate a decision tree. Each tree node corresponds to a sim-
ple question based on the collected metrics, with its children
corresponding to alternative answers. Leaf nodes nodes cor-
respond to a specific scheduling decision. The decision tree
generated by C4.5 is currently integrated by hand into the
implementation of our Hardware-Counter Scheduler. This
could easily be done automatically and deployed as an
install-time empirical optimization system.

At runtime, HCS begins by executing each loop with 1
thread per SMT processor, using a static scheduling policy
to warm up the instruction and data caches. During the sec-
ond invocation of the loop, it uses 2 threads per node and



Name Source Lines Regions Regions with | Parallel | Modified Time on
with 1 loop > 1 loop Loops Loops 1 CPU (sec)

ammp SpecOMP | 14688 5 0 10 9 364
apsi SpecOMP | 7744 24 0 24 24 378
art SpecOMP | 1917 3 0 3 2 214
equake SpecOMP | 1622 11 0 11 10 231
mgrid SpecOMP 683 11 0 11 11 740
swim SpecOMP 462 8 0 8 8 514
wupwise | SpecOMP | 2506 6 2 10 10 1189
bt NAS2004 | 3731 6 4 14 14 1907
cg NAS2004 | 1106 4 5 18 18 14.98
ep NAS2004 291 3 0 3 3 80.77
mg NAS2004 | 1446 8 3 16 13 21.41
sp NAS2004 | 3203 9 4 29 29 50.84

samples the same characteristics collected during the train-
ing phase (i.e. number of cache misses, etc...). This data
is used to traverse the decision tree and predict the sched-
uler best suited to the loop. At each subsequent execution
of the loop, this predicted best scheduler is used. As with
the RBS and LBS approaches, the final scheduler can use 4
or 8 threads, and any hierarchical combination of the sched-
ulers described in Table 1.

The HCS approach uses the hierarchical scheduler used
by RBS and LBS, but attempts to remove the overheads in-
curred by the sampling of sub-optimal variants. It short cir-
cuits the sampling of the RBS and LBS techniques by us-
ing a decision tree to quickly determine the best applicable
scheduler after only a single execution of the region.

4. Experimental Evaluation

4.1. Methodology

We evaluate the performance of our scheduling methods
using a 4-processor Hyperthreaded Xeon server. The server
has four 2.8 GHz Hyperthreaded Xeon processors and a 16
GB main memory. Each processor has a 512 KB L2 data
cache and a 1 MB L3 data cache. The system runs Redhat
Linux 7.3 with a slightly modified version of the 2.4.18-
smp kernel 4. In all of our experiments, we use explicit
binding to ensure that threads are evenly distributed among
the physical processors. We investigate the performance of
the 13 benchmark programs from the SpecOMP2001 and
NAS2004 benchmark suite shows in Table 3. °

To allow us to perform our experiments, runtime
scheduling directives were added to all of the major par-
allel loops in these benchmarks. Loops that explicitly spec-

4 We added a system call to allow threads to be bound to processors

5 For SPEC, we evaluated only the C and Fortran 77 benchmarks since
Omni does not currently support Fortran 90, therefore gafort, galgel
and fma3d are not included. In addition there is a known bug in the
Omni runtime library which precludes the execution of applu. For
NAS, ft, is, lu and ua likewise did not validate with Omni and were
therefore not included in our study.

ified schedulers using a schedul e clause were not mod-
ified. As shown in Table 3, the large majority of loops in
these programs have no schedule clause in the original code.

4.2. Benchmark Scaling on a Hyperthreaded SMP

We first compiled our benchmark suite with the Omni re-
search compiler (version 1.4a). Figure 6 shows the speedup
of each of the original unmodified applications when exe-
cuted on 1 through 8 threads. It is important to note that
when only the physical processors are used, performance
increases with the number of threads. When 1 or more of
the sibling threads are active, performance no longer scales.
For many benchmarks, using only the physical processors
leads to better performance. The average speedup on 4 pro-
cessors is 2.78. On 8 virtual processors, the Omni compiler
shows an average speedup of 2.31 across the benchmarks.
It is clear that using the extra thread on each processor is
rarely of benefit.

up to 1 thread per physical proc.

up to 2 threads per physical proc.

—o—ammp
—CO—apsi
—t—art
—>=—equake
—X=—mgrid
—o=—swim
— =wupwise
= = btw
—--cg.A
—+—ep.A
—a—ftA
—a—mg.A
—e—sp.W

Number of Threads

Figure 6. The speedup on 1 through 8 proces-
sors using the Omni research compiler with
the original parallel applications.




4.3. Single-Level Non-Adaptive Schedulers

The speedups for the original applications are poor as
shown in Figure 6. To investigate the effect of more ad-
vanced schedulers on this performance, we executed the
benchmarks with 4 and 8 threads using several single-
level non-adaptive scheduling algorithms: static, dynamic,
guided, affinity (afs) and trapezoidal self-scheduling (tss).
Since affinity and tss are not available in standard OpenMP
compilers, we modified Omni to support these algorithms.
Figure 7 shows the results of these scheduling methods (as
well as RBS, LBS and HCS) applied to these benchmarks
when executed on 4 and 8 processors.

static
Odynamic
B guided
Dafs
mtss
original
ORBS
oLBsS
WHCS

static
Odynamic
B guided
Dafs
mtss
original
ORBS
oLBsS
WHCS

Figure 7. The speedup of applications using
different schedulers when (a) only the 4 phys-
ical processors are used and (b) when all 8
virtual processors are used.

As shown in Figure 7(a), static shows a speedup of 2.66
on average across the benchmarks. The dynamic scheduler,
performed very poorly on apsi, equake, wupwise and cg,
resulting in an average speedup of only 1.87. Guided, which
still performs runtime load balancing but with a lower over-
head than dynamic, had an average speedup of 2.71. The

affinity scheduler (afs) shows large improvements in most
benchmarks and has an average speedup of 2.74.

When 8 threads are used, as shown in Figure 7(b), sig-
nificant decreases in speedups can be seen for a number
of benchmarks. The average speedups drop by 14% when
using the runtime static scheduler. The dynamic sched-
uler sees an 8% decrease in speedup on average. Similarly,
guided sees a loss of 12%, and afs a loss of 7%. Trape-
zoidal self-scheduling sees an average loss of 7.4%. The
method with the highest average performance is afs with an
improvement of 6.2% over the next best scheduling method
on 8 processors (guided). However, even afs shows a bet-
ter average performance when using only 4 threads.

4.4, Adaptive Schedulers

We evaluated the adaptive schedulers described in
Section 3: the Region-Based scheduler(RBS), the Loop-
Based Scheduler(LBS), and the Hardware-Counter Sched-
uler (HCS). The performance of the adaptive and non-
adaptive schedulers is shown in Figure 7. The performance
of each scheduler relative to the single-level schedulers is
shown in Figures 12 - 14.

RBS. In [13], RBS was evaluated on a subset of the SPEC
OMP2001 benchmarks and was shown to outperform all
single-level schedulers on both 4 and 8 processors. Con-
trary to the results in [13], Figure 12 shows that RBS does
not perform well on average when applications with more
than 1 parallel loop per region are included. Due to space
constraints, we show results only for 8 threads. On 4 pro-
cessors (not shown), it is outperformed on average by static,
guided and afs on the NAS benchmarks. On 8 processors, as
shown in Figure 12, its relative performance increases since
it can decide to use only 4 processors for some regions.
However on average for 8 processors, both guided and afs
are still faster for benchmarks taken from NAS. When us-
ing 4 threads, RBS is outperformed overall by both static
and afs. When using 8 threads, RBS outperforms all sched-
ulers overall, although it’s performance on the NAS bench-
marks is poor. Figure 8(a) shows the improvement of RBS
relative to the best single-level scheduler for each bench-
mark as well as the original unmodified application.

The decisions selected by RBS, shown in Figure 8(b),
show that a variety of scheduler configurations are used
across the benchmarks. While RBS performs well on the
SPEC benchmarks, the one loop per region assumption
causes its performance to suffer on the NAS benchmarks. It
should be noted that in both ngr i d and ng, the work per-
formed by the parallel loops vary at each invocation and so
both RBS and LBS (Figure 13) bail-out on all regions.

LBS InFigure 7, the Loop-Based Scheduler (LBS) outper-
forms all other schedulers on average when using either 4
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Figure 8. The improvement of RBS over the
best single-level schedulers and the original
unmodified benchmarks: (a) the percent in-
crease that would be seen by using the RBS
and (b) the choices made by RBS for each
benchmark. “min on 4” corresponds to the
best single-level scheduler for each bench-
mark when using 4 threads. “min on 8” corre-
sponds to the best single-level scheduler for
each benchmark when using 8 threads.

or 8 threads. However as shown in Figure 13, it is outper-
formed by guided on NAS when using 8 threads (this is also
true for 4 threads). Unlike RBS, the LBS selects the best
single-level scheduler to use for each parallel loop when us-
ing 4 threads. On 8 threads, the LBS uses the full algorithm
presented in Figure 3. The average improvement gained by
using the LBS over RBS on 8 threads is almost 16%. Fig-
ure 9(a) shows the improvement of LBS relative to the best
single-level scheduler for each benchmark as well as the
original unmodified application. The decisions selected by
LBS are shown in Figure 8(b). When each loop is consid-
ered independently, the selected schedulers differs consid-
erable from RBS. For example, in ammp afs-static and tss-
static is selected for 60% of the regions using RBS, while
LBS selects guided/4 and guided-static for 60% of the par-
allel loops.

Figure 10 shows an example where LBS benfits from the
ability to select multiple schedulers for a single region. In
this region, RBS chooses static-static 8 threads, resulting in
a total execution time of 1.64 seconds. LBS chooses static-
static 8 threads for the first loop, and tss using 4 threads for
the second and third loop, resulting in a total execution time
of 1.40 seconds, a reduction of 15%.
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Figure 9. The improvement of LBS over the
best single-level schedulers and the original
unmodified applications: (a) the percent in-
crease in performance that would be seen by
using LBS and (b) the choices made by the
LBS for each benchmark. “min on 4” corre-
sponds to the best single-level scheduler for
each benchmark when using 4 threads. “min
on 8” corresponds to the best single-level
scheduler for each benchmark when using 8
threads.

HCS. HCS likewise has better performance then RBS and
all single-level schedulers overall, as shown in Figure 14.
Using the decision tree to short circuit the sampling phases
of RBS and LBS, HCS arrives at accurate decisions with
lower overhead. It does not need to sample sub-optimal
variants, but instead quickly begins using a efficient sched-



!'$onp parall el default(shared) private(i,j,k)
I'$onp do schedul e(runti nme)
do j=1,lastrowfirstrowtl
do k=rowstr(j),rowstr(j+1)-1
colidx(k) = colidx(k) - firstcol + 1
enddo
enddo
!'$onp end do nowai t
! $onp do schedul e(runti ne)
doi =1, na+l
x(i) = 1.0D0
enddo
!'$onp end do nowait
! $onp do schedul e(runti ne)
do j=1, lastcol-firstcol +1
q(j) 0. 0d0
z(j) 0. 0d0
r(j) 0. 0d0
p(j) 0. 0d0
enddo
!'$onp end do nowait
!'$onp end paralle

Figure 10. The loops in a region from CG.

uler. The average improvement gained by using the HCS
over other single-level loop schedulers are above 9%. Fig-
ure 11(a) shows the improvement of HCS relative to the best
single-level scheduler for each benchmark as well as the
original unmodified application. The decisions selected by
HCS are shown in Figure 8(b). Again, HCS makes different
choices as compared to both RBS and LBS. In many cases,
several schedulers have comparable performance, HCS se-
lects a good scheduler with low overhead, offering perfor-
mance that is comparable to LBS on average.

Both LBS and HCS show better performance than any
single-level scheduler on 4 or 8 threads. In addition, on av-
erage they both outperform the best performing schedulers
for a fixed number of threads. Both LBS and HCS using 8
threads show an average improvement of 4% over the orig-
inal applications when executed using 4 threads, and 27%
over the original applications when executing on 8 threads.
RBS when using 8 threads shows a loss of 10% over the
original application on 4 threads, and a gain of only 9% over
the original application executed on 8 threads. The best av-
erage speedup is achieved by LBS executing with 8 threads.

5. Conclusions

Simultaneous multithreaded (SMT) and Hyperthreaded
(HT) processors allow multiple threads to execute concur-
rently on a single physical processor. The unique features of
SMT processors make it difficult to determine when to use
these extra threads. Ideally, a user could view the threads on
an SMT as virtual processors, and execute parallel applica-
tions assuming that these virtually processors are all equal.
In Section 4, we show that it is sometimes better to execute
OpenMP applications using only a single thread per physi-
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Figure 11. The improvement of HCS over the
perfect single-level schedulers: (a) the per-
cent increase in performance that would be
seen by using the HCS and (b) the choices
made by the HCS for each benchmark. “Per-
fect on 4” corresponds to the best single-
level scheduler for each benchmark when us-
ing 4 threads. “Perfect on 8” corresponds
to the best single-level scheduler for each
benchmark when using 8 threads.

cal processor. Using the additional virtual processors often
results in worse performance.

In Section 3, we propose extensions of the Region-
based Scheduler (RBS) described in [13]. Our schedulers
exploit the two-level structure of SMPs built from SMT
processors. Our Loop-based Scheduler (LBS) uses a sam-
pling phase to select the best hierarchical scheduler for
each parallel loop. Our Hardware-counter Directed Sched-
uler (HCS) uses hardware counters to sample loop behav-
ior, short circuiting the sampling required by both RBS and
LBS. Both LBS and HCS are shown to outperform a num-
ber of single-level non-adaptive schedulers as well as RBS
on benchmarks from the SPEC and NAS OpenMP bench-
marks suites.

Given the availability of SMT processors in commodity
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Figure 13. The improvement of LBS over the
single-level schedulers using 8 threads.

systems, loop schedulers that can handle the unique features
of these systems will become increasingly important. Our
schedulers through their hierarchical structure, and ability
to dynamically select the best scheduling algorithm and
number of threads for each parallel loop, frees users from
the complex task of selecting best schedules for this emerg-
ing architecture.

Traditional schedulers, whether static or runtime, are not
aware of the unique characteristics of SMT architectures.
Our novel adaptive scheduler addresses these features, en-
abling an effective coupling of the OpenMP API with these
increasingly important SMT-based parallel systems.
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