
DOI: 10.1007/s10766-005-3569-3
International Journal of Parallel Programming, Vol. 33, Nos. 2/3, June 2005 (© 2005)

Achieving Structural and Composable
Modeling of Complex Systems
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Vijay Pai,3 Manish Vachharajani,4 and Paul Willmann5

This paper describes a recently released, structural and composable modeling
system called the Liberty Simulation Environment (LSE). LSE automatically
constructs simulators from system descriptions that closely resemble the struc-
ture of hardware at the chosen level of abstraction. Component-based reuse
features allow an extremely diverse range of complex models to be built eas-
ily from a core set of component libraries. This paper also describes the
makeup and initial experience with a set of such libraries currently undergo-
ing refinement. With LSE and these soon-to-be-released component libraries,
students will be able to learn about systems in a more intuitive fashion,
researchers will be able to collaborate with each other more easily, and
developers will be able to rapidly and meaningfully explore novel design
candidates.
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1. MOTIVATION AND DIRECTION

There is an increasing need to rapidly and accurately model a diverse
set of hardware systems. Ideally, in the creation of hardware systems,
researchers and developers would build prototypes of each design candi-
date for evaluation. Prototype building can yield extremely accurate mod-
els, and the process of building the prototype itself can be informative. Of
course, prototype building is impractical in almost all situations, but prac-
tical modeling methodologies that engineers employ should mimic the pos-
itive aspects of prototype building as much as possible.

The most prevalent modeling methodology employed today is hand-
writing monolithic simulators in sequential programming languages such
as C or C++. While writing a simulator in this way, the simulator
writer must map systems, which are inherently structural and concur-
rent, to a sequential programming language with functional composition.
Though much more cost effective than prototype construction, this map-
ping process is still quite laborious, often consuming many person-years of
effort. The manual mapping process is also prone to error, and because
the resulting simulator code does not resemble the design or operation
of actual systems, errors introduced tend to go unnoticed.(1−3) Further,
unlike prototype construction, little understanding of the system is gained
during the mapping process.

The manual mapping problem has broader negative effects. These
effects are most pronounced in the following three areas:

Collaboration. There exist many correct ways to map a concurrent,
structural system to a sequential language. Unfortunately, unless a
common mapping scheme can be adopted, the resulting simulators
cannot interoperate. Collaboration between and among members of
academia and industry often stalls because of this tool incompatibil-
ity. Collaboration between domains is hardest hit for lack of com-
mon multi-domain solutions.
Novel Research. Radical and disruptive research is often difficult to
achieve with the current modeling methodology. Publicly available
simulators provide a model only for systems similar to those precon-
ceived by the tool’s authors. High risk ideas requiring a new simula-
tor are often discarded because of the potentially enormous cost of
failure.
Rapid Reuse. Monolithic simulator tools tend to be “one-off” items
often rewritten from scratch for each project. Models of the same
single component may be written many times to fit each simulation
system used. Researchers and developers should not have to continue
paying the price of these unnecessary recurring costs.
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These negative effects have been identified and much work has been
performed to address them. Some have proposed the creation of stan-
dard simulator tool sets upon which extensions could be built,(4−6) but
the diversity of needs requires that no monolithic simulator standard be
adopted. Tools have been created to rapidly produce a simulator, but these
tools typically speed the process by making domain-specific assumptions
about the system to be modeled.(7−10) In other cases the tools are too
generic and, thus, do not provide the necessary mapping constraints to
ensure component interoperability and encourage reuse.(11−14) In almost
all these cases, the root cause of these negative effects, the mapping
problem, was not directly addressed and one or more of these problems
remain.(15) Of the remaining systems, none provide the necessary mecha-
nisms needed for enable reuse in practice, not just in principle.(16)

The ideal modeling solution is a system that enables a methodology
approximating prototype building. The specification of the model should
resemble the hardware itself; it should be structural and concurrent, elimi-
nating the need to map the candidate design to sequential code. Like pro-
totyping, the specification process should force designers and researchers
to think about the hardware, not to worry about simulator implementation
issues. In addition, the system should leverage the advantages of high-level
modeling. The specification should encourage interfaces and flexibility that
enable component reuse at various levels of abstraction. One essential such
interface is a domain independent control interface that enables reuse and
interoperability of otherwise domain and design specific logic. This allows
components and specifications different domains to interact easily, even in
the absence of prior planning. Note, however, that these features that pro-
mote reuse should also be free of any assumptions that would limit the
exploration of radical ideas.

Our goal is to research, develop, and disseminate a complete simu-
lation environment that supports a structural and composable modeling
methodology and the features described above. This simulation system will
consist of the Liberty Simulation Environment (LSE) and a set of robust
component libraries.

LSE automatically synthesizes simulators from system descriptions
that closely resemble the structure of hardware and component libraries.
This structural resemblance to the hardware provides confidence in the
model and frees systems researchers to think about systems, not simula-
tor coding concerns. LSE’s strict but general component communication
contract encourages and enables the creation of highly reusable compo-
nent libraries. It also eases the task of rapidly exploring ever more exotic
designs. LSE components and descriptions can be hierarchically composed
of other components and can exist at any level of abstraction (statistical to
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gate-level). This choice of abstraction level combined with partial specifi-
cation support allow models to be iteratively refined; descriptions generate
fully functional simulators from the very start, allowing users to specify
and validate precise models incrementally.

Though LSE has already been released, the complete system must
also provide several component libraries. These libraries will serve as a
foundation for creating simulators that span multiple architectural levels.
LSE’s existing components have already been used to model a wide range
of microprocessors and interconnection networks. We plan to expand these
component libraries to support an even wider range of computational sys-
tems including systems-on-a-chip (SoCs), distributed clusters of worksta-
tions, tightly-coupled multiprocessors, and high-end supercomputers. While
traditional simulators have focused on general-purpose programmable pro-
cessors, LSE will allow the composition of complex heterogeneous sys-
tem models that include both programmable components and dedicated
application-specific hardware models for tasks such as wireless communi-
cation or high-speed network I/O. Such composability becomes essential as
systems of interest evolve from commodity PCs to sensor network arrays
and distributed low-power embedded systems.

By providing a design-neutral, unrestricted open-source simulation
framework to the community, we intend to improve the quality of
best-known techniques. Through a common structural and composable
model specification language, LSE will allow researchers to easily col-
laborate, exchange ideas, understand novel techniques, and evaluate the
work of others in a variety of contexts, facilitating independent veri-
fication of research. The resemblance of LSE descriptions to real sys-
tems will allow it to be an effective educational tool when integrated
with an interactive system visualizer. The development of several addi-
tional reusable core component libraries will provide a starting point for
exploration by other researchers, and the “Liberation” of existing popular
simulation systems, through encapsulation into LSE modules or through
equivalent configuration, will allow a smooth transition for interested
researchers.

2. THE LIBERTY SIMULATION ENVIRONMENT

A user of the LSE writes a Liberty Simulator Specification (LSS) to
specify the desired system by defining interconnections between custom-
ized instances of reusable module templates. LSE reads the LSS, instanti-
ates module templates into module instances, and weaves the specification
and module instances together to form an executable simulator. An over-
view of the Liberty simulator construction process is shown in Fig. 1.
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Fig. 1. An overview of LSE.

LSE makes no assumptions about the target system but provides a
mechanism to abstract domain-specific control into reusable chunks. This
means that components developed for one domain can easily be combined
with components developed independently for another. Often this combi-
nation is simply a matter of connecting the corresponding port interfaces,
with not special translation of control signals required. As a result, LSE
can serve as a single platform for developing a limitless range of full sys-
tem simulators. To further support rapid construction of detailed simula-
tors, LSE contains features that allow for iterative refinement of designs,
a variety of abstraction levels, and reuse of the components.

2.1. Reusable Components

LSE was developed with a specification language motivated by the
shortfalls of existing systems. Many simulation systems, in particular those
for processor design,(4, 6) are built upon sequential programming languages,
such as C or C++. These systems attempt to leverage traditional soft-
ware modularization and component composition techniques to allow for
hardware component reuse. Unfortunately, when modeling concurrently
executing structurally composed blocks in this way, individual component
implementation and global system structure and communication become
intertwined. This occurs because all computation must be serialized and
encapsulated into function or method calls. This partitioning does not mimic
the component encapsulation in hardware, but is instead constrained by the
order in which signals are generated. Changing the global structure of the
model by changing the interconnection of even a few components changes
when signals are generated and often violates prior ordering constraints.
Thus, much of the old simulators components cannot be reused, artificially
limiting reuse. Furthermore, since many of these systems do not have clean
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component interfaces with respect to hardware blocks, it becomes difficult to
refine a coarse model to a more accurate one by replacing high-level models
with more detailed ones.

In contrast, like real hardware, each LSE module instance executes con-
currently with other LSE module instances. Modules specify their interface
to other modules via ports. Each port represents an input or output chan-
nel for the module, and may have multiple connections so that users can
easily scale the bandwidth a module instance has to the other blocks. Each
module instance is abstracted solely by its communication interface, with
no assumptions about sequentiality of the internal computation. Since this
decomposition parallels that of hardware, LSE specifications are far easier
and less error prone to specify. Furthermore, since the component decom-
position parallels that of hardware, reuse is not artificially restricted.

To further facilitate easy reuse, LSE module templates encapsulate
functionality with a flexible control interface that allows modularization of
complex timing-control (i.e., the portion of the controller that determines
when and what to stall). Each connection in LSE actually corresponds to
a connection of 3 signals. These 3 signals are used to negotiate whether or
not data can be transmitted across a connection in a particular time-step.
These signals are similar to those used in asynchronous bus handshaking
protocols, and serve a similar purpose, to guarantee that two components
can interoperate even if they were not explicitly designed to interoperate
with each other. Within a set of simple rules, the user can manipulate how
the “handshake” signals are used to specify any desired control behavior,
independent of module functionality. To prevent the user from having to
specify full control semantics, module templates provide default control
semantics. Using the default control semantics, working system models can
be constructed by connecting the datapath and specifying minimal control.
LSE allows the user to override the default control semantics so that any
system behavior can be specified.(16)

In addition to control semantics, the specific functionality of hardware
blocks will vary from system to system. However, in monolithic simu-
lators, these small variations often require extensive code modifications
since functionality, timing, and control are intertwined in the specifica-
tion. These changes often become overwhelming, and, as a consequence,
simulators are generally written from scratch for each new project. To
allow components to be reused, despite small changes or extensions to
functionality, LSE also has a powerful component customization capabil-
ities. Components have algorithmic parameters, parameters whose values
describe functionality. Via these parameters, users can inherit the over-
all functionality of a module template, while easily adapting the specific
module instance behavior to the system being modeled.
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To further improve reuse, LSE allows users to build new module templates
based on the interconnection and customization of instances of existing mod-
ule templates. To make the resulting hierarchical module template flexible, the
LSS language has a powerful syntax through which users can specify the hier-
archical module template’s sub-module instantiations, interconnections, and
customizations relative to template parameters and port connections. To lower
the overhead of using these components, the LSS compiler will infer parameter
values for these components based on their usage context.

By providing hierarchical structural composition, customization of
components, and a communication contract with default control seman-
tics, LSE allows construction of module template that can be reused in
many contexts. For example, a single module template can be instantiated
to model a processor’s instruction window, its reorder buffer, and the I/O
buffers in a packet route.(15, 17)

2.2. Levels of Abstraction and Iterative Refinement

One of LSE’s great strengths is the ability of LSE module instances
to interoperate. Even module instances with different levels of abstraction
can interoperate. As. a result, it is possible to mix components with differ-
ent levels of detail in the same LSS. For example, a model of an intercon-
nect network may have connected to it a statistical packet generator used
to simulate network traffic. However, it is possible to replace the statistical
packet generator with a network interface controller for a microprocessor
simply by replacing the packet generator. In this way, the same intercon-
nect model can be used with an abstract statistical model, as well as a
detailed microprocessor model.

Full system abstraction is also possible with LSE. Each module template
can provide default semantics when some of its ports are left unconnected. This
means that users can specify a partial system and rely on the default behavior to
fill in omitted details, thus forming an abstract model of the entire system. We
use this feature extensively while building processor microarchitectural mod-
els. The typical design process starts by first specifying simple fetch and issue
logic. Then, once satisfied with this behavior, we add a pipeline specification,
speculation control logic, predictors, and memory hierarchies in turn. At each
stage in this refinement process, the specification is compilable into a working
simulator that can execute full programs.

2.3. Relation to Other System Specification Approaches

LSE is the only system of which we are aware that provides a domain
independent modeling system with a component contract that allows for
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reusable component libraries. The class of systems referred to as hardware
description languages (HDLs), while capable of full system description,
do not provide enough support for component customization to build
reusable components. Thus, a user has no ability to affect the internal
timing of pre-built components. Furthermore, HDLs still require the user
to specify all control explicitly, making specification of new systems quite
involved. Since the control interface is ad-hoc, pre-existing components
may not be able to interact in the desired way without extensive work in
build a controller or control adapter components. Worse still, the desired
control logic may not be possible to implement if the correct control sig-
nals were not exposed.

SystemC(12) is superior to HDLs since it has better support for inher-
itance and a more advanced type-system allowing better abstraction. How-
ever, SystemC does not provide any mechanism for modularizing control
specifications. Thus, components in a SystemC library likely use an ad-hoc
control interface based on assumptions about a global control paradigm.
Thus, the same component interoperability problem exists for SystemC,
making the standardization upon a single component library unlikely.
Note, however, that LSE could bring its benefits to SystemC to solve these
problems by wrapping it; this is an option being explored.

While not exclusively a hardware modeling tool, the Ptolemy
framework does allow users to model hardware by composing concur-
rently executing components.(11) However, unlike LSE, SystemC, and
HDLs, Ptolemy allows each model to specify the model of computation
(MoC) that governs the semantics of communication and execution. This
flexibility, however, comes at a price. When using different models of com-
putation, work must be done to ensure that the models can be com-
posed. Sometimes this process is easy and automatic, at other times it
may require solving difficult problems.(18) Techniques allow some MoCs
to interact,(19,20) but they do not cover all MoCs leaving the possibility of
incompatible components. Furthermore, for hardware modeling, this flex-
ibility is unnecessary since most hardware can easily be specified using a
single model of computation with little loss of clarity or specification ease.
Also, MoC flexibility also comes at a simulation performance price too
steep for many applications of interest.

LSE fixes its MoC to a reactive model of computation. This has sev-
eral advantages. First, power users only have to learn one set of computa-
tion and communication semantics easing the learning curve (though most
users need not be concerned with these details).

Second, since all components use the same model of computation, the
MoC does not preclude reuse of components. (Note that a common MoC
is not sufficient for reuse; the MoC must be carefully chosen to avoid
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interfering with reusability(15)). Third, by carefully selecting the model of
computation it is possible to analyze the LSS for optimization.(21) We
intend to use this power to automatically synthesize multi-threaded sim-
ulators for execution on distributed memory multi-processor systems. Fur-
ther work will also enable some of these threads to be implemented in
FPGA hardware to further accelerate simulation speed.

Other domain specific approaches for simulator construction have
been proposed. These approaches(7−10) gain most of their benefit from
domain specific assumptions and thus are not suitable for general system-
level simulation. Other approaches have been proposed(13, 14) that could
extend to full system simulation. However, these approaches lack the nec-
essary features to allow construction of interoperable components and
highly reusable component libraries.(16)

Perhaps the most important shortfall of many of these systems is
availability. Many of these systems are proprietary or not publicly avail-
able. Through the support of the National Science Foundation’s Next
Generation Software program, we have been able to release LSE Version
1.0 without restriction ensuring that it will remain an open, standardized
collaborative framework.

3. COMPONENT LIBRARIES

The core of LSE is its collection of components consisting of LSE
modules. These pre-defined modules enable rapid modeling of complex
systems through seamless composition. We classify the various compo-
nents into the following libraries based on a functional partition:

Primitive Component Library (PCL). This consists of primitive
building blocks that are likely to be used across a wide range of
applications. Examples include arbiters and memory arrays.
Uni-processor Library (UPL). This consists of the micro-architectural
elements of general purpose and application specific processors. Exam-
ples include instruction decoders and branch prediction units.
Communication Component Library (CCL). This consists of build-
ing blocks of communication fabrics. Examples include buses and
routers.
Multi-processor Library (MPL). This consists of components used
in multi-processor architectures. Examples include cache-coherence
engines for implementing shared memory systems and DMA con-
trollers for implementing message passing.
Network Interface Library (NIL). This consists of components
that serve as interfaces across network boundaries and in between
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networks and processors. As example is a format converter that sits
between an Ethernet and a PCI bus.

The above classification is a functional one. It is driven by the need
for organization of what would otherwise be a single vast and difficult to
manage library. This classification helps in both the library development
stage as well as the library deployment stage. During library development,
it is the natural partition of tasks among specialists in the various func-
tional domains. During deployment, it serves as a catalog to help search
for the appropriate match in the building of complex systems.

It should be noted that this classification does not create any usage
boundaries. Components in one library can be used freely in other libraries.
The primitives in PCL are likely to be used in all the other libraries. Simi-
larly, MPL is likely to build on all the other libraries in constructing top-level
models of complex multi-processor systems.

We now illustrate the use of these component libraries in assembling
models for a diverse range of systems. Figure 2 sketches several systems
that our proposed simulation framework will support. Each system can be
composed in a plug-and-play fashion using the LSE modules defined in our
suite of component libraries. By defining all these modules with LSE, mod-
ules can inter-operate seamlessly across component libraries. Thus, simula-
tion of new complex systems can leverage the modules in these component
libraries for substantial productivity gains. For instance, a chip multi-pro-
cessor (see Fig. 2(a)) will consist of general-purpose processor (GP) modules
from UPL, interface modules (NI) from NIL, and network fabric modules
provided by CCL, glued with multiprocessor modules from MPL.

Many of these libraries will share modules with similar semantics,
with components carefully defined for reuse. For instance, in a sensor
network node (see Fig. 2(b)), which is composed of a GP and a digital
signal processor (DSP) from UPL, linked with a bus from CCL, and inter-
facing to a wireless radio component from CCL through a radio inter-
face from NIL, the GP and DSP will share many common modules within
UPL. The various libraries will also share many modules of PCL, such as
the memory array primitive component which can double as bus queuing
buffers for CCL as well as caches in UPL.

Our goal of reusing the components led to careful generalization of
modules, so the same module can be parameterized and plugged into sub-
stantially different systems. Figure 2(c) demonstrates how similar modules
used to simulate a chip multiprocessor can now be extended to simulate
systems of a totally different scale—a petaflops multi-processor grid-in-a-
box, with many GP modules from UPL, sophisticated network interface
controllers from NIL, interconnected with high-speed electrical or optical
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Fig. 2. A diverse range of systems that LSE aims to support through a suite of component
libraries.

fabrics from CCL, and glued with MPL modules such as cache coherence
controllers.

The hierarchical and iterative refinement features of LSE are espe-
cially critical when we consider complex systems-of-systems such as that in
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Fig. 2(d). Here, we envision small sensor nodes peppered around an area,
collecting and communicating data wirelessly back to coarser-grain nodes
with chip multiprocessors that analyze and coordinate groups of sensors.
Finally, analyzed data is aggregated back to a base camp where there are
petaflops grids-in-a-box that performs computationally intensive tasks for
coordinating and controlling the nodes in the field. With LSE, we can
compose such a complex system hierarchically from the subsystems built
with components of the various libraries. It also allows users to work at
different levels of abstraction, so a network architect can iteratively define
the wireless network component of CCL, perform detailed studies, while
keeping the rest of the system at a high level of abstraction.

We will next detail the various component libraries, the challenges
faced in each, and discuss the current status and future work.

3.1. Primitive Component Library (PCL)

As we built early versions of UPL and CCL, we found clear building
blocks that are common across many libraries such as queues and arbiters.
These primitives can be readily leveraged while building the functional
component libraries, saving development time, maximizing reuse, and eas-
ing debugging. An arbiter is an example of a primitive that is readily used
across various component libraries. For instance, the same arbiter module
can be used in CCL to control access to network buffers and links, and
in UPL to regulate access to synchronization locks. The PCL has been
released with the support of the National Science Foundation along with
LSE Version 1.0.

3.2. Uniprocessor Library (UPL)

The Uniprocessor Library (UPL) contains all the building blocks for
standard microprocessor models. UPL includes basic buffering and queu-
ing structures that can be customized to model the main processor pipe-
line including functional units, re-order buffers, instruction windows, and
the corresponding interconnections. It also includes many modules that
when composed hierarchically, can provide complex components such as
realistic cache configurations.

The PCL is the most mature of the libraries, with the UPL follow-
ing closely behind. An extensive range of components has been built for
the UPL and the library is being prepared for release. Using the UPL and
PCL several processor models have been rapidly constructed, a subset of
which is shown in Table I. Table II shows some statistics that quantify the
size and reuse seen in each of the models. Each of these models was built
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in 2 to 11 person-weeks and, as shown in the table, demonstrate consider-
able component reuse. When trivial hierarchical modules that exist solely
for code clarity are neglected (shown in parentheses), even more reuse is
seen.

The Itanium 2 model demonstrates the effectiveness of the structural
approach and of the Uniprocessor Library. This Itanium 2 model was
constructed and validated by a single student in only 11 weeks. Care was
taken to validate the model against the real hardware, using a combination
of custom benchmarks, SPEC benchmarks, and the hardware performance
counters. Figure 3 shows the performance predictions of this model along-
side the performance of the same applications measured on the actual
hardware. As we can see, the model predicts the performance of the Itani-
um 2 hardware to within 3%, despite only 11 weeks of development effort.

Table I. Several Models Developed Using LSE

Model Name Model Description

A A Tomasulo Style machine for the DLX instruction set.
B Same as A, but with a single issue window.
C A model equivalent to the SimpleScalar simulator.(6)

D An out-of-order processor core for IA-64.
E Two of the cores from D sharing a cache hierarchy.
F A validated Itanium 2 processor model.

Table II. Quantity of Component-based Reuse for Several Models

Model Hierarchical Leaf Instances Instances Modules
name Instances modules modules per module from library from library

A 277 46(10) 18 4.33(8.61) 73% 13
B 281 46(11) 18 4.39(8.48) 73% 13
C 62 1 18 3.37 73% 10
D 192 4 25 6.62 86% 22
E 329 4 26 10.97 89% 22
F 183 18(3) 19 4.95(8.32) 82% 18

Total 1324 69(19) 39 12.26(2283) 80% 22

Model descriptions are in Table I.
Values in parenthesis discount trivial hierarchical modules used simply to wrap a collection
of components.
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3.3. Communication Component Library (CCL)

As system interconnect technology becomes increasingly important, a
simulation infrastructure that supports diverse communication fabrics is
critical. Orion,(17) a CCL, was proposed to address this need, targeting
the communication components of a wide array of systems, ranging from
on-chip networks in chip multi-processors, to electrical and optical chip-
to-chip and board-to-board fabrics in petaflops grids-in-a-box, to wireless
fabrics in sensor networks.

The challenges of Orion lie mainly in three areas: modeling of traffic
workloads, development of component building blocks that are generaliz-
able to different domains, and component attribute models that cover key
design parameters in diverse applications. We will discuss each in turn.

Traffic workload modeling. We explored ways of modeling traffic
workloads in on-chip networks, targeted for high-level power anal-
ysis of networks. Traffic flows are modeled as step-wise injection-
rate functions that can range from cycle-level to segments that are
thousands of cycles. By doing so, network contention can be viewed
as overflow area in such functions, with buffering reflected as prop-
agation of the overflow area, thus facilitating fast derivation of
link utilization at each point in time, and estimation of network
power across space and time.(22) Such high-level workload mod-
eling, coupled with the power analysis framework, enables multi-
granularity power simulation, so network power simulation can
leverage the multi-granularity simulation feature of LSE.



Achieving Structural and Composable Modeling of Complex Systems 95

Generalizable building blocks. An early version of Orion was developed,
focusing on wired interconnection networks, supporting fabrics rang-
ing from on-chip buses and networks for SoCs to chip-to-chip electrical
backplanes for petaflop grids.(17) Besides being used to model on-chip
and chip-to-chip networks in multiprocessor systems, Orion’s basic com-
ponents have proven applicable to interconnected distributed caches,(23)

cluster switches, heterogeneous multi-core SoCs,(24) and shared-memory
processors.(25) We seek to further extend its generality to new network
fabrics in multi-core architectures, as well as wireless sensor networks.
Component attribute models. In the original release of Orion,(17) only
dynamic switching power is modeled, with counters in each mod-
ule tracking activity, and factored with parameterized capacitance
equations for each module to derive power consumption. Now, in
addition to dynamic power, Orion characterizes leakage power(26) as
well as the thermal impact of networks.(27)These attribute models are
designed to be parameterizable, so they can be applied to architec-
turally parameterized network modules. We also craft these modules
so they can be readily scaled to different process technologies, facil-
itating reuse of modules across technologies.

3.4. Multiprocessor Component Library (MPL)

Multiprocessor architectures form one of the most difficult and
important simulation domains for high-performance systems engineering.
Modules from PCL and CCL form the foundation of a multiprocessor
system simulator. The additional complexities in multiprocessor system
simulation stem from managing data replication, ordering, communica-
tion, and ensuring sufficient simulation speed for large systems. The MPL
includes the modular components required for implementing a structural
specification of a multiprocessor. These modules include DMA controllers
(for simulating low-overhead message-passing systems), pluggable cache
coherence controllers (including bus-based snooping for small scale multi-
processors and point-to-point coherence transactions for scalable systems),
and pluggable memory ordering controllers to restrict the reordering
allowed by the processor according to desired constraints. Many of these
components are sufficiently flexible that they can be deployed in a vari-
ety of contexts and systems, ranging from chip multiprocessors to tightly-
coupled systems to message-passing grids.

A hierarchical and component-based multiprocessor simulator based
on LSE serves as an ideal platform for research into multiprocessor simu-
lation methodologies. For example, investigation of speed-enhancing tech-
niques is essential because of the need to support large-scale applications.
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Here, the reuse enabled by LSE eases the development of sampling ver-
sions of hierarchical modules, in addition to allowing the incorporation
and study of acceleration techniques developed for the PCL. The support
for multiple levels of abstraction in LSE also allows for simulation accel-
eration by integrating a detailed simulator of some portions with ana-
lytical representations of other system components. Such abstraction may
increase the applicability of workload-driven analytical models proposed
for multiprocessor performance evaluation.(28)

We are currently porting the RSIM simulator released by Pai et al.
to LSE as a base platform for developing component-based multiprocessor
simulators. RSIM’s modular open-source design has enabled external users
to add substantial functionality; our approach here is instead to break the
simulator into LSE components along the lines of its current modules and
to formalize the interactions between modules according to the LSE model
of computation. Our prior experience with porting SimpleScalar to LSE
should help guide our development efforts in these regards.

3.5. Network Interface Component Library (NIL)

Network interfaces connect processors to networks and are realized
both in ASICs and, more recently, as processor based programmable net-
work interfaces. The network interface controller (NIC) interacts with
its corresponding host over local interconnect, such as a PCI or other
on-chip bus, and with the physical network, such as copper Ethernet or
an on-chip packet switching network. Programmable NICs are particularly
valuable because they enable flexibility to implement various complex net-
work tasks, such as TCP processing, thus reducing the computation load
of the host processor. Unlike general purpose programmable environments,
network interfaces have stringent space and power requirements, and their
workloads exhibit little data reuse or instruction-level parallelism (ILP).
Consequently, the primary techniques used in general purpose proces-
sors to improve performance—large caches, complex ILP structures, and
faster clocks—are inapplicable. Multiprocessor architectures, however, are
appealing for programmable network interfaces, since parallelism enables
performance increases in this domain without increasing clock speeds.

In addition to the programmability and multiprocessor execution envi-
ronment, the heterogeneous set of components used in NICs (e.g., ASIC
DMA units and medium access controllers) and the asynchronous nature
of communication between the host and network complicate simulation of
NICs. Previous studies have attempted performance simulation for these
devices using conventional processor simulators.(29) Previous studies have
attempted performance simulation for these devices using conventional
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processor simulators or have studied the behavior of network interface
workloads on network processor architectures using proprietary NP sim-
ulators.(29,30) However, no prior work to date has provided a flexible, real-
istic simulation platform that accounts for the special hardware features or
software tasks supported by network interfaces.

We have developed a network interface simulator (as part of the
SPINACH infrastructure(31) built on LSE), which, as a subset of its
functionality, can model the MIPS-based Tigon-2 programmable network
interface chipset.(31) A block diagram of the model is shown in Fig. 4.
This model is sufficiently detailed to execute the firmware of a real
Tigon-2 NIC while sending and receiving frames.(32,33) In fact, the model
very accurately predicts the throughput of the Tigon-2 for a trace of
bidirectional UDP packets, as shown in Fig. 5. The NIL also enables
modeling of more advanced designs, such as those featuring many more
processors, different processor models, crossbar-connected banked scratch-
pad architectures, split-transaction memory buses, and coherent caches.
LSE’s flexible reconfigurability permits rapid exploration of the permuta-
tions of these architectural choices.

Scratch
Pad A

Scratch
Pad BCPU A CPU B

Memory 
Bus Arbiter External

SRAM
DMA
Write

DMA
Read

PCI Interface Medium Access

Memory Bus

PCI Bus Full-duplex Gigabit 
Ethernet Interface

Tigon-2 
NIC

Fig. 4. A block diagram of a Tigon-2 NIC.
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Fig. 5. The LSE model predicted transmit performance for a stream of UDP packets to
respect to actual hardware.

Development of the Tigon-2 simulator consisted of two parallel
tracks. One track focused on bringing up a uniprocessor sufficient to run
the desired firmware, adding support for the various ASIC hardware units
and memory mapped registers, and collecting the I/O traces of host and
network traffic that will later drive the simulations. The second track con-
tributed to the MPL by implementing a scalable parallel programma-
ble network interface; in addition to the obvious multiprocessor issues,
detailed memory system modeling is fundamental to the accuracy of net-
work interface simulators, since NIC workloads are bandwidth-intensive.
The components developed in this effort will both allow the architectural
exploration needed to reach next-generation Ethernet speeds and facilitate
the development of realistic models of other I/O devices. Clearly, develop-
ment of the programmable network interfaces using the NIL will continue
to leverage modules of the UPL and the MPL.

4. CONCLUSIONS

Unlike traditional simulators, the LSE automatically constructs sim-
ulators from system descriptions that closely resemble the structure of
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hardware. The well-defined component communication interfaces of LSE
allow for the reuse and hierarchical configuration of components across sys-
tems, easing the exploration of a complex and diverse set of systems. The
LSE system has been released, and our initial experience in modeling several
systems, including the Itanium 2, the Tigon-2 NIC, and the Orion system,
demonstrates the effectiveness of this approach. We have found that getting
the most out of LSE requires the availability of a quality set of component
libraries. Libraries currently in refinement are intended to be general enough
for several target model domains, including uniprocessors, multiprocessors,
networks, and programmable network interfaces.

By enabling varying levels of abstraction and a unified component
connection frame-work, LSE provides excellent support for educational
and for technology transfer needs. Students using LSE will be able to
focus on system design concepts and structural composition rather than
the syntactic and functional composition of more common simulation
schemes. Researchers may more easily release their modules built with LSE
both for collaboration in academia and for technology transfer to industry,
since the well-defined interfaces of LSE enable these modules to be com-
posed into other LSE configurations with ease.
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