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Abstract

The benefits of Out of Order (OOO) processing are well
known, as is the effectiveness of predicated execution for
unpredictable control flow. However, as previous research
has demonstrated, these techniques are at odds with one
another. One common approach to reconciling their differ-
ences is to simplify the form of predication supported by the
architecture. For instance, the only form of predication sup-
ported by modern OOO processors is a simple conditional
move. We argue that it is the simplicity of conditional move
that has allowed its widespread adoption, but we also show
that this simplicity compromises its effectiveness as a com-
pilation target. In this paper, we introduce a generalized
form of hammock predication — called predicated mutually
exclusive groups — that requires few modifications to an
existing processor pipeline, yet presents the compiler with
abundant predication opportunities. In comparison to non-
predicated code running on an aggressively clocked base-
line system, our technique achieves an 8% speedup aver-
aged across three important benchmark suites.

1 Introduction

Single-thread performance is extremely important in
many computing communities. In accordance with Am-
dahl’s law, poor single-thread performance can even hin-
der the performance of parallelized applications that contain
modest sequential regions. Out of Order (OOO) execution
is one popular method to extract higher levels of instruction-
level parallelism and thereby increase single-thread perfor-
mance. While OOO execution provides performance ben-
efits, it only serves to exacerbate performance inefficien-
cies related to branch mispredictions; and unfortunately,
many branches elude even the most sophisticated prediction
mechanisms.

Architects have proposed approaches that effectively re-
move hard-to-predict branches. Common to these tech-
niques is the ability to process multiple control flow pos-
sibilities in advance and later, upon resolution of branch
conditions, selectively discard instructions from the wrong
paths. Dual-path execution [9], poly-path execution [14],

dynamic predication [13], and static predication are among
the most popular of these mechanisms. The first three
mechanisms assume little to no compiler support. Conse-
quently, the hardware is responsible for fetching multiple
control flow paths, enforcing correct dependence flow be-
tween instructions, and discarding wrong path instructions.
Though recent research has shown these approaches can
substantially increase performance, the architectural modi-
fications involved may preclude their commercial adoption.

In contrast, many OOO processors already feature condi-
tional move, a simple form of static predication that moves
the contents of one register to another register subject to
the value of a guarding condition (e.g., [11], [10]). For in-
stance, the Alpha 21264 converts a conditional move into an
internal ternary operator, rd = cond ? rs : rd,
that depending on the value of cond, either copies the
value in register rd to itself, or assigns it the value in reg-
ister rs [11]. Because of the restrictive nature of this form
of predication, the implementation of conditional move re-
quires only slight micro-architectural modifications.

Similarly, this paper proposes a method of static predica-
tion for OOO processors that restricts the form of predicat-
able regions in order to simplify the hardware support be-
yond that required by prior art; but unlike conditional move,
our approach still allows for predication of memory opera-
tions, arbitrary integer and floating point arithmetic instruc-
tions, and several other (potentially excepting) instructions.

Static predication is an approach that relies on compiler
technology to transform control flow dependencies into data
dependencies [2, 16, 18]. In doing so, static predication
can merge several disparate paths of control flow into a sin-
gle instruction stream. While predication obviates the need
for hardware to simultaneously fetch more than one control
flow path, it still relies on hardware to discard wrong path
instructions, and more importantly, to enforce correct de-
pendence flow. The latter requirement is not straightforward
to fulfill in OOO processors, and simplifying this problem
is the focus of our approach.

OOO processors possess a mechanism to identify the
producer of a register operand (e.g., the operation that writes
to a given register), and a means to “wakeup” any instruc-
tions waiting to consume that operand. The register re-
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Figure 1. Predication example.

namer, which associates physical registers with unique pro-
ducers, allows the processor to identify instructions that are
ready to issue. However, predication introduces conditional
writers, and hence obfuscates the “wakeup” process and by-
pass logic in OOO processors.

Figure 1 provides an example that highlights the compli-
cation. Part (a) shows a simple hammock from the multi-
media benchmark adpcm. Because this paper is primarily
concerned with lightweight predication support, we use an
instruction set architecture (ISA) extension similar to that
introduced in [19]. The guard instruction in part (b) pred-
icates the three instructions that follow it according to the
bitmask “011”. The underlined operations correspond to
instructions that have a ‘1’ in the guard, and thus the results
of these instructions are only committed if the correspond-
ing condition register bit (cr0) is 1. Likewise, the third in-
struction guarded by the guard instruction only commits
its results when the condition register bit is 0.1

Notice that the producers of the source operands for the
addition instruction (r1 = r0 + r12) in part (b) are am-
biguous. Until the condition register bit has been resolved,
the processor does not know which instructions will pro-
duce the source operands. While it is possible (and fruitful)
to dynamically keep track of dependence flow information
in the presence of predicated code regions, implementing
such approaches requires modifying much of a processor’s
pipeline.

Our approach simplifies the hardware’s dependence
tracking responsibilities by ensuring that predicated regions
satisfy three major invariants: the compiler guarantees that
1) any predicated region of code is composed of two mutu-
ally exclusive paths of control; 2) that there is an ordered,
one-to-one correspondence between the register writes on
both paths of control flow in the predicated region; and
3) that instructions from the two paths are perfectly inter-
leaved. While this may seem restrictive, we show that it
presents over five times as many predication opportunities

1For the remainder of the paper, we use predication and guarding inter-
changeably to indicate the concept of conditionally executing a region of
code. Likewise, we will use either guarded or predicated to indicate that a
set of instructions conditionally execute, and we say that a region is either
predicatable or guardable if the compiler can predicate it.

than does conditional move support.
Figure 1(c) provides an example of how the compiler

would generate code using our approach. The first two
instructions comprise a mutually exclusive group (MEG).
They both write to the same ISA register, and we are guar-
anteed that only one of them will commit its result. Notice
that the compiler has to insert a “nop move” instruction to
satisfy the aforementioned constraints of a MEG. Likewise,
the last two instructions in the guarded region comprise a
MEG, but here the compiler is able to “overlap” useful in-
structions from the two paths of control flow. In this paper,
we refer to such regions as predicated mutually exclusive
groups (PMEGs) and we use the mnemonic pmegs to dis-
ambiguate such regions from those presented in [19]. As we
describe later in this paper, the processor can treat MEGs as
single units and trivially keep track of dependence flow in-
formation.

The novel contributions of this paper are as follows:

• We show how to minimally augment an OOO proces-
sor such that it can execute PMEGs.
• We present a compiler algorithm that, assuming a fixed

instruction schedule, optimally “interleaves” predi-
cated regions of code. As we empirically demon-
strate, the compiler finds a substantial amount of over-
lap when interleaving disparate control flow paths.
• We demonstrate the value of guard and pmegs in the

context of an OOO processor by evaluating their per-
formance gains on a wide variety of benchmarks. Our
technique outperforms non-predicated baseline code
by 8%, and nearly matches the performance of an unre-
alistically aggressive comparison model for hammock
predication.

PMEGs execution is not limited to two paths, nor to
guard-style predication. While we chose guard as a
baseline because of its simplicity, the concepts we present in
this paper could readily be extended to support more com-
plex control flow.

2 Related Work

This section describes previous attempts to provide
multi-path execution support for OOO processors. The sim-
plest form of predication support for OOO processors is
the so-called conditional move instruction. Even though
this support is highly constrained — it allows only a sin-
gle register move operation to be conditionally executed —
it has been shown to be useful for certain classes of appli-
cations [17, 21, 3]. In part because of the simplicity of this
approach, such support has been in commercial processors
for decades. However, compilers often cannot determine
the safety of if-converting with conditional move. For in-
stance, to if-convert the following C code using conditional



move, the compiler must ensure that neither of the memory
loads will throw an exception:

y = (a < b) ? A[i] : B[i].
Klauser et al. proposed a dynamic predication scheme

that focuses on the types of regions with which this paper
is concerned— simple hammocks [13]. In [13], the regis-
ter renamer is augmented to hold three separate mappings
for each producer, and the renamer also dynamically injects
conditional move instructions to merge in the results at join
points. They report an average speedup of 5.5% and up to
13% in the benchmarks they studied. Their work shows the
potential that predicating simple hammocks can bring. We
compare against a similar approach in this paper.

More recently Wang et al. explored a hypothetical
ItaniumTM design in which instructions can issue out-of-
order [26]. To deal with register renaming conflicts their
design dynamically injects “select” µ-ops to merge data
from different paths. They found the OOO design to be
16% better than the corresponding in-order design, 7% of
which they attributed to efficient predication support. How-
ever, this design point complicates rename and issue logic,
requires the addition of a select function unit, and necessi-
tates the introduction of a select µ-op (essentially a condi-
tional move) for every predicated writer. In the same work,
the authors also introduce the notion of a “predicate slip”,
another design point in which predicated instructions are
allowed to issue, execute, and write back results before the
guarding predicate has been resolved.

Darsch and Seznec introduce a Translation Register
Buffer (TRB), which adds an extra level of indirection to
register accesses, to support out-of-order issue for IA64
codes. The TRB maps an IA64 ISA register to either a
physical register or a logical IA64 register [7]. When mul-
tiple predicated writers are in flight, this technique involves
traversing the TRB entry chain backward to determine the
last good writer. Even though the TRB increases perfor-
mance by 10%, its high algorithmic complexity may impede
a practical implementation.

The Diverge Merge Processor (DMP) of Kim et al. uses
compiler support to demarcate, via ISA extensions, the
basic blocks in which control flow splits, as well as the
corresponding confluence points [12]. For low-confidence
branches that have been tagged as “diverge” points, the pro-
cessor forks the computation and register rename tables; at
merge points, the main thread of execution is reconciled
with the correct path of control. While they demonstrate
impressive speedups (∼20%) over a deeply-pipelined, ag-
gressive out-of-order processor, the architectural complex-
ity of the DMP is significant.

Predicate prediction [5] predicts the value of a predicate
in the dispatch logic and speculatively executes one path
of predicated instructions. An efficient implementation of
predicate prediction relies on replay support.

TRIPS presents an interesting model for merging pred-
ication with OOO processing [23]. Though the TRIPS ar-
chitecture is vastly different from the types of architectures
our research targets, the TRIPS ISA similarly constrains its
predicated regions. To facilitate the identification of block
completion, TRIPS requires that all executions of a predi-
cated block produce the same set of register writes. For an
entirely different reason we enforce a similar requirement
on MEGs (namely, to reduce the complexity of the regis-
ter renamer and issue logic). We note that the requirement
we place on MEGs is more stringent because the compiler
must consider the order of predicated instructions. While a
simple dataflow analysis can identify the set of writers on
a given path, optimally interleaving the writers requires a
more sophisticated approach.

Finally, Sprangle and Patt describe a creative basic-
block-atomic execution scheme in which the compiler ex-
plicitly encodes data dependencies [25]. This point in the
design space requires several extra bits of encoding in the
ISA and places extra burden on the compiler. Similar to our
approach, the authors mention that such a scheme could al-
low for efficient predication support by assigning the same
tag to certain mutually exclusive instructions. However,
they do not discuss how this could be done in software, nor
do they demonstrate the efficacy of their approach.

The survey of related work shows the promise of predi-
cation in the context of OOO processing. Much of the re-
lated work we discuss here supports full, arbitrarily com-
plex predicated regions [7, 26, 23]. Our compiler-directed
technique focuses on hammocks and requires only minimal
changes to the renamer and the issue logic to efficiently sup-
port predication. Much as the simplicity of the conditional
move instruction allows for simple integration in modern
OOO processors, the approach we describe in this paper
minimizes hardware modifications, while dramatically ex-
panding the compiler’s ability to remove branches.

3 Our Approach

Before describing microarchitectural mechanisms, we
discuss the high-level idea of our approach, and present an
optimal compiler algorithm for generating minimally sized
predicated regions. The ISA extension discussed in [19] is
the foundation for our predication support, and as such, we
begin by describing the programming model for this “base-
line” approach.

3.1 Baseline Predication Support : Guard

In [19], Pnevmatikatos and Sohi show that one can add
lightweight predication support to an existing ISA with the
addition of a single instruction. In this paper we aug-
ment the PowerPC ISA with a similar instruction, which
as in [19], we call guard. The guard instruction is a
predicate-defining instruction that begins a predicated block



of instructions; it specifies the length of the predicated re-
gion, a bitmask that discriminates between two possible
paths of control flow, and a condition code bit that dictates
which instructions to execute.

To recall a concrete example, the guard instruction in
Figure 1(b) guards the subsequent three instructions. The
binary bitmask, “011”, specifies that the first two instruc-
tions (corresponding to the low order two bits) belong to
the true path, while the last instruction belongs to the false
path. Thus, if the condition code bit cr0 is true, the results
of the first two guarded instructions (which are underlined
in the figure) will commit, while the last guarded instruc-
tion’s (r12 = 0) result will be discarded (and any excep-
tions that it might cause will be ignored). Akin to [19], the
bitmask, the condition code bit, and the length of the region
become part of the architectural state that must be saved and
restored on interrupts, exceptions, and context switches.

Guarded regions can contain all instruction types except
for guard instructions (i.e., for simplicity’s sake we only
consider simple control flow hammocks). To further sim-
plify the required hardware and software support, we en-
force the following constraints on guarded regions:

• A guarded region contains exactly two mutually exclu-
sive paths of control flow.
• A guarded region has between 1 and 15 instructions.
• A guarded region can contain jumps and branches, but

only if the corresponding jumps and branches end the
region.

Even under such constraints guarding opportunities
abound in typical code. It is very important to note that,
unlike conditional move, guard can execute arbitrary inte-
ger and floating point arithmetic instructions, load and store
instructions, and instructions that operate on condition code
registers. It is common to find such instructions in typical
hammocks, and thus, in terms of scope, guard is superior
to conditional move.

3.2 Predicated Mutually Exclusive Groups

Unfortunately, supporting the guard instruction in an
OOO processor can require several non-trivial design mod-
ifications. Our approach, which we take specifically to sim-
plify dependence checking and the associated wakeup logic,
places the following two additional constraints on predi-
cated regions:

• The sequence of register writes is the same on both
paths.
• Instructions from both paths are perfectly interleaved.

We call guardable regions that satisfy these constraints
— such as the region in Figure 1(c) — predicated mu-
tually exclusive groups (PMEGs). PMEGs are therefore

comprised of at least one mutually exclusive group (MEG),
where each MEG contains a pair of instructions from mu-
tually exclusive paths. Furthermore, both instructions in a
MEG necessarily write to the same ISA register. Because
the architecture knows that exactly one instruction from a
MEG will commit its results, the register renamer can pro-
vide the same register mapping to both instructions. As
Section 4 explains, this property enables several hardware
simplifications relative to prior art.

Code generation for regions predicated with guard is
fairly straightforward. For a given region, the compiler re-
moves the associated branch instruction(s), and then merges
the then block with the else block (if present). Finally, the
compiler generates the guard instruction — with an ap-
propriate bitmask — to guard the newly-formed block.

PMEGs, however, require more care. The compiler must
ensure that every region meets the constraints for PMEG ex-
ecution, and thus the compiler must exclude some regions
that it could predicate with guard. For instance, some ISA
instructions write to multiple registers. The compiler can
often split these instructions into several single-writer in-
structions, but in other cases, splitting is not feasible. An-
other potential issue is that a “nop move” instruction —
which we define as an ISA instruction that moves a reg-
ister to itself — may not exist for some special registers.
Because the PowerPC ISA features a rich instruction set,
this was not an issue for the experiments we perform in this
paper. As we show in Section 6, around 90% of the regions
for which guard is applicable, pmegs is also applicable.

For if-then regions, the constraints are trivially met by
introducing a nop move instruction for every instruction in
the then block, and interleaving the instructions appropri-
ately. If-then-else regions however, can often be overlapped.
Given a fixed schedule — an appropriate constraint since
the instruction scheduler runs before the guarding pass —
the compiler can optimally overlap instructions from the
then and else blocks (i.e., minimize the size of the resul-
tant PMEGs region) by leveraging solutions to the longest
common subsequence (LCS) problem. The goal of the
LCS problem is to find ordered correspondences between
two sequences. Formally stated, given a sequence X =
〈x1, x2, . . . , xm〉, and a sequence Y = 〈y1, y2, . . . , yn〉,
the LCS is a strictly increasing sequence of indices I =
〈i1, i2, . . . , ik〉 of X , and indices J = 〈j1, j2, . . . , jk〉 of Y
such that ∀l = 1..k, xil = yjl . Here the length of I , ||I||, is
maximal and ||I|| = ||J || [6].

Figure 2 depicts an if-then-else region that demonstrates
the applicability of the LCS problem to forming PMEGs.
In part (a), the compiler creates two sequences for the
then and else paths respectively: 〈r5, r3, r9,mem〉, and
〈r5, r6, r3, r9〉. Solving the LCS problem yields the as-
sociated sequences of indices, 〈1, 2, 3〉, and 〈1, 3, 4〉, for
the then and else paths respectively. These sequences of
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Figure 2. Optimally overlapping instructions.

indices correspond to the longest common subsequence
〈r5, r3, r9〉. As we show in part (b), before merging the
then block and the else block to form a pmeg region, the
compiler inserts nop moves where needed to enforce the
property that both paths have the same sequence of regis-
ter writes. If there is a corresponding register write in both
blocks, no nop move is needed. However, if one block con-
tains a register write that the other does not, the compiler
adds a nop move to the deficient block to balance the paths.
As shown in the figure, the compiler also tries to pair in-
structions that do not write to a register (e.g., a store in-
struction); if the compiler cannot find a match, it will insert
a true nop instruction. Finally, as in part (c), the compiler
interleaves the instructions from the two blocks to form a
single predicated block.

There exists an efficient (O(n +m), where n and m are
the lengths of the two sequences respectively) dynamic pro-
gramming based algorithm that optimally solves this prob-
lem; this well-known result is detailed in [6]. The PMEGs
approach allows the compiler to create almost as many
predicated regions as guard, and far more regions than
conditional move.

3.2.1 Compiler Implementation

For the experiments we present in this paper we use GCC
version 4.1.2 [8], which we modified by adding a guarding
pass, and by bolstering its support for PowerPC’s condi-
tional move instruction, isel. The isel (integer select)
instruction is a slightly more flexible variant of conditional
move [17]. As in [17], our compiler can generate certain
conditional memory stores and loads using isel. In addi-
tion, we modified binutils 2.16.1 by adding the definition of
guard and pmegs. Our compiler pass runs extremely late
in the compiler’s toolchain, just slightly before assembly
code is generated, but before the compiler stops maintain-
ing the control flow graph. At this point in the toolchain,
our pass will not interfere with downstream compiler opti-
mizations, and we also have the benefit of knowing exactly
how many instructions are within a guarded region (and be-

cause guarded regions can contain at most 15 instructions,
this is important).

The guarding pass can generate code for one of two dif-
ferent models: the baseline guard model, and the simpler
(from a microarchitectural perspective) pmegs model. The
guarding pass first identifies simple hammocks (which cor-
respond to if-then and if-then-else regions) in the control
flow graph, and then determines the subset of such ham-
mocks that the compiler can legally predicate. The guard-
ing pass assumes that it is profitable to predicate a guard
or a pmegs region that has fewer than seven instructions
and that also has a maximum dependence height of three or
less.

Intuitively, this heuristic makes sense: shorter regions
are likely to contain fewer dynamically useless instructions.
We empirically determined that predicating regions longer
than seven instructions is often detrimental to performance.
Likewise, we noticed that highly sequential regions (cor-
responding to regions with large dependence heights) are
far less likely to benefit from predication. Predicated in-
structions cannot commit results until their associated pred-
icate values resolve. Instructions that depend on a pred-
icated sequential computation are delayed until the predi-
cate is resolved and the entire dependence chain is com-
mitted. While more sophisticated cost functions (including
functions that consider the predictability of the associated
branches) will provide added benefits, we show that this
straightforward heuristic leads to significant speedups.

4 Hardware Support

We now describe the hardware requirements for support-
ing guard-style predication in an OOO processor. We first
lay the groundwork for describing our PMEGs approach by
outlining baseline hammock predication implementations.

In a typical OOO pipeline, the front end — which in-
cludes the fetch unit, decode unit, and rename unit — pro-
cesses instructions in program order. The back end, on
the other hand, supports OOO processing: the issue unit
sends “ready” instructions, irrespective of program order,
to an appropriate execution unit. The reorder buffer then re-
serializes computation so that the commit unit can commit
instructions in program order.

The literature considers two main approaches for sup-
porting predication in an OOO processor. The first ap-
proach stalls predicated instructions in the issue unit until
their associated predicate conditions are resolved [25, 26].
Stalling consumes issue queue slots, delays the computation
of the predicated region, and stalls any subsequent instruc-
tions that have source operands written in said region. How-
ever, it avoids wrong-path effects and simplifies the commit
logic by discarding useless instructions in the issue stage.

A more aggressive approach allows predicated instruc-
tions to issue, execute, and write back results (to renamed
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Figure 3. Renaming the region in Figure 1(b). See text for details.

registers) before the associated predicate conditions are re-
solved [13, 26]. The commit logic discards predicated-off
instructions and commits predicated-on instructions.2 We
refer to this approach as stall-at-commit. Common to both
stall-at-issue and stall-at-commit is the need to maintain
sufficient bookkeeping for handling multiple outstanding
guard instructions, recovering from pipeline flushes and
other exceptions, and supporting context switches.

Before discussing the hardware mechanisms required for
PMEGs execution, we first outline the support required for
stall-at-issue and stall-at-commit in the context of guard-
style predication. We conclude this section with a qualita-
tive discussion of hardware complexity.

4.1 Guard with Stall-at-Issue

Here we describe our specific, idealized implementation
of the stall-at-issue mechanism described in [25] and [26].
Stall-at-issue allows predicated instructions to pass through
the rename unit into the issue unit before their associated
predicate conditions resolve. Predicated instructions are
held in the issue unit until the processor determines the
value of the guarding predicates, at which point the proces-
sor nullifies the predicated-off instructions and issues the
predicated-on instructions to appropriate execution units.
While this approach leads to excellent performance im-
provements, it requires several changes to the rename and
issue logic.

The rename unit in a superscalar pipeline manages a re-
name table that associates physical registers with logical
registers. Typically, each issue queue entry associates an
(internal) instruction with its physical source and destina-
tion operands; the issue logic consults the issue queue to
determine when an instruction’s operands are available.

To support guard-style predication, we use rename ta-
ble extensions similar to those presented in [13, 26]. Fig-

2We call predicated instructions with a dynamically true guarding pred-
icate (i.e., the instruction’s results can safely commit), predicated-on. Like-
wise, we refer to predicated instructions with dynamically false guards, as
predicated-off instructions.

ure 3 shows the step-by-step state of the rename table for
the example from Figure 1(b). The rename table now keeps
track of up to two physical registers per entry (R1, R2). For
each register, the table saves its physical register number
(R1, R2), a flag indicating whether or not it is the desti-
nation of a predicated instruction (P1, P2), and a tag that
uniquely identifies the guarding guard instruction (G1,
G2). The figure uses an ‘X’ for the predication flag and
guard identifier of unconditional writers.

The augmented rename table allows the processor to as-
sociate multiple physical registers with a given logical reg-
ister as in [13, 26]. In addition, we must extend each is-
sue queue entry so that it can track up to two predicated
logical registers for each instruction operand. Note that
in [26], rather than augment the issue queue, the authors
inject so-called µ-ops into the pipeline that select between
two possible physical registers. Thus, our specific imple-
mentation of stall-at-issue adds complexity, yet it provides
an upper bound for stall-at-issue performance in the context
of guard-style predication.

Each predicated register in the rename table contains a
tag that specifies which guard instruction predicates the
register. The unique identifiers are assigned to the guard
instructions in the rename stage and recycled on commits
and pipeline flushes. The renamer stalls when it receives a
guard instruction and all identifiers are in use.

As Figure 3 illustrates, we use a policy similar to [26]
for updating the rename table. As in Figure 3(b), for a given
instruction, if the corresponding rename table entry only has
one occupied slot — which must contain a non-predicated
register — it updates the other slot.

However, it is possible for both entries to be occupied
by physical registers that are the destinations of unresolved
predicated instructions controlled by a different guard in-
struction. In this case, as in [26], the renamer inserts a
conditional move operation (csel) to make space in the
rename table for new guarded destinations. The renamer
will allocate a new physical register for the csel instruc-
tion, and update the corresponding rename table entry with



the allocation. In Figure 3(c), the renamer identifies such
a situation when trying to allocate a physical register for
the instruction r12=8. Because both register mappings are
occupied for r12, the renamer injects a csel instruction.
The rename unit can then proceed to handle the stalled pred-
icated instruction (Figure 3(d)). It is important to note that
in our implementation, we ideally assume that the csel in-
structions instantaneously execute; this simulation point is
useful because it provides us with an upper bound on attain-
able performance.

Again in Figure 3(e), both table entries for logical regis-
ter 12 are occupied. However, in this case, the rename unit
simply replaces the non-predicated register entry with the
newly allocated physical register 13. In this case the aug-
mented renamer knows — based on the shared guard identi-
fier — that these destination registers are mutually exclusive
and exactly one of them is guaranteed to commit.

After the rename stage, predicated instructions enter the
issue unit. As soon as a predicated region’s predicate condi-
tion resolves, associated predicated-off instructions will be
removed from the issue queue and marked as “complete”
in the reorder buffer; the predicated-on instructions will
become ready-to-issue candidates as soon as their source
operands are available. In addition, the processor must up-
date the rename table: physical registers allocated to the
predicated-on instructions are marked as non-predicated,
and entries associated with the predicated-off instructions
are removed. All memory instructions are inserted into
the load-store queue at the same time that they are moved
into the issue unit, which enables the load-store queue to
keep requests in program order, thereby facilitating address
conflict detection. Predicated memory operations are re-
moved from the load-store queue if they are determined to
be predicated-off. If a predicated instruction reaches the
rename unit after its guarding predicate resolves, the re-
name unit will discard this instruction if it is predicated-off
or handle it as a normal non-predicated instruction if it is
predicated-on.

Non-predicated instructions that need to read registers
written by unresolved predicated instructions will take both
registers in the rename table as potential source mappings
for its source operands (see Figure 3(f)). Traditionally,
the issue logic watches for one physical register for each
source operand. For the stall-at-issue support, the issue
logic is augmented to snoop for two physical registers for
each source operand. If either one of the two physical regis-
ters becomes available, the issue logic will mark the source
operand as ready.

Even though stall-at-issue adds complexity to the re-
name and issue units, we assume an optimistic implemen-
tation that contains the same number of pipeline stages and
the same clock cycle time as the baseline and the PMEGs
model. In Section 6 we show that the PMEGs approach

compares favorably to the upper-bound stall-at-issue sup-
port described above.

4.2 Guard with Stall-at-Commit

The stall-at-commit approach is a more aggressive ex-
tension of stall-at-issue. It allows guarded instructions to
issue, execute and write back results even before their asso-
ciated predicate conditions are known. It therefore makes
more efficient use of the window between when a predi-
cated instruction is renamed, and when its corresponding
guard instruction is executed. If the window is sufficiently
large, a predicated instruction can execute before its associ-
ated guard instruction.

This approach is investigated in [13] and [26]. The
premise of the approach is that, on predicate-aware architec-
tures, predicated-off instructions can execute without mod-
ifying machine state. Stall-at-commit leverages this prop-
erty to speculatively execute predicated instructions from
disparate paths of control flow, while making certain that it
only commits the results of the predicated-on instructions.

While [26] shows that this approach leads to marginal
performance improvements over stall-at-issue (∼1%), there
are some cases where it degrades performance. Notably,
stall-at-commit can suffer from wrong-path effects, such
as stalling on a long-latency predicated-off load miss. In
addition, if the predicate condition is resolved early, be-
cause stall-at-issue summarily discards predicated-off in-
structions, stall-at-issue will execute more efficiently than
stall-at-commit. In addition to extending the rename and is-
sue units, this approach requires extra logic to handle predi-
cated instructions in the commit unit and the load-store unit.

4.3 PMEGs with Stall-at-Issue

We are now in the position to present the hardware im-
plementation for our PMEGs approach. Our approach min-
imizes the number of architectural modifications required
for supporting predication. To briefly recap, the com-
piler ensures that predicated regions always consist of per-
fectly “interleaved” instructions from two mutually exclu-
sive paths of control flow. From an architectural perspec-
tive, the key advantage of PMEGs is that it requires no
changes to the rename table and only minor modifications to
the rename unit and issue logic found in typical (predicate-
unaware) processors.

Our specific implementation requires an instruction from
the true path to precede the false-path instruction in each
PMEG. For each PMEG, if the predicated-true instruction
writes a register, the rename logic allocates a physical reg-
ister for this instruction (Figure 4(a) and (c)). However, the
renamer does not update the rename table until it receives
the ensuing predicated-false instruction, which reuses the
physical register allocated for the preceding predicated-true
instruction (Figure 4(b) and (d)).
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Figure 4. Renaming the region in Figure 1(c).

The delayed rename table update is necessary because
the predicated-false instruction needs the mapping infor-
mation before the predicated-true instruction is renamed.
For example, as we show in Figure 4(a)-(b), the compiler-
inserted nop instruction (r0 = r0) should read from phys-
ical register 33 (not 22), which holds the value of r0 before
the PMEG. Since it is guaranteed that one and only one
of these two instructions (r0 = -r0 or r0 = r0) will
execute and write to physical register 22, downstream de-
pendent instructions are completely oblivious that physical
register 22 is written by a guarded instruction (Figure 4(e)).

As with stall-at-issue, after a PMEG is renamed, it is
sent to the issue unit where it will wait until its guarding
predicate condition is resolved. Once resolved, the instruc-
tion in the PMEG that is predicated-off will be discarded,
and the predicated-on instruction will behave as if it were
unpredicated.

The PMEGs approach could be done in a hardware-only
manner by requiring the renaming logic to automatically in-
ject register move operations in the back-end. Additional
logic would have to be added to insert µ-op move instruc-
tions: the logic would have to determine what type of move
instruction to insert, and would also have to be able to split
an instruction that writes to multiple destinations. More-
over, a hardware-only implementation would require that
every predicated instruction be paired with a register move
operation. Our compiler-driven approach has a much bet-
ter view of predicated regions, and can therefore efficiently
overlap instructions from mutually exclusive paths. We
have found that the if-then-else statements in Mediabench,
Biobench, and Spec 2006 write to at least one of the same
registers around 90% of the time, and in the worst case this
approach only doubles the number of instructions in each
predicated region. Our experimental results in Section 6

Feature cmove stall@
issue

stall@
commit

pmegs

Instruction decoder X X X X
Inject µ-ops. X† X X
Rename table X X
Issue queue entries‡ X X
Renaming logic X X X
Issue logic X X X
Commit logic X

Table 1. High level design modification summary.
Notes: †Because conditional move requires three operands, some imple-
mentations split the instruction into two µ-ops rather than require an extra
operand network in the pipeline [11]. ‡Less aggressive implementations can
achieve the same effect — but with worse performance — by injecting µ-
ops.

show that increased region sizes are not problematic: the
PMEGs approach is highly competitive with the idealized
implementations of stall-at-commit and stall-at-issue.

4.4 Summary of Design Points

This section concludes by summarizing the main de-
sign modifications that must be made to support lightweight
predication. As Table 1 shows, all of the techniques that
we consider in this paper need to modify the instruction
decoder to identify predicate-defining instructions. All of
the techniques except for pmegs require the renamer to in-
ject µ-ops. Stall-at-issue and stall-at-commit augment both
the rename table and the renaming logic to keep track of
conditionally-written registers. Instructions with multiple
destinations may require extra support for stall-at-issue and
stall-at-rename.

The pmegs approach requires additional logic in the re-
namer to simultaneously rename a PMEG group, and as
with stall-at-issue, the issue logic must be augmented to
discard predicated-off instructions. All techniques other
than conditional move require support to snoop for resolved
predicates.

5 Methodology

This section discusses the benchmarks, compiler, and
simulator we use to collect performance results.

5.1 Benchmark Selection

Though guard can be used to predicate floating point
operations, the general dearth of complex control flow in
floating-point-intensive applications led us to consider “in-
teger” applications. In this paper we consider the full
Biobench [1] suite, all but one Mediabench [15] bench-
mark, and all but one Spec2006 [24] benchmark. We do
not include ghostscript from Mediabench because the build
process is too cumbersome, and GCC 4.1.2 cannot com-
pile 483.xalancbmk from Spec2006 at high levels of opti-
mization. We use the standard inputs for Mediabench, and
reduced-size inputs for Biobench and Spec2006.



Feature Description
Core frequency 5.0 GHz
Pipeline stages 10 Front-end, 8 back-end

Physical registers 80 GPR, 80 FPR,
Fetch width 6

Commit width 6
Issue width 8 wide

Functional units 2 FXUs, 2 FPUs, 2 LD/ST, 1 BR, 1 CR
Issue queue 60 entries

Reorder buffer 100 entries
Instruction cache 64KB, 4-way

L1 data cache 64KB, 8-way
L2 cache 4MB, 8-way
L3 cache 32MB, 8-way
Memory 1.33GHz DDR3

Branch predictor Combined gshare & local (see [22])

Table 2. System parameters.

5.2 Compilation

We use GCC version 4.1.2 and binutils 2.16.1. With this
infrastructure, we are able to compile our benchmarks with-
out any hand modification. We cross compile all of our ap-
plications on a Power5 system, then package the binaries
and import them into our full-system simulator. We com-
pile all benchmarks at optimization level “-O3”.

5.3 Simulation Environment

We use the Mambo cycle-accurate full system simula-
tor [4] — which has been vigorously validated against Pow-
erPC hardware — as our evaluation infrastructure. We ex-
tend the validated model to a projected future system with
the aforementioned predicated execution support. Table 2
lists some of the key parameters of the simulated baseline
system. Of particular importance for this study is the branch
predictor that we simulate. For our experiments we use the
aggressive branch predictor featured in the IBM Power 5+
processors. The predictor uses three branch history tables:
one for a gshare predictor with 16K entries, another for a lo-
cal predictor with 8K entries, and a select predictor with 8K
entries to predict which of the other two predictors is more
likely to determine the correct direction. Please see [22] for
complete details. In addition to the base system, we perform
sensitivity studies by varying processor frequency, pipeline
length, and pipeline width.

6 Results

This section evaluates the effectiveness of our PMEGs
support by comparing it against isel, stall-at-issue, and
stall-at-commit. We first present static results that give us
insight into the opportunities available to the compiler. Ta-
ble 3 lists the number of static regions that the compiler
is able to predicate for each of our benchmark suites. The
first, second, and third columns show the number of oppor-
tunities the compiler found for isel, guard, and pmegs
respectively. The flexibility of guard and pmegs allows

Suite isel guard pmegs
Spec2006 1600 9981 8575
Biobench 1173 12434 11535

Mediabench 1924 5788 4840
Total 4697 28203 24950

Table 3. Static predication opportunities.

Overlap 0 1 2 3 4 5 6,7
Mediabench 12% 52% 16% 13% 3% 4% 0%

Biobench 12% 36% 36% 9% 4% 1% 0%
Spec 6% 56% 16% 17% 3% 2% 0%

Table 4. Histogram of “overlap” for pmegs.

the compiler to predicate over five times as many regions
as with isel. For instance, in the Biobench application
hmmer there are several isel opportunities that the com-
piler was not able identify; in particular there are a few key
missed opportunities where the compiler cannot guarantee
the safety of memory accesses [20, 21].

Across the three benchmark suites we consider, 86% of
the guardable regions are small enough to fit within eight in-
structions. This is a welcome result because we empirically
determined that predicating regions beyond seven instruc-
tions typically worsens the performance of both guard and
pmegs. For the if-then-else regions, Table 4 shows the dis-
tribution of the number of instructions from the then path
that the compiler was able to match with instructions in the
else path (to form a MEG). The column labeled “0” cor-
responds to cases where the compiler cannot find a single
overlapping instruction. We see that the compiler is able to
overlap at least one instruction — often significantly more
— the vast majority of the time. With over one quarter of
the regions being if-then-else regions, the ability to overlap
instructions is important both for expanding the number of
predicatable if-then-else regions, and for improving the per-
formance of the resultant regions.

We now look at dynamic metrics and overall speedup
data. The baseline configuration against which we compare
our results is a projected future 5Ghz Power processor that
is 8-way issue with 18 pipeline stages. We use the processor
extensions described in Section 4 for stall-at-issue, stall-at-
commit, and pmegs.

Figure 5 shows the performance attained with the various
approaches described in this paper. The benchmarks are on
the x-axis, and they are clustered according to benchmark
suite: the 11 benchmarks on the left are from Spec2006,
the 17 benchmarks in the middle are from Mediabench,
and the seven benchmarks on the right are from Biobench.
The y-axis shows the speedup over an optimized baseline
(compiled with -O3). There are four numbers for each
benchmark: the performance of isel, guard with stall-
at-issue, guard with stall-at-commit, and pmegs (which
stalls at issue). Table 5 shows the geometric mean speedup
for each approach across our three benchmark suites.
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Figure 5. Performance results for the baseline configuration listed in Table 2 (best viewed in color).

Suite isel guard-issue guard-commit pmegs
Spec2006 1% 5% 5% 4%

Mediabench 1% 9% 8% 7%
Biobench 16% 19% 20% 16%

Aggregate 3% 9% 9% 8%

Table 5. Speedups over a -O3 compiled baseline.

We see that across the benchmark suites pmegs solidly
outperforms isel. In particular, for Spec2006 and Me-
diabench isel manages only a 1% performance improve-
ment, largely because conditional move predication is dif-
ficult for a compiler to target. There are several highly-
profitable isel opportunities in hmmer and blast that
the compiler misses due to memory operations for which
the compiler cannot determine memory safety [20, 21].

We also point out that pmegs nearly matches the per-
formance of the guard approaches; we again remind the
reader that the guard support is idealistic when compared
to the work of [26]: the augmentation of the issue queue
precludes inserting many conditional moves, and the csel
conditional moves that are inserted execute in zero cycles.
Thus, we can view the guard results presented here as an
upper bound on performance for stall-at-issue and stall-at-
commit support. Because the pmegs and isel approaches
explicitly insert ISA moves and conditional moves respec-
tively — which our simulator faithfully represents — they
should not be able to match the idealized performance of
guard presented here.

Within each benchmark suite in Figure 5, the bench-
marks are sorted by branch predictability (from least to
most predictable). Intuitively, the benchmarks with the
worst predictability stand to benefit the most from the
forms of predication this paper considers. Indeed we
see guard and pmegs are able to substantially im-
prove the performance of hard-to-predict applications such
as rawcaudio and rawdaudio. However, there are
also cases where predication is able to speedup rela-

tively predictable applications (e.g., 462.libquantum,
g721encode, g721decode, pgp, clustalw). A
small subset of the benchmarks, namely rasta and mesa
have very few dynamic opportunities for predication, and
thus the performance is stable across all configurations.

The Mediabench benchmark untoast is an outlier in
this graph— it is the only application for which pmegs ap-
preciably slows down performance (∼9%). Roughly half
of untoast’s cycles are spent in a method in which there
are many guardable if-then branches. However, all of these
branches are nearly perfectly predictable, and in the base-
line case, the compiler has arranged the basic blocks such
that all of the non-loop branches fall through to the next
block. In essence, this layout forms a highly predictable
trace, and predication only serves to serialize some of the
computation therein.

Sachdeva et al. show that conditional move instruc-
tions are well-suited to the Biobench [1] suite of applica-
tions [21]. Many of the most frequently executed branches
in these codes are simple maximum functions, which isel
can efficiently implement. We see that indeed, isel is
quite effective for this suite, matching the performance of
pmegs at 16% speedup, yet falls short of guard-issue,
which is at 19%, and guard-commit at 20%.

Though the stall-at-commit approach is more aggres-
sive than stall-at-issue, in practice the technique provides
only negligible performance benefits. This is consistent
with [26], where the authors show that the “predicate slip”
technique provides a roughly 1% benefit over the “se-
lect µ-op” technique, which is comparable to our stall-
at-issue. Notice that with the stall-at-commit approach,
wrong-path instructions can cause performance degradation
(e.g. cjpeg) since resources consumed by wrong-path in-
structions, including functional units and load-store queue
entries, negatively affect the completion of “younger”, use-
ful instructions.
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Figure 6. Sensitivity analysis (best viewed in color).

We also evaluate the effectiveness of feedback directed
optimizations (FDO) for improving predication decisions.
FDO adds an extra step to the compilation process: before
production compilation, the developer must profile the ap-
plication on a set of training data. The compiler then uses
the collected profile — which provides knowledge about the
application’s run-time tendencies — to improve compila-
tion decisions. We extended GCC’s profiling infrastructure
to profile for branch predictability.

With FDO, the compiler is able to improve perfor-
mance for a few of the more unpredictable benchmarks.
For hmmer, FDO markedly improves performance (1.45x
vs. 1.23x for pmegs) by reordering basic blocks and pre-
cluding predictable branches from if-conversion. However,
most of this gain is from reordering basic blocks, as FDO
improves the performance of the baseline (i.e., FDO without
predication) by 16%. For rawcaudio and rawdaudio,
on the other hand, even though FDO actually slightly de-
creases the performance of the baseline, the compiler is
able to use the profile information to increase the perfor-
mance of pmegs by 6% and 8% respectively. While se-
lect benchmarks show the promise of FDO, overall, the in-
creases for isel, guard, and pmegs are commensurate
with the increases attained for the baseline (an additional
∼1% increase in performance). Nonetheless, this should
not be seen as a referendum on the usefulness of FDO: our
predication heuristic for FDO is simplistic, and we do not
yet fully understand the complicated interactions between
the various passes enabled by FDO. Future work will con-
sider bolstering our feedback directed optimization support.

6.1 Sensitivity Study

In this section we perform a sensitivity analysis to better
understand the behavior of guarded regions. We consider
two primary processor features: increasing the pipeline
depth to simulate increased core frequency, and varying the

issue width. All other parameters in Table 2 remain fixed.
Figure 6 shows these results for most of our benchmarks;
we omit the benchmarks for which there are few predication
opportunities. The benchmarks are on the x-axis and the
y-axis represents the speedup over a -O3-optimized base-
line. The figure tracks four different configurations for each
predication scheme: 1) 4Ghz, 4-wide; 2) 4Ghz, 8-wide; 3)
6Ghz, 4-wide; and 4) 6Ghz, 8-wide. The 4Ghz processor
has 9 front-end and 7 back-end stages, while the 6Ghz pro-
cessor has 13 front-end and 9 back-end stages.

We can see that as we increase the aggressiveness of
the processor, the benefits of guard with stall-at-issue and
pmegs both increase. However, the performance difference
between guard and pmegs remains fixed. It makes sense
that increasing the pipeline depth would increase the per-
formance of the predication schemes: as the pipeline depth
increases, so does the overhead of branch mispredictions.

Because pmegs tracks the optimistic performance of
guard with stall-at-issue as we throttle the processor’s ag-
gressiveness, we believe that pmegs would be an attractive
approach to enable predication support in the future.

7 Conclusion
Predication support necessarily complicates OOO pro-

cessor design. This paper presents an approach called Predi-
cated Mutually Exclusive Groups (PMEGs). While PMEGs
requires compiler support, we show that a compiler can fea-
sibly generate quality code for such a target: the pmeg
extension we present achieves a geometric mean speedup
of 8% across three popular benchmark suites. Moreover,
it improves the performance of seven benchmarks by over
20%, and achieves a maximum speedup of 41%. We ex-
pect more sophisticated compiler heuristics to only improve
upon these marks.

Our PMEGs approach comes within 1% of two opti-
mistic implementations of hammock predication: stall-at-



issue and stall-at-commit. One of the reasons that the
PMEGs approach is competitive with these techniques is
that it is able to effectively “overlap” instructions from mu-
tually exclusive paths, and it thereby minimizes the amount
of “useless” nop moves it otherwise would have to insert.
Finally, because the compiler presents a structured form of
predication to the hardware, PMEG support requires fewer
pipeline modifications than does prior art.
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