
3D FFTs on a Single FPGA

Benjamin Humphries Hansen Zhang Jiayi Sheng Raphael Landaverde Martin C. Herbordt
Department of Electrical and Computer Engineering

Boston University, Boston, MA

Abstract—The 3D FFT is critical in many physical simula-
tions and image processing applications. On FPGAs, however,
the 3D FFT was thought to be inefficient relative to other
methods such as convolution-based implementations of multi-
grid. We find the opposite: a simple design, operating at a
conservative frequency, takes 4μs for 163, 21μs for 323, and
215μs for 643 single precision data points. The first two of these
compare favorably with the 25μs and 29μs obtained running
on a current Nvidia GPU. Some broader significance is that
this is a critical piece in implementing a large scale FPGA-
based MD engine: even a single FPGA is capable of keeping
the FFT off of the critical path for a large fraction of possible
MD simulations.

Keywords-High Performance Reconfigurable Computing;
FFT;

I. INTRODUCTION

The FFT is one of the most important applications imple-
mented on FPGAs with the 1D and 2D versions finding
uses especially in signal and image processing, respectively.
A small sample of the massive amount of previous work
includes [1]–[3]; IP for many variations of the 1D FFT is
available from Altera and Xilinx [4], [5]. The 3D FFT is also
critical: it is often the heart of electrostatics computations
such as those used when computing the long-range force in
Molecular Dynamics simulations (MD). But although MD
on FPGAs has been widely studied, there have been few
reports about the 3D FFT on FPGAs [3], [6], [7].

This prior work, and also that for large 2D FFTs (e.g.,
[8]), assumes the data set is too large to fit on chip. It
therefore concentrates on efficient orchestration of memory
access and data placement to instantiate communication,
especially the transpose between phases. With current tech-
nology, however, most useful 3D FFTs for electrostatics
can be run holding all data on chip. As is common when
the traversal of a packaging boundary is removed, this
leads to a “game-changing” difference in performance. The
primary contribution here is demonstrating this difference
and evaluating its consequence with respect to other compute
technologies.

Our motivation is as follows: While in previous work
it has been shown that the MD range-limited force can

This work was supported in part by the NSF through award #CNS-
1205593 and the NIH through award #R41-GM101907-01A1. Email:
(bhump78|hszhang|jysheng|soptnrs|herbordt)@bu.edu

be effectively implemented on FPGAs [9], no comparable
implementation exists for the long-range force. In fact,
noting the difficulties with the 3D FFT at the time, we
previously used different approach implementing it with
multigrid [10], [11]. Although multigrid appears to be a
good fit, it nonetheless proved to have neither sufficiently
high performance nor accuracy; we therefore revisit the 3D
FFT on FPGAs.

We use the following approach. First, we constrain the
problem size and precision to those likely to be encountered
on the critical path of electrostatics calculations. These are
for problems sizes where strong scaling is problematic, pri-
marily those with less than a few hundred thousand particles.
These generally translate into FFTs with 323 and 643 grid
points of single precision floating point [12]. Second, we
take advantage of existing IP, in this case by Altera and
Xilinx, to supply the 1D FFTs that are the basis of the
design. Our rationale is that not only do the primary vendors
integrate the existing algorithmic state-of-the-art, they also
take advantage of device-specific features. Finally, we use a
conservative design with simple timing and control.

We find that even with only logic-level optimizations, the
3D FFT takes 21μs for 323 single precision data points, a
number somewhat better than that obtained from a current
GPU. The significance is that this is sufficient to keep the
FFT off of the critical path for a large fraction of possible
MD simulations.

II. APPROACH AND IMPLEMENTATION

Approach. Higher dimensional FFTs are decomposable into
lower dimensional. Therefore the N3 point 3D FFT can
be computed by executing three sets of N2 N -point 1D
FFTs consecutively in the three dimensions. We assume a
number of 1D FFT IP blocks similar to the number of points
in a single dimension. With a current high-end FPGA this
translates into a maximum of 32 IPs for 163 FFTs and
64 IPs for 643 FFTs. The number of “RAMs” is equal to
the number of IPs. When necessary multiple BRAMs are
ganged together to form a virtual RAM using standard EDA
methods.

There are various ways to map data onto the RAMs.
Figure 1 shows perhaps the most obvious: 2D slices (or
slabs) of the cube are mapped onto each RAM. Each IP
then calculates the 2N2 N -point 1D FFTs for dimensions

2014 IEEE 22nd International Symposium on Field-Programmable Custom Computing Machines

978-1-4799-5111-6/14 $31.00 © 2014 IEEE

DOI 10.1109/.26

68

2014 IEEE 22nd Annual International Symposium on Field-Programmable Custom Computing Machines

978-1-4799-5111-6/14 $31.00 © 2014 IEEE

DOI 10.1109/FCCM.2014.28

68

D1 and D2 using data only from a single RAM. In Figure 1,
each IP/RAM combination does this for four 2D slices.
Computing the FFTs for D3 requires traversing multiple
RAMs, or transposing the data. We have decided to do the
former by routing data with a crossbar.

D3 FFT
address [9:8]

RAM 0
D2 FFT

address [7:4]

D1 FFT
address [3:0]

RAM 1

RAM 2

RAM 3

address
[9:0]

address
[9:0]

address
[9:0]

address
[9:0]

Figure 1. A possible mapping of points from a 163 FFT onto four RAMs.

Design Overview. As shown in Figure 2 the design has
four main parts: RAMs, Crossbars, FFT Pipelines (the 1D
IP), and Controller. The RAM’s primary purpose is simply
to store the data throughout the computation. The Crossbars
work in conjunction with the RAMs to select the flow of
data so as to effect transpose and untranspose as needed.
The Controller is a large state machine that drives all of
the inputs to the RAMs, Crossbars, and FFT Pipelines.
For the Xilinx FFT pipelines we have used the Xilinx
LogiCORE FFT v8.0 IP generator, in particular, Float32
with natural order output, pipelined streaming I/O, non-
configurable transaction lengths, and real-time throttling. We
have used the analogous IP for the Altera FPGAs.

This crossbar-based design is somewhat more general than
strictly needed, but justified for two reasons. The first is that,
while not scalable, the 32x32 and 64x64 crossbars require
only a small fraction of the overall chip resources and so
are a small price to pay for uniformity. The second is that
the crossbars instantiate a communication mechanism suf-
ficiently general for integration into FPGA-centric clusters.
This is mentioned very briefly in the Discussion.

Dataflow. The 1D FFT blocks selected behave similar
to FIFO delay elements and are used by inputting and
outputting one word per clock. A full FFT is calculated by
clocking in all words, waiting a fixed number of cycles, and
then clocking all words out. The IPs selected allow for words
from subsequent FFT frames to be input as it is calculating
and outputting prior frames.

We now very briefly describe the dataflow. Overall, given
that a particular RAM index and RAM address is always the
home of any given data point, the controls to route data out
of the FFT Pipelines are delayed mirrors of the controls to

FPGA Border
read enable

read address
write enable

write address RAM
0

RAM
N

RAM to FFT
Crossbar

FFT
0

FFT
N

FFT to RAM
Crossbar

select

select

debug status

Control
data in valid
data in last

data out ready

Figure 2. Block diagram for 3D FFT design.

route data into the FFT Pipelines. This greatly simplifies the
modeling of the dataflow to the point that only the input flow
has to be modeled and the output flow will simply be the
input flow delayed by the latency of the FFT Pipeline. The
one caveat is that the input routing flow must ensure that the
data points from the prior FFT dimension have been written
back to RAM before they are read out for the current FFT
dimension. This data dependency is what limits the number
of FFT Pipelines in the current design and hence the overall
latency of 3D FFT calculation as a whole.

The D1 and D2 phases are straightforward, but the D3
phase imposes an additional timing requirement on the prior
two phases. The reason is that the third phase operates on
data that spans multiple RAMs and each FFT requires data
from the same RAM on the same clock cycle. The solution
is to skew the data driven to each FFT Pipeline so that only
a single point of data is required from any particular RAM
in any given cycle. When the skewing is propagated to the
prior phases, it does not change the data flow control but
merely skews it by the same amount as what it is in the
third phase. The penalty for skewing the data is equal to the
number of IPs and therefore minor; it only adds cycles for
the data to fill up and drain out, which is negligible over the
entire calculation. Otherwise all of the FFT Pipelines stay
completely saturated.

III. RESULTS

Design method. We have created a 3D FFT generator that
allows us to parameterize designs by problem size and by
number of 1D FFT IPs (and RAMs). Varying the number
of IPs per problems size allows us to examine the trade
off between total cycles and cycle time, the latter becoming
a consideration as the chip is filled. The design has gone
through one iteration of optimization with registers being

6969

inserted in the critical path (controller). The most complex
part of the generator is for the controller microcode (see [13]
for details). We have synthesized a number of instances for
both Xilinx Virtex and Altera Stratix product lines, some of
which are described here.

Target hardware. We target two FPGA platforms for
detailed study. The first is a Gidel PROCStar-III 260E-4AP
development board with four Altera Stratix-III EP3ES260-
F1152C2 FPGAs of which one is used. This implementation
is used to demonstrate a working version, to fully validate
the design, and to demonstrate a performance trend both
across device vendors and generations of process technology.
The second is the Xilinx Virtex-7 xc7v2000t-lflg1925. This
is a large, new device built with a 28nm process. We use the
Virtex-7 to demonstrate performance on current technology.
Results for the Virtex-7 are from simulation and post place-
and-route. We have also synthesized designs for a number
of other FPGAs–in particular, the Stratix-V from Altera and
Virtex-6 from Xilinx–and obtained results in line with those
presented here.

Tools. For the Xilinx parts we used the Xilinx ISE design
suite for simulation, synthesis, and mapping. This contains
all of the Xilinx FPGA synthesis and targeting tools as well
as the ISIM mixed language simulator and the LogiCORE
IP core generator [5]. For Altera we used Quartus II design
software for synthesis and mapping and Modelsim SE for
simulation. Quartus II contains all of the Altera FPGA syn-
thesis and P&R tools as well as the MegaCore IP generator
[14]. For the GIDEL board the design was compiled with
Quartus II tool chain and the bit file downloaded onto the
board through Gidel’s ProcWizard tool [15].

Validation. For the Gidel/Altera version we compared the
results from the FPGA board with Matlab. The maximum
relative difference was less than 0.008%. For the Virtex-7,
running a full structural simulation is impractical. Instead we
validated the overall designs using cycle accurate behavioral
versions of the 1D IPs. These in turn were validated with
respect to the structural versions which themselves were
validated with respect to Matlab.

Results. Results are shown in Tables I and II. For the
Virtex-7 each FFT size was implemented using various
numbers of 1D FFT IPs. Designs with more IPs were also
generated but either did not fit on chip or had very poor
cycle times. Basic optimization was performed by inserting
registers into critical paths. For the 323 FFT with 32 IPs
this reduced the cycle time from 7.5ns to the 5.6ns shown. A
similar optimization had little effect on the 643 64 IP design,
probably because with high resource utilization there are
multiple critical paths. Overall, since the IP blocks on their
own run at 300MHz there should be substantial room for
improvement with floor planning. We also generated results
for fixed point FFTs. These showed little improvement over
the floating point versions.

Comparison. We compare the results from the FPGA
FFTs with those of sample CPUs, GPUs, and ASICs and
present them Table III. We compare two cohorts of com-
pute devices corresponding roughly to 2008- and 2012-era,
respectively. For CPU and GPU we ran vendor library func-
tions (from MKL [16] and CUFFT [17]) on the platforms
shown. While there is a substantial literature on optimizing
FFTs for CPUs and GPUs, we believe that these packages
give (at least) close to the best available performance single
devices. For MKL we note that performance is close to the
theoretical peak. For CUFFT we note that for the 643 FFT
the relative performance with respect to the analogous MKL
FFT is in line with previously published ratios [18]. For
CUFFT we note that other reported implementations (e.g.,
[19]) are not publicly available and that CUFFT has been
substantially updated since the last published comparisons.
ASIC results are from Anton [12] a 512-node ASIC-based
dedicated MD compute engine. These results are not repre-
sentative of the best possible on a single ASIC but rather
are shown because of the high profile of that project and its
similar goals.

IV. DISCUSSION AND FUTURE WORK

With the continued increases in device density ever larger
problems fit on chip. In this study we observe that a class
of 3D FFTs that dominates an important domain now fits
entirely on a high-end FPGA. As expected this results in
an order-of-magnitude improvement in performance over
previous FPGA implementations. We also note that for 163

FFTs FPGAs yield substantially better performance than
CPUs and GPUs and that this trend has carried across
multiple process generations. For 323 FFTs FPGAs remain
competitive with GPUs.

This work is part of a project that is exploring FPGA-
centric clusters with direct connections among FPGAs
through the multi-gigabit tranceivers. The work by DE
Shaw has shown how effective low-latency communication
can be to achieve strong scaling, particularly in MD. The
significance of the current work is that it demonstrates
two things: (i) a design that can scale to take additional
inputs/outputs directly from the MGTs and (ii) performance
that indicates that the long range force will not be on the
critical path for MD on such systems.

REFERENCES

[1] P. D’Alberto, P. Milder, A. Sandryhaila, F. Franchetti, J. Hoe,
J. Moura, M. Pueschel, and J. Johnson, “Generating FPGA-
Accelerated DFT Libraries,” in Proc. IEEE Symp. on Field
Programmable Custom Computing Machines, 2007.

[2] C. Dick, “Computing Multidimensional DFTs Using Xilinx
FPGAs,” in 8th Int. Conf. Signal Processing Applications and
Technology, 1998.

[3] C.-L. Yu, K. Irick, C. Charkrabarti, and V. Narayanan, “Mul-
tidimensional DFT IP Generator for FPGA Platforms,” IEEE
Trans. Circuits and System I, vol. 58, no. 4, 2011.

7070

Table I
RESULTS FOR 163 FFT FOR THE ALTERA STRATIX-III EP3ES260 RUN ON A GIDEL PROCSTAR III BOARD. LARGER FFTS DO NOT FIT.

FFT Size FFT IPs % reg % LUTs % BRAMs DSPs Cycles Cycle Time Latency
163 16 65.4% 61.2% 1.9% 33.3% 995 4.46n 4.5us

Table II
RESULTS FOR 163 , 323 , AND 643 FFTS FOR THE XILINX VIRTEX-7 XC7V2000T-1FLG1925 THROUGH PP&R.

FFT Size FFT IPs % reg % LUTs % BRAMs DSPs Cycles Cycle Time Latency
163 8 1.1% 1.7% 2.1% 5.9% 1916 4.0ns 7.7us
163 16 2.2% 3.7% 4.4% 11.8% 1149 4.6ns 5.3us
163 32 4.4% 9.4% 4.9% 23.7% 773 4.7ns 3.6us
323 8 1.3% 2.1% 14.9% 9.6% 12907 5.4ns 69.8us
323 16 2.6% 4.4% 15.5% 19.2% 6765 5.5ns 37.5us
323 32 5.2% 10.4% 14.3% 38.5% 3694 5.6ns 20.7us
643 16 3.0% 4.6% 89.2% 22.2% 50112 9.8ns 492.9us
643 32 6.0% 11.1% 89.2% 44.4% 25538 11.0ns 281.8us
643 64 12.0% 27.4% 84.2% 88.9% 13251 16.3ns 215.9us

Table III
RESULTS FOR VARIOUS TECHNOLOGIES AND PROBLEM SIZES. ANTON IS FIXED POINT, OTHERWISE RESULTS ARE FOR SINGLE PRECISION FLOATING

POINT. ALL TIMES ARE IN MICROSECONDS. RELEASE DATE IS FROM CORPORATE ANNOUNCEMENTS OF AVAILABILITY IN QUANTITY. VIRTEX-7
TIMES ARE FROM PP&R. ANTON RESULTS ARE FROM [12]. ALL OTHERS ARE FROM RUNS BY THE AUTHORS.

Implementation Technology Performance in μs
Tech. Make Model Parallelism Part # Proc. Freq. Rel. Date Code 163 323 643

2008 era technology
CPU Intel Nehalem 4 cores E5530 45nm 1.6GHz 2009/Q1 MKL 38 116 983
GPU NVIDIA Tesla 240 SPs C1060 55nm 1.3GHz 2008/Q3 CUFFT 54 66 257

FPGA Altera Stratix-III 16 1D FFTs EP3ES260 65nm 0.22GHz 2008/Q2 here 4.5 DNFit DNFit
ASIC DE Shaw Anton 512 PEs ——- 90nm 0.8GHz 2008/Q3 report Not Av. 4 13

2012 era technology
CPU Intel Sandy Bridge 8 cores E5-2680 32nm 2.7GHz 2012/Q1 MKL 22 55 288
GPU NVIDIA Kepler 2688 SPXs Tesla K20c 28nm 0.73GHz 2012/Q4 CUFFT 25 29 92

FPGA Xilinx Virtex-7 various XC7v2000 28nm various 2012/Q2 here 3.6 21 216

[4] Altera, “FFT MegaCore Function: User Guide,”
http://www.altera.com/ literature/ug/ ug fft.pdf accessed
1/18/2014, 2014.

[5] Xilinx, “LogiCORE IP Fast Fourier Transform v9.0: Prod-
uct Guide for Vivado Design Suite,” http://www.xilinx.com/
support/documentation/ip documentation/ xfft/v9 0//pg109-
xfft.pdf accessed 10/26/2013, 2014.

[6] S. Lee, “An FPGA Implementation of the Smooth Particle
Mesh Ewald Reciprocal Sum Compute Engine (RSCE),”
Master’s thesis, University of Toronto, 2005.

[7] T. Sasaki, K. Betsuyaku, T. Higuchi, and U. Nagashima,
“Reconfigurable 3D-FFT Processor for the Car-Parrinello
Method,” Journal of Computer Chemistry, Japan, vol. 4,
no. 4, pp. 147–154, 2005.

[8] B. Akin, P. Milder, F. Franchetti, and J. Hoe, “Memory
Bandwidth Efficient Two-Dimensional Fast Fourier Trans-
form Algorith and Implementation for Large Problem Sizes,”
in Proc. IEEE Symp. on Field Programmable Custom Com-
puting Machines, 2012.

[9] M. Chiu and M. Herbordt, “Molecular dynamics simulations
on high performance reconfigurable computing systems,”
ACM Trans. on Reconfigurable Technology and Systems,
vol. 3, no. 4, pp. 1–37, 2010.

[10] Y. Gu and M. Herbordt, “FPGA-based multigrid computations
for molecular dynamics simulations,” in Proc. IEEE Symp. on
Field Programmable Custom Computing Machines, 2007, pp.
117–126.

[11] ——, “Amenability of multigrid computations to FPGA-

based acceleration,” in Proc. High Performance Embedded
Computing Workshop, 2007.

[12] C. Young, J. Bank, R. Dror, J. Grossman, J. Salmon, and
D. Shaw, “A 32x32x32, spatially distributed 3D FFT in
four microseconds on Anton,” in SC ’09: Proceedings of
the Conference on High Performance Computing Networking,
Storage and Analysis, 2009, pp. 1–11.

[13] B. Humpries, “Using Offline Routing to Implement a Low
Latency 3D FFT in a Multinode FPGA System,” Master’s
thesis, Department of Electrical and Computer Engineering,
Boston University, 2013.

[14] Altera, “Quartus-II Handbook,” http://www.altera.com/ liter-
ature/hb/qts/ quartusii handbook.pdf, 2014.

[15] ProcWizard Product Brief, Gidel Reconfigurable Computing,
http://www.gidel.com/ PROCwizard.htm, 2014.

[16] Intel Math Kernel Library, Intel Corporation,
software.intel.com/en-us/intel-mkl, Accessed 4/2014.

[17] NVIDIA, “CUDA Toolkit Documentation: CUFFT,”
http://docs.nvidia.com/ cuda/cufft accessed 1/18/2014, 2014.

[18] V. Lee, C. Kim, J. Chhugani, M. Deisher, D. Kim, A. Nguyen,
N. Satish, M. Smelyanskiy, S. Chennupaty, P. Hammarlund,
R. Singhal, and P. Dubey, “Dubunking the 100x GPU vs. CPU
myth: An evaluation of throughput computing on CPU and
GPU,” in Proc. Int. Symp. on Computer Architecture, 2010.

[19] A. Nukada and S. Matsuoka, “Auto-tuning 3D FFT library
for CUDA GPUs,” in Proc. ACM/IEEE Int. Conf. for High
Performance Computing, Networking, Storage and Analysis –
Supercomputing, 2009.

7171

