Design Tools for Application Specific Embedded
Processors

Wei Qin!, Subramanian Rajagopalan!, Manish Vachharajani', Hangsheng
Wang!, Xinping Zhu!, David August!, Kurt Keutzer?, Sharad Malik!, and
Li-Shiuan Peh!

! Princeton University, Princeton NJ 08544, USA
2 UC Berkeley, Berkeley, CA 94720, USA

Abstract. A variety of factors make it increasingly difficult and ex-
pensive to design and manufacture traditional Application Specific In-
tegrated Circuits (ASICs). Consequently, programmable alternatives are
more attractive than ever. The flexibility provided by programmability
comes with a performance and power overhead. This can be significantly
mitigated by using application specific platforms, also referred to as Ap-
plication Specific Embedded Processors, or Application Specific Instruc-
tion Set Processors (ASIPs).

ASTPs and the embedded software applications running on them, require
specialized design tools - both during architectural evaluation to provide
feedback on the suitability of the architecture for the application; as well
as during system implementation to ensure efficient mapping and valida-
tion of design constraints. These functions result in requirements different
from those of traditional software development environments. The first
requirement is retargetability, especially during the early architectural
evaluation stage where a rapid examination of design alternatives is es-
sential. The second requirement is for additional metrics such as power
consumption, real-time constraints and code size.

This paper describes a set of design tools and associated methodology
designed to meet the challenges posed by architectural evaluation and
software synthesis. This work is part of the MESCAL (Modern Embed-
ded Systems, Compilers, Architectures, and Languages) project >.

1 Introduction

Designing an ASIC in today’s deep sub-micron geometries is harder than ever,
and the problems continue to worsen with shrinking geometries. Design tools
are finding it difficult to handle the complexity and electrical design challenges
posed by each new technology generation. The net consequence is increasingly
lowered design productivity despite increasingly expensive design tools. ASIC
manufacturing costs are also rising - multi-million dollar mask sets are projected
for sub-100nm designs. These high non-recurring design and manufacturing costs

3 MESCAL is part of the Gigascale Silicon Research Center (GSRC), funded by
DARPA and MARCO.

imply either larger break even volumes at fixed per-unit costs, or prohibitive per-
unit costs at fixed volumes. An alternative implementation style to ASICs that is
rapidly emerging is the use of programmable solutions - alternatively referred to
as programmable platforms, Application Specific Embedded Processors, or Ap-
plication Specific Instruction Set Processors (ASIPs). For the hardware developer
the programmability of these devices enables a larger volume, as multiple related
applications, as well as different generations of an application can be mapped
onto the same ASIP. For the application developer, a programmable solution
provides a much lower risk as well as a predictable and shorter time-to-market
solution - writing and debugging software is cheaper than designing, debugging
and manufacturing working hardware. However, for the class of applications
of interest here, the power/delay overhead of general purpose programmable
solutions is unacceptable. ASIPs attempt to match application characteristics
with hardware support to minimize the power and performance overhead of pro-
grammable solutions to the point where they are an attractive alternative to
ASICs. There are a number of application domains where this class of highly
specialized embedded processors is catching on as a replacement for ASICs -
notably network and communication processing. In fact, there are signs of a rev-
olution afoot, with an increasing trend of engineers from hardware application
groups going off and rapidly deploying the application in software on available
domain specialized processors [1].

Historically, designers adopting manageable alternatives have heralded a sig-
nificant change in design methodology, typically much before the change in de-
sign methodology has stabilized and acceptable tool flows become widely avail-
able. The move from schematic capture to logic synthesis and simulation in the
mid-80s was led by designers unwilling to deal with increasing complexity in a
non-scalable methodology. Home-grown rudimentary simulation and synthesis
tools were enough to deliver enough increased productivity for them to abandon
the old tools and also some design optimality. It did not take mature stable
tools for them to make the change - those tools followed to convert the trend to
accepted design practice on a larger scale. We believe that we are at a similar
watershed in design implementation practice today. The individual ASIC design-
ers that today are abandoning hardware design for the productivity benefit of
software solutions on an ASIP, even at some loss of design quality (measured in
area, delay, power), portend the acceptable design practice of tomorrow. This
paper describes tools that will get us rapidly to that tomorrow by targeting the
development and deployment of these ASIPs.

This paper is organized to highlight key components of the MESCAL Design
Environment shown in Figure 1. First, in Section 2, we describe the Liberty Sim-
ulation Environment (LSE), a simulator construction infrastructure used for all
system simulation. In addition to a simulator construction engine, LSE provides a
library for processing elements (PEs) and specialized hardware. To model on-chip
communication architectures (OCAs), Section 3 presents a modeling methodol-
ogy that distinguishes functional and architectural views. Section 4 describes
the methodologies used to model the power consumed by both PEs and OCAs.

[Application I

compiler view — scheduler

compiler view - register allocatar Compiler

[MESCAL Architecture Descripti%]] compiler view — application code

PE simulator view [> Liberty — > |_PE simulator

———————————————————————————— Simulator:

1| OCA simulator view —> pyilder [F— > [OCA simulator
[Technology Parameter}i:>{ PE and OCA Power Model#—T . ¢ .
design metrics

Fig. 1. The MESCAL Design Environment

Section 5 discusses the use of these methodologies in building Orion, a power-
performance simulator for networks including OCAs. The MESCAL Architec-
tural Description, described in Section 6, serves as the common specification used
to generate appropriate views for use in modeling and compilation. The compiler
is responsible for efficient mapping of applications onto these highly specialized
architectures. Section 7 describes the philosophy and nature of algorithms of this
compiler. We conclude with some final thoughts in Section 8.

2 The Liberty Simulation Environment

Traditionally, architects evaluate microarchitectures by running applications on
a simulator written in a sequential programming language such as C or C++. Un-
fortunately, this and other simulator construction methods are not well suited for
design-space exploration for ASIPs. To approach ASIC performance, ASIPs of-
ten contain elements that operate independently of the main execution pipeline,
thus the timing is difficult to model in conventional sequential simulators. Fur-
thermore, traditional techniques result in that simulators offer little to assure the
architect of the accuracy of the simulation and do little to facilitate an under-
standing of the model from the simulator description. To make matters worse,
many ASIPs contain multiple processing elements, that also have complex timing
and memory interactions that are also difficult to model and lead to simulation
inaccuracies [2].

These difficulties arise because the architect must map the microarchitecture,
which is inherently structural and concurrent, to a sequential programming lan-
guage. Correctly modeling small modifications to the structure of the microar-
chitecture can require large changes to the sequential simulator code, especially
if the changes affect the relative timing of loosely coupled concurrently executing
hardware elements. To avoid the laborious and error prone task of re-mapping
for every candidate microarchitecture, designers may be tempted to make small
changes to the simulator that approximate the changes in the microarchitecture.
Unfortunately, these small changes in the simulator will often correspond to

large, unanticipated, changes in the microarchitecture leading to an inaccurate
evaluation of the change.

The Liberty Simulation Environment [3,4] (LSE) is a deliberate effort to
address the mapping problem. LSE is a tool that can automatically map a con-
current and structural microarchitecture specification to an efficient simulator.
Since LSE automatically maps microarchitectural specifications to a sequen-
tial program, an LSE microarchitecture specification resembles the hardware it
models, thus only small changes in the specification are necessary to model small
changes in a microarchitecture. Furthermore, LSE has been designed to allow
modeling of specialized hardware common in ASIPs, but less frequently used in
general purpose processors. The benefits of LSE allow architects to devote their
full effort to exploring microarchitectures, instead of having them commit time,
energy, and patience to manage an inherently complex and opaque sequential
simulator.

In LSE, a user specifies the microarchitecture by describing the instantiation
of architectural components, called modules, and their port to port interconnec-
tions. Each module roughly corresponds to a hardware block and has concurrent
execution semantics, like actual hardware blocks, making specification easier and
more accurate. The LSE specification allows a user to customize and extend mod-
ules using a module extension mechanism. Users can utilize pre-existing modules
from the LSE library or create their own.

The ASIP design process is often incremental. Key parts of the system are
initially modeled, and additional parts and details of the system are added as the
application domain and design goals require. Furthermore, describing the com-
plete microarchitecture for simulation is often a daunting task and development
of novel microarchitectures for an application domain often involves simulating
pieces of a microarchitecture without paying attention to unimportant details
of the machine. LSE provides for this type of partial specification by assign-
ing default semantics to unconnected ports; modules are required to behave in
reasonable fashion if some ports are left unconnected. In this way, complete
architecture descriptions can be developed incrementally, one piece at a time.

For rapid specification of ASIP design variants for architectural exploration,
LSE provides a rich parameter system that allows the user to specify not only
simple parameters such as sizes of hardware arrays, but also parameters that are
algorithms. As a result, the user can override or augment the functionality of
a module to incorporate new computation and form new hardware blocks from
pre-existing ones. LSE also has special algorithmic parameters called control
points. At each module port there is a control point in which the user may
specify how data flows through the datapath, how signals are arbitrated, and how
hardware blocks are activated. Since it would be quite tedious to have to write
a control specification for each port on each module, or specify every parameter
value, parameters have default values with reasonable defaults defined by the
module author. Typically, for control points, this default control corresponds
to back pressure control in a pipeline. Since computation in a microprocessor
component often requires state from other portions of the machine, algorithmic

parameters may reference another module’s explicitly exported state to perform
their computation.

During different parts of the design cycle, designers require different informa-
tion from the simulator. Furthermore, different members of the design team will
want different information. Hardware designers may be interested in monitoring
hardware bottlenecks, and software developers may be interested in collecting
profile data for the compiler. As a result, LSE has data collectors and events to
facilitate data collection that is orthogonal to the simulator specification. Each
time something “interesting” occurs in a module, the module will emit an event.
The event notification will be tagged with the module that produced it, the
time it was produced, and any associated data that the module wishes to emit.
Data collectors, which are specified independently of the described architecture,
get notified when events occur and aggregate the data contained in the event.
Since certain collectors may be interested in only certain events, a mechanism
is provided for collectors to filter the events they receive. These events and data
collectors are similar to aspects in aspect-oriented programming [5].

Other systems can be used to specify ASIP designs, however, they are all less
then ideal. HDLs, for example, typically require the user to specify every last
detail of a complete machine. By employing default semantics, LSE allows the
user to produce a working simulator from a partial machine description. LSE
also allows for module communication through abstract data types, so that the
user need not manage wires and bus widths and data encoding manually. Other
concurrent languages, such as SystemC [6], partially address shortcomings of
sequential languages and HDLs, but the user must still resolve, by hand, all issues
related to partial specification and interoperability of the specified components.

3 On-Chip Communication Architecture Modeling

3.1 Motivation

The distributed computation architecture of the ASIPs being considered here
can be generally decomposed into two inter-related parts: The Processing Ele-
ments (PEs) and the On-Chip Communication Architecture (OCA). The PEs
are responsible for the computation of the desired functions and the OCA pro-
vides the communication mechanisms. Just as the computational capabilities
of the PEs must provide a match for the computational requirements of the
application domain, the communication capabilities of the OCA must be well
matched to the communication requirements of the concurrent computation.
This match significantly impacts the timing as well as power characteristics of
the implementation.

Technology advances have provided designers greater freedom in selecting
from different types of communication schemes. The traditional way of inter-
connecting on-chip modules is via on-chip buses, such as the IBM CoreConnect
Bus Architecture [7] and the ARM AMBA bus system [8]. An emerging option
for integrating a large number of processors is to use on-chip networks [9-11].

A design environment that can potentially select any one of these OCAs must
be able to model and support these choices with their variants. This decision
process must be guided through a design space exploration framework where
these different OCA (and PE) design choices can be tried, simulated and evalu-
ated within an execution-driven virtual prototyping environment in a “plug and
play” fashion.

3.2 Methodology

The discipline of computer architecture clearly distinguishes between the Instruc-
tion Set Architecture (ISA), which is the programming/functional view of the
processor, and the micro-architecture, which comprises implementation details
such as the number of pipeline stages, size and organization of cache memories,
the number and type of function units (FUs) etc. OCAs can also be viewed in
the same fashion. On the functional side, there exist different ways of sending
and receiving data from the OCA, e.g. read /write data through shared memory,
send/receive data through a message-passing network. On the implementation
side, the OCA contains various details such as input/output controllers, buffers,
arbiters, crossbars, etc. While the elements of ISAs and a micro-architectures for
PEs are well-understood and defined - even across a broad range of PEs, this is
not the case for OCAs. This work attempts to fill this gap.

As our first step, we define the following atomic constructs as the functional
primitives of the OCA in the shared memory and message passing models (each
PE is denoted by its address ¢ € N):

OCA read (z, u) moves data z in the shared memory into local variable u
OCA write (y, v) writes value of local variable y into shared variable v
OCA send (z, 7) sends the value of z to PE ¢ asynchronously

OCA receive (y, j) receives the value of z from PE j synchronously

This generic OCA “ISA” provides a basis for the communication primitives
needed. For a specific OCA, the actual functional primitives may vary, but they
are likely to be variants of the above (e.g. blocking reads and writes).

The above separation of the functional primitives and their actual implemen-
tation is useful in both system simulation and compilation. Functional simulation
needs to understand only the semantics of the primitives and thus can be fast.
Detailed timing simulation will naturally require the micro-architectural imple-
mentation models. Compilation can use these primitives, with additional latency
information provided for them, for the distributed mapping of the application.
They can also be mapped to lower level operations using library routine calls.

On the structural side, after detailed object-oriented analysis (OOA) [12], we
have derived a set of abstract object classes which are sufficient to compose a
wide range of OCAs. As shown in Figure 2, a relatively small set of object classes
is sufficient here. The key observation here is that the OCA micro-architectural
primitives belong to one of the following small set: links, buffers, resource sched-
ulers, and interfaces. Within each element of this set, there are variations which
over time get added to the class hierarchy.

Clocked Modue
Link
ResourceSchedul er r

Mux] [Dune;<Link }[DeMux }

(Alocaor | | Arbiter][CrosBar | [BusBadkplane |
I

I 1
{ Synchronous Backpl ane] [Asynchronots Badplane }
I

[Sendln‘terface H Recdve:nterfaceJ { AMBA émkplane] [CoreConre«i‘t Bad<p|ane}

(Masterinterface | [Slavelnterface | [wute

(FIFO] [cewaPod) [MutiQuee |

RoutingTable

Fig. 2. Class Inheritance Hierarchy of OCAs

3.3 Use of Methodology

We have used this methodology to model OCAs as part of Orion in LSE (see
Section 5), as well as Ptolemy II [13], an object-oriented, heterogeneous design
and modeling framework. Both environments support construction of executable
models in a modular fashion. For a specific OCA model, the designer needs to
examine and implement individual building blocks by either instantiating or
extending available modules in the class hierarchy. Thus, OCA design is sim-
plified as a process of integration of these “plug and play” modules. Within
these two environments, we implemented cycle-accurate models of two on-chip
bus systems, AMBA [8] and CoreConnect [7], and an on-chip packet-switching
network, the RAW [11] network [14]. Qur experience finds that adopting the
reusable hierarchical class diagram greatly reduces development time.

4 Power Modeling

As highlighted in Section 1, power has become a design metric that is as impor-
tant, if not more important than timing. Thus, power modeling and simulation
is an essential part of the design environment. In this section, we detail how
power models are derived for the different hardware modules of both PEs and
OCAs.

To facilitate retargetable simulation and design space exploration, several
requirements are imposed on power models: flexibility, re-usability, and fidelity.
These requirements are met by the following modeling hierarchy that enables
easy model composition.

4.1 Model Hierarchy

The model hierarchy consists of 4 layers: atomic layer, structure layer, prototype
layer and physical layer, from bottom to top as illustrated in Figure 3. Each layer

plays a different role and layers are relatively independent of each other so that
they can be modified without affecting other layers. The layers cooperate in
computing the switching energy E = 1aCV2,.

— The prototype and physical layers collect information needed by the lower
layers and assemble results reported by lower layers.

— The structure layer computes switching activity factor «, and the atomic
layer computes switching capacitance C.

Atomic Layer This is the lowest layer. An atomic component consists of several
capacitance elements which always switch simultaneously. For example, if gate A
drives one input of gate B, then the output capacitance of gate A, the connection
wire capacitance, and the input capacitance of gate B are in the same atomic
component.

1
Eatomic = §V(12dcatomic (1)

Structure Layer This layer corresponds to circuit building blocks that per-
form some basic functions, e.g. decoder, comparator, etc. One structure layer
component consists of several atomic components.

Estructure = Z(aiEgtomic) (2)

i

where q; is the switching activity factor of the i** atomic component.

Prototype Layer This layer models “virtual” function units, i.e. abstract func-
tion units with complete structure, but no specified functionality. A prototype
model is a collection of structure models, with parameter definitions to spec-
ify structure model types, properties and connections. For example, the most
widely used prototype model is the uniform array model, which essentially mod-
els generic SRAM array. The model has a complete list of structure components
and parameters specifying whether these components are present and their model
types.

EIJTOtOtyPC = Z E;tructure (iHPUtiJ Sta’tei) (3)

K3

where input; and state; are information needed by structure models to compute
switching activities.

Physical Layer This layer models real function units. A physical layer model is
just a prototype model with concrete parameters specifying functionality of the
function unit. For example, the aforementioned uniform array model can model
a data cache if configured with tag array, tag comparators and certain hit/miss
policies, or a shared central buffer [15] if configured without tag array but with
pipelined banks.

Ephysical = EpTototype (4)

Advantages of Model Hierarchy

1. Separation of micro-architecture dependency and technology dependency:

Only atomic layer power models depend on fabrication technologies, while
other layers are technology independent. Technology dependency is resolved
by maintaining a minimal set of low level capacitance constants and scaling
them according to technologies.

. Fine-grained modeling granularity: This enables the tracking of dynamic
switching activity at a level low enough to reflect physical reality. This
scheme can achieve higher accuracy than using average switching activity
or operation activity, which is unable to capture the effects of some low
power techniques aiming at reducing switching activities.

. Reusable prototype layer power models (templates) and structure layer power
models (building blocks) to ease developing new models: For instance, when
adding the crossbar power model, we re-use the structure layer tri-state out-
put buffer model which is a component of cache model. In Table 1 and
Figure 3, we show how the uniform array model can be re-used to model
different, function units through parameter mapping.

Table 1. Parameter mapping between prototype layer and physical layer models

Prototype layer parameters Physical layer parameters of
of uniform array model data cache shared central buffer
rows number of sets|number of chunks
cols cache line size |pipeline depth x flit width
number of comparators associativity |0
data width integer width |flit width
physical layer | data cache, shared central buffer, ‘

~~—— parameter mapping

prototype layer | uniform array model |

T ¥

structure layer | decoder | [wordiine| [........]

TE _av T

atomic layer [input driver] |[level-1 decodéf level-2 decodér|| |]

Fig. 3. Model hierarchy of data cache and central buffer power models

4. Easy maintenance: Modifying lower layer models or adding new model types

will not affect higher layers.

4.2 Use of Methodology

Our methodology guided our development of power models for PEs as well as
OCAs. Our PE power models have been integrated into LSE (see Section 2) using
LSE’s module extension mechanism and our network power models into Orion
(see Section 5). For PEs, we have built a variety of power models: cache, branch
predictors, register files, ALUs, and even some highly specialized function units
such as the OMFLIP unit [16]. For networks, we have modeled input/output
buffers, shared central buffers, crossbars, arbiters and links. Our models have
been validated through comparisons with other simulators and low-level power
estimates. Existing work focuses on further validation of the models, develop-
ment of new models and support for static power in the modeling.

5 Orion — OCA Power Modeling and Simulation

As the use of multiple interconnected PEs becomes increasingly prevalent in
application-specific embedded systems, the need to consider both power and
performance of networks becomes pressing. Orion [17] provides this critical ca-
pability, with a dynamic power simulation environment for a wide range of in-
terconnection networks, including OCAs. Orion extends LSE, building a library
of router and link modules, each instantiated with functional, timing and power
models. A user first picks modules to assemble the network he/she wishes to sim-
ulate, the modules are then plugged into LSE that builds a network simulator
automatically, and a communication workload played on the network to evaluate
its power and performance. This “pick, plug-and-play” environment allows users
to rapidly explore the design space of interconnection networks.

MESCAL’s methodology for OCAs (see Section 3) guided the selection of
the building blocks of Orion. For each building block, the functional and timing
behavior follows that characterized in [18] closely, while power modeling is carried
out as outlined in Section 4. Orion has since been used to model a variety of
network architectures and workloads, ranging from networks connecting PEs on
a single chip to microprocessors with integrated routers and complex InfiniBand
switches, providing valuable insights [19].

Orion forms a key piece in MESCAL’s development of a complete tool suite
for exploring application-specific embedded processors. While Orion is currently
a stand-alone platform for investigating networks, we are in the process of tying
it with PE power simulation within the LSE framework, so designers can ex-
plore interconnected processors in tandem with the network, in a single coherent
environment,.

6 Architectural Description

The MESCAL Architecture Description [20] (MAD) is designed as a unified
architecture representation for MESCAL’s retargetable software tool-chain in-
cluding the optimizing C compiler and the simulators at various abstraction

levels. The unified scheme eases the work for the description writers and en-
sures that all parts of the tool-chain share a consistent view of the architecture.
To transform the single description to naturally-fit data models for individual
components of the tool-chain, the MAD compiler analyzes the description and
generates optimized view files, as shown in Figure 1. The current focus of MAD
is the specification of individual PEs, future work will include OCAs in the same
specification.

Architecture description languages (ADLs) have been the research focus of
several past and ongoing projects [21-25]. However, we see no sign of convergence
of the field for two main reasons. First, the extensive space of computer architec-
tures and microarchitectures is difficult to capture accurately and efficiently with
a single model. Second, the diverse requirements imposed by different software
tools are hard to satisfy effectively with a single description scheme. Bearing in
mind the difficulties, we currently confine MAD to a limited architecture scope
including in-order RISC processors and statically scheduled VLIW processors.
Within this restriction though, MAD can handle a wide range of application
specific customizations - specialized functional units, memories, restrictions on
Instruction Level Parallelism (ILP) etc. This enables it to model a fairly wide
range of PEs. We also try to balance MAD between support for the retargetable
compiler and support for the retargetable simulators.

For computer architectures, two abstraction levels are well understood: the
instruction set architecture (ISA) and the micro-architecture. Since both provide
useful knowledge to the optimizing compiler and the simulators, MAD includes
the two in its behavioral part and its structural part, respectively. To bridge the
gap between the two abstraction levels, MAD also provides a mapping part.

The Behavioral Part: The ISA is modeled in three sections: operand, operation
and instruction. Similar to nML [22] and ISDL [23], MAD utilizes attribute
grammar [26] to organize the semantics, binary encoding and assembly format
across the layers.

The operand section describes the addressing modes. Two types of primitive
operands can be defined: immediate and register. The immediate operand de-
scribes the constant values encoded in instruction words. The register operand
describes the logical registers exposed to the ISA. Most PEs have complex ad-
dressing modes as the combinations of two or more primitive operands. One
example is the shifting operand of the ARM [27] architecture. Since such com-
plex addressing modes are often shared by many operations, a flat operation
description scheme based purely on primitive operands will result in lengthy de-
scriptions with much redundancy. To avoid this, we introduce an intermediate
level “composite” operand to capture the complex addressing modes. A compos-
ite bases its semantics, encoding and syntax on those of its children primitive
operands. Similar hierarchical schemes can also be found in nML and ISDL.

The operation section describes operations based on the operands. Besides en-
coding, assembly syntax and semantics, operations have two optional attributes:
predicate and side_effects. The former specifies the predicate operand and the
latter defines side effects like the altering of machine flags.

The instruction section describes possible bundling schemes of the operations
for VLIW architectures. Irregular operation packing rules which often appear in
low cost DSP designs can be described in the section and will be converted into
resource constraints [28] for use in the optimizing compiler. For RISC processors,
an instruction simply contains one operation.

The Structural Part: This part models the micro-architecture in the form of a
coarse-grained netlist. MAD distinguishes between two categories of hardware
units: pipeline stages and special function units. Pipeline stages are regular build-
ing fabrics of a PE as simple place-holders for operations. Their actual semantics
as an ALU or a multiplier is ignored here since operation semantics are covered in
the behavioral part. Special function units have heterogeneous semantics. Units
like registers, memories, branch predictors are all treated as special function
units. A library of basic special function units is built into MAD.

Each MAD hardware unit has input and output ports. Connections can be
specified between ports. Essential connections such as those connecting pipeline
stages and register files or memories are important for the MAD compiler to
understand important architecture properties such as data path organization
and memory banking.

The Mapping Part: Two types of mappings are described in this part: operand

mapping and operation mapping. The operand mapping specifies the port through
which an operand is accessed and the time of the access. The port information

allows the compiler to schedule the operations properly to avoid port resource

contentions. It also enables the simulator to interlock operations properly when

such contentions occur. The operation mapping specifies the pipeline stages that

an operation will flow through from its issue to completion. The description style

in this section is similar to that of Maril [29] or EXPRESSION [25]. It describes

the paths of an operation.

7 Retargetable Compiler

The compiler is a critical tool when designing systems with ASIPs. Along with
tools such as execution-time estimators [30] and good input sets for performance
evaluation, a high quality compiler allows designers to meet tight real-time dead-
lines and price/performance constraints without writing large amounts of assem-
bly code. The compiler is also essential in properly evaluating the effectiveness
of the hardware early in the design of the ASIP itself, since a microarchitecture
cannot be properly evaluated without high quality benchmark code. Thus, the
requirements for a compiler in the MESCAL environment are three-fold, viz. it
must be highly retargetable to cover a wide range of architectures; it must have a
wide variety of optimizations to produce good quality code; and it must be highly
configurable to allow for different compile time vs. efficiency trade-offs during
various stages of design. These requirements often conflict with each other, thus
providing challenges that differentiate this compiler work from others.

The basic structure of the compiler is fairly standard. The front end is based
on lcc [31] which is light-weight, documented and publicly available. The back-
end, based on the Liberty-IR infrastructure [32], consists of three phases, namely,
the code generation phase; the optimization phase including register allocation
and instruction scheduling; and the code emission phase. With retargetability
as one of the main thrusts of MESCAL, the compiler is automatically driven by
the MAD specification described in Section 6. Minimal compiler knowledge is
needed to retarget the back-end.

Embedded processors such as DSPs often contain non-orthogonal instruc-
tion sets and irregular data-paths like multiple register banks to reduce code
size; to optimize area/power; to increase ILP; and to offer a wide set of address-
ing modes. These features pose a variety of problems to the compiler such as
selecting the optimal addressing mode by the code generator; supporting diverse
register banks efficiently during register allocation; handling irregular ILP in the
scheduler, etc. Retargetable solutions to many of the problems are still being
worked on.

To support architectures with irregular constraints within an algorithmic
framework, we seek low-cost retargetable solutions rather than architecture (fam-
ily) specific optimizations [33]. Here we briefly describe one such method that
enables the use of resource based VLIW schedulers for processors with irregular
ILP where the ISA restricts the sets of operations that can be issued in parallel,
even though the physical resources may not impose them. We have developed
the Artificial Resource Allocation (ARA) [28] algorithm which takes the set of
all possible combinations of operations that can be issued in parallel from the
machine description and assigns artificial resource (AR) usages to each opera-
tion such that, an AR is assigned to every pair of operations that cannot be
issued in parallel; an AR is not assigned to every pair of operations that can be
issued in parallel; and the total number of ARs is minimum. This is achieved
by constructing a compatibility graph that has the operations in the ISA as
vertices and an edge is drawn between every pair of vertices that can be issued
in parallel. The ARA problem then translates to labeling the complement of the
compatibility graph with the minimum number of labels (ARs) such that each
pair of vertices (operations) connected by an edge in the complement graph is
assigned at least one label (AR). For further details, we refer the readers to [28].

8 Conclusion

We are seeing a significant move from application development in dedicated hard-
ware on ASICs, to programmable solutions on Application Specific Embedded
Processors. However, these processors must achieve high power and performance
efficiency in order to replace ASICs. This is accomplished through application
specific customization in the form of specialized hardware resources. This cus-
tomization places significant requirements on the software development environ-
ment needed for both processor development, as well as application deployment.

We have described a set of tools used for simulation and compilation with the
following key characteristics:

ability to handle a wide range of architecture customization

fully retargetable, starting from a unified architectural specification

ability to handle on-chip communication architectures in addition to pro-
cessing element architectures

ability to model and simulate power consumption for both PEs and OCAs

We believe that the above infrastructure will significantly enable this transition
from ASICs to Application Specific Embedded Processors.

References

10.

11.

12.

13.

14.

15.

. Paulin, P.: What is the next EDA driver? Design Automation Conference Panel

(2002)

Pai, V.S., Ranganathan, P., Adve, S.V.: RSIM reference manual, version 1.0.
Technical Report 9705, Department of Electrical and Computer Engineering, Rice
University (1997)

Vachharajani, M., Vachharajani, N.; Penry, D., Blome, J., August, D.: Architec-
tural exploration with Liberty. Technical Report Liberty-02-01, Liberty Research
Group, Princeton University (2002)

The Liberty Research Group: http://liberty.princeton.edu/ (2002)

Kiczales, G., Lamping, J., Menhdhekar, A., Maeda, C., Lopes, C., Loingtier, J.M.,
Irwin, J.: Aspect-oriented programming. In: Proceedings of the 11th European
Conference on Object-Oriented Programming. (1997) 220-242

SystemC Community: http://www.systemc.org (2002)

IBM Corp.: The CoreConnect™ bus architecture. Technical White Paper (1999)
ARM Holdings PLC: Advanced microcontroller bus architecture (AMBA) specifi-
cation rev 2.0. http://www.arm.com/Documentation/UserMans/AMBA (2001)
Dally, W.J., Towles, B.: Route packet, not wires: On-chip interconnection networks.
In: Proceedings of Design Automation Conference. (2001)

Sgroi, M., Sheets, M., Mihal, A.,; Keutzer, K., Malik, S., Rabaey, J., Sangiovanni-
Vincentelli, A.: Addressing the system-on-a-chip interconnect woes through
communication-based design. In: Proceedings of Design Automation Conference.
(2001)

Taylor, M.B., et. al.: The Raw microprocessor: A computational fabric for software
circuits and general-purpose programs. IEEE Micro 22 (2002)

Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., Lorensen, W.: Object-
Oriented Modeling and Design. Prentice-Hall, New York, NY (1991)

Davis, J., et. al.: Ptolemy II - heterogeneous concurrent modeling and design in
Java. Technical Report UCB/ERL M01/12, Dep. of EECS, Univ. of California at
Berkeley (2001)

Zhu, X., Malik, S.: A hierarchical modeling framework for on-chip communication
architectures. In: Proceedings of International Conference on Computer-Aided
Design. (2002)

Katevenis, M., Vatsolaki, P., Efthymiou, A.: Pipelined memory shared buffer for
VLSI switches. In: Proceedings of Conference on Applications, Technologies, Ar-
chitectures, and Protocols for Computer Communication. (1995)

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

Yang, X., Lee, R.B.: Fast subword permutation instructions using omega and flip
network stages. In: Proceedings of International Conference on Computer Design.
(2000)

Wang, H.S., Zhu, X.P., Peh, L.S., Malik, S.: Orion: A dynamic power simulator
for interconnection networks — enabling power-performance tradeoffs for emerging
microprocessor systems. Technical Report PU-02-06, Department of Electrical
Engineering, Princeton University (2002)

Peh, L.S., Dally, W.J.: A delay model and speculative architecture for pipelined
routers. In: Proceedings of International Symposium on High-Performance Com-
puter Architecture. (2001)

Wang, H.S., Peh, L.S., Malik, S.: A power model for routers: Modeling Alpha
21364 and InfiniBand routers. In: Proceedings of Hot Interconnects 10. (2002)
Qin, W.: Mescal architecture description. http://www.ee.princeton.edu/~mescal/
mad.html (2002)

Zimmerman, G.: The MIMOLA design system: a computer aided processor design
method. In: Proceedings of Design Automation Conference. (1979) 53-58
Freericks, M.: The nML machine description formalism. Technical Report 1991/15,
Technische Universitét Berlin, Fachbereich Informatik, Berlin, DE (1991)
Hadjiyiannis, G., Hanono, S., Devadas, S.: ISDL: An instruction set description
language for retargetability. In: Proceedings of Design Automation Conference.
(1997) 299-302

Pees, S., Hoffmann, A., Zivojnovic, V., Meyr, H.: LISA — machine description
language for cycle-accurate models of programmable DSP architectures. In: Pro-
ceedings of Design Automation Conference. (1999) 933-938

Halambi, A., Grun, P., Ganesh, V., Khare, A., Dutt, N., Nicolau, A.: EXPRES-
SION: A language for architecture exploration through compiler/simulator retar-
getability. In: Proceedings of Conference on Design Automation and Test in Eu-
rope. (1999) 485-490

Paakki, J.: Attribute grammar paradigms — a high-level methodology in language
implementation. ACM Computing Surveys 27 (1995) 196-255

ARM Ltd.: ARM architecture reference manual. http://www.arm.com/arm/
documentation (1996)

Rajagopalan, S., Vachharajani, M., Malik, S.: Handling irregular ILP within con-
ventional VLIW schedulers using artificial resource constraints. In: Proceedings of
International Conference on Compilers, Architectures and Synthesis for Embedded
Systems. (2000)

Bradlee, D.G., Henry, R.R., Eggers, S.J.: The marion system for retargetable
instruction scheduling. In: Proceedings of Conference on Programming Language
Design and Implementation. (1991) 229-240

Chen, K., Malik, S., August, D.I.: Retargetable static timing analysis for embedded
software. In: Proceedings of International Symposium on System Synthesis. (2001)
Fraser, C.W., Hanson, D.R.: A Retargetable C Compiler : Design and Implemen-
tation. Addison-Wesley, Menlo Park, CA (1995)

Triantafyllis, S., Vachharajani, M., August, D.: The Liberty Compiler interme-
diate representation. Technical Report Liberty-02-02, Liberty Research Group,
Princeton University (2002)

Marwedel, P., Goossens, G.: Code Generation for Embedded Processors. Kluwer
Academic Publishers (1995)

