
Interprocedural Exception Analysis for C++

Prakash Prabhu1,2, Naoto Maeda1,3, Gogul Balakrishnan1, Franjo Ivančić1,
and Aarti Gupta1

1 NEC Laboratories America, 4 Independence Way, Suite 200, Princeton, NJ 08540
2 Princeton University, Department of Computer Science, Princeton, NJ 08540

3 NEC Corporation, Kanagawa 211-8666, Japan

Abstract. C++ Exceptions provide a useful way for dealing with ab-
normal program behavior, but often lead to irregular interprocedural
control flow that complicates compiler optimizations and static analy-
sis. In this paper, we present an interprocedural exception analysis and
transformation framework for C++ that captures the control-flow in-
duced by exceptions and transforms it into an exception-free program
that is amenable for precise static analysis. Control-flow induced by ex-
ceptions is captured in a modular interprocedural exception control-flow
graph (IECFG). The IECFG is further refined using a novel interproce-
dural dataflow analysis algorithm based on a compact representation for
a set of types called the Signed-TypeSet domain. The results of the inter-
procedural analysis are used by a lowering transformation to generate an
exception-free C++ program. The lowering transformations do not af-
fect the precision and accuracy of any subsequent program analysis. Our
framework handles all the features of synchronous C++ exception han-
dling and all exception sub-typing rules from the C++0x standard. We
demonstrate two applications of our framework: (a) automatic inference
of exception specifications for C++ functions for documentation, and (b)
checking the “no-throw” and “no-leak” exception-safety properties.

1 Introduction

Exceptions are an important error handling aspect of many programming lan-
guages, especially object-oriented languages such as C++ and Java. Exceptions
are often used to indicate unusual error conditions during the execution of an
application (resource exhaustion, for instance) and provide a way to transfer
control to special-purpose exception handling code. The exception handling code
deals with the unusual circumstance and either terminates the program or re-
turns control to the non-exceptional part of the program, if possible. Therefore,
exceptions introduce additional, and often complex, interprocedural control flow
into the program, in addition to the standard non-exceptional control flow.

The interprocedural control flow introduced by exceptions necessitate global
reasoning over whole program scope, which naturally increases the potential
for bugs. Stroustrup developed the notion of exception safety guarantees for
components [18]. Informally, exception safety means that a component exhibits
reasonable behavior when an exception is raised. The term “reasonable” includes

M. Mezini (Ed.): ECOOP 2011, LNCS 6813, pp. 583–608, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

584 P. Prabhu et al.

all the usual expectations for error-handling: resources should not be leaked, and
that the program should remain in a well-defined state so that execution can
continue. Stroustrup introduced various degrees of exception safety guarantees
that can be expected from components:

– No leak guarantee: If an exception is raised, no resources such as memory
are leaked.

– Basic guarantee: In addition to the no leak guarantee, the basic invari-
ants of components (for example, properties that preserve data structure
integrity) are maintained.

– Strong guarantee: In addition to the basic guarantee, this requires that
an operation either succeeds or has no effect, if an exception is raised.

– No throw guarantee: In addition to the basic guarantee, this requires that
an operation is guaranteed not to raise an exception.

However, it is very difficult to ensure such exception-safety properties, because
developers may overlook exceptional control-flow hidden behind multiple levels
of abstraction. For instance, in a code block containing local objects as well as
exceptions, programmers have to reason about non-local returns induced by ex-
ceptions, and at the same time understand the effects of the implicit calls to
the destructors of local objects along the exception path correctly. Unlike Java,
all C++ exceptions are unchecked, and library developers are not required to
annotate interfaces with exception specifications. Furthermore, dynamic excep-
tion specifications (anything other than noexcept specification) are deprecated
in the latest C++0x draft standard [17]. Consequently, developers increasingly
rely on documentation to discern throwable exceptions from a function interface
(more so in the absence of source code), which makes it hard to reason about
programs that use library functions that throw exceptions. Therefore, a tool that
automatically models the behavior of exceptions precisely would be useful.

Existing Approaches to C++ Exceptions. Program analysis techniques, both
static and dynamic, are often applied in the context of program optimization, au-
tomatic parallelization, program verification, and bug finding. These techniques
rely heavily on both intraprocedural and interprocedural control flow graph in-
formation, which are utilized to compute relevant information as needed (e.g.,
dependence analysis or program slicing). However, existing compiler frameworks
for C++ (for example g++, clang/LLVM [10]) do not build precise models
for exceptions. Specifically, they only analyze exceptional control flow within a
locally declared trycatch statement, and do not perform either an intraprocedu-
ral or interprocedural analysis. Therefore, they make conservative assumptions
about interprocedural control flow, which causes their models to include paths
between throw statements and catch blocks that are infeasible at runtime. An
alternative approach is to use such frameworks to generate a semantically equiv-
alent C program from the given C++ program and use the lowered C code for
further analysis. However, the code generated by these tools use custom data
structures and involves calls into opaque runtimes, which need to be modeled
conservatively in static analysis algorithms, resulting in further loss in precision.

Interprocedural Exception Analysis for C++ 585

Our Approach. In this paper, we present an interprocedural exception analy-
sis and transformation framework for C++ that (1) captures the control-flow
induced by exceptions precisely, and (2) transforms the given C++ into an
exception-free program that is amenable for precise static analysis. We sum-
marize our contributions below:

– We propose a modular abstraction for capturing the interprocedural control
flow induced by exceptions in C++, called the interprocedural exception con-
trol flow graph (IECFG). The IECFG is constructed through a sequence of
steps, with each step refining it. The modular design of IECFG is motivated
by the need to model implicit calls to destructors during stack unwinding,
when an exception is thrown. The modularity of IECFG is also important
in practice, for permitting re-use in presence of separate compilation units.

– We design and implement an interprocedural exception analysis algorithm
to model the set of C++ exceptions that reach catch statements in the pro-
gram using the Signed-TypeSet domain, which represents a set of program
types compactly. Our analysis is formulated in conjunction with the con-
struction of the IECFG. A unique feature of our framework is the capability
to safely terminate the IECFG construction at certain well-defined points
during interprocedural propagation, thereby, allowing clients, such as opti-
mizing compilers or program analysis, to trade-off speed over precision.

– We present a lowering algorithm that uses the results of our exception anal-
ysis to generate an exception-free C++ program. Unlike standard compilers,
our algorithm does not use non-local jumps or calls into any opaque C++
runtime systems. Absence of an external runtime and non-local jumps en-
ables existing static analyses and verification tools to work soundly over C++
programs with exceptions, without needing to model them explicitly within
their framework. While the IECFG construction is modular in the sense
of allowing separate compilation units, the lowering algorithm to generate
exception-free code is not modular. It requires a global view of all source
code under analysis so that all known possible targets of virtual function
calls can be determined.

– We present the results of using our interprocedural exception analysis and
transformation framework on a set of C++ programs. We compute the excep-
tion specifications for functions and check the related “no throw” guarantee.
We also check the “no leak” exception-safety property.

Example. Consider the C++ program shown in Fig. 1. The program has three
functions, of which get() allocates a File object and attempts to read a line
from File by calling readLine(). If the file does not exist, readLine() throws
an IOException that is handled in the get() function. Otherwise, a call is made
to read() which throws an EOFException if the end of the file is reached, which
is handled in readLine(). An exception modeling framework has to abstract
the interprocedural control flow due to exceptions correctly, and also take into
account the implicit calls made to destructors during stack unwinding, when an
exception propagates out of a function (e.g., destruction of str in read() when
EOFException is thrown).

586 P. Prabhu et al.

string File::read() {
string str(__line);
if (EOF)

throw EOFException();
return str;

}

void get () {
string s;
try {
File *file = new File("l.txt");
file->readLine();
delete file;

}
catch (IOException& ie) {
cout<< "IO-Failure";

}
return;

}

class EOFException { ... };
class IOException { ... };

string File::readLine() {
string s;
try {
if (invalidFile)
throw IOException();

s = read();
return s;

}
catch (EOFException& e) {
return string("");

}
}

Fig. 1. Running Example

There are two bugs worth noting in this example, both of which have to
do with exceptions: (1) violation of “no leak” guarantee, the file object gets
leaked along the exception path from readLine() to the catch block in get(),
and (2) violation of “no throw” guarantee, a potential std::bad alloc exception
thrown by new is not caught in get(). Our exception analysis and transformation
framework enables checking these properties easily. �

Comparison with Java Exception Analysis. Several analysis approaches for mod-
eling Java exceptions have been proposed in the recent past. Most approaches [3,
8, 9] compute an interprocedural exception control flow graph as we do. There
have been some attempts to analyze the “no leak” exception-safety guarantee
for Java programs also [11]. However, there are a number of major differences
between exception handling in Java and C++, which require different design
decisions in comparison to Java-based exception analysis techniques:

1. In C++, when an exception propagates out of a function, destructors are in-
voked on all stack-allocated objects between the occurrence of the exception
and the catch handler in a process called stack unwinding. Stack unwinding in
C++ is a major difference compared to Java, and raises various performance
issues, along with complicating the modeling of exceptional control-flow.

2. C++ destructors can call functions which throw exceptions internally, lead-
ing to a scenario where multiple exceptions are live during stack unwinding.
Unlike implicitly invoked destructors, Java provides “finalizers”, that are
invoked non-deterministically by the garbage collector. Although the use of
“finally” blocks in Java can result in multiple live exceptions, these blocks are
created and controlled explicitly by the programmer, and therefore, multiple
live exceptions in Java are apparent from the code itself.

3. The exception subtyping rules for Java are limited to only parent-child rela-
tionships within the class hierarchy. Besides, all exception classes trace their

Interprocedural Exception Analysis for C++ 587

lineage to a single ancestor, the Exception class. In contrast, C++ exception
subtyping rules are richer and include those concerning multiple inheritance,
reference types, pointers, and few other explicit type-conversion rules among
functions as well as arrays.

4. The exception specification and checking mechanism in Java is much stronger
than in C++. In particular, Java has a “checked exception” category of ex-
ceptions, which explicitly requires programmers to either catch exceptions
thrown within a function, or declare them as part of the interface. C++
has no concept of checked exceptions, and the dynamic exception speci-
fications are deprecated in the latest C++0x standards draft. Exception
specifications in C++ may not even be accurate, which results in a call to
std::unexpected() function, which may be redefined by an application.

5. C++ provides an exception probing API while Java does not. It provides a
means to conditionally execute code depending on whether there is an out-
standing live exception by calling std::uncaught exception(). This can be
used to decide whether or not to throw exceptions out of a destructor. C++
also allows users to specify abnormal exception termination behavior by pro-
viding custom handlers for std::terminate() or std::unexpected().

6. Java exceptions are handled based on runtime types, whereas in C++ static
type information is used to decide which catch handler is invoked. Therefore,
pointer analysis is required in Java to improve the accuracy of matching
throw statements with catch blocks. For C++, we can avoid a heavy duty
pointer analysis for exceptions. (However, call graph construction in C++
can be improved with the results of a pointer analysis on function pointers
and virtual function calls.)

2 Preliminaries

We first describe the abstract syntax of a simplified intermediate language (IL)
for C++ used within our framework. The language is based on CIL [14], with
additional constructs for object-oriented features. Fig. 2 shows the subset of
the actual IL that is relevant for the exception analysis and transformation
framework. Types within our IL include the primitive ones (int, float, void) as
well as user defined classes (cl), derived types (pointer, reference and array),
function types, and can additionally be qualified (const, volatile, restrict). Each
class type can inherit from a set of classes, and has a set of fields and member
functions, some of which may be virtual. Visibility of the class members and the
inherited classes is controlled by an access specifier.

A program is a set of globals. A global is either a type or a function. A func-
tion has a signature and a body, which is a block of statements. Statements
include instructions, regular control flow statements (loop, if, trycatch), irregu-
lar control flow statements causing either local (goto, break, continue) or global
(throw, return) alterations. An instruction is one of the following: an assignment,
an allocation operator, a deallocation operator, a global function call, or a mem-
ber function call. Expressions could involve binary operators, unary operators,
pointer dereferences or indirections, reference indirections, and cast operations.

588 P. Prabhu et al.

Constant c ∈ Constant
Identifiers id ∈ Identifier
Labels l ∈ Label
Access a ::= private | protected | public
Qualifier cv ::= const | volatile | restrict

Class cl ::= class id : a t {a t fi; a virtual? m}
Type t ::= id | t ∗ | t & | t [e] | t→ t | void | int | float | cv t
Variable v ::= id
Lvalue lv ::= lh e
Lhost lh ::= v | ∗ e
Program p ::= g
Global g ::= t id | f
Function f ::= t id (t id) = b
Block b ::= {s}
Statement s ::= i | return e? | goto l | break | continue |

if e b1 b2 | loop b | throw e? | trycatch b h
Handler h ::= (t v) b | (...) b
Instruction i ::= call id ef e | mbrcall id ethis ef e | e := e | v := new e | delete e
Cast cast ::= staticcast | dyncast | constcast | reintcast
Expression e ::= c | lv | unop e | e binop e | cast t e | &lv | lv&

Fig. 2. Abstract Syntax of the Simplified IL for C++

C++ Exceptions. C++ exceptions are synchronous. Asynchronous exceptions,
which in Java are raised due to internal errors in the virtual machine, are catego-
rized as program errors in C++ and are not handled by the exception constructs
of C++. Synchronous exceptions, in contrast, are expected to be handled by the
programmer and are only thrown by certain statements in the program, such as
(a) throw statement, which throws a fresh exception or rethrows a caught ex-
ception, (b) function call, which transitively throws exceptions uncaught within
its body or its callees, (c) new operator, which can throw a std::bad alloc
exception, and (d) dynamic cast, which can throw a std::bad cast exception.

Exception Handling and Subtyping rules for C++. Exceptions in C++
are caught using exception handlers, defined as part of the trycatch statement.
Each trycatch statement has a single try block followed by a sequence of exception
(catch) handlers. An exception object thrown from within the try block is caught
by the first handler whose declared exception type matches the thrown exception
type according to the C++ exception subtyping rules. If no match is found for a
thrown object amongst the handlers, control flows either to an enclosing trycatch
statement or out of the function to the caller.

The exception subtyping rules for C++ as defined in the final C++0x draft
standard [17] are shown in Fig. 3. The type of a thrown exception is given by
tT and the type declared in the exception handler is given by tC in each rule. A
handler is a match for an exception, if any of the following conditions hold:

– The handler’s declared type is the same as the type of the exception, even
when ignoring the const-volatile qualifiers (Rules EQ and CVQUAL).

– The handler’s declared type is an unambiguous public base class of the ex-
ception type. Arrays are treated as pointers and functions returning a type
are treated as pointers to function returning the same type (Rules SUBCL,
ARR, FPTR and CVQUAL).

– The handler’s declared type is a reference to the exception type (Rule REF).

Interprocedural Exception Analysis for C++ 589

tT = t tC = t

tT ≤ tC

[EQ]
tT = cv t tC = t

tT ≤ tC

[CVQUAL]

tT = t1 tC = t2 t1 ∈ sub(t2)

tT ≤ tC

[SUBCL]
tT = t1 tC = t2[] t1 ≤ t2∗

tT ≤ tC

[ARR]

tT = t1 tC = (→ t2) t1 ≤ (→ t2)∗
tT ≤ tC

[FPTR]
tT = t tC = t&

tT ≤ tC

[REF]

tT = t1 ∗ tC = t2 ∗ t1∗ ≤conv t2∗
tT ≤ tC

[PTR]
tT = std : : nullptr t tC = t∗

tT ≤ tC

[NULLPTR]

tT = t1 ∗ tC = void∗
tT ≤ tC

[VOID]

Fig. 3. Exception Subtyping Rules

– The handler’s declared type is a pointer into which the exception type, which
also is a pointer, can be converted using C++ pointer conversion rules (Rule
PTR).

– The two remaining rules concern generic pointers modeled by void ∗ and
std::nullptr t [17] (Rules NULLPTR and VOID).

3 Signed-TypeSet Domain

In this section, we present a novel abstract domain for compactly representing
a set of program types, which we call the Signed-TypeSet domain.

Definition 1. The Signed-TypeSet domain Γ is defined as: Γ = {(s, Tprog) |
s ∈ {+,−}, Tprog ⊆ {t | t is a program exception type} }
The semantics of a positive set of exception types is the standard one, while
a negative set of exception types represents “every exception type other than
those in the set”. For instance (+, {IOException}) represents the IOException
program type alone, while (−, {IOException, EOFException}) represents any
exception type other than IOException and EOFException. Exceptions thrown
by unknown library calls are modeled concisely as (−, {}). For external library
calls, a special unknown exception type tunknown is introduced explicitly only at
the point when the lowering transformation is to be done.

We use a signed domain in our framework, rather than a domain of only
positive set of program types to make the IECFG computation modular. Its use
is especially beneficial in the presence of unknown library calls and deprecated
use of dynamic exception specifications in C++. A negated set of types succinctly
captures the unknown exceptions that could potentially be thrown by opaque
library calls that are not caught. We would also like to incrementally integrate
the results of exception analysis from separately compiled functions whenever
available, while at the same time maintaining a safely analyzable exception result
at all intermediate points. Therefore, our exception dataflow analysis begins with
an over-approximation of the set of all exception types that could be raised by a
throwable statement, and refines the set via interprocedural propagation. This

590 P. Prabhu et al.

Algorithm 1: union (∪Γ)
Input: τa ∈ Γ, τb ∈ Γ
Output: τc ∈ Γ

1 case τa = (−, Ta) ∧ τb = (−, Tb)
2 τc = (−, Tc) where Tc = {t | t ∈ Ta ∧ t ∈ Tb};
3 case τa = (−, Ta) ∧ τb = (+, Tb)
4 τc = (−, Tc) where Tc = {t | t ∈ Ta ∧ t �∈ Tb};
5 case τa = (+, Ta) ∧ τb = (−, Tb)
6 τc = (−, Tc) where Tc = {t | t ∈ Tb ∧ t �∈ Ta};
7 case τa = (+, Ta) ∧ τb = (+, Tb)
8 τc = (+, Tc) where Tc = {t | t ∈ Ta ∨ t ∈ Tb};
9

Algorithm 2: intersection (∩Γ)
Input: τa ∈ Γ, τb ∈ Γ
Output: τc ∈ Γ

1 case τa = (−, Ta) ∧ τb = (−, Tb)
2 τc = (−, Tc) where Tc = {t | t ∈ Ta ∨ t ∈ Tb};
3 case τa = (−, Ta) ∧ τb = (+, Tb)
4 τc = (+, Tc) where Tc = {t | t ∈ Tb ∧ t �∈ Ta};
5 case τa = (+, Ta) ∧ τb = (−, Tb)
6 τc = (+, Tc) where Tc = {t | t ∈ Ta ∧ t �∈ Tb};
7 case τa = (+, Ta) ∧ τb = (+, Tb)
8 τc = (+, Tc) where Tc = {t | t ∈ Tb ∧ t ∈ Ta};
9

Algorithm 3: set difference (−Γ)
Input: τa ∈ Γ, τb ∈ Γ
Output: τc ∈ Γ

1 case τa = (−, Ta) ∧ τb = (−, Tb)
2 τc = (+, Tc) where Tc = {t | t ∈ Tb ∧ t �∈ Ta};
3 case τa = (−, Ta) ∧ τb = (+, Tb)
4 τc = (−, Tc) where Tc = {t | t ∈ Ta ∨ t ∈ Tb};
5 case τa = (+, Ta) ∧ τb = (−, Tb)
6 τc = (+, Tc) where Tc = {t | t ∈ Tb ∧ t ∈ Ta};
7 case τa = (+, Ta) ∧ τb = (+, Tb)
8 τc = (+, Tc) where Tc = {t | t ∈ Ta ∧ t �∈ Tb};
9

Algorithm 4: equals (=Γ)
Input: τa ∈ Γ, τb ∈ Γ
Output: bool

1 case (τa = (−, Ta) ∧ τb = (−, Tb)) ∨
(τa = (+, Ta) ∧ τb = (+, Tb))

2 if (Ta ⊆ Tb) ∧ (Tb ⊆ Ta) then
3 true
4 end
5 else
6 false
7 end

8 case default
9 false

10

Fig. 4. Operations on the Signed-TypeSet domain

deliberate design decision allows clients to terminate the analysis at any point
during the analysis and safely use the refined IECFG structure at that point for
other analyses.

We define set operations on Γ , that are as efficient as the set operations on
normal sets. These operations (shown in Fig. 4) mimic the normal set union,
intersection, difference, and equality operations. Given two elements τa and τb

from Γ , these operations result in another element τc in Γ . All the operations
perform a case analysis on the signs of the two elements, and perform normal
set operations on the constituent set of program types. The operations are fairly
straightforward, and in their full generality need to take into account the excep-
tion subtyping rules described earlier. For the sake of conceptual simplicity, we
assume that the set of exception types arising at the catch blocks have already
been expanded to contain all possible “exception subtypes” in the program,
before doing the specific set operations. However, in our implementation, we
perform these operations without doing full expansion and correctly account for
exception subtypes on demand.

4 Intraprocedural Exception Control Flow Graph

An intraprocedural exception control flow graph is defined as follows:

Definition 2. An intraprocedural exception control flow graph (ECFG) for a func-
tion f, denoted by Gintraf

is a tuple 〈N, Ereg, Eexcep, Eexceps, Ec, ns, ne, nexcepe〉
with Signed-TypeSet domain Γ , where

Interprocedural Exception Analysis for C++ 591

– N is the set of nodes in the graph, consisting of the following distinct subsets:
N = Nreg ∪ Nc ∪ Ncret ∪ Necret ∪ Nthrow ∪ Ncatch ∪ {ns, ne, nexcepe}

where
• Nreg is the set of regular nodes.
• Nc is the set of call nodes.
• Ncret is the set of call-return nodes.
• Necret is the set of exceptional-call-return nodes.
• Nthrow is txhe set of throw, new, or dynamic cast nodes.
• Ncatch is the set of header nodes of catch blocks.
• ns, ne, nexcepe are unique start, exit and exceptional-exit nodes.

– Ereg is the set of regular control flow edges: Ereg ⊆ (Nreg∪Ncret∪Ncatch)×N
– Eexcep is the set of intraprocedural exception control flow edges:

Eexcep ⊆ ((Necret ∪ Nthrow) × (Ncatch ∪ {nexcepe}) × Γ)
– Eexceps is the set of exception-call-summary edges:

Eexceps ⊆ (Nc × Necret × Γ)
– Ec is the set of normal call-summary edges:

Ec ⊆ Nc × Ncret

Example (ECFG structure). The ECFGs for the functions in our running
example are shown in Fig. 5. Consider the ECFG for the get() function. In
addition to the start (s-get) and exit (e-get) nodes present in regular CFGs,
the ECFG has a new exceptional-exit (exe-get) node. Control flows through
an exceptional-exit node, every time an exception propagates out of a func-
tion. Each call instruction is represented by three nodes: in addition to the call
node (c-readLine) and call-return node (cr-readLine) present in regular CFGs,
the ECFG has a new exceptional-call-return node (ecr-readLine) through which
control flows when the callee terminates with an exception. The ECFG has two
additional exception-related nodes: throw node, one for every potential throwing
statement, and catch-header node, one for every catch block in the code.

There are three kinds of edges in a ECFG: (a) normal control-flow edge (solid
lines) as in any CFG, (b) normal call-summary edges (long-dashed lines) between
call and call-return nodes, and (c) exception edges (short-dashed lines) which can
either be a summary edge (between call and exceptional-call-return nodes) or a
normal exception edge (for intraprocedural exceptions). Every exception edge is
annotated with an element from the Signed-TypeSet domain Γ . The exception
annotations represent the dataflow facts used in our interprocedural exception
analysis, as described in Sect. 5. �

ECFG Construction. The algorithm to construct the ECFG of a program
performs a post-order traversal on the abstract syntax tree (AST) of the C++
code, creating a set of ECFG nodes and edges as it visits each AST node. Each
visit method returns a triple 〈Nb, Ne, Nunres〉, where Nb and Ne represent the
set of nodes corresponding to start and normal exit of the ECFG “region” cor-
responding to the current AST node. Nunres represents the set of nodes in an
ECFG region that has some unresolved incoming or outgoing edges, which are
resolved by an ancestor’s visitor. For instance, a throw node that is not enclosed

592 P. Prabhu et al.

Fig. 5. Intraprocedural Exception Control Flow Graphs for the Program in Fig. 1

within a trycatch block is resolved at the root (function declaration), by creating
an exception edge to the exceptional-exit node. Alg. 5 shows the visit routine
for a trycatch statement.

The VisitTryCatchStmt routine for trycatch statements works as follows: it
first constructs the ECFG nodes and edges for the try block and all the catch
handlers, by visiting them recursively (Lines 1-4). It then divides the exception-
related ECFG nodes in the try block into two sets: (a) the throw nodes1, and
(b) the exceptional-call-return nodes (Lines 5-7). For the throw nodes, a match
is sought in the sequence of handlers by applying the C++ exception subtyping
rules described earlier. As soon as the first match is found, an exception edge
is created from the throw node to the catch header node, annotated with the
appropriate exception information from the Signed-TypeSet domain (Lines 8-
18). For the throw nodes, this information is always a positive set with a singleton
exception type, which is the type of the throw expression.

For an exceptional-call-return node necret, a map ECRΓ is used during the
search for an exception-type match amongst the handlers. ECRΓ maps an
exceptional-call-return node to an element from the Signed-TypeSet domain.
Initially, ECRΓ holds “all exception types” ((−, {})), which represents the most
conservative assumption as far as possible exceptions thrown from a call are
concerned, for all exceptional-call-return nodes. Every time a catch block is en-
countered and a possible match occurs, ECRΓ (necret) is incrementally updated
to hold the “remaining exception types” that could be thrown from this call
(using the difference operator −Γ). The final value of ECRΓ (necret) is used to
annotate the edge between the necret and the exceptional-exit node of the func-
tion. At every match with a catch header node, an exception edge is created from

1 In C++ programs, new and dynamic cast operators may also throw bad alloc and
bad cast exceptions, respectively. For sake of clarity, Alg. 5 only considers throw.
Our implementation deals with new and dynamic cast operators properly.

Interprocedural Exception Analysis for C++ 593

Algorithm 5: VisitTryCatchStmt
Input: s: A trycatch statement where s = b1 (h1, h2, ..., hk)
Output: Nb ×Ne ×Nunres

1 let (Nb1 , Ne1 , Nunres1) = V isitBlock(b1); // Creates ECFG region for a block

2 foreach hi do
3 let (Nbhi

, Nehi
, Nunreshi

) = V isitHandler(hi) // Creates ECFG region for a handler

4 end
5 let Sthrow = {n | n ∈ Nunresl

∧ ir(n) = throw};
6 let Secret = {n | n ∈ Nunresl

∧ ir(n) = call ∧ n ∈ Necret};
7 let Srest = Nunres1 − (Sthrow ∪ Secret);

8 foreach nth ∈ Sthrow do
9 for i=1 to k do

10 eTcatch
= (+, {t}) where hi = (t v) b;

11 tcatch = t where hi = (t v) b;
12 ncatchi

= n where (n ∈ Nbhi
) ∧ (ir(n) = catch);

13 τthrow = (+, {t′}) where (ir(nth) = throw e) ∧ (Tprog(e) = t′);
14 if t′ ≤ tcatch then
15 Eexcep = Eexcep ∪ {(nth, ncatchi

, τthrow)};
16 Ndone = Ndone ∪ {nth};

continue: foreach outer loop
17 end

18 end

19 end
20 foreach necret ∈ Secret do
21 for i=1 to k do
22 τcatch = (+, {t}) where hi = (t v) b;
23 τecret = ECRΓ (necret);
24 τintersect = τecret

T

Γ τcatch;
25 τremain = τecret −Γ τcatch;
26 ECRΓ (necret) = τremain;
27 Eexcep = Eexcep ∪ {(necret, ncatchi

, τintersect)};
28 end

29 end
30 Nreg = Nreg ∪ {njoin};
31 Ereg = Ereg ∪ {(n, njoin) | n ∈ Ne1} ∪{(n, njoin) | ∃ i such that n ∈ Nehi

};
32 Nb = Nb1 ; Ne = {njoin}; Nunres = (∪1≤i≤kNunreshi

∪Nunres1)−Ndone;

Fig. 6. VisitTryCatch routine for ECFG construction

the exceptional-call-return node to the catch header, annotated with appropriate
exception information (Lines 20-28). The VisitTryCatchStmt routine creates a
header node (ntry) and a join (njoin) node, in addition to those created by its
children (Lines 30-32).

The handling of the exceptional-call-return node illustrates one distinguishing
feature of our approach, as compared to other exception analysis algorithms
proposed for Java: the dataflow facts are initialized with an over-approximation,
which can be refined using the exception information from the catch-header
node. Our choice of the Signed-TypeSet domain, which allows a negative set of
exception types, not only permits modeling of unknown library calls within the
same framework, but also permits a safe termination of our analysis at any point
after the construction of the intraprocedural exception flow graphs.

Figs. 7, 8, and 9 show the Visit routines for the remaining IL constructs. The
VisitBlock routine is straightforward, recursively visiting each child statement
and then creating edges between corresponding nodes. The VisitStmt routine
creates ECFG nodes and edges differently based on the type of AST node. For if
and loop statements, it creates ECFG regions with appropriate join and header

594 P. Prabhu et al.

Algorithm 6: VisitBlock
Input: b: Block where b = s1, s2, ..., sn

Output: Nb ×Ne ×Nunres

1 for i = 1 to n do
2 let (Nbi

, Nei
, Nunresi

) = V isitStmt(si);

3 end
4 Ereg = Ereg ∪ {(n1, n2) | ∀i · 1 ≤ i<n · (n1 ∈ Nei

∧ n2 ∈ Nbi+1)};
5 Nb = Nb1 ; Ne = Nen ; Nunres = ∪1≤i≤nNunresi

;

Algorithm 7: VisitStmt
Input: s: Statement
Output: Nb ×Ne ×Nunres

1 switch typeOf(s) do
2 case instr ∈ {call, mbrcall}
3 V isitCallInstr(i);
4 case instr �∈ {call, mbrcall}
5 Nreg = Nreg ∪ {ni}; Nb = Ne = {ni}; Nunres = {}
6 case break | continue | goto | return
7 Nreg = Nreg ∪ {ns}; Nb = Nunres = {ns}; Ne = {};
8 case if e b1 b2
9 let (Nb1 , Ne1 , Nunres1) = V isitBlock(b1);

10 let (Nb2 , Ne2 , Nunres2) = V isitBlock(b2);

11 Nreg = Nreg ∪ {nife , njoin};
12 Ereg = Ereg ∪ {(nife , nb1) | nb1 ∈ Nb1} ∪ {(nife , nb2) | nb2 ∈ Nb2}
13 ∪{(ne1 , njoin) | ne1 ∈ Ne1} ∪ {(ne2 , njoin) | ne2 ∈ Ne2};
14 Nb = {nife}; Ne = {njoin}; Nunres = Nunres1 ∪Nunres2 ;

15 case loop bl

16 let (Nbl
, Nel

, Nunresl
) = V isitBlock(bl);

17 let Scontinue = {n | n ∈ Nunresl
∧ ir(n) = continue};

18 let Sbreak = {n | n ∈ Nunresl
∧ ir(n) = break};

19 Ereg = Ereg ∪ {(nc, nlhead
) | nc ∈ Scontinue} ∪ {(nb, nlexit

) | nb ∈ Sbreak} ;

20 Nreg = Nreg ∪ {nlhead
, nlexit

};
21 Nb = {nlhead

}; Ne = {nlexit
}; Nunres = Ns1 − (Scontinue ∪ Sbreak);

22 case throw | new | dynamic cast
23 V isitThrowingStmt(s);
24 case trycatch
25 V isitTryCatchStmt(s);
26

27 endsw

Fig. 7. VisitBlock and VisitStmt routines for ECFG Construction

nodes (Lines 8-21), while for some of the non-exception unstructured control
flow statements like break, goto, it creates unresolved nodes (Lines 6-7), which
are patched later on by their parents.

The VisitCallInstr routine creates three nodes and two edges for a call in-
struction. The three nodes are a call node nci , a call-return node (necreti) and
an exceptional-call-return node (necreti). The two edges are a summary edge con-
necting nci with necreti , and an exceptional-summary edge connecting nci with
necreti . The exceptional-summary edge is annotated with the most approximate
element (−, {}), which represents any exception type. The exception return node
necreti is unresolved since its targets are determined by the enclosing trycatch
statements or by the exceptional-exit-node at function scope.

The VisitThrowingStmt routine creates an unresolved node for the throw
statement, while the VisitHandler routine creates a header node correspond-
ing to the catch block, and connects it to the nodes created for the statements
within the block. The VisitFunction routine is the main driver for creating the

Interprocedural Exception Analysis for C++ 595

Algorithm 8: VisitCallInstr
Input: i: A call/mbrcall Instruction
Output: Nb ×Ne ×Nunres

1 Nc = Nc ∪ {nci
} ; Ncret = Ncret ∪ {ncreti

} ; Necret = Necret ∪ {necreti
} ;

2 let τe = (−, {}) ;
3 Ec = Ec ∪ {(nci

, ncreti
)} ; Eexcep = Eexcep ∪ {(nci

, necreti
, τe)};

4 Nb = {nci
}; Ne = {ncreti

}; Nunres = {necreti
} ;

Algorithm 9: VisitThrowingStmt
Input: s: A throw/new/dynamic cast statement
Output: Nb ×Ne ×Nunres

1 Nthrow = Nthrow ∪ {ns};
2 Nb = Nunres = {ns}; Ne = {} ;

Fig. 8. VisitCallInstr and VisitThrowingStmt routines for ECFG construction

ECFG for a function. Once the ECFG region for the function body is created,
this routine connects the return nodes to the normal exit nodes and throw nodes
to the exceptional-exit node. It finally resolves the unmatched exceptional-call-
return nodes by connecting them to the exceptional-exit node, annotated with
appropriate exception type annotation.

Example. In Fig. 5, the ECFG for get() has an exceptional-call-return node
for readLine(). The algorithm creates an exception edge from this node to
a catch header that handles IOException exceptions and annotates the edge
with (+, {IOException}). The algorithm then creates an exception edge to the
exceptional-exit node of get() annotated with (−, {IOException}), which is
meant to read “If readLine() throws any exception other than IOException,
control is transferred to the exceptional exit node of get()”. �

5 Interprocedural Exception Analysis

Once the intraprocedural graphs have been constructed, they are connected to-
gether to form an interprocedural exception control flow graph, which is defined
as follows:

Definition 3 An interprocedural exception graph (IECFG) is defined by the tu-
ple IG = 〈Ns, Ne, Nexcepe, Ginter〉, where Ns, Ne, Nexcepe are the set of start, exit
and exceptional-exit nodes of the constituent ECFGs, respectively, and Ginter is
the union of set of intraprocedural graphs of the functions in the program.

IECFG Construction. Alg. 12 (BuildInterECFG) shows the algorithm for
constructing the interprocedural graph from the intraprocedural graphs. Ini-
tially, the interprocedural graph consists of the union of all the intraprocedural
graphs, constructed independently, as described in Sect. 4. In the next step, the
call graph is consulted to determine the call targets for each call site. At each
call site, three edges are added: (a) a call edge from call node to start node of
the target’s intraprocedural graph, (b) a call-return edge from the normal exit

596 P. Prabhu et al.

Algorithm 10: VisitHandler
Input: h: A handler where h = (t v) b1
Output: Nb ×Ne ×Nunres

1 let (Nb1 , Ne1 , Nunres1) = V isitBlock(b1);

2 Ncatch = {nh}; Ereg = Ereg ∪ {(nh, ns) | ns ∈ Nb1};
3 Nb = {nh}; Ne = Ne1 ; Nunres = Nunres1 ;

Algorithm 11: VisitFunction
Input: f : Function where f = t id (t id)
Output: Gintraf

= <ns, ne, nexcepe, N, E>

1 let (Nb1 , Ne1 , Nunres1) = V isitBlock(b1);

2 Ereg = Ereg ∪ {(nsf
, n) | n ∈ Nb1} ∪ {(n, nef

) | n ∈ Ne1} ;

3 foreach n ∈ Sexit where Sexit = {n | n ∈ Nunres1 ∧ ir(n) = return} do
4 Ereg = Ereg ∪ {(n, nef

)};
5 end
6 foreach n ∈ Sthrow where Sthrow = {n | n ∈ Nunres1 ∧ ir(n) = throw} do
7 Eexcep = Eexcep ∪ {(n, nexcepef

, Tprog(ir(n)))};
8 end
9 foreach n ∈ Sgoto where Sgoto = {n | n ∈ Nunres1 ∧ ir(n) = goto} do

10 Ereg = Ereg ∪ {(n, ntgt) | ntgt ∈ Node(Label(ir(n)))};
11 end
12 for n ∈ Necret do
13 τecret = ECRΓ (necret);
14 Eexcep = Eexcep ∪ {(n, nexcepef

, τecret)}
15 end
16 return <nbf

, nef
, nexcepef

, N, E>

Fig. 9. VisitHandler and VisitFunction routines for ECFG construction

node of the target’s intraprocedural graph to the call-return node of the func-
tion call, and (c) an exception edge from the exceptional-exit node of the target’s
intraprocedural graph to the exceptional-call-return node in the graph. The ex-
ception edge is annotated with the union (

⋃
Γ) of the exception information on

incoming exception edges of the exceptional-exit node, which serves as the initial
dataflow fact for the interprocedural exception analysis. Finally, the summary
edges connecting the call node with the call-return and exceptional-call-return
nodes are removed.

Interprocedural Exception Analysis. Given that the IECFG construction
algorithm initially gives a safe overapproximation of the interprocedural excep-
tion flow, the goal of the interprocedural analysis is to refine the dataflow facts
on the exception edges as precisely as possible. Alg. 13 shows the interproce-
dural exception analysis algorithm. A single top-down propagation pass on the
call graph will not model exceptions precisely in the presence of recursive func-
tions. Therefore, we need to perform a dataflow analysis. Our analysis operates
only on the exceptional-exit and exceptional-call-return nodes, and their incom-
ing and outgoing edges. The abstract domain is the Signed-TypeSet domain as
defined in Sect. 3. The analysis is implemented using a worklist Wlist, which ini-
tially has the set of exceptional-exit and exceptional-call-return nodes in reverse
topological order on the CGSCC , the directed acyclic graph of strong connected
components formed from the call graph. Each iteration of the algorithm removes
a node from Wlist, applies a transfer function, updates its outgoing exception

Interprocedural Exception Analysis for C++ 597

Algorithm 12. BuildInterECFG

Input: p: Program
Output: IG = <Ns, Ne, Nexcepe, Ginter>
Ginter = ∪f ∈ pGintraf

;1

foreach calltriple (ncall, ncret, ncexcepret) do2
F = CallTargets(ir(ncall));3
for f in F do4

let Gintraf
= <nsf

, nef
, nexef

, Nf , Ef >;5

let Ec = Ec ∪ {(ncall, nsf
), (nef

, ncret)};6

let τexit =
⋃

Γep∈prede(nexef
)

excepEΓ (ep);
7

Eexcep = Eexcep ∪ {(nexef
, ncexcepret, τexit)};8

end9
Ec = Ec − {(ncall, ncret)};10
Eexcep = Eexcep − {(ncall, nexcepcret)};11

end12

edges with the new dataflow facts and adds the successors nodes to Wlist, if the
data flow information has changed. The algorithm is continued until the Wlist is
empty, at which point the algorithm terminates with a fixed point. Termination
of the algorithm is guaranteed due to the fact that the set of exceptions is finite.

A map excepNΓ defines the most recent dataflow information, an element
from the Signed-TypeSet domain, corresponding to each exceptional-exit or
exceptional-call-return node. Another map excepEΓ is used to hold the excep-
tion annotation on each exception edge. It is initialized to the union (

⋃
Γ) of

the exception information on the incoming edges for each node, and is updated
every time the result of

⋃
Γ changes. The transfer functions for the exceptional-

exit and exceptional-call-return nodes differ in how they update the exception
annotation on the outgoing edges, once

⋃
Γ is computed:

– For an exceptional-exit node, each outgoing edge’s exception annotation is
replaced by the newly computed information at the exit node. This operation
reflects the refined set of all of possible (uncaught) exception types that could
be thrown from a function, represented in the Signed-TypeSet domain (Lines
8-12 in Alg. 13).

– For an exceptional-call-return node, each outgoing edge’s old exception an-
notation, is replaced by an intersection (

⋂
Γ) of the old exception annotation

with the new exception information available at the node. The intersection
operation serves to narrow the set of exception types that was previously
assumed for a function call, and hence, iteratively increases the precision of
the interprocedural exception flow graph (Lines 13-19 in Alg. 13).

Uncaught Exceptions. At the end of the analysis, some of the exception edges
in the IECFG will have empty exception annotation, which can be eliminated.
Empty exception annotations are identified in two phases. The first phase can
be done immediately after the analysis, in which those that use a positive sign
((+, {})) can be removed. The second phase removes an empty exception an-
notation that uses a negative sign, and requires conversion of the exception
information from the Signed-TypeSet domain to the domain of positive set of
types. Alg. 14 shows the conversion algorithm, which is done only once, after the

598 P. Prabhu et al.

Algorithm 13. InterProceduralExceptionAnalysis

Input: IG = <Ns, Ne, Nexcepe, Ginter>
Input: IG′ = <Ns, Ne, Nexcepe, Ginter′>
Wlist = Nexcepe ∪

⋃
f ∈ M Necretf

;1

while Wlist is not empty do2
n← removeNode(Wlist);3
τnold

= excepNΓ (n) ;4

τnnew =
⋃

Γep∈prede(n)
excepEΓ (ep);

5

if τnold
�=Γ τnnew then6

switch typeOf(n) do7
case ExcepExit8

foreach es ∈ succe(n) do9
excepEΓ (es) = τnnew ;10
Wlist = Wlist ∪ {dst(es)};11

end12

case ExcepCallReturn13
foreach es ∈ succe(n) do14

excepEΓ (es) = τnnew

⋂
Γ excepEΓ (es);15

if typeOf(dst(es)) = ExcepExit then16
Wlist = Wlist ∪ {dst(es)};17

end18

end19

20

end21
excepNΓ (n) = τnnew ;22

end23

end24

analysis is performed and also serves as a checker for the “no throw” guarantee.
The algorithm walks the CGSCC in reverse topological order, and at each step,
uses the set of all exception types (positive) that could potentially be thrown
by the transitive callees of a function, to serve as the universal set, from which
to subtract the negated set of exceptions corresponding to the current function.
Whenever a SCC of mutually recursive functions is encountered, the union of
the set of uncaught exception types of each constituent function in the SCC
is used as a sound overapproximation for the subtrahend. The algorithm, pro-
duces a map excepF that gives for each function the set of potentially uncaught
exception types.

Example. Fig. 10 shows the final interprocedural exception control flow graph
for our example. The exception edges: ecr-readLine → exe-get and ecr-read →
exe-readLine are notably missing from the graph. The analysis is able to infer
this after performing the intersection operation, between exception information
on incoming and outgoing edges of ecr-readLine and ecr-read :

(+, {IOException})
⋂

Γ (−, {IOException}) = (+, {}) and

(+, {EOFException})
⋂

Γ (−, {EOFException}) = (+, {}).

However, we see that the program may potentially fail with the uncaught excep-
tion std::bad alloc thrown in get() by the new operator. �

Interprocedural Exception Analysis for C++ 599

Algorithm 14. ComputeUncaughtExceptions

Input: IG = <Ns, Ne, Nexcepe, Ginter>
Output: excepF : F 	→ Tprog

let Texcep = {};1
for nt ∈ Nthrow do2

excepT (nt) = Tprog(ir(nt)) ;3
Texcep = Texcep

⋃
Tprog(ir(nt))4

end5
for external function f do6

excepF (f) = {tunknown}7
end8
Fl = ReverseTopoOrder(CGSCC);9
while Fl is not empty do10

Fscc = RemoveFront(Fl);11
for f ∈ Fscc do12

excepF (f) =
⋃

excepT (nt) where (nt ∈ Nthrow) ∧ (∃g · g ∈ Fscc ∧ irn(nt) ∈ g)13
end14
for f ∈ Fscc do15

switch excepNΓ (nexcepe) where nexcepe = Nexcepe(f) do16
case (+, TE)17

excepF (f) = TE18
case (−, TE)19

foreach g ∈ TransitiveCallees(f) do20
excepF (f) = excepF (f)

⋃
excepF (g);21

end22
excepF (f) = excepF (f)− TE ;23

24

end25

end26

end27

6 Generating an Exception-Free Program

In this section, we describe our lowering algorithm that translates a given C++
program into a semantically equivalent program without exception-related con-
structs such as throw, catch, etc. The lowering algorithm uses the IECFG to
eliminate exception-related constructs. There are two main distinguishing fea-
tures of our lowering algorithm compared to existing C++ compilers:

– Our approach uses a combination of stack storage and reference parameters
to simulate exceptions without generating additional runtime calls whose
semantics have to be taught to existing static analysis tools.

– Our approach uses the exception target information available in the IECFG,
and therefore, when compared to existing C++ lowering techniques, gener-
ates fewer infeasible edges between throw statements and catch blocks that
are not present in the original program. It also handles insertion of destruc-
tors correctly. The modular design of the IECFG makes it easy to insert the
destructor calls in a single pass.

The main steps of the lowering algorithm are as follows:

1. Creation of Local Exception-Objects and Formal Parameters: Each
function’s (say f) local variable list is extended with: (1) a “type-id” variable,
and (2) a local exception-object variable for every exception type that can
potentially be thrown within f. The “type-id” variable holds the type of the

600 P. Prabhu et al.

Fig. 10. Interprocedural Exception Control Flow Graph for the program in Fig. 1

thrown exception, and the local exception-object variable holds the thrown
exception object and acts as storage for interprocedural exception handling.
Additional parameters are added to f ’s signature: (1) a reference parameter
for every uncaught exception type that propagates out of the function, and
(2) a reference parameter to hold the “type-id”. These reference parameters
propagate information about uncaught exceptions to a caller. At each call-
site of f, appropriate local exception-objects and the caller’s local type-id are
passed additionally as parameters to f.

2. Lowering throws and catch: Based on the targets of throw statements
in the IECFG, calls to the destructors of appropriate set of local objects are
inserted. The thrown object is assigned to the local exception-object of the
appropriate type and the local type-id variable is set to the thrown type. A
goto is then inserted either to a catch block or to the exceptional-exit node.
At the catch block, the local exception-object is assigned to the argument of
the catch-header.

3. Lowering exceptional-call-return nodes: A switch statement (modeled
using if s in our IL) on the local type id is inserted, with one nested case for
every uncaught exception type in the callee. The target node information
from the IECFG is used to place calls to destructors of appropriate stack-
allocated objects, for each case. Finally, a goto to the target (either a catch
or an exceptional-exit) is inserted.

4. Lowering exception exit node: The local exception-objects and type-
ids are copied into corresponding formal parameters. This serves to copy
the exception objects out of the callee into the caller, which deals with the
uncaught exceptions at its exceptional-call-return node.

The semantics preserving nature of the lowering algorithm can be established
as follows. Our lowering mechanism is based on the observation that exception

Interprocedural Exception Analysis for C++ 601

handling preserves functional scoping even though exceptions result in non-local
control flow. This is because the program has to unwind the call stack to invoke
the destructors of local objects that have been constructed in the functions on
the call stack until the exception is caught. Therefore, it largely mirrors the
flow that happens during a regular call return. Our lowering mechanism mimics
this flow by placing the destructor calls before the exceptional return of every
function and passing pending exception objects through the additional reference
parameters that were added by the lowering.

Subtleties introduced by some C++ features are handled as follows:

Throwing Destructors. As per the C++0x standards draft, destructors throw-
ing an exception during stack unwinding result in a call to std::terminate(),
which by default terminates the program. However, the destructor’s callees can
throw exceptions as long as they do not flow out of the destructor. Multiple live
exceptions arising out of this are correctly handled in our lowering algorithm by
the use of (a) local exception objects, which implicitly helps to maintain a stack
of multiple outstanding exceptions, and (b) a global exception flag to detect a
throwing destructor instance and trigger a call to std::terminate().

Virtual Functions throwing different exceptions. Multiple function tar-
gets at a call site, quite common in C++ due to virtual functions, can in general
throw different exception types. Our lowering algorithm prevents ambiguity in
the function signature by generating a uniform interface at the call site, that
uses the union of exception types that can be thrown by each possible target of
a virtual function call.

Catch-all and rethrow. A catch-all clause (catch (...)) does not statically
indicate the type of C++ exception handled by the clause. Rethrow statements
(throw;) do not have a throw expression as an argument. Our lowering algo-
rithm requires type and variable information, which is obtained by using the
exception information from the IECFG. Since the IECFG has an edge to a catch
clause annotated with the type of each possible exception thrown, the catch-all
clause is expanded to a sequence of concrete clauses. Rethrows are handled by
using the exception information from the nearest enclosing catch clause.

Exception Subtyping. The lowering algorithm assumes that the type of thrown
exception is the same as the type of the catch clause, which may not be true
in general due to the exception subtyping rules of C++. This case is handled
by generating super class (w.r.t exception subtyping rules) local and formal ex-
ception objects, and assigning into them, thrown exception objects which are
subclasses of the superclass object.

Example. The lowered code for our running example is shown in Fig. 11 after
performing copy propagation to remove redundant local objects. Fig. 11 also
shows the exception specifications for functions. (The specification has details of
the pending call stacks for each uncaught exception, but is not shown here.) �

602 P. Prabhu et al.

string File::read(EOFException& e1,
ExcepId& id) {

string str(__line);
if (EOF) {

EOFException tmp; e1 = tmp;
id = EXCEP_EOF_EXCEPTION;
~str();
goto EExit_1;

}
return str;

EExit_1: return string();
}

void get (std::bad_cast& e3, ExcepId &id) {
string s; IOException e4;
ExcepId lid = EXCEP_NULL;

File *file = new_alloc("l.txt");
if (file == NULL) {
std::bad_cast tmp;
e3 = tmp; id = EXCEP_BAD_CAST;
goto EExit_2;

}
file->readLine(e4, lid);
switch (lid) {
case EXCEP_IO_EXCEPTION:
goto Catch_L2;
break;

default:
break;

}
delete file;
return;

Catch_L2: {
cout << ’’IO-Failure’’;

}
EExit_2:
}

// EXCEPTION SPECIFICATIONS:
// void get() throw (std::bad_cast);
// string read() throw (EOFException);
// string readLine() throw (IOException);
#define EXCEP_NULL 0
#define EXCEP_BAD_CAST 1
#define EXCEP_IO_EXCEPTION 2
#define EXCEP_EOF_EXCEPTION 3

class EOFException { ... };
class IOException { ... };

string File::readLine(IOException& e2,
ExcepId& id) {

string s; EOFException e1;
ExcepId lid = EXCEP_NULL;

if (invalidFile) {
IOException tmp; e2 = tmp;
id = EXCEP_IO_EXCEPTION;
~s();
goto Exit_2;

}
s = read(e1, lid);
switch (lid) {
case EXCEP_EOF_EXCEPTION:

goto Catch_L1;
break;

default:
break;

}
return s;
Catch_L1: {

EOFException& e = e1;
return string("");

}
Exit_2: return string();
}

Fig. 11. Exception specifications and exception-free program for the running example

Fig. 12. Exception Analysis and Transformation Workflow

7 Implementation and Experiments

We have implemented our exception analysis and transformation algorithms in
an in-house extension of CIL [14], which handles C++ programs. The exception
analysis implementation has about 6,700 lines of OCAML code. Fig. 12 shows
the workflow for analyzing and transforming C++ programs with exceptions.
The given C++ program is initially parsed by our frontend into a simplified
intermediate version of C++ (IR0) similar to the IL shown in Section 2. The
IR0 code is then fed to our interprocedural exception analysis and transforma-
tion framework, which produces lowered C++ code without exceptions. The

Interprocedural Exception Analysis for C++ 603

Table 1. Results of interprocedural exception analysis and exception safety checks

Benchmark Simplified ECFG IECFG #Excep #Excep “No throw” “No leak”
LOC Build Build & Edges Edges guarantee check results

Time(s) Analysis before after Coverage (#detected
Time(s) Analysis Analysis (% Functions) /#actual)

multiple-live 479 0.01 0.01 10 6 71 % 0/0
ctor-throw 585 0.02 0.02 33 11 89 % 1/1
recursive 643 0.02 0.03 27 17 64 % 0/0
shared-inherit 667 0.02 0.04 59 27 71 % 1/1
bintree-duplicate 770 0.06 0.05 31 13 91 % 0/1
list-baditerator 784 0.04 0.04 36 17 79 % 0/2
virtual-throw 809 0.02 0.03 39 28 46 % 0/4
nested-try-catch 809 0.03 0.03 33 17 68 % 2/2
loop-break-cont 814 0.04 0.03 33 17 68 % 2/2
nested-rethrow 820 0.04 0.03 35 19 68 % 4/4
new-badalloc 849 0.02 0.03 30 15 76 % 2/2
template 860 0.03 0.04 51 28 67 % 1/1
dyn-cast 872 0.03 0.05 35 16 81 % 1/1
iolib 919 0.01 0.01 9 7 40 % 1/1
delegat-dtor-throw 1305 0.04 0.05 63 62 53 % 0/0
std-uncaught-dtor 1348 0.05 0.07 73 71 58 % 1/1

transformed C++ code is then lowered to C by a module that lowers various
object-oriented features into plain C. The C++-to-C lowering module transforms
features such as inheritance and virtual-function calls without the use of run-
time structures such as virtual-function and virtual-offset tables. Therefore, the
lowered source code is still at a relatively high-level for further static analysis.
The lowered C code is then fed into F-Soft [7], where standard bug detection
and verification tools that work on C are applied.

We have evaluated our exception analysis and transformation algorithms on
a set of C++ programs [13]. The programs test usage of various C++ exception
features in realistic scenarios, some of which are close to standard C++ collec-
tion class usage [21]. We used the results of our analysis to test the “no throw”
guarantee, immediately before lowering, and the results of our transformation
to test the “no leak” guarantee using F-Soft. For the experiments, exceptions
of type tunknown from external library calls were omitted. Tab. 1 shows the re-
sults. The running time for ECFG construction for all programs is low, while
the IECFG construction and analysis is quite comparable, with most of the time
spent in the interprocedural exception analysis. Our interprocedural exception
analysis is able to achieve an average reduction of about 38% in the number
of exception edges, with the IECFG constructed immediately before the inter-
procedural analysis serving as the baseline. On an average, around 66% of the
functions in a program were certified as “no throw”.

The last column shows the results of running F-Soft, specifically a memory
leak detector module, on the lowered programs. 13 of the 16 benchmarks that we
used for these experiments had memory leaks along exception paths, and F-Soft
reported all memory leaks in 10 of the 13 benchmarks. F-Soft failed to find
memory leaks for 3 benchmarks due to timeouts and reported bogus witnesses
only for new-badalloc due to the limitation of our in-house C-lowering. For
these experiments we used a time-bound of 10 minutes for the verification.

604 P. Prabhu et al.

Table 2. Results of interprocedural exception analysis on open-source benchmarks

Open-source Simplified ECFG IECFG #Excep #Excep “No throw”
Benchmark LOC Build Build & Edges Edges guarantee

Time(s) Analysis before after Coverage
Time(s) Analysis Analysis (% Functions)

tinyxml 4884 0.39 1.41 1204 830 74 %
mailutils 8365 0.19 0.36 494 316 78 %
coldet 8422 0.27 0.22 591 20 98 %
id3lib 14070 1.73 4.18 2091 372 93 %

One of the reasons for the timeouts is that the lowering algorithm generates
programs that is atypical of the C source code that F-Soft has previously an-
alyzed, which affects the performance of the model checker. As an example, we
have found that the addition of destructor calls during stack unwinding on excep-
tional edges introduces many additional destructor call sites; in the benchmark
std-uncaught-dtor, there were 31 call sites to a particular class destructor. The
additional destructor calls during stack unwinding yield function call graphs that
are very different from what F-Soft usually encounters. Therefore, additional
heuristics, such as selective function inlining for destructor calls, will likely im-
prove the performance of the model checker on the models generated by the
exception analysis module.

Results on open-source benchmarks. We have also applied the IECFG con-
struction algorithm on a set of open-source benchmarks shown in Tab. 2. The
coldet benchmark is an open source collision detection library used in game pro-
gramming. GNU mailutils is an open source collection of mail utilities, servers,
and clients. TinyXML v2.5.3 is a light-weight XML parser, which is widely used
in open-source and commercial products. The open source library id3lib v3.8.3
is used for reading, writing, and manipulating ID3v1 and ID3v2 tags, which are
the metadata formats for MP3s. Tab. 2 shows the reduction in the number of
exception edges due to our interprocedural analysis. A direct consequence of this
reduction is seen in the “no throw” guarantee numbers, which represent the per-
centage of the total functions in the program, for which we are able to guarantee
that no exceptions will be thrown by them. For coldet, which had the maximum
reduction in the number of edges, the number of functions guaranteed not to
throw is about 98%. We are encouraged by the results of our experiments on the
open source benchmarks. For these benchmarks, the time taken to compute the
IECFG is less than 5s. Therefore, we believe that the analysis will scale to even
larger examples.

Memory leaks in mailutils applications. We also applied the memory-leak
checker module of F-Soft on two applications that use the mailutils library: (1)
iconv, which converts strings from one character encoding to another using the
mailutils library, and (2) murun, which tests the various kinds of streams in the
mailutils library. F-Soft reported one memory leak in iconv and three memory
leaks in murun involving exceptional control flow. The offending code snippet in
iconv is shown in Fig. 13. In the try block, the invocation of the constructor

Interprocedural Exception Analysis for C++ 605

FilterIconvStream() for variable cvt may throw an exception. However, when
the exception is handled by the catch block, the memory allocated at the start
of the try block is not deallocated, which results in a memory leak. The leaks
reported in murun also have a similar flavor.

In addition, F-Soft reported a leak in iconv where the memory allocated in
the constructor of class FilterIconvStream is never deallocated. Note that this
leak occurs even when no exceptions are thrown by the application.

...
try {

StdioStream *in = new StdioStream (stdin , 0);
in ->open ();
FilterIconvStream cvt (*in, (string)argv[1], (string)argv[2], 0,

mu_fallback_none);
cvt.open ();
delete in;
...

}
catch (Exception& e) {

cerr << e.method () << ":�" << e.what () << endl;
exit (1);

}

Fig. 13. Memory leak along an exception path in iconv

8 Related Work

Most related work deals with exceptions in Java. Earlier, we discussed many
differences between exceptions in C++ and Java, thus requiring different ap-
proaches. Sinha and Harrold [16] incorporate the control flow effects due to
explicit Java exceptions in an interprocedural control flow graph (ICFG) using a
flow-sensitive type analysis, and discuss their applications to control dependence
analysis and slicing. The ICFG used in their analysis has no exceptional-call-
return node and can have multiple exceptional-exit nodes in a function. In con-
trast, our IECFG is modular and has an exceptional-call-return node for every
function call, which is required for modeling implicit C++ destructor calls. Jo et
al. [8,9,3] construct an exception flow graph for Java, using a set constraint anal-
ysis that is required to iterate to convergence. Gherghina and David [6] present
a specification logic for exceptions for Java-like languages and verify exception-
safety guarantees. Their specification logic does not model destructors along
exception paths because they target Java-like languages, and therefore, cannot
be used for verifying C++ programs. Mao and Lu [12] perform the analysis for
C++, without explicitly modeling destructors. Robillard and Murphy [15] de-
velop an analysis that handles both checked and unchecked exceptions in Java.
In contrast to all these approaches, our analysis based on the Signed-TypeSet
domain can be terminated safely at any point after the IECFGs have been con-
structed, thus permitting sound static analysis on subparts of the IECFG. Given
the prevalence of separate compilation in large systems, a modular approach that

606 P. Prabhu et al.

can be safely terminated at any step is essential for scalability and adoption into
compilers. The Signed-TypeSet domain utilizes a similar idea as was used in the
form of difference sets for class hierarchyanalysis [4].

Weimer and Necula [20] propose an intraprocedural, path-sensitive analysis
for checking typestate specifications along exception paths in Java. Buse and
Weimer [2] propose a similiar symbolic analysis for automatic documentation of
Java exceptions. Bravenboer and Smaragdakis [1] propose a solution for Java,
where pointer analysis and exception analysis problems are framed and solved
in a mutually recursive manner, with each improving the precision of the other.
Fu and Ryder [5] propose a static analysis that computes chains of semanti-
cally related exception flow links, by composing existing exception analyses to
give longer exception paths. Our IECFG construction and exception analysis
for C++, could potentially be enhanced with all of the above techniques to im-
prove the accuracy of our exception model. Li et al. [11], propose a technique to
check the “no leak” guarantee for Java, using a combination of static analysis
and model checking. Similarly, Torlak and Chandra present an interprocedural
static analysis algorithm to detect resource leaks in Java programs [19]. In our
work, we use F-Soft [7] for checking for resource leaks, following our exception
analysis and lowering transformation.

9 Conclusions and Future Work

This paper introduced an interprocedural analysis framework for accurately
modeling C++ exceptions. In this framework, control flow induced by exceptions
is captured in a modular interprocedural exception control flow graph (IECFG).
This graph is refined by a novel dataflow analysis algorithm, which abstracts the
types of exception objects over a domain of signed set of types. Unlike excep-
tion analyses proposed elsewhere for other languages, this analysis can be safely
terminated at well-defined points during interprocedural propagation, thereby
allowing clients to trade-off speed over precision. The paper then presented a
lowering transformation that uses the computed IECFG to generate an excep-
tion free program. This transformation is designed specifically to permit easier
and more precise static analysis on the generated code. Finally, the paper demon-
strated two applications of the framework: (a) automatic inference of exception
specifications for C++ functions and (b) checking the “no throw” and “no leak”
exception safety properties.

In the future, we intend to perform additional experiments on larger bench-
marks. As shown in Sect. 7, the IECFG computation presented here should scale
well for larger benchmarks. Finally, we are investigating to selectively allow con-
ditional exception edges during the IECFG construction. Such conditional excep-
tion edges could be used to model cases involving throwing destructors or other
standard library objects such as coutmore precisely. For example, a throwing de-
structor would be allowed to propagate the fact that std::uncaught exception()
was queried before throwing an exception. This could be used to eliminate spuri-
ous calls to std::terminate()when returning from such destructors. Similarly,
we can annotate other calls, such as uses of coutwith the information that it may

Interprocedural Exception Analysis for C++ 607

throw an exception, if the surrounding context had set the relevant information
using the ios::exceptions()method. Such selective guards on exception edges
would not substantially decrease the performance of the analysis but would allow
further reduction of computed exception-catch links.

References

1. Bravenboer, M., Smaragdakis, Y.: Exception analysis and points-to analysis: Better
together. In: International Symposium on Software Testing and Analysis (ISSTA),
pp. 1–12. ACM, New York (2009)

2. Buse, R.P., Weimer, W.R.: Automatic documentation inference for exceptions. In:
ISSTA, pp. 273–282. ACM, New York (2008)

3. Chang, B.-M., Jo, J.-W., Yi, K., Choe, K.-M.: Interprocedural exception analysis
for Java. In: Proc. of Symp. on Applied Computing, pp. 620–625 (2001)

4. Dean, J., Grove, D., Chambers, C.: Optimization of object-oriented programs using
static class hierarchy analysis. In: Olthoff, W. (ed.) ECOOP 1995. LNCS, vol. 952,
pp. 77–101. Springer, Heidelberg (1995)

5. Fu, C., Ryder, B.: Exception-chain analysis: Revealing exception handling archi-
tecture in Java server applications. In: ICSE, pp. 230–239 (May 2007)

6. Gherghina, C., David, C.: A specification logic for exceptions and beyond. In:
Bouajjani, A., Chin, W.-N. (eds.) ATVA 2010. LNCS, vol. 6252, pp. 173–187.
Springer, Heidelberg (2010)

7. Ivančić, F., Shlyakhter, I., Gupta, A., Ganai, M., Kahlon, V., Wang, C., Yang, Z.:
Model checking C programs using F-Soft. In: IEEE International Conference on
Computer Design, pp. 297–308 (October 2005)

8. Jo, J.-W., Chang, B.-M.: Constructing Control Flow Graph for Java by Decoupling
Exception Flow from Normal Flow. In: Laganá, A., Gavrilova, M.L., Kumar, V.,
Mun, Y., Tan, C.J.K., Gervasi, O. (eds.) ICCSA 2004. LNCS, vol. 3043, pp. 106–
113. Springer, Heidelberg (2004)

9. Jo, J.-W., Chang, B.-M., Yi, K., Choe, K.-M.: An uncaught exception analysis for
Java. Journal of Systems and Software 72(1), 59–69 (2004)

10. Lattner, C., Adve, V.: LLVM: A Compilation Framework for Lifelong Program
Analysis & Transformation. In: International Symposium on Code Generation and
Optimization (CGO), Palo Alto, California (March 2004)

11. Li, X., Hoover, H., Rudnicki, P.: Towards automatic exception safety verification.
In: Proc. of Formal Methods, pp. 396–411. Springer, Heidelberg (2006)

12. Mao, C.-Y., Lu, Y.-S.: Improving the robustness and reliability of object-oriented
programs through exception analysis and testing. In: IEEE International Confer-
ence on Engineering of Complex Computer Systems, vol. 0, pp. 432–439 (2005)

13. NECLA verification benchmarks,
http://www.nec-labs.com/research/system/systems SAV-website/

benchmarks.php

14. Necula, G.C., McPeak, S., Rahul, S.P., Weimer, W.: CIL: Intermediate language
and tools for analysis and transformation of C programs. In: Int. Conf. on Comp.
Construct, pp. 213–228. Springer, Heidelberg (2002)

15. Robillard, M.P., Murphy, G.C.: Static analysis to support the evolution of exception
structure in object-oriented systems. ACM Transactions on Software Engineering
Methodologies 12(2), 191–221 (2003)

16. Sinha, S., Harrold, M.J.: Analysis and testing of programs with exception handling
constructs. IEEE Trans. on Software Engineering 26, 849–871 (2000)

http://www.nec-labs.com/research/system/systems_SAV-website/benchmarks.php
http://www.nec-labs.com/research/system/systems_SAV-website/benchmarks.php

608 P. Prabhu et al.

17. C.standards commitee. Working draft, standard for programming language C++
(2010),
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2010/n3126.pdf (ac-
cessed September 26, 2010)

18. Stroustrup, B.: Exception safety: Concepts and techniques. In: Romanovsky, A.,
Cheraghchi, H.S., Lee, S.H., Babu, C. S. (eds.) ECOOP-WS 2000. LNCS, vol. 2022,
pp. 60–76. Springer, Heidelberg (2001)

19. Torlak, E., Chandra, S.: Effective interprocedural resource leak detection. In: Int.
Conf. on Softw. Eng., pp. 535–544. ACM, New York (2010)

20. Weimer, W., Necula, G.C.: Exceptional situations and program reliability. ACM
Trans. Programming Languauges and Systems 30(2), 1–51 (2008)

21. Weiss, M.A.: Data Structures and Algorithm Analysis in C++. Addison-Wesley
Longman Publishing Co., Inc., Boston (1998)

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2010/n3126.pdf

	Interprocedural Exception Analysis for C++
	Introduction
	Preliminaries
	Signed-TypeSet Domain
	Intraprocedural Exception Control Flow Graph
	Interprocedural Exception Analysis
	Generating an Exception-Free Program
	Implementation and Experiments
	Related Work
	Conclusions and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

