
Algorithms for Global Array Reference Allocation in DSPs

Guilherme de L. Ottoni
���

, Guido C. S. de Araújo
�

�
Laboratório de Sistemas de Computação – Instituto de Computação – UNICAMP

Cx. Postal 6176 – 13084-971 Campinas, SP, Brasil

ottoni@acm.org, guido@ic.unicamp.br

Abstract. This paper tackles the Global Array Reference Allocation (GARA)
problem, which is an important code optimization problem for processors with
restricted addressing modes such as many embedded processors. First it is pro-
posed an algorithm to solve the Simple GARA problem, which assumes a single
available address register. Based on this technique, two approaches to Gen-
eral GARA are proposed. Experimental results of the implementation of these
techniques in the GCC compiler compare them with previous work in literature.

1. Introduction

The technological advances in computing systems have stimulated the growth of the em-
bedded systems market, for example in mobile phones, palmtops and automotive control
systems. Because of their characteristics, these new applications demand the combination
of low cost, high performance and low power consumption. One way to meet these con-
straints is through the design of specialized processors. However, processor specialization
imposes new challenges to the development of software for these systems. In particular,
compilers – generally responsible for code optimization – need to be adapted in order to
produce efficient code for these new processors.

In the digital signal processing arena, such as in cellular telephones, specialized
processors, known as DSPs (Digital Signal Processors), are largely used. DSPs typically
have few general purpose registers and very restricted addressing modes. In addition,
many DSP applications include large data streams processing, which are usually stored in
arrays. As a result, studing array reference optimization techniques became an important
task in compiling for DSPs [Liao et al., 1996, Araujo, 1997]. This work studies this prob-
lem, known as Global Array Reference Allocation (GARA) [Araujo et al., 2002]. The
central GARA subproblem consists of determining, for a given set of array references to
be allocated to the same address register, the minimum cost of the instructions required
to keep this register with the correct address at all program points. In other words, this
subproblem is the problem of GARA when only one address register is available, and
is called Simple GARA. In [Ottoni et al., 2001], we modeled this subproblem as a graph
theoretical problem and proved it to be NP-hard. In addition, it was proposed an ef-
ficient algorithm, based on dynamic programming, to optimally solve this subproblem
under some restrictions. This algorithm is presented in Section 3.1.. Based on it, two
techniques to solve GARA were proposed [Ottoni et al., 2001, Ottoni and Araujo, 2002],
and they are introduced in Section 3.2.. Experimental results, from the implementation

�
Supported by CNPq and CAPES.

(1) for (i = 0; i < N-2; i++) { p = &a[1];
(2) if (i % 2) { for (i = 0; i < N-2; i++){
(3) avg += a[i+1] << 2; if (i % 2) {
(4) a[i+2] = avg * 3; avg += *p++ << 2;
(5) } *p-- = avg * 3;
(6) if (avg < error) }
(7) avg -= a[i+1] - error/2; if (avg < error)
(8) else avg -= *p++ - error/2;
(9) avg -= a[i+2] - error; else {

(10) } p += 1;
(11) avg -= *p - error; }
(12) }

(a) (b)

Figure 1: (a) Code fragment; (b) Representation of optimized code.

of these techniques in the GCC compiler and comparing them with previous work in the
literature, are presented in Section 4. and detailed in [Ottoni and Araujo, 2002].

2. The Global Array Reference Allocation Problem

GARA is the problem of allocating address registers (ar’s) to array references such that
the number of simultaneously live address registers is kept below the maximum number
of such registers in the processor, and the number of new instructions required to do that
is minimized. GARA is very important for many DSPs and other embedded processors
that do not have more elaborated addressing modes, such as indexed addressing. As an
example, consider the C code fragment in Figure 1(a). In a naive code generator, each
array reference would require several arithmetic instructions to adjust the ar properly.
Assume that a single ar is available. Consider the equivalent code in Figure 1(b), which
is a source level model of the intermediate representation code resulting after the opti-
mization described in this paper is applied. In Figure 1(b), the array references have been
substituted by pointer uses, which can be directly mapped into indirect addressing mode
(available in virtually any processor) using the ar. In this representation, p++ (p--)
denotes post-increment (decrement) addressing mode, a commonly available addressing
mode which increments (decrements) the ar at zero-cost during instruction execution.
The cost of the code in Figure 1(b) is just the cost of a pointer update instruction (p +=
1) introduced on one of the loop control paths.

3. Proposed Algorithms for GARA

This section presents the algorithms we proposed for solving GARA. As a generalization
of the Local Array Reference Problem, which was proved to be NP-hard [Araujo, 1997],
we are unlikely to find an efficient algorithm to exactly solve GARA in general. With
this dificulty in mind, we first focus on the problem when only one address register is
available, which we call Simple GARA (Section 3.1.). In Section 3.2., we deal with the
case of multiple address registers, called General GARA.

3.1. Simple GARA

In Simple GARA, all array references must be assigned to the same, single ar. The
solution we look for is a set of zero-cost addressing modes and costly update instructions
that we need to insert in the code in order to keep the ar pointing to the correct array
element in all program points, no matter the execution path that is taken. Among these
possible solutions, we want the one that minimizes the number of update instructions.

In order to find the solution to Simple GARA, we have to make two types of
decisions: (1) find the places where we need to decide the array element to which the ar
will point, and (2) decide to which element the ar must point in each of these points so
that the update instructions are minimized. To find the places where we have to decide
the contents of the ar, we translate the code to the intermediate representation called
Extended Single Reference Form (ESRF) [Ottoni, 2002]. In ESRF, we insert the so-called�

-functions in the Combined Iterated Dominance Frontier, which we derive from the
classical iterated dominance/post-dominance frontiers [Muchnick, 1997]. To solve the

�
-

functions is to choose the array element whose address will be in the ar at that point.
Figure 2(a) shows the code from Figure 1 in ESRF.

 φ1

a[i+1]
a[i+2]

 φ2

 a[i+1] a[i+2]

 φ3

B1

B2

B3

B4 B5

B6

(a)

φ1

φ2

φ3

(b)

φ3

φ1

φ2

a[i+1] a[i+2]

v21 v22

v11 v12

v31 v32

1 1

0 1

0 0

1 1

1

11
0 0

0

(c)

Figure 2: (a) CFG in ESRF; (b) DG � representation; (c) SG � for the DG � .

Now we address the problem of solving the
�

-functions so that the minimum
number of update instructions is required. In order to solve this problem, we modeled
it as a graph theoretical problem, defining the

�
-Dependence Graph (DG �). This graph

represents the
�

-functions’ inter-dependences, and Figure 2(b) illustrates the DG � cor-
responding to Figure 2(a). From the DG � , we derive the

�
-Solution Graph, which has a

partition for each vertex in DG � , and each partition has a vertex for each possible solution.
SG � is a weighted graph, with costs (in number of update instructions) both on its vertices
and edges. The vertices are valued with a local cost, that is the cost of this solution related
to the array references on which the

�
-function depends. The edges are weighted with a

global cost, that is the cost between two dependent
�

-functions. The SG � embeds all pos-
sible solutions for the set of

�
-functions. In this graph, we want to find the set of vertices,

one from each partition, so that the total cost (local plus global) of the induced graph
is minimum. Unfortunately, we found this problem to be NP-hard [Ottoni et al., 2001].
However, we proposed an efficient algorithm to optimally solve this problem for the par-
ticular cases when the DG � is acyclic [Ottoni et al., 2001]. This algorithm, called Leaves
Removal Order (LRO), is based on the dynamic programming technique. The basic idea
of LRO algorithm is to iteratively remove the leaves of the DG � and, when processing
a leaf node, consider each combination of solution for this node and its parent, accumu-
lating the best costs in the parent node. Applying LRO to our example gives a solution
with cost 1, the single update instruction inserted if Figure 1(b) at line 10. This solution
consists of choosing the following vertices in Figure 2(c): � �	� , ��
 � and ���	
 .

3.2. General GARA

Based on the LRO algorithm, we proposed two new techniques to solve GARA when
multiple address registers are available. The first one is a heuristic solution, based on
the Live Range Growth (LRG) approach used in [Cintra and Araujo, 2000]. It is called
live range a set of array references that will be assigned to the a single address register.
The LRG approach initially assigns each array reference in the loop to a different live
range. Then, a greedy strategy takes place, iteratively merging the pair of current live
ranges that best improves the total cost. In order to calculate the cost of a live range,
[Cintra and Araujo, 2000] always used a heuristic called Tail-Head (TH). Our new tech-
nique, named LRO-TH, improves this approach by considering the possibility of using
the LRO algorithm to optimally compute the cost of live ranges. So, for a given live
range, we first build the DG � and check whether it is acyclic or not. If it is, we use LRO;
otherwise, the TH heuristic is applied. As the experimental results show, more than 93%
of the DG � ’s were acyclic for the benchmarks we used, enabling an effective use of the
LRO algorithm.

We suspected the results of LRO-TH were very close to the optimum solution
possible, and this motivated the search for an optimal (although computationally ineffi-
cient) solution for GARA. So, we proposed an optimal algorithm, called EXACT, to find
the best solution for GARA. This algorithm is based on backtracking, and uses the LRO
algorithm whenever possible to improve its running time. The EXACT algorithm tries all
the combinations of partitioning the array references in a number of live ranges less than
or equal to the number of address registers. For each combination, it is calculated the
minimum update cost for each of the live ranges. For each live range, the corresponding
DG � is built and, if it is acyclic, the LRO algorithm is used to compute the minimum cost.
In case of cyclic DG � , we used a combinatorial algorithm to try all the combinations of
solutions to the

�
-functions. Although computationally inefficient, the EXACT algorithm

was able to run in reasonable time for research purposes, except in a few cases where the
number of array references in the loop was very large. This result can also be attributed
to LRO, as the percentage of acylcic DG � ’s during EXACT was 99.84%.

4. Experimental Results

To evaluate the efficiency of the LRO-TH and EXACT techniques, we implemented them
inside the GNU Compiler Collection [GCC,], using the Lucent DSP16xx [Lucent, 1998]
as target processor. For comparison purposes, we also implemented the TH approach.
We used the inner-most loops from the MediaBench [Lee et al., 1997] applications as
benchmark. Table 1 presents the speedups of TH, LRO-TH and EXACT when comparing
to the base GCC compiler. We can see that the speedup achieved by LRO-TH approaches
the speedup of the EXACT method (average difference of 0.09%). In addition, the TH
approach also leads to a speedup close to the exact solution (average difference of 0.54%).
No compilation-time penalty was observed for LRO-TH and TH.

5. Conclusions and Future Work

We have developed and extensive study of the Simple GARA problem, proving it to be
NP-hard and proposing an optimal algorithm (LRO) that can be applied in special cases
(when the DG � is acyclic). Based on LRO, we proposed two techniques to solve General
GARA. The first technique is a heuristic solution (LRO-TH) which improves the best

Program # of Speedup (%)
loops TH LRO-TH EXACT

adpcm 2 0.80 0.80 1.01
epic 6 10.24 11.24 11.50
g721 1 0.00 0.00 0.00
gs 37 13.46 13.95 13.96
jpeg 32 13.86 14.42 14.44
mpeg2 7 13.13 13.13 13.93
pegwit 5 25.22 25.22 25.22
pgp 3 23.96 23.96 23.96

Average – 13.85 14.30 14.39

Table 1: Speedup comparison between original GCC, TH, LRO-TH, and EXACT.

previous approach (TH), by [Cintra and Araujo, 2000]. The second technique is an exact,
optimal algorithm for GARA, which is used to evaluate the quality of the allocation for
the heuristic solutions to the GARA problem. The experimental results show that the
LRO-TH approach generally achieves solutions very close to optimal.

Finally, we believe that the DG � concept we defined in this work can be ap-
plied to other global code optimization problems. In particular, we have formulated in
[Ottoni, 2002] a solution for the global register allocation problem, for general purpose
registers. The implementation and evaluation of this technique were left as a future work.

References

The GNU Compiler Collection Project. http://gcc.gnu.org.

Araujo, G. (1997). Code Generation Algorithms for Digital Signal Processors. PhD
thesis, Princeton University.

Araujo, G., Ottoni, G., and Cintra, M. (2002). Global Array Reference Allocation. ACM
Trans. on Design Automation of Electronic Systems, 7(2):336–357.

Cintra, M. and Araujo, G. (2000). Array reference allocation using SSA-Form and live
range growth. In Proceedings of the ACM SIGPLAN LCTES 2000, pages 26–33.

Lee, C., Potkonjak, M., and Mangione-Smith, W. H. (1997). Mediabench: A tool for
evaluating and synthesizing multimedia and communications systems.

Liao, S., Devadas, S., Keutzer, K., and Wang, A. (1996). Storage assignment to decrease
code size. ACM Transactions on Programming Languages and Systems, 18:235–253.

Lucent (1998). DSP1611/17/18/27/28/29 Digital Signal Processor. Lucent Technologies.

Muchnick, S. S. (1997). Advanced Compiler Design and Implementation. Morgan Kauf-
mann Publishers.

Ottoni, G. (2002). Global Address Register Allocation for Array References in DSPs.
Master’s thesis, State University of Campinas. (in Portuguese).

Ottoni, G. and Araujo, G. (2002). Efficient array reference allocation for loops in embed-
ded processors. In Proc. of the International Workshop on Embedded System Codesign,
pages 63–68.

Ottoni, G., Rigo, S., Araujo, G., Rajagopalan, S., and Malik, S. (2001). Optimal live
range merge for address register allocation in embedded programs. In Proc. of the 10th
International Conference on Compiler Construction, LNCS 2027, pages 274–288.

