
NOELLE Offers Empowering LLVM Extensions

Angelo Matni†, Enrico Armenio Deiana†, Yian Su†, Lukas Gross†, Souradip Ghosh†,

Sotiris Apostolakis§, Ziyang Xu§, Zujun Tan§, Ishita Chaturvedi§, Brian Homerding†, Tommy McMichen†,

David I. August§, Simone Campanoni†

§Princeton University, USA
†Northwestern University, USA

Abstract—Modern and emerging architectures demand in-
creasingly complex compiler analyses and transformations. As the
emphasis on compiler infrastructure moves beyond support for
peephole optimizations and the extraction of instruction-level par-
allelism, compilers should support custom tools designed to meet
these demands with higher-level analysis-powered abstractions
and functionalities of wider program scope. This paper introduces
NOELLE, a robust open-source domain-independent compilation
layer built upon LLVM providing this support. NOELLE extends
abstractions and functionalities provided by LLVM enabling
advanced, program-wide code analyses and transformations. This
paper shows the power of NOELLE by presenting a diverse set
of 11 custom tools built upon it.

I. INTRODUCTION

The compiler community is on the front lines of satisfying

the continuous demand for computational performance and

energy efficiency. The focus of compiler advancements is

shifting beyond peephole optimizations and the extraction of

instruction-level parallelism. More aggressive optimizations

and more sophisticated, wider scope analyses are required

to accommodate the needs of emerging architectures and

applications.

Modern compilers use low-level intermediate representa-

tions (IR) to perform optimizations that are language-agnostic

and architecture-independent, such as LLVM IR from the

LLVM compiler framework [1], [2] and GIMPLE from

GCC [3]. Low-level IR, along with a set of low-level ab-

stractions built around it, is designed to aid program analyses

and optimizations and has shown its value for peephole

optimizations and extraction of ILP. However, low-level ab-

stractions are not enough for advanced code analyses and

transformations. Consider automatic parallelization, one of the

most powerful program optimization techniques, exists only in

a basic form [4]–[6], or does not exist at all in most general-

purpose compilers. This paper shows that, with proper abstrac-

tions, a daunting automatic parallelization transformation can

be implemented in fewer than a thousand lines of code.

Advanced code analyses and transformations go hand in

hand with higher-level abstractions, as shown by many existing

compilers and frameworks. Several compiler infrastructures

that support automatic parallelization [7]–[9] all operate on

This project was supported by the United States National Science Founda-
tion via grants 2107042, 2118708, 2119069, 2028851, 1908488, 1814654,
1763743, by the United States Department of Energy via the grant DE-
SC0022268, and by ARM Ltd.

high-level abstractions and perform source-to-source transla-

tion. The recent success of domain-specific compilers/frame-

works also proves the importance of high-level abstractions

for optimizations by uncovering optimization opportunities at

a domain-specific graph or operator level [10], [11]. However,

these compilers limit themselves to specific program languages

or problem domains, and miss opportunities only presented

by low-level IRs, including more fine-grained operations and

more canonical code patterns.

The combination of higher-level abstractions and lower-

level IR is the key to advanced program analyses and opti-

mizations. The claim can be found in the SUIF compiler [12],

which provides low-level IR as well as higher-level con-

structs [13]; and the IMPACT compiler [14], which provides

hierarchical IRs to enable optimizations at different levels.

Despite the claim, we are not aware of actively-maintained

domain-independent compilers that fulfill this combination.

While LLVM has become the de-facto compiler infras-

tructure to build upon, it does not provide many essential

abstractions for advanced analyses and transformations, in-

cluding abstractions designed to describe properties of a wider

code scope (e.g., dependence graph of a whole program) or

functionalities for advanced code transformations (e.g., task

creation, scheduling a whole loop). These abstractions can ease

the implementation of new transformations and make existing

code transformations available in LLVM more powerful.

We propose a new open-source compilation layer called

NOELLE that delivers abstractions and functionalities for ad-

vanced code analyses and transformations. To demonstrate the

importance of NOELLE, we have implemented 11 advanced

code transformations, nine of which need only a few lines of

code. Only one of these transformations is currently available

in LLVM (i.e., loop invariant code motion). We will show

that our version is significantly more powerful and the imple-

mentation is more elegant than the LLVM counterpart. The

other 10 transformations are missing in LLVM because they

are challenging to implement with the abstractions currently

provided by LLVM. Finally, each NOELLE abstraction is used

by most of the 11 significantly-different code transformations,

which demonstrates how versatile NOELLE abstractions are.

We implemented a variety of code transformations upon

NOELLE: a few parallelizing compilers, a Pseudo-Random

value generator selector, a comparison optimization for timing

speculative micro-architectures, dead function elimination, a

memory guard optimization, a code analysis and transfor-

978-1-6654-0584-3/22 © 2022 IEEE

Accepted for publication by IEEE. © 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

179

https://www.acm.org/publications/policies/artifact-review-and-badging-current


mation to replace hardware interrupts, and loop invariant

code motion. These tools are challenging to implement with

only the low-level abstractions provided by LLVM, however

NOELLE enables a powerful and elegant implementation. We

tested all these tools on 71 benchmarks from four bench-

mark suites (SPEC CPU2017, PARSEC 3.0, MiBench, and

PolyBench). All these tools improve the quality of the code

generated by LLVM with its highest level of optimization.

Finally, the high heterogeneity between these 11 custom tools

suggests NOELLE provides general abstractions and support

for a wide variety of advanced code analyses and transforma-

tions. Finally, we have released NOELLE publicly [15].

This paper:

• Introduces NOELLE, a robust open-source domain-

independent compilation layer built upon LLVM,

• Describes the abstractions and functionalities provided by

NOELLE to ease development of advanced code transfor-

mations and analyses (Section II-B),

• Presents the tools provided by NOELLE to ease the deploy-

ment of custom compilation tool-chains (Section II-C),

• Describes a diverse set of 11 custom tools built upon

NOELLE (Section III) to highlight NOELLE’s benefits,

• Evaluates the importance and accuracy of NOELLE’s ab-

stractions (Section IV), and

• Further motivates the need for NOELLE by comparing it

with prior work (Section V).

II. NOELLE

We now describe NOELLE, its abstractions, and its tools.

A. NOELLE in a Nutshell

The goal of NOELLE is to provide abstractions and func-

tionalities that enable and simplify the implementation of com-

plex code analyses and transformations, referred to as custom

tools, which target wide program scopes. Custom tools built

upon NOELLE include LLVM passes that work at the IR level

to perform their code analyses and transformations. Allowing

these custom tools to be easily implemented and maintainable

requires simple, domain-independent abstractions powered by

either accurate low-level code analyses or complex low-level

code transformations. NOELLE provides such abstractions

(Section II-B) with a modular design allowing its users to

pay only the cost of creating the abstractions requested.

NOELLE’s abstractions are powered by code analyses,

some of which are provided by third parties. For example,

the call graph abstraction NOELLE provides is computed by

relying on the PDG, which is computed from several alias

analyses implemented by external codebases (SCAF [18] and

SVF [19]) as well as those provided by LLVM. Moreover,

NOELLE’s modular design makes it easy to extend the list

of external code analyses that power NOELLE’s abstractions.

NOELLE also provides tools (Section II-C) to simplify the

implementation of user-specific compilation flows.

Most abstractions NOELLE provides are either not available

in LLVM or they significantly extend those provided by

LLVM. The remaining abstractions generalize the LLVM ones

(e.g., IV). NOELLE’s abstractions and related functionalities

are listed and briefly described in Table I. Table II describes

the importance of the extra functionalities NOELLE provides

compared to LLVM’s ones.

Input and Output. The input of a compilation flow built

upon NOELLE is the source code of a program and optionally,

a set of training inputs that could be used for profile-guided

or autotuning-based custom tools. The output is a binary for

a target architecture supported by vanilla LLVM backends.

An Example of Compilation Flow. NOELLE enables its

users to deploy custom compilation flows by providing a set of

tools, described in Section II-C. Next, we describe an example

of a compilation flow built using NOELLE’s tools (Figure 1).

This is the compilation flow used by the custom tool HELIX

(further described in Section III).

noelle-whole-IR

File

NOELLE Tool

Custom Pass

C/C++ Sources

IR

noelle-prof-coverage

noelle-meta-prof-embed

Profiled IR

noelle-rm-lc-dependences

Optimized IR

noelle-meta-clean

Training Inputs

Cleaned IR

noelle-prof-coverage

noelle-meta-prof-embed

Profiled IR

noelle-meta-pdg-embednoelle-arch HELIX Tansformation

Profiled IR w/ PDG

noelle-load

Parallelized IR

noelle-linker

Linked IR

noelle-bin

Parallelized Binary

HELIX Runtime

Architecture Description

Profiles

Profiles

Fig. 1: Compilation flow of the HELIX custom tool using NOELLE
tools and a custom pass, HELIX Transformation. Figure 2 shows how
to build HELIX Transformation using NOELLE abstractions.

Each source file composing a program being compiled is

consumed by noelle-whole-IR, which outputs a single

LLVM IR file that includes the whole program’s code as

180



TABLE I: FUNCTIONALITIES AND ABSTRACTIONS ADDED BY NOELLE COMPARED TO LLVM

Abstraction LLVM functionalities NOELLE additional functionalities

Data-flow engine Not provided Optimized engine to evaluate user-provided data flow equations.
(DFE) Optimizations described in well-known compiler books [16], [17] are all

implemented.

Environment Not provided Variables needed by a code region (e.g., a task) to execute (live-ins and live-outs).
(ENV) Functionalities to transform code to propagate live-ins and live-outs between

functions.

Task Not provided Code region (with its inputs/outputs and explicit possible predecessors/successors)
(T) that can be asynchronously executed.

Reduction (RD) Supports only single-use reducible variables Identifies and support reducible variables of a loop independently on its uses.

Scheduler Only available in the back-end Several schedulers specialized at different code region granularities
(SCD) and only within a single basic block (e.g., scheduler of loops, instruction schedulers within and across basic blocks).

Profiler Profilers at the instruction or branch edge granularities. Adds profilers of loops (e.g., how many iterations a loop execute per invocation),
(PRO) functions (e.g., how often a function is invoked directly or indirectly by another

one), and SCCs (e.g., how many instances an SCC has executed).
Adds iterators to consider only code regions with specific characteristics
(e.g., loops with run-time coverage higher than a threshold).

PDG To appear in the next stable version. Dependence information within a configurable scope, up to the entire program.
Dependence existence only within a single function. Provides a hypergraph to describe each dependence at different granularity
No additional information attached to dependencies. (e.g., a dependence between two loops expands to
A dependence cannot cross a single function. the dependences between the single instructions involved).

SCCDAG To appear in the next stable version. Adds the capability to compute SCCDAG from any PDG configuration
SCCDAG derived from the data dependence graph (DDG) (e.g., DDG, control dependence graph, PDG of a given scope).
rather than the PDG, Adds attributes that describe characteristics of each SCC
so it does not include dependencies of all types. (e.g., induction variable relationship, side-effect free, self-commutative,

loop-carried).
No additional information attached to dependencies. Adds iterators to traverse a configurable set of nodes

(e.g., to iterate over only SCCs with a loop-carried control dependence).

Call graph Partial call graph created using only direct call/invoke instructions. Complete call graph considering both direct and indirect call/invoke instructions.
(CG) Absence of an edge means call may or may not exist.

Loop structure LLVM’s class Loop describes the structure of a loop (e.g., its exits). Adds information about the shape of the loop (e.g., while-shape, do-while shape).
(LS) It can only provide information about a single function. Supports queries involving multiple functions.

Invariant Only instructions outside a loop, arguments, and constants Instructions within a loop that do not change value among iterations
(INV) are considered invariants are identified as loop invariants.

Induction variable Induction variables only for do-while loops Induction variables of all loops, while and do-while ones.
(IV)

Induction variable Not provided Modifies the code of a loop to implement a change in step value of an induction
stepper (IVS) variable.

Loop Content Not provided A loop with its dependence graph, its SCCDAG, its invariants, its induction
(LC) variables, and its loop structure information.

Forest Forest of loop trees for a single function. Forest of loop trees for the whole program.
(FR) It adjusts when a node is deleted to keep the connections between its parent and

its children.

Loop transformer Some loop transformations (e.g., loop unrolling). Adds loop splitting, translating do-while loops into while form,
(LT) They are not organized under a single abstraction. and creating new loops. Extends loop fusion.

Added transformations and LLVM ones are organized into a single abstraction.

Islands (ISL) Not provided Identifies the disconnected sub-graphs of a graph (e.g., call graph, PDG).

Architecture Alignment requirements and size of builtin variables Description of the underlying architecture in terms of logical/physical cores,
description (AR) NUMA nodes.

It also provides the measured latencies and bandwidths between pairs of cores.

well as options to use to generate the final binary (e.g., the

libraries to link with). Then, using training inputs given to

NOELLE, noelle-prof-coverage runs several profil-

ers to collect statistics about the single IR file’s execution.

These statistics include the hotness of code regions (e.g.,

a loop, a basic block), loop-specific information (e.g., the

total number of iterations of a loop, the average number

of iterations per invocation of a loop), and function-specific

information (e.g., number of invocations of a function, the

average number of recursive calls of a recursive function).

The program’s profiles are then embedded into the IR file

by noelle-meta-prof-embed. The generated IR is con-

sumed by noelle-rm-lc-dependencies, which applies

a set of code transformations that aim to reduce loop-carried

data dependencies in hot loops (i.e., the minimum hotness

required to consider a loop). The generated IR is now more

amenable to loop-centric code parallelization techniques. The

tool noelle-meta-clean cleans all NOELLE-specific

metadata from the IR file. Then, noelle-prof-coverage

and the tool noelle-meta-prof-embed re-generate

and embed the program’s profiles, respectively. Then,

noelle-meta-pdg-embed computes the program depen-

dence graph (PDG) and embeds it as metadata inside the

IR file. The noelle-arch computes architecture-specific

profiles (e.g., communication latency between cores). Its

output is used by the HELIX transformation. Finally, the

noelle-load tool is invoked, which loads in memory

NOELLE’s compilation layer, to run the HELIX transforma-

tion. The HELIX transformation relies on NOELLE’s abstrac-

tions to parallelize hot loops. The generated parallelized IR file

is then consumed by noelle-linker, which embeds the

HELIX-specific runtime into the IR. Finally, noelle-bin

generates the parallel binary.

B. NOELLE’s Abstractions

Next, we describe the abstractions that NOELLE provides to

its users. NOELLE’s abstractions (summarized by Tables I, II)

are demand-driven and customizable to preserve compilation

time and memory. Hence, users only pay for the abstractions

181



TABLE II: NOELLE’S ABSTRACTIONS AND FUNCTIONALITIES ENABLE SEVERAL ANALYSES AND TRANSFORMATIONS.

Abstraction Importance of the additional NOELLE’s functionalities

Data-flow engine (DFE) Enables data-flow analyses to be implemented with a simple declaration of their equations.

Environment Simplifies the extraction of a code region from its context where it is defined.
(ENV) For example, ENV simplifies a loop to be outlined into another function.

Also, when ENV is coupled with Task, it enables parallel executions between code regions and/or scheduling of
entire code regions.

Task (T) Enables the design of task-centric asynchronous execution models.

Reduction (RD) Enables transformations to avoid performance degradation due to dependencies involving reducible variables.

Scheduler (SCD) Enables transformations to go beyond peephole optimizations like scheduling a whole loop within a function.

Profiler (PRO) Enables transformations to understand the dynamic aspects of code regions going beyond single instructions.

PDG Knowing the dependence graph up to the whole program enables program-wide code analyses and transformations.
Providing the ability to compute the dependence graph at different granularities enables users to pay only what
they need.
Dependencies in NOELLE’s PDG come with a rich set of attributes describing its characteristics;
for example, loop-carried with dependence distance, memory allocation location for memory accesses,
commutativity of a dependence.
This enables transformations to specialize depending on dependence’s characteristics
(e.g., a code scheduler capable to consider both orders of a pair of instructions connected by a commutative
dependence).
Finally, NOELLE’s PDG provides several iterators for traversing a configurable set of dependencies; these iterations
simplify user’s code.

SCCDAG Understanding the specific characteristics of an SCC enables transformations to specialize their handling of
dependence cycles (e.g., enabling out-of-order executions between dynamic invocations of a commutative SCC).

Call graph A complete call graph enables transformations to act upon the lack of edges between two functions
(CG) (e.g., if a function has no incoming edges, then it can be deleted as unreachable).

Loop structure (LS) Simplifies the implementation of inter-procedural transformations that need knowledge of loops of different functions.

Invariant (INV) Increases significantly the number of loop invariants making related transformations more powerful.

Induction variable Enables transformations that must work with while-shape loops (e.g., parallelization).
(IV)

Induction variable Simplifies transformations that change how to traverse the loop’s iteration space.
stepper (IVS)

Loop Content (LC) Allows users to have all information about a loop to be accessible through a single abstraction.

Forest (FR) Enables transformations to target loops in different functions at the same time.

Loop transformer Simplifies transformations that need to modify a loop using a sequence of complex loop transformations
(LT) (e.g., splitting a loop into two and then take the second one and merge it with another loop).

Islands (ISL) Simplifies transformations that need to know whether two nodes are connected directly or indirectly
(e.g., dead function elimination).

Architecture (AR) Enables transformations to specialize the generated code depending on platform-specific characteristics of its cores
and NUMA zones.

Fig. 2: Arrows in the graph describe the dependence between
analyses used by the HELIX transformation.

they need. In other words, if a user does not need the program

dependence graph (PDG), then it will not pay the cost of

analyzing the program to compute its dependencies. Also, if

an user needs only the PDG of a loop, then it will only pay

the cost of running loop-specific dependence analyses for that

loop. Table I describes the additional functionalities NOELLE

provides compared to LLVM 12. Table II describes what these

additional functionalities enable.

PDG. NOELLE provides the Program Dependence Graph

(PDG) representation of a program [20]. We made the design

choice of enabling users to obtain a PDG at different code

granularities (e.g., dependencies between single instructions

or single loops). This enabled NOELLE’s users to specialize

their use of NOELLE for their specific needs. This is obtained

by providing the ability to change the semantics of a node in

the graph (e.g., single instruction, single loop, single SCC) as

well as by allowing users to request the PDG of a subset of

the program’s code.

The PDG builds upon NOELLE’s dependence graph, a

templated class designed to represent a generic graph of

directed dependencies between nodes. What constitutes a node

is decided when the class is instantiated. For example, an

instruction-level PDG instantiates this templated class with

the LLVM instruction class. Hence, the nodes of this PDG

are the instructions of a program. Independently on the

182



node choice, each edge of a PDG contains a rich set of

attributes to differentiate between dependencies (e.g., control

and data). Data dependencies are further characterized by

the dependence type (Read-After-Write, Write-After-Write,

Write-After-Read), whether it is loop-carried, dependence dis-

tance, whether it is commutative, whether it is a memory or

register dependence, and whether it is an apparent (may) or

actual (must) dependence [21]. Finally, each edge can contain

sub-edges to describe that dependence at a lower granularity.

For example, an edge in an SCC-level PDG contains sub-

edges, which represent the instruction-level dependencies that

are responsible for this SCC-level dependence.

An analysis or transformation built upon NOELLE can use

the PDG abstraction to create function dependence graphs and

loop dependence graphs. The former refers to dependencies

only between the instructions of a function and it is computed

directly from the PDG. The latter is a dependence graph of a

specific loop and it uses additional loop-centric analyses. In

more detail, when a pass requests the loop dependence graph

of a loop from a PDG, NOELLE runs loop-centric analyses

to refine, and improve the precision about, the dependencies

that are included in the PDG for the specific loop in-question.

NOELLE computes the PDG without using loop-centric mem-

ory analyses and only use those when requested because loop-

centric memory analyses are the slowest ones and most users

do not need the most accurate set of dependences for cold

loops. Finally, NOELLE enables users to compute a PDG of

an arbitrary set of instructions.

Users of the PDG abstraction often want to not only know

about the nodes of a dependence graph that belong to a related

code region (e.g., instructions of a loop for a loop dependence

graph) but also about the inputs and the outputs of the graph.

For example, a parallelizing code transformation of a loop

needs to know the live-in and live-out sets of the target loop.

Because of this need, the dependence graph offers two sets

of nodes, both internal and external. The former belong to

the related code region; the latter represents the live-ins and

live-outs of that code region. The computation of both sets of

nodes is computed by NOELLE when a pass requests either

a loop dependence graph or a function dependence graph.

SCCDAG. Advanced code transformations like paralleliza-

tion techniques can be implemented as different strategies to

schedule instances of the nodes that compose the SCCDAG

of a loop [22], [23]. For instance, HELIX distributes instances

of a given SCCDAG node around the cores. DSWP instead

distributes nodes of an SCCDAG between cores while keeping

all instances of a given node within the same core. Hence, an

important abstraction is the SCCDAG, which NOELLE pro-

vides. Building this abstraction upon NOELLE’s dependence

graph enabled the SCCDAG of a given loop to be a complete

description of loop dependencies, including those with the rest

of the program, and users can now change the granularity of

the graph from SCC to instructions if needed.

NOELLE includes code analyses (e.g., commutative anal-

ysis, induction variable analysis) that are used when an SC-

CDAG is computed. Such analyses provide a rich description

TABLE III: DEPENDENCIES BETWEEN NOELLE’S ABSTRACTIONS

Abstraction Depends on

DFE

ENV PDG

T ENV

RD SCCDAG, INV, IV

SCD PDG, LS, DFE

PRO LS

PDG

SCCDAG PDG

CG PDG

LS

INV PDG, LS

IV LS, INV, SCCDAG

IVS LS, INV, IV

LC LS, PDG, IV, INV, SCCDAG, RD

FR LC, CG

LT FR, LC, DFE, IV, IVS, INV

ISL PDG, CG

AR

of each SCC. In more detail, a node of an SCCDAG can

be Independent, Sequential, or Reducible. This

categorization of a node n depends on the relation between

the instructions’ dynamic instances included in n for a given

loop invocation. If all these instances are independent of each

other, then n is tagged as Independent. If an instance of an

instruction of n depends on another instance of an instruction

of n, then this node is tagged as Sequential. Furthermore,

if there are dependencies between instances of n, but they are

reducible by a reduction code transformation (e.g., by cloning

the defined variable s in s += work(d)), then n is tagged

as Reducible, and the related reduction is described within

the node. Finally, each SCC can be ordered or commutative

depending on whether the dynamic instances of the related

SCC must be preserved or not.

Call graph (CG). NOELLE provides the complete call

graph of a program where nodes are functions, and edges

indicate a given function invokes another. This graph is

complete so the lack of an edge means a function cannot

invoke another. This abstraction relies on the PDG to compute

the possible callees of an indirect call. Edges of NOELLE’s

call graph can be must or may depending on whether a given

caller-callee relation is proved to hold or not. Each edge has

sub-edges to indicates with which specific instructions a caller

invokes another function. Finally, CG can compute the set of

disconnected islands of such a graph.

Environment (ENV). NOELLE offers the Environment ab-

straction, which is an array of pointers of variables. Variables

within an Environment represent the incoming and outgoing

values for a set of instructions. Finally, NOELLE provides En-

vironment Builder to create, modify, and query environments.

Task (T). NOELLE offers the Task abstraction to describe

a code region that runs sequentially. Parallelization techniques

use the above abstraction in the following way. Nodes within

an SCCDAG are partitioned into tasks. An Environment is

created for each task. At runtime, tasks are submitted to

a thread-pool, which will run them in parallel across the

cores. The explicit forwarding of data values between tasks is

performed with the knowledge provided by the Environment.

Data flow engine (DFE). NOELLE provides a data flow

183



TABLE IV: NOELLE’S TOOLS

Tool Description Depends on

noelle-whole-IR Generate a single IR file from C/C++ source files embedding the compilation
options as metadata inside the generated IR file.

noelle-norm Normalize an IR file (e.g., all loops will be in LCSSA form).
NOELLE’s abstractions are computed assuming the IR analyzed is normalized
using this tool.

noelle-rm-lc-dependences Transform loops to remove as many loop-carried data dependences as possible. SCCDAG, CG,
This tool generates normalized IR by invoking noelle-norm. L, PRO, FR, LB

noelle-prof-coverage Inject code into the IR file given as input to profile IR instructions. PRO, FR, CG

noelle-meta-prof-embed Embed profiles into the IR file given as input. PRO, FR, CG

noelle-meta-pdg-embed Compute and embed the PDG into the IR file given as input. PDG

noelle-meta-loop-embed Assign identificators to loops and their mapping with source code loops. LS

noelle-load Load the NOELLE abstractions into memory without computing them.

noelle-fixedpoint Invoke a custom tool until it changes the IR.

noelle-codesize Print to standard output the number of static IR instructions of the IR file
given as input.

noelle-loopsize Print to standard output the number of static IR instructions of the IR file
given as input that are included in loops.

noelle-arch Generate a file that describes the underlying architecture and its profiles AR
(e.g., core-to-core latencies).

noelle-linker Links IR files together while preservering the semantic of metadata generated
by NOELLE’s tools.

noelle-bin Generate a standalone binary from an IR file using the compilation options
specified as metadata inside the IR file given as input.

noelle-config Print to standard output information about the installation of NOELLE
(e.g., the installation directory).

engine that can be used to implement data flow analyses. DFE

implements conventional optimizations like bit-vectors, basic

block granularity optimization, working list algorithm, and

loop-based priority [24]. Finally, NOELLE provides a set of

common data flow analyses that rely on DFE.

Profiler (PRO). NOELLE provides several code profilers,

the ability to embed their results into IR files, and abstractions

to facilitate high-level queries on such data. Examples of

queries that can be performed are the hotness of a code region

(e.g., a loop, an SCC of a dependence graph), loop-specific

information (e.g., loop iteration count, average loop iteration

count per invocation), and function-specific information (e.g.,

the average number of times that an invocation of a function

invokes another).

Scheduler (SCD). NOELLE provides the scheduler abstrac-

tion that offers the capability of moving instructions within and

among basic blocks while preserving original code semantics.

This abstraction enables users to work at different granular-

ities; users can move a whole loop, a basic block, or single

instructions. The scheduler relies on the PDG abstraction to

guarantee semantic preservation. The abstraction provides a

hierarchy of schedulers starting from a generic one and in-

cluding loop-specific and within-basic-block schedulers. Each

scheduler augments the generic capabilities with specialized

capabilities (e.g., reducing the header size of a loop).

Loop Transformer (LT). NOELLE offers the loop trans-

former abstraction that enables passes to modify/create/delete

loops. LT is similar to the IRBuilder abstraction offered by

LLVM, but instead of targeting instructions, LT targets loops.

Induction variables (IV). NOELLE provides the induction

variable abstraction. Because LLVM’s IR is in SSA form, the

concept of the loop’s induction variable is embodied by an

SCC of the SCCDAG of that loop. NOELLE’s abstraction ex-

poses such SCC, the starting and ending value of an induction

variable, the step amount per loop iteration, and whether an

induction variable controls the number of loop iterations that

will be executed. Finally, IV exposes the potential relationship

with other induction variables for those that are derived.

While the latest LLVM version provides an induction

variable abstraction, this is unfortunately not enough. The

main difference between the LLVM’s induction variable and

NOELLE’s version is that NOELLE implements a more robust

algorithm to detect induction variables based on both the SC-

CDAG and SCEV. This enables NOELLE to detect induction

variables independent of the target loop shape. Instead, LLVM

can only detect induction variables for do-while loops.

Induction Variable Stepper (IVS). A common operation

for modern and emerging code transformations is to modify

the step of induction variables. For example, loop rotation

needs to revert the step value of induction variables. Another

example is an advanced DOALL parallelization, which needs

to perform chunking between iterations to increase spatial

locality. NOELLE’s induction variable stepper abstraction

offers the capability to modify any step value of induction

variables of a loop; users need only specify the new step

values, and the abstraction modifies the loop accordingly.

Loop Content (LC). This abstraction includes a represen-

tation of the loop structure (called LS). The latter is equivalent

to the loop abstraction of LLVM. The abstraction LC, instead,

adds to LS the loop dependence graph (computed from the

184



PDG) and the loop-specific instances of the abstractions IV

and INV.

Other abstractions. Above, we have described the most

important abstractions NOELLE provides. However, NOELLE

provides additional abstractions used for simple compilation

tasks such as control equivalence, reduction operations, ex-

tensible metadata attached to control structures like loops,

SCCDAG partitioner, forests(FR), and graphs designed to

restore connections among remaining parts when a node is

deleted, architecture to describe how logical cores are mapped

to physical cores and NUMA nodes, and deterministic IDs for

instructions, loops, functions, and basic blocks.

Furthermore, NOELLE offers a new implementation of

the loop structure (LS), dominator, and scalar evolution ab-

stractions. These new implementations avoid common bugs

caused by LLVM function passes freeing their memory when

a module pass invokes them on multiple functions. To avoid

this common bug, NOELLE offers implementations of these

LLVM abstractions with the property that only their users can

free these memory objects.

C. NOELLE’s Tools

NOELLE includes tools (Table IV) to help users deploy

their compilation tool-chain The most important ones are

summarized as follows:

noelle-whole-IR generates a single IR file. Merging all

bitcode into a single bitcode file is important for the analyses

and transformations that span a wide code region (e.g., the

whole program). This tool is based on gllvm.

noelle-rm-lc-dependences modifies an IR program to

remove or reduce the impact of loop-carried data dependen-

cies.

noelle-prof-coverage profiles IR code using represen-

tative program inputs. At the moment, NOELLE includes an

instruction profiler, a branch profiler, and a loop profiler.

noelle-meta-pdg-embed computes the PDG of an IR

file. This tool computes the PDG by invoking many time-

consuming and accurate alias analyses that power NOELLE.

Then, this tool embeds the computed PDG as metadata into

the IR file so that NOELLE can re-construct the requested

abstractions without requiring memory analyses.

noelle-meta-loop-embed assigns identificators to loops

in the IR language and it embeds the mapping between these

loops and loops of the source code files. Source code loops

are identified by the file name and line number of the first

statement of the related loop. This information is used by

custom tools built upon NOELLE that need to keep track of

the relation between loops in IR and loops in the source code

(e.g., loops in C++ files).

noelle-load loads the NOELLE layer in memory. Custom

tools invoke NOELLE’s empowered LLVM pass by using

noelle-load rather than the LLVM tool opt.

noelle-arch measures architecture-specific characteristics.

At the moment, this tool measures the core-to-core latency and

bandwidth. This tool also interacts with the tool hwloc [25] to

Algorithm 1: isInvariant llvm(Instruction I, Loop L,

Dominator DT, AliasAnalysis AA)

Result: Return true if instruction I is an invariant in loop L

/* Simplified logic of LLVM implementation */

for operand in I.getOperands() do

if operand is defined in L then return False;

end

if isa<LoadInst>(I) then

for Instruction J in L do

if getModRef(J, I) != NoMod then return False;

end

end

if isa<StoreInst>(I) then

for memory use MU in L do

// Conservatively ensures no memory

// use precedes this store

if not DT.dominates(I, MU) then return False;

end

// Ensures no memory def/use would be

// invalidated by hoisting the store

M ← AA.getNearestDominatingMemoryAccess(I);

if M is in L then return False;

end

if call ← dyn_cast<CallInst>(I) then

if AA.getModRefBehavior(call) != NoMod then return False;

S ← AA.onlyMemoryAccessesAreArguments(call);

if not S then return False;

for Argument A of call do

for sL in L-¿getSubLoops() do

for sI in sL do

if AA.getModRef(A, sI) != NoMod then return False;

end

end

end

end

return True;

Algorithm 2: isInvariant noelle(Instruction I, Loop L,

PDG dg, Stack s)

Result: Return true if instruction I is an invariant in loop L

/* Implementation using high level abstraction PDG

instead of low level abstractions alias analysis

and dominators */

if I in s then return False;

s.push(I);

for PDG dependence J to I do

if J is in L then

inv ← isInvariant_noelle(J, L, dg, s);

if not inv then return False;

end

end

s.pop();

return True;

find the number of physical and logical cores of the underlying

platform, their mapping, and NUMA nodes.

D. Impact of NOELLE’s Abstractions

NOELLE’s abstractions may depend on each other to sim-

plify design while keeping high precision. We show the impact

of building on higher-level NOELLE abstractions by looking

at the invariant abstraction (INV) as an example.

Algorithm 1 shows the simplified logic of LLVM’s im-

plementation that relies on low-level abstractions to decide

whether a given instruction is a loop invariant. First, the

algorithm checks if any operand of I is defined within loop

L. If no operands are defined within L, it checks the type of

the instruction I. If I is a load instruction, it checks if any

other instruction of L can modify the same memory location

185



accessed by I. If I is a store instruction, it checks if any

memory use precedes I in L. If not, it checks no memory

invalidation happens if I would be hoisted outside the loop.

Finally, if I is a call instruction, it checks (i) if I can modify

any memory location, (ii) if the only memory accessed are via

arguments to the call, (iii) and if any sub-loop can modify the

same memory accessed via arguments by the call I.

Algorithm 2 shows NOELLE’s implementation that relies

on the high-level PDG abstraction. It checks if I is currently

under analysis (i.e., in the stack s). If not, it checks instruction

that I depends on whether it is outside the loop or a loop

invariant. Notice that this algorithm is smaller, simpler, and

more precise than Algorithm 1 (Figure 4).

III. TRANSFORMATIONS BUILT UPON NOELLE

This section describes the code transformations built upon

NOELLE. Table V summarizes them and their Lines of Code

(LoC). Each transformation relies on several of NOELLE’s

abstractions. Table VI shows the abstractions used by them. It

is important to notice that every abstraction is used by more

than one custom tool suggesting their wide applicability.

A. Work Re-Implemented Using NOELLE

Next we describe work previously published that we re-

implemented using NOELLE.

HELIX parallelizes a loop by distributing its iterations

between cores [26]–[28]. Each iteration is sliced into several

sequential and parallel segments. Different instances of the

same sequential segment run sequentially between the cores

while everything else can overlap.

HELIX uses PRO, FR, and LC of NOELLE to identify the

most profitable loops to parallelize. HELIX uses the PDG at

the SCC granularity and only for the hot loops. HELIX also

uses ENV to identify and organize the live-in and live-out

of each chosen loop. LT and T abstractions are then used to

generate the parallel version of a loop.

HELIX uses SCCDAG, INV, IV, and the RD abstractions

to identify the SCCs that need to be executed sequentially.

DFE is used to translate SCCs into sequential segments. SCD

is then used to reduce the size of each sequential segment

and schedule them within the body of each parallelized loop.

Moreover, HELIX uses IVS to chunk loop iterations.

DSWP parallelizes a loop by distributing its SCCs between

cores [23]. Instances of a given SCC are executed by the same

core to create a unidirectional communication between cores.

DSWP uses NOELLE’s abstractions, similarly to how HELIX

does while leveraging DSWP-specific knowledge to select and

subsequently parallelize loops.

DOALL parallelizes a loop that has no loop-carried data

dependencies by distributing its iterations among cores [29].

DOALL’s implementation uses NOELLE’s abstractions simi-

larly to the other parallelizing compilers (DSWP and HELIX),

the difference being the loop selection process and parts of the

parallelized code generation.

Compiler-Based Timing is co-designed with the underly-

ing operating system to inject calls to OS routines [30] into

a program. This compiler uses DFE and PRO to implement

its specialized data flow analyses. It also uses LC, FR, and

LT to handle potentially-infinite loops. Finally, it uses CG to

improve the accuracy of its time analyses.

Time-Squeezer generates code optimized for timing specu-

lative micro-architectures [31], [32]. To this end, the compiler

needs to decide when to swap the compare operands (and

modify its uses), how to change the schedule of instructions,

and where to inject instructions that modify the clock period

of the underlying architecture. This custom tool uses DFE, LC,

and FR to decide where to inject clock-changing instructions.

It then uses SCD to optimize the instruction sequence of a

code region that uses the same clock period. Finally, it uses

ISL and the whole program PDG at the instruction granularity

to analyze the compare instructions and their dependencies.

Loop Invariant Code Motion hoists loop invariants outside

their loop. It uses FR to hoist invariants from innermost to

outermost loops. INV is then used to identify instructions that

can be hoisted. Finally, it performs the hoist with LC.

Perspective is a speculative-DOALL parallelization frame-

work that maintains the applicability of speculative techniques

while approaching the efficiency of non-speculative ones. This

system relies on the PDG at the instruction granularity for each

selected loop and their SCCDAG.

B. Work Enabled by NOELLE

We started NOELLE in 2016 to accelerate the implemen-

tation of our compilers. Since then, we implemented the

following systems upon NOELLE.

CARAT is co-designed with the underlying operating sys-

tem to replace virtual memory. This compiler injects code

to guard IR memory instructions that cannot be proved at

compile time to be valid [33], [34]. CARAT relies on the whole

program PDG at the instruction granularity, the SCCDAG, and

INV to identify the memory instructions that need guards. It

then uses DFE and PRO to avoid redundant guards of the same

memory location. CARAT also uses LC, LT, and IV to merge

guards. Finally, SCD is used to place the guards in the code.

PRVJeeves selects pseudo-random value generators

(PRVG) for a randomized program (e.g., Monte Carlo

simulations) [35]. To do so, it uses the whole program PDG

at the instruction granularity, CG, and DFE to identify the

allocations and uses of the PRVGs. Then, PRVJeeves uses

PRO to prune the design space (e.g., PRVGs used infrequently

are unmodified). Moreover, it uses LC, LT, INV, and IV to

identify the uses of a vector of PRVGs. Finally, PRVJeeves

uses SCD to place the uses of a PRVG in the code.

CCK is a compiler co-designed with the Nautilus OS [36]

to bring the OpenMP stack in the kernel space by only adding

a few lines of code in the OS [37].

Dead Function Elimination eliminates functions that can-

not be reached by the main function nor by module construc-

tors. To do so, the system relies on the complete CG, ISL,

and the whole program PDG at the instruction granularity.

It modifies the code to eliminate functions whose address is

186



TABLE V: CUSTOM TOOLS BUILT UPON NOELLE. LOC OF TOOLS THAT ARE ENABLED BY NOELLE AND NOT AVAILABLE USING ONLY LLVM ARE

MARKED WITH * AND ESTIMATED USING THE LOC OF THE NOELLE’S ABSTRACTIONS USED BY SUCH TOOLS.

LLVM + Percent

Custom tool Description LLVM NOELLE reduction

HELIX Parallelizing compiler that applies the HELIX code parallelization technique 15453 958 94%

DSWP Parallelizing compiler that applies the DSWP code parallelization technique 8525 775 91%

DOALL Parallelizing compiler that applies the DOALL code parallelization technique 5512 321 94%

Compiler-based timing (COOS) Compiler to inject calls to Operating System routines to replace hardware interrupts 1641 495 70%

Time Squeezer (TIME) Compiler to optimize compare instructions for timing speculative architectures 510 92 82%

Loop Invariant Code Motion (LICM) Hoist loop invariants outside their loop 2317 170 93%

Perspective (PERS) Parallelizing compiler that minimizes speculation and privatization costs 33998 22706 33%

CARAT Inject memory guards to potentially incorrect memory instructions *21899 595 97%

PRVJeeves (PRVJ) Compiler to select the Pseudo Random Value Generators for the program given as input *17863 456 97%

CCK OpenMP compiler co-designed with the Nautilus OS to bring the OpenMP stack in kernel space *51741 18345 65%

Dead Function Elimination (DEAD) Reduce the number of functions without increasing the total number of IR instructions *7512 61 99%

Total 166971 44974 73%

TABLE VI: NOELLE’S ABSTRACTIONS ARE VERSATILE AS THEY ARE

USED BY SEVERAL AND SIGNIFICANTLY DIFFERENT CUSTOM TOOLS.

Custom
tool

NOELLE’s abstractions used

P
D

G

S
C

C
D

A
G

C
G

E
N

V

T D
F

E

P
R

O

S
C

D

L
C

L
T

IV IV
S

IN
V

F
R

IS
L

R
D

A
R

L
S

HELIX ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

DSWP ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

DOALL ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

COOS ✓ ✓ ✓ ✓ ✓ ✓ ✓

TIME ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

LICM ✓ ✓ ✓ ✓ ✓

CARAT ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

PRVJ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

PERS ✓ ✓

CCK ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

DEAD ✓ ✓ ✓

stored in memory when the compiler can prove such address

cannot be used by any indirect call.

IV. EVALUATION

This section evaluates NOELLE and the custom tools built

upon it. Before presenting the results, we describe our evalu-

ation platform and our evaluation methodology. Our results

show that each of NOELLE’s abstraction can be used by

several significantly different custom tools. Results suggest

that NOELLE’s implementation of a few abstractions that exist

in LLVM are more precise than their LLVM counterparts.

Finally, results suggest that we can build a custom tool in

a few lines of code that is powerful enough to improve

the performance or reduce the binary size compared to the

mainline, widely adopted compilers like clang.

A. Experimental Setup

We have evaluated NOELLE and 11 custom tools on the

platform described next and by following the measurement

methodology described here.

Platform. Our evaluation was done on a Dell PowerEdge

R730 server with one Intel Xeon E5-2695 v3 Haswell proces-

sor running at 2.3GHz. The processor has 12 cores with 2-way

hyperthreading, 35MB of last-level cache, and a peak power

consumption of 120W. The cores are supported by 256GB of

main memory in 16 dual rank RDIMMs at 2133MHz. Turbo

Boost was disabled, and no CPU frequency governors were

used (i.e., all cores ran at a maximum frequency). The OS

used is Red Hat Enterprise Linux Server 8 on kernel 4.18.

NOELLE is available for several versions of LLVM [1]

ranging from 5 to the latest (at the time of writing) 12.

Different NOELLE versions compiles differently depending on

which external libraries are available for that LLVM version.

This paper reports the results for NOELLE compiled using

LLVM 9 because one of the external alias analysis, SCAF,

that NOELLE relies on is at the moment only available for

LLVM 9. Hence, NOELLE with LLVM 9 currently provides

the most accurate PDG. Finally, all results are generated using

NOELLEGym [38], an infrastructure we built to evaluate

NOELLE-related tools. While our artifact targets 71 bench-

marks from four suites, most results showed next exclude

PolyBench benchmarks for lack of space (similar trends are

found in PolyBench).

Statistics and convergence. Each data point we show in

our evaluation is the median value of 11 runs.

B. Building Upon NOELLE Reduces Source Code

NOELLE simplifies the implementation of code analyses

and transformations. Table V compares the implementations

of 11 transformations when built upon NOELLE and when

implemented only using LLVM abstractions. We agree LoC

is not an ideal proxy for measuring the complexity of a

system, however it is important to notice that the reduction

in LoC obtained by using NOELLE and shown in Table V is

significant (73% less code for the 11 custom tools).

NOELLE abstractions are general enough to be useful by

many and highly-heterogeneous custom tools. Table VI shows

that each abstraction is used by several custom tools. For

example, LT is used by nine custom tools out of 11. Moreover,

it is important to notice the heterogeneity of these custom

tools that use (for example) LT: parallelizing transformations,

loop invariant code motion (LICM), code optimizations for

timing speculative micro-architecture (TIME), memory guard

injector and optimization (CARAT), PRVG selector (PRVJ),

and scheduler of OS routines within applications (COOS).

C. NOELLE Abstractions

Next, we compare the subset of NOELLE’s abstractions

that are also available in LLVM. These abstractions are loop

invariants, loop induction variables, and dependencies.

187



ble
nd

er_
r

de
ep

sje
ng

_r

im
ag

ick
_r

lbm
_r
lee

la_
r
mcf_

r
na

b_r

na
md_r

om
ne

tpp
_r

pa
res

t_r

pe
rlb

en
ch_

r
x2

64
_r

xa
lan

cbm
k_r xz_

r

bla
cks

cho
les

bo
dy

tra
ck

can
ne

al

flu
ida

nim
ate

fre
qm

ine

str
ea

mclu
ste

r

sw
ap

tio
ns

x2
64

ba
sic

math bf_
d

bf_
e
bit

cnt
s
cjp

eg crc
djp

eg fft
fft_

inv qso
rt

raw
cau

dio

raw
da

ud
io
sea

rch sha

sus
an

_c

sus
an

_e

sus
an

_s
toa

st

un
toa

st
0

20
40
60
80

100
De

ps
 [%

]

NOELLE LLVM

Fig. 3: While LLVM is capable of proving the non-existence of most dependencies, NOELLE disproves significantly more.

ble
nd

er_
r

de
ep

sje
ng

_r

im
ag

ick
_r

lbm
_r
lee

la_
r
mcf_

r
na

b_r

na
md_r

om
ne

tpp
_r

pa
res

t_r

pe
rlb

en
ch_

r
x2

64
_r

xa
lan

cbm
k_r xz_

r

bla
cks

cho
les

bo
dy

tra
ck

can
ne

al

flu
ida

nim
ate

fre
qm

ine

str
ea

mclu
ste

r

sw
ap

tio
ns

x2
64

ba
sic

math bf_
d

bf_
e
bit

cnt
s
cjp

eg crc
djp

eg fft
fft_

inv qso
rt

raw
cau

dio

raw
da

ud
io
sea

rch sha

sus
an

_c

sus
an

_e

sus
an

_s
toa

st

un
toa

st
0

20
40
60
80

100

In
vs

 [%
] LLVM NOELLE

Fig. 4: NOELLE detects significantly more invariants than LLVM even if the former relies on a simpler and shorter algorithm powered by
higher-level abstraction (Algorithm 2) compared to LLVM (Algorithm 1).

Figure 3 shows that NOELLE’s implementation of depen-

dencies of its PDG is more accurate than LLVM’s abstraction.

LLVM is capable of proving a significant fraction of po-

tential memory dependencies non-existing. NOELLE further

improves this result by leveraging state-of-the-art alias anal-

yses [18], [39], [40]. While theoretically these alias analysis

frameworks could be included in LLVM, they are currently

designed and implemented outside the LLVM codebase; in-

cluding them in LLVM will be challenging in practice.

Figure 4 compares the number of loop invariants identified

by both LLVM and NOELLE. NOELLE identifies signifi-

cantly more loop invariants than LLVM because the invariant

abstraction of NOELLE is built using the PDG abstraction.

This makes the invariant detection algorithm within NOELLE

(Algorithm 2) smaller, more elegant, and more powerful

compared to the LLVM one (Algorithm 1).

Finally, we computed the number of loop induction vari-

ables using both LLVM and NOELLE for the IR gener-

ated by noelle-rm-lc-dependencies. Among the 71

benchmarks LLVM identifies less loop induction variables

(1512 total) compared to NOELLE (3749 total). The rea-

son is that LLVM’s induction variable analysis expects the

input IR to have loops in the do-while shape. However,

most loops in the 71 benchmarks have a while shape, and

changing them into a do-while shape would reduce the ap-

plicability of all the implemented parallelization techniques

(so noelle-rm-lc-dependencies keeps loops in their

while shape). Instead, NOELLE identifies loop induction vari-

ables (3749 total) independently of the shape of a loop.

D. Parallelizing Transformations Upon NOELLE

Next, we describe the parallelizing code transformations

built upon NOELLE (HELIX, DSWP, DOALL) that do not

rely on speculative techniques. This allows us to compare

small code implementations built upon NOELLE with the

parallelizing transformations implemented by icc and gcc.

Figure 5 shows the speedups we obtained in PARSEC and

MiBench benchmark suites. The few missing benchmarks have

failed to compile with the unmodified clang compiler, and

therefore we cannot use them to test NOELLE-based tools.

Figure 5 shows that the NOELLE-based small custom tools

already extract more parallelism compared to what gcc and

icc extract. Furthermore, we analyzed the few benchmarks

that NOELLE-based parallelizing tools could not extract sig-

nificant performance benefits (e.g., crc). We found this is

due to the lack of support for memory object cloning. This is

arguably an abstraction that should exist in the parallelization

techniques rather than within NOELLE as the latter is not

specialized for parallelization purposes. Finally, it is important

to note that Figure 5 shows it is possible to have all these

parallelization techniques implemented in the same compiler

using the same abstractions (NOELLE is the first codebase

that includes both DSWP and HELIX).

We also run these five parallelizing tools on 14 SPEC

CPU2017 benchmarks (the only missing benchmark is gcc,

which did not compile with gllvm). Speedups were obtained

only by NOELLE-based parallelizing tools and are within 1%

and 5% for these 14 benchmarks demonstrating the robustness

of NOELLE abstractions. Speculative techniques are likely to

be required to unlock further speedups on these benchmarks.

We argue that speculative techniques should be implemented

outside NOELLE as they are parallelization-specific.

Finally, we have ported a state-of-the-art parallelizing com-

piler (Perspective [41]) together with the authors. We modified

the original codebase to use the PDG and the SCCDAG

abstractions. This new version has preserved the performance

shown in the authors’ original paper.

E. Reducing Binary Size with NOELLE

Binary size is an important optimization goal for both

embedded systems and servers [42]. The compiler clang

offers an optimization level for this goal (-Oz). DeadFunc-

tionElimination further reduces the binary size by 2.3% on

188



bla
cks

cho
les

bo
dy

tra
ck

can
ne

al

flu
ida

nim
ate

fre
qm

ine

str
ea

mclu
ste

r

sw
ap

tio
ns

x2
64

ba
sic

math bf_
d

bf_
e

bit
cnt

s
cjp

eg crc
djp

eg fft
fft_

inv qso
rt

raw
cau

dio

raw
da

ud
io

sea
rch sha

sus
an

_c

sus
an

_e

sus
an

_s
toa

st

un
toa

st

PA
RSE

C3

MiBen
ch

Ove
ral

l
0
2
4
6
8

10
12

Pr
og

ra
m

 sp
ee

du
p

Number of cores

clang -O3 -march=native

Performance
obtained by
the parallelization
done by
a NOELLE custom tool

icc did not
extract parallelism gcc did not extract parallelism

DOALL
HELIX
DSWP

gcc
gcc-par

icc
icc-par

Fig. 5: Both gcc and icc did not obtain additional performance benefits from their parallelization techniques. Instead, NOELLE-based
parallelizing tools generate additional benefits compared to their baseline, clang. Finally, both HELIX and DSWP include the DOALL
parallelization to parallelize only loops with no loop-carried dependences.

average among the 71 benchmarks considered. The reduction

is obtained by inlining functions that are invoked by a single

call instruction; after inlining, these functions are removed.

V. RELATED WORK

A. Providing High-Level Abstractions

Researchers have explored bringing high-level abstractions

to compilers in many different ways. Compilers that support

automatic parallelization include Polaris [8], a parallelizing

compiler for Fortran programs, Cetus [9], a C compiler fo-

cusing on multicore, and ROSE [7], a compiler for building

custom compilation tools. These compilers operate on high-

level abstractions to perform source-to-source translation, thus

missing opportunities presented only in low-level IRs includ-

ing fine-grained operations and more canonical code patterns.

Many domain-specific projects add new abstractions sim-

ilar to NOELLE. SeaHorn [43] provides new abstractions

for developing verification techniques. Polly [44], [45],

PLUTO [46], HALIDE [11], [47], Tiramisu [48], [49], and

APOLLO [50] provide abstractions to suit polyhedral opti-

mizations, targeting loops characterized by regular control and

data flows. TensorFlow [10] uses high-level graph representa-

tions to discover more graph optimizations [51]. These projects

focus on specific domains and their abstractions are not easily

reusable for problems outside their domains.

Few domain-independent compilers combine low-level IR

with high-level abstractions like NOELLE. SUIF compiler [12]

provides low-level IR as well as higher-level constructs in-

cluding loops, conditional statements, and array accesses [13].

The IMPACT compiler [14] provides hierarchical IRs. Unfor-

tunately, they are not maintained anymore.

The LLVM community also has a Loop Optimization Work-

ing Group [52] that recently has started working on a few

abstractions included in NOELLE, such as the dependence

graph. We plan to share NOELLE code with them. We also

see value in maintaining NOELLE as a separate project that

focuses mainly on performance rather than making a balance

between performance, and compilation time.

B. LLVM Projects

As we have built NOELLE on top of LLVM, we want to

know how NOELLE might impact compiler research. To do

this, we have exhaustively reviewed all 544 papers published

in PLDI, CGO, and CC during the past five years (2016-

2020). Out of these papers, 87 papers explicitly mention that

they are built on top of LLVM by either implementing new

passes, modifying the LLVM internals, or creating a new front-

end/back-end based on LLVM IR. Out of these 87 papers:

• 26 (29.9%) use abstractions similar to those provided by

NOELLE. Thus, they could be re-implemented on top of

NOELLE with significantly fewer lines of code and/or better

performance. Of these, we have implemented CARAT [33]

and PRVJeeves [35] with NOELLE and presented the bene-

fits in Section III. Other examples include Spinal Node [53],

which uses PDG as well as data flow analysis; Valence [54],

which relies on call graph analysis; Clairvoyance [55],

which relies on loop-carried dependence analysis.

• 10 (11.5%) provide new abstractions or implement analyses

or transformations that fulfill NOELLE abstractions. We

have already integrated SVF [19] and SCAF [18] within

NOELLE. We plan to evaluate others [56]–[59] in the future.

• 25 (28.7%) are doing tasks orthogonal to NOELLE’s ab-

stractions. Nevertheless, they do not conflict with NOELLE

because both implementations do not modify LLVM inter-

nals. Due to NOELLE’s modular and demand-driven design,

future work can use NOELLE even if only a subset of

abstractions are of interest.

• 26 (29.9%) papers modify LLVM internals or use alternative

front/back-ends. These projects need to be analyzed case by

case for the possibility of integration with NOELLE.

In conclusion, 41.4% of the projects are highly likely to

benefit from or contribute to NOELLE’s abstractions; 28.7%

have the potential for future collaboration; 29.9% need inves-

tigation before integration.

VI. CONCLUSION

Code analyses and transformations need to go beyond peep-

hole and ILP optimizations for modern architectures. Their

implementation requires high-level abstractions that are cur-

rently lacking in LLVM. This paper introduces NOELLE, an

open-source compilation layer built upon LLVM that provides

the required abstractions. NOELLE has been tested with 11

highly diverse tools that are built upon it. All of these tools

gain benefits compared to unmodified LLVM.

189



APPENDIX

A. Abstract

This artifact describes the tools and code used in our

evaluation. The main component is a docker image which

includes a detailed README, scripts to generate and run all

experiments along with the LLVM9.0.0 already installed. It

requires docker to run the image and a network connection

to pull down external dependencies and our benchmark suite.

Evaluating this artifact requires an Intel multicore processor

with shared memory. The scripts will generate all of the

data from our paper evaluation into a text format with the

only manual step required being to add the SPEC CPU2017

benchmark suite as we cannot share it directly. The script will

optionally generate the SPEC CPU2017 data by following the

instructions in README.md

B. Artifact Check-List (Meta-information)

• Algorithm: No
• Program: PARSEC3, PolyBench, MiBench
• Compilation: LLVM9.0.0, Included
• Transformations: None
• Binary: None
• Data set: Data sets are included with the benchmark suite
• Run-time environment: None
• Hardware: None
• Run-time state: Yes
• Execution: Sole user, Pinning, approximately 4 days to run
• Metrics: Execution time, Number of dependences, Number

of induction variables, Number of loop invariants
• Output: Individual file output for each metric and each

benchmark
• Experiments: The experiments can be run with the included
bin/compileAndRun script. The user must set environ-
ment variables to customize the experiments as described
in the README.md include in the docker image.

• How much disk space required (approximately)?: 500 GB
• How much time is needed to prepare workflow (approxi-

mately)?: Several hours
• How much time is needed to complete experiments (approx-

imately)?: 4 days
• Publicly available?: Yes
• Code licenses (if publicly available)?: MIT License
• Data licenses (if publicly available)?: No
• Workflow framework used?: Customization and au-

tomation of the experiments are handled by the
bin/compileAndRun script and environment variables
described in the README.md included in the docker image.

• Archived (provide DOI)?: 10.5281/zenodo.5789400

C. Description

1) How Delivered: The artifact can be accessed via a docker
image following the DOI.

2) Hardware Dependencies: Intel multicore chip with shared
memory required. TurboBoost and HyperThreading must be disabled
to reproduce execution time results.

3) Software Dependencies: Running the artifact requires
docker, all other software dependencies are included in the docker
image or installed when running the included scripts. The only
dependency that must be added is the SPEC2017 benchmark suite
which cannot be included.

4) Data Sets: All data sets will be automatically downloaded
when the scripts within the container are run. The SPEC CPU2017
data set cannot be included in the artifact because of licensing, if the
reviewer would like to obtain SPEC CPU2017 results, they must add
it themselves.

D. Installation

After downloading the docker image, add it to your
docker with docker load < noelle.tar. After adding
the image to your docker it can be run interactively with
docker run --rm -it noelle /bin/bash

docker load < noelle.tar

docker run --rm -it noelle /bin/bash

E. Experiment Workflow

The workflow for this experiment is as follows.

1) NOELLE is compiled.
2) All benchmarks are compiled for all configurations (WARN-

ING: this will take several hours).
3) Statistics are generated about loops (induction variables, invari-

ants) and dependencies in the PDG of a program.
4) Baseline times are generated for all benchmarks.
5) Times are generated for binaries obtained by

noelle-rm-lc-dependencies, which is the input
of the parallelization schemes. This configuration is called
NONE.

6) Times are generated for DOALL parallelized binaries for all
benchmarks.

7) Times are generated for HELIX parallelized binaries for all
benchmarks.

8) Times are generated for DSWP parallelized binaries for all
benchmarks.

9) The speedups are computed.
10) Statistics about how many loops have been parallelized with

which techniques are generated.

This workflow is automatically run through the
bin/compileAndRun script. This can be launched in the
background in order to watch the progress at a finer grain through
the output.txt file.

After running the docker image interactively, please read
README.md

vim README.md

Launch in the background building NOELLE and running the
experiments:

./bin/compileAndRun &

Optional: View additional progress of the script

tail -f output.txt

F. Evaluation and Expected Result

After running the docker image interactively, the README.md
includes instructions for the evaluator to run the experiment. This
is provided as a single script that takes no arguments, run from
the home directory of the docker image. Generating results for
all benchmarks takes approximately 4 days. The results directory
includes the author’s results that were used in the paper submission.
It is expected that the results generated by the artifact are in line with
the author’s results.

190



G. Experiment Customization

There are three experimental configurations and one customization
available in this artifact.

• Minimal runs the minimal set of experiments (PARSEC3,
MiBench) to support the claims made in the submitted paper.
This experimental configuration takes approximately 4 days to
run.

• Submission runs the SPEC CPU2017 benchmark suite, which
are included in the submitted paper. This experimental configu-
ration takes approximately 12 days to run. Due to the long ex-
perimental time, this configuration is separate from the Minimal
set. This can be selected by setting the NOELLE_SUBMISSION
environment variable.

• Final runs new results that were not included in the paper
submission, but will be included in the final version of the paper.
This experimental configuration takes approximately 5 days
to run. This can be selected by setting the NOELLE_FINAL

environment variable.
• Runs changes the number of times that time-sensitive evalu-

ations are run. The default number of runs is 5. This can be
modified with the NOELLE_RUNS environment variable.

H. Notes

For more detailed information about the artifact and its evaluation
process, read the README.md located in the artifact, which has
been made publicly available.

I. Methodology

Submission, reviewing and badging methodology:

• http://cTuning.org/ae/submission-20190109.html
• http://cTuning.org/ae/reviewing-20190109.html
• https://www.acm.org/publications/policies/

artifact-review-badging

REFERENCES

[1] C. Lattner and V. Adve, “Llvm: A compilation framework for lifelong
program analysis & transformation,” in Proceedings of the

international symposium on Code generation and optimization:

feedback-directed and runtime optimization. IEEE Computer Society,
2004, p. 75.

[2] “The LLVM Compiler Infrastructure Project,” http://llvm.org/.
[3] “GCC, the GNU Compiler Collection - GNU Project - Free Software

Foundation (FSF),” https://gcc.gnu.org/.
[4] “MSVC auto-parallelization,”

https://docs.microsoft.com/en-us/cpp/parallel/auto-parallelization-and-
auto-vectorization?view=vs-2019.

[5] “Automatic Parallelization,”
https://www.intel.com/content/www/us/en/develop/documentation/cpp-
compiler-developer-guide-and-reference/top/optimization-and-
programming-guide/automatic-parallelization.html.

[6] “AutoParInGCC - GCC Wiki,” https://gcc.gnu.org/wiki/AutoParInGCC.
[7] “Rose Compiler – Program Analysis and Transformation,”

http://rosecompiler.org/.
[8] B. Blume, R. Eigenmann, K. Faigin, and J. Grout, “Polaris: The Next

Generation in Parallelizing Compilers,” Tech. Rep.
[9] “The Cetus Project,” https://engineering.purdue.edu/Cetus/.

[10] “TensorFlow,” https://www.tensorflow.org/.
[11] “Halide,” https://halide-lang.org/.
[12] “The SUIF Compiler - SUIF 2,” https://suif.stanford.edu/suif/suif2/.
[13] R. P. Wilson, R. S. French, C. S. Wilson, S. P. Amarasinghe, J. M.

Anderson, S. W. K. Tjiang, S.-W. Liao, C.-W. Tseng, M. W. Hall,
M. S. Lam, and J. L. Hennessy, “The SUIF Compiler System: A
Parallelizing and Optimizing Research Compiler,” Tech. Rep.

[14] P. P. Chong, S. A. Mohike, and N. J. Warier, “IMPACT: An
Architectural Framework for Multiple-Instruction-Issue Processors,”
p. 10.

[15] “The NOELLE Project,” https://github.com/scampanoni/noelle.
[16] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman, Compilers:

principles, techniques and tools, 2020.

[17] A. W. Appel, Modern compiler implementation in C. Cambridge
university press, 2004.

[18] S. Apostolakis, Z. Xu, Z. Tan, G. Chan, S. Campanoni, and D. I.
August, “Scaf: A speculation-aware collaborative dependence analysis
framework,” in Proceedings of the 41st ACM SIGPLAN Conference on

Programming Language Design and Implementation, ser. PLDI 2020.
New York, NY, USA: Association for Computing Machinery, 2020, pp.
638–654. [Online]. Available: https://doi.org/10.1145/3385412.3386028

[19] Y. Sui and J. Xue, “SVF: Interprocedural static value-flow analysis in
LLVM,” in Proceedings of the 25th International Conference on

Compiler Construction, CC 2016, Barcelona, Spain, March 12-18,

2016, A. Zaks and M. V. Hermenegildo, Eds. ACM, 2016, pp.
265–266.

[20] J. Ferrante, K. J. Ottenstein, and J. D. Warren, “The program
dependence graph and its use in optimization,” ACM Transactions on

Programming Languages and Systems (TOPLAS), vol. 9, no. 3, pp.
319–349, 1987.

[21] E. A. Deiana, V. St-Amour, P. A. Dinda, N. Hardavellas, and
S. Campanoni, “Unconventional parallelization of nondeterministic
applications,” in Proceedings of the Twenty-Third International

Conference on Architectural Support for Programming Languages and

Operating Systems, ser. ASPLOS ’18. New York, NY, USA: ACM,
2018, pp. 432–447. [Online]. Available:
http://doi.acm.org/10.1145/3173162.3173181

[22] R. Tarjan, “Depth-first search and linear graph algorithms,” SIAM

journal on computing, vol. 1, no. 2, pp. 146–160, 1972.
[23] G. Ottoni, R. Rangan, A. Stoler, and D. I. August, “Automatic thread

extraction with decoupled software pipelining,” in 38th Annual

IEEE/ACM International Symposium on Microarchitecture

(MICRO’05), Nov 2005, pp. 12 pp.–118.
[24] A. W. Appel, Modern compiler implementation in Java. Cambridge

university press, 2008.
[25] “Portable hardware locality (hwloc),”

https://www.open-mpi.org/projects/hwloc.
[26] S. Campanoni, T. Jones, G. Holloway, V. J. Reddi, G.-Y. Wei, and

D. Brooks, “HELIX: Automatic parallelization of irregular programs
for chip multiprocessing,” in Proceedings of the Tenth International

Symposium on Code Generation and Optimization, ser. CGO ’12.
New York, NY, USA: ACM, 2012, pp. 84–93. [Online]. Available:
http://doi.acm.org/10.1145/2259016.2259028

[27] N. Murphy, T. Jones, R. Mullins, and S. Campanoni, “Performance
implications of transient loop-carried data dependences in
automatically parallelized loops,” in Proceedings of the 25th

International Conference on Compiler Construction, ser. CC 2016.
New York, NY, USA: ACM, 2016, pp. 23–33. [Online]. Available:
http://doi.acm.org/10.1145/2892208.2892214

[28] S. Campanoni, T. Jones, G. Holloway, G. Y. Wei, and D. Brooks, “The
helix project: Overview and directions,” in DAC Design Automation

Conference 2012, June 2012, pp. 277–282.
[29] A. R. Hurson, J. T. Lim, K. M. Kavi, and B. Lee, “Parallelization of

doall and doacross loops—a survey,” in Advances in computers.
Elsevier, 1997, vol. 45, pp. 53–103.

[30] S. Ghosh, M. Cuevas, S. Campanoni, and P. Dinda, “Compiler-based
timing for extremely fine-grain preemptive parallelism,” in Super

Computing conference (SC), 2020.
[31] Y. Fan, S. Campanoni, and R. Joseph, “Time squeezing for tiny

devices,” in Proceedings of the 46th International Symposium on

Computer Architecture, ISCA 2019, Phoenix, AZ, USA, June 22-26,

2019, 2019, pp. 657–670. [Online]. Available:
https://doi.org/10.1145/3307650.3322268

[32] Y. Fan, T. Jia, J. Gu, S. Campanoni, and R. Joseph, “Compiler-guided
instruction-level clock scheduling for timing speculative processors,” in
Proceedings of the 55th Annual Design Automation Conference, ser.
DAC ’18. New York, NY, USA: ACM, 2018, pp. 40:1–40:6.
[Online]. Available: http://doi.acm.org/10.1145/3195970.3196013

[33] B. Suchy, S. Campanoni, N. Hardavellas, and P. Dinda, “CARAT: A
case for virtual memory through compiler- and runtime-based address
translation,” in Proceedings of the 41st ACM SIGPLAN Conference on

Programming Language Design and Implementation, ser. PLDI 2020.
New York, NY, USA: Association for Computing Machinery, 2020, p.
329–345. [Online]. Available: https://doi.org/10.1145/3385412.3385987

[34] B. Suchy, S. Ghosh, A. Nelson, Z. Huang, D. Kersnar, S. Chai,
M. Cuevas, A. Bernat, G. Chaudhary, N. Hardavellas, S. Campanoni,
and P. Dinda, “CARAT CAKE: Replacing paging via compiler/kernel
cooperation,” in ASPLOS, 2022.

191

http://cTuning.org/ae/submission-20190109.html
http://cTuning.org/ae/reviewing-20190109.html
https://www.acm.org/publications/policies/artifact-review-badging
https://www.acm.org/publications/policies/artifact-review-badging
https://doi.org/10.1145/3385412.3386028
http://doi.acm.org/10.1145/3173162.3173181
https://www.open-mpi.org/projects/hwloc
http://doi.acm.org/10.1145/2259016.2259028
http://doi.acm.org/10.1145/2892208.2892214
https://doi.org/10.1145/3307650.3322268
http://doi.acm.org/10.1145/3195970.3196013
https://doi.org/10.1145/3385412.3385987


[35] M. Leonard and S. Campanoni, “Introducing the pseudorandom value
generator selection in the compilation toolchain,” in Proceedings of the

18th ACM/IEEE International Symposium on Code Generation and

Optimization, ser. CGO 2020. New York, NY, USA: Association for
Computing Machinery, 2020, p. 256–267. [Online]. Available:
https://doi.org/10.1145/3368826.3377906

[36] K. C. Hale and P. A. Dinda, “Enabling hybrid parallel runtimes
through kernel and virtualization support,” ACM SIGPLAN Notices,
vol. 51, no. 7, pp. 161–175, 2016.

[37] J. Ma, W. Wang, A. Nelson, M. Cuevas, B. Homerding, C. Liu,
Z. Huang, S. Campanoni, K. Hale, and P. A. Dinda, “Paths to openmp
in the kernel,” Proceedings of the International Conference for High

Performance Computing, Networking, Storage and Analysis, 2021.
[38] “NOELLEGym: where NOELLE-based tools exercise,”

https://github.com/scampanoni/noelleGym.
[39] N. P. Johnson, J. Fix, S. R. Beard, T. Oh, T. B. Jablin, and D. I.

August, “A collaborative dependence analysis framework,” in
Proceedings of the 2017 International Symposium on Code Generation

and Optimization, ser. CGO ’17. Piscataway, NJ, USA: IEEE Press,
2017, pp. 148–159. [Online]. Available:
http://dl.acm.org/citation.cfm?id=3049832.3049849

[40] Y. Sui and J. Xue, “Svf: interprocedural static value-flow analysis in
llvm,” in Proceedings of the 25th international conference on compiler

construction, 2016, pp. 265–266.
[41] S. Apostolakis, Z. Xu, G. Chan, S. Campanoni, and D. I. August,

“Perspective: A sensible approach to speculative automatic
parallelization,” in Proceedings of the Twenty-Fifth International

Conference on Architectural Support for Programming Languages and

Operating Systems, ser. ASPLOS ’20. New York, NY, USA:
Association for Computing Machinery, 2020, pp. 351–367. [Online].
Available: https://doi.org/10.1145/3373376.3378458

[42] G. Ayers, N. P. Nagendra, D. I. August, H. K. Cho, S. Kanev,
C. Kozyrakis, T. Krishnamurthy, H. Litz, T. Moseley, and
P. Ranganathan, “Asmdb: Understanding and mitigating front-end
stalls in warehouse-scale computers,” in Proceedings of the 46th

International Symposium on Computer Architecture, ser. ISCA ’19.
New York, NY, USA: Association for Computing Machinery, 2019, p.
462–473. [Online]. Available: https://doi.org/10.1145/3307650.3322234

[43] A. Gurfinkel, T. Kahsai, A. Komuravelli, and J. A. Navas, “The
SeaHorn Verification Framework,” in Computer Aided Verification,
D. Kroening and C. S. Păsăreanu, Eds. Cham: Springer International
Publishing, 2015, vol. 9206, pp. 343–361.

[44] “Polly - Polyhedral optimizations for LLVM,” https://polly.llvm.org/.
[45] T. Grosser, H. Zheng, R. Aloor, A. Simbürger, A. Größlinger, and

L.-N. Pouchet, “Polly-polyhedral optimization in llvm,” in Proceedings

of the First International Workshop on Polyhedral Compilation

Techniques (IMPACT), vol. 2011, 2011, p. 1.
[46] U. Bondhugula and J. Ramanujam, “Pluto: A practical and fully

automatic polyhedral parallelizer and locality optimizer,” 2007.
[47] J. Ragan-Kelley, C. Barnes, A. Adams, S. Paris, F. Durand, and

S. Amarasinghe, “Halide: A language and compiler for optimizing
parallelism, locality, and recomputation in image processing pipelines,”
in Proceedings of the 34th ACM SIGPLAN Conference on

Programming Language Design and Implementation, ser. PLDI ’13.
New York, NY, USA: Association for Computing Machinery, Jun.
2013, pp. 519–530.

[48] “Tiramisu Compiler,” http://tiramisu-compiler.org/.
[49] R. Baghdadi, J. Ray, M. B. Romdhane, E. D. Sozzo, A. Akkas,

Y. Zhang, P. Suriana, S. Kamil, and S. P. Amarasinghe, “Tiramisu: A
polyhedral compiler for expressing fast and portable code,” in
IEEE/ACM International Symposium on Code Generation and

Optimization, CGO 2019, Washington, DC, USA, February 16-20,

2019, M. T. Kandemir, A. Jimborean, and T. Moseley, Eds. IEEE,
2019, pp. 193–205.

[50] J. M. M. Caamaño, A. Sukumaran-Rajam, A. Baloian, M. Selva, and
P. Clauss, “APOLLO: Automatic speculative POLyhedral Loop
Optimizer,” in IMPACT 2017 - 7th International Workshop on

Polyhedral Compilation Techniques, Jan. 2017, p. 8.
[51] “TensorFlow graph optimization with Grappler — TensorFlow Core,”

https://www.tensorflow.org/guide/graph optimization.
[52] llvm, “The Loop Optimization Working Group,”

https://llvm.org/devmtg/2019-10/talk-abstracts.html#pan2.
[53] B. Kim, S. Heo, G. Lee, S. Song, J. Kim, and H. Kim, “Spinal code:

Automatic code extraction for near-user computation in fogs,” in
Proceedings of the 28th International Conference on Compiler

Construction - CC 2019. Washington, DC, USA: ACM Press, 2019,
pp. 87–98.

[54] T. Zhou, M. R. Jantz, P. A. Kulkarni, K. A. Doshi, and V. Sarkar,
“Valence: Variable length calling context encoding,” in Proceedings of

the 28th International Conference on Compiler Construction - CC

2019. Washington, DC, USA: ACM Press, 2019, pp. 147–158.
[55] K.-A. Tran, T. E. Carlson, K. Koukos, M. Själander, V. Spiliopoulos,

S. Kaxiras, and A. Jimborean, “Clairvoyance: Look-ahead
compile-time scheduling,” in Proceedings of the 2017 International

Symposium on Code Generation and Optimization, CGO 2017, Austin,

TX, USA, February 4-8, 2017, V. J. Reddi, A. Smith, and L. Tang,
Eds. ACM, 2017, pp. 171–184.

[56] J. Doerfert, T. Grosser, and S. Hack, “Optimistic loop optimization,” in
Proceedings of the 2017 International Symposium on Code Generation

and Optimization, CGO 2017, Austin, TX, USA, February 4-8, 2017,
V. J. Reddi, A. Smith, and L. Tang, Eds. ACM, 2017, pp. 292–304.

[57] S. Manilov, C. Vasiladiotis, and B. Franke, “Generalized profile-guided
iterator recognition,” in Proceedings of the 27th International

Conference on Compiler Construction - CC 2018. Vienna, Austria:
ACM Press, 2018, pp. 185–195.

[58] M. Maalej, V. Paisante, P. Ramos, L. Gonnord, and F. M. Q. Pereira,
“Pointer disambiguation via strict inequalities,” in Proceedings of the

2017 International Symposium on Code Generation and Optimization,

CGO 2017, Austin, TX, USA, February 4-8, 2017, V. J. Reddi,
A. Smith, and L. Tang, Eds. ACM, 2017, pp. 134–147.

[59] A. Phulia, V. Bhagee, and S. Bansal, “OOElala: Order-of-evaluation
based alias analysis for compiler optimization,” in Proceedings of the

41st ACM SIGPLAN International Conference on Programming

Language Design and Implementation, PLDI 2020, London, UK, June

15-20, 2020, A. F. Donaldson and E. Torlak, Eds. ACM, 2020, pp.
839–853.

192

https://doi.org/10.1145/3368826.3377906
http://dl.acm.org/citation.cfm?id=3049832.3049849
https://doi.org/10.1145/3373376.3378458
https://doi.org/10.1145/3307650.3322234

	Introduction
	NOELLE
	NOELLE in a Nutshell
	NOELLE's Abstractions
	NOELLE's Tools
	Impact of NOELLE's Abstractions

	Transformations Built Upon NOELLE
	Work Re-Implemented Using NOELLE
	Work Enabled by NOELLE

	Evaluation
	Experimental Setup
	Building Upon NOELLE Reduces Source Code
	NOELLE Abstractions
	Parallelizing Transformations Upon NOELLE
	Reducing Binary Size with NOELLE

	Related Work
	Providing High-Level Abstractions
	LLVM Projects

	Conclusion
	Appendix
	Abstract
	Artifact Check-List (Meta-information)
	Description
	How Delivered
	Hardware Dependencies
	Software Dependencies
	Data Sets

	Installation
	Experiment Workflow
	Evaluation and Expected Result
	Experiment Customization
	Notes
	Methodology

	References

