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Abstract

To improve performance and reduce power, processor
designers employ advances that shrink feature sizes, lower
voltage levels, reduce noise margins, and increase clock
rates. However, these advances make processors more
susceptible to transient faults that can affect correctness.
While reliable systems typically employ hardware tech-
niques to address soft-errors, software techniques can pro-
vide a lower-cost and more flexible alternative. This paper
presents a novel, software-only, transient-fault-detection
technique, called SWIFT. SWIFT efficiently manages re-
dundancy by reclaiming unused instruction-level resources
present during the execution of most programs. SWIFT also
provides a high level of protection and performance with an
enhanced control-flow checking mechanism. We evaluate
an implementation of SWIFT on an Itanium 2 which demon-
strates exceptional fault coverage with a reasonable perfor-
mance cost. Compared to the best known single-threaded
approach utilizing an ECC memory system, SWIFT demon-
strates a 51% average speedup.

1 Introduction

In recent decades, microprocessor performance has been
increasing exponentially. A large fraction of this improve-
ment is due to smaller and faster transistors with low thresh-
old voltages and tighter noise margins enabled by improved
fabrication technology. While these devices yield perfor-
mance enhancements, they will be less reliable [23], mak-
ing processors that use them more susceptible totransient
faults.

Transient faults (also known assoft errors), unlike
manufacturing or design faults, do not occur consistently.
Instead, these intermittent faults are caused by external
events, such as energetic particles striking the chip. These
events do not cause permanent physical damage to the pro-
cessor, but can alter signal transfers or stored values and
thus cause incorrect program execution.

Transient faults have caused significant failures. In
2000, Sun Microsystems acknowledged that cosmic rays
interfered with cache memories and caused crashes in
server systems at major customer sites, including America
Online, eBay, and dozens of others [3].

To counter these faults, designers typically introduce re-
dundant hardware. For example, some storage structures
such as caches and memory include error correcting codes
(ECC) and parity bits so the redundant bits can be used to
detect or even correct the fault. Similarly, combinational
logic within the processor can be protected by duplication.
Output from the duplicated combinational logic blocks can
be compared to detect faults. If the results differ, then the
system has experienced a transient fault and the appropriate
recovery or reporting steps can be initiated.

High-availability systems need much more hardware
redundancy than that provided by ECC and parity bits.
For example, IBM has historically added 20-30% of addi-
tional logic within its mainframe processors for fault toler-
ance [24]. When designing the S/390 G5, IBM introduced
even more redundancy by fully replicating the processor’s
execution units to avoid various performance pitfalls with
their previous fault tolerance approach [24]. To alleviate
transient faults, in 2003, Fujitsu released its fifth generation
SPARC64 with 80% of its 200,000 latches covered by some
form of error protection, including ALU parity generation
and a mul/divide residue check [1]. Since the intensity of
cosmic rays significantly increases at high altitudes, Boeing
designed its 777 aircraft system with three different proces-
sors and data buses while using a majority voting scheme
to achieve both fault detection and recovery [28, 29].

Using these hardware fault tolerant mechanisms is too
expensive for many processor markets, including the highly
price-competitive desktop and laptop markets. These sys-
tems may have ECC or parity in the memory subsystem, but
they certainly do not possess double- or triple-redundant
execution cores. Ultimately, transient faults in both mem-
ory and combinational logic will need to be addressed inall
aggressive processor designs, not just those used in high-
availability applications.



In this paper, we propose SWIFT, a software-based,
single-threaded approach to achieve redundancy and fault
tolerance. For brevity’s sake, we will be restricting our-
selves to a discussion of fault detection. However, since
SWIFT performs fault detection in a manner compatible
with most reporting and recovery mechanisms, it can be
easily extended to incorporate complete fault tolerance.

SWIFT is a compiler-based transformation which du-
plicates the instructions in a program and inserts compar-
ison instructions at strategic points during code generation.
During execution, values are effectively computed twice
and compared for equivalence before any differences due
to transient faults can adversely affect program output.

A software-based, single-threaded approach like SWIFT
has several desirable features. First and foremost, the tech-
nique does not require any hardware changes. Second,
the compiler is free to make use of slack in a program’s
schedule to minimize performance degradation. Third, pro-
grammers are free to vary transient fault policy within a
program. For example, the programmer may choose to
check only essential code segments or to vary the man-
ner in which detected errors are handled to achieve the
best user experience. Fourth, a compiler orchestrated re-
lationship between the duplicated instructions allows for
simple methods to deal with exception-handling, interrupt-
handling, and shared memory.

SWIFT demonstrates the following improvements over
prior work:

• As a software-based approach, SWIFT requires no
hardware beyond ECC in the memory subsystem.

• SWIFT eliminates the need to double the memory re-
quirement by acknowledging the use of ECC in caches
and memory.

• SWIFT increases protection at no additional perfor-
mance cost by introducing a new control-flow check-
ing mechanism.

• SWIFT reduces performance overhead by eliminating
branch validation code made unnecessary by this en-
hanced control flow mechanism.

• SWIFT performs better than all known single-
threaded full software detection techniques. Though
no direct comparison is made to multithreaded
approaches, it performson par with hardware
multithreading-based redundancy techniques [19]
without the additional hardware cost.

• Methods to deal with exception-handling, interrupt-
handling and shared memory programs in software-
based, single-threaded make SWIFT deployable in
both uniprocessor and multiprocessor environments.

While SWIFT can be implemented on any architecture
and can protect individual code segments to varying de-
grees, we evaluate a full program implementation running
on Itanium 2. In these experiments, SWIFT demonstrates
exceptional fault-coverage with a reasonable performance
cost. Compared to the best known single-threaded ap-
proach utilizing an ECC memory system, SWIFT demon-
strates a 14% average speedup.

The remainder of this paper is organized as follows. Sec-
tion 2 discusses the relation to prior work. Section 3 de-
scribes the SWIFT technique as an evolution of work found
in the literature. The section details improvements to exist-
ing software-only techniques that increase performance as
well as the reliability of the system. Section 4 addresses
various issues related to the implementation and deploy-
ment of SWIFT. Section 5 evaluates the reliability and per-
formance of an implementation of SWIFT for IA-64 and
presents experimental results. Finally, Section 6 summa-
rizes the contributions of this work.

2 Relation to Prior Work

Redundancy techniques can be broadly classified into
two kinds: hardware-based and software-based. Sev-
eral hardware redundancy approaches have been proposed.
Mahmood and McCluskey proposed using awatchdog[6]
processor to compare and validate the outputs against the
main running processor. Austin proposed DIVA [2], which
uses a main, high-performance, out-of-order processor core
that executes instructions and a second, simpler core to val-
idates the execution. Real system implementations like the
Compaq NonStop Himalaya [5], IBM S/390 [24], and Boe-
ing 777 airplanes [28, 29] replicated part or all of the pro-
cessor and used checkers to validate the redundant compu-
tations.

Several researchers have also made use of the mul-
tiplicity of hardware blocks readily available on multi-
threaded/multi-core architectures to implement redun-
dancy. Saxena and McCluskey [21] were the first to use re-
dundant threads to alleviate soft errors. Rotenberg [20] ex-
panded the SMT redundancy concept with AR-SMT. Rein-
hardt and Mukherjee [19] proposed simultaneous Redun-
dant MultiThreading (RMT) which increases the perfor-
mance of AR-SMT and compares redundant streams before
data is stored to memory. The SRTR processor proposed
by Vijaykumar et al. [26] expand the RMT concept to add
fault recovery by delaying commit and possibly rewind-
ing to a known good state. Mukherjee et al. [8] proposed
a Chip-level Redundantly Threaded multiprocessor (CRT)
and Gomaa et al. [4] expanded that approach with CRTR
to enable recovery. Ray et al. [16] proposed modifying
an out-of-order superscalar processor’s microarchitectural
components to implement redundancy. All hardware-based



approaches require the addition of some form of new hard-
ware logic to meet redundancy requirements and thus come
at a price.

Software-only approaches to redundancy are attractive
because they essentially comefree of cost. Shirvani et
al. [22] proposed a technique to enable ECC for mem-
ory data via a software-only technique. Oh and Mc-
Cluskey [10] analyzed different options for procedure du-
plication and argument duplication at the source-code level
to enable software fault tolerance while minimizing energy
utilization. Rebaudengo et al. [17] proposed a source-to-
source pre-pass compiler to generate fault detection code
in a high level language. The technique increases over-
head by 3-5 times and allows 1-5% of faults to go unde-
tected. Oh et al. [12] proposed a novel software redun-
dancy approach (EDDI) wherein all instructions are dupli-
cated and appropriate “check” instructions are inserted to
validate. A sphere of replication (SoR) [19] is the log-
ical domain of redundant execution. EDDI’s SoR is the
entire processor core and the memory subsystem. Oh et
al. [11] developed a pure software control-flow checking
scheme (CFCSS) wherein each control transfer generates a
run-time signature that is validated by error checking code
generated by the compiler for every block. Venkatasubra-
manian et al. [25] proposed a technique called Assertions
for Control Flow Checking (ACFC) that assigns an execu-
tion parity to each basic block and detects faults based on
parity errors. Ohlsson et al. [13] developed a technique to
monitor software control flow signatures without building
a control flow graph, but requires additional hardware. A
coprocessor is used to dynamically compute the signature
from the running instruction stream and watchdog timer is
used to detect the absence of block signatures.

SWIFT makes several key refinements to EDDI and
incorporates a software only signature-based control-flow
checking scheme to achieve exceptional fault-coverage.
The major difference between EDDI and SWIFT is, while
EDDI’s SoR includes the memory subsystem, SWIFT
moves memory out of the SoR, since memory structures
are already well-protected by hardware schemes like parity
and ECC, with or without scrubbing [7]. SWIFT’s perfor-
mance greatly benefits from having only half the memory
usage and only half as many stores writing to the memory
subsystem. This and other optimizations, explained in de-
tail in Section 3, enable SWIFT to significantly outperform
EDDI.

Table 1 gives a comparison of various redundancy ap-
proaches. The column headings are the different logical
entities that need to be protected. The rows contain details
about each technique. An “all” in any of the table cells
means the technique in the given row offers full protection
to the logical state in the corresponding column. A “none”
means the technique does not offer any protection and as-
sumes some form of protection from outside. “some” and

“most” are intermediate levels of protection, wherein the
technique offers protection to a subset of the state for a
subset of the time the state is live. More detail for those
protection levels is provided in the footnotes.

3 Software Fault Detection

SWIFT is an evolution of the best practices in software-
based fault detection. In this section, we will describe
the foundation of this work, EDDI [12], discuss extend-
ing EDDI with control-flow checking with software signa-
tures [11], and finally introduce the novel extensions that
comprise SWIFT.

Throughout this paper, we will be assuming aSingle
Event Upset(SEU) fault model, in which exactly one bit is
flipped throughout the entire program. Although the tech-
niques presented will be partially effective at detecting mul-
tiple faults, as we shall see in Section 3.7, the probability of
a multiple fault event is much smaller than an SEU, making
SEU detection by far the first-order concern. We will also
assume, in line with most modern systems, that the mem-
ory subsystem, including processor caches, are already ad-
equately protected using techniques like parity and ECC.

As presented, the following transformations are used to
detectfaults. However, upon fault detection, arbitrary user-
defined fault recovery code can be executed permitting a
variety of recovery mechanisms. Because fault detection
and fault recovery can be decoupled in this manner, they are
often studied independently. Furthermore, because of the
relative rarity of faults, recovery code is executed far more
infrequently than detection code, which must be run con-
tinuously. This makes efficacious and cost-effective fault
detection a much more difficult (and interesting) problem
than fault recovery.

3.1 EDDI

EDDI [12] is a software-only fault detection system that
operates by duplicating program instructions and using this
redundant execution to achieve fault tolerance. The pro-
gram instructions are duplicated by the compiler and are
intertwined with the original program instructions. Each
copy of the program, however, uses different registers and
different memory locations so as to not interfere with one
another. At certain synchronization points in the combined
program code, check instructions are inserted by the com-
piler to make sure that the original instructions and their
redundant copies agree on the computed values.

Since program correctness is defined by the output of a
program, if we assume memory-mapped I/O, then a pro-
gram has executed correctly if all stores in the program
have executed correctly. Consequently, it is natural to use
store instructions as synchronization points for compari-



Technique Category Opcode Loads Stores Control Transfers Other Insns Memory State Hardware Cost

DIVA HW all all all all all none Additional processor
Himalaya HW all all all all all none Dual core, checker

RMT HW all all all all all none SMT, checker, Sync logic
CRT HW all all all all all none CMP, checker, Sync logic

Superscalar HW mosta mosta mosta mosta mosta none Replicator, Extra logic
CFCSS SW someb none none mostc none none None
EDDI SW mostd all all moste all all None
ACFC SW someb none none mostc none none None
SWIFT SW mostf all moste mostc all none None

a instruction replicator and register faults go undetected
b coverage only for branch opcodes
c incorrect control transfers to within a control block may go undetected in rare circumstances
d no coverage for branch opcodes and opcodes that differ from branch opcodes by a Hamming distance of 1
e strikes to operands between validation and use by the instruction’s functional unit go undetected
f no coverage for store opcodes and opcodes that differ from a store opcode by a Hamming distance of 1

Table 1. Comparison of Various Redundancy Approaches

ld r12=[GLOBAL]

add r11=r12,r13

st m[r11]=r12

(a) Original Code

ld r12=[GLOBAL]
1: ld r22=[GLOBAL+offset]

add r11=r12,r13
2: add r21=r22,r23
3: cmp.neq.unc p1,p0=r11,r21
4: cmp.neq.or p1,p0=r12,r22
5: (p1) br faultDetected

st m[r11]=r12
6: st m[r21+offset]=r22

(b) EDDI Code

Figure 1. EDDI Fault Detection

son. Unfortunately, it is insufficient to use store instruc-
tions as the only synchronization points since misdirected
branches can cause stores to be skipped, incorrect stores to
be executed, or incorrect values to ultimately feed a store.
Therefore, branch instructions must also be synchroniza-
tion points at which redundant values are compared.

Figure 1 shows a sample code sequence before and after
the EDDI fault-detection transformation. For consistency,
throughout the paper we will make use of the IA64 instruc-
tion set architecture (ISA) although EDDI was originally
implemented for the MIPS ISA. In the example, the load
from a global constant address is duplicated as1. Notice
that the duplicated load reads its data from a different ad-
dress and stores its result into a different register to avoid
conflicting with the original instruction. Similarly, the add
instruction is duplicated as instruction2 to create a redun-
dant chain of computation. The store instruction is a syn-
chronization point, and instructions3 and 4 compare the
store’s operands to their redundant copies. If any difference
is detected, instruction5 will report an error. Otherwise the
store, and its redundant instruction,6, will execute storing
values to non-conflicting addresses.

Also, although in the example program an instruction is
immediately followed by its duplicate, an optimizing com-
piler (or dynamic hardware scheduler) is free to schedule
the instructions to use additional available ILP thus mini-
mizing the performance penalty of the transformation. De-
pending on whether the redundant duplicates are executed

in parallel or sequentially, two different forms of redun-
dancy,temporalandspatial, will be exploited. Temporal
redundancy computes the same data value at two different
times, usually on the same hardware. Spatial redundancy
computes the same data value in two different pieces of
hardware, usually at the same time.

3.2 Eliminating the Memory Penalty

While EDDI is able to effectively detect transient faults,
unfortunately, the transformation incurs a significant mem-
ory overhead. As Figure 1 demonstrates, each location in
memory needs to have a corresponding shadow location in
memory for use with the redundant duplicate. This memory
duplication incurs a significant hardware cost, but it also
incurs a significant performance cost since cache sizes are
effectively halved and additional memory traffic is created.

Recall that under our assumptions, the memory hierar-
chy is protected with some form of error correction. Con-
sequently, we propose eliminating the use of two distinct
memory locations for all memory values eliminating dupli-
cate store instructions. It is still necessary to duplicate load
instructions since all values contained in registers require a
redundant duplicate. These modifications willnot reduce
the fault detection coverage of the system, but will make
the protected code execute more efficiently and require less
memory. For the remainder of the paper, we will refer to
this as EDDI+ECC.

3.3 Control Flow Checking

In addition to the memory penalty, EDDI also suffers
from incomplete protection for control flow faults. With
EDDI, although the input operands for branch instructions
are verified, there is the possibility that a program’s con-
trol flow gets erroneously misdirected without detection.
The corruption can happen during the execution of the
branch, register corruption after branch check instructions,
or even due to a fault in the instruction pointer update



add r11=r12,r13

cmp.lt.unc
p11,p0=r11,r12

(p11) br L1
...
L1:

st m[r11]=r12

(a) Original Code

add r11=r12,r13
1: add r21=r22,r23

cmp.lt.unc
p11,p0=r11,r12

2: cmp.lt.unc p21,p0=r21,r22
3: mov r1=0
4: (p11) xor r1=r1,1
5: (p21) xor r1=r1,1
6: cmp.neq.unc p1,p0=r1,0
7: (p1) br faultDetected

(p11) br L1
...
L1:

8: xor GSR=GSR,L0 to L1
9: cmp.neq.unc p2,p0=GSR,sig 1
10: (p2) br faultDetected
11: cmp.neq.unc p3,p0=r11,r21
12: cmp.neq.or p3,p0=r12,r22
13: (p3) br faultDetected

st m[r11]=r12

(b) EDDI+ECC+CF code

Figure 2. Control Flow Checking

logic. To make EDDI more robust to such strikes, addi-
tional checks can be inserted to ensure that control flow is
being transferred properly. The technique that is described
here was originally proposed by Oh, et al. [11]. We will
refer to EDDI+ECC with this control flow validation as
EDDI+ECC+CF.

To verify that control transfer is in the appropriate con-
trol block, each block will be assigned a signature. A desig-
nated general purpose register, which we will call the GSR
(General Signature Register), will hold these signatures and
will be used to detect faults. The GSR will always contain
the signature for the currently executing block. Upon entry
to any block, the GSR will be xor’ed with a statically deter-
mined constant to transform the previous block’s signature
into the current block’s signature. After the transformation,
the GSR can be compared to the statically assigned sig-
nature for the block to ensure that a legal control transfer
occurred.

Using a statically-determined constant to transform the
GSR forces two blocks which both jump to a common
block (a control flow merge) to share the same signature.
This is undesirable since faults which transfer control to
or from blocks that share the same signature will go unde-
tected. To avoid this, a run-time adjusting signature can be
used. This signature is assigned to another designated reg-
ister, and at the entry of a block, this signature, the GSR,
and a predetermined constant are all xor’ed together to form
the new GSR. Since the run-time adjusting signature can be
different depending on the source of the control transfer, it
can be used to compensate for differences in signatures be-
tween source blocks.

This transformation is illustrated in Figure 2. Instruc-
tion 1 and2 are the redundant duplicates for the add and
compare instructions, respectively. Recall that in the EDDI
transformation, branches are synchronization points. In-

structions3 through7 are inserted to compare the predi-
catep11 to its redundant duplicatep21 and branch to error
code if a fault is detected. The control flow additions be-
gin with instruction8. This instruction transforms the GSR
from the previous block to the signature for this block. In-
structions9 and10 ensure that the signature is correct, and
if an incorrect signature is detected error code is invoked.
Finally, instructions11 through13 are inserted to handle
the synchronization point induced by the later store instruc-
tion.

The transformation will detect any fault that causes a
control transfer between two blocks that should not jump
to one another. Any such control transfer will yield in-
correct signatures even if the erroneous transfer jumps to
the middle of a basic block. The control flow transforma-
tion does not ensure that the correct direction of the condi-
tional branch is taken, only that the control flow is diverted
to the taken or untaken path. The base EDDI transforma-
tion provides reasonable guarantees since the branches in-
put operands are verified prior to its execution, however,
faults that occur during the execution of a branch instruc-
tion which influence the branch direction will not be de-
tected by EDDI+ECC+CF.

3.4 Enhanced Control Flow Checking

To extend fault detection coverage to cases where
branch instruction execution is compromised, we pro-
pose an enhanced control flow checking transforma-
tion, EDDI+ECC+CFE. The transformation is similar to
EDDI+ECC+CF for blocks using run-time adjusting sig-
natures, but our contribution increases the reliability of the
control flow checking. The enhanced mechanism uses a
dynamic equivalent of a run-time adjusting signature for all
blocks, including those that are not control flow merges.
Effectively, each block asserts its target using the run-time
adjusting signature, and each target confirms the transfer
by checking the GSR. Conceptually, the run-time adjust-
ing signature combined with the GSR serve as a redundant
duplicate for the program counter (PC).

The transformation is best explained through an exam-
ple. Consider the program shown in Figure 3. Just as be-
fore, instructions1 and2 are the redundant duplicates for
the add and compare instructions, respectively. In this ex-
ample, for brevity, the synchronization check before the
branch instruction has been omitted. Instruction3 com-
putes the run-time signature for the target of the branch.
The run-time signature is computed by xor’ing the signa-
ture of the current block, with the signature of the target
block. Since the branch is predicated, the assignment to
RTS is also predicated using the redundant duplicate for
the predicate register. Instruction4 is the equivalent of in-
struction3 for the fall through control transfer.

Instruction5, at the target of a control transfer, xors RTS



add r11=r12,r13

cmp.lt.unc
p11,p0=r11,r12

(p11) br L1
...

L1:

st m[r11]=r12

(a) Original Code

add r11=r12,r13
1: add r21=r22,r23

cmp.lt.unc
p11,p0=r11,r12

2: cmp.lt.unc p21,p0=r21,r22
3: (p21) xor RTS=sig0,sig1

(p11) br L1
...

4: xor RTS=sig0,sig1
L1:

5: xor GSR=GSR,RTS
6: cmp.neq.unc p2,p0=GSR,sig1
7: (p2) br faultDetected
8: cmp.neq.unc p3,p0=r11,r21
9: cmp.neq.or p3,p0=r12,r22
10: (p3) br faultDetected

st m[r11]=r12

(b) EDDI+ECC+CFE Code

Figure 3. Enhanced Control Flow Checking

with the GSR to compute the signature of the new block.
This signature is compared with the statically assigned sig-
nature in instruction6 and if they mismatch error code is
invoked with instruction7. Just as before, instructions8
through 9 implement the synchronization checks for the
store instruction.

Notice that with this transformation, even if a branch
is incorrectly executed, the fault will be detected since
the RTS register will have the incorrect value. There-
fore, this control transformation more robustly protects
against transient faults. As a specific example, again con-
sider the code from Figure 2. If a transient fault oc-
curred to the guarding predicate of the original branch
(p11 ) after it was read for comparison, (i.e. after instruc-
tion 4), then execution would continue in the wrong direc-
tion, but EDDI+ECC+CF would not detect that error. The
EDDI+EDD+CF control flow checking only ensures that
execution is transfered to a valid control block, such as the
taken branch label or fall through path, but does not ensure
that the correct conditional control path is taken. The en-
hanced control flow checking detects this case by dynami-
cally updating the target signature based on the redundant
conditional instructions (3) and checking at the beginning
of each control block (5,6,7).

3.5 SWIFT

This section will describe optimizations to the
EDDI+ECC+CFE transformation. These optimizations ap-
plied to the EDDI+ECC+CFE transformation comprise
SWIFT. The section will conclude with a qualitative analy-
sis of the SWIFT system including the faults that the system
cannot detect.

3.5.1 Control Flow Checking at Blocks with Stores

The first optimization comes from the observation that it is
only the store instructions that ultimately send data out of
the SoR. As long as we can ensure that stores execute only
if they are “meant to” and stores write the correct data to
the correct address, the system will run correctly. We use
this observation to restrict enhanced control flow checking
only to blocks which have stores in them. The updates to
GSR and RTS are performed in all blocks, but signature
comparisons are restricted to blocks with stores. Remov-
ing the signature check instructions with this optimization,
abbreviatedSCFOpti , can further reduce the overhead for
fault tolerance at no reduction in reliability. Since signa-
ture comparisons are computed at the beginning of every
block that contains a store instruction, any deviation from
the valid control flow path to that point will be detected
before memory and output is corrupted. This optimization
slightly increases performance and reduces the static size,
as will explained in Section 5, for no reduction in reliability.

3.5.2 Redundancy in Branch/Control Flow Checking

Another optimization is enabled by realizing that branch
checking and enhanced control flow checking are redun-
dant. While branch checking ensures that branches are
taken in the proper direction, enhanced control flow check-
ing ensures that all control transfers are made to the proper
address. Note that verifyingall control flowsubsumesthe
notion of branching in the right direction. Thus, doing con-
trol flow checking alone is sufficient to detect all control
flow errors. Removing branch checking via this optimiza-
tion, abbreviatedBROpti , can significantly reduce the per-
formance and static size overhead for fault detection and
will be evaluated in Section 5. Since the control flow check-
ing, instructions3,5,6,7of Figure 3,subsumethe branch di-
rection checking, instructions3,4,5,6,7of Figure 2, there is
no reduction in reliability by removing the branch direction
checking.

3.6 Undetected Errors

There aretwo primary points-of-failure in the SWIFT
technique. Since redundancy is introduced solely via soft-
ware instructions, there can be a delay between validation
and use of the validated register values. Any strikes during
this gap might corrupt state. While all other instructions
have some form of redundancy to guard them against such
strikes, bit flips in store address or data registers are un-
caught. This can cause incorrect program execution due to
incorrect writes going outside the SoR. These can be due to
incorrect store values or incorrect store addresses.

The second point-of-failure occurs if an instruction op-
code is changed to a store instruction by a transient fault.



These stores are unprotected since the compiler did not see
this instruction. The store will be free to execute and the
value it stores will leave the SoR.

3.7 Multibit Errors

The above code transformations are sufficient to catch
single-bit faults in all but a few rare corner cases. However,
it is less effective at detecting multibit faults. There are two
possible ways in which multibit faults can cause problems.
The first is when the same bit is flipped in both the origi-
nal and redundant computation. The second occurs when
a bit is flipped in either the original or redundant compu-
tation and the comparison is also flipped such that it does
not branch to the error code. Fortunately, these patterns of
multibit errors are unlikely enough to be safely ignored.

We may estimate the probability of each of these types
of multibit errors. Suppose that instead of a single-upset
fault model, we use a dual-upset fault model, wherein two
faults are injected into each program with a uniformly ran-
dom distribution. Let us first consider the case where a
bit is flipped in the original as well as the redundant com-
putation. If we assume that the same fault must occur in
the same bit of the same instruction for the fault to go un-
detected, then the probability can be easily computed as
P(errorredundant|errororiginal) = 1

64 ·
1

#instructions
, simply the prob-

ability of that particular instruction being chosen times the
probability of a particular bit being chosen (in this case, we
assume 64-bit registers). Since the average SPEC bench-
mark typically has on the order of109 to 1011 dynamic
instructions, the probability of this sort of fault occurring
will be in the neighborhood of one in a trillion.

Now, let us consider the case in which a bit is flipped
along one of the computation paths and another bit is
flipped in the comparison. If we assume that there is only
one comparison for every possible fault, then the prob-
ability of error is simply P(errorcomparison|errororiginal) =

1
#instructions

. This probability will be about one in ten billion
on average. Note that this is a grossoverestimateof this sort
of error because it assumes only one comparison for each
fault, whereas in reality, there may be many checks on a
faulty value as a result of its being used in the computation
of multiple stores or branches.

4 Implementation Details

This section presents details specific to the implementa-
tion and deployment of SWIFT. In particular, we consider
different options for calling convention, implementations
on multiprocessor systems, and the effects of using an ISA
with predication (IA64).

4.1 Function calls

Since function calls may affect program output, incor-
rect function parameter values may result in incorrect pro-
gram output. One approach to solve this is to simply make
function calls as synchronization points. Before any func-
tion call, all input operands are checked against their redun-
dant copies. If any of them mismatch, a fault is detected.
Otherwise, the original versions are passed as the parame-
ters to the function. At the beginning of the function, the
parameters must be reduplicated into original and redun-
dant versions. Similarly, on return, only one version of the
return values will be returned. These must be duplicated
into redundant versions for the remaining redundant code
to function.

All of this adds performance overhead and it introduces
points of vulnerability. Since only one version of the pa-
rameters is sent to the function, faults that occur on the
parameters after the checks made by the caller and before
the duplication by the callee will not be caught. To handle
function calls more efficiently and effectively, the calling
convention can be altered to pass multiple sets of computed
arguments to a function and to return multiple return val-
ues from a function. Note that only arguments passed in
registers need be duplicated. Arguments that are passed
via memory do not need to be replicated, since memory is
outside the SoR. Multiple return values simply require that
an extra register be reserved for the replicated return value.
This incurs the additional pressure of having twice as many
input and output registers, but it ensures that fault detection
is preserved across function calls.

Note that interaction with unmodified libraries is pos-
sible, provided that the compiler knows which of the two
calling conventions to use.

4.2 Shared Memory, Interrupts, and Exceptions

When multiple processes communicate with each other
using shared memory, the compiler cannot possibly enforce
an ordering of reads and writes across processes. Thus, the
two loads of a duplicated pair of loads are not guaranteed
to return the same value, as there is always the possibility
of intervening writes from other processes. While this does
not reduce the fault-coverage of the system in any way, it
will increase the detected fault count by contributing to the
number of detected fault that would not have caused a fail-
ure. This is true in both uniprocessor and multiprocessor
systems.

Shared-memory programs are only a part of the problem
though. We find ourselves in a very similar situation when
an interrupt or exception occurs between the two loads of
a duplicated pair and the interrupt or exception handler
changes the contents at the load address.



1. Hardware Solutions

This is a problem that affects RMT machines too.
Thus, we can appeal to “safe” hardware-based load
value duplication techniques like the Active Load Ad-
dress Buffer (ALAB) or the Load Value Queue (LVQ)
used in RMT machines [19] and adapt them to a
SWIFT system. However, these are hardware tech-
niques and come at a cost.

2. No Duplication for Loads

One software-only solution to this problem is for the
compiler to do only one load instead of doing two
loads and then duplicate the loaded value for both the
original and redundant version consumers. While this
is a simple solution, it has the disadvantage of remov-
ing redundancy from the load execution, thereby mak-
ing loads yet another single point-of-failure.

3. Dealing with Potentially-Excepting Instructions

If the compiler knowsa priori that certain instructions
may cause faults, it may choose to enforce a sched-
ule in which pairs of loads are not split across such
instructions. This can prevent most exceptions from
being raised in between two versions of a load instruc-
tion and more importantly allows us to have redun-
dancy in load execution (as opposed to using just a sin-
gle load and losing load redundancy). Asynchronous
signals and interrupts cannot be handled in this man-
ner and we might have to fall back on a hardware so-
lution or the single-load solution to deal with those.

4.3 Logical Masking from Predication

Branches in a typical RISC architecture take in two reg-
ister values and branch based upon the result of the compar-
ison of the two values. A software fault detection mecha-
nism inserts instructions to compare the original and redun-
dant values of these two operands just before branches, and
if the values differ an error is signaled. However, not all
faults detected by such a comparison need be detected. For
example, consider the branchbr r1!=r2 . If, in the ab-
sence of a fault, the branch were to be taken, it is likely that
even after a strike to eitherr1 or r2 , the condition would
still hold true. If the branch would have had the same out-
come despite the error, the error can be safely ignored. This
logical masking [19], allows the fault detection mechanism
to be less conservative in detecting errors, thus reducing the
overall false detected unrecoverable error [19] count, while
still maintaining the same coverage.

While special checks would have to be used to check
for logical masking in a conventional ISA, predicated ar-
chitectures naturally provide logical masking. For exam-
ple, in the IA64 ISA, conditional branches are executed
based upon a predicate value which is computed by prior

predicate-defining instructions. Since there is no validation
before predicate-defining instructions, they go ahead and
compute the predicates and any bit flips due to strikes are
not noticed unless they produce unequal predicate values.

5 Evaluation

This section evaluates the techniques from Section 3 in
order to determine the performance of each technique and
to verify their ability to detect faults.

5.1 Performance

To evaluate the performance impact of our techniques,
a pre-release version of the OpenIMPACT compiler [14]
was modified to add redundancy and was targeted at the
Intel Itanium 2 processor. A version was created for each
of the EDDI+ECC+CFE and SWIFT techniques. To see
the effect of each optimization individually, versions were
also created with each of the specific optimizations re-
moved: SWIFT-SCFopti to analyze the control flow check-
ing only at blocks with stores from Section 3.5.1 and
SWIFT-BRopti to analyze branch checking optimization
from Section 3.5.2.

The modified compilers were used to evaluate the tech-
niques on SPEC CINT2000 and several other benchmark
suits, including SPEC FP2000, SPEC CINT95 and Media-
Bench. These executions were compared against binaries
generated by the original OpenIMPACT compiler which
have no fault detection. The fault detection code was in-
serted into the low level code immediately before regis-
ter allocation and scheduling. Optimizations that would
have interfered with the duplicated and detection code, like
Common Subexpression Elimination, were modified to re-
spect the fault detecting code.

Performance metrics were obtained by running the re-
sulting binaries with all reference inputs on an HP worksta-
tion zx6000 with 2 900Mhz Intel Itanium 2 processors run-
ning Redhat Advanced Workstation 2.1 with 4Gb of mem-
ory. Theperfmon utility [15] was used to measure the
CPU time, instructions committed and NOPs committed.

The results in Figure 4(a) show that the normalized
execution time of the EDDI+ECC+CFE technique had a
geometric mean of 1.62 compared to the baseline, no
fault detection IMPACT binaries. For the SWIFT version,
the execution time was 1.41. As explained earlier, the
EDDI+ECC+CFE version does comparisons of the values
used before every branch while the SWIFT version does
not. As can also be seen from Figure 4(a), the optimization
due to control flow checking accounts for almost all of the
0.21 difference from the EDDI+ECC+CFE to the SWIFT
version.

If the program were just run twice, the normalized
execution time would be exactly 2.00. Since additional
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Figure 4. EDDI+ECC+CFE, SWIFT-BROpti, SWIFT-SCFOpti, and SWIFT performance and code char-
acteristics normalized to unprotected code.

code would need to be executed to compare and validate
the two program outputs the overall degradation would
be much greater than 2.00. The 1.62 and 1.41 normal-
ized execution times of EDDI+ECC+CFE and SWIFT in-
dicate that these methods are exploiting the unused pro-
cessor resources present during the execution of the base-
line program. This is corroborated by the IPC numbers
shown in Figure 4(b). The geometric mean of the normal-
ized IPC for EDDI+ECC+CFE was 1.53 and for SWIFT, it
was 1.48. The additional branch checks that are present
in EDDI+ECC+CFE technique enable more independent
work and thus increase the IPC. Scheduling both version of
the program together enables a normalized IPC of roughly
1.5 when compared with the non-detecting executions.

Figure 4(c) shows the static sizes of the bina-
ries normalized to baseline with no detection ability.
EDDI+ECC+CFE is 2.83x larger than the baseline while
SWIFT is 2.40x larger. Both techniques duplicate all
instructions except for NOPs, stores, and branches and
then insert detection code. The SWIFT technique gener-
ates binaries that are, on average, 15% smaller than the
EDDI+ECC+CFE technique because it does not generate
the extra instructions that are eliminated by each optimiza-
tion. The store control block optimization alone reduces
the static size by 2% while the branch checking optimiza-
tion alone reduces the static size by 13%. The optimiza-
tions capture different opportunities as can be seen by their
additive effect in SWIFT.

Figure 5 shows the instruction counts for all four tech-
niques normalized to the baseline, no fault detection in-
struction count. Note that the light-grey region of Figure 5
represents the fraction of total dynamic instructions that are
NOP instruction. The normalized instruction counts have a
geometric mean of 2.73 for EDDI+ECC+CFE and 2.23 for
SWIFT. These numbers follow the same trend as the static
binary size numbers in Figure 4(c). However, the dynamic
instruction counts grow disproportionally to the static bi-
nary size increases, which would indicate that programs
spend, on the balance, slightly more of their execution time
in branch-heavy or store-heavy routines.

5.2 Fault Detection

The techniques’ abilities to detect faults were also eval-
uated. We used Pin [18] to instrument our binaries. For
the purpose of these experiments, our instrumentation tools
ignored the regions in the binaries corresponding to code
linked in from thelibc and libm libraries, as those re-
gions were not protected.

The binaries were first profiled to see how many times
each static instruction is executed. We then used thelibc
rand function to select the number of faults to insert into
the program. The fault injection rate per dynamic instruc-
tion was normalized so that there would be exactly one fault
per run on baseline builds. Once the number of faults was
chosen, our instrumentation chose, for each fault, a number
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Figure 5. Normalized Dynamic Instruction Counts for EDDI+ECC+CFE (E), SWIFT-BROpti (1), SWIFT-
SCFOpti (2), and SWIFT (S) binaries of the benchmarks. The fraction of instructions which are NOPs
is denoted by the light-grey regions.

Correct Fault Det Incorrect Segfault

NOFT 63.10 0.00 15.04 21.86
EDDI+ECC+CFE 15.41 75.38 0.00 9.21
SWIFT 18.04 70.31 0.00 11.65

Table 2. Comparison of fault-detection rates
between NOFT, EDDI+ECC+CFE, and SWIFT.
The results have a 95% confidence interval of
±1.1%

between zero and the number of total dynamic instructions.
We used this number to choose a static instruction using
the weights from the profile, and then we choose a specific
instance of this static instruction in the dynamic instruction
stream to instrument.

The dynamic instruction is instrumented as follows: one
of the outputs of the instruction is chosen at random. In
these experiments, we restricted ourselves to modifying
general purpose registers, floating point registers, and pred-
icate registers. A random bit of this output register is
flipped (predicates are considered 1-bit entities). After-
wards, the execution continues normally, and the result of
the execution is recorded.

The execution output is also recorded and compared
against known good outputs. If both the execution and
the check were successful, then the run is entered into the
“Correct” column. If the execution fails due toSIGSEGV
(Segmentation fault due to the access of an illegal address),
SIGILL (Illegal instruction due to the consumption of a
NaT bit generated by a faulting speculative load instruc-
tion) or SIGBUS (Bus error due to unaligned access) then
the run is entered into the “Segfault” column. If the ex-
ecution fails due to a fault being detected, the run is en-
tered into the “Fault Detected” column. The runs that do
not satisfy any of the above are entered into the “Incorrect”
column. Each benchmark was run 300 times on test inputs.

These results are tabulated in Figure 5.2. These figures
show that the EDDI+ECC+CFE and SWIFT techniques de-
tect all of the faults which yield incorrect outputs. This con-

firms our earlier claims that EDDI+ECC+CFE and SWIFT
will detect all but the most pathological single-upset faults.
This is a marked improvement over the NOFT (No Fault
Tolerance) builds which can give incorrect results up to al-
most 50% of the time in some cases (pgpdec ). Further-
more, the number of segfaults are reduced from 21.86%
in NOFT to 9.21% and 11.65% in EDDI+ECC+CFE and
SWIFT respectively. This is because some faults which
would have resulted in segfaults in the NOFT builds are de-
tected in the SWIFT and EDDI+ECC+CFE builds before
the segfault can actually occur.

Despite the injection of a faults into every run, binaries
still ran successfully 63%, 15% and 18% of the time for
NOFT, EDDI+ECC+CFE, and SWIFT respectively. These
results are in accordance with previous research [27, 9]
which observed that many faults injected into programs do
not result in incorrect output. Note that EDDI+ECC+CFE
and SWIFT have significantly lower rates of success be-
cause the number of faults injected into each run is higher
for the builds with fault detection due to their larger dy-
namic instruction count.

However, the difference in the correct rates between
NOFT and the builds with fault detection is statistically
significant, which would indicate that our techniques are
a bit overzealous in their fault detection. This fact is very
evident in the129.compress where the rate of correct
execution fell from 65% in NOFT builds to about 1% for
EDDI+ECC+CFE and SWIFT builds, the balance largely
being made up of faults detected. The reason for this
calamitous fall in correct execution is that a large portion
of execution time is spent initializing a hash table which
is orders of magnitude larger than the input, and so many
of the stores are superfluous in that they do not affect the
output, but our technique must nevertheless detect faults
on these stores, since it cannot knowa priori whether or
not the output will depend on them, as it is an undecidable
problem.

There is also a statistically significant difference be-
tween the fault detection rate of EDDI+ECC+CFE ver-
sus SWIFT. These can be partially attributed to faults in-
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Figure 6. Fault-detection rates by benchmark between NOFT ( N), EDDI+ECC+CFE(E) and SWIFT
(S). Bars are broken down by percent where a fault was detected (FAULT DET), a segmentation
fault occurred (SEG FAULT), incorrect output was produced (INCORRECT), or correct output was
produced (CORRECT).

jected on the extra comparison instruction generated by the
EDDI+ECC+CFE technique. A fault on these instructions
alwaysgenerates a fault detected, whereas a fault on the
general population of instruction has a nonzero probabil-
ity of generating correct output (or a segmentation fault)
in lieu of a fault detected. Therefore, SWIFT can be ex-
pected to have a slightly lower fault detection rate than
EDDI+ECC+CFE because SWIFT binaries do not have ex-
tra comparison instructions to fault on.

In addition, the difference in fault detection rates is made
up partially by the larger segmentation fault rate in the
SWIFT binaries. This can be explained by the larger num-
ber of speculative loads in the EDDI+ECC+CFE binaries
which result from the larger number of branches around
which the compiler must schedule loads. An injected fault
which would cause a segfault in SWIFT is transformed in
EDDI+ECC+CFE into the insertion of a NaT bit on the out-
put register. This extra NaT bit is then checked at the com-
parison code and detected as a fault rather than a segfault.

6 Conclusion

This paper demonstrated that detection of most transient
faults can be accomplished without the need for specialized
hardware. In particular, this paper introduces SWIFT, the
best performing single-threaded software-based approach
for full out fault detection. SWIFT is able to exploit unused
instruction-level parallelism resources present in the execu-
tion of most programs to efficiently manage fault detection.
Through enhanced control flow checking, validation points
needed by previous software-only techniques become un-
necessary and SWIFT is able to realize a performance
increase. When compared to the best known singled-
threaded approach to fault tolerance, SWIFT achieves a

14% speedup. The SWIFT technique described in this pa-
per can be integrated into production compilers to provide
fault detection on today’s commodity hardware.
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